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ABSTRACT: The nickel chalcogenide family contains multiple
phases, each with varying properties that can be applied to an
expansive range of industrially relevant processes. Specifically,
pyrite-type NiS, and NiSe, have been used as electrocatalysts for
oxygen or hydrogen evolution reactions. These pyrites have also
been used in batteries and solar cells due to their optoelectronic
and transport properties. The phase evolution of pyrite NiS, and
polymorphism of NiSe, have briefly been studied in the literature,
but there has been limited work focusing on the phase
transformations within each of these two systems. Using
experiments and calculations, we detail how pyrite NiS, nano-
crystals decompose into hexagonal a-NiS, and how the synthesis of
pyrite NiSe, nanocrystals is affected by the presence of two

Pyrite NiS,

a-NiS (P6,/mmc)
(Pa3) Al

(L =SorSe

polymorphs, a metastable orthorhombic marcasite phase and a more stable cubic pyrite phase. Each reaction can be controlled by
fine-tuning the reaction parameters, including temperature, time, and the precursor identity and concentration. Interestingly, both
NiS, and NiSe, nanopyrites are active catalysts in the selective reduction of nitrobenzene to aniline, in agreement with other catalysts
containing an fcc (sub) lattice. Our results demonstrate a feasible, logical process for synthesizing nanocrystalline pyrites without
common byproducts or impurities. This work can help in solving a major problem suspected in preventing pyrite FeS, and similar
materials from large-scale use: the presence of small amounts of secondary phases and impurities.

B INTRODUCTION

Fool’s gold—cubic FeS,, also known as pyrite—is a readily
available, biocompatible, and Earth-abundant semiconductor
that has generated much interest in photovoltaics." Unfortu-
nately, the low open-circuit voltage of pyrite devices—widely
believed to be caused by surface defects and marcasite
impurities—has limited their application.””* In addition to
iron disulfide, the pyrite structure is adopted by a wide family
of transition metal dichalcogenides, including those of nickel.
Pyrite NiS, (p-NiS,) is a small-band gap semiconductor,” while
the two polymorphs of NiSe,—pyrite (p-NiSe,) and marcasite
(m-NiSe,)—are metallic.*” The specific electronic character of
nickel-based pyrites renders them useful as electrocatalysts for
hydrogen evolution,” "> oxygen evolution,”'*™'* and urea
oxidation®"? reactions. Both g)-NiSZ and p-NiSe, have also
been employed in batteries,"”'® supercapacitors,'”'”'® and
dye-sensitized solar cells.'”*° As with iron, several other nickel-
based binary chalcogenide phases are known—including a-
NiS, Ni;S,, Ni;S,, NigSg, hexagonal NiSe, and Ni;Se,—and
their electronic properties range from semiconducting to
metallic.”' ~*° While multiple studies exist about their electro-
chemical, catalytic, and transport properties,”*™*" it is desirable
to gain a deeper understanding of the transformations that
occur between these different sulfide” " and selenide binary
phases and their polymorphs.”*~**
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The unit cells of three common 1:2 and 1:1 binary nickel
chalcogenides—pyrite NiCh, (Ch = S, Se; Pa3), marcasite
NiSe, (Pmnn), and nickeline a-NiS (P6;/mmc)—are shown in
Figure 1. The nickel centers in all three phases are octahedrally
coordinated. The pyrite structure is similar to the ortho-
rhombic marcasite structure; however, the [NiS4]*~ octahedra
are all corner-sharing in pyrite, whereas they are both corner-
and edge-sharing in marcasite.”>* Importantly, while pyrite
versus marcasite polymorphism is relatively well-studied among
iron dichalcogenides,37_4o less is known for nickel dichalco-
genides.

