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Safety Verification and Robustness Analysis of
Neural Networks via Quadratic Constraints and
Semidefinite Programming

Mahyar Fazlyab

Abstraci—Certifying the safety or robustness of neural
networks against input uncertainties and adversarial at-
tacks is an emerging challenge in the area of safe machine
learning and control. To provide such a guarantee, one
must be able to bound the output of neural networks when
their input changes within a bounded set. In this article, we
propose a semidefinite programming (SDP) framework to
address this problem for feed-forward neural networks with
general activation functions and input uncertainty sets, Our
main idea is to abstract various properties of activation
functions (e.g., monotonicity, bounded slope, bounded val-
ues, and repetition across layers) with the formalism of
quadratic constraints. We then analyze the safety proper-
ties of the abstracted network via the S-procedure and SDP.
Qur framework spans the tradeoff between conservatism
and computational efficiency and applies to problems be-
yond safety verification. We evaluate the performance of
our approach via numerical problem instances of various
sizes.

Index Terms—Convex optimization, deep neural net-
works, robustness analysis, safety verification, semidefi-
nite programming (SDP).

|, INTRODUCTION

EURAL networks have become increasingly effective at
N many difficult machine-leamning tasks. However, the non-
linear and large-scale nature of neural networks makes them
hard to analyze and, therefore, they are mostly used as black-box
maodels without formal guarantees. In particular, neural networks
are highly vulnerable to attacks, or more generally, uncertainty
in their input. In the context of image classification, for example,
neural networks can be easily deluded into changing their classi-
fication labels by slightly perturbing the input image [1]. Indeed,
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it has been shown that even imperceptible perturbations in the
input of the state-of-the-art neural networks cause natural images
to be misclassified with high probability [2]. Input perturbations
can be either of an adversarial nature [ 3], or they could merely oc-
cur due to compression, resizing, and cropping [4]. These draw-
backs limit the adoption of neural networks in safery—critical
applications such as self-driving vehicles [5], aircraft collision
avoidance procedures [6], speech recognition, and recognition
of voice commands (see [7] for a survey).

Motivated by the serious consequences of the fragility of
neural networks to inpul uncertainties or adversarial attacks,
there has been an increasing effort in developing tools to measure
or improve the robustness of neural networks. Many results focus
on specific adversarial attacks and attempt to harden the network
by, for example, crafting hard-to-classify examples [8]-[11].
Although these methods are scalable and work well in practice,
they still suffer from false negatives. Safety—critical applications
require provable robustness against any bounded variations in
the input data. As a result, many tools have recently been used,
adapted, or developed for this purpose, such as mixed-integer
linear programming (LP} [12]-[15], convex relaxations and du-
ality theory [16]-[18], satisfiability modulo theory (SMT) [19],
dynamical systems [20], [21]. abstract interpretation [22], [23],
interval-based methods [24]-[258]. All these works aim at bound-
ing the worst-case value of a performance measure when their
input is perturbed within a specified range.

Our contribution. In this article, we develop a novel frame-
work based on semidefinite programming (SDP) for safety
verification and robusiness analysis of neural networks against
norm-bounded perturbations in their input. Our main idea is
to abstract nonlinear activation functions of neural networks
by the constraints they impose on the pre- and post-activation
values. In particular, we describe varous properties of acti-
vation functions using quadratic constraints {QCs), such as
bounded slope, bounded values, monotonicity, and repetition
across layers. Using this abstraction, any property (e.g., safety
or robustness) that we can guarantee for the abstracted net-
work will automatically be satisfied by the original network
as well. The quadratic form of these constraints allows us
to formulate the verification problem as an SDP feasibility
problem. Our main tool for developing the SDP is the S-
procedure from robust control [29], which allows us to reason
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about multiple QCs. Our framework has the following notable
features.

1) We use various forms of QCs to abstract any type of
activation function.

2) Our method can capture the cross coupling between
newrons across different layers, thereby reducing conser-
vatism. This feature, which hinges on the assumption that
the same activation function is used throughout the entire
network (repetition across layers), becomes particularly
effective for deep networks.

3) We can control the tradeoft between computational com-
plexity and conservatism by systematically including or
excluding different types of QCs.

In this article, we focus on the neural network verification
problem (formally stated in Section I1-A) but the proposed
tramework (input—output characterization of neural networks
via (JCs) can be adapted to other problems such as sensitiv-
ity analysis of neural networks to input perturbations, output
reachable set estimation, probabilistic verification, bounding the
Lipschitz constant of neural networks, and closed-loop stability
analysis.

A. Related Work

The performance of certification algorithms for neural net-
works can be measured along three axes. The first axis is the
tightness of the certification bounds; the second axis is the
computational complexity, and, the third axis is applicability
across various models (e.g. different activation functions). These
axes conflict. For instance, the conservatism of the verification
algorithm is typically at odds with the computational complexity.
The relative advantage of any of these algorithms is appli-
cation specific. For example, reachability analysis and safery
verification applications call for less conservative algorithms,
whereas in robust training, computationally fast algorithms are
desirable [16], [24].

On the one hand, formal verification techniques such as SMT
solvers [30]-[32], or integer programming approaches [14],[15]
rely on combinatorial optimization to provide tight certification
bounds for piece-wise linear networks, whose complexity scales
exponentially with the size of the network in the worst-case. A
notable work to improve scalability is [15], where the authors
do exact verification of piecewise-linear networks using mixed-
integer programming with an order of magnitude reduction in
computational cost via tight formulations for nonlinearities and
careful preprocessing.

On the other hand, certification algorithms based on continu-
ous optimization are more scalable but less accurate. A notable
work in this category is [16]. in which the authors propose a
LP relaxation of piece-wise linear networks and provide upper
bounds on the worst-case loss using weak duality, The main
advantage of this article is that the proposed algorithm solely
relies on forward- and back-propagation operations on a modi-
fied network, and thus is easily integrable into existing learning
algorithms. In [33], the authors propose an SDP relaxation of
one-layer sigmoid-based neural networks based on bounding the
worst-case loss with a first-order Taylor expansion. The closest

work to the present article is [34], in which the authors propose
a semidefinite relaxation (SDR) for certifying robustness of
piece-wise linear multilayer neural networks. This relaxation
is based on the so-called “lifting.” where the original problem is
embedded in a much larger space. This SDR approach provides
tighter bounds than those of [16] but is less scalable. Finally,
compared to the SDR method of [34], our SDP framework yield
tighter bounds, especially for deep networks, and is not limited o
ReLU networks. Parts of this article, specialized to probabilistic
verification, have appeared in the conference paper [35].

The rest of this article is organized as follows. In Section 11,
we formulate the safety verification problem and present the
assumptions. In Section 11T, we abstract the problem with QCs.
In Section I'V, we state our main resulis. In Section V, we discuss
turther utilities of our framework beyond safety verification.
In Section VI, we provide numerical experiments to evaluale
the performance of our method and compare it with competing
approaches. Finally, in Section V1l concludes this article.

B. Notation and Preliminaries

We denote the set of real numbers by B, the set of nonnegative
real numbers by B, the set of real n-dimensional vectors
by B, the set of m x n-dimensional matrices by BE™*", the
m-dimensional vector of all ones by 1., the m x n-dimensional
zero matrix by Og,.p, and the n-dimensional identity matrix
by I,. We denote by 57, 5%, and 8%, the sets of n-by-n
symmetric, positive semidefinite, and positive definite matrices,
respectively. The p-norm (p > 1) is displayed by || - || : B™ —
B . For A € R™*" the inequality A = 0 is element-wise. For
A £ B", the inequality A - 0 means 4 is posilive semidefinite.
For sets T and .7, we denote their Cartesian product by I x 7.
The indicator function of a set X' is defined as 1v(x) =1 if
re A, and 1x(x) = 0 otherwise. For two matrices 4, B of
the same dimension, we denote their Hadamard product by
Ao B. A function g B" — ] is a-convex (0 < o < o) if
g — (a/2)|| - |2 is convex. Furthermore, g is -smooth (0 <
£ < oo) if it is differentiable and (3/2)]| - |3 — g is convex.
Finally, if g is a-convex and S-smooth, then

o3
o+

1 .
lly — lI3 + aglvely) - V()3

< (Valy) — Vg(x)) (v —x)
for all x,y € B™ [36, Th. 2.1.12].

Il SAFETY VERIFICATION AND ROBUSTHMESS AMALYSIS OF
MEURAL NETWORKS

A. Problem Statement
Consider the nonlinear vector-valued function f: RB™ —
B™ described by a multilayer feed-forward neural network.
Given a set X' < R" of possible inputs {e.g., adversarial ex-
amples), the neural network maps & to an output set )V given
by
Y=f&)={yeR" |y=flz), A} (1)
The desirable properties that we would like to verify can often
be represented by a safety specification set &, in the output
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Fig. 1. ©Quiput set (in blue), the boundary of its overapproximation
{in red), and the hyparplane charactenzing the safe region (in black).
Left: The network is deemed safe since 3 C 8§, Right: The network is
deemed unsafa since ¥ ¢ 5,

space of the neural network. In this context, the network is safe
if the output set lies within the safe region, i.e., if the inclusion
flX) € 8, holds. Alternatively, we can define S, == f1(S,)
as the inverse image of 5, under f. Then, safety corresponds to
the inclusion X' C S;.

Checking the condition } C &, however, requires an exact
computation of the nonconvex set ). which is very difficult.
Instead, our interest is in finding a nonconservative overapprox-
imation ) of Y and verifying the safety properties by checking
the condition ) C &,,. This approach detects all false negatives
but also produces false positives, whose rate depends on the
tightness of the overapproximation (see Fig. 1). The goal of
this article is to solve this problem for a broad class of input
uncerlainties and safety specification sets using SDP.

1) Classification Example: Consider a data (e.g., image)
classification problem with ny classes, where a feed-forward
neural network f: B™= — R™ takes as input a data point =
and returns an n ;-dimensional vector of scores {or logits}—one
for each class. The classification rule is based on assigning »
to the class with the highest score. That is, the class of x is
given by C'(x) = argmax, .;,, . fi(z). To evaluate the local
robustness of the neural network around a correctly classified
point x*, we consider a set X', containing =*, that represents the
set of all possible perturbations of =*. In image classification, a
popular choice are perturbations in the £, norm, ie., X' = {x :
|| — &*||a = €}, where ¢ is the maximum perturbation applied
to each pixel. Then, the classifier is locally robust at == if it
assigns all the perturbed inputs to the same class as «*, i.e., if
Clx) = C(<*) for all z € & For this problem, the safe set is
the polytope S, = {y € B"7 | g+ = y; forall i # %}, where
i* = argmax; ;. fi(r*) is the class of z*.

B. Neural Network Mode/!

For the model of the neural network, we consider an £-layer
feed-forward fully connected neural network f - R™s — R™/
described by the tollowing recursive equations:

ID=I

L = p(WhLE b)) k=0,...,0-1

flz) = Wizt + B (2)
where 2" =x € R™ (ng=mn.) is the input to the network and
Wk g Rreriene  pE = B+ gre the weight matrix and bias
vector of the (k + 1)th layer. We denote by n = 571 _ ny the
total number of neurons. The nonlinear activation function ¢
(ReLU,' sigmoid, tanh, etc.) is applied coordinate-wise to the
preactivation vectors, i.e., it is of the form

P(x) = [ig(z1) -+ plza,)] , T € R™ (3)
where  is the activation function of each neuron. The output
fixz) depends on the specific application we are considering.
For example, in image classification with cross-entropy loss,
Ff(x) represents the logit input to the softmax function: or, in
feedback control, « is the input to the neural network controller
(e.g., tracking error) and f(x) is the control input to the plant.

I1l. PROELEM ABSTRACTION viA QCs

In this section, our goal is to provide an abstraction of the veri-
fication problem described in Section 11-A that can be converted
into a semidefinite program. Our main tool is QCs, which were
first developed in the context of robust control [37] for describing
nonlingar, time-varying, or uncertain components of a system.
We start with the abstraction of sets using QCs.

A. Ilnput Set

We now provide a particular way of representing the input set
A that will prove useful for developing the SDF.

Definition I: Let X — B™= be a nonemply sel. Suppose Py
is the set of all symmetric indefinite matrices P such that

T
i P I
1 1
We then say that A satisfies the QC defined by Py.

Mote that by definition, Py is a convex cone, i.e., if P, Fh €

Py then 6 P + 820% £ Py for all nonnegative scalars £, f;.
Furthermore, we can write

-
Xc () qreRr™: H PH >0
PeF, I I
¥

In other words, we can overapproximate X by the intersection of
a possibly infinite number of sets defined by quadratic inequal-
ities. We will see in Section IV that the matrix P & Py appears
as a decision variable in the SDP, In this way, we can oplimize
the overapproximation of A to minimize the conservatism of the
specific verification problem we want to solve.

Praposition 1. {QC for hyper-rectangle): The hyper-
rectangle X = {& € B™= | £ < & < &} satisfies the QC defined

by
} ()

=0 forallz e X. 4y

(3)

- [ ot riz+a
p‘*‘{‘nlp_ [E£+f] I —2:Tz

Rectified Linear Unit.
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where I' ¢ E"=""= js diagonal and nonnegative. For this set, (5)
holds with equality.

Proaf: See Appendix A.

Our particular focus in this article is on permurbations in the £,
norm, & = {x | ||z — =*||. = €}, which are a particular class
of hyper-rectangles with & = x* — ¢l and ¥ = x* + ¢1. We can
adapt the result of Proposition | to other sets such as polytopes,
zonotopes, and ellipsoids, as outlined below. The derivation of
the corresponding QCs can be found in Appendix B.

1) Polytopes: Let X' = {r e R"= | Hx < h} be a poly-
tope, where H « R™""=_h ¢ B™. Then, X satisfies the QC

defined by
~H'Th
R'Th

H'TH

=+« P|P= ]
P { | [—h TH

where I' € 5™, = 0,['y; = 0. Furthermore, if the set {z ¢

Br= | He > h} is empty, then (5) holds with equality.

2) Zonotopes: A zonotope is an affine transformation of
the unit cube, ¥ = {xr c B |z =, + Ax, e [0,1]7},
where A € R"="" and &, € R"=. Then, any P’ £ Py satisfies

T
A @, A x. T M
P + =0 (8
0 1] 1] 1] l—l;[‘ 0 - ©
for some diagonal and nonnegative I' € ™™,

3) Ellipsoids: Suppose the input set A’ is an ellipsoid de-
fined by X = {re B" | |Ax + b|z < 1}, where A £ "=
and b € B« Then, A" satisfies the QC defined by

-A'A -A"b
—blA 1_b|b‘|.f-5:_"n} {g}

(N

'Px={P|P=;_L

B. Safety Specification Set

As mentioned in the introduction, the safe set can be charac-
terized either in the output space (S,) or in the input space (S;).
In this article, we consider the latter. Specifically, we assume &
can be represented (or inner approximated) by the intersection
of finitely many quadratic inequalities

-
m € T

S = ﬂ ceR™ | |flz)| S |flz)| <0 (10)
=1 1 1

where the S, € 8"= %711 are given. In particular, this charac-
terization includes ellipsoids and polytopes in the outpul space.
For instance, for an output safety specification set described by
the polytope S = ML {y € B™ | ¢/ y — di < 0}, the S;'sare
given by

n 0 0
S=|0 0 o5 t=1,....m.
0 (‘;r —Edi

C. Absiraction of Nonlinearities by QCs

One of the main ditficulties in the analysis of neural networks
is the composition of nonlinear activation functions. To simplify
the analysis, instead of analyzing the network directly, our main
idea is to remove the nonlinear activation functions from the

network but retain the constraints they impose on the pre- and
postactivation signals. Using this abstraction, any property (e.g.,
safety or robustness) that we can guarantee for the “constrained”
network will automatically be satisfied by the original network
as well. In the following, we show how we can encode various
properties of activation functions (e.g., monotonicity, bounded
slope, and bounded values) using QCs. We first provide a formal
definition as follows.

Definition 2. {QC for functions): Let ¢ : B™ — B™ and sup-
pose @y © 5211 is the set of all symmetric indefinite matrices
) such that

& ! x
dlae)| Qlafz)| =0 forallz e X (11}
1 1
where &' C B" is a nonempty set. Then, we say ¢ satisfies the
QC defined by Q; on A"

We remark that our definition of a QC slightly differs from
the one used in robust control [37], by including a constant
in the vector surrounding the matrix ¢}, which allows us to
incorporate affine constraints (e.g., bounded nonlinearities). Tn
view of Definition 1, we can interpret (11) as a QC satisfied by
the graph of ¢, G(¢) := {(x,u) | y = ¢(x), = € X} C R™,
i.e., (}y = Pgig). Therefore, we can write

iIT ! iIT
G)C [ Sy eR™: [y| Q|y| =0
Qedy 1 1

In other words, we overapproximate the graph of ¢ by a quadrat-
ically constrained set.

The derivation of ()Cs is function specific but there are certain
rules and heuristics that can be used for all of them which we
describe as follows.

1) Seclor-Bounded Nonlinearities: Consider the nonlin-
ear function  : B — B with o(0) = (. We say that o is sector-
bounded in the sector [, 7] (o << F < o0) if the following
condition holds for all z = B,%:

(p(x) - ax)(p(z) — Bx) 0. (12)
Geometrically, this inequality means that the function y = ()
lies in the sector formed by the lines y = ax and y = Bz (see
Fig. 2). As an example, the ReL U function belongs to the sector
[0,1] and in fact, lies on its boundary.

For the vector case, let K, Ky £ R™™" be two matrices such
that K> — Ky is symmetric positive semidefinite. We say that
i B™ — RB" is sector-bounded in the sector K, Kq] if the
following condition holds for all = € B [38]:

(¢(x) — Kyx) " (d(x) — Kax) <0 (13)
or, equivalently
| [-K/K:o—KJK, K]+K] 0] [ =
o(x) Ki+K; —2I, 0| |dé(x)| =0.
1 0 0 ol [ 1

YFor the case. where @ = —ac or = +oo, we define the sector bound
inequality as w(w(x) — Bz < 0 and o{ox — @(x)) < 0, respectively.
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wlz) g wlz) gy
'y /
KT
=
—— 5 =1
/
< wirg) = ela) < o < 202 2z <
Ty - I T

Fig. 2. Slope-restricted nonlinearity (left) and a sector-bounded non-
lineanty {right).

The sector condition does not impose any restriction on the slope
of the function. This motivates a more accurate description of
nonlinearities with bounded slope [39].

2) Slope-Restricted Nonlinearities: A nonlinear function
¢ B™ — R" is slope-restricted in the sector [a, ] (o < 3 <
oa), if for any &, o* € R™

(@) —d(z*)—alz—27)) ($(z)—dlz*)—Blz—z*)) < 0.
(14)
For the one-dimensional case (n = 1), {14) states that the chord
connecting any two points on the curve of ¢ has a slope that is
at least a and at most 3
plr) — o(z*)
T —z*
MNote that a slope-restricted nonlinearity with (0} = 0 is also
sector bounded. Furthermore, if ¢ is slope-restricted in [ry, ],
then the function = — #(x + *) — #(z*) belongs to the sector
[cedy. A1) for any «*. Finally, the gradient of an c-convex and
F-smoaoth function is slope-restricted in [« 4].

To connect the results of the previous section to activation
functions in neural networks, we recall the following result from
convex analysis [36].

Lemma 1. ( gradient of convex functions): Consider a function
g : B™ — IR that is a-convex and F-smooth. Then, the gradient
function Vg : B™ — R" is slope-restricted in the sector [a, 4].

MNotably, all commonly used activation functions for deep neu-
ral networks are gradients of convex functions. Therefore, they
belong to the class of slope-restricted nonlinearities, according
to Lemma 1. We have the following result.

Proposition 2: The following statements hold true.

a) The Rel.U function w(x) = max(0, r}), = £ R is slope-
restricted and sector-bounded in [0, 1].

b) The sigmoid function, w{x) =
restricted in [0, 1].

¢) The tanh function, w(r) = tanh(x), r < R is slope-
restricted and sector-bounded in [0, 17.

d) The leaky RelU function, ¢(x) = max(aez,z), tc R
with @ = 0 is slope-restricted and sector-bounded in
[min(a, 1), max(a, 1)].

e) The exponential linear function (ELU), ix)=
max(r, a(e* — 1)), = € R with a > 0 is slope-restricted
and sector-bounded in [0,1].

o = < 4 W,z e R

xR is slope-

1
T+e =1

. , gn T
) The softmax function. ¢(x) = | 'f_ré"* ey E___‘]

= B" is slope-restricted in [0,1 i

In the context of neural networks, our interest is in repeated
nonlinearities of the form ¢(x) = [p(x) -+ wla,)]". Fur-
thermore, the activation values might be bounded from below
or above (e.g., the RelLU function which outputs a nonnegative
value). The sector bound and slope restricted inequalities can
become too conservative as they do not caplure these properties.
In the following, we discuss QCs for these properties.

3) Repeated Nonlinearities: Suppose i : B — R is slope-
restricted in [ex, 8] (e < #) and let ¢(x) = [p(x1) - - wle,)]T
be a vector-valued function constructed by component-wise rep-
etition of . It is not hard to verity that ¢ is also slope-restricted
in [ex, []. Indeed, by summing the slope-restriction conditions

(elz) —p(xy) —alzi— 7)) (p(x:) —p(z]) — Blzi—x)) <0.
over: = 1, ... n, we obtain (14). However, this representation
simply ignores the fact that all the nonlinearities that compose ¢
are the same. By taking advantage of this structure, we can refine
the QC that describes . To be specific, for an input—outpul pair
(z,¢(x)), = € B, we can wrile the inequality

i— 3 ) )plzd) —plxy)—Blei—x;)) 0
(15)
for all distinct ¢, 7 =1,...,n, t # j. This particular QC can
considerably reduce conservatism, especially for deep networks,
as it reasons about the coupling between the neurons throughout
the entire network. By making an analogy to dynamical systems,
we can interpret the neural network as a time-varying discrete-
time dynamical system where the same nonlinearity is repeated
for all “time” indexes k (the layer number). Then, the QC in
(15) couples all the possible neurons. In the following lemma,
we characterize (QCs for repeated nonlinearities.
Lemma 2. (QC for repeated nonlinearities): Suppose @
R — R is slope-restricted in the sector (o, 3]. Then, the vector-

(lxe) —splay) —alz

valued function ¢(x) = [p(xy) ---@(zy)]’ satisfies the QC
] [=2a8T (a+8T 0] [ =
82| |(a+AT 2T 0| |s=)| =0 «6)
1 0 0 1] 1

forall : € B™, where

T= Y Jgle—edle—e), hy =0
l<i=tj<n
and g; € [E™ is the ith unit vector.

Proof: By a conic combination of (%) QCs of the form (15),
we obtain (16). See Appendix C for a detailed proof.

There are several results in the literature about repeated non-
linearities. For instance, in [40] and [41], the authors derive QCs
for repeated and odd nonlinearities (e.g., tanh function).

4) Bounded Nonlinearities: Finally, suppose the nonlinear
function values are bounded, i.e., & < #(x) < @ forallz € B",
Using Proposition 1, ¢(x) satisfies the QC

T

(17)

b 0 0
Bx) 0 20 + &) q:{.:} =0 (18)
1] o {£+¢3)'D 267D
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for all =, where I} = B"™"" is diagonal and nonnegative. We
can write a similar inequality when the preactivation values are
known to be bounded. More generally, if the graph of ¢ is known
to satisfy G(¢) C G. then any QC for G is also a valid QC for ¢.

We observe that the inequalities (15)—(18) are all quadratic in
{,eb(x), 1), and therefore can be encapsulated into QCs of the
form (11). As we show in Section IV, the matrix @@ £ & that
abstracts the nonlinearity ¢ appears as a decision variable in the
SDP.

Although the above rules can be used to guide the search for
valid QCs for activation functions, a less conservative descrip-
tion of activation functions requires a case-by-case treatment
to further exploit the structure of the nonlinearity. In the next
section, we elaborate on QCs for Rel U activation functions.

D, QCs for RelLUl Activation Function

The ReLU function precisely lies on the boundary of the
sector [0,1]. This observation can be used to refine the QC de-
scription of ReLT. Specifically, let y = max(ax, fz), = € R®
be the concatenation of n ReLU activation functions.* Then,
each individual activation function can be described by the
following constraints [34]:

(yi—axe )(yi — Bz ) =0
Bz <

T < Y-

The first constraint is the boundary of the sector [« 4] and the
other constraints simply prune these boundaries o recover the
ReLU function. Furthermore, for any two distinet indices @ # 7,
we can write the constraint (15)

(v —wi —olr; — )y —w — Blz; —x)) =00 (20)
By adding a weighted combination of all these constraints
(nonnegative weights for inequalities), we find that the function
y = max(ax, Jr) satisties

Z{:"i{%_ﬂfﬂ{y{ — Bre)—wilye — Fre) — ey — ooy ) }

=1

+ Z Aijlyj—yi—o(rj—z) )y —yi—Blz; —x5)) <0
£

i =max(oeg, Fy;) = (19)

(21)
for all = € E”. In the following lemma, we provide a full QC
characterization of the ReLU function.

Lemma 3. (Global QC for ReL.U function): The function
() = max(ar, Jr) satisfies the QC

T | i CGhe Gha T
dlz)| @iz Qo2 Qua| |élx)
1 Qls Q33 Quaa) | 1
torall r € B", where
Qu = —2af8(diag(A) + T'), Q12 = (a + §)(diag() +T')
Chs = —fv —an, Qun = —2(diag(r) +T)

Qoua=w+mn Q=0

=0 (22)

IFor ReLU, we have & = Oand § = 1.

v, e R, and T is given by (17).

Proof: See Appendix D.

1) Tightening Relaxations: The QC of Lemma 3 holds
globally for the whole space B™. When restricted to a local
region A, these QCs can be tightened. Specifically, suppose
y = max(x,0) and define T+, T, and I+ as the set of acti-
vations that are known to be always active, always inactive, or
unknown forall z € X T BR", ie.,

Tt ={i|x; = 0forallz € X'}
T ={i|z <0forall r € X}

I*={1,....a}\(ZTTUI). (23)

Then, the function gy = max{oee;, Gx;) belongs to the sec-
tor [, ), o, 3] and |3, 5] for inactive, unknown, and ac-
tive neurons, respectively. Furthermore, since the constraint
i = Hx; holds with equality for active neurons, we can write
wmeRilis I"‘, v; = [ otherwise. Similarly, the constraint
¥y = oy holds with equality for inactive neurons. Therefore,
we can write n; € Rifi € I, 9; = 0 otherwise. Finally, the
chord connecting the inpui—=output pairs of always-active or
always-inactive neurons has slope of « or 3. Equivalently, for
any (4,7} € (Tt =« ITT) U (T = T ), we can write

(y_.f_yi _ cx) (yj_yi —.8) —0.
IJ—I; Ij — Ly

Therefore, in (21), Ay € B for (i,7) € (Tt xIT) (T x
I ) and 4;; = 0 otherwise. The above additional degrees of
freedom on the multipliers can tighten the relaxation incurred
in (21). In the following Lemma, we summarize the above
observations.

Lemma 4. (Local QC for RelU function): Let ¢(x) =
max(cx, fz), # € X ¢ R"and define T, 7 asin (23). Then
¢ satisfies the QC

] G Q2 Qs T
#(z) Qs Qa Qu| |#(x)| =0 (24)
1 Qs @iy Qas 1

torall x € X, where
Qu=—2diag(axe Bo i) 2a8T
tha = diag((o + 8) 0 4) + (e + 8)T
3 = —fv — an, Qyy = —2(diag(d) +T)
Qu=v+mn Qu=0
WithT =37 i jen Aiyles — eg)(es — ;) and
a=[a+(8—allg:(l),...,a+ (8 —a)lg(n)]
B=[B-(B-a)lz (1),...,8— (B —a)lz (n)]
v eB, fori g T
meR, forigl
hiy € By for {i, 5} ¢ (Tt xTH)U(T xI").

Proaf: See Appendix D,
We do not know a priori, which neurons are always ac-
tive or always inactive. However, we can partially find them
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Fig. 3. (Left) The curve of the tanh function overapprodamated on B by

the intersection of three sectors. (Right) The curve of the tanh function
overapproximated on [z, 7] by a polytope.

by computationally cheap presolve steps. Specifically, if =
is known to satisfy x < = < T (bounds on the preactivation
values), then we have I+ = {i |z, =0}, T ={i |5 <0},
and T+ = {i | F;z; < 0}. These element-wise bounds can be
found by, for example, interval bound propagation [42], [43]
or the LP approach of [16]. Indeed, tighter bounds result in a
less conservative description of the Rel.U function outlined in
Lemma 4.

E. Other Activation Functions

Deriving nonconservative (QCs for other activation functions
{other than ReLll) is more complicated as they are not on the
boundary of any sector. However, by bounding these functions
at multiple points by sector bounds of the form (12), we can
obtain a substantially better overapproximation. In Fig. 3, we
illustrate this idea for the tanh function.

A secondary approach is to use the element-wise bounds on
the inputs to the activation functions to use a tighter sector bound
condition in (12). For instance, suppose & € [z, #] © R, Then,
the function () = tanh(x) satisfies the sector condition in
(12), where o and 3 are given by

- tanh(z)/ ifxF >0
| min(tanh(z)/z, tanh(Z)/F) otherwise

tanh(c)/z ifzz =0
8= )
1 otherwise.

Muore generally, suppose the graph of ¢ : [z, ] — B isknown
to satisfy G(y) € G — R2. Then, any QC satisfied by G is also a
valid QC for . We can use this property to build local QCs for
general activation functions provided that we can overapproxi-
male their graph locally. This idea is illustrated in Fig. 3 for the
case of tanh function.

IV, NEURAL NETWORK VERIFICATION Vvia SDP

In the previous section, we developed an abstraction of sets
and nonlinearities using (Cs. In this section, we use this ab-
straction to develop an linear matrix inequality ( LMI) feasibility
problem that can assert whether f(A") €&, (or A €5 =
f (&) )). The crux of our idea in the development of the LMl is
the &-procedure [29], a technigue to reason about multiple QCs,
and is frequently used in robust control and optimization [44],
[45].

A. Single-Layer Neural Neiworks

For the sake of simplicity in the exposition, we start with the
analysis of one-layer neural networks and then exiend the results
to the multilayer case in Section 1V-B. We further assume that
the safe set S, in (10) is specified by a single quadratic form,
i.e., m = 1. We state our main result in the following theorem.

Thearem 1 (SDP for one layer): Consider a one-layer neural
network f: B™ — R"/ described by the equation

flx) = Who(WOx + %) + b’ (25)

Suppose x £ A C R"r, where A’ satisfies the QC defined by
Py, ie, forany P = Py

Il

Let Z = {z |z =W% + b r e X} and suppose ¢ satisfies
the QC defined by @4 on Z, i.e., forany (@ € Q4

=0 foralze &, (26)

¢Ez}] Q [:i:-{z} >0 forallz € 2. 27
1 1

Consider the following matrix inequality:

Jlifln{P] + Ju-mld{Q} + -ﬁ'fuuL[S} =0 (28)
where
1., 0
Mu(Py=10 o0|P Ino 00 (29a)
0 0 1
0 1
wel o o] [wo oo WP
MpaQ)=1| 0 I, 0|Q|0 I, 0| (29)
0 1] [0 0 1]
1, o o] [i,, 0o o
Me(S)= |0 W' o0|S|0 W' b| (200
I I R

and § € §%=+"+1 s a given symmetric matrix. If (28) is
feasible for some P € Py, ) £ Q.. then
T

Flz)| S |f(x)| <OforallzeX.
1 1

Proaf: See Appendix F.

Theorem 1 states that it the matrix inequality (28) is feasi-
ble for some (P, (}) & Py x Qg4, then we can certify that the
network A C S, or f(A) C S, Since Py and Q, are both
convex, (28) is a LMI feasibility problem and, hence, can be
efficiently solved via interior-point method solvers for convex
optimization,

Remark 1 {End-to-end QC for neural network): It follows
from the proof of Theorem 1 that, in view of Definition 2, the
neural network in (25) satisfies the QC defined by (X', Qy),
where

Q.f = {Q_I" | HQ = Qq.: 8.L. -'I"fllli(i{Q:I = -ﬁ'fuuL[QI] } {3[”
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In other words, for any Q)y £ Qf we have

flx)| Qr [f(x)] 20 forallz e A
1 1

B. Multilayer Neural Networks

We now tumn to multilayer neural networks. Assuming that all
the activation functions are the same across the layers (repetition
across layers), we can concatenate all the pre- and postactivation
signals together and form a more compact representation. To
see this, we first introduce x = [«° -~z '|” € R™ ", where
£ = 1 is the number of hidden layers. We further define the
entry selector matrices EF & R™e=(ne+n) guch that =% = E¥x
tor ik =10,..., £ Then, we can write (2) compactly as

r=E"%, Bx = #(Ax+h), flz)=WEx+b (31a)
where
(w® o ... 0 0 &Y
] Wl o... 0 f B!
A — A A ) . . h‘ = .
0 0 Wit g [
0 I, 0 0
B=|" = S (31b)
0 0 Inp, O
0 0 - 0 I

In the following result, we develop the multilayer counterpart of
Theorem 1 for the multilayer neural network in (31).

Thearem 2 (SDP for multiple layers): Consider the multilayer
neural network described by (31). Suppose X' © R"™ satisfies
the QC defined by Py. Define Z2 = {Ax+b |z X} and
suppose ¢ satisfies the QC defined by &4 on 2. Consider the
tollowing LML

Ju-hu[P]+-HJt:LILl(Q}+-HJuUL(S}fn' {32}
where
E o] _[E" o
M (FP) = 0 1 P 0 1 (33a)
A b] [A b]
fu_nﬁ:i{'@j =B 0 Q B 0 {33b)
_U l_ _EI l_
B o] E' 0
My (5) = |WEEE K| 5§ |WEES B (33c)
{0 1 ] 1

and § € 8"l s 4 given symmetric matrix. If (32) is
feasible for some (P, Q) € Py x Q,, then

f{z]] F) [f{z}] =0 forallz e X. (34)
1 1

Proaf: See Appendix G.

Remark 2: For the case that the safe set is characterized by
more than one quadratic inequality, i.e., when m > 1 in (10),
then X' C &; if the following LMTs

Min( B} + Mpia(Qy) + Mo (S;) <04 =1,...,m (35)

hold for some F; € Py and @ £ Q4.

W OPTIMIZATION OVER THE ABSTRACTED NETWORK

In the previous section, we developed an LMI feasibility
problem as a sufficient to verify the safety of the neural network.
We can incorporate this LMI as a constraint of an optimization
problem to solve problems beyond safety verfication. Specifi-
cally, we can define the following SDP:

minimize g(P,Q,S)
subject to  Min(P) + Mupia (@) + Mou(S) = 0

(FLQ. 5 ePyrx@Qy =S (36)
where g( P, (), 5) is a convex function of P,(}, 5, and & is a

convex subset of §"= 751 In the following, we allude to some
utilities of the SDP (36), which we call DeepSDP.

A. Heachable Set Estimation

In Theorem 1, we developed a feasibility problem to assert
whether X' C &, or equivalently, f{&X') C 5,. By parameteriz-
ing &, we can find the best overapproximation of (') by solv-
ing (36). Suppose &, is described by S = {x | ¢ flz) —d =
0} with a given e € B and d € B, By defining

o o0 0
S=0 0 ¢ (37
0 " -2d

the feasibility of (32) for some (P, ) € Py = @, implies
c' f(x) <d forall z € X.Inother words, dis acertified upper
bound on the optimal value of the optimization problem
(38)
Now, if we treat d € B as a decision variable, we can minimize
this bound by solving (36) with g( P, @, 5) = d. This is partic-
ularly useful for overapproximating the reachable set f(X') by
a polyhedron of the form S, = ny{y € R"f | ¢/y —d; < 0},
where ¢, are given and the goal is to find the smallest value of
il;, for each 4, such that f(X) C S,,.

By reparameterizing 5 in (37), we can also compute the best
ellipsoidal overapproximation of f{X'). Specifically, define

0 0 1]
S=1lo A2 Ap,
0 bjA, blb,—1
Then, the inclusion f(X') &, = f(S5;) implies that f(X') is
enclosed by the ellipsoid S, = {y € B™ | || Ay + byl < 1L

Therefore, finding the minimum-volume ellipsoid enclosing
F(X) amounts to the optimization problem

minimize logdet(d, 1y
Su]"jef:t to flfin':‘p] + fu_nﬁ:i (Qj + Muut{"g{ﬁm by” =0
(PQ, Ay, by) € Py x @ B o BT, (30)

maximize ¢’ f(x) subject tox € X.

Authonzed licensed use limited fo: University of Pennsyivania. Downloaded on June 08 2022 at 16:57-18 UTC from IEEE Xplore. Restrictions apply.



FAZLYRE af al: SAFETY VERIFICATION AND ROBUSTNESS ANALYSIS OF NEURAL NETWORKS 9

Note that this problem is not convex in (A, by) due to the
nonatfine dependence of 5 on these variables. However, by using
Schur complements, we can formulate an equivalent convex
program. We skip the details for the sake of space and refer
the reader to [35].

B. Closed-Loop Reachability Analysis

By modifying the matrix 5 in (37), we can use a similar
approach as presented in Section V-A to overapproximate the
reachable sets of closed-loop systems involving neural networks,
Specifically, consider a discrete-time linear time-invariant (LTT)
system driven by a neural network controller

rt = fu(x) := Az + Bf(z), z € X. (40)
Given a set of current states ', the one-step forward reachable
set is AT = fu (). Suppose &, in (10) is defined by &, =
{re R | fu(x) < d}, where

0 0 ATe
S=10 0 BTe
A B —-2d

According to Theorem 2, the feasibility of the LMI (32) for
some (P, () €Py = @y would allow us to conclude X € &,
or equivalently, ¢ fo(x) < d for all - € X. By repeating this
for different pairs (oy,dy) e B™ =< B, 1 =1,...,m, We can
overapproximate the one-step reachable set f (A7) by the poly-
hedron P = {7 e R™ |¢f27 —d; < 0i=1,...,m}.Sim-
ilarly, we can also overapproximate the closed-loop reachable
sets by ellipsoids. In Section VI-C, we use this approach to verify
a model predictive controller approximated by a neural network.

V1. Discussion AND NUMERICAL EXPERIMENTS

In this section, we discuss the numerical aspects of our
approach. For solving the SDP, we used MOSEK [46] with
CVX [47] on a 3-core personal computer with 8 GB of RAM,
For all experiments, we used Rel.1T activation functions and did
interval bound propagation as a presolve step to determine the
element-wise bounds on the activation functions.* We start with
the computational complexity of the proposed SDF.

A Computational Complexity

1) Input Set: The number of decision variables for the input
set depends on the set representation. The quadratically con-
strained sel that overapproximates hyper-rectangles is indexed
by n; decision variables, where n, is the input dimension
(see Proposition 1). Note that for hyper-rectangles, we can
include additional QCs. Indeed. any = satisfying t <z < T
satisfies 2n2 — ny QCs of the form (r;, — z;)(%; — =) = 0,
(i — Z )y — ;) = 0 i # 4, (23— T3)(zy — 35) = 0 # 5.
However, one can precisely characterize a hyper-rectangle with
only ny of these QCs, namely, (c; — z;){z; —xy) = 0. Our
numerical computations reveal that adding the remaining (QCs
would not tighten the relaxation.

4 all eode, data, and experiments for this article are svailable at https:github.
comfmahyarfazlyab/DeepSDPF

by -z g

=

Fig. 4. Sector bound that is not tight (Left) and a sector bound that is
tight (Right).

For polytopes, the maximum number of decision variables is
("}'), where m is the number of hal f-spaces defining the polytope.
However, we can use some heuristics (o remove QCS that are not
“tight.” For instance, for the polytope X = {z | Hx < h}, we
can write () sector bounds of the form (H, x — hi)(H, = —
h;)} = 0. Now, if the intersection of these hyperplanes belongs
to X, then the sector would be tight (see Fig. 4). We can verify
this by checking the feasibility of

Hic—h=Hlx—hy=0 Hlz—h <0, k#i,j.

Finally, for the case of ellipscids, we only have one decision
variable, the parameter g in (9).

2) Activation Functions: For a network with n hidden neu-
rons, if we use all possible QCs, the number of decision variables
will be O(n + n?). If we ignore repeated nonlinearities, we will
arrive at ({n) decision variables. Tn our numerical experiments,
we did not observe any additional conservatism after removing
repeated nonlinearities across the neurons of the same layer.
However, accounting for repeated nonlinearities was sometimes
very effective for the case of multiple layers.

3} Safety Specification Set: The number of decision vari-
ables for the safety specification set depends on how we would
like to bound the output set. For instance, for finding a single
hyperplane, we have only one decision variable. For the case of
ellipsoids, there will be @(nf;} decision variables.

B. Synthetic Examples

1) Number of Hidden Layers: As the first experiment, we
consider finding overapproximations of the reachable set of a
neural network with a varying number of layers, for a given input
set. Specifically, we consider randomly generated neural net-
works with n; = 2 inputs, ny = 2 outputs, and £ = {1,2,3,4}
hidden layers, each having n; = 100 neurons per layer. For
the input set, we consider £, balls with center =* = (1,1) and
radius € = 0.1. We use DeepSDP to find overapproximations of
F(X) in the form of polytopes (see Section V-A). In Fig. 5, we
compare the output set f{A") (using exhaustive search over ')
with two overapproximations: the red polytope is obtained by
solving DeepSDP. The dashed black polytope is obtained by the
SDR. approach of [34]. We observe that the bounds obtained by
DeepSDP are relatively tighter, especially for deeper networks.
In Appendix H, we provide more visualizations.

Authonzed licensed use limited fo: University of Pennsyivania. Downloaded on June 08 2022 at 16:57-18 UTC from IEEE Xplore. Restrictions apply.


https://github.com/mahyarfazlyab/DeepSDP

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, WOL. 67, MOU 1, JANUARY 2022

#b#é#ﬁﬁﬁii

R B e S

30

Fig. 5.

=3 f=d
1600
-
== T
o = = 5oR - = = R
- 1600
- ) i -
-
B an- 1 I I
i N |
sk | I I |
] I 30 1y i
& I
A ' I
I - R -
=1 ] - -
- . =
3 -__r" - -
= - - 1100 -
P
18 1000
180 -140 =120 -108 -4 -3 -2ix} b} o
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Fig. 6. Plots of the oufput set (blue), the polytope oblained from
DeepSDP without repeated nonlinearities (red), and the polytope ob-
tained by DeepSDP after including repeated nonlinearities (black).

2) Repeated Nonlinearities: Asthe second experiment, we
study the effect of including repeated nonlinearities on the
tightness of the bounds. Specifically, we bound the output of a
randomly generated neural network with o, = 2inputs, ny = 2
output, and n; = 10} neurons per layer by a polytope with
6 facets. For the input set we consider £, ball with center
x* =(1,1) and radius ¢ = 0.1. In Fig. 6, we plot the output
set, and it overapproximation by DeepSDP before and after
including repeated nonlinearities. We observe that by including
repeated nonlinearities, the bounds become tighter, especially
for deep networks.

3) Comparison With Other Methods: As the third experi-
ment, we consider the following optimization problem:

fr= c' f(z).

sup
[l - o e

(41)

To evaluate the tightness of our bounds, we compare DeepSDP
with the MILP formulation of [13], the SDR of [34], and the
LP relaxation of [16]. For the problem data, we generated ran-
dom instances of neural networks with n, = 10 inputs, ny =1
output and £ = {1,... 5} hidden layers; Tor each layer size,
we generated 100 random neural networks with their weights

o L] 0 *n ]

I Py gl = 1K " = i
F

18

o

8

. ml  n s mm

Gf 08 1 1F 14 16 18 1] [ ] 1]

Running Time (ser) Rmning Time (sec

Fig. 7. Histograms of the normalized gap between the optimal val-
ues and their comesponding bounds obtaned by DeepSDP (Top). His-
tograms of solve times in seconds {Bottom).

and biases chosen independently from the normal distribution
N(0,1/,/mz). For the input set, we consider r* = 1, and
e = (.2, In Table 1, we report the comparisons of bounds and
running times. The MILP formulation finds the global solution
but the running time grows quickly as the number of neurons
increases. Compared to SDR, the bounds of DeepSDP are
relatively tighter, especially for deeper networks. Finally, the LP
relaxation bounds are considerably looser but the running time
is negligible. In Fig. 7, we plot the histograms of the normalized
gap between the optimal value f* (obtained by MILP) and the
upper bound 5P for layer sizes £ = 1,2.

C. Verification of Approximate Model Predictive
Contral (MPC)

Consider an LTT system

Tpyy = Arg + Bug, s € X, up € U (42}

where r; € B"r is the state at time &, v, © B™v is the control
input, and A, B are matrices of appropriate size. The state and
control input are subject to the box constraints X' = {z |z <
r<zlandld ={u|u = u =< a}.
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TABLE |
AVERAGE WALUES (OVER 100 RUNS) OF DHFFERENT UPPER BOUNDS FOR THE PROBLEM sup.cx f(2) WITH X = ||z — Xl < €, £4 = 1n, AND € = 0.2

Bounds Running Time (Sec)
£ | MILF | DeepSDP | SDR | LI? MILF | DeepSDP | SDR LP
1 Loy 1.12 1.13 1.E1 0,04 (.52 0.55
2 204 2.52 2.74 T.62 25.96 826 4.71
3 - 11.058 12.21 .60 - 34.18 31.20
4 - 47.74 54.15 | 368.65 - TH.O95 94.74
5 - 2158 266.3 | 3004.9 - 164.63 20757

Meoral network f has ne = 10 inputs. ny = 1 output and £ € {1, ..., 5} hidden layers.

Suppose the control policy is parameterized by a multilayer
fully connected feed-forward network f that is trained offline
to approximate a MPC law p* (). The motivation is to reduce
the computational burden of solving an optimization problem
online to determine the MPC control action. The trained neural
network, however, does not necessarily satisty the specifications
of the MPC control law such as state and control constraint
satisfaction. To ensure inpul constraint satisfaction, we project
the neural network output onto 4, resulting in the closed-loop
system

pre(E) flz) = puec(T)

Fig. &
C {left), and its approximation by a neural neteork (right).

Explicit MPC control law for the system describad in Section VI-

Tryp1 = foilzi) := Az + BProj,( flze)). (43)
Note that for input box constraints, i = {u | u < u < a}, we Where
can embed the projection operator as two additional layers with 0 1] A'H'ey
a specific chﬂic‘c of weights anq biases, ]nﬂimd, for an £-layer S, = 0 0 B'HTg| i=1,...,m.
f.we can describe fp(x) = Proj,( f(cp)) viathe (£ + 2)-layer e/HA e/HB —2h

RelU network

1]

With this choice of S;, it is not difficult to show that the feasibility
of the LMIs in (45) implies fu(&) C P, and therefore, (45)

=
finds the smallest P that encloses f.;(£). Then, £ is positively
o — max(W*r* +5%,0) k=0,... -1 invariant if P C £,
L — max(wfxg + Be — w,0) For the numerical experiment, we [irst consider a 2-D system
11 1
I£+2 — max':_l:!'i'l +'ﬁ-—E,D::| _;,'!'4_]:1,'2 |}] 1 1:[."' [] = iy ':46}
]

folz) = —2'? + @ (44)
To validate state constraint satisfaction, we must ensure that
there is a set of initial states £ C X, whose trajectories would
always satisfy the state constraints. One such set is a positive
invariant set. By definition, a set £ is positively invariant with
respect to f, ifand only if xq < £ implies o, € £ forallk = 1.
Equivalently, £ is positively invariant if f.(£) C £ We now
show thal how we can compule a positive invariant set for (43)
using SDP.

To find a positive invariant set for the closed-loop system, we
consider the candidate set £ = {x | ||x]|~ = ¢}. We first over
approximate the one-step reachable set fu(£) by the polylope
P=Jc|Hc<h}, HcE™" " hecR™ (see § V-B). To do
this, we form the following m SDPs:

minimize h;
subject to My (P) + Mupia( Q@) + Mou(5¢) < 0

(PQ.hi) ePex QxR (45)

subject to the state and input constraints =, € X' = {x |
[l = 5} and w £ U = {u | ||l = 1}. We are interested
in stabilizing the system by solving the finite horizon problem
T
minimize Z ||l 13 + u?
=l

(47)

and choosing the control law as pype(x) = uf. For generating
the training data, we compute uppc () at 6284 uniformly chosen
random points from the control invariant set. We then train a
neural network with two inputs, one output, and two hidden
layers with 32 and 16 neurons, respectively using the mean-
squared loss, In Fig. 8, we plot the explicit MPC control law as
well as its approximation by the neural network.

In Fig. 9, we plot the largest invariant set £ that we could find,
which is £ = {x | ||z, = 0.65}. In this figure, we also plot
the output reachable sets for the first four time steps, starting
from the initial set £, as well as their overapproximations by
DeepSDP.

shrpw)e Xl t=0,... T, zp=u
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Fig. @

llustration of the invanant set £ (ght blug), the outpul reachable sets (dark blue) and their overapprogimations (ght red) for the system

described in Section V1-C. To overapproximate the reachable set at each time step ¢, we use the overapproximation of the reachable set computed

by DeepSDI at £ — 1 as the initial set.

VIl. CoMCLUSION

We proposed a SDP framework for robusiness analysis and
safety verification of feed-forward fully connected neural net-
works with general activation functions. Our main idea is to
abstract the nonlinear activation functions by (QCs thal are
known to be satisfied by all possible input—output instances of
the activation functions. We then showed that we can analyze
the abstracted network via SDP. We conclude this article with
several future directions.

First, a notable advantage of the proposed SDP compared to
other convex relaxations is the relative tightness of the bounds. In
particular, coupling all pairs of neurons in the network (repeated
nonlinearities) can considerably reduce conservatism. However,
coupling all neurons is not feasible for even medium-sized net-
works as the number of decision variables would scale quadrat-
ically with the number of neurons. Nevertheless, our numerical
experiments show that most of these pair-wise couplings of
neurons are redundant and do not tighten the bounds. Tt would
be interesting to develop a method that can decide a priori that
coupling which pairs of neurons would tighten the relaxation.
Second, one of the drawbacks of SDPs is their limited scalabiliry
in general. Exploiting the structure of the problem (e.g., sparsity
patterns induced by the network strucrure) to reduce the com-
putational complexity would be an important fumure direction.
Third, we have only considered fully connected networks in this
article. It would be interesting to exiend the results (o other
architectures. Finally, incorporating the proposed framework
in training neural networks with desired robustness properties
would be another important future direction.

APPENDIX
A. Proof of Proposition 1
The inequality x < x < ¥ is equivalent to n; quadratic in-
equalities of the form (z; — ) (T — ) 20 i =1,... 7.
Multiplying both sides of with I'; = 0, summing over i =

I,...,ng, and denoting [' = diag(~1,...,9m, )} yields the
claimed inequality. O

B. QCs for Polytopes, Zonotopes, and Ellipsoids

1) Polytopes: For every vector x satistying Hx < i, we
have (H, = — hi)(H; 2 — h;) = 0, i # j, where H,' is the i-th

row of H. These inequalities imply
S Uy(H/z—h)(Hz—h;) 20

I=ej=m
where I';; =1'j; = 0, i # §, I'y; = 0. The preceding inequality
is equivalent to (7). Now suppose the set {x | Hz = h}isempty.
Then

X ={z|(Hz—h) (Hfz—hy) 20, i # j}.

To show this set equality define X5 as the set on the
right-hand side. We have A" © Ay, To show Ay © A&, sup-
pose T € Xy, implying that either H 'z —h; <0 for all i
or H'z —hy =0 for all i. But the latter cannot happen
gince the set {z | Hr > h} is empty. Therefore, we have
H'xz—hy < 0forall i

2) Zonotopes: By multiplying both sides of (8) by [T 1]
and (1" 1], respectively. and noting that £ = =, + AL we
obtain

{1 B0 L5 i

where the right inequality follows from the fact that A e
[0, 1]™, hence satisfying the QC of Proposition 1.

3) Ellipsoids: Any xe€ X satisfies  p(l — (Ax +
b)"(Ax + b)) = 0for u = 0. The latter inequality is equivalent
to (9). O

C. Proof of Lemma 2
For any distinct pairs (g, w(xy)) and (x5, 0(ay)), 1 <4 <
4 = m, we can write the slope restriction inequality in (14) as

I -2 w+
a+d -2

e Ly — £y = 0.
wlxy) — wlxy) wlz) —elzy)| —

By multiplying both sides by A;; = 0, we obtain

T r _Elﬂ'ﬂEfjj\-[j (lfl' + _ﬂ}EijJ\-” 0 T
qf’l[:!.‘:l II:(I- + ,HJEij;n.j:j _injJ'-ij 0 45{-‘:' = 0
1 0 0 0 1

where F;; = (e; —e;)(e; —e;)" and e; € R™ is the ith unit
vector in B™. Summing over all 1 < i < 7 < n will yield the
desired result,
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0 Proof of Lemma 3

Consider the equivalence in (19) for the ith coordinate of
y = max|aT, Br), T B™
(yi — oz )( — Bxi) =0, yy 2 By,

Multiplying these constraintsby o; € B, € B andn; £ B,
rcspccﬁuely and adding them together, we obtain

Ui = Ty

—2o 8y (o + 8l —Bwy —omg| |y
(e + B)4y —2hy v+ y| =0
=GB — o v+ ] 1

Substituting =; = ] = and y; = ey, where ¢, is the ith unit
vector in B"®, and rearranging terms, we get
T

i I
| @lu|20i=1...n (@8)
1 1
where
—208); (o + Blaiee, (P — angle;
oy = o+ Blhiey —2hqeq (g + 7)€y
(— By — oy ey (v + 1)y ]

Furthermore, since y; = max{or;, Fr;) is slope-restricted in
e, B]. by Lemma 2, we can write

A 20T (a+AT U
vl l@+ar —21" >0, (49)
1 0

Summing (48) overalli = 1, ... nand :addmg the result 1o (49)
would yield (22). O

E. Proofof Lemma 4

Congider the relation y = max{ox, Jx). For active neurons,
i< IT, we can write

(3 — Bxi)(yi — Bxi) =0, ys = By,
Similarly, for inactive neurons, @ & T~ we can wrile

(i — o)y — ;) = 0, g > By, wi = oy
Finally, for unknown neurons, i € 7, we can write

Ui = 6Ty,

(i —ax )y — Fuy) =0, w = By, W = oy,

A weighted combination of the above constraints yields

Z Ay — o (s — B ) F oy — Bue )+ (yy —ary) 2 0

1=1

(50)
where o; =a+(F—a)lz (i), G=8—(F— a)l-(i),
vy e Ry fori @ IT and ;€ By fori & 2-. Furthermore,

since y;
write

- E J'*:J{yj_yi_ﬁ{?fj_if!ﬂ(yj —yt—.H{Ij—It]} = 0.
L i)
J (31)

Adding (50) and (51) and rearranging terms would yield the
desired inequality. O

= max(ear;, A7) is slope-restricted on [a, 5], we can

F. Proof of Theorem 1

Consider the identity x' = ¢(W%° + b°). Using the as-
sumption that ¢ satisfies the quadaratic constraint defined by
Qs on Z, £ x' satisty the QC

DT w0 T w0 5] [0
Al o 5, ol @lo 5, o]l =0
1 1] 1] 1 0 1] 1 1
Mo Q)
(52)

forany Q € Q4 and all £ € X. By assumption X satisfies the
QC defined by Py, implying that for any I? € Py

T T
x” Ip, 0O x”
£l o o P |ﬁ“" 0 f_‘r‘| rl

o o1
Ly | o1 1

=0

(53)

Min(P)
for all ¥ € X. Suppose (28) holds for some (P, Q) € Py x
Qs By left- and right- multiplying both sides of (28) by
(27 z17 1) and [z 21T 1]7, respectively, we obtain
I Iu
! Min( ) |+ |2t My (€2) !
1

20 for all z2 =4 by (53} 20 for all 22X by (52)

[ el T 1_!:(]
+ I1 J.lr.fgut [.S] .'.!;1
1 1
Therefore, lhc last T,crm on the left-hand side must be nonpos-
itive forall z° € X, =! = -:,1.':-{W°J:° + 5%, or, cquwalcnlly

©1" 1 T z°
xt Vl' [} 5 Wt bl xt

=0

=0
1 1
Using the relations z‘] =z and _f W‘z‘ + B!, the above

inequality is the desired inequality i 1u (34). O
G. Proof of Theorem 2

Recall the definition Z = {Ax + b | = € X}, Since ¢ satis-
fies the QC defined by Q4 on Z, for any ) € Q4. we have

. rlA b A b "
H B ol Q|B 0 H:_:nrnranx“ex (54)
0 1 n 1
Mt (23)

By assumption A’ satisfies the QC defined by Py. Using the
relation 1" = E"x, for any P € Py it holds that

AN e

Mia(P)

|ﬂ >0forall 2% € X, (55)
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E oo & a @&

Fig. 10. Effect of the number of hidden neurons on the overapproxi-
mation quality of the SDP for a one-layer neural network with 100 (left),
500 {middle), and 1000 hidden nuerons (nght). The activation function
is Ral,LI. QCs for repeated nonlinearity are not included.

b s = 4 A BN W W
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Fig. 11. Effect of ¢ {the £, norm of the input set) on the overap-
proximation quality of the SDP for ¢ = 0.1 (left), ¢ = 0.4 (middle), and
e = 0.8 (nght). The network architecture is 2-500-2 with ReL activation
functions. QCs for repealed nonlinearity are not included .

Suppose the LMI in (32) holds for some (P, Q) € Py x Q4.
By left- and right- multiplying both sides of (27) by [x' 1] and
[x' 1]", respectively, we obtain

X

T - T
J‘rifi||{P} |}1{ + [}:l J'Jmid{.Q] }:

>0by (55) >0y (54)
- 2T -

+ 1% M) ] <0

Therefore, the last quadraﬁc term must be nonpositive for all
" £ X, from where we can write

Tl E° 0 EY 0] -
' lwege uf| s wert 8| |[*| <0foran<® € x.
0 1 o 1L

Using the relations ¥ = E'x and f(z) = W'E*x + ¥ from
(31), the above inequality can be written as

b
;:D IIJ

fz| S|Ff(z"] <0, foran z° € X.
1 1

H. More Visualizations

InFig. 11}, we show the effect of the number of hidden neurons
on the quality of approximation for a single-layer network, and
in Fig. 11, we change the perturbation size.
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