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Abstract:

Achieving mechanistic understanding of transport in complex environments such as inside
cells or at polymer interfaces is challenging. We need better ways to image transport in 3-D and
better single particle tracking algorithms to determine that transport that are not systemically
biased towards any classical motion model. Here we present an unbiased single particle tracking
algorithm, Knowing Nothing Outside Tracking (KNOT). KNOT uses point clouds provided by
iterative deconvolution to educate individual particle localizations and link particle positions
between frames to achieve 2-D and 3-D tracking. Information from prior point clouds fuels an
independent adaptive motion model for each particle to avoid global models that could introduce
biases. KNOT competes with or surpasses other 2-D methods from the 2012 particle tracking
challenge while accurately tracking adsorption dynamics of proteins on polymer surfaces and early
endosome transport in live cells in 3-D. We apply KNOT to study 3-D endosome transport to
reveal new physical insight about locally directed and diffusive transport in live cellular
environment. Our analysis demonstrates better accuracy in classifying local motion and its

direction compared to previous methods, revealing intricate intracellular transport heterogeneities.



Introduction:

Single particle tracking is used to understand the complex mechanistic transport involved
during intracellular processes such as endocytosis,' protein or DNA trafficking,>* endosomal
trafficking,” and drug delivery® and to understand protein-polymer interactions during protein
separations.”!! However, three problems hinder particle motion analysis: capturing simultaneous
particle positions in 3-D, resolving ambiguous positions such as during particle overlap or
photoblinking, and tracking the stochastic changes between diffusive and directed motion without
bias. The first problem is routinely addressed through methods such as light sheet microscopy,'*
13 intensity decay during total internal reflection microscopy,'* multiplane imaging using prisms,'>
multiple beam splitters,'® or piezo stages,!” and point spread function (PSF) engineering. PSF
engineering requires little additional experimental equipment (a 4f system and either a phase
mask'® or a spatial light modulator'®-2?) to expose the 3-D position of particles, using digital signal
processing to deconvolve a 2-D widefield image taken with a known phase mask PSF.!3-24
Resolving ambiguous particle positions relies on extrapolating a known motion model to the frame
in question.?>” Also, true dynamics can be obscured due to mixed motion?® as no individual model
captures the nuances of confined, diffusive, and directed motion simultaneously.?*-! Correctly
classifying particle motion in a heterogenous environment is necessary for detecting endosomal
movements during cellular changes in cancer.>

Tracking using predetermined global motion models is fast, but can bias observed
motion,** leading to misclassification of intracellular particle dynamics.° The nearest neighbors
method links the nearest available candidate for each particle, which excels in tracking uniformly
random motion such as diffusion,*¢ but fails to accurately describe the trajectory overlaps

commonly observed in directed motion along microtubule pathways.>> 3’ Autoregressive methods



link candidates with similar displacements to the most recent link, which accurately depicts
directed motion,® 3% but can fail to follow stochastic motion.?% 3® The specialization of nearest
neighbors and autoregression require the user to estimate the most common motion present in a
sample before tracking, especially for high particle density measurements, a choice with vastly
different results if particle motion is evenly distributed between directed and diffusive. Other
tracking approaches optimize local or global statistics, such as total displacement, or follow
multiple hypotheses to accommodate for diverse particle behaviors. However, these static methods

26, 40, 41

can still bias results towards one or more inherent optimization functions or statistical

39,42 \when faced with mixed motion.

structures
Adaptive tracking analyzes a local window of behavior to propagate self-consistencies in

prior motion to track dynamic particle behavior rather than restrict trajectories to pre-established

models, avoiding supervisory biases.** Algorithms that use multiple hypothesis testing either

31, 33, 44 26, 40, 41 to

switch between multiple motion models or evaluate many possible trajectories
track mixed motion mitigate the bias of each model used at the cost of increased computational
complexity. Adaptive tracking algorithms avoid exhaustive model or trajectory searching by
promoting candidate displacements consistent with a window of recent observations, thereby
decreasing the overall computational complexity while maintaining accuracy and adaptability.*’
Point clouds are the suitable unit of measure for particle position in an adaptive tracking method

because point clouds contain multiple weighted data points,*® 47

adapting to a localization
confidence gradient rather than a single representative point. Achieving accurate particle linking
in a cellular environment with an adaptive tracker could lead to fundamental discoveries about

endosomal transport mechanisms. For example, being able to accurately determine the directed or

diffusive motion of endosomes could lead to a directional analysis of what endosomes move



towards the Golgi apparatus or other areas of interest for a given cargo when mapping the
endosomal transport mechanisms within the cell.?