Synthetically, nickel chalcogenides are most often prepared
by solvothermal, hydrothermal, and sulfurization/selenization
methods.”'>*"** A few synthetic methods employ single-
source precursor decomposition””™* or chemical vapor
deposition.'”*® Solution-phase preparations of pyrite nickel
diselenide particles have been reported."**”** In this work, we
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Figure 1. Unit cells of three common binary nickel chalcogenides: (a)
pyrite (cubic, Pa3), (b) marcasite (orthorhombic, Pmnn), and (c)
nickeline (hexagonal, P6;/mmc). Sample octahedra in blue are (a—c)
corner-sharing, (b,c) edge-sharing, and (c) face-sharing.

use nickel disulfide and diselenide nanocrystals—synthesized
colloidally—to elucidate the effect of different reaction
parameters—precursors, temperature, and time—on the
evolution of nanocrystalline p-NiS, versus a-NiS, as well as
on the evolution of pyrite- versus marcasite-NiSe,. Further-
more, we use computational methods to estimate the total
energies of the two NiSe, polymorphs and use these
calculations to explain our experimental observations. Finally,
we demonstrate that both NiS, and NiSe, pyrites are active in
the catalytic hydrogenation of nitrobenzene, with a selectivity
toward the direct reduction product: aniline. A better
understanding of the synthesis, polymorphism, and utility of
nickel-based pyrites may broaden their appeal in multiple
technological applications.

B RESULTS AND DISCUSSION

Synthesis and Phase Evolution of p-NiS, Nanocryst-
als. Heating a mixture of nickel(II) acetate and sulfur in
oleylamine (oleyINH,) results in the formation of a crystalline
material starting at ca. 100 °C (Scheme 1 and Table 1). X-ray
diffraction (XRD) analysis of solids isolated by centrifugation
from an aliquot of the reaction shows that the main crystalline
product at or above 160 °C is pyrite nickel(II) disulfide
nanocrystals (p-NiS,) (Figures 2a and 3, see below). A second
crystalline phase, made of hexagonal nickel(II) monosulfide
nanocrystals, starts to form at 260 °C.*" Interestingly, only the
high-temperature alpha phase (@-NiS, nickeline) is observed as
opposed to the lower temperature beta phase (f-NiS,
millerite). The a—f transition is reported at 379 + 3 °c,”
and both phases have been synthesized independently.”' >’
However, in our experiments, we only observe a-NiS.

Transmission electron microscopy (TEM) measurements
show that pyrite NiS, nanocrystals aggregate to form some
flower- and rod-like motifs (Figure 4). The average p-NiS,
particle size is 9.2 & 1.6 nm, while the average aggregate size is
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Scheme 1. Solution-Phase Synthesis and Mechanistic
Possibilities for the Phase Evolution of Binary Nickel
Sulfide Nanocrystals®
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OleyINH,,

-NiS
2a P-NISy
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a-NiS

2b

Ni(OAc), e 4H,0 + S amorphous

?(1) a-NiS formation from an intermediate p-NiS, phase. (2) Direct
a-NiS formation from molecular precursors (p-NiS, may decompose
into different products 2a or 2b).

Table 1. Solution-Phase Synthesis of Nickel Chalcogenide
Nanocrystals

precursors (M)

Ni%? Ch¢ T (°C) t (min) XRD products? (nm®)
OAc S 240 10 p-NiS, (9.5)
OAc S 260 1 p-NiS, (10)
OAc S 260 10 60% p-NiS, (13), a-NiS (20)
OAc S 260 60  60% a-NiS (25), p-NiS, (12)
OAc  Se 200 1 78% m-NiSe, (27), p-NiSe, (15)
OAc  Se 260 1 55% m-NiSe,, p-NiSe, (15)
OAc  Se 260 10 75% p-NiSe, (25),

15% m-NiSe,, Se’
OAc  Se 260 60 75% p-NiSe, (61), Se°
OAc  Se (0.5) 260 60 97% p-NiSe, (34), m-NiSe,
OAc  Se (025) 260 60  60% p-NiSe, (27), m-NiSe,
St Se (0.5) 260 60  p-NiSe, (26)
St Se (0.5) 260 10 p-NiSe, (27)
St Se (0.5) 260 1 p-NiSe, (32)
St Se (0.5) 200 60  83% p-NiSe, (24), m-NiSe, (23)
St Se (0.5) 200 10 77% m-NiSe, (33), p-NiSe, (16)

“OAc = Ni(acetate),-4H,0, St = Ni(stearate),. “0.1 M in oleylamine.
1 M unless specified otherwise. % given for main crystalline
product(s), if applicable (sum = 100%). “Single crystalline domain
(Scherrer) size calculated from XRD peak widths (see Methods).

