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Abstract: 

Achieving mechanistic understanding of transport in complex environments such as inside 

cells or at polymer interfaces is challenging. We need better ways to image transport in 3-D and 

better single particle tracking algorithms to determine that transport that are not systemically 

biased towards any classical motion model. Here we present an unbiased single particle tracking 

algorithm, Knowing Nothing Outside Tracking (KNOT). KNOT uses point clouds provided by 

iterative deconvolution to educate individual particle localizations and link particle positions 

between frames to achieve 2-D and 3-D tracking. Information from prior point clouds fuels an 

independent adaptive motion model for each particle to avoid global models that could introduce 

biases. KNOT competes with or surpasses other 2-D methods from the 2012 particle tracking 

challenge while accurately tracking adsorption dynamics of proteins on polymer surfaces and early 

endosome transport in live cells in 3-D. We apply KNOT to study 3-D endosome transport to 

reveal new physical insight about locally directed and diffusive transport in live cellular 

environment. Our analysis demonstrates better accuracy in classifying local motion and its 

direction compared to previous methods, revealing intricate intracellular transport heterogeneities. 
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Introduction: 

Single particle tracking is used to understand the complex mechanistic transport involved 

during intracellular processes such as endocytosis,1 protein or DNA trafficking,2-4 endosomal 

trafficking,5 and drug delivery6 and to understand protein-polymer interactions during protein 

separations.7-11 However, three problems hinder particle motion analysis: capturing simultaneous 

particle positions in 3-D, resolving ambiguous positions such as during particle overlap or 

photoblinking, and tracking the stochastic changes between diffusive and directed motion without 

bias. The first problem is routinely addressed through methods such as light sheet microscopy,12, 

13 intensity decay during total internal reflection microscopy,14 multiplane imaging using prisms,15 

multiple beam splitters,16 or piezo stages,17 and point spread function (PSF) engineering. PSF 

engineering requires little additional experimental equipment (a 4f system and either a phase 

mask18 or a spatial light modulator19-22) to expose the 3-D position of particles, using digital signal 

processing to deconvolve a 2-D widefield image taken with a known phase mask PSF.18-24 

Resolving ambiguous particle positions relies on extrapolating a known motion model to the frame 

in question.25-27 Also, true dynamics can be obscured due to mixed motion28 as no individual model 

captures the nuances of confined, diffusive, and directed motion simultaneously.29-31 Correctly 

classifying particle motion in a heterogenous environment is necessary for detecting endosomal 

movements during cellular changes in cancer.32 

Tracking using predetermined global motion models is fast, but can bias observed 

motion,33 leading to misclassification of intracellular particle dynamics.30 The nearest neighbors 

method links the nearest available candidate for each particle, which excels in tracking uniformly 

random motion such as diffusion,34-36 but fails to accurately describe the trajectory overlaps 

commonly observed in directed motion along microtubule pathways.25, 37 Autoregressive methods 
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link candidates with similar displacements to the most recent link, which accurately depicts 

directed motion,38, 39 but can fail to follow stochastic motion.26, 38 The specialization of nearest 

neighbors and autoregression require the user to estimate the most common motion present in a 

sample before tracking, especially for high particle density measurements, a choice with vastly 

different results if particle motion is evenly distributed between directed and diffusive. Other 

tracking approaches optimize local or global statistics, such as total displacement, or follow 

multiple hypotheses to accommodate for diverse particle behaviors. However, these static methods 

can still bias results towards one or more inherent optimization functions26, 40, 41 or statistical 

structures39, 42 when faced with mixed motion. 

Adaptive tracking analyzes a local window of behavior to propagate self-consistencies in 

prior motion to track dynamic particle behavior rather than restrict trajectories to pre-established 

models, avoiding supervisory biases.43 Algorithms that use multiple hypothesis testing either 

switch between multiple motion models31, 33, 44 or evaluate many possible trajectories26, 40, 41 to 

track mixed motion mitigate the bias of each model used at the cost of increased computational 

complexity. Adaptive tracking algorithms avoid exhaustive model or trajectory searching by 

promoting candidate displacements consistent with a window of recent observations, thereby 

decreasing the overall computational complexity while maintaining accuracy and adaptability.45 