We present an adaptive tracking method, Knowing Nothing Outside Tracking (KNOT),
that combines phase engineering and point cloud displacement analysis to detect and track particles
adaptively in both 2-D and 3-D. We quantify the 2-D performance of KNOT with the 2012 particle
tracking challenge data*® and the 3-D capabilities by tracking lysozyme adsorption to poly N-
isopropylacrylamide-co-allylamine (pNIPAM-co-AA) hydrogels and Rab5" early endosome
transport in live cells. Without knowledge of particle motion, KNOT outperforms nearest
neighbors or autoregressive trackers and competes with more complex trackers. Additionally, we
show that KNOT distinguishes directed from non-directed motion more accurately than traditional
mean squared displacement (MSD) or temporal MSD (tMSD) analysis. Local motion analysis
demonstrates that endosomes are predominantly directed towards the zenith or laterally with
respect to the plane of measurement. KNOT accounts for diffusive, directed, and mixed motion

using the same approach, thus becoming a universal single particle tracking method.

Experimental section:

Materials and methods:

Software: Software details are presented in the Supporting Information online.

Polystyrene bead preparation: Carboxylate-modified polystyrene (PS) 100 nm beads (orange
fluorescent, Invitrogen) were diluted by a factor of 1:1000 from stock concentration in HEPES
buffer (Sigma, 10 mM, PH = 7.3). Microscope coverslips (22 x 22 mm, no. 1; VWR) were
sequentially sonicated for 5 min in DI water, ethanol, and acetone. Coverslips were then immersed

in base piranha solution containing 4% (v/v) H202 (Fisher Scientific) and 13% (v/v) NH4OH



(Sigma, ACS grade) for 30 min at 80 °C. After thorough rinsing with DI water, the coverslips were
treated with oxygen plasma for 2 min (PDC-32G; Harrick Plasma, Ithaca, NY). The diluted PS
bead solution (50 pL) was drop cast onto a plasma cleaned glass surface.

Hydrogel preparation: Poly N-isopropylacrylamide-co-allylamine (pNIPAM-co-AA) hydrogels
were synthesized by free-radical polymerization following previously published methods.** 3°
Plasma cleaned glass samples were coated with a thin layer of pNIPAM polymer by spin coating
50 pul 1% pNIPAM in water solution to reduce non-specific interaction of the proteins with the
glass surface. Synthesized pNIPAM-co-AA hydrogels were roughly spherical in shape and
approximately 700 nm in diameter as measured by dynamic light scattering. The hydrogels were
dispersed in water and spin coated on top of the pNIPAM film for protein interaction on the
hydrogel experiments. The dispersed hydrogels were vortexed before spin coating and the
concentration was maintained so that they are well-separated on the pNIPAM polymer surface.
The spherical shape of the hydrogels makes them ideal test samples for 3D interaction of proteins
on porous polymers.

Protein preparation: Rhodamine B labeled lysozyme C (Nanocs) solutions (0.5 nM) were freshly
prepared in 10mM HEPES (pH 7.3) buffer. The protein solution was drop cast on the hydrogels
on the glass coverslips and the motion of the proteins were measured using the microscope setup
described below.

Live cell cultures: Murine lung cells (mesenchymal 344SQ cells and epithelial 393P Vector cells)
were a gift from the Kurie lab, UT MD Anderson Cancer Center. The cells were generated as
stable transformations with ectopic expression of mCherry tagged Rab5+ early endosomes. We

cultured the cells in RPMI-1640 media supplemented with 2.05 mM L-glutamine (HyClone), 10%



fetal bovine serum (HyClone), and 1% penicillin streptomycin (Corning) at 37.0 °C and
maintained in a humidified CO2 incubation chamber.

Wide-field single-molecule fluorescence imaging: Experimental data was collected on a home-
built wide-field fluorescence microscope. Samples were excited with 560 nm light from a white
light laser (SuperK FIANIUM) operating at a 78 MHz repetition rate, focused at the center of a
high numerical aperture oil-immersion objective (100x magnification, NA = 1.46, Carl-Zeiss,
alpha Plan-Apochromat) in epi-fluorescence excitation mode. Fluorescence signal was collected
with the same objective, filtered with a dichroic mirror (Chroma, z532/633rpc), then focused with
a tube lens (f'= 165 mm). The optical signal was transferred into a 4f system consisting of two
lenses (f= 100 mm) with a DH phase mask (Double Helix LLC) located in the center to access the
Fourier plane. The phase mask convolved signal was recorded using a back-illuminated sCMOS
camera (Photometrics Prime 95B, 600x600 pixel area, 68.5 nm pixel size) operating at 30 ms per
frame. Polystyrene bead and lysozyme samples were imaged at 30 ms exposure for 1000 frames
with 2 mW of 560 nm laser power before the objective. The incident excitation intensity at the
sample was around 0.08 mW/cm?.