69 + 14 nm—see Supporting Information. Selected area
electron diffraction (SAED) experiments of crystallites within
these clusters accurately correspond to pyrite NiS,. Analysis of
the HRTEM and the corresponding fast Fourier transform
(FFT) images further confirm the pyrite structure.

Repeating the aforementioned synthesis at 260 °C while
varying the reaction time reveals further details about the
relationship between p-NiS, and a-NiS nanophases (Figure
2b). p-NiS, forms rapidly—within 1 min of reaction—but its
XRD reflections gradually decrease as the a-NiS reflections
increase in intensity. After 10 min of reaction, p-NiS, and a-
NiS become ca. 60 and 40% of the crystalline sample,
respectively (Figure 3). This strongly suggests that either the p-
NiS, phase transforms into the @-NiS phase over time (path 1
in Scheme 1) or that leftover (unreacted) precursors slowly
react to form the secondary a-NiS byproduct while p-NiS,
slowly decomposes into an amorphous material (path 2 in
Scheme 1). In support of the first of these mechanistic
hypotheses, powder XRD analysis shows that annealing p-NiS,
nanocrystals at 600 °C results in the formation of phase-pure
a-NiS (Figure 2c).

To learn more about this annealing process, we studied the
transformation of p-NiS, into @-NiS by thermal analysis
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Figure 2. Powder XRD patterns of nickel sulfide nanocrystals
synthesized in oleylamine at different temperatures after 10 min of
reaction (a), reaction times at 260 °C (b), and after solid annealing at
600 °C (c) [0.1 M Ni(acetate),-4H,0, 1 M S, see Scheme 1 and
Methods]. Dashed guidelines for key reflections from nickeline NiS
(ICSD4929313) and pyrite NiS, (ICSD 79670) are included for
clarity.

(Figure S). An exothermic peak in the differential scanning
calorimetry (DSC) curve at 296 °C corresponds to the
decomposition of p-NiS,. This transition begins at ca. 260 °C,
the point at which a-NiS starts to crystallize in solution (see
above). The thermogravimetric analysis (TGA) curve first
levels off at about 74% of the original mass, close to the
theoretical value for the extrusion of one [S] equivalent from
p-NiS, (Scheme 2). A second endothermic peak in the DSC at
450—470 °C is consistent with the evaporation of elemental
sulfur. This causes a change in the slope of the TGA curve due
to additional mass loss as sulfur gas leaves the system. Analysis
of peak widths observed by powder XRD shows single-
crystalline domain (Scherrer) sizes for p-NiS, and a-NiS
nanocrystals before and after annealing of 9.5 and 12 nm,
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(a) 100

©
o
.
b
=
@
N

B O
o o
L

Fraction (%)

N

o
L
—
1=

N
o
L

o e 9@
o © o
[ ]

Scherrer Size (nm
[ ]

0 T T T T T
160 185 210 235 260 0 20 40 60
T(°C) t (min)

Figure 3. Percentage of crystalline products (a) and average Scherrer
size (b) for p-NiS, and a-NiS nanocrystals synthesized in oleylamine
under different conditions [0.1 M Ni(acetate),4H,0, 1 M S, see
Methods]. In all panels, individual data points are from aliquots,
except the last data point in each panel, which was cooled naturally.

