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Abstract

We formulate and study the microscopic statistical mechanics of systems of par-

ticles with exclusion statistics in a discrete one-body spectrum. The statistical

mechanics of these systems can be expressed in terms of effective single-level grand

partition functions obeying a generalization of the standard thermodynamic exclu-

sion statistics equation of state. We derive explicit expressions for the thermody-

namic potential in terms of microscopic cluster coefficients and show that the mean

occupation numbers of levels satisfy a nesting relation involving a number of adja-

cent levels determined by the exclusion parameter. We apply the formalism to the

harmonic Calogero model and point out a relation with the Ramanujan continued

fraction identity and appropriate generalizations.
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1 Introduction

Anyons statistics [1], and the related topics of fractional and exclusion statistics [2], are
enjoying renewed popularity since the 2020 announcement of experimental confirmations
[3] of lowest Landau level (LLL) anyon excitations with statistics 1/3 in fractional quan-
tum Hall samples at filling 1/3. The statistics relevant to these results are abelian, which
is indeed the simplest and, in principle, easiest to observe among non conventional statis-
tics, leaving aside possible more elaborate nonabelian extensions. In this context, it is of
interest to study the manifestation of exclusion statistics in its microscopic setting, and
this is the aim of the present work.

The concept of exclusions statistics, as introduced by Haldane [2], essentially holds
only at the thermodynamic limit, or in situations where the Hilbert space consists of
degenerate states as in the LLL of an external magnetic field. Its ab initio microscopic
formulation (i.e., starting from a 1-body spectrum and filling it with particles obeying
exclusion statistics, as can be done in the standard Bose and Fermi cases) is, in general,
impossible for non integer (fractional) exclusion parameter g, since exact many-body
states cannot be defined. Microscopic concepts become, in principle, accessible when the
exclusion parameter g is constrained to be an integer, but are again to a large extent
ambiguous as they are not invariant under Hilbert space state reparametrizations.

This is to be contrasted to anyon statistics, defined in 2 dimensions in terms of
a microscopic N -anyon quantum Hamiltonian [4], with a statistical (exchange) anyon
parameter α taking continuous values in [0, 2). Physics is periodic in α with period 2:
α = 0 corresponds to bosons, α = 1 to fermions, and α = 2 again to bosons. It is well
known that Haldane/exclusion statistics and anyon statistics are intimately related when
one considers anyons projected onto the LLL of an external magnetic field, the so-called
LLL-anyon model [5]. Here exclusion statistics manifests itself for a system of particles
with a continuous degenerate 1-body density of states in the LLL.

Our present aim is to focus on exclusion statistics in its most general microscopic
setting, i.e., for particles with a discrete 1-body spectrum ǫ1, ǫ2, . . . , ǫq. In this situation,
exclusion statistics requires a natural (and dynamically relevant) ordering of the 1-body
energy eigenstates, as, for example, when a single quantum number k indexes them. This
is typically the case for 1-dimensional systems, but exclusion statistics can be relevant
in more general settings provided that a principal quantum number induces a natural
ordering of the spectrum, as it happens for example in the case of the 2-dimensional
LLL-anyon model properly regularized at long distances by a harmonic well.

In the next section we will give a summary of anyon statistics in the context of the
LLL-anyon model [5] and will review the intimate relation of Haldane exclusion statistics
to LLL-anyon statistics. We will also consider the thermodynamics of the Calogero model
[6, 7] as yet another example of a microscopic realization of exclusion statistics. This will
allow for a general definition of the thermodynamics relations governing a gas of particles
with exclusion statistics and a continuous 1-body density of states.
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We will then move to the situation of present interest, the statistical mechanics of a
gas of particles in q discrete 1-body energy levels ǫ1, ǫ2, . . . , ǫq in a specific ordering with
an integer exclusion parameter g. Bosons correspond to g = 0, with no exclusion, while
g = 1 is the Fermi case where no more than one particle per quantum state is allowed.
For g-exclusion, levels can again be occupied by at most one particle, but in addition at
least g− 1 unoccupied levels must exist between any two occupied states.

Our main results, presented in section 3, are that the statistical mechanics of these
systems can be written as a generalization of the thermodynamics relations governing
LLL-anyon or Calogero particles, in terms of effective single-state grand partition func-
tions obeying a generalization of the standard exclusion statistics equation of state. Inter-
estingly, two distinct such effective partition functions can be defined, termed “forward”
and “backward”, obeying different equations of state but leading to identical statistical
mechanics. We also define appropriate thermodynamic potentials and give their explicit
expressions in terms of cluster coefficients that involve sums over generalized partitions of
the particle number. The mean occupation number of each 1-body level is then expressed
in terms of the effective grand partition functions and shown to satisfy nesting relations
that involve g nearby levels. Finally, in section 4 the formalism is applied to the specific
case of the harmonic Calogero system, and a relation to the Ramanujan continued fraction
identity is pointed out for g = 2 and related generalizations for g > 2. We conclude with
some directions for future research.