Cellular imaging: Cells were seeded one day before measurement on a 35 mm glass bottom (No.
1.5) dish with a thickness of around 170 pum (MatTek Corporation). All live cell measurements
were carried out with cells immersed in 1X live cell imaging solution (Invitrogen) supplemented
with 0.2% bovine serum albumin (BSA), fraction V solution (GIBCO), and 5SmM glucose solution
(GIBCO). Cells were placed in a temperature-controlled incubation chamber (OKOLAB)
maintained at 37.0 °C. A temperature-sensitive immersion oil (Immersol 518 F/370 C, ZEISS) was

used to account for temperature mismatches and optical aberrations during measurements. Live



cells were imaged at 30 ms exposure for 1000 frames with 60 uW of 560 nm laser power before
the objective. The incident excitation intensity at the sample was around 2.14 pW/cm?.

Data analysis:

A high-level description of KNOT details four steps to form particle trajectories: signal to noise
ratio (SNR) boosting, point cloud representation, particle identification, and trajectory linking (see
Figure S1 in the Supporting Information). To begin, we equally filter the stack of raw images and
a simulation of the appropriate phase mask PSF to remove amorphous backgrounds, suppress
noise, and enhance the particle signal.’" 3 The second step combines the enhanced image and
phase mask to estimate particle locations as a weighted cloud of points via iterative deconvolution,
using the Airy disk PSF for 2-D localization, or any of the astigmatism, double helix (DH), or
tetrapod PSFs for 3-D.?! The third step clusters the estimated point cloud into several smaller point
clouds, each representing the possible locations of a detected particle. Finally, we track entire point
clouds rather than representative points to capture the localization uncertainty in the single frame
displacement (SFD) distributions. The linking process considers candidates within a search radius
pmax from each particle to prohibit physically unlikely linkages. We rate the likelihood of each new
linkage using the characteristic SFD distribution across a sliding window of previous frames,
building a trajectory from the most likely linkages. The combination of maximum a posteriori
estimation and a sliding window allows KNOT to avoid using a predetermined motion model to
construct trajectories, capturing particles despite switches between directed and diffusive
transport. Details of each step follow. Additionally, runtime data is available in Tables S1 and S2
in the Supporting Information.

Phase engineering for 3-D imaging requires deconvolution to localize: Phase engineering

makes it possible to localize in 3-D from a 2-D image by manipulating the PSF, but this process



introduces new challenges (Figure 1). Capturing axial information is possible with a range of
techniques such as multiple focal planes and light sheets, as recently reviewed.?! For traditional
wide-field microscopy, though, there is no axial information in the 2-D image (Figure 1A). PSF
engineering is one way to encode the 3-D position of particles to capture a complete description
of intracellular vesicle dynamics (Figure 1B). For example, a DH phase mask captures axial
motion by modulating the PSF via the Fourier plane (Figure 1C), encoding particle depth in the
azimuthal angle between two lobes.!> 1% 20 2224 Single particle axial positions are recovered
without incident (Figure 1D left), but PSF overlapping introduces pairing ambiguities when the
dual lobes highlight overlapping particles, or multiple particles are present in proximity (Figure
1D center, right). Extremely high densities such as what is shown in Figure 1D, right, are difficult
to resolve accurately regardless of the method used and may require deep neural networks?® or
other sophisticated localization methods. Naive lobe-pairing approaches fail to localize
overlapping lobes (Figure 1E left). We overcome the PSF overlapping problem by using
deconvolution (Figure 1E right), which assigns a probability to all possible localizations based on
matching intensity profiles to PSF templates, selecting the solution that reconstructs the image
using as few particles as possible. To perform deconvolution, we iteratively maximize
reconstruction accuracy and minimize the recovered particle density using the optimization
problem presented in Equation 1:

mxinlly—Zz(x*k)II% + A llxlly 1

where y is the observed 2-D image, x is the estimated weighted 3-D particle distribution, k is the
set of 2-D PSF templates stacked as a 3-D matrix, and A1 is the regularization parameter set to
unity (see Section 3 in the Supporting Information). In this work, k is the simulated DH PSF as

described in Figure S2 in the Supporting Information. The first term of Equation 1 evaluates the