Figure 4. Representative TEM (a,b), HR TEM [(c), FFT inset], and
SAED (d) measurements of p-NiS, nanocrystals synthesized from
Ni(acetate),-4H,0 (0.1 M) and S (1 M) in oleylamine at 240 °C for
10 min (see Methods). The (1 1 1) plane is absent in this example,
and although the (0 2 2) plane is difficult to distinguish in HRTEM
due to plane overlap, the FFT confirms its presence.

respectively. Similar thermal studies for pyrite FeS, also show
the decomposition to the sulfur-deficient ;)hase (pyrrhotite,
Fe,_,S) at around the same temperature.”*>”

Using available thermodynamic data, a back-of-the-envelope
calculation reveals that the extrusion of S from p-NiS, is
disfavored by enthalpy (AH°, = +43.5 kJ/mol) but favored by
entropy (AS°, = +13.1 J/mol-K)—that is, both are positive
(>0). Assuming these remain relatively constant, we calculate
that the overall free energy change for the reaction (AG®,) is
positive throughout our solution phase experiments and even
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Figure 5. Thermal analysis of p-NiS, nanocrystals.

Scheme 2. Decomposition of p-NiS,
l—r Evaporation (g)
p-NiS, 2+ Nis + S

|_, Trapping by
oleylNH, (1)

all the way up past the aforementioned solid annealing
temperature of 600 °C—in other words, the reaction remains
endothermic and is not spontaneous (see Supporting
Information, Scheme 2). We reconcile our observations with
these calculations as follows: (1) in solution, the sulfur released
must be undergoing a secondary reaction, driving the overall
decomposition of p-NiS,. A likely culprit is oleylamine, present
in excess, as it is known to form thioamides and other products
upon heating with sulfur (see Supporting Information).’*’
(2) In the solid state, sulfur escapes the system as a vapor (see
above).

Scheme 3. Solution-Phase Synthesis and Mechanistic
Possibilities for the Formation of Nanocrystalline Nickel
Diselenide Polymorphs®

1
OleyINH,,

Ni(O,CR), + Se > m-Nise, — 2P amorphous

a
(O2CR), =
(0,0CHz)4H;0, 1
(O2C-n-C47H35)

p-NiSe,

“(1) p-NiSe, formation from an intermediate m-NiSe, phase. (2)
Direct p-NiSe, formation from molecular precursors (m-NiSe, may
decompose into different products 2a or 2b).

Synthesis and Phase Evolution of NiSe, Nanocrystals.
The reaction of nickel(II) carboxylates with elemental
selenium in oleylamine results in the formation of nanocrystal-
line NiSe, polymorphs (Scheme 3 and Table 1). Powder XRD
analysis of solids isolated after only 1 min of reaction at 260 °C
shows reflections corresponding to the cubic pyrite phase of
NiSe, (Figures 6 and 7). This is initially accompanied by
reflections from a minor byproduct corresponding to the
orthorhombic marcasite polymorph of NiSe,. Longer reaction
times and higher synthetic temperatures result in the
disappearance of the latter marcasite phase, although an excess
of elemental selenium (Se’) becomes apparent in some cases
(see below).
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Figure 6. Powder XRD patterns of nickel diselenide nanocrystals
synthesized in oleylamine at different reaction times with 1 M Se at
260 °C (a), Se precursor concentrations at 260 °C for 1 h (b), and
after solid annealing at 350 °C (c) [0.1 M Ni(acetate),-4H,0O, see
Scheme 3 and Methods]. Dashed guidelines for key reflections from
m-NiSe, (ICSD 5071) and p-NiSe, (ICSD 40330) are included for
clarity. Trigonal Se® (ICSD 9008579).*

Based on these observations, we propose two possible
mechanisms for the formation of NiSe, nanocrystals. In one of
these mechanisms, the precursors first nucleate m-NiSe, seeds,
which then phase transform into p-NiSe, over time (path 1 in
Scheme 3). In support of this possibility, thermal analysis and
powder XRD show that annealing a solid ca. 1:1 mixture of
both polymorphs at or above 350 °C results in the formation
of phase-pure p-NiSe, without a significant loss in the sample
mass (Figures 6¢ and Supporting Information). In a second
mechanism, both p-NiSe, and m-NiSe, concomitantly form
from the precursors (path 2 in Scheme 3), but only the pyrite
phase accumulates over time (see below). In support of both
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Figure 7. Percentage of crystalline products (a) and average Scherrer
size (b) for nickel diselenide nanocrystals synthesized in oleylamine
under different conditions [0.1 M Ni(acetate),-4H,0, 260 °C, see
Scheme 3, Figure 6, and Methods]. Left panel data from aliquots,
except 60 min, which was cooled naturally. Right panel data are all
after natural cooling.

paths 1 and 2, computations show the pyrite phase to be more
stable than the marcasite phase (see below).

