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Abstract— Neural networks have become increasingly effec-
tive at many difficult machine learning tasks. However, the non-
linear and large-scale nature of neural networks makes them
hard to analyze, and, therefore, they are mostly used as black-
box models without formal guarantees. This issue becomes even
more complicated when neural networks are used in learning-
enabled closed-loop systems, where a small perturbation can
substantially impact the system being controlled. Therefore,
it is of utmost importance to develop tools that can provide
useful certificates of stability, safety, and robustness for neural
network-driven systems.

In this overview, we present a convex optimization frame-
work for the analysis of neural networks. The main idea is
to abstract hard-to-analyze components of a neural network
(e.g., the nonlinear activation functions) with the formalism
of quadratic constraints. This abstraction allows us to reason
about various properties of neural networks (safety, robust-
ness, generalization, stability in closed-loop settings, etc.) via
semidefinite programming.

I. INTRODUCTION

Due to their ability to capture complex dependencies,
neural networks have been tremendously successful at var-
ious complex tasks. Despite this success, the complex and
large-scale structure of neural networks makes them hard to
analyze and therefore, they are often used without formal
guarantees. In particular, neural networks can be highly vul-
nerable to uncertainties in their input. This fragility becomes
even worse when neural networks are used in feedback
loops, where a small perturbation can substantially impact
the closed-loop system over time. Therefore, a successful
adoption of neural networks in safety-critical systems will
require strict guarantees of stability, robustness, and safety.

Motivated by the lack of formal guarantees on the per-
formance of neural networks, there has been an increasing
effort to develop tools to verify desirable properties of neural
networks. For example, in the context of image classification
using deep networks, it is desirable to verify that all points
in the vicinity of a correctly-classified example would be
classified correctly (local robustness). Similarly, in deep
reinforcement learning tasks, it is desirable to choose a
robust action under a worst-case deviation in the input of the
network due to possible adversaries or noise in the observed
states [1].

The goal of this tutorial is to present a modular framework
inspired by robust control and based on convex optimization
for analyzing various properties of neural networks. The
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main idea is to abstract the nonlinearities in the neural net-
work by the constraints they impose on all instances of their
inputs and outputs. Then any property that we can guarantee
for the abstracted network would hold for the original net-
work as well. Notably, we show that we can capture various
properties of nonlinear functions using Quadratic Constraints
(QCs), such as bounded slope, bounded values, monotonicity,
repeated nonlinearity across neurons, etc. Compared to linear
constraints, quadratic constraints can reduce conservatism
in the description of nonlinearities and can be naturally
incorporated into existing methods for analysis and design
of feedback systems via matrix inequalities [2].

The rest of the tutorial is organized as follows. In §II we
discuss several problems surrounding neural networks, from
verification of neural networks in isolation, to reachability
analysis of neural network-controlled systems. In §III, we
will provide a comprehensive introduction to Quadratic Con-
straints. In §IV we will use QCs to abstract neural networks.
In §V we will show how we can tackle the problems
discussed in §II via semidefinite programming.

This tutorial paper is based on the material developed in
[3]–[7].

A. Notation and Preliminaries

We denote the set of real numbers by R, the set of non-
negative real numbers by R+, the set of real n-dimensional
vectors by Rn, the set of m × n-dimensional matrices
by Rm×n, the m-dimensional vector of all ones by 1m,
the m × n-dimensional zero matrix by 0m×n, and the n-
dimensional identity matrix by In. We denote by Sn, Sn+, and
Sn++ the sets of n-by-n symmetric, positive semidefinite, and
positive definite matrices, respectively. The p-norm (p ≥ 1)
is displayed by ‖ · ‖p : Rn → R+. For A ∈ Rm×n, the
inequality A ≥ 0 is element-wise. For A ∈ Sn, the inequality
A � 0 means A is positive semidefinite. For sets I and J ,
we denote their Cartesian product by I × J . We denote
ellipsoids by E(xc, P ) = {x | (x − xc)>P (x − xc) ≤ 1},
where P ∈ Sn++ and xc ∈ Rn is the center of the ellipsoid.

II. ANALYSIS OF NEURAL NETWORKS

A. Neural Network Verification

Consider the nonlinear vector-valued function f : Rnx →
Rnf described by a multi-layer feed-forward neural network.
Suppose a set X ⊂ Rnx of inputs is mapped by the neural
network f to

Y = f(X ) := {y ∈ Rnf | y = f(x), x ∈ X}.
The desirable properties that we would like to verify can
often be represented by a safety specification set Sy in
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Fig. 1: Illustration of verifying whether f(X ) ⊆ Sy .

the output space of the neural network. In this context,
the network is safe if the output set lies within the safe
region, i.e., if the inclusion f(X ) ⊆ Sy holds. This geometric
description of verification can be generalized and connected
to mathematical optimization. Specifically, given a function
J : Rnf → R, we say that f satisfies the specification J if

J� := sup
x∈X

J(f(x)) = sup
y∈Y

J(y) ≤ 0. (1)

Here, the safety specification set Sy is the zero sublevel set of
J , i.e., Sy = {y ∈ Rnf | J(y) ≤ 0}. From this perspective,
one could consider more general specification functions that,
for example, depend on both the network input x and the
output f(x) [8]. We will consider this scenario in §V-C,
where we study reach-avoid verification problems for neural
network-controlled systems.

To verify the inequality in (1), one must maximize the non-
convex function J(f(·)) over X , or equivalently, maximize J
over Y , for its global solution x� and verify whether the cor-
responding optimal value J� is non-positive. Geometrically,
this would require an exact computation of the non-convex
set Y . These methods are referred to as complete or exact
verification, in which the verification method either verifies
the specification (J� ≤ 0) or finds a counterexample x that
falsifies it (J(x) > 0).