2 LLL-anyons and exclusion thermodynamics

We start with a review of LLL-anyons in an isotropic harmonic trap of frequency ω and
their intimate relation with exclusions statistics. The spectrum of the N -anyon system is

EN = (ωt − ωc)
[

N
∑

i=1

li + α
N(N − 1)

2

]

+Nωt , 0 ≤ l1 ≤ l2 ≤ ... ≤ lN (1)

where ωc is half the cyclotron frequency, ωt =
√

ω2
c + ω2, the li are 1-body LLL angular

momentum quantum numbers in 2 dimensions, and α is understood to be in the interval
[0, 2). We stress that the harmonic well is introduced as a long distance regulator to split
the degeneracy of the LLL (when ω = 0 the LLL-anyon spectrum (1) reduces trivially to
EN = Nωc) and will be taken to vanish in the thermodynamic limit. When α : 0 → 1 the
spectrum (1) interpolates continuously between the harmonic LLL-Bose and LLL-Fermi
spectra. Going beyond α = 1, we note that due to the presence of the magnetic field the
Bose limit α → 2− differs from the standard Bose case α = 0 because of some missing
states. At α = 2 these missing states are restored thanks to excited states merging into
the LLL ground state.

The LLL-anyon spectrum (1) is, in fact, identical in form to the spectrum of the
1-dimensional harmonic Calogero model with interaction strength α(α− 1). The relation
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between the two models is well established (see [9] for an explicit mapping) and the
exclusion statistics interpretation of their statistical mechanics is a common feature. We
will come back later in this section to the well-known connection of the Calogero model to
exclusion statistics in the thermodynamic limit βω → 0, and in section 4 we will examine
in more detail its microscopic statistical mechanics in the dicrete case (βω 6= 0) using the
results of section 3.

From the harmonic LLL-anyon spectrum (1) the N -body partition function ZN , grand
partition function Z and cluster coefficients bn, defined as

Z =

∞
∑

N=0

ZN zN , lnZ =

∞
∑

n=1

bn z
n

where z is the fugacity, can be calculated. To probe the effect of the statistics, the cluster
coefficients bn were studied in [5] and found to leading order in βω (that is, for β(ωt−ωc)
small) to be

bn =
1

β(ωt − ωc)
e−nβωc

1

n2

n−1
∏

k=1

k − nα

k
(2)

Taking then the thermodynamic limit βω → 0, (which in the present case amounts
to 1/(nβ2ω2) → V/λ2, where V is the macroscopically large 2-dimensional volume –
here, area– of the system and λ the thermal wavelength), the LLL-anyon thermodynamic
potential follows

lnZ = NL ln y (3)

where NL = BV/Φ0 is the LLL degeneracy, i.e., the number of magnetic flux quanta in
the volume – here, area – of the system. The function y was found to satisfy

y − ze−βωcy1−α = 1 , (4)

so that

y =
∞
∑

N=0

zNe−βNωc

N
∏

k=2

k −Nα

k

(by definition
∏k2

k=k1
(. . .) = 1 when k2 < k1).

Using Z = yNL, it was deduced [5]

ZN = e−βNωcNL

N
∏

k=2

k +NL −Nα − 1

k

ZN is the LLL-anyon N -body partition function for N degenerate anyons at energy Nωc,
thus identifying their degeneracy as

NL

N
∏

k=2

k +NL −Nα− 1

k
=

NL

N !

(N +NL −Nα − 1)!

(NL −Nα)!
(5)
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(factorials for fractional argument are defined in terms of the corresponding Γ-functions.)

Let us now allow α to take integer values beyond the interval [0, 2): the degeneracy
(5) counts the number of ways to put N particles in NL degenerate quantum states in a
circular configuration such that there are at least α − 1 empty states between any two
occupied states [8]. This is the hallmark of exclusion statistics with exclusion parameter
α. In particular, α = 2 describes a Bose gas but with nontrivial α = 2 exclusion.

Indeed, Haldane exclusion statistics postulates that given G single-particle states already
populated by N − 1 particles the number of quantum states available for an additional
N th particle is G − (N − 1)g (this is heuristic, and somewhat misleading [8]) where g is
the exclusion parameter. g would need to be an integer for this to be meaningful, but this
requirement can be dropped in the thermodynamic limit where G and N become large.
Starting from the standard Bose degeneracy for N bosons in G quantum states

(N +G− 1)!

N !(G− 1)!

Haldane encoded exclusion by replacing G by G − (N − 1)g to propose the N -body
exclusion degeneracy

(N +G− (N − 1)g − 1)!

N !(G− (N − 1)g − 1)!
(6)

When g is a positive integer, this is the number of ways to put on a line N particles in
G quantum states in such a way there are at least g − 1 empty states in between two
occupied states. This is the same as the LLL-anyon counting (5) discussed above upon
setting g = α and G = NL in the Haldane counting and placing the states on a line rather
than a circle, which is irrelevant in the thermodynamic limit where G = NL → ∞. So
Haldane exclusion statistics is identical to LLL-anyon statistics provided that the anyonic
exchange statistical parameter α is allowed to take integer values beyond [0, 2). Not
surprisingly, in view of this intimate relation between LLL-anyon statistics and Haldane
exclusion statistics, the LLL-anyon thermodynamic (3) and (4) can be directly recovered
[10] from the Haldane Hilbert space counting (6).

In conclusion, exclusion/LLL-anyon thermodynamics amounts to

lnZ = NL ln y , y − ze−βωcy1−α = 1 (7)

Let us focus on the mean particle number N̄ = z∂ lnZ/∂z or, equivalently, on the LLL
filling factor

ν =
N̄

NL

= z
∂ ln y

∂z

Using y − ze−βωcy1−α = 1 we can obtain

y = 1 +
ν

1− α ν

and therefore also
ze−βωc =

ν

(1 + (1− α)ν)1−α(1− α ν)α

5



and from lnZ = NL ln y we obtain the equation of state

lnZ = βPV = NL ln(1 +
ν

1− α ν
)

with a critical filling ν = 1/α where the pressure diverges [5]. Interestingly, at the critical
filling the N -body LLL-anyon wave function is nondegenerate

ψ =
∏

i<j

(zi − zi)
αe−ωc

∑N
i=1 z̄izi/2 (8)

which coincides with the Laughlin wavefunction when α = 2m+1, m = 1, 2, . . ., encoding
α-exclusion for an incompressible N -anyon state in the LLL.