To further understand this process, we studied how the
initial concentration of selenium affects the formation of
nanocrystalline NiSe,. For a given set of experimental
conditions, low initial [Se] concentrations produce a mixture
of pyrite- and marcasite-NiSe, (Figure 6b). In contrast, high
initial [Se] concentrations suppress the formation of marcasite;
however, too much selenium can be a nuisance as it is difficult
to remove at the end of the reaction. Using 0.1 M [Ni] and at
260 °C for 1 h, a convenient middle point is about 0.5 M [Se]
(Figures 6b and 7). Because both pyrite- and marcasite-NiSe,
have the same stoichiometry, we hypothesize that the effect of
higher selenium concentrations may be to speed up the rate of
nucleation of p-NiSe, relative to m-NiSe, (path 2 in Scheme
3). Additionally—or alternatively—it is possible that higher
selenium concentrations may speed up the phase trans-
formation from marcasite to pyrite in this system (second
step of path 1 in Scheme 3). Interestingly, support for the latter
of these two hypotheses can be found in the iron pyrite
literature, where higher partial pressures of sulfur—of H,S—
gas facilitated the phase transformation from m-FeS, to p-
FeS, 555559

TEM shows that p-NiSe, nanocrystals prepared from
nickel(II) acetate are significantly aggregated (see Supporting
Information). Using nickel(II) stearate, a precursor with a
longer carboxylate chain, helps provide better control over
particle size and narrower polydispersity (Figure 8). We
hypothesize that the increased steric hindrance afforded by the
larger stearate ligand slows down the kinetics of precursor
decomposition and/or nanocrystal growth. The increased
sterics of surface-bound stearate ligands may also help in
better passivating the nanocrystal, preventing it from
aggregating into larger clusters. Furthermore, we find that
using nickel(II) stearate at 260 °C eliminates any trace of m-
NiSe, or Se’ impurities. A time-dependent experiment at this
temperature shows that the particle size is determined very
early on, reaching between 25 and 30 nm within 1 min from
the start of the reaction (see Supporting Information). In all
cases, HRTEM and FFT analyses confirm the pyrite structure
of the p-NiSe, nanocrystals.
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Figure 8. Representative TEM (a), HR TEM (b), and FFT (inset) of
p-NiSe, nanocrystals synthesized from Ni(stearate), (0.1 M) and Se
(0.5 M) in oleylamine at 260 °C for 60 min (see Methods).

Dichalcogenide Polymorphism from Calculations. To
better understand the phase evolution of the two NiSe,
polymorphs, we performed density functional theory calcu-
lations (Table 2, Figure 9, see Supporting Information). Both
local density approximation (LDA) and Perdew—Burke—
Ernzerhof (PBE) functionals yield total p-NiSe, and m-NiSe,
energies that are separated by less than 35 meV per formula
unit (fu.). (We note that these calculations lack surface energy
differentials or what effect they may have on the bulk free
energies.”’) The pyrite unit cell volume calculated with LDA
(192.997 A%) and PBE (209.683 A?) is, respectively, 9 and 2%
smaller than that reported in the ICSD (212.018 A3).* The
Ni—Se bond distances calculated using LDA and PBE are both
within 4% of those reported for pyrite (2.488 A) and marcasite
(2.43 and 2.45 A) (Table 2). However, the p-NiSe, Se—Se
bond distances of 2.56 A for LDA and 2.53 A for PBE are
longer than those reported of 2.42 A. Critically, LDA predicts
the cubic pyrite phase to be 32.9 meV lower in energy
compared to the orthorhombic marcasite phase, while PBE
predicts the opposite (Figure 9). This discrepancy stems from
the functionals’ different approximations to electronic ex-
change—correlation energy.