For ReLU networks and affine J , (1) can be solved
globally with Mixed-Integer Linear Programming (MILP)
[9]–[12] or Satisfiability Modulo Theories (SMT) solvers
[13]. While we do not expect these approaches to scale to
large problems, for small neural networks and small input
sets, they can still be practical.

To improve computational tractability, one can settle for
incomplete or inexact verification, in which we find an upper
bound J̄� on J� and then we verify whether J̄� ≤ 0.
Geometrically, this corresponds to overapproximating the
output reachable set Y by a set Ỹ and verifying the safety
properties by checking the condition Ỹ ⊆ Sy instead.
Indeed, incomplete verification methods may fail to verify
a specification even if that specification is satisfied, i.e., we
might have J� ≤ 0 < J̄�. However, we obtain computational
tractability in return.

Incomplete verification methods are predominantly based
on convex relaxations of (1), which can then be solved
for their global solution via iterative methods for convex
optimization [14]–[18]. Linear Programming (LP)-based re-
laxations are the most tractable form of convex relaxations
that are suitable for large problem [16]–[18]. However, even
solving LPs can become computationally prohibitive for
small convolutional networks [18]. Furthermore, the LP-

based upper bounds become loose for large input sets or
large neural networks. This has motivated tighter convex
relaxations at the expense of less scalability. In this tutorial,
we are primarily interested in semidefinite relaxations [3]–
[5], [14], [15], which are more computationally expensive
but yield tighter relaxations.

B. Probabilistic Verification

In a deterministic setting, neural network verification is
a yes/no problem whose answer does not quantify the
proportion of inputs for which a property is violated. If the
input perturbation is random and potentially unbounded, the
output f(x) would satisfy the desired specification only with
a certain probability. More precisely, given a safe region Sy

in the output space of the neural network, we are interested
in finding the probability that the neural network maps a
random input X to the safe region Sy , Pr(f(X) ∈ Sy).
Since f is a nonlinear function, computing the distribution
of f(X) given the distribution of X is prohibitive, except
for special cases. As a result, we settle for providing a lower
bound p ∈ (0, 1) on the desired probability,

Pr(f(X) ∈ Sy) ≥ p.

To compute the lower bound, we can adopt a geometrical
approach, in which we verify whether the reachable set of a
confidence region of the input lies entirely in Sy .

Definition 1 (Confidence region) The p-level (p ∈ [0, 1])
confidence region of a vector random variable X ∈ Rn is
defined as any set Ep ⊆ Rn for which Pr(X ∈ Ep) ≥ p.

Let Ep be a confidence region of a random variable X . If
f(Ep) ⊆ Sy , then Sy is a p-level confidence region for the
random variable f(X), i.e., Pr(f(X) ∈ Sy) ≥ p. Therefore,
if we can certify that the output reachable set f(Ep) lies
entirely in the safe set Sy for some p ∈ (0, 1), then the
network is safe with probability at least p. In particular,
finding the best lower bound corresponds to the optimization
problem,

maximize p subject to f(Ep) ⊆ Sy,

with decision variable p ∈ [0, 1).
A closely related problem to probabilistic safety verifi-

cation is confidence propagation. Explicitly, given a p-level
confidence region Ep of the input of a neural network, our
goal is to find a p-level confidence region for the output.
Of course, there is an infinite number of such possible
confidence regions. Our goal is find the “best” confidence
region with respect to some metric. Using the volume of
the region as an optimization criterion, the best confidence
region amounts to solving the problem

minimize Volume(S) subject to f(Ep) ⊆ S.

The solution to the above problem provides the p-level
confidence region with the minimum volume.
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C. Local Robustness Certification of Classifiers

Consider a data classification problem with nf classes,
where f : Rnx → Rnf classifies a data point x as C(x) =
argmaxi fi(x). To evaluate the local robustness of the neural
network around a correctly-classified point x� with label
i� = C(x�), we consider a set X , containing x�, that
represents the set of all possible perturbations of x�. In
image classification, a popular choice is the �∞ ball, X =
{x : ‖x− x�‖∞ ≤ ε}, where ε is the maximum perturbation
applied to each pixel. Then the classifier is locally robust at
x� if it assigns all the perturbed inputs to the same class
as x�, i.e., if C(x) = C(x�) = i� for all x ∈ X . For this
problem, the safe set is the polytope

Sy = {y ∈ Rnf | yi� > yi for all i �= i�},
Verifying the local robustness at x� then amounts to verifying
f(X ) ⊆ Sy or, equivalently, verifying that

sup
x∈X

{Ji(x) := fi(x)− fi�(x)} < 0, (2)

for all i �= i�, i.e., the score of the class i� must remain the
largest for all input perturbations.

One way to verify (2) is by falsification, i.e., searching for
an x that violates (2) by, for example, performing projected
gradient method [19],

x ← ProjX (x+ η∇Ji(x)).

Since J is non-convex, we can only hope to find a local max-
imum. If this local solution does not falsify the specification,
then we do not have a guarantee on the satisfaction of the
specification. Therefore, we must either solve (2) globally
or compute an upper bound J̄�

i on its optimal value. Then
the local robustness property is verified when J̄�

i ≤ 0 for
all i �= i�. In §V-A we will show how we can tackle this
problem using semidefinite programming.