The above thermodynamics readily generalizes to exclusion statistics systems with
arbitrary 1-body density of states ρ(ǫ). In the thermodynamic limit we can apply relations
(7) for states around energy ǫ, with the number of states NL substituted by ρ(ǫ)dǫ,
obtaining

lnZ =

∫ ∞

0

ρ(ǫ) ln y(ǫ) dǫ , y(ǫ)− ze−βǫy(ǫ)1−α = 1 (9)

The LLL-anyon result (7) is recovered for ρ(ǫ) = NLδ(ǫ − ωc). Similarly, for the mean
occupation number n(ǫ) per level at energy ǫ and the mean particle number N̄

n(ǫ) = z
∂ ln y(ǫ)

∂z
, N̄ =

∫ ∞

0

ρ(ǫ)n(ǫ) dǫ

we obtain, in view of (9),

y(ǫ) = 1 +
n(ǫ)

1− α n(ǫ)

ze−βǫ =
n(ǫ)

[1 + (1− α)n(ǫ)]1−α[1− α n(ǫ)]α
(10)

and therefore

lnZ =

∫ ∞

0

ρ(ǫ) ln

(

1 +
n(ǫ)

1− α n(ǫ)

)

dǫ (11)

A question naturally arises about the existence of other microscopic quantum mod-
els with the same kind of statistics. One known example, as already mentioned, is the
Calogero model. The harmonic Calogero model on the 1-dimensional line with inverse-
square 2-body interactions and a confining harmonic potential is described by the Hamil-
tonian

HN = −1

2

N
∑

i=

∂2

∂x2
i

− α(1− α)
∑

i<j

1

(xi − xj)2
+

1

2
ω2

N
∑

i=1

x2
i (12)

Its spectrum is given by

EN = ω
[

N
∑

i=1

li + α
N(N − 1)

2
+

N

2

]

0 ≤ l1 ≤ l2 ≤ ... ≤ lN (13)
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where the li are now 1-dimensional “pseudo-excitation numbers” labeling the 1-body
harmonic eigenstates. This spectrum directly follows from the the LLL-anyon spectrum
(1) upon letting ωc → 0, i.e. in the absence of the external magnetic field, up to a trivial
N -body energy shift Nω/2. Note that ω now plays the role of a 1-dimensional long-
distance regulator in the Calogero case, with the difference that the limit ω → 0 does not
lead anymore to an infinitely degenerate LLL but, rather, to free 1-dimensional particles
with generalized statistics manifesting through their scattering phase shift [6].

All the thermodynamic considerations presented in this section in the context of
LLL anyons apply equally to Calogero particles. In particular, when ωc = 0 the cluster
coefficients (2) in the thermodynamic limit βω → 0 lead to (9, 10, 11) with density of
states

ρ(ǫ) =
L

π
√
2ǫ

i.e., a free 1-dimensional density of states on a space of macroscopically large length L.

So the 2-dimensional LLL-anyon and the 1-dimensional Calogero models both share
the same exclusion statistics/thermodynamics (9, 10, 11). This is of course not surprising:
as already stressed above one can show [9] that the 1-dimensional Calogero model is a
particular projection of the 2-dimensional anyon model with same exclusion statistics and
a free 1-body density of states on the line stemming in the LLL from the dimensional
reduction limωc→0NLδ(ǫ− ωc) =

L
π
√
2ǫ

induced by the vanishing magnetic field.

All said and done, (9, 10, 11) can be viewed in full generality as the defining thermo-
dynamic relations for particles with exclusion statistics α and a continuous 1-body density
of states ρ(ǫ). However, specific dynamical systems manifesting these thermodynamics,
where exclusion statistics is microscopically realized in terms of N -body quantum Hamil-
tonians, are limited to the two cases above – the LLL-anyon and the Calogero models.
In the next section we consider in general such systems, defined through a set of 1-body
energy levels and an exclusion rule in filling them for many-body states, and derive their
exact microscopic statistical mechanics, rather than their thermodynamics.

3 Exclusion statistics for a discrete 1-body spectrum

We now turn to exclusion statistics for a discrete density of states, that is for a 1-body
spectrum ǫ(k), k = 1, . . . , q. As stressed in the Introduction, we assume a natural ordering
of levels ǫ(1), ǫ(2), . . . , ǫ(q) in terms of the principal quantum number k in ǫ(k), which is
relevant to the definition of exclusion. The Boltzmann factor for the energy level ǫ(k) is

s(k) = e−βǫ(k)

We call s(k) the spectral function. Our focus is to derive relations analogous to (9, 10,
11) for particles with exclusion statistics in the discrete spectrum above.
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3.1 g = 2

As a warmup, we start with the simplest case beyond Fermi statistics, i.e., g = 2 exclusion.