Fourier Double Helix
Phase Mask
Objective
Camera
7 Y
4f system

1 particle 1 or 2 particles? ? particles

D

Lobe Pairing Deconvolution
. . Unpaired
o Particle 1 o Particle 2 o Lobes

Figure 1: Phase engineering allows 3-D
tracking but presents particle localization
challenges. A) Simulation of particles exhibiting
diffusive (i), axially directed (i), or mixed (iii, iv)
transport. B) Phase engineering encodes the true 3-
D particle locations in 2-D for later reconstruction.
C) A schematic of the physical widefield
fluorescence setup used in DH microscopy. D) A
single DH PSF is resolved by pairing lobes (left).
Two or many particles experiencing overlapping
PSFs present localization ambiguities (center,
right). E) Localization results from identifying and
pairing lobes (left) and from deconvolution (right).
Abbreviations: NA, numerical aperture; SCMOS,
scientific complimentary metal-oxide-
semiconductor.

least squares error between the observed
image and the reconstructed image, while
the second term evaluates the sparsity of
the estimated particle distribution. We
solve this optimization problem iteratively
using the Alternating Direction Method of
Multipliers (ADMM)'® (see Figure S3 in
the Supporting Information). Figure S4 in
the Supporting Information shows the true
and KNOT localizations for each image in
Figure 1D.

SNR boosting: Single molecule imaging
often contains weak fluorescent signals
accompanied by background and noise,
requiring isolation of the in-focus signal.
For accurate particle detection via
deconvolution in low SNR, we apply a
high-pass local background subtraction
filter followed by a matched filter for noise
suppression.’> We apply the filter
identically to the observed image and the
mask  kernel  for

phase optimal

reconstruction of the particle distribution
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(see Figure S5 in the Supporting Information).'® Similarly, to accommodate variations in noise
levels, we implement a local threshold based on the local variance around each pixel, which
outperforms a global threshold for particle detection in variable SNR (see Figure S6 in the
Supporting Information).

Point cloud representation: We estimate potential particle locations by considering the
deconvolved particle distribution as a point cloud. We perform iterative deconvolution using
ADMM, which involves a four-step process: guessing a solution, reconstructing the estimated
image, comparing the reconstruction to the observed image, and scoring the reconstruction to
decrease the error in our solution (Figure 2A). We illustrate this process using a single frame from
the example image from Figure 1E. To begin, ADMM generates a point cloud encompassing all
possible solutions for each particle position in space, assigning a small confidence to each point
(Figure 2B). This point cloud initialization process results in a scattered point cloud across the
solution volume, regardless of the content of the image to be deconvolved. ADMM condenses the
overall point cloud with each iteration (Figure 2C) by increasing confidence in solutions that
improve reconstruction accuracy and decreasing confidence in spurious solutions to enforce an
overall sparse solution. As ADMM iterates, the point cloud may converge on possible particle
locations, allowing for the point cloud to be segmented as described in the particle identification
section below (Figure 2C inset). An example of this segmentation is shown in Figure 2D with pink
and orange points corresponding to two suggested particle positions closest to the ground truth and
blue points referring to other spurious solutions not seen in later iterations. In this work, we refine
our estimates for 240 iterations, resulting in only two suggested particle positions after clustering

(Figure 2E, also see Figure S3 in the Supporting Information).
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A For each frame until convergence:
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Figure 2: KNOT utilizes ADMM to reconstruct
3-D particle locations from a single frame. A)
The point cloud refinement procedure. B) The
solutions from the first iteration form a point cloud
spanning the solution volume. C) Subsequent
iterations remove spurious points from the cloud.
(Inset) 2D projection of Delaunay clustering, used
to segment the point cloud into sub-clouds for each
particle identified. See Figure S7 in the Supporting
Information. D) Refinement permits segmentation
of the point cloud into clusters. (Below) The
clusters nearest the ground truth positions with
estimated localizations and associated errors. E)
ADMM converges on a super-resolved solution
for each particle position. (Below) The localization
error for each cluster is smaller than previous
iterations.