D. Robustness Certification via Smoothness

Defining an appropriate notion of robustness for neural
networks is still an open question. Among several measures
of robustness is the Lipschitz constant of neural networks,
which by definition quantifies the sensitivity of the output
of the neural network to input perturbations. Formally, a
function f : Rnx → Rnf is said to be Lipschitz continuous
on X ⊆ Rnx if there exists a non-negative constant Lf ≥ 0
such that

‖f(x)− f(x̃)‖ ≤ Lf‖x− x̃‖ for all x, x̃ ∈ X . (3)

The smallest such Lf is called the (local) Lipschitz constant
of f . When f is characterized by a neural network, tight
bounds on its Lipschitz constant can be extremely useful
in a variety of applications, such as robustness certification
of classifiers [20], stability analysis of deep reinforcement
learning controllers [21] and derivation of generalization
bounds [22]. In these applications and many others, it is
essential to have tight bounds on the Lipschitz constant of
the neural network. Therefore, this problem has received
significant attention recently [5], [20], [22]–[33].

Fig. 2: Using the Lipschitz constant to certify local robust-
ness for a classifier.

To see the utility of Lipschitz constant in robustness
certification of classifiers, consider the classification example
of §II-C. Suppose that x� is an instance that is classi-
fied correctly by the neural network f with label C(x�).
The adversarial robustness of f can be quantified through
the adversarial perturbation of minimum norm that is able
to change the assigned class label of the point x�, i.e.,
ε�(x�) = {infε ‖ε‖2 s.t. C(x� + ε) �= C(x�)} [34], [35].
One technique to identify ε�(x�) is to first compute the
largest ball in the output space centered at f(x�) that
maintains the same classification. The radius of this ball
is δ = mini�=i∗

1√
2

∣∣(ei∗ − ei)
�f(x�)

∣∣. Using the Lipschitz
constant, it is possible to project this ball back into the
input space. This provides a lower bound on the adversarial
perturbation ε�(x) ≥ δ/Lf . See Fig. 2 for an illustration
of the concept. In §V-D, we will show how we can find
guaranteed upper bounds on the Lipschitz constant of neural
networks using semidefinite programming.

E. Certified Robustness for Deep Reinforcement Learning

Another domain where evaluating robustness would be
useful is robust deep reinforcement learning (RL). In one
formulation, [36] assumes that a state-action value function,
Q : S × A → R was learned ahead of time and stored in a
deep neural network (e.g., using the DQN algorithm [37]).
Then during execution, at each time step the agent receives a
perturbed observation, sadv, which is assumed to lie within
an ε-ball of the true state, s�, ‖sadv − s�‖ ≤ ε. To select
an action robustly, rather than choosing the action that
maximizes the value function for the observed state (i.e.,
a = argmaxa∈A Q(sadv, a)), the robust agent chooses the
action with the highest worst-case value,

a = argmax
a∈A

min
s∈B(sadv,ε)

Q(s, a),

where B represents the ε-ball. The inner minimization is an
instance of the robustness analysis problems from above, as
it requires minimizing the output of a NN given an input set.
[36] computes a lower bound using Fast-Lin [38] but a lower
bound could also be computed with SDP or other methods.
Experiments in [36] suggest that bringing formal robustness
analysis into reinforcement learning can recover much of the
performance lost due to sensor noise or adversarial attacks.

F. Stability Analysis of Neural Network-Controlled Systems

In this subsection as well as the next one, we consider
neural networks in feedback loops. Specifically, we consider
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Fig. 3: An illustration of closed-loop reachability with the
initial set X0, the t-step forward reachable set Xt, and its
over-approximation X̄t.

the feedback interconnection of a linear time-invariant (LTI)
system and a neural network in discrete time.

xt+1 = fcl(xt) = Axt +Bf(xt). (4)

Within this setup, the neural network can represent a con-
troller that, for example, results from a reinforcement learn-
ing algorithm or is trained to approximate a computationally
more expensive model predictive controller (MPC). In this
case, we would like to verify various properties such as
constraint satisfaction, stability, or safety. This problem has
been addressed recently by several papers [3], [7], [39]. A
useful property to verify is local stability of the equilibrium
and to compute a positive invariant set. A positive invariant
set is an ultimate safety certification for dynamical systems
since it contains initial states whose trajectories will stay in
the set forever and never violate the system constraints.

Definition 2 (Positive Invariant Set) Consider the dynam-
ical system xk+1 = fcl(xk). A set O ⊆ Rnx of states is a
positively invariant set with respect to fcl, if x0 ∈ X implies
xk ∈ O for all k ≥ 0.

Verifying whether a candidate set O is positively invariant
amounts to verifying that fcl(O) ⊆ O.. In §V-B we will
describe a method based on Lyapunov functions and semidef-
inite programming to compute a positively invariant set for
(4).

G. Safety Verification of Neural Network-Controlled Systems

Safety verification or reachability analysis aims to show
that starting from some initial conditions, a dynamical system
cannot evolve to some unsafe region in the state space. For
the closed-loop system (4), we denote by Xt the forward
reachable set (FRS) at time t ≥ 0 from a given set of initial
conditions X0 ⊂ Rnx , which is defined by the following
recursion

Xt+1 := fcl(Xt),

We are interested in verifying the finite-time reach-avoid
properties of the closed-loop system (4). More specifically,
given a goal set G ⊆ Rnx and a sequence of avoid sets
At ⊆ Rnx , we would like to test if all initial states x0 ∈ X0

of the closed-loop system (4) can reach G in a finite time
horizon N ≥ 0, while avoiding At for all t = 0, · · · , N .
This is equivalent to verify if

XN ⊆ G (5a)
Xt ∩ At = ∅ ∀t = 0, · · · , N (5b)

hold true for (4). See Fig. 3 for an illustration. There exist
efficient methods [40] and software implementations [41]
for testing the set inclusion (5a) and the set intersection
(5b). However, computing exact reachable sets for the
nonlinear closed-loop system (4) is, in general, computa-
tionally intractable. Therefore, we resort to finding outer-
approximations of the closed-loop reachable sets, X̄t ⊇ Xt.
To obtain useful certificates, our goal is to compute the
tightest outer-approximations of the t-step reachable sets.
In §V-C we will show how we can achieve this task using
semidefinite programming.