The N -body partition function is, by definition,

ZN =

q−2N+2
∑

k1=1

k1
∑

k2=1

· · ·
kN−1
∑

kN=1

s(k1 + 2N − 2)s(k2 + 2N − 4) · · · s(kN−1 + 2)s(kN)

where the cumulative +2 shifts in the arguments of the spectral function enforce g = 2
exclusion: adjacent 1-body levels k and k + 1 cannot be populated. The grand partition
function follows as

Z1,q = 1 +

(q+1)/2
∑

N=1

ZNz
N

(the indices 1, q refer to the first and last levels in the spectrum). The cluster expansion
of the grand potential is

lnZ1,q =

∞
∑

n=1

bnz
n

with the cluster coefficients bn calculated to be

bn = (−1)n−1
∑

l1,l2,...,lj
composition of n

j≤q

c2(l1, l2, . . . , lj)

q−j+1
∑

k=1

slj (k + j − 1) · · · sl2(k + 1)sl1(k) (14)

In (14), the sum is over all compositions (i.e., ordered partitions) of the integer n, with
the number of parts j of a given composition, by definition smaller than or equal to n,
also constrained to be smaller than or equal to q, the number of available 1-body quantum
states. The combinatorial coefficients c2(l1, l2, . . . , lj) are [11]

c2(l1, l2, . . . , lj) =

(

l1+l2
l1

)

l1 + l2
l2

(

l2+l3
l2

)

l2 + l3
· · · lj−1

(

lj−1+lj
lj−1

)

lj−1 + lj
.

By rearranging the sums in (14), the cluster coefficient can also take the alternative form

bn = (−1)n−1

q
∑

k=1

∑

l1,l2,...,lj
composition of n

j≤q−k+1

c2(l1, l2, . . . , lj)s(k + j − 1)lj · · · s(k + 1)l2s(k)l1 .

A useful observation [12] is that Z1,q can be expressed as the secular determinant of
the off-diagonal (q + 1)× (q + 1) matrix

H1,q =



















0 −1 0 · · · 0 0
s(1) 0 −1 · · · 0 0
0 s(2) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −1
0 0 0 · · · s(q) 0



















(15)
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(this H1,q is one of several equivalent choices). Specifically,

Z1,q = det(1q+1 + z1/2H1,q)

We also define the general truncated grand partition functions Zk,k′ (1 ≤ k ≤ k′ ≤ q) as

Zk,k′ = det(1 + z1/2Hk,k′) (16)

with Hk,k′ the truncated (k′ − k + 2)× (k′ − k + 2) matrix

Hk,k′ =



















0 −1 0 · · · 0 0
s(k) 0 −1 · · · 0 0
0 s(k + 1) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −1
0 0 0 · · · s(k′) 0



















i.e., the matrix (15) for a truncated 1-body spectrum ǫ(k), ǫ(k + 1), . . . , ǫ(k′) starting at
level k and ending at level k′. We also define that, trivially, Zk,k′ = 1 when k > k′.

The grand partition function Zk,k′ can be expressed as

Zk,k′ = 1 +

(k′−k+2)/2
∑

N=1

ZN(k, k
′)zN

where ZN(k, k
′) stands for the g = 2 exclusion N -body partition function for the truncated

1-body spectrum ǫ(k), ǫ(k + 1), . . . , ǫ(k′), i.e.,

ZN(k, k
′) =

k′−2N+2
∑

k1=k

k1
∑

k2=k

· · ·
kN−1
∑

kN=k

s(k1 + 2N − 2)s(k2 + 2N − 4) · · · s(kN−1 + 2)s(kN) .

It also follows that

lnZk,k′ = −
∞
∑

n=1

(−z)n
∑

l1,l2,...,lj
composition of n

j≤k′−k+1

c2(l1, l2, . . . , lj)

k′−j+1
∑

l=k

slj (l + j − 1) · · · sl2(l + 1)sl1(l) (17)

where the number of parts j is now bounded by the number k′−k+1 of available quantum
states in the truncated spectrum (here, as well as in all other similar cluster expressions
which will appear below).

Expanding the determinant (16) in terms of its first row we obtain

Z1,q = Z2,q + zs(1)Z3,q (18)

The recursion (18) is self explanatory and could have been written directly: because of
g = 2 exclusion, the full grand partition function is the sum of a grand partition for a
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1-body spectrum starting at level ǫ(2) with level ǫ(1) empty, and of zs(1) (level ǫ(1) filled)
times the one starting at level ǫ(3). This is the basis for a recursion scheme: expanding
the determinants Zk,q and Z1,k, as defined in (16), in terms of their first and last row,
respectively, yields the recursion relations

Zk,q = Zk+1,q + zs(k)Zk+2,q , Z1,k = Z1,k−1 + zs(k)Z1,k−2 (19)

We now introduce “forward” and “backward” effective single-level grand partition func-
tions y+(k) and y−(k), respectively, as

y+(k) =
Zk,q

Zk+1,q

; y−(k) =
Z1,k

Z1,k−1

(20)

In terms of them, the full grand partition function achieves a product form

Z1,q =

q
∏

k=1

y+(k) =

q
∏

k=1

y−(k)

Moreover, the recursion relations (19) imply the nesting relations

y±(k)−
zs(k)

y±(k ± 1)
= 1 (21)

where y+(0) = y−(0) = y+(q + 1) = y−(q + 1) = 1 is understood. We also note that, as a
consequence of (17, 20), the cluster expansions of y+(k), y−(k) are

ln y+(k) = −
∞
∑

n=1

(−z)n
∑

l1,l2,...,lj
composition of n

j≤q−k+1

c2(l1, l2, . . . , lj)s(k)
l1s(k + 1)l2 · · · s(k + j − 1)lj

ln y−(k) = −
∞
∑

n=1

(−z)n
∑

l1,l2,...,lj
composition of n

j≤k

c2(l1, l2, . . . , lj)s(k − j + 1)lj · · · s(k − 1)l2s(k)l1

We reach the conclusion that for a discrete 1-body spectrum the statistical mechanics
of g = 2 exclusion particles amounts to

lnZ1,q =

q
∑

k=1

ln y±(k) , y±(k)−
zs(k)

y±(k ± 1)
= 1

These are indeed (9) when α = 2 but with the proviso that, because of the discreteness of
the spectrum, lnZ1,q is now a discrete sum instead of a continuous integral, and a discrete
shift k → k ± 1 materializes in the argument of y+(k) or y−(k).