Particle identification: We identify
particles after deconvolution in 2-D or 3-D
by clustering weighted solutions into
amorphous point clouds, retaining motion
blur artifacts without affecting localization
accuracy or precision (Figure 2). We
cluster the refined point cloud (Figure 2C
inset, see Figure S7 in the Supporting
Information) to obtain smaller point clouds
representing the 3-D particle locations for
each particle (Figure 2D, 2E insets). During
this process, KNOT determines the number
and position of each particle for each frame
analyzed independently after ADMM has
iterated 240 times. When necessary, our
amorphous point cloud detection scheme
super-resolves  particle locations by
reporting the point cloud centroid (pixel
size: 68.5 nm). Figure S8 in the Supporting
Information illustrates the localization

precision as a function of axial position,

while Figure S3 shows how the localization

precision changes with SNR and particle density for simulated random arrangements of particles
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in 3-D. Distortions in the point clouds provide information about particle motion otherwise lost
when point clouds are condensed into a single point. Retaining the point cloud and distortion
enables adaptive tracking by generating a distribution of SFDs that incorporate the motion
information encoded in the point cloud distortion without compromising particle identification
(see Figure S7 in the Supporting Information). An example of KNOT localizing the two particles
shown in Figure 2 with imperfect PSF overlap is shown in Figure S9.

Trajectory linking: We measure the displacement between point clouds to statistically define the
range of possible displacements of each particle, forming SFD distributions that incorporate
artifacts like motion blur into possible past localizations for the particle. Each SFD contains the
motion parameters of distance (p), polar angle (0), and azimuthal angle (¢) that a particle travels
between two consecutive frames using spherical coordinates (Figure 3). Common tracking
methods such as TrackMate®> or MOSAIC ? evaluate the SFD between representative
localizations found by averaging point clouds'®-2%: 33534 while others like uTrack?® fit point clouds
to a Gaussian or elliptical shape.?%-*% 4251 In contrast, KNOT identifies possible candidates within
a search radius pmax of the current position (Figure 3A inset) and fully connects each pair of point
clouds between frames (Figure 3A) to develop distributions of p, ¢, and 0 that direct selection of
the next point in a trajectory (Figure 3A, right). SFD parameter distributions are fit with a
Lorentzian kernel density estimation (KDE) to form a continuous distribution of possible values,
emphasizing experimental observations while permitting the possibility of large deviations
through the inclusion of the Lorentzian tail.”> >® Particle inaction between frames is indicated in
the p SFD distribution by nonzero KDE values despite p approaching zero. The motion of each
particle is characterized without explicitly assigning a motion model by combining SFD

distributions across frames.
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The characteristic SFDs establish the likelihood of the particle displacing a certain distance
at a given angle, thereby predicting where each particle will be using only a sliding window of
past information. Candidates within the search radius of the current position are evaluated through
a weighted maximum a posteriori estimator predicated on the characteristic SFDs of p, ¢, and 6.
This sliding window approach reinforces locally self-consistent behavior, making KNOT tolerant
to photoblinking, overlapping trajectories, and sudden changes in direction. For example, in Figure
3B, we average the SFD distributions from the most recent n = 6 frames to form the characteristic
SFD for each particle. However, the sliding window also incorporates conflicting behavior when
the particle undergoes a transition between diffusive and directed motion during the window. Here,
the characteristic SFD hybridizes the models of past and current motion by weighting both models
according to the number of frames each model is present in the sliding window (see Figure S10 in
the Supporting Information). Figure S11 in the Supporting Information demonstrates that a 6-
frame window is sufficient to identify unique traits for each vesicle behavior identified by Sekh
and coworkers.’!

KNOT’s characteristic SFDs classify observed motion as locally directed or not through
correlation analysis with a peaked function such as the Lorentzian. Tracking the trajectories in
Figure 1B using KNOT and observing archetypical behaviors in Figure S11 in the Supporting
Information, we find that the angular characteristic SFDs of locally directed motion resemble a
peaked function (Figure 3C). A single peak in the characteristic SFD arises from observing a
similar range of angles of motion across multiple frames, showing an angular preference.’’
However, for non-directed motion, there is no angular preference,’’ hence averaging a sufficient
number of frames will yield a uniform angular characteristic SFD. To determine which motion

class a characteristic SFD belongs to, we fit a Lorentzian to the characteristic SFD and determine
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Figure 3: KNOT evaluates all SFDs between
point clouds, exploiting particles affected by
motion blur. A) Point clouds in two consecutive
frames illustrating all possible SFDs. (Inset) Only
point clouds in frame 2 within p,,4 of the point
cloud in frame 1 are considered for SFD analysis.
(Right) The SFD is parameterized into distance (p,
yellow), polar angle (0, purple), and azimuthal
angle (¢, gray). 0 and ¢ are defined with respect
to the camera orientation. B) Simulated
accelerating trajectory with marked frames inside
the sliding window. (Right) The SFD distributions
for each frame of the sliding window (top) are
averaged to form characteristic SFD distributions
(bottom). C) Simulated DH trajectories from
Figure 1B for axially directed (1), diffusive (i1), and
mixed motion (iii, iv) tracked by KNOT. (Right)
Characteristic SFDs for each trajectory using the
last 6 frames.