Point clouds are the suitable unit of measure for particle position in an adaptive tracking method 

because point clouds contain multiple weighted data points,46, 47 adapting to a localization 

confidence gradient rather than a single representative point. Achieving accurate particle linking 

in a cellular environment with an adaptive tracker could lead to fundamental discoveries about 

endosomal transport mechanisms. For example, being able to accurately determine the directed or 

diffusive motion of endosomes could lead to a directional analysis of what endosomes move 
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towards the Golgi apparatus or other areas of interest for a given cargo when mapping the 

endosomal transport mechanisms within the cell.3 

We present an adaptive tracking method, Knowing Nothing Outside Tracking (KNOT), 

that combines phase engineering and point cloud displacement analysis to detect and track particles 

adaptively in both 2-D and 3-D. We quantify the 2-D performance of KNOT with the 2012 particle 

tracking challenge data48 and the 3-D capabilities by tracking lysozyme adsorption to poly N-

isopropylacrylamide-co-allylamine (pNIPAM-co-AA) hydrogels and Rab5+ early endosome 

transport in live cells. Without knowledge of particle motion, KNOT outperforms nearest 

neighbors or autoregressive trackers and competes with more complex trackers. Additionally, we 

show that KNOT distinguishes directed from non-directed motion more accurately than traditional 

mean squared displacement (MSD) or temporal MSD (tMSD) analysis. Local motion analysis 

demonstrates that endosomes are predominantly directed towards the zenith or laterally with 

respect to the plane of measurement. KNOT accounts for diffusive, directed, and mixed motion 

using the same approach, thus becoming a universal single particle tracking method. 

 

Experimental section: 

Materials and methods: 

Software: Software details are presented in the Supporting Information online.  

Polystyrene bead preparation: Carboxylate-modified polystyrene (PS) 100 nm beads (orange 

fluorescent, Invitrogen) were diluted by a factor of 1:1000 from stock concentration in HEPES 

buffer (Sigma, 10 mM, PH = 7.3). Microscope coverslips (22 × 22 mm, no. 1; VWR) were 

sequentially sonicated for 5 min in DI water, ethanol, and acetone. Coverslips were then immersed 

in base piranha solution containing 4% (v/v) H2O2 (Fisher Scientific) and 13% (v/v) NH4OH 
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(Sigma, ACS grade) for 30 min at 80 °C. After thorough rinsing with DI water, the coverslips were 

treated with oxygen plasma for 2 min (PDC-32G; Harrick Plasma, Ithaca, NY). The diluted PS 

bead solution (50 μL) was drop cast onto a plasma cleaned glass surface. 

Hydrogel preparation: Poly N-isopropylacrylamide-co-allylamine (pNIPAM-co-AA) hydrogels 

were synthesized by free-radical polymerization following previously published methods.49, 50 

Plasma cleaned glass samples were coated with a thin layer of pNIPAM polymer by spin coating 

50 μl 1% pNIPAM in water solution to reduce non-specific interaction of the proteins with the 

glass surface. Synthesized pNIPAM-co-AA hydrogels were roughly spherical in shape and 

approximately 700 nm in diameter as measured by dynamic light scattering. The hydrogels were 

dispersed in water and spin coated on top of the pNIPAM film for protein interaction on the 

hydrogel experiments. The dispersed hydrogels were vortexed before spin coating and the 

concentration was maintained so that they are well-separated on the pNIPAM polymer surface. 

The spherical shape of the hydrogels makes them ideal test samples for 3D interaction of proteins 

on porous polymers.  

Protein preparation: Rhodamine B labeled lysozyme C (Nanocs) solutions (0.5 nM) were freshly 

prepared in 10mM HEPES (pH 7.3) buffer. The protein solution was drop cast on the hydrogels 

on the glass coverslips and the motion of the proteins were measured using the microscope setup 

described below. 

Live cell cultures: Murine lung cells (mesenchymal 344SQ cells and epithelial 393P Vector cells) 

were a gift from the Kurie lab, UT MD Anderson Cancer Center. The cells were generated as 

stable transformations with ectopic expression of mCherry tagged Rab5+ early endosomes. We 

cultured the cells in RPMI-1640 media supplemented with 2.05 mM L-glutamine (HyClone), 10% 
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fetal bovine serum (HyClone), and 1% penicillin streptomycin (Corning) at 37.0 °C and 

maintained in a humidified CO2 incubation chamber. 

Wide-field single-molecule fluorescence imaging: Experimental data was collected on a home-

built wide-field fluorescence microscope. Samples were excited with 560 nm light from a white 

light laser (SuperK FIANIUM) operating at a 78 MHz repetition rate, focused at the center of a 

high numerical aperture oil-immersion objective (100x magnification, NA = 1.46, Carl-Zeiss, 

alpha Plan-Apochromat) in epi-fluorescence excitation mode. Fluorescence signal was collected 

with the same objective, filtered with a dichroic mirror (Chroma, z532/633rpc), then focused with 

a tube lens (f = 165 mm). The optical signal was transferred into a 4f system consisting of two 

lenses (f = 100 mm) with a DH phase mask (Double Helix LLC) located in the center to access the 

Fourier plane. The phase mask convolved signal was recorded using a back-illuminated sCMOS 

camera (Photometrics Prime 95B, 600x600 pixel area, 68.5 nm pixel size) operating at 30 ms per 

frame. Polystyrene bead and lysozyme samples were imaged at 30 ms exposure for 1000 frames 

with 2 mW of 560 nm laser power before the objective. The incident excitation intensity at the 

sample was around 0.08 mW/cm2. 