To arbitrate the contradiction between LDA and PBE, we
applied the PBEsol functional, which uses a generalized
gradient approximation (GGA) to better describe solids
containing 3d metals.®”* In agreement with LDA, PBEsol
predicts pyrite NiSe, to be more stable than marcasite-NiSe,.
To avoid Pulay stress’>—an artificial isotropic stress that
results from an incomplete basis set—we performed structural
optimization using volume scans. Atomic positions and cell
shapes were optimized at a series of fixed unit cell volumes, and
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Table 2. Assessing NiSe, Polymorphism from Calculations”

Method Pyrite (Pa3) Marcasite (Pmnn)
LDA o ©) 248164A
.
Q Z(Q /
O’O O O \
2.39102 A 2 45051 A2
V (A¥/fu) 4825 50.54
E (eV) -15.8968 -15.8639
PBEsol” © 242067A
Q Z{O \
OO\ O O’\
241311 A 241289 A9
Veq 49.539(3) 51.825(2)
(A¥/fu)
Euotmin Fit- ~14.76114(1) ~14.73492(6)
ted (eV)
Etotmin ~14.76117(3) ~14.73498(5)
VASP
V)

“Total energy calculations using a 20 X 20 X 20 k-point mesh
optimizing cell volume, cell shape, and atomic position. *Values from
minima of volume scans using PBEsol.
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Figure 9. Calculated relative energies (a) and energy-volume curves
[from PBEsol, using Birch—Murnaghan equation of state fitting, (b)]
of pyrite and marcasite polymorphs of NiSe,.

energy—volume (E—V) data were fitted with the Birch—
Murnaghan equation of state.®"%

The minima of these E—V curves pinpoint the equilibrium
volumes (V,q, Table 2) and total energies (Eqom Fitted, Table
2) of the two structure types at zero external pressure (Figure
9b). The predicted unit cell volume for p-NiSe, is 198.16 A’,
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only 6% smaller than the experimental value. To validate this
approach, the total energy at V., was calculated with VASP
(Etotmin VASP, Table 2), and this was virtually equal to E,. s
Fitted using the Birch—Murnaghan equation of state fitting.
Based on its lower E i, pyrite is predicted to be the more
stable phase and marcasite to be metastable, in agreement with
our experiments. We note that the accuracy of exchange
correlation functionals was rigorously investigated for iron
disulfides, but nickel disulfides remained relatively under-
studied.~%*

Nickel Dichalcogenides as Catalysts. The reduction of
nitroarenes is an industrially useful reaction that is often
catalyzed by metallic and related nanoparticles.”” Based on
previous reports on the use of pyrite-type NiS, and NiSe, as
electrocatalysts,”'® we wondered whether these materials
could serve as catalysts for the solution-phase hydrogenation
of nitrobenzene. Recently, we showed that this deceivingly
simple reaction can produce highly divergent results: while
some catalysts yield aniline, others lead to condensation
products such as azoxyarene and azobenzene (see Supporting
Information). An empirical parameter that appears to correlate
with this preference is the presence of a face-centered cubic
(fcc) lattice. Many monometallic and alloyed nanoparticles—
and a nanoparticulate intermetallic (Pd;Pb)—containing an
fcc structure are selective to aniline. In contrast, nanoparticles
of multiple other atomically precise intermetallics containing a
different structure type are selective to azoxyarene and
azobenzene.”’

100 1 r 100
75 1 75 &
S 2
< Z
o o
® 50 - 50 &
g »
Q
38 £
25 4 r25 S
0+ r 0
Control p-NiS, p-NiSe, m/p-
NiSe,

Figure 10. Catalytic reduction of PhNO, in the absence of a catalyst
(control) versus in the presence of nickel dichalcogenide nanoparticles
(50 uM PhNO, in 2 mL of ethanol, 10 mg catalyst, 21 °C, 4 h, see
Methods).