if the mean squared error is lower than the
variance, captured by the coefficient of
determination (R?) (see section 11 of the
Supporting Information). Positive values of
R2indicate that the data is peaked, meaning
the particle moved in a consistent direction
during the sliding window and is likely
undergoing directed transport. Conversely,
negative values of R? mean that the
directionality of particle motion was
uniform in all directions, characteristic of
Brownian motion. Near-zero values of R?
require a larger sliding window to
determine if the motion is locally directed
or diffusive.

The spherical coordinate basis is
chosen because the displacement (p) and
orientation of motion (0, ¢) are isolated in
the basis vectors, simplifying the analysis
between directed motion, in which 0 and ¢
have non-random distributions, and
diffusion. Transferring to a Cartesian basis

set 1s non-destructive and could be
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performed to facilitate different analyses. In cases of 2-D anisotropic diffusion (e.g., Dx=Dy# D),

a Cartesian basis has similar SFD distributions as for isotropic diffusion, however a spherical basis
will always show angular preference. Nonetheless, if the motion is consistent and well expressed
over the sliding window, we expect KNOT to accurately track particles regardless of coordinate

basis.

Results and discussion:

Validation of tracking algorithm on simulated and experimental 2-D and 3-D trajectories:
We validate KNOT against three similar, high-performing methods from the 2012 IEEE
International Symposium on Biomedical Imaging (ISBI) particle tracking challenge, comparing
method performance across SNRs in 2-D vesicular motion*® (see Tables S3-S10 in the Supporting
Information). KNOT is shown to match or outperform methods using nearest-neighbors,>! Kalman
filtering with multiple interacting models,*> zeroth and second moment analysis to globally

2334 and methods solving the linear assignment problem.*> We

minimize interparticle distance,
evaluated five performance metrics representing different facets of tracking: the measure of
matching tracks (a), correct/incorrect tracks (P), Jaccard similarity of points (JSC), Jaccard
similarity of full tracks (JSCs), and the RMSE of identified points and paired tracks.’® The Jaccard
similarity coefficient is derived from the number of true positive (TP), false negative (FN), and
false positive (FP) points and tracks, respectively. Tables S1-S8 in the Supporting Information
illustrate the tracking performance in typical intracellular vesicle motion where diffusive behavior
is prevalent with peak SNR values varying from 7 to 1. Without knowledge of expected particle

motion, KNOT competes best when SNR is near or below the critical level of 4,*: 4 challenging

the best performance observed of any method given the advantage of a preordained motion model.
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Figure 4. Comparison between KNOT (blue),
TrackMate (pink) and MOSAIC (green) on
simulated representative trajectories in SNR 2
(black). Particle motion is primarily: A) diffusive,
B) directed, C) confined diffusion, D) mixed. E)
The quantitative performance of each method
evaluated with the ISBI 2012 metrics. Bold values
indicate the best performance. RMSE in 67 nm

pixels.

Autoregression

We also compare our adaptive tracker
to two open-source ImageJ (NIH Image)
tracking programs: TrackMate® and
MOSAIC,> which use user-defined
parameters to solve the linear assignment
problem for nearest neighbors trajectory
formation or track via autoregression,
respectively (Figure 4). Choosing each
method represents a comparison to
algorithms that excel at finding diffusive
and directed motion in low SNR. We select
four representative trajectories from the
SNR 2 vesicle dataset exhibiting diffusive
(Figure 4A), directed (Figure 4B), confined
diffusion (Figure 4C), and mixed motion
(Figure 4D) to evaluate each method.
TrackMate competes with KNOT on
diffusive trajectories but prematurely
severs trajectories that involve directed
motion. In the directed and mixed
trajectories,  TrackMate  outperforms
KNOT in RMSE because the RMSE

calculation favors conservative point
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detection.”® In contrast, MOSAIC finds simpler representations of the trajectory consistent with an
autoregression model but avoids sharp changes in velocity that KNOT correctly captures. KNOT
balances performance across diffusive and directed motion without the need for input bias,
providing better results on samples where particles exhibit different motions or change transport
during observation