Cellular imaging: Cells were seeded one day before measurement on a 35 mm glass bottom (No. 

1.5) dish with a thickness of around 170 μm (MatTek Corporation). All live cell measurements 

were carried out with cells immersed in 1X live cell imaging solution (Invitrogen) supplemented 

with 0.2% bovine serum albumin (BSA), fraction V solution (GIBCO), and 5mM glucose solution 

(GIBCO). Cells were placed in a temperature-controlled incubation chamber (OKOLAB) 

maintained at 37.0 °C. A temperature-sensitive immersion oil (Immersol 518 F/370 C, ZEISS) was 

used to account for temperature mismatches and optical aberrations during measurements. Live 
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cells were imaged at 30 ms exposure for 1000 frames with 60 μW of 560 nm laser power before 

the objective. The incident excitation intensity at the sample was around 2.14 μW/cm2. 

Data analysis: 

A high-level description of KNOT details four steps to form particle trajectories: signal to noise 

ratio (SNR) boosting, point cloud representation, particle identification, and trajectory linking (see 

Figure S1 in the Supporting Information). To begin, we equally filter the stack of raw images and 

a simulation of the appropriate phase mask PSF to remove amorphous backgrounds, suppress 

noise, and enhance the particle signal.51, 52 The second step combines the enhanced image and 

phase mask to estimate particle locations as a weighted cloud of points via iterative deconvolution, 

using the Airy disk PSF for 2-D localization, or any of the astigmatism, double helix (DH), or 

tetrapod PSFs for 3-D.21 The third step clusters the estimated point cloud into several smaller point 

clouds, each representing the possible locations of a detected particle. Finally, we track entire point 

clouds rather than representative points to capture the localization uncertainty in the single frame 

displacement (SFD) distributions. The linking process considers candidates within a search radius 

ρmax from each particle to prohibit physically unlikely linkages. We rate the likelihood of each new 

linkage using the characteristic SFD distribution across a sliding window of previous frames, 

building a trajectory from the most likely linkages. The combination of maximum a posteriori 

estimation and a sliding window allows KNOT to avoid using a predetermined motion model to 

construct trajectories, capturing particles despite switches between directed and diffusive 

transport. Details of each step follow. Additionally, runtime data is available in Tables S1 and S2 

in the Supporting Information. 

Phase engineering for 3-D imaging requires deconvolution to localize: Phase engineering 

makes it possible to localize in 3-D from a 2-D image by manipulating the PSF, but this process 
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introduces new challenges (Figure 1). Capturing axial information is possible with a range of 

techniques such as multiple focal planes and light sheets, as recently reviewed.21 For traditional 

wide-field microscopy, though, there is no axial information in the 2-D image (Figure 1A). PSF 

engineering is one way to encode the 3-D position of particles to capture a complete description 

of intracellular vesicle dynamics (Figure 1B). For example, a DH phase mask captures axial 

motion by modulating the PSF via the Fourier plane (Figure 1C), encoding particle depth in the 

azimuthal angle between two lobes.13, 19, 20, 22-24 Single particle axial positions are recovered 

without incident (Figure 1D left), but PSF overlapping introduces pairing ambiguities when the 

dual lobes highlight overlapping particles, or multiple particles are present in proximity (Figure 

1D center, right). Extremely high densities such as what is shown in Figure 1D, right, are difficult 

to resolve accurately regardless of the method used and may require deep neural networks20 or 

other sophisticated localization methods. Naïve lobe-pairing approaches fail to localize 

overlapping lobes (Figure 1E left). We overcome the PSF overlapping problem by using 

deconvolution (Figure 1E right), which assigns a probability to all possible localizations based on 

matching intensity profiles to PSF templates, selecting the solution that reconstructs the image 

using as few particles as possible. To perform deconvolution, we iteratively maximize 

reconstruction accuracy and minimize the recovered particle density using the optimization 

problem presented in Equation 1: 

min
𝑥𝑥
‖𝑦𝑦 − Σ𝑧𝑧(𝑥𝑥 ∗ 𝑘𝑘)‖22 + 𝜆𝜆1‖𝑥𝑥‖1                                                    (1) 

where y is the observed 2-D image, x is the estimated weighted 3-D particle distribution, k is the 

set of 2-D PSF templates stacked as a 3-D matrix, and λ1 is the regularization parameter set to 

unity (see Section 3 in the Supporting Information). In this work, k is the simulated DH PSF as 

described in Figure S2 in the Supporting Information. The first term of Equation 1 evaluates the  
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least squares error between the observed 

image and the reconstructed image, while 

the second term evaluates the sparsity of 

the estimated particle distribution. We 

solve this optimization problem iteratively 

using the Alternating Direction Method of 

Multipliers (ADMM)18 (see Figure S3 in 

the Supporting Information). Figure S4 in 

the Supporting Information shows the true 

and KNOT localizations for each image in 

Figure 1D. 