III. AN INTRODUCTION TO QUADRATIC CONSTRAINTS

Quadratic constraints have a rich history in the robust
control literature and have been used as a tool to asbtract
nonlinearities, time variations, and uncertain parameters by
the constraints they impose on their inputs and outputs. More
recently, quadratic constraints have been used and adapted to
analyze neural networks [3]–[6], [39], [42]. In this section,
we provide an overview of quadratic constraints and their
geometric interpretation in describing sets and functions. In
§IV we will make use of these QCs to abstract the map of
neural networks.

A. Set Description via Quadratic Constraints

We begin by describing sets using quadratic constraints.

Definition 3 Let X ⊂ Rnx be a nonempty set. Suppose PX
is a set of symmetric indefinite matrices P such that

[
x
1

]�
P

[
x
1

]
≥ 0 for all x ∈ X . (6)

We then say that X satisfies the QC defined by PX .

Note that by definition, PX is a convex cone, i.e., if P1, P2 ∈
PX then θ1P1+θ2P2 ∈ PX for all nonnegative scalars θ1, θ2.
Furthermore, we can write

X ⊆
⋂

P∈PX

{
x ∈ Rnx :

[
x
1

]�
P

[
x
1

]
≥ 0

}
.

In other words, the set X is over approximated by the
intersection of a possibly infinite number of sets defined by
quadratic inequalities. Finally, we note that (6) is trivial for
positive definite P and hence, we omit it from consideration.

A useful concept for describing sets via QCs is a sector.
Formally, we define a sector as a set defined by exclusive-
disjunction of two affine inequalities,

S := {x ∈ Rnx | (a�i x− bi)(a
�
j x− bj) ≤ 0}. (7)
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a 1 x = b 1

a
2 x

=
b

2

a 3
x =

b 3

a 1 x = b 1

a
2 x

=
b

2

a 1

a 2

a 3

( a 1 x � b 1 ) ( a 2 x � b 2 ) � 0

(a 1 x � b 1 ) ( a 3 x � b 3 ) � 0

(a 2 x � b 2 ) ( a 3 x � b 3 ) � 0

Fi g. 4:  D es cri bi n g a p ol yt o p e b y i nt ers e cti n g t hr e e s e ct ors.
T h e s e ct ors ar e f or m e d b y t h e h y p er- pl a n es t h at d e fi n e t h e
p ol yt o p e.

Usi n g t his d e fi niti o n,  w e c a n d es cri b e s e v er al us ef ul g e-
o m etri es s u c h as p ol yt o p es or e v e n n o n- c o n v e x g e o m etri es
b y i nt ers e cti n g diff er e nt s e ct ors.  We h a v e ill ustr at e d t his i d e a
i n Fi g. 4 f or a t w o- di m e nsi o n al p ol yt o p e.

B.  F u n cti o n  D es cri pti o n vi a  Q u a dr ati c  C o nstr ai nts

T o d es cri b e f u n cti o ns  wit h  Q Cs,  w e si m pl y d es cri b e t h eir
s et r e pr es e nt ati o n, i. e., t h eir gr a p h. S p e ci fi c all y, c o nsi d er a
n o nli n e ar f u n cti o n φ : R n → R m m a p pi n g X ⊂ R n t o Y ⊂
R m .  T h e gr a p h of φ is a s u bs et of X  × Y d e fi n e d as G (φ ) =
{ (x,  φ (x )) | x ∈  X } .  We t h e n a p pl y  D e fi niti o n 3 t o t h e s et
G (φ ),  w hi c h l e a ds t o t h e f oll o wi n g d e fi niti o n.

D e fi niti o n 4 ( Q C f o r f u n cti o ns) We s a y φ : X  → Y s atis-
fi es t h e  Q C d e fi n e d b y Q φ ⊂ S 2 n + 1 if f or a n y Q ∈ Q φ w e
h a v e




x

φ (x )
1



 Q




x

φ (x )
1



 ≥ 0 f or all x ∈ X , ( 8)

1)  N o n- S m o ot h  A cti v ati o n  F u n cti o ns: We c o nsi d er t h e
R e L U f u n cti o n ϕ (x )  =  m a x( 0 , x) o v er t h e i nt er v al [x , x̄ ].
We first c o nsi d er t h e c as e x ≤ 0 ≤ x̄ , i. e.,  w h e n it is n ot cl e ar
if t h e f u n cti o n is a cti v e or n ot. I n t his c as e,  w e c a n pr e cis el y
d es cri b e t h e gr a p h of ϕ b y i nt ers e cti n g t hr e e s e ct ors:

y (y − x ) = 0 ( 9)

y (y −
x̄

x̄ − x
( x − x )) ≤ 0

(y − x )( y −
x̄

x̄ − x
( x − x )) ≤ 0

We ill ustr at e t h es e s e ct or b o u n ds g e o m etri c all y i n Fi g. 5.
B y  m ulti pl yi n g t h e a b o v e i n e q u aliti es b y t h e  m ulti pli ers

λ ∈ R , µ ≥ 0 , ν ≥ 0 a n d s u m mi n g t h e m u p,  w e c a n arri v e
at a  Q C of t h e f or m




x
y
1



 Q (λ,  µ, ν )




x
y
1



 ≥ 0 f or all x ≤ 0 ≤ x̄,

w h er e Q is li n e ar i n its ar g u m e nts.  N ot e t h at  w e c o ul d h a v e
alt er n ati v el y d es cri b e d t h e gr a p h of ϕ usi n g t h e f oll o wi n g
f o ur i n e q u aliti es

y (y − x ) = 0 y ≥ 0 y ≥ x (x − x )( x − x̄ ) ≤ 0 .