We show that KNOT improves upon our previous 3-D DH tracking system, Troika-DH,!
in one simulated and three experimental DH imaging scenarios (Figure 5). The first scenario
simulates mixed motion and trajectory overlap given a high peak SNR of 9.7 and temporal
resolution of 10 ms per frame. Troika-DH detects each particle present but only tracks the particle
if no other particle is nearby (Figure SA). KNOT improves performance by using the most likely
positions for particles, even in cases of overlap (Figure 5B). The first experimental scenario uses
polystyrene beads fixed to a pre-programmed piezoelectric stage to emulate directed trajectories
with sharp turns in ideal experimental settings (peak SNR 5.0). Troika-DH captures the directed
particle motion, but prematurely terminates trajectories while in motion (Figure 5C). KNOT
improves tracking performance by predicting where particles will be, even
without detection, using the adaptive tracker (Figure 5D). The next experimental case shows how
KNOT reduces false positive tracks in noisy protein tracking data, on movies of lysozyme
adsorption on pNIPAM-co-AA polymer with a peak SNR of 3.5. Experimental conditions are
adjusted such that lysozyme desorption times from pNIPAM-co-AA should be approximately 60
ms, meaning that an accurate algorithm should not identify trajectories longer than 3 frames or
distances longer a pixel.’® Troika-DH spawns several spurious trajectories surrounding each
adsorption site (Figure SE) whereas the sparsity constraint during ADMM gives KNOT a concise

list of particles to track (Fig 5F). The last experimental scenario tracks Rab5" early endosome
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Figure 5. KNOT and Troika-DH3! evaluated
over four 3-D scenarios with differing SNR and
motion types. A, B) Simulated data exhibiting
particle overlap and mixed motion. C, D)
Experimental data from fixed polystyrene beads
on a moving piezoelectric stage. E, F)
Experimental data from 1 nm lysozyme adsorbing
to a pPNIPAM-co-AA surface. Images have been
enhanced for visualization purposes only. G, H)
Experimental data from mCherry tagged Rab5"
early endosomes in a live cell (murine 344SQ
mesenchymal cells).

dynamics in murine 344SQ mesenchymal
live cells with dynamic backgrounds,
variable noise levels (peak SNR of 2.1),
and mixed particle motion. The low SNR
forbids detection of any particle using
Troika-DH (Figure 5G), but improved
preprocessing allows KNOT to isolate
three endosomes from the complex
background exhibiting confined diffusion
and mixed directed motion (Figure 5SH). As
shown, KNOT greatly improves upon our
previous method by using local, model-less
approaches to detection and tracking.

SFD analysis classifies locally diffusive
and directed endosomal motion in live
cells: KNOT is applied to track
intracellular early endosomal dynamics,
which are known to exhibit complex

motions®® >°

including switching between
diffusive and directed motion (Figure 6).
motion

State-of-the-art particle

classification methods often rely on MSD

analysis to identify trajectories or trajectory segments exhibiting consistent diffusive or directed
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motion over tens or hundreds of frames.®” Conventional MSD analysis compares the average
squared distance between all points in a trajectory as a function of the time difference t to a power
law: MSD(t) = Ct*, where C and o are fitting parameters.”* Figure 6A and 6B contain
representative examples of diffusive and directed motion, respectively, and the associated MSD
curve. MSD analysis is effective to classify trajectory motion containing a singular type through
the power law exponent, with Ahmed and coworkers selecting oo = 1.4 as the boundary between
directed (o > 1.4) and diffusive (a < 1.4) motion.>” However, a single power law fails to capture
the intricacies of mixed motion (Figure 6C), leading the development of the tMSD, which
evaluates the MSD along a sliding window.’” A sliding window accommodates mixed motion
provided the duration of the window is small compared to the duration of the trajectory. KNOT
exploits the information captured in point clouds to shorten the window to as few as 6 frames while
distinguishing between diffusive, directed, and mixed motion through the characteristic SFD.