SNR boosting: Single molecule imaging 

often contains weak fluorescent signals 

accompanied by background and noise, 

requiring isolation of the in-focus signal. 

For accurate particle detection via 

deconvolution in low SNR, we apply a 

high-pass local background subtraction 

filter followed by a matched filter for noise 

suppression.53 We apply the filter 

identically to the observed image and the 

phase mask kernel for optimal 

reconstruction of the particle distribution 

 
Figure 1: Phase engineering allows 3-D 
tracking but presents particle localization 
challenges. A) Simulation of particles exhibiting 
diffusive (i), axially directed (ii), or mixed (iii, iv) 
transport. B) Phase engineering encodes the true 3-
D particle locations in 2-D for later reconstruction. 
C) A schematic of the physical widefield 
fluorescence setup used in DH microscopy.  D) A 
single DH PSF is resolved by pairing lobes (left). 
Two or many particles experiencing overlapping 
PSFs present localization ambiguities (center, 
right). E) Localization results from identifying and 
pairing lobes (left) and from deconvolution (right). 
Abbreviations: NA, numerical aperture; sCMOS, 
scientific complimentary metal-oxide-
semiconductor. 
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(see Figure S5 in the Supporting Information).18 Similarly, to accommodate variations in noise 

levels, we implement a local threshold based on the local variance around each pixel, which 

outperforms a global threshold for particle detection in variable SNR (see Figure S6 in the 

Supporting Information).  

Point cloud representation: We estimate potential particle locations by considering the 

deconvolved particle distribution as a point cloud. We perform iterative deconvolution using 

ADMM, which involves a four-step process: guessing a solution, reconstructing the estimated 

image, comparing the reconstruction to the observed image, and scoring the reconstruction to 

decrease the error in our solution (Figure 2A). We illustrate this process using a single frame from 

the example image from Figure 1E. To begin, ADMM generates a point cloud encompassing all 

possible solutions for each particle position in space, assigning a small confidence to each point 

(Figure 2B). This point cloud initialization process results in a scattered point cloud across the 

solution volume, regardless of the content of the image to be deconvolved. ADMM condenses the 

overall point cloud with each iteration (Figure 2C) by increasing confidence in solutions that 

improve reconstruction accuracy and decreasing confidence in spurious solutions to enforce an 

overall sparse solution. As ADMM iterates, the point cloud may converge on possible particle 

locations, allowing for the point cloud to be segmented as described in the particle identification 

section below (Figure 2C inset). An example of this segmentation is shown in Figure 2D with pink 

and orange points corresponding to two suggested particle positions closest to the ground truth and 

blue points referring to other spurious solutions not seen in later iterations. In this work, we refine 

our estimates for 240 iterations, resulting in only two suggested particle positions after clustering 

(Figure 2E, also see Figure S3 in the Supporting Information).  
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Particle identification: We identify 

particles after deconvolution in 2-D or 3-D 

by clustering weighted solutions into 

amorphous point clouds, retaining motion 

blur artifacts without affecting localization 

accuracy or precision (Figure 2). We 

cluster the refined point cloud (Figure 2C 

inset, see Figure S7 in the Supporting 

Information) to obtain smaller point clouds 

representing the 3-D particle locations for 

each particle (Figure 2D, 2E insets). During 

this process, KNOT determines the number 

and position of each particle for each frame 

analyzed independently after ADMM has 

iterated 240 times. When necessary, our 

amorphous point cloud detection scheme 

super-resolves particle locations by 

reporting the point cloud centroid (pixel 

size: 68.5 nm). Figure S8 in the Supporting 

Information illustrates the localization 

precision as a function of axial position, 

while Figure S3 shows how the localization 

precision changes with SNR and particle density for simulated random arrangements of particles 

 
Figure 2: KNOT utilizes ADMM to reconstruct 
3-D particle locations from a single frame. A) 
The point cloud refinement procedure. B) The 
solutions from the first iteration form a point cloud 
spanning the solution volume. C) Subsequent 
iterations remove spurious points from the cloud. 
(Inset) 2D projection of Delaunay clustering, used 
to segment the point cloud into sub-clouds for each 
particle identified. See Figure S7 in the Supporting 
Information. D) Refinement permits segmentation 
of the point cloud into clusters. (Below) The 
clusters nearest the ground truth positions with 
estimated localizations and associated errors. E) 
ADMM converges on a super-resolved solution 
for each particle position. (Below) The localization 
error for each cluster is smaller than previous 
iterations. 
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in 3-D. Distortions in the point clouds provide information about particle motion otherwise lost 

when point clouds are condensed into a single point. Retaining the point cloud and distortion 

enables adaptive tracking by generating a distribution of SFDs that incorporate the motion 

information encoded in the point cloud distortion without compromising particle identification 

(see Figure S7 in the Supporting Information). An example of KNOT localizing the two particles 

shown in Figure 2 with imperfect PSF overlap is shown in Figure S9. 