N e v ert h el ess, t h e d es cri pti o n i n ( 9) is pr ef er a bl e as ,  wit h o ut
i n c urri n g c o ns er v atis m, it h as f e w er c o nstr ai nts, all of  w hi c h
ar e q u a dr ati c.

We n o w c o nsi d er t h e c as e  w h e n t h e  R e L U f u n cti o n is
a cti v e, i. e,  w h e n x ≥ 0 . F or t his c as e  w e h a v e ϕ (x ) = x
a n d t h er ef or e,  w e c a n d es cri b e its gr a p h b y i nt ers e cti n g t h e
f oll o wi n g t hr e e s e ct ors:

(y − x )( x − x ) = 0 , (y − x )( x − x̄ ) = 0 , (x − x )( x − x̄ ) ≤ 0 .

Fi n all y, f or t h e c as e  w h e n t h e  R e L U f u n cti o n is i n a cti v e, i. e.,
w h e n x̄ ≤ 0 ,  w e c a n d es cri b e t h e gr a p h of ϕ b y

y (x − x ) = 0 , y(x − x̄ ) = 0 , (x − x )( x − x̄ ) ≤ 0 .

2) S m o ot h  A cti v ati o n  F u n cti o ns: We n o w t ur n t o s m o ot h
a cti v ati o n f u n cti o ns. F or si m pli cit y,  w e o nl y c o nsi d er t a n h
f u n cti o n.  L et ϕ (x )  = t a n h( x ) o v er t h e i nt er v al [x , x̄ ].  W h e n
x ≤ 0 ≤ x̄ , t h e n t h e gr a p h of t a n h is c o nt ai n e d i n t h e s e ct or
d es cri b e d b y

S : = { x ∈ R n | ( y − α x )( y − β x ) ≤ 0 } .

w h er e α =  mi n(t a n h( x )/ x , t a n h( x̄ ) / x̄ ) a n d β = 1 ; s e e Fi g.
6. a.  W h e n x · x̄ > 0 , t h e n  w e c a n o v er a p pr o xi m at e t h e gr a p h
of ϕ b y a p ol yt o p e as ill ustr at e d i n Fi g. 6. b.

C. I n cr e m e nt al  Q u a dr ati c  C o nstr ai nts

I n cr e m e nt al  Q u a dr ati c  C o nstr ai nts, or δ Q C f or s h ort, ai m
t o d es cri b e n o nli n e ar f u n cti o ns/ o p er at ors i n cr e m e nt all y  wit h
r es p e ct t o t w o i n p uts.  T y pi c all y, o n e of t h es e p oi nts is fi x e d,
e. g., t h e e q uili bri u m of t h e c o ntr oll e d s yst e m ( 4).  N e v ert h e-
l ess,  w e c o nsi d er t h e  m or e g e n er al c as e  w h er e t h es e t w o
p oi nts  m a y b el o n g t o diff er e nt s u bs ets of R n .  We f or m ali z e
t his i n t h e n e xt d e fi niti o n [ 6].

D e fi niti o n 5 ( L o c al I n c r e m e nt al  Q u a d r ati c  C o nst r ai nt)
L et X , ˜X ⊆ R n b e t w o cl os e d s ets.  We s a y t h e f u n cti o n
φ : R n → R m s atis fi es t h e l o c al i n cr e m e nt al q u a dr ati c
c o nstr ai nt d e fi n e d b y Q o n X × ˜X if f or a n y Q ∈ Q ⊂ S m + n

w e h a v e

x − x̃
φ ( x ) − φ ( x̃ )

Q
x − x̃

φ ( x ) − φ ( x̃ )
≥ 0 ∀ (x, x̃ ) ∈ X × ˜X .

( 1 0)

I n t h e s e q u el,  w e el a b or at e o n c h ar a ct eri zi n g n o nli n e ar
f u n cti o ns vi a δ Q C s. F or si m pli cit y i n e x p ositi o n,  w e c o nsi d er
t h e si m pl er c as e of X = ˜X .  E xt e nsi o ns t o t h e  m or e g e n er al
c as e  w o ul d b e si mil ar.

1) S m o ot h  A cti v ati o n  F u n cti o ns: L et ϕ : R → R b e
c o nti n u o us o n [x , x̄ ] a n d diff er e nti a bl e o n (x , x̄ ) .  Usi n g
t h e  m e a n- v al u e t h e or e m o n t h e i nt er v al [x, x̃ ] ⊆ [x , x̄ ],  w e
h a v e

ϕ (c ) =
ϕ (x ) − ϕ ( x̃ )

x − x̃
f or s o m e c ∈ (x, x̃ ) .

B y d e fi ni n g α = i nf c ∈ ( x ,x̄ ) ϕ ( c ) a n d β = s u p c ∈ ( x ,x̄ ) ϕ ( c ) ,
w e s e e t h at

α ≤
ϕ (x ) − ϕ ( x̃ )

x − x̃
≤ β f or all x, x̃ ∈ [x , x̄ ].

6 3 4 5
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Fig. 5: Describing the ReLU function over an interval [x, x̄] (x ≤ 0 ≤ x̄) by intersecting three sectors.