Scheme 4. Catalytic Reduction of Nitrobenzene

NO, . NH,
p-NiCh; cat.
+ 6NaBH, —— >
EtOH, t, 25°C

To probe this possibility, we tested pyrite NiS, and NiSe,
nanocrystals as catalysts for the solution-phase hydrogenation
of nitrobenzene (PhNO,) (Scheme 4, see Methods). Under
ambient conditions, gas chromatography—mass spectroscopy
(GCMS) analysis shows that nitrobenzene is fully reduced
with either catalyst within only 4 h of reaction (Figure 10,
Table 3). Furthermore, both pyrite nanocatalysts show
complete (100%) selectivity for aniline (PhNH,). This result
is in perfect agreement with what we could have predicted
based on our aforementioned observation, as both pyrite
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Table 3. Catalytic Nitrobenzene Reduction with
Nanocrystalline Nickel Dichalcogenides®

catalyst t (h) conv. (%)° aniline sel. (%)
none (control) 4 9 0
p-NiS, 4 100 100
pNiSe, 4 100 100
m/p-NiSe, (1:1) 4 89 99

“50 uM PhNO, in 2 mL of ethanol, 10 mg catalyst, 21 °C (see
Methods). “Max. error + 10%.

materials contain an fcc sublattice of nickel(II) centers, with
dichalcogenides (S, or Se,*”) filling in the octahedral holes
(Figure 1a). Therefore, not only fcc-structured catalysts may
be selective to aniline but also those containing an fcc
sublattice within their structure. The speed, ease, and high
selectivity of these reactions provide a positive contrast with
other reported catalysts and conditions which, in some cases,
result in incomplete conversion or have limited selectivities.”’
Interestingly, when a ca. 1:1 mixture of m- and p-NiSe, is used,
conversion is only 89%, indicating that the presence of
marcasite impurities can be detrimental to catalysis.

B CONCLUSIONS

To summarize, we describe the rich and facile phase evolution
chemistry of pyrite NiS, and NiSe, nanocrystals synthesized
from solution. Upon heating, pyrite NiS, transforms into
hexagonal a-NiS, while marcasite NiSe, transforms into pyrite
NiSe,. Simple thermodynamics calculations show that the
decomposition of p-NiS, into a-NiS is an endergonic,
thermodynamically unfavorable process with a positive AG,°
(>0). Therefore, to explain its decomposition, it is necessary to
think about how the extruded sulfur is being either trapped in
solution—Dby reaction with excess oleylamine solvent—or lost
from the system in the solid state—by evaporation upon
heating,

Additionally, we show that the synthesis of pyrite NiSe,
nanocrystals is often accompanied by a polymorphic marcasite
NiSe, impurity. Calculations using LDA and PBEsol func-
tionals accurately predict pyrite to be the more stable form of
NiSe,. This is consistent with our experimental findings
showing that marcasite transforms into pyrite NiSe, over time.
Interestingly, we find that both pyrite NiS, and NiSe, are active
catalysts in the reduction of nitrobenzene. Both materials
display high selectivity for aniline, in agreement with other
catalysts for this transformation containing an fcc (sub) lattice.
This work provides a mechanistic rationale for the selective
synthesis of pyrite phase nickel dichalcogenides, the energetics
of their decomposition and phase transformations, and their
potential utility in catalysis. We expect this work will be
extended to other stable and metastable transition metal
pyrites in other industrially relevant applications. In particular,
we anticipate that this work might help cure the degradation of
FeS, devices due to the rapid formation of sulfur-deficient
phases or polymorphic byproducts that may be present in the
early stages of synthesis or device fabrication.

B METHODS

Materials. Sulfur (99.5%) was purchased from Fisher Scientific;
nickel(II) acetate tetrahydrate (98%), oleylamine (oleylNH,,
technical grade, 70%), and selenium (100 mesh, 99.99%) from
Aldrich; nickel(II) stearate from STREM; nitrobenzene (99%) from
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Oakwood Chemical; ethanol (EtOH) from Decon Labs; and sodium
borohydride (NaBH,, powder, 98+%) from Acros Organics.