Turning to the mean particle number N̄ , it is given by

N̄ = z
∂ lnZ1,q

∂z
=

q
∑

k=1

nk

10



where the mean occupation number nk of the energy level ǫ(k) is, by definition,

nk = s(k)
∂ lnZ1,q

∂s(k)

Using the expansion relation

Z1,q = zs(k)Z1,k−2Zk+2,q + Z1,k−1Zk+1,q ,

(another self-explanatory identity of which both (18) and (19) are special cases) nk can
be expressed directly in terms of truncated grand partition functions

nk = zs(k)
Z1,k−2Zk+2,q

Z1,q

⇔ 1− nk =
Z1,k−1Zk+1,q

Z1,q

.

From this we can obtain the nesting relation for nk (see Appendix for the proof)

zs(k) =
nk(1− nk)

(1− nk−1 − nk)(1− nk − nk+1)
(22)

and using (20) we can express y+(k) and y−(k) in terms of nk

y±(k) = 1 +
nk

1− nk − nk∓1
(23)

and finally the thermodynamic potential

lnZ1,q =

q
∑

k=1

ln

(

1 +
nk

1− nk−1 − nk

)

=

q
∑

k=1

ln

(

1 +
nk

1− nk − nk+1

)

(24)

(22, 23, 24) are the generalization of the α = 2 LLL-anyon/Calogero models (10, 11)
thermodynamics relations for the discrete spectrum at hand, i.e., with the discrete shifts
k → k ± 1 in the arguments of n. (24) is the equation of state of a gas of particles with
exclusion g = 2 and populating discrete energy levels ǫ(k) whose occupation numbers nk

are constrained by nk + nk+1 ≤ 1.

Note that the nesting relation (22) does not allow for finding the nk in an iterative
way, starting either at k = 1 or at k = q, since already for k = 1 it involves n1 and n2 and
similarly for k = q. On the other hand, (21) allows the calculation of y+(k) and y−(k)
iteratively, starting from k = 1 for y−(k) and k = q for y+(k):

y−(1) = 1 + zs(1) , y−(2) = 1 +
zs(2)

1 + zs(1)
, . . .

y+(q) = 1 + zs(q) , y+(q−1) = 1 +
zs(q−1)

1 + zs(q)
, . . .

From these and (22) we can express nk as

nk =
y+(k)− 1

y+(k) + y−(k − 1)− 1
=

y−(k)− 1

y−(k) + y+(k + 1)− 1

11



3.2 General g

For general integer exclusion parameter g the N -body partition function reads

ZN =

q−gN+g
∑

k1=1

k1
∑

k2=1

· · ·
kN−1
∑

kN=1

s(k1 + gN − g)s(k2 + gN − 2g) · · ·s(kN−1 + g)s(kN) (25)

where the +g shift in the nested sum indices enforces g-exclusion. The grand partition
function Z1,q follows as

Z1,q = 1 +

(q+g−1)/g
∑

N=1

ZNz
N

and the cluster expansion as

lnZ1,q = −
∞
∑

n=1

(−z)n
∑

l1,l2,...,lj
g-composition of n

j≤q

cg(l1, l2, . . . , lj)

q−j+1
∑

k=1

slj(k+ j − 1) · · · sl2(k+ 1)sl1(k) (26)

which is the g-generalization of (14). Here the sum is over all g-compositions [11] of the
integer n which are defined as the usual compositions but where now up to g−2 successive
li can be zero. The cg(l1, l2, . . . , lj) are given as

cg(l1, l2, . . . , lj) =
(l1 + · · ·+ lg−1 − 1)!

l1! · · · lg−1!

j−g+1
∏

i=1

(

li + · · ·+ li+g−1 − 1

li+g−1

)

=

∏j−g+1
i=1 (li + · · ·+ li+g−1 − 1)!

∏j−g
i=1 (li+1 + · · ·+ li+g−1 − 1)!

j
∏

i=1

1

li!

As before we can express Z1,q as the secular determinant of a (q+ g− 1)× (q+ g− 1)
matrix

H1,q =



































0 −1 0 · · · 0 0 0 · · · 0
0 0 −1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

s(1) 0 0
. . . −1 0 0 · · · 0

0 s(2) 0
. . . 0 −1 0 · · · 0

0 0 s(3)
. . . 0 0 −1 · · · 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 · · · s(q − 1) 0 0 · · · −1
0 0 0 · · · 0 s(q) 0 · · · 0



































(27)

where there are now g − 1 successive vanishing diagonals, realizing g-exclusion in the
matrix representation. Then

Z1,q = det(1 + z1/gH1,q)

12



Proceeding as in the g = 2 case, we define the general truncated grand partition
functions Zk,k′ (1 ≤ k ≤ k′ ≤ q) as

Zk,k′ = det(1 + z1/gHk,k′)

with Hk,k′ the (k′ − k + g)× (k′ − k + g) matrix (27) for the truncated 1-body spectrum
ǫ(k), ǫ(k + 1), . . . , ǫ(k′) starting at level k and ending at level k′, and, as before, Zk,k′ = 1
when k > k′. The grand partition function Zk,k′ can be expressed as