Fig. 6: Describing the tanh function over an interval [x, x̄];
(a) is for the case (x ≤ 0 ≤ x̄) and (b) is for the case
x̄ ≥ x ≥ 0.

Fig. 7: Local incremental quadratic constraint for ϕ(x) =
tanh(x) on [x, x̄].

These two inequalities can be written equivalently as
[

x− x̃
ϕ(x)− ϕ(x̃)

]� [
−2αβ (α+ β)
(α+ β) −2

] [
x− x̃

ϕ(x)− ϕ(x̃)

]
≥ 0.

See Fig. 7 for an illustration.
2) Non-smooth Activation Functions: Since the ReLU

function is not differentiable, the mean value theorem is not
directly applicable but we can still use the slope restriction
condition to derive incremental quadratic constraints. Specif-
ically, for the ReLU function we can write slope restriction
condition

α ≤ ϕ(x)− ϕ(x̃)

x− x̃
≤ β.

where α = β = 1 when the ReLU is active, α = β = 0
when the ReLU is inactive, and α = 0, β = 1 when the
ReLU is uncertain. See Fig. 8 for an illustration.

D. S-Procedure

The original application of the S-lemma is to decide
whether a quadratic (in)equality is satisfied over a domain.
When this domain is defined by quadratic inequalities, then

the question is when a quadratic inequality is a consequence
of other quadratic inequalities. This idea can be formalized as
follows. Let gi : Rn → R, i = 0, · · · ,m be quadratic of the
form gi(x) =

[
x� 1

]
Pi

[
x� 1

]�
. Then, the implication

gi(x) ≥ 0 i = 1, · · · ,m =⇒ g0(x) ≥ 0.

holds if there exists non-negative τ1, τ2, · · · , τm (called
multipliers) such that the following matrix inequality holds.

m∑
k=1

τkPk � P0 (11)

To see this, we just need to right- and left-multiply both sides
of (11) by the “basis vector”

[
x� 1

]�
and its transpose,

respectively. Notably, when m = 1, this condition is both
necessary and sufficient [43]. Furthermore, (11) is linear in
the multipliers, resulting in a Linear Matrix Inequality (LMI).

IV. NEURAL NETWORK ABSTRACTION WITH
QUADRATIC CONSTRAINTS

Having characterized sets and functions with various forms
of quadratic constraints, in this section, our goal is to abstract
nonlinearities within a neural network with these quadratic
constraints and then invoke the S-procedure to translate them
into end-to-end quadratic constraints for the entire network.
We will then show that how the analysis of these abstracted
networks lends itself to semidefinite programming.

A. Neural Network Model

For the model of the neural network, we consider
an �-layer feed-forward fully-connected neural network
f : Rnx → Rnf described by the following recursive equa-
tions:

xk+1 = φ(W kxk + bk) k = 0, · · · , �− 1 (12)

f(x0) = W �x� + b�.

where x0=x ∈ Rn0(n0=nx) is the input to the network and
W k ∈ Rnk+1×nk , bk ∈ Rnk+1 are the weight matrix and bias
vector of the (k + 1)-th layer. We denote by n =

∑�
k=1 nk

the total number of neurons. The activation layer φ is of the
form

φ(x) := [ϕ(x1) · · ·ϕ(xd)]
�, x ∈ Rd, k = 1, · · · , �− 1,
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Fig. 8: Local incremental quadratic constraint for ϕ(x) = max(0, x) defined on [x, x̄], where � denotes the repeated part of
the vector surrounding the middle matrix.

where ϕ is the activation function of each neuron (ReLU1,
sigmoid, tanh, etc.).

B. Quadratic Constraints for Neural Networks

Consider the neural network model in (12). Suppose
x0 ∈ X 0, where X 0 is a region of interest on which we
wish to analyze the neural network. We denote by X k as
the reachable sets of xk, which are characterized by the
recursions,

X k+1 = φk(W kX k + bk) k = 0, · · · , �− 1.

Furthermore, define x� = [x0� · · ·x��] and

X = {x | (12) holds and x0 ∈ X 0}. (13)

Suppose the input set X 0 satisfies the QC defined by P , i.e.,
for each P ∈ P we have (see Definition 3)

[
x0

1

]�
P

[
x0

1

]
≥ 0 ∀ x ∈ X 0. (14a)

Furthermore, suppose φk satisfies the local QC defined by
Qk on the set W kX k + bk, i.e.,



W kxk + bk

xk+1

1



�

Qk



W kxk + bk

xk+1

1


 ≥ 0 ∀xk ∈ X k.

(14b)

These QCs are coupled together layer by layer. We wish to
use the chain of QCs in (14a) and (14b) to infer a QC for
the end-to-end map f . That is, given a symmetric matrix Qf ,
we would like to verify that




x0

f(x0)
1



�

Qf




x0

f(x0)
1


 ≥ 0, ∀x0 ∈ X 0. (14c)

How can conclude (14c) from (14a) and (14b)? Recalling
§III-D, we need to invoke the S-procedure, after expressing
all the QCs in the same basis. To this end, we define the

1Rectified Linear Unit.

entry selector matrices Ek such that xk = Ekx. We see
that (14a), (14b) and (14c) are equivalent to (15a), (15b) and
(15c), respectively.

[
x
1

]� [
E0 0
0 1

]
P

[
E0 0
0 1

]

︸ ︷︷ ︸
:=Min(P )

[
x
1

]
≥ 0 ∀ x ∈ X . (15a)

[
x
1

]� 

W kEk bk

Ek+1 0
0 1



�

Qk



W kEk bk

Ek+1 0
0 1




︸ ︷︷ ︸
:=Mk

mid(Q
k)

[
x
1

]
≥ 0 ∀x ∈ X .