Trajectory linking: We measure the displacement between point clouds to statistically define the 

range of possible displacements of each particle, forming SFD distributions that incorporate 

artifacts like motion blur into possible past localizations for the particle. Each SFD contains the 

motion parameters of distance (ρ), polar angle (θ), and azimuthal angle (ϕ) that a particle travels 

between two consecutive frames using spherical coordinates (Figure 3). Common tracking 

methods such as TrackMate35 or MOSAIC 25 evaluate the SFD between representative 

localizations found by averaging point clouds18, 25, 34, 35, 54 while others like uTrack26 fit point clouds 

to a Gaussian or elliptical shape.26, 38, 42, 51 In contrast, KNOT identifies possible candidates within 

a search radius ρmax of the current position (Figure 3A inset) and fully connects each pair of point 

clouds between frames (Figure 3A) to develop distributions of ρ, ϕ, and θ that direct selection of 

the next point in a trajectory (Figure 3A, right). SFD parameter distributions are fit with a 

Lorentzian kernel density estimation (KDE) to form a continuous distribution of possible values, 

emphasizing experimental observations while permitting the possibility of large deviations 

through the inclusion of the Lorentzian tail.55, 56 Particle inaction between frames is indicated in 

the ρ SFD distribution by nonzero KDE values despite ρ approaching zero. The motion of each 

particle is characterized without explicitly assigning a motion model by combining SFD 

distributions across frames. 
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The characteristic SFDs establish the likelihood of the particle displacing a certain distance 

at a given angle, thereby predicting where each particle will be using only a sliding window of 

past information. Candidates within the search radius of the current position are evaluated through 

a weighted maximum a posteriori estimator predicated on the characteristic SFDs of ρ, ϕ, and θ. 

This sliding window approach reinforces locally self-consistent behavior, making KNOT tolerant 

to photoblinking, overlapping trajectories, and sudden changes in direction. For example, in Figure 

3B, we average the SFD distributions from the most recent n = 6 frames to form the characteristic 

SFD for each particle. However, the sliding window also incorporates conflicting behavior when 

the particle undergoes a transition between diffusive and directed motion during the window. Here, 

the characteristic SFD hybridizes the models of past and current motion by weighting both models 

according to the number of frames each model is present in the sliding window (see Figure S10 in 

the Supporting Information). Figure S11 in the Supporting Information demonstrates that a 6-

frame window is sufficient to identify unique traits for each vesicle behavior identified by Sekh 

and coworkers.31 

KNOT’s characteristic SFDs classify observed motion as locally directed or not through 

correlation analysis with a peaked function such as the Lorentzian. Tracking the trajectories in 

Figure 1B using KNOT and observing archetypical behaviors in Figure S11 in the Supporting 

Information, we find that the angular characteristic SFDs of locally directed motion resemble a 

peaked function (Figure 3C). A single peak in the characteristic SFD arises from observing a 

similar range of angles of motion across multiple frames, showing an angular preference.57 

However, for non-directed motion, there is no angular preference,57 hence averaging a sufficient 

number of frames will yield a uniform angular characteristic SFD. To determine which motion 

class a characteristic SFD belongs to, we fit a Lorentzian to the characteristic SFD and determine  
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if the mean squared error is lower than the 

variance, captured by the coefficient of 

determination (R2) (see section 11 of the 

Supporting Information). Positive values of 

R2 indicate that the data is peaked, meaning 

the particle moved in a consistent direction 

during the sliding window and is likely 

undergoing directed transport. Conversely, 

negative values of R2 mean that the 

directionality of particle motion was 

uniform in all directions, characteristic of 

Brownian motion. Near-zero values of R2 

require a larger sliding window to 

determine if the motion is locally directed 

or diffusive. 