Zk,k′ = 1 +

(k′−k+g)/g
∑

N=1

ZN(k, k
′)zN

where ZN(k, k
′) stands for the truncated g-exclusion N -body partition function

ZN(k, k
′) =

k′−gN+g
∑

k1=k

k1
∑

k2=k

· · ·
kN−1
∑

kN=k

s(k1 + gN − g)s(k2 + gN − 2g) · · · s(kN−1 + g)s(kN)

We can again set up a recursion scheme by expanding the determinants Zk,q and Z1,k

in terms of their first and last row, respectively, obtaining the recursion relations

Zk,q = Zk+1,q + zs(k)Zk+g,q , Z1,k = Z1,k−1 + zs(k)Z1,k−g (28)

of clear g-exclusion statistics origin. We define forward and backward effective single-level
grand partition functions y+(k) and y−(k) as in the g = 2 case (20), and the full grand
partition function is again expressed as their product (21). The cluster expansion for Zk,k′

is as in (26) but for the truncated spectrum, that is

lnZk,k′ = −
∞
∑

n=1

(−z)n
∑

l1,l2,...,lj
g-composition of n

j≤k′−k+1

cg(l1, l2, . . . , lj)

k′−j+1
∑

l=k

slj (l + j − 1) · · · sl2(l + 1)sl1(l) (29)

leading to expressions analogous to (22) for the logarithm ln y+(k) and ln y−(k).

The recursion relation (28) implies the nesting relations

y±(k)−
zs(k)

∏g−1
i=1 y+(k ± i)

= 1 (30)

We reach the conclusion that the statistical mechanics for g-exclusion particles in a
discrete 1-body spectrum ǫ(1), ǫ(2), . . . , ǫ(q) amounts to

lnZ1,q =

q
∑

k=1

ln y±(k) , y±(k)−
zs(k)

∏g−1
i=1 y±(k ± i)

= 1

13



which is again basically (9) with α replaced by g, but with a discrete sum instead of a
continuous integral and the discrete shifts k → k ± 1 . . . → k ± (g − 1) in the argument
of y+(k) and y−(k).

Likewise, because of the identity

Z1,q = Z1,k−1Zk+g−1,q +

k+g−2
∑

i=k

zs(i)Z1,i−gZi+g,q ,

of obvious exclusion statistics origin (which can also be obtained by expanding the secular
determinant with respect to its kth row), the mean occupation number nk defined in (22)
becomes

nk = zs(k)
Z1,k−gZk+g,q

Z1,q

and satisfies the nesting relation (see Appendix for the proof)

zs(k) = nk

∏g−1
j=1

(

1−
∑g−1

i=1 nk+j−i

)

∏g−1
j=0

(

1−
∑g−1

i=0 nk+j−i

)

and combining with (30) we obtain the expressions for y+(k) and y−(k)

y±(k) = 1 +
nk

1−∑g−1
j=0 nk∓j

leading to the expression for the thermodynamic potential

lnZ1,q =

q
∑

k=1

ln

(

1 +
nk

1−
∑g−1

i=0 nk−i

)

=

q
∑

k=1

ln

(

1 +
nk

1−
∑g−1

i=0 nk+i

)

again in close similarity to (10, 11) for α replaced by g. When the occupation numbers
are such that for any given k their sum over g neighboring levels

∑g−1
i=0 nk−i = 1, the

system has reached the maximal critical filling allowed by exclusion statistics.

4 The harmonic Calogero model

As an illustration of the formalism developed in the previous section, let us focus on the N -
body Calogero harmonic spectrum (13), here again for convenience shifted by Nω/2, not
any more in the thermodynamic limit βω → 0 as in Section (2), where the harmonic well
played the role of a long-distance regulator, but keeping βω physical and finite. This is an
example of a exclusion-g statistics system with a discrete 1-body spectrum, arising from a
microscopic N -body Hamiltonian with spectral function s(k) = xk, k = 1, 2, . . . ,∞, with
x = e−βω, i.e., a harmonic linear 1-body spectrum. We could focus as well on the N -body
LLL-anyon harmonic spectrum (1) with spectral function

s(k) = xkxc (31)

where x = e−β(ωt−ωc) and xc = e−βωc .
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4.1 Number of states q finite

Assume, now, that the number of 1-body states is finite, that is, k = 1, 2, . . . , q. The
integer q is an effective high-energy cutoff which is not actually needed for the consistency
of the results; later on, the q → ∞ limit will be taken. The N -body spectrum (13), with
α traded for g and the li bounded by q − (N − 1)g, yields a partition function which is
nothing but ZN in (25) for the spectral function s(k) = xk discussed above. The grand
partition function follows as

Z1,q = 1 +

(q+g−1)/g
∑

N=1

zNxN+gN(N−1)/2

N
∏

j=1

1− xj+q−1−(N−1)g

1− xj

In this specific situation, where s(k) = xk, we see that Zk,k′ is actually Z1,q but with
q → k′ − k + 1 and z → zxk−1