(15b)

[
x
1

]� 


E0 0
W �E� b�

0 1



�

Qf




E0 0
W �E� b�

0 1




︸ ︷︷ ︸
:=Mout(Qf )

[
x
1

]
≥ 0, ∀x ∈ X .

(15c)

Then, if the following matrix inequality,

Min(P ) +
�−1∑
k=0

Mmid(Q
k) � Mout(Q

f ) (16)

holds for some Qk ∈ Qk k = 0, · · · , � − 1, then the neural
network satisfies the QC in (14c). We note that the multipliers
in the S-procedure (see (11)) are lumped into the matrices
Qk that characterize the QCs for activation layers.

We highlight that the condition in (16) is equivalent to
an LMI feasibility problem since the sets Qk are convex
and the constraint in (16) is linear in all Qk. We can use
this LMI as a constraint of a convex optimization problem
to further optimize some function of the decision variables.
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Specifically, we can define the following SDP,

minimize g(P,Q0, · · · , Q`−1, Qf ) (17)

subject to Min(P ) +
`−1∑
k=0

Mmid(Q
k) �Mout(Q

f )

P ∈ P , Qk ∈ Qk, Qf ∈ Qf

where g(P,Q0, · · · , Q`−1, Qf ) is convex andQf is a convex
subset of Snx+nf+1.

Remark 1 (Pre-activation bounds) To obtain local QCs
for activation functions in (14b), we need to compute bounds
on the pre-activation values, i.e., for each layer k, we must
find `k, uk such that `k ≤ W kxk + bk ≤ uk for all
k. There are a variety of methods for computing the pre-
activation bounds, such as interval arithmetic and the dual-
based relaxation technique of [44].

C. Incremental Quadratic Constraints for Neural Networks

Consider the neural network model in (12). Suppose
x0 ∈ X 0 and x̃0 ∈ X̃ 0. For a given symmetric matrix
Qf ∈ Rnx+nf our goal is to verify that the neural network
satisfies the incremental quadratic constraint

[
x0 − x̃0

f(x0)− f(x̃0)

]>
Qf
[

x0 − x̃0

f(x0)− f(x̃0)

]
≥ 0 (18)

for all (x0, x̃0) ∈ X 0×X̃ 0. We denote by X k and X̃ k as the
reachable sets of xk from X 0 and X̃ 0, respectively, which
are characterized by the recursions,

X k+1 = φk(W kX k + bk) k = 0, · · · , `− 1.

X̃ k+1 = φk(W kX̃ k + bk) k = 0, · · · , `− 1.

Furthermore, define X and X̃ akin to (13). Suppose φk

satisfies the local incremental QC defined by Qk, i.e.,

[
?
]>
Qk
[
W k(xk−x̃k)
xk+1−x̃k+1

]
≥ 0 ∀(xk, x̃k) ∈ X k × X̃ k.

(19)

Similar to §IV-B, we can use the S-procedure after a change
of basis to find an LMI that allows us to conclude the end-
to-end quadratic constraint (18) from layer-wise incremental
quadratic constraints (19). To see this, we first express (18)
and (19) in the same basis,

(x−x̃)>
[
?
]>
Qf
[
E0

W `E`

]

︸ ︷︷ ︸
=Mout(Qf )

(x−x̃) ≥ 0 ∀(x, x̃) ∈ X × X̃

(20)

(x−x̃)>
[
?
]>
Qk
[
W kEk

Ek+1

]

︸ ︷︷ ︸
Mmid(Qk)

(x−x̃) ≥ 0 ∀(x, x̃) ∈ X × X̃

(21)

Using the S-procedure, the neural network satisfies the
incremental QC (18) if the matrix inequality

`−1∑
k=0

Mmid(Q
k) �Mout(Q

f ). (22)

holds for some Qk ∈ Qk k = 0, · · · , ` − 1. We note that
(22) is linear in Qk and Qf .

V. ANALYSIS OF NEURAL NETWORKS VIA SEMIDEFINITE
PROGRAMMING

In this section, we revisit the problems discussed in §II.
Specifically, we show how we can use the LMI condition
(16) and (22) to verify a certain property about the neural
network.

A. Neural Network Verification

We begin with considering the local robustness certifica-
tion task in §II-C. We note that the verification of the property
in (2), amounts to verifying that the neural network satisfies
the quadratic constraints

[
?
]>



0 0 0
0 0 (ei? − ei)
0 (ei? − ei)> 0




︸ ︷︷ ︸
Qf




x
f(x)

1


 ≥ 0 ∀x ∈ X .

for all classes i 6= i?. Therefore, for a classifier with nf
number of classes, we need to solve nf − 1 LMI feasibility
problems of the form (16) to verify local robustness around
a specific point.