 The spherical coordinate basis is 

chosen because the displacement (ρ) and 

orientation of motion (θ, ϕ) are isolated in 

the basis vectors, simplifying the analysis 

between directed motion, in which θ and ϕ 

have non-random distributions, and 

diffusion. Transferring to a Cartesian basis 

set is non-destructive and could be 

 
Figure 3: KNOT evaluates all SFDs between 
point clouds, exploiting particles affected by 
motion blur. A) Point clouds in two consecutive 
frames illustrating all possible SFDs. (Inset) Only 
point clouds in frame 2 within ρmax of the point 
cloud in frame 1 are considered for SFD analysis. 
(Right) The SFD is parameterized into distance (ρ, 
yellow), polar angle (θ , purple), and azimuthal 
angle (φ, gray).  θ and φ are defined with respect 
to the camera orientation. B) Simulated 
accelerating trajectory with marked frames inside 
the sliding window. (Right) The SFD distributions 
for each frame of the sliding window (top) are 
averaged to form characteristic SFD distributions 
(bottom). C) Simulated DH trajectories from 
Figure 1B for axially directed (i), diffusive (ii), and 
mixed motion (iii, iv) tracked by KNOT. (Right) 
Characteristic SFDs for each trajectory using the 
last 6 frames. 
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performed to facilitate different analyses. In cases of 2-D anisotropic diffusion (e.g., Dx=Dy≠Dz), 

a Cartesian basis has similar SFD distributions as for isotropic diffusion, however a spherical basis 

will always show angular preference. Nonetheless, if the motion is consistent and well expressed 

over the sliding window, we expect KNOT to accurately track particles regardless of coordinate 

basis. 

 

Results and discussion: 

Validation of tracking algorithm on simulated and experimental 2-D and 3-D trajectories: 

We validate KNOT against three similar, high-performing methods from the 2012 IEEE 

International Symposium on Biomedical Imaging (ISBI) particle tracking challenge, comparing 

method performance across SNRs in 2-D vesicular motion48 (see Tables S3-S10 in the Supporting 

Information). KNOT is shown to match or outperform methods using nearest-neighbors,51 Kalman 

filtering with multiple interacting models,42 zeroth and second moment analysis to globally 

minimize interparticle distance,25, 34 and methods solving the linear assignment problem.35 We 

evaluated five performance metrics representing different facets of tracking: the measure of 

matching tracks (α), correct/incorrect tracks (β), Jaccard similarity of points (JSC), Jaccard 

similarity of full tracks (JSCθ), and the RMSE of identified points and paired tracks.58 The Jaccard 

similarity coefficient is derived from the number of true positive (TP), false negative (FN), and 

false positive (FP) points and tracks, respectively. Tables S1-S8 in the Supporting Information 

illustrate the tracking performance in typical intracellular vesicle motion where diffusive behavior 

is prevalent with peak SNR values varying from 7 to 1. Without knowledge of expected particle 

motion, KNOT competes best when SNR is near or below the critical level of 4,48, 54 challenging 

the best performance observed of any method given the advantage of a preordained motion model. 
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  We also compare our adaptive tracker 

to two open-source ImageJ (NIH Image) 

tracking programs: TrackMate35 and 

MOSAIC,25 which use user-defined 

parameters to solve the linear assignment 

problem for nearest neighbors trajectory 

formation or track via autoregression, 

respectively (Figure 4). Choosing each 

method represents a comparison to 

algorithms that excel at finding diffusive 

and directed motion in low SNR. We select 

four representative trajectories from the 

SNR 2 vesicle dataset exhibiting diffusive 

(Figure 4A), directed (Figure 4B), confined 

diffusion (Figure 4C), and mixed motion 

(Figure 4D) to evaluate each method. 

TrackMate competes with KNOT on 

diffusive trajectories but prematurely 

severs trajectories that involve directed 

motion. In the directed and mixed 

trajectories, TrackMate outperforms 

KNOT in RMSE because the RMSE 

calculation favors conservative point 

 
Figure 4. Comparison between KNOT (blue), 
TrackMate (pink) and MOSAIC (green) on 
simulated representative trajectories in SNR 2 
(black). Particle motion is primarily: A) diffusive, 
B) directed, C) confined diffusion, D) mixed. E) 
The quantitative performance of each method 
evaluated with the ISBI 2012 metrics. Bold values 
indicate the best performance. RMSE in 67 nm 
pixels. 
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detection.58 In contrast, MOSAIC finds simpler representations of the trajectory consistent with an 

autoregression model but avoids sharp changes in velocity that KNOT correctly captures. KNOT 

balances performance across diffusive and directed motion without the need for input bias, 

providing better results on samples where particles exhibit different motions or change transport 

during observation 

 We show that KNOT improves upon our previous 3-D DH tracking system, Troika-DH,51 

in one simulated and three experimental DH imaging scenarios (Figure 5). The first scenario 

simulates mixed motion and trajectory overlap given a high peak SNR of 9.7 and temporal 

resolution of 10 ms per frame. Troika-DH detects each particle present but only tracks the particle 

if no other particle is nearby (Figure 5A). KNOT improves performance by using the most likely 

positions for particles, even in cases of overlap (Figure 5B). The first experimental scenario uses 

polystyrene beads fixed to a pre-programmed piezoelectric stage to emulate directed trajectories 

with sharp turns in ideal experimental settings (peak SNR 5.0). Troika-DH captures the directed 

particle motion, but prematurely terminates trajectories while in motion (Figure 5C). KNOT 

improves tracking performance by predicting where particles will be, even  

without detection, using the adaptive tracker (Figure 5D). The next experimental case shows how 