Zk,k′ = 1 +

(k′−k+g)/g
∑

N=1

zNxN+gN(N−1)/2
N
∏

j=1

xk−1 − xj+k′−1−(N−1)g

1− xj

From the cluster expansion (29) we obtain

lnZk,q = −
∞
∑

n=1

(−z)n
∑

l1,l2,...,lj
g-composition of n

j≤q−k+1

cg(l1, l2, . . . , lj)

q−j+1
∑

l=k

xnlx
∑j

i=1(i−1)li

= −
∞
∑

n=1

(−z)n

1− xn

∑

l1,l2,...,lj
g-composition of n

j≤q−k+1

[

xnk − xn(q−j+2)
]

cg(l1, l2, . . . , lj) x
∑j

i=1
(i−1)li (32)

and similarly

lnZ1,k = −
∞
∑

n=1

(−z)n

1− xn

∑

l1,l2,...,lj
g-composition of n

j≤k

[

xn − xn(k−j+2)
]

cg(l1, l2, . . . , lj) x
∑j

i=1(i−1)li

which imply the cluster expansion for the forward and backward effective single-level
grand partition functions

ln y+(k) = −
∞
∑

n=1

(−zxk)n
∑

l1,l2,...,lj
g-composition of n

j≤q−k+1

cg(l1, l2, . . . , lj) x
∑j

i=1(i−1)li

ln y−(k) = −
∞
∑

n=1

(−zxk)n
∑

l1,l2,...,lj
g-composition of n

j≤k

cg(l1, l2, . . . , lj) x
−

∑j
i=1(i−1)li (33)

The above expressions are remarkably similar, differing in the sign of the exponent and in
the allowed g-compositions. Note that the expression for y−(k) does not involve q, since
it looks “back” towards k = 1, and is, thus, universal.
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4.2 Number of states q → ∞: the harmonic Calogero model

Clearly in the q → ∞ limit, i.e., the harmonic Calogero model, the constraint on the
number of parts j ≤ q − k + 1 in (32) or (33) disappears: (32) for k = 1 is the harmonic
Calogero thermodynamic potential

lnZ1,q = −
∞
∑

n=1

(−z)n
xn

1− xn

∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj) x
∑j

i=1
(i−1)li

with the harmonic Calogero cluster coefficients

bn = (−1)n−1 1

1− xn

∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj) x
∑j

i=1 i li . (34)

The bn in (34) encode g-exclusion statistics arising from the microscopic N -body harmonic
Calogero model, i.e., from its Hamiltonian (12) and N -body spectrum (13).

Let us consider the small βω limit to recover the cluster coefficients of Section 2. For
small βω, i.e., x = e−βω ≃ 1− βω, the cluster coefficient bn in (34) becomes

bn = (−1)n−1 1

nβω

∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj)

Using [9]
∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj) =

(

gn
n

)

gn

it simplifies to

bn = (−1)n−1 1

βω

(

gn
n

)

gn2

and indeed coincides, when g is traded for α, with (2) when ωc = 0. In order to recover
the full cluster coefficient (2), i.e, with ωc 6= 0, we have to use the spectral function (31),
that is, put x = e−β(ωt−ωc) in (34) and multiply by xn

c .

We remark that in (34) the coefficients of the polynomial

∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj) x
∑j

i=1(i−1)li

are, when multiplied by n, a g-generalization of the coefficients OEIS A227532 and the
related A227543, in relation to the Ramanujan continuous fraction. Indeed, denoting

Hg(z, x) = Z2,∞(−z/x, x) = 1 +

∞
∑

N=1

zNxgN(N−1)/2

N
∏

j=1

x

xj − 1
,
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Gg(z, x) = Z1,∞(−z/x, x) = 1 +

∞
∑

N=1

zNxgN(N−1)/2

N
∏

j=1

1

xj − 1
,

then y+(1) = Z1,q/Z2,q in (33) yields the q → ∞ identity

∞
∑

n=1

zn
∑

l1,l2,...,lj
g-composition of n

cg(l1, l2, . . . , lj) x
∑j

i=1
(i−1)li = ln

Hg(z, x)

Gg(z, x)
. (35)

When g = 1, i.e., Fermi statistics and Pauli exclusion, the c1(l1, l2, . . . , lj) are non vanish-
ing for the sole composition l1 = n with c1(n) = 1/n. In this case (35) trivially reduces
to

∑∞
n=1 z

n/n = − ln(1− z).

When g = 2, writing (21) for z → −z/x and s(k) = xk in the form

1

y+(k)
=

1

1− zxk−1

y+(k+1)

and solving it iteratively for y+(1) it yields as a solution the Ramanujan continuous
fraction. Exponentiating (35), then, yields the identity

exp

( ∞
∑

n=1

zn
∑

l1,l2,...,lj
composition of n

c2(l1, l2, . . . , lj) x
∑j

i=1(i−1)li

)

=
H2(z, x)

G2(z, x)
=

1

1 + −z
1+ −zx

1+
−zx2

1+
−zx3

1+
−zx4

1+...

The LHS expresses the log of the Ramanujan fraction in terms of c2(l1, l2, . . . , lj).

For a general g, exponentiating (35) gives an alternative expression of the ratio
Hg(z, x)/Gg(z, x) in terms of the cg(l1, l2, . . . , lj) as a g ≥ 2-generalisation of the OEIS
coefficients A227532 and A227543. Note, however, that in the case g > 2 the iterative
solution of (30) for 1/y+ leads to a complicated expression and does not yield any simple
continuous fraction as in the g = 2 case.