Rather than solving nf − 1 distinct LMI feasibility prob-
lems for a specific input data point, an alternative approach
is to verify that the output of the neural network lies inside
the largest ellipsoid inscribed in the safe polytope Sy and
centered at f(x?). We can find such an ellipsoid using
convex optimization [43]. See Fig. 9 for an illustration. Let
us denote such an ellipsoid by E(f(x?), P ). Then verifying
that the output of the neural network is enclosed by the
ellipsoid for all x ∈ X amounts to verifying that (f(x)-
f(x?))>P (f(x)− f(x?)) ≤ 1 for all x ∈ X ,

which is equivalent to the quadratic constraint

[
?
]>



0 0 0
0 −P Pf(x?)
0 f(x?)>P 1− f(x?)>Pf(x?)






x
f(x)

1


 ≥ 0,

B. Stability Analysis of Neural Network-Controlled Systems

In this subsection, we analyze the stability of (4). Suppose
x? is the equilibrium point of (4), which is typically the
origin. To analyze local stability of x? and find a positive
invariant set, we consider the following quadratic Lyapunov
function candidate,

V (x) = (x− x?)>P (x− x?),
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Fig. 9: Verifying f(X ) ⊂ Sy by verifying whether f(X ) ⊂
E(f(x�), P ).

where P ∈ Snx
++ is to be determined, local geometric stability

of the closed-loop system on an open set D (which contains
x�) is implied by the condition

V (Ax+Bf(x)) ≤ ρV (x) ∀x ∈ D, (23)

where ρ ∈ (0, 1) is the convergence rate. This condition can
be equivalently expressed as

[
�
]� [

A�PA−ρP PB
B�P B�PB

] [
x−x�

f(x)−f(x�)

]
≤ 0 ∀x ∈ D.

(24)

If there exists a P ∈ S++ that satisfies (24), then x� is
locally geometrically stable.

We see that (24) is an incremental quadratic constraint for
f . To verify (24) for a fixed P � 0, we can use the LMI in
(22) with Qf defined as the middle matrix in (24). Then if
the LMI is feasible for some Qk ∈ Qk k = 0, · · · , �−1 and
P � 0, then the closed-loop system is geometrically stable
with rate ρ.

When ρ = 1, then the stability condition in (23) will imply
that the largest sublevel set of V contained in D is a positive
invariant set, i.e., the set

O = {x ∈ Rnx | V (x) ≤ c},
where c is the largest positive constant such that O ⊆ D.
To see this, suppose xk ∈ O for some k. Then by (23), we
must have V (xk+1) ≤ c, or equivalently, xk+1 ∈ O.

C. Reachability Analysis of Neural Network-Controlled Sys-
tems

We now revisit the finite-time reach-avoid problem dis-
cussed in §II-G. Specifically, our goal is to recursively
overapproximate the reachable sets from a set of initial
conditions. To illustrate the procedure, consider that X̄t ⊇ Xt

has already been computed by a template polytope of the
form

X̄t = {x ∈ Rnx | Hx ≤ ht},
where H ∈ Rm×n. The goal is to compute X̄t+1 using the
same template polytope

X̄t+1 = {x ∈ Rnx | Hx ≤ ht+1},
such that Xt+1 ⊆ X̄t+1. For this inclusion to hold, we must
have that

H(Axt +Bf(xt)) ≤ ht+1 ∀xt ∈ X̄t.

These m inequalities can be equivalently written as m
quadratic constraints

[
�
]�




0 0 −A�H�ei
0 0 −B�H�ei

−e�i HA −e�i HB 2e�i ht+1






xt

f(xt)
1


 ≥ 0,

for i = 1, · · · ,m, where ei ∈ Rm is the i-th unit vector. For
given ht+1, these quadratic constraints can be verified using
the LMI in (16). To find the smallest inscribing polytope, we
can formulate m SDPs with objective functions e�i ht+1, i =
1, · · · ,m. After solving these SDPs, we will arrive at the
polytope X̄t+1. We can continue this procedure to compute
all the forward reachable sets.

D. Estimation of Lipschitz Constant

In this subsection, we show how we can compute a bound
on the local Lipschitz constant of a neural network over a
region X 0 ⊆ Rnx (for the case of set equality, the bound
will be on the global Lipschitz constant). To begin, note that
Lipschitz continuity of f over X 0 with Lipschitz constant√
ρ is equivalent to the following incremental quadratic

constraint on f ,
[

x0 − x̃0

f(x0)− f(x̃0)

]� [
ρInx

0
0 −Inf

] [
x0 − x̃0

f(x0)− f(x̃0)

]
≥ 0,

(25)

for all x0, x̃0 ∈ X 0. To verify (25) for a fixed ρ > 0, we can
invoke the LMI in (22) with Qf = blkdiag(ρInx

,−Inf
). If

the LMI is feasible, then
√
ρ is a guaranteed upper bound

on the Lipschitz constant. Since this LMI is linear in ρ, the
best upper bound on the (local) Lipschitz constant can be
obtained by minimizing ρ subject to the constraint defined
by the LMI. See [5], [6] for a detailed account of this.

VI. CONCLUSION

The use of quadratic constraints has a rich history in
robust control and has been leveraged as a tool to abstract
nonlinearities, time variations, unmodeled dynamics, and
uncertain parameters by the constraints they impose on their
inputs and outputs. In particulaar, abstracting neural networks
with the quadratic constraints they impose on their inputs and
outputs can be very useful in the analysis of neural network
classifiers and to derive optimization-based algorithms for
certification of stability and robustness of feedback systems
involving neural networks.

In this tutorial paper, we provide a framework based on
quadratic constraints to analyze neural networks. The main
idea is to abstract the nonlinearities of a neural network
(e.g., activation functions) by quadratic constraints. We then
showed that we can analyze the abstracted network via
semidefinite programming.

In principle, there is a trade-off between conservatism, run
time, and memory requirements for solving these convex
programs. Developing numerical algorithms that can span
this trade-off is a future research direction. For instance,
due to the sequential structure of neural networks, there
is an inherent chordal sparsity pattern in these semidefinite
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programs that can be exploited to improve scalability. More-
over, we have only considered fully-connected networks so
far. It would be interesting to extend the results to other
architectures. Finally, incorporating the proposed framework
in training neural networks with desired robustness properties
would be another important future direction.
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