Synthesis. NiS, nanocrystals were synthesized by a slightly
modified literature procedure.”’ In a typical synthesis, nickel(II)
acetate tetrahydrate (1 mmol, 0.2488 g), elemental sulfur (10 mmol,
0.3207 g), and oleylamine (10 mL) were mixed together in a three-
neck flask until the two solids dissolved (~1 h). While stirring, the
mixture was heated to ~90 °C and degassed under dynamic vacuum
for <15 min. The flask was refilled with N, and heated to the desired
time and temperature (see above). NiSe, nanocrystals were
synthesized by mixing together the nickel(II) carboxylate precursor
[0.5 mmol, 0.1244 ¢ Ni(acetate),-4H,0 or 0.3128 g Ni(stearate),],
elemental selenium (1 mmol, 0.0789 g or 2.5 mmol, 0.1974 g), and
oleylamine (10 or S mL) in a three-neck flask. While stirring, the
mixture was heated to ~90 °C and degassed under dynamic vacuum
for 1 h. The flask was refilled with N, and heated to the desired time
and temperature (see above). Purification: The crude solution was
suspended in 5 mL of chloroform in a centrifuge tube. An excess
amount of ethanol was added, and the tube was centrifuged at 4500
rpm for 5 min. After removing the supernatant, the process was
repeated three times. Annealing: NiS, nanocrystals were annealed by
adding 20 mg of the dried powder to an alumina crucible and heating
to 600 °C under Ar flow in a TGA—DSC instrument. NiSe,
nanocrystals were annealed by heating dried powders to 350 °C
under N, flow in a tube furnace for 40 min.

Structural Characterization. Powder XRD patterns were
collected using Cu Ka radiation on a Rigaku Ultima IV (40 kV, 44
mA) diffractometer using a background-less quartz sample holder.
Scherrer analysis was performed with Jade using a k value of 0.9. TEM
and SAED were performed on a FEI Tecnai G2-F20. Size
distributions contain at least 300 particles. Other: TGA and DSC
data were collected using a NETZSCH STA 449 F1 at a rate of 10
°C/min.

Catalysis. Nitrobenzene (0.1 mmol, 10 uL) and ethanol (2 mL)
were added to a S mL vial. The catalyst (10 mg of purified p-NiS, or
p-NiSe, nanocrystals) was subsequently added. Phase-pure p-NiS, was
synthesized at 240 °C for 10 min (see above), phase-pure p-NiSe, was
prepared from Ni(stearate), at 260 °C for 10 min, and a 1:1 mixture
of m/p-NiSe, was prepared from Ni(acetate), at 200 °C for 1 h.
While stirring at 300 rpm, NaBH, (23 mg, 0.6 mmol) was added at
room temperature (21 °C), and stirring was continued for 4 h.
Aliquots (0.5 mL) were filtered using a 0.2 yum PTFE filter. A portion
of the filtered aliquots was consistently diluted and analyzed using
GCMS. Control experiments in the absence of a catalyst show only
residual nitrobenzene reduction over 4 h.

First-Principles Total Energy Calculations. The Vienna Ab
initio Software Package (VASP)>™7° was used to compare the
relative stability between the marcasite- and the pyrite-type structures
for NiSe,. The pseudopotentials generated with the projector
augmented wave method’® were used for both Ni and Se. The
electronic exchange—correlation was treated with local density
approximation (LDA), Perdew—Burke—Ernzerhof and modified
PBE (PBEsol)®"* functionals. The energy cutoff for the plane
wave basis functions was 269.5 eV. The energy convergence criterion
was 1 X 107* eV for the self-consistent electronic iterations. For
structural optimizations, we tried both full structural optimizations
and volume scans. The first Brillouin zones were sampled with
Monkhorst meshes,”” at least 7 X 7 X 7 for the pyrite structure and 11
X 9 X 7 for the marcasite structure in volume scans, and 20 X 20 X 20
for both structures in full structural optimization. In full optimization,
the atomic coordinates, cell volume, and cell shape were all allowed to
relax simultaneously. For volume scans, atomic positions and unit cell
shapes were optimized at a series of fixed unit cell volumes. All
optimizations employ the conjugate gradient algorithm.”® The total
energy versus unit cell volume data from volume scans were fitted with
the Birch—Murnaghan equation of state to determine the equilibrium
volumes and total energy minima.**®®
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