KNOT reduces false positive tracks in noisy protein tracking data, on movies of lysozyme 

adsorption on pNIPAM-co-AA polymer with a peak SNR of 3.5. Experimental conditions are 

adjusted such that lysozyme desorption times from pNIPAM-co-AA should be approximately 60 

ms, meaning that an accurate algorithm should not identify trajectories longer than 3 frames or 

distances longer a pixel.50 Troika-DH spawns several spurious trajectories surrounding each 

adsorption site (Figure 5E) whereas the sparsity constraint during ADMM gives KNOT a concise 

list of particles to track (Fig 5F). The last experimental scenario tracks Rab5+ early endosome  
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dynamics in murine 344SQ mesenchymal 

live cells with dynamic backgrounds, 

variable noise levels (peak SNR of 2.1), 

and mixed particle motion. The low SNR 

forbids detection of any particle using 

Troika-DH (Figure 5G), but improved 

preprocessing allows KNOT to isolate 

three endosomes from the complex 

background exhibiting confined diffusion 

and mixed directed motion (Figure 5H). As 

shown, KNOT greatly improves upon our 

previous method by using local, model-less 

approaches to detection and tracking. 

SFD analysis classifies locally diffusive 

and directed endosomal motion in live 

cells: KNOT is applied to track 

intracellular early endosomal dynamics, 

which are known to exhibit complex 

motions30, 59 including switching between 

diffusive and directed motion (Figure 6). 

State-of-the-art particle motion 

classification methods often rely on MSD 

analysis to identify trajectories or trajectory segments exhibiting consistent diffusive or directed 

 
Figure 5. KNOT and Troika-DH51 evaluated 
over four 3-D scenarios with differing SNR and 
motion types. A, B) Simulated data exhibiting 
particle overlap and mixed motion. C, D) 
Experimental data from fixed polystyrene beads 
on a moving piezoelectric stage. E, F) 
Experimental data from 1 nm lysozyme adsorbing 
to a pNIPAM-co-AA surface. Images have been 
enhanced for visualization purposes only. G, H) 
Experimental data from mCherry tagged Rab5+ 
early endosomes in a live cell (murine 344SQ 
mesenchymal cells). 
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motion over tens or hundreds of frames.60 Conventional MSD analysis compares the average 

squared distance between all points in a trajectory as a function of the time difference τ to a power 

law: 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏)  =  𝐶𝐶𝜏𝜏𝛼𝛼 , where C and α are fitting parameters.60 Figure 6A and 6B contain 

representative examples of diffusive and directed motion, respectively, and the associated MSD 

curve. MSD analysis is effective to classify trajectory motion containing a singular type through 

the power law exponent, with Ahmed and coworkers selecting α = 1.4 as the boundary between 

directed (α > 1.4) and diffusive (α < 1.4) motion.57 However, a single power law fails to capture 

the intricacies of mixed motion (Figure 6C), leading the development of the tMSD, which 

evaluates the MSD along a sliding window.57 A sliding window accommodates mixed motion 

provided the duration of the window is small compared to the duration of the trajectory. KNOT 

exploits the information captured in point clouds to shorten the window to as few as 6 frames while 

distinguishing between diffusive, directed, and mixed motion through the characteristic SFD. 

We present a biological application of KNOT by classifying intracellular endosomal 

dynamics, extracting the fraction of directed motion that travelled axially or laterally to the  

measurement focal plane. Figure 6D illustrates a manual motion classification analysis of Rab5+ 

early endosomes in a live epithelial (393P Vector) live cell tracked using KNOT, thereby exposing 

the associated point clouds with each trajectory. The local motion of each particle was classified 

by observing the trajectory of the particle for 20 frames. The particle motion was then classified 

as either directed or diffusive based on if the particle moved linearly or repeatedly changed 

direction, respectively. To check for misclassifications, we compared our classifications to random 

forest analysis61 trained on simulated mixed motion, stochastically transitioning between directed 

and diffusive motion, indicates around 80% agreement with our manual classification (see Figure 

S12 in the supporting information for more details). The disagreement appears when diffusing 



 21 

particles briefly experienced linear motion 

or directed particles jittered while moving 

slowly, as the window only provided 

context for our manual classification of 

local motion. We analyzed the local motion 

of each trajectory using MSD analysis 

(Figure 6E), tMSD analysis (Figure 6F), and 

our KNOT analysis (Figure 6G). 