We present a biological application of KNOT by classifying intracellular endosomal
dynamics, extracting the fraction of directed motion that travelled axially or laterally to the
measurement focal plane. Figure 6D illustrates a manual motion classification analysis of Rab5*
early endosomes in a live epithelial (393P Vector) live cell tracked using KNOT, thereby exposing
the associated point clouds with each trajectory. The local motion of each particle was classified
by observing the trajectory of the particle for 20 frames. The particle motion was then classified
as either directed or diffusive based on if the particle moved linearly or repeatedly changed
direction, respectively. To check for misclassifications, we compared our classifications to random
forest analysis®! trained on simulated mixed motion, stochastically transitioning between directed
and diffusive motion, indicates around 80% agreement with our manual classification (see Figure

S12 in the supporting information for more details). The disagreement appears when diffusing
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Figure 6. KNOT more accurately classifies
locally diffusive and directed motion in Rab5*
vesicles exhibiting mixed motion than MSD or
tMSD analysis. Representative trajectories, MSD
analysis, and KNOT analysis for A) diffusive, B)
directed, and C) mixed motion. MSD analysis
uses 37 frames at 5 ms intervals while KNOT uses
7 frames at 30 ms intervals. Motion classification
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performance for each method. Directed motion is
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particles briefly experienced linear motion
or directed particles jittered while moving
slowly, as the window only provided
context for our manual classification of
local motion. We analyzed the local motion
of each trajectory using MSD analysis
(Figure 6E), tMSD analysis (Figure 6F), and
our KNOT analysis (Figure 6Q).
Comparing each analysis to our ground
truth, we find that KNOT surpasses both
methods in accuracy and F1 score (Figure
6H). Like the tMSD, KNOT classifies
trajectory segments as diffusive or not
rather than entire trajectories, enabling
mixed motion analysis. We further classify
locally directed motion as towards the
zenith (i.e., away from the coverslip),
lateral, or towards the nadir (i.e., towards
the coverslip) with respect to the
measurement focal plane, weighting each of
the three angular regimes equally (Figure

61). Comparing the true direction with the

estimated directions from tMSD and KNOT
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analysis, we find that endosomes preferentially transport laterally or towards the zenith (34% and
45% respectively) rather than towards the nadir (22%). As such, KNOT more accurately classifies
the local motion and its direction than the preceding MSD approaches, making KNOT a valuable

complement to intracellular trafficking studies especially when the number of frames is limited.

Conclusion:

This work presents KNOT, a 2-D and 3-D adaptive single particle tracking algorithm for
application in obtaining and analyzing mechanistic transport of particles inside cells, at polymer
interfaces, and other biologically relevant studies without bias to known models. KNOT utilizes
data traditionally truncated by other tracking methods, leveraging information encoded in PSF
artifacts to better classify intracellular motion and achieve higher fidelity trajectories using simpler
hardware. Point clouds treat motion blur as encoded information about particle dynamics, using
adaptive analysis on the SFDs produced from motion clouds to better classify the motion types.
Averaging SFDs over short timescales allows KNOT to adapt to changes in particle motion, such
as transitions from directed to diffusive transport in intracellular cargoes or between adsorption
and diffusion in protein/polymer interactions. Requiring less frames than MSD analysis and
remaining agnostic to PSF shape renders KNOT useable for cheaper, simpler instrumental
configurations. Removing the need for pre-determined sample information streamlines
classification of particle dynamics and paves the way for faster and more effective investigations
of intracellular mechanisms. While no tracking methodology is the “best” across all experimental
conditions,*® the generalized and adaptive approach we present with KNOT is accurate and widely

applicable. As a universal tracking algorithm, KNOT accommodates and explores possible model-
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less behaviors by adapting to each particle individually, competing or surpassing biased state-of-

the-art tracking and analysis methods.

Supporting Information:

Additional 13 sections of text, 29 equations, 12 figures, and ten tables describing (1)
Computational details, (2) KNOT performs a four-step process to detect, represent, identify, and
track particles, (3) Simulation of the double helix phase mask point spread function, (4) Recovery
of particle locations using the Alternating Direction Method of Multipliers (ADMM)), (5) Filtering
the phase mask point spread function preserves the underlying particle distribution, (6) Local
thresholds derived from noise statistics outperform global thresholds for particle detection, (7)
Delaunay clustering identifies particles without shape expectations, (8) How localization precision
changes with axial position and PSF overlap, (9) How the number of historical frames n affects
KNOT predictions, (10) Single frame displacement distributions of common vesicle motions, (11)
Motion classification using SFD analysis, (12) Quantitative comparison between tracking
algorithms on 2-D ISBI 2012 datasets, and (13) Discrepancies between manual classification and

random forest analysis.
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