5 Conclusions

The analysis and results of this work could be applied to other systems, and in particular
to the Calogero-Sutherland model of particles with an inverse sine squared two-body
potential, which can be viewed as exclusion-g particles on the circle. The spectral function
for this model is (setting the length of the circle to 2π)

s(k) = e−βk2/2 , k = 0,±1,±2, . . .

with k interpreted as the discrete momentum of exclusion particles (also referred to
as “pseudomomentum”). The spectrum is symmetric and unbounded in both ends,
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so forward and backward effective functions y±(k) are essentially equivalent, satisfying
y+(k) = y−(−k), a relation that survives the introduction of a symmetric cutoff |k| ≤ q.
We could also impose an asymmetric restriction to the spectrum, such as k ≥ 0, which ac-
tually corresponds to a symmetry-reduced Calogero-Sutherland model with inverse sine
and inverse cosine squared potentials plus an additional one-body interaction with the
point at the origin.

The full Calogero-Sutherland spectrum can be treated by separating in the N -body
partition function the (unrestricted) sum over the smallest momentum k1. The sum of the
remaining momenta can be cast as the grand partition function of N − 1 particles with
spectral function s(k) = e−β(k1+g+k)2 with k ≥ 0. This makes the spectrum bounded to
the left, but creates the added complication of having to sum at the end over k1. We defer
any further discussion of the microscopic statistics of the Calogero-Sutherland model to
future work.

In both the Calogero and LLL-anyon systems we can define “quasihole” excitations,
corresponding to minimal “gaps” in a completely filled state, that behave as particles with
exclusion statistics 1/g. We can define similar excitations in the microscopic (discrete)
case, starting from a maximally filled many-body state and moving all particles to the
right of a marked particle by one level, or to the left by minus one level, therefore creating
a quasihole. All the standard features of quasiholes emerge in this picture: the removal of
one particle creates g quasiholes, identifying them as −1/g particle each, they “move” in
the energy spectrum by steps of g, therefore corresponding to an 1/g dilution of the density
of states, and in a macroscopic span of K successive levels a number K of quasiholes can
be“packed” together. Since the effective density of states has been decreased by a factor
of 1/g, this last property identifies quasiholes as particles with 1/g exclusion statistics.

Several qualitatively new features arise, however, in the discrete setting: there are,
now, g distinct “fully filled” states, related to each other through a common shift of all
particles by 1, 2, . . . g−1 levels, so these states are not perturbatively connected. Further,
each quasihole’s energy becomes a nontrivial combination of several energy levels. The
exact properties of quasiholes, and a potential reformulation of the statistical mechanics
of the system in terms of them, remain fascinating objects of further study.

Exclusion statistics are related to the generating functions for the algebraic area count-
ing of lattice walks [11], a connection that arises from the matrix determinant represen-
tation as exposed in section 3. The Calogero model results, in particular, are related
to a set of directed walks termed Dyck or Lukasiewicz paths. This connection has been
exploited to derive results for such walks [12] but it can also be used in reverse: the gen-
erating functions of generalized types of walks can be considered as effective descriptions
of particular exclusion-type statistics. The identification of such statistics, or of the walks
corresponding to other known types of statistics, is an interesting topic for investigation.

The most interesting possible application of our results is, however, in situations of
physical significance, such as fractional quantum Hall and related systems. This would
require measurements that probe the microscopic quantities studied in this work, such as,
e.g., the single-level mean occupation numbers nk, looking for possible signatures within
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recent experimental results. Also LLL-anyon statistics at maximal filling is encoded in
Laughlin type wavefuctions (8) describing bulk particles with exclusion α, while experi-
mentalists [3] observe quasiholes with statistics 1/α. Identifying possible measurements
allowing for an experimental confirmation of bulk particles with exclusion α remains an
important subject for further theoretical research and experimental developments.

6 Appendix

To derive (22), we use the recursion (19) to rewrite Zk+1,q = Zk+2,q + zs(k + 1)Zk+3,q so
that (22) becomes

1− nk − nk+1 =
Z1,k−1Zk+2,q

Z1,q

. (36)

Then from (22) and (36) get

Zk+2,q

Zk+1,q
=

1− nk − nk+1

1− nk
(37)

Likewise from (36) get

1− nk−1 − nk =
Z1,k−2Zk+1,q

Z1,q
(38)

or, again using (22),
1− nk−1 − nk

nk
=

Zk+1,q

zs(k)Zk+2,q
. (39)

Multiplying (37) and (39) we obtain (22).

The proof of the corresponding relation for g > 2 proceeds along similar lines, requir-
ing now a “telescoping” product relation to eliminate the various intermediate Zk,k′, and
we leave it as an exercise to the reader.

References

[1] J.M. Leinaas, J. Myrheim, On the theory of identical particles, Nuovo Cimento 37B
(1977) 1–23. For an earlier work on the subject see: M.G.G. Laidlaw, C.M. de Witt,
Feynman Functional Integrals for Systems of Indistinguishable Particles, Phys. Rev
D3 (1971) 1375.

[2] F.D.M. Haldane, “Fractional statistics in arbitrary dimensions: A generalization of
the Pauli principle”, Phys. Rev. Lett. 67 (1991) 937–940.

[3] H. Bartolomei et al., “Fractional statistics in anyon collisions”, arXiv:2006.13157v1

[4] F. Wilczek, “Magnetic flux, angular momentum, and statistics”, Phys. Rev. Lett. 48
(1982) 1144–1146.

19

http://arxiv.org/abs/2006.13157


[5] A. Dasnières de Veigy and S. Ouvry, “Equation of State of an Anyon gas in a Strong
Magnetic Field”, Phys. Rev. Lett. 72 (1994) 600; “One-dimensional Statistical Me-
chanics for Identical Particles: the Calogero and Anyon Cases”, Mod. Phys. Lett.
A 10 (1995) 1; S. Ouvry, “Anyons and Lowest Landau Level Anyons”, Séminaire
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