Comparing each analysis to our ground 

truth, we find that KNOT surpasses both 

methods in accuracy and F1 score (Figure 

6H). Like the tMSD, KNOT classifies 

trajectory segments as diffusive or not 

rather than entire trajectories, enabling 

mixed motion analysis. We further classify 

locally directed motion as towards the 

zenith (i.e., away from the coverslip), 

lateral, or towards the nadir (i.e., towards 

the coverslip) with respect to the 

measurement focal plane, weighting each of 

the three angular regimes equally (Figure 

6I). Comparing the true direction with the 

estimated directions from tMSD and KNOT 

 
Figure 6. KNOT more accurately classifies 
locally diffusive and directed motion in Rab5+ 
vesicles exhibiting mixed motion than MSD or 
tMSD analysis. Representative trajectories, MSD 
analysis, and KNOT analysis for A) diffusive, B) 
directed, and C) mixed motion. MSD analysis 
uses 37 frames at 5 ms intervals while KNOT uses 
7 frames at 30 ms intervals. Motion classification 
for 8 trajectories containing 728 detections via D) 
manual classification, E) MSD analysis, F) tMSD 
analysis, or G) KNOT analysis. H) Classification 
performance for each method. Directed motion is 
labeled as a positive result while diffusive motion 
is labeled as negative. I) Percentage of detections 
marked as part of directed motion exhibiting 
motion axially (left and right) or laterally (middle) 
measured manually, via tMSD, or KNOT. Axial 
motion is within 60 degrees of the z-axis. 
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analysis, we find that endosomes preferentially transport laterally or towards the zenith (34% and 

45% respectively) rather than towards the nadir (22%). As such, KNOT more accurately classifies 

the local motion and its direction than the preceding MSD approaches, making KNOT a valuable 

complement to intracellular trafficking studies especially when the number of frames is limited. 

 

Conclusion: 

This work presents KNOT, a 2-D and 3-D adaptive single particle tracking algorithm for 

application in obtaining and analyzing mechanistic transport of particles inside cells, at polymer 

interfaces, and other biologically relevant studies without bias to known models. KNOT utilizes 

data traditionally truncated by other tracking methods, leveraging information encoded in PSF 

artifacts to better classify intracellular motion and achieve higher fidelity trajectories using simpler 

hardware. Point clouds treat motion blur as encoded information about particle dynamics, using 

adaptive analysis on the SFDs produced from motion clouds to better classify the motion types. 

Averaging SFDs over short timescales allows KNOT to adapt to changes in particle motion, such 

as transitions from directed to diffusive transport in intracellular cargoes or between adsorption 

and diffusion in protein/polymer interactions. Requiring less frames than MSD analysis and 

remaining agnostic to PSF shape renders KNOT useable for cheaper, simpler instrumental 

configurations. Removing the need for pre-determined sample information streamlines 

classification of particle dynamics and paves the way for faster and more effective investigations 

of intracellular mechanisms. While no tracking methodology is the “best” across all experimental 

conditions,48 the generalized and adaptive approach we present with KNOT is accurate and widely 

applicable. As a universal tracking algorithm, KNOT accommodates and explores possible model-
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less behaviors by adapting to each particle individually, competing or surpassing biased state-of-

the-art tracking and analysis methods. 

 

Supporting Information: 

Additional 13 sections of text, 29 equations, 12 figures, and ten tables describing (1) 

Computational details, (2) KNOT performs a four-step process to detect, represent, identify, and 

track particles, (3) Simulation of the double helix phase mask point spread function, (4) Recovery 

of particle locations using the Alternating Direction Method of Multipliers (ADMM), (5) Filtering 

the phase mask point spread function preserves the underlying particle distribution, (6) Local 

thresholds derived from noise statistics outperform global thresholds for particle detection, (7) 

Delaunay clustering identifies particles without shape expectations, (8) How localization precision 

changes with axial position and PSF overlap, (9) How the number of historical frames 𝑛𝑛 affects 

KNOT predictions, (10) Single frame displacement distributions of common vesicle motions, (11) 

Motion classification using SFD analysis, (12) Quantitative comparison between tracking 

algorithms on 2-D ISBI 2012 datasets, and (13) Discrepancies between manual classification and 

random forest analysis. 
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N-isopropylacrylamide-co-allylamine; MSD, mean squared displacement; tMSD, temporal mean 

squared displacement; SNR, signal to noise ratio; DH, double helix; SFD, single frame 

displacement; ADMM, alternating direction method of multipliers; NA, numerical aperture; 

sCMOS, scientific complimentary metal-oxide-semiconductor; KDE, kernel density estimation; 
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