THE DISCREPANCY OF RANDOM RECTANGULAR MATRICES
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ABSTRACT. A recent approach to the Beck—Fiala conjecture, a fundamental problem in combinatorics, has
been to understand when random integer matrices have constant discrepancy. We give a complete answer to
this question for two natural models: matrices with Bernoulli or Poisson entries. For Poisson matrices, we
further characterize the discrepancy for any rectangular aspect ratio. These results give sharp answers to
questions of Hoberg and Rothvofl (SODA 2019) and Franks and Saks (Random Structures Algorithms 2020).
Our main tool is a conditional second moment method combined with Stein’s method of exchangeable pairs.
While previous approaches are limited to dense matrices, our techniques allow us to work with matrices of
all densities. This may be of independent interest for other sparse random constraint satisfaction problems.
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1. INTRODUCTION

Given a matrix A € R™*" its discrepancy is

disc(A) = ue{glll,rj—l}" | Au|| oo - (1.1)
If A has entries in {0,1}, we can view A as the incidence matrix of a collection of m subsets of [n]. Then
this optimization problem asks to partition [n] into two classes so that the imbalance of each of the m sets is
small. Discrepancy measures how well this partitioning can be done. This problem, a natural generalization
of graph coloring, has been studied widely in combinatorics and computer science, due to its connections to
problems such as integer rounding, set balancing, and metric embeddings [17,40].

The foundational result in the field is Spencer’s celebrated “Six Standard Deviations Suffice” [39], which
states that disc(A) < 64/n. By contrast, if m < n, a typical vector u € {—1,4+1}" has || Aul|c = O(y/nlogn).
Spencer’s result reveals the surprising fact that it is possible to find a vector u for which ||Au||e is much
smaller than this typical value.

Spencer’s theorem is unimprovable in general, but it raises the question of which matrices enjoy better
bounds—specifically, bounds that are independent of the matrix dimensions. Beck and Fiala [13] showed
that if A is the incidence matrix of a t-sparse set-system, i.e. A has binary entries and columns summing
to at most ¢, then disc(A) < 2t — 1, independent of the dimensions of the matrix. They further conjectured
that this bound is improvable to disc(A) = (’)(\/f) This conjecture has resisted significant progress: to
date, the best dimension-independent bound, due to Bukh, is just disc(A4) < 2t — log™ ¢, where log™ is the
iterated logarithm function [14]. If mild dependence on the dimension is allowed, then the best bound is due
to Banaszczyk [8], who showed that disc(A) = O(\/tlog n) Neither approach seems likely to yield a proof
of Beck and Fiala’s conjectured bound.

Since the Beck-Fiala conjecture seems beyond the grasp of current techniques, there has been recent
interest in understanding randomized versions of the problem. A striking finding of this line of work is that
the random setting evinces sharply different behavior in two different regimes: loosely speaking, past results
show that a random binary m X n matrix A has discrepancy ©(y/n) when n < m, but when n is significantly
larger than m, then a dimension-free bound is possible—in fact, disc(A) = 1 with high probability. This is
the smallest possible discrepancy, since any row whose sum is odd must have discrepancy at least 1.
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Prior work has investigated this phenomenon in a variety of different parameter ranges, but understanding
exactly when disc(A) < 1 is achievable has remained an open question. If A is an m x n matrix' with
independent Bernoulli(p) entries, then it is known that disc(A) = O(1) with high probability as long as A
is very wide (n > m?) and relatively dense (p > n_1/2). In the special symmetric case where p = 1/2,
Potukuchi [36] proved that disc(4) <1 as long as n > Cmlogm for a sufficiently large constant, but this is
not known for any other values of p. Taken together, these works suggest the presence of a threshold above
which constant discrepancy is achievable, but they do not give a hint of where this threshold should be.

Our first main result solves this problem by identifying the precise location at which this transition occurs.
Strikingly, the threshold is independent of p, and is valid even for p = p(n) varying with n.

Theorem 1. Let A € {0,1}™*" be a random matriz whose entries are i.i.d. Bernoulli random variables with
parameter p := p(n). There exists a universal constant C > 0 such that if n > Cmlogm, then disc(A) <1
with high probability.

The constant in Theorem 1 can be made explicit: under mild assumptions, it suffices to let C' be any
constant strictly larger than (2log2)~!, which is precisely the threshold at which the expected number
of low-discrepancy vectors becomes large. It is easy to see that this cannot be improved in general; for
example, if p = 1/2 and n = Cmlogm for C' < (2log2)~!, then by Markov’s inequality the probability that
disc(A) = O(1) is exponentially small.

Theorem 1 shows that disc(A) < 1 holds when n > C'mlogm for a sufficiently large constant C irrespective
of the value of p, substantially generalizing Potukuchi’s result [36]. As we discuss in more detail below, the
sparse regime where p = o(1) evinces fundamentally different behavior from the p = 1/2 case, and requires
different techniques. The key challenge is that approximations based on the central limit theorem—which
are valid for dense matrices—become too inaccurate when A is sparse. We therefore need to develop tools
to obtain precise approximations in a regime where the CLT and other classic asymptotic methods break
down.

Establishing Theorem 1 requires a quantitative understanding of how dependent the events {||Az||cc < 1}
and {||Ay|leco < 1} are, for pairs of vectors x,y € {£1}". More precisely, we need an upper-bound on

P[[Aylle <1 A2]loc < 1] = Pll|Ayllo < 1] (1.2)

When A is sufficiently dense, both probabilities in Eq. (1.2) can be individually approximated to sufficient
accuracy via classical tools. However, when A is too sparse, this naive approach no longer succeeds. To
handle this difficulty, we instead directly compare the two probabilities using a version of Stein’s method
called the method of exchangeable pairs [12,18].

Originally developed to prove CLTs [42], Stein’s method has proven to be a powerful general tool for
establishing limit laws for dependent random variables. Informally, to compare a complicated distribution
e on a set X to a target distribution pg, Stein proposed to find an operator Ty, acting on functions from
X — R, which satisfies the requirement that

E[Tof] =0 Vf:X >R,

Then, so long as it can be shown that E, [Ty f] ~ 0 for all f in a set of suitably rich test functions, one can
conclude that the distribution p. is close to po. Though proving E,, [Ty f] ~ 0 by hand can be challenging,
it is often possible to find an operator T, satisfying E,, [T, f] = 0 for all f: X — R, such that ||T.f — Tt f||
is small—in this case, we will have

By [Tof)l = By [Tof] = Bp [Tef]] < ITef = Toflloo = 0,

which is the desired claim. The method of exchangeable pairs gives a simple way of constructing Ty and T,
from reversible Markov chains with stationary measures pg and pi..

To use Stein’s method, we view Eq. (1.2) as an expression measuring how different the law of || Ayl oo
is from the law of ||Ay||e conditioned on {||Az|lcc < 1}. To compare these two measures, we construct
two Markov chains with the measures as stationary distributions, and use the method of exchangeable
pairs to find suitable operators Ty and T,.. By ensuring that the two Markov chains have similar transition
probabilities, we can guarantee that Ty — T is easy to control. Though Stein’s method is well known in the
probability literature, its use in the context of the second moment method appears to be new.

IFor notational simplicity, we restrict to even n in the remainder of our paper.
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Theorem 1 is stated for matrices with Bernoulli entries. In addition to studying this model, we also
introduce a natural extension, about which we can prove more powerful bounds. We formalize these two
models in the following definition.

Definition 1.1 (Bernoulli, Poisson Ensembles). Let A be an m x n random matriz with independent and
identically distributed entries. If A;; is Bernoulli(p), we say A is from the (m,n,p)-Bernoulli ensemble. If
A;; is Poisson(\), we say A is from the (m,n, \)-Poisson ensemble.

By symmetry, we may always assume in the Bernoulli ensemble that p < 1/2. It is useful to view both
ensembles as the adjacency matrices of random bipartite factor graphs, where the columns of A correspond to
the vertices and the rows correspond to the factors. The Bernoulli ensemble corresponds to an Erdés-Rényi
model, which is the one common in the recent discrepancy literature. The Poisson ensemble is a natural
extension in which multi-edges are allowed.

In the Poisson ensemble, we are able to prove a significant generalization of Theorem 1 by characterizing
the behavior of the discrepancy for any rectangular matrix with m = o(n). We first define a convenient set
of candidate solutions.

Definition 1.2. A vector u € {—1,+1}" is balanced if Y ., u; = 0. We write B for the set of balanced
vectors. For a random matriz A and any r > 0, we write Z, for the random variable equal to the number of
u € B for which ||Aulle < 7.

Our second main theorem characterizes the discrepancy of Poisson matrices: a matrix from the Poisson
ensemble has discrepancy at most r so long as E[Z,] is large.

Theorem 2. Let A be drawn from the (m,n,\)-Poisson ensemble. If m = o(n) and logE[Z,] = O(n),
then disc(A) < r + 1 with high probability.

Theorem 2 shows that the prediction based on the annealed entropy log E[Z,] is correct: as soon as low
discrepancy solutions exist in expectation, they exist with high probability. Note that a converse statement
holds by Markov’s inequality: if the expected number of solutions is vanishing, then with high probability
there are no solutions. This theorem captures the transition from constant discrepancy to ©(/n) discrepancy
that occurs as n ranges between m and mlogm. For example, if n > m and nA = w(1), then it is

straightforward to verify that logE[Z,] = O(n) as long as r = 9(2’”/’”\/70\), and Theorem 2 therefore
guarantees that disc(A4) = 0(2*”/ My + 1) for such matrices with high probability. Apart from the

41 term, this is the same discrepancy bound that prior work shows is achievable for Gaussian matrices
with i.i.d. A/(0, \) entries [15]. Theorem 2 therefore implies that the Poisson ensemble has similar qualitative
behavior to a corresponding Gaussian model, even though our proofs reveal that there are significant technical
differences between the two settings.

We also remark that since vVmA = Q (2_"/ my/ n)\), Theorem 2 matches the conjectured Beck—Fiala bound

by analogy, where m is the average column sparsity (see Fig. 1, right). Returning to our original motivation
of understanding when matrices have constant discrepancy, we have as an easy consequence of Theorem 2
an analogue of Theorem 1 for Poisson matrices.

Corollary 1.1. For A drawn from the (m,n,\)-Poisson ensemble with A < poly(n) and n > Cmlogm for
some universal constant C, then disc(A) = 1 with high probability.

The proofs of Theorems 1 and 2 are nonconstructive and leave open the question of whether it is possible
to find a vector u achieving ||Aullcc = 1 in polynomial time. As suggested by Aubin et al. [7], it is possible
to compare our model to a planted version of the discrepancy problem where the matrix A is generated
from the Bernoulli ensemble conditioned on a particular vector u having low discrepancy. Though we lack a
rigorous proof that this planted model is contiguous to our original model, we conjecture that the geometry
of the solution space in the original model is well-captured by its planted counterpart. It can be shown in
this planted model that clusters of low-discrepancy solutions are isolated from each other, which provides
heuristic evidence for the following conjecture, which we view as an attractive question for future work.

Conjecture 1. For A drawn from the (m,n,1/2)-Bernoulli ensemble with n > C'mlogm, there is no efficient
algorithm that finds a constant discrepancy solution with high probability.
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FIGURE 1. Left: a diagram of the state-of-the-art (grey) and our contributions (dark blue)
for the discrepancy of Bernoulli random matrices. In the case of Poisson matrices (with
A = p), we contribute the light blue, as well as everything above the light blue. Above the
red line, disc(A) = 1 with high probability for either ensemble. Above the yellow line is the
“dense” regime. Right: the trade-off between aspect-ratio and discrepancy for the Poisson
ensemble. The solid blue line is the sharp tradeoff for Poisson matrices given in Theorem 2.
The solid grey line is conjectured to be sharp for deterministic Am-sparse matrices (this is
the “Beck-Fiala conjecture”), and is a known upper-bound for random Am-sparse matrices
[11]. Note the vertical axis is log-scaled.

1.1. Previous Work. A number of recent results study different random matrix models for which disc(A4) =
O(1) with high probability. Ezra and Lovett [21] consider a regular model in which a binary matrix A is
chosen uniformly at random conditioned on each column having exactly ¢ ones for some sparsity parameter
t. They show when n > m’, then disc(4) = O(1) with high probability.

Two independent and concurrent works removed this exponential dependence on ¢. Franks and Saks [23]
consider a fairly general class of matrices and show disc(A) < 2 with high probability if n = Q(m3 log? m).
Simultaneously, Hoberg and Rothvof} [26] consider A drawn from the (m,n, p)-Bernoulli Ensemble and give
the improved bound that disc(A) < 1 with high probability if n = Q(m?logm) and mp = Q(logn). Shortly
after, Potukuchi [36] improved this to disc(A) < 1 if n = Q(mlogm) in the special symmetric case of p = 1/2.
Both [23] and [26] used Fourier methods, while [36] used the second moment method. Around the same time
as our paper, Macrury et al. [30] showed disc(A) > Q(27"/™ /np) when m/(np) — 0, for all n = Q(m), via
a first moment computation. This is analogous to our Eq. (1.4), but for a wider parameter range.

Bansal and Meka [11] also improved upon [21], except with focus on the Beck-Fiala bound rather than
constant discrepancy. They prove that, under a mild growth condition on ¢, random m x n binary matrices
with ¢ ones per column have disc(A) < O(\/Z) with high probability. We obtain similar results for Poisson
matrices with average column weight t—See the discussion following Theorem 2 comparing the tight rate
for random Poisson matrices to the Beck-Fiala bound.

Importantly, all previous work on constant discrepancy on the Bernoulli ensemble requires

lim % 0. (1.3)

m—00 1P

We call this choice of parameters the dense regime. There are a priori reasons to expect a non-trivial
phase transition when m/(np) /4 0; as we show in Theorem 3, this threshold is the point above which the
number of optimal solutions to (1.1) no longer concentrates sufficiently well around its expectation. Similar
phenomena appear in the analysis of random graphs, whose behavior is very different in the sparse case.
Our main technical challenge is proving constant-discrepancy results in the regime where (1.3) does not hold.

A separate line of research has focused on the case where A is a random matrix with independent Gaussian
entries [7,16,45], showing that disc(A) =< 2="/™/n when n = Q(m); in particular, that disc(4) = O(1) once
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n > Cmlogm for C' > 21;g2. Discrepancy specialized to the case of iid Gaussian entries and n = ©(m) can
be seen as a symmetrized version of a famous model in statistical physics known as the binary perceptron
model [7,44], the rigorous understanding of which is an area of active research [19]. In independent and
concurrent works, Perkins and Xu [32] and Abbe, Li, and Sly [I] establish the “frozen 1-RSB” geometry of
typical solutions in this setting. Further, [32] shows exponential concentration of the number of solutions,
while [1] gives an explicit description of the asymptotic distribution of the number of solutions as well as
a proof of the “contiguity conjecture” (namely that the planted model and null model are contiguous—see
[1,7] for relevant definitions and discussion).

In the Gaussian case—and more generally, for distributions with sufficiently smooth densities—optimal
bounds on the discrepancy can be achieved by a direct application of the second moment method. However, in
the sparse, discrete ensembles we consider, the situation is considerably more delicate, and this approach fails.
Nevertheless, our results validate the view that, despite being significantly less well behaved than Gaussian
matrices, matrices with Bernoulli or Poisson entries also have small discrepancy as soon as n > Cmlogm.

For square or close-to-square matrices, a variety of efficient algorithms have been discovered matching
Spencer’s and Banaszczyk’s bounds [9, 10,20,31,38]. In the Beck-Fiala setting, Potukuchi [36,37] gives an
efficient algorithm achieving O(v/t) discrepancy for random matrices with ¢-sparse columns for any ¢ := t(n),
as long as m > n. However, these approaches do not appear to extend to the constant-discrepancy regime
when m = o(n). As Hoberg and Rothvof} [26] note, the lack of efficient algorithms for this regime is a common
feature of combinatorial problems for which solutions are shown to exist by probabilistic means [29].

The use of the second-moment method for random constraint satisfaction problems was popularized by
Achlioptas and Moore [2] and Frieze and Wormald [24]. It has since been successfully applied to a diverse
set of problems in theoretical computer science and combinatorics [3—6].

1.2. Heuristics from the first and second moment. Let us first give a heuristic justification for the
fact that constant discrepancy is achievable once n > Cmlogm for C large enough. Denote by B the set of
balanced vectors and let Z = Z; be the number of u € B for which ||Au|lc < 1. If Z > 0, then disc(4) < 1.

Since each of the vectors in B has an equal probability of satisfying this requirement, fix some u € B.
Then,

n
B2 = 3 Plldule < 1= ), )Pll4ull < 1)
ueB n/
The entries of Au are independent, and each is a sum of n independent random variables with variance
p(1 — p), so the local central limit theorem suggests that

3 m
Pl|Aul|co < 1] = | ———=(1+0(1 .
(l14ufl < 1] ( ol >>>
If n > m, we therefore expect that
EZ ~ exp(n log2 — % lognp + o(n)) (1.4)

Solong asn > (1—1—5)%%;2 log m, this quantity is exponentially large. In expectation, therefore, n > C'mlogm
is the right scaling.

Though the annealed entropy log E[Z] predicts a threshold at n =< mlog m, showing that Z is indeed large
with high probability past this threshold requires controlling the fluctuations of Z. The classic approach is the
so-called second-moment method, based on the Paley—Zygmund inequality, which says that a nonnegative
integer-valued random variable is positive with high probability as long as E[Z2] = (1 + o(1))E[Z]? and
E[Z] > 0. There is a slight obstruction to naively applying the second moment method to show that the
discrepancy of a random matrix is at most 1: the second moment is skewed by the fact that conditioning
on (Au); € {—1,0,1} biases the parity of the ith row of A, because there is only one even number in this
set. There are two workarounds: one can ask for (Au); € {—2,—1,1,2} and prove that disc(A) < 2. Or, one
can condition on the event that each row of A has even parity, and ask that Au = 0. We adopt the second
approach and use the following basic construction to extend our result to the unconditioned case.

Lemma 1.1. Let A be from either the Bernoulli or Poisson ensemble, and let A’ be from the same ensemble
conditioned on the sum of the entries in each row being even. There exists a coupling of A and A’ such that

disc(A4) < disc(A") +1 a.s.
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The proof of Lemma 1.1 appears in Appendix B. This conditioning approach was employed by Po-
tukuchi [36] to establish a version of Theorem 1 via the second moment method when p = 1/2. We show
that this argument can be extended to prove constant discrepancy so long as the matrix satisfies the density
requirement (1.3). Moreover, the following theorem shows that, in fact, the density requirement is necessary,
and this application of the second moment method provably fails when the matrix is too sparse. Recall Z,.
is the number of balanced vectors u € {—1,1}" with [|Aule < 7.

Theorem 3 (Dense regime). Let A be drawn from the (m,n,p)-Bernoulli Ensemble. Define P as the event
that each row of A sums to an even number. There exists a universal constant C' > 0 such that for any
n > Cmlogm and np = w(1),

E[Z3|P] 1+ o0(1), m = o(np)
E[Zo|P]?

exp{Q(nﬂp)}, m = Q(np)
Lemma 1.1 immediately yields the following corollary.

Corollary 1.2. Let A be drawn from the (m,n,p)-Bernoulli ensemble with n > Cmlogm and m = o(np).
With high probability, disc(A) = 1.

The constant C' is the same constant that appears in Theorem 1, and this suffices to establish Theorem 1
in the dense regime. However, Theorem 3 also shows that this strategy fails when A is sparse. Nevertheless,
Theorem 1 maintains that the prediction implied by (1.4) is correct even when the second-moment method
fails.

1.3. Our techniques. To prove Theorem 1 in the case where (1.3) does not hold, we employ two strategies.
The failure of the second-moment calculation in Theorem 3 stems from the fact that, when m/np 4 0, the
second moment E[Z?] is too sensitive to the sum of the entries in each row of A when A is sparse. We
therefore carry out the second-moment method conditional on the weights of each row of A. This technique
is common in the literature, and bounding these conditional second-moments still suffices to show that Z > 0
with high probability [28].

However, even after conditioning, bounding the second moment requires significant care. For notational
simplicity, let us ignore the conditioning argument for now and consider the random variable Z = Z; counting
the u € B with [|Au||o < 1, as before. Since the entries of Au are i.i.d., we obtain

E[Z%] = ) P[lAullw <1, | Av]|o < 1]
u,vEB
> (B(Auh] < 1,|(Av)| < 1)

u,vEB

= 3 P[l(Au)] < 1)|(Ao)| < 1™ - Bl|(Av)| < 17,

u,vEB

and likewise,
E[Z? = ) P[(Au)i| < 1™ P[[(Av)| < 1.
u,veB
To show that E[Z?] = (1 + o(1))E[Z]?, we need to show that for a typical pair u,v € B, the events {|(Au);| <
1} and {|(Av)1| < 1} are approximately independent, so that

P[|(Au)| < 1f|(Av)i| < 1]™ ~ Pl|(Au)| < 1™

Proving this fact requires approximations on P[|(Au);| < 1||(Av),| < 1] which are accurate to 1+ o(m™!).
However, calculating P[[(Au):| < 1||(Av)1| < 1] explicitly is infeasible; moreover, the local central limit
theorem and other classical approximation techniques yield estimates which are accurate only up to a mul-

tiplicative factor of 1 + O(nip). When m/np 4 0, these errors are unacceptably large.

Our second strategy bypasses this difficulty by employing Stein’s method. Though this method is well
known in the probability literature for its utility in proving limit theorems, to our knowledge the use of this
technique combined with the second-moment method is novel. To evaluate P[|(Au)i| < 1]|(Av);| < 1]™,
we construct a pair of Markov chains, one of which has stationary distribution given by the law of (Au);
conditioned on the event {|(Av);| < 1}, and the other of which has stationary distribution given by the
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law of (Au); without conditioning. Stein’s method gives a means for comparing these two stationary dis-
tributions by inverting a particular functional equation involving the generators of these two chains, which
allows us to approximate P [|(Au);| < 1H(Av)1| < 1] by a simpler, unconditional probability. The resulting
approximation has much smaller errors—of order 1 + O(%)—and this improvement is crucial to obtaining
accurate bounds when (1.3) fails.

1.4. Notation. The asymptotic notation o(-), O(-), Q(:), and O(-) refers to the m — oo and therefore
n — oo limit. Given a sequence a = a(m) and a nonnegative sequence b = b(m) depending on m, we write

a= O(b) or b=0(a) if |a(m)| < Cb(m) for all m sufficiently large We write a = o(b) if lim,, o |‘;é:))‘ = 0.
Unless otherwise specified, the implicit constants in these expressions are universal. The phrase “with high
probability” means that a sequence of events occurs with probability 1 — o(1) in this asymptotic limit. The
symbols A and V denote min and max respectively. The symbol log denotes the logarithm base e. We define

the binary entropy function H by

1
H(p) plog +(1—p)log T
1.5. Organization of the remainder of the paper. In Section 2, we formalize the version of the second-
moment method that we will employ, and show how to derive Theorem 3. Section 3 introduces Stein’s
method, and gives the proofs of our central approximation results. The appendices contain additional
technical proofs and lemmas.

2. SECOND MOMENT METHOD

The crux of our argument is the second-moment method. Our approach requires two pieces. The first,
standard step consists in applying the second-moment method conditionally to ensure that the second mo-
ment is not dominated by rare events. We use the following variant of the Paley—Zygmund inequality:

Lemma 2.1 (Conditional Paley—Zygmund [28, Theorem 2.1]). Let Z = Z(n) be a sequence of nonnega-
tive, integer-valued random variables, and let W be another random variable on the same probability space.
IfPE[Z | W] =0] = 0 and

E[Z? | W] »

—_—_ 1

EZIWP
then Z > 0 with high probability.

The second step consists of accurately computing the second moment of the conditional distribution,
which is the main challenge in our setting. We give a version of the second moment method (similar to
Lemma 3 of [2]) tailored for general random constraint satisfaction problems that highlights this aspect. Say
a matrix has exchangeable columns if its distribution is invariant under permutations of the columns.

Lemma 2.2 (Second Moment Method for Rectangular CSPs). Let M be an ensemble of m x n matrices
with independent rows, exchangeable columns, and m = o(n). Let A ~ M and fix sets K; CZ for i € [m)].

Define G; := {u € B : (u,A;) € K;}, and let Z := |, Gi| be the number of elements of B whose inner
product with the ith row of A lies in IC; for all i € [m]. For an arbitrary pair of balanced vectors u and v
which agree on fn coordinates, denote

Vi =Pamlu € Gi], ¢i(B) =Pawmlu € Gi, v e G
Suppose that the following conditions hold for n sufficiently large.
e (First Moment:) There exists a positive constant ¢ such that

logE[Z] > cn (2.1)
o (Weak Bound:) For any 6 € (0,1/2), there exists a positive constant Cys such that
¢i(B) < Csyp Vi€ [m], VB € [5,1 0] (2.2)
e (Strong Bound:) There exists positive universal constants C' and € such that
1 1
bi (2 + x) < (1 - 0(m>> (14 Cz®)y? Vie[m],Vz|<e (2.3)

Then the second moment method succeeds: E[Z?] = (1+ o(1))E[Z]2.
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Lemma 2.2 is proved in Appendix A.

In the proofs of Theorems 1, 2 and 3, the first-moment bound (2.1) and weak bound (2.2) will follow
by simple approximations. In the dense case (Theorem 3), the strong bound is straightforward as well, by
applying an Edgeworth expansion for lattice random walks. However, in the context of Theorems 1 and 2,
when we no longer assume that m/np — 0, proving the strong bound (2.3) directly is difficult. While it

is easy to show that (2.3) holds with a multiplicative error of 1 + O(nip ,
14+ (9(%) =1+ 0(%) is the key challenge.

Our main technical idea is to establish (2.3) through Stein’s method. By Bayes’s rule, (2.3) is equivalent
to bounding the difference in the probability mass assigned to the event u € G; by the law of u versus
the law of uw conditioned on the event v € G;. Stein’s method is a powerful tool for proving quantitative
comparisons between probability distributions of exactly this type. We survey this approach and show how
to derive Theorems 1 and 2 in Section 3. In the remainder of this section, we consider the simpler dense

case and use Lemma 2.2 to prove Theorem 3 via a discrete Edgeworth expansion.

upgrading the error in (2.3) to

The Edgeworth expansion we need for Theorem 3 is for the following simple, lazy random walk:

Definition 2.1. Let {X;} be i.i.d. random wvariables, each supported on {—1,0,1} with densities at those
points of p(1 —p), p> + (1 —p)?, and p(1 — p) respectively. Denote the variance of X as 0% := 2p(1 —p) and
the distribution of the lazy random walk >"._, X; by R(r,p).

Since X; can only take three values, its cumulants are easy to compute. The odd cumulants vanish and
the first two even cumulants are given by ks = 02 and k4 = 02 — 30*. Then, as r — oo, Lemma B.5 directly
yields the following local central limit theorem

Proposition 2.1. Let V ~ R(r,p). For any constant k:

—k%/(2ro?) 4 _ @12 -2 _ 1
}P’[V:k]:e 1+(k 6k* + 3) (o 3)—1—0
vV orro?2 24r r2o4

2.1. Proof of Theorem 3. We first show that E[Z3|P] = (1 + o(1))E[Z|P]* when m = o(np). Let A be
drawn from the (m,n, p)-Bernoulli ensemble conditioned on the event P that each row of A sums to an even
number. Define the sets K; := {0} for all 4, and G; as in Lemma 2.2. Note the rows of A are i.i.d., so we
can suppress the subscripts ¢ (e.g. in ¥;, ¢;, and G;) without ambiguity.

Consider the distribution of a single row of A without conditioning on P. Let u € B be a balanced vector
(Definition 1.2), and assume without loss of generality that the first n/2 coordinates of v are +1 and the
last n/2 are —1. The number of ones in the first n/2 coordinates of A; is distributed as Bin(g,p)7 as is the
number of ones in the last n/2 coordinates. Thus, adding these together, (u, A;) has exactly the distribution
of the lazy random walk R(n/2,p).

In this notation, Plu € G] = P[U = 0] where U ~ R(n/2,p). We can now compute the probability that a
generic balanced vector u has u € G. Since the event {u € G} contains the event P,

¥ = Plu € G|P] = Plu € G]/P[P] = P[U = 0]/P[P] (2.4)

Before giving an asymptotic expression for 1, let us derive the corresponding expression for ¢. Let § € (0,1/2)
be an arbitrary constant. Fix some integer r € {0,...,n/2} such that 2r/n € (6,1 —¢), and consider a pair of
balanced vectors v, w € {£1}" that agree on 2r coordinates. Denote the set of indices on which they agree
as S. Then, the following events are equal:

{veG, weG}= ZUinj+ Z'Uinj ek, ZUinj— Z%‘Aij ek

jes jese jeSs jese
= E ’Uinj = 0, E Uinj =0
JES jES*®

Note that before we condition on P, the random variables > jes UjAi; and > jese vjAqj are independent

with respective distributions R(r,p) and R(% -, p). So, define two independent random variables V' and
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V' with V ~ R(r,p) and V' ~ R(n/2 — r,p). Then, since both {v € G} and {w € G} contain the event P,

(;5(2;) =PlveqG, weG|P|=PV =0, V' =0]/P[P] (2.5)
Now we give asymptotic expressions for ¢ and ¢ by evaluating P[P] and using the LCLT given in Proposi-

tion 2.1. Since we have assumed 2r/n € (5,1 — §), we have that r = ©(n). This implies that ro? = ©(np),
and since np = w(1) we obtain

1 oc72-3 < 1 )>
PV =0] = 1+ +o| — 2.6
| ) V2mro? ( 8r np (26)
Next, recall P is the event all rows of the matrix A have even sums. Let P =: (., P;, where {P;}

are the iid events that each row i has an even sum. We also introduce the abbreviation 8 := 2r/n, where
B € (6,1 —0). Returning to the definitions of ¢ and v (2.4) and (2.5) and applying (2.6) yields

1 -2_3 1
o= (1 T ol

N (2.7)
1 oc7? -3 1
9(8) = mo34\/B(1 — ) (1 * 4npB(1 - B) " O(TLP>>/P[P]
It remains to compute P[P;]. We claim:
P[Py = % + °<nlp) (2.8)

To see this, we first note that a simple induction gives the probability that a binomial (n, p) random variable
is of even parity:

1 1
PP = +=(1—2p)".
A= 3+ 50— 2)
Since p < 1/2, certainly P[P;] > 1/2, and since np = w(1), we have
1
(1—2p)" <e 2P = 0(> .
np

Now, applying (2.8) to (2.7), we obtain

4 o723 1
ool )
m™mo 2n np

o(8) = — ;(1 =5 1+ 45/3_;1_—3/3) “o(3))

In particular, if m = o(np), we have
2 D)
vr ~ ) )avBi—p)

We now verify the conditions of Lemma 2.2. First, since

2 1
E[Zy|P] = <n7;2> P = gn(ito(1) <W>m (1 + O(np))m = exp(nlog? — % log np + o(n)) ,

we have that log E[Zg|P] > cn so long as n > Cmlogm for any constant C' > (21log2)~!. This shows that
(2.1) holds. Both (2.2) and (2.3) follow from the fact that for any § € (0,1/2), there exists a constant Cj
such that

(2.9)

— <14 C5(B—-1/2)? VYBel[s1—4],
N s(B—1/2)" VB €] ]

¢(;+x) < (1-1—0(;))(1—1—05302)1&2 Y]z < 6.

This proves the strong bound (2.3) and, a fortiori, the weak bound (2.2).

so that
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So, if m = o(np) and n > Cmlogm for C > (2log2)~!, then Lemma 2.2 yields E[Z?|P] = (1 +
o(1))E[Z|P]?. In particular, disc(A) = 0 with high probability over A from the (m,n, p)-Bernoulli ensemble
conditioned on P.

This completes one direction of the theorem. Now assume m/(np) = Q(1). In particular, we must have
p = o(1), so we may assume o2 — 3 > o~ 2/2 for n sufficiently large. Since 1/(3(1 — 3)) > 4, we obtain
from (2.7) that for n sufficiently large and 8 bounded strictly from 0 and 1,

o(5) 1 ( 0-2—3) o’
e >2 ) 1+ o >1+ in (2.10)

We can compute the second moment the same way as in Lemma 2.2:

- () S0 ()

(), 5, ()

on/2<r<
We can uniformly lower bound ¢(2r/n)/%? in this last sum with (2.10). This will leave a sum of squared
binomial coefficients. By standard tail bounds on the binomial coefficient (Lemma B.3),

n/2

3 (”:2>2 — (1o} (”7{2>2 - +0(1))<n72>

on/2<r<(1=6)n/2 r=0
Thus, the second moment is exponentially too large: since o2 = ©(p),

S e 10 L) el ()

3. STEIN’S METHOD FOR THE BOUNDING THE SECOND MOMENT

In this section, we prove our main results (Theorems 1 and 2) by using Stein’s method to establish the
inequality (2.3) for the Bernoulli and Poisson ensembles in the sparse regime.
To describe our approach, we begin by rewriting (2.3) as

Parfu € Gi|v €G] <Pamue G- 1+C(B-1/2)%)  (1+o(m™)). (3.1)

The right side involves the law of (u, A;), and the left side involves the law of this same random variable,
conditioned on the event that (v, A;) takes particular values, where v is another balanced vector which
agrees with u in fn coordinates. Let us write pg and . for the unconditioned and conditioned distribution,
respectively, and write Eg and E. for the corresponding expectation operators. Our key ingredients are:

(1) Two operators Ty and T, satisfying
Eo[To f] = Ec[Tef]=0 Vf.
(2) A function fx satisfying the equation Ty fic = 1x — po(K).
(3) A proof that
E[Tofx] < po(K) - C(B—1/2)* - (1 +0o(m™")). (32)
The final inequality (3.2) implies (3.1), since Ty fx = 1x — po(K) and therefore
Ec[To fx] = pe(K) = po(K) .
To prove (3.2), we will use the fact that E.[T.fx] = 0, so that E.[Ty fx] = E:[(To — T¢) fx]. We will therefore
define T and T, in such a way that (T — T.) is easy to control.

This section is organized as follows: first, we define the Stein operator and give general conditions under
which we can invert a functional equation of the form T'fx = 1x — po(K). Next, we prove (2.3) holds for
the degree-conditioned Poisson ensemble, completing Theorem 2. Finally, using the same techniques, we will
prove (2.3) holds for the Binomial ensemble for zero-discrepancy solutions, yielding Theorem 1.
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3.1. Stein Operator. Let (S,5") be some exchangeable random variables taking values in [w] := {0, 1, ..., w},
with common distribution pg.

Definition 3.1 (Stein Operator). Fiz a constant z. Define the anti-symmetric operator = and the corre-
sponding Stein Operator Ty by

(ENS,8) = 2(f()Lsr>s — f(S)Ls>s),  Tof(S) :=Eo[E£(S,5)|S] (3-3)

Note in particular that Eo[Tpf(S)] = 0 for any bounded f. Now, we would like that T} is invertible for
the particular class of f needed to examine indicator functions. The following lemma collects the facts we
will use about the inverse of Tj.

Lemma 3.1 (Stein Operator Inverse). Let {a;}}", and {b;}}, be some sequences that are strictly decreasing
and increasing respectively with a,, = by = 0 and all other values strictly positive. Define the probability
distribution p on [w] and the operator T on functions from [w] to R by

S

a1

p((s1) = D [T 8 T(s) = aufls 4 1) baf(s) Vs € ful, (3.4)
i=1
where p({0}) is uniquely determined by the requirement that p have total mass 1.
Let A be the difference operator given by Af(s) := f(s+1)— f(s) for all s € [w]. Foranyt e {1,2,...,w—
1}, there exists a bounded function f : [w] — R with the following properties:
a. (Ezistence of an inverse) T, f(s) = 1(s =t) — p({t})
b. (Monotonicity) f is non-increasing everywhere except between t and t + 1, where it is increasing.
Furthermore, f(s) is non-positive when s <t and non-negative when s >t + 1.
c.  (Uniform control)
sup |AF(s)] = AF(t) < min(at,b7Y)
0<s<w—1

d. (L' bound on Af)
Do 1Af(s) = O(Af@)]) (3.5)
s=0

All except the last claim, a trivial corollary of the other three, appear as Lemma 1.1.1 and Lemma 9.2.1
of the monograph of Barbour et al. [12]. For completeness, we include a full proof in Appendix A.
We are now ready to prove our two main theorems.

3.2. Proof of Theorem 2. We will apply Lemma 2.2 to the Poisson ensemble conditioned on having fixed
row-sums. Under this conditioning, the law of A will still have independent rows and exchangeable columns,
meeting the requirements of Lemma 2.2. We will prove the following theorem, which, when combined with
Lemma 2.1 and Lemma 1.1, will yield Theorem 2.

Theorem 4. Fix some even, non-negative numbers (w;)™, € (2N)™ as well as some {r;}>; € N™ with
r; = O(y/w;) for alli. Let A be drawn from the (m,n, \)-Poisson ensemble with m = o(n), and denote by
W = (Wy,...,W,,) the vector of row-sums:

W; :ZAU Vi € [m]

j=1

For each i, define K; = {0,%1,...,£r;}, and define G; and Z as in Lemma 2.2. Then, the law of A
conditioned on {W = w} satisfies the strong and weak bounds of Lemma 2.2. In particular, if the r; are such
that log E[Z|W = w] > cn for a constant ¢ > 0, then

E[Z2W = w] = (1 + o(1))E[Z]W = w]?.

Let us begin by proving that Theorem 4 implies Theorem 2. The proof of this technical implication can
be skipped on first reading.

Proof of Theorem 2 from Theorem 4. By Lemma 1.1 and the Paley-Zygmund inequality, it suffices to show
E[Z2|P] = (14 o(1))E[Z,|P]?. Our plan is to apply Theorem 4 to establish the assumptions of Lemma 2.2.
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We begin by approximating E[Z,.|P] with a similar argument used to reach (1.4). We may assume that r
is an even integer. Fix r € 2N and let u € B be such that the first half of v is +1 and the second half is —1.
If An = w(1), we will apply the classical CLT; if An = O(1), we will use the fact that any row is empty with
constant probability. Either way, for some universal constant ag > 0, some function ¢ with lim,_, d(z) = 0,
and sufficiently large n:

r/2 n/2 n
n n
E[Z.|P] = <n/2>]P’[||AU||oo <r|P]= (n/2> E P E A; — E A, =2t
t=—r/2 |j=1 j=n/2+1

Van

+1 "
— gnto(n) (r A 1) 3.6
v (3.6)

The last equality follows by noting ¢™ = 2°( for any fixed ¢ > 0. By assumption, E[Z,|P] > e®™ for
some ¢o > 0 for all n sufficiently large. Because m = o(n), (3.6) implies that for any constant a > 0,
E[Zam|P] > e“1™ for a constant ¢; > 0 depending only on a. So, for instance, if r > e~!v/An and the

= 2n+0(n) ((1 + 5@@)@ A 1)m

assumptions of Theorem 2 are met, redefining r := e~ 'v/An still satisfies the assumptions of Theorem 2 and
provides a better upper-bound on discrepancy. Thus, assume without loss of generality » < e”!'v/An. Now
consider the three possible cases:

Case 1: An = w(logn). Define the set W = {w € (2N)" : Vi |w; — M| < v/Anlogn}. By Lemma B.6,
PWeW|P] =1-o0(1). And, if w € W, then w; = An(1+o(1)) for all i. Set r; := r for all ¢; since
r<e 'vVin=e1(1+o(1))/w;, we have r; < 2e~1,/w; for all i. Similar to (3.6), we have by Lemma B.1,

E[Z,|W = w, P]= (n7;2> ﬁ 3 (wi;;; t)z—w?v = enlog2+o(n) ﬁ(r\/}1 A 1) (3.7)

i=1t=—r/2 i=1

Since w; = (14 o(1)) n, E[Z|W =w, P] = ¢ C™E[Z,|P] > elc=°()n Thus, for all w € W and all
n sufficiently large, E[Z|W = w, P] > e®" for some universal constant c; > 0 that in particular does
not depend on w. So, we may apply Theorem 4 with r; = r for all ¢ to conclude that IE[ZQ|W = w] =
(14 0(1))E[Z|W = w]? uniformly over w € W. Since, conditioned on P, W € W with high probability,
E[Z2|W, P|/E[Z|W, P]*> — 1 in probability. Applying Lemma 2.1, we are done.

Case 2: mlog(log(n)) = o(n) and An = O(logn). Since we are upper-bounding the discrepancy of A,
assume r = 0 since no better bound is possible. Trivially r; = (’)(\/uTi)7 so (3.7) is available. Define
W = {w : Vi,w; <log(n)?}. By Lemma B.6, P[W e W|P] =1—o0(1). By (3.7), for all w € W and n
sufficiently large,

1/ 1
ElZ W = Pl > nlog 24o(n)
[Zol w, Pl ze }:[1 logn

) > enlogQ—almlog(log(n))

Here a; is another positive constant. By assumption, n = w(mloglogn), so in particular obtain E[Zy|W = w, P] >
em1og2 for n large enough. Setting r; = 0 for all i and invoking Theorem 4 for each w € W yields
E[Z2W =w] = (1+0(1))E[Z|W = w]? uniformly over w € W. As above, an application of Lemma 2.1
yields the claim.

Case 3: mlog(log(n)) = Q(n) and An = O(logn). We would like to again restrict to W € W for some
asymptotically full measure set W, and then apply Theorem 4. However, when An is small, the row-sums of
A do not concentrate well. If we naively set r; = r for all 4, we cannot hope to satisfy the theorem’s condition
that r; = O(\/E) for all 4. In order to apply Theorem 4, we focus on a specific (random, W-measurable)
subset Z, of Z,. Recall, in the notation of Lemma 2.2:

Zy = ’ﬂ G;

, Gii={ueB: (u,A) ek}, K:=Zn[-rr7]
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Define the (W-measurable) random variables 7} := r A /W, for each i. Then, construct the corresponding
random sets:

VARES ﬂG;, G, ={ueB: [(Au);| €Ki}, K,:=Zn][-r},1]
Certainly Z! C Z,, so if Z! # () then disc(A) < r. Since 7} < /W; for all i, applying Theorem 4 to the set
Z! and the law of A conditioned on {W = w} N P establishes the weak and strong bounds of Lemma 2.2.
Only the first-moment condition remains: if we can show log E[Z|W = w] = ©(n) for all w in some W with
P(W € W|P] = (1 +0(1)), then Lemma 2.2 may be applied and Z/. # 0 with high probability by Lemma 2.1.

We now turn our attention to establishing the first-moment condition. Observe W; = 0 with probability
Q(e=*"); this provides a trivial lower bound on the probability that u € B satisfies |(Au);| < r. If Am = o(1),

E[ZHP] > 2n70(n)670()\nm) — 277,70(77,)

This would finish the proof, so assume that Am = (1), and thus An = w(1). By the superposition property
for independent Poisson variables, W; ~ Po(n\) for each i, and > W; ~ Po(nm). For a sufficiently large
constant C' > 0, set

W= {w e (2N)™: Zwl < Amn + C\/)\mnlogn}
i=1

By Lemma B.6, we have P[W € W|P] = (1 +o0(1)). Note > w;/m = nA(1+o0(1)) for w € W because
log(n)/m = o(1). We now bound E[Z]|W = w] uniformly over w € W. Observe that if w; = 0, then
|(Au);| = 0 < r} with probability 1. Returning to (3.7) and recalling the definition of 7/,

A i) + 1
min E[Z,|W = w, P] = 2"+ min ][ (Wr>

wew weW | . w;
i: 1<i<m
= 27 +o() min H ( N 1) (3.8)
WEW  icm \ VWi

We claim that if r < ,/wj, then we may assume w; = 0. Indeed, consider w € W with r» > | /w; > 0 for
some j. Define w’ as a copy of w with a modification: wj; = 0 and for arbitrary k # j, let wy = wy + wj.
Then, a simple computation yields

T T r T
11 /\1)2(/\1) 11 (m): 11 ( /\1)
it 1<i<m( V Wi VW i 1<i<m V Wi it 1<i<m w;
wik wi#0, iZ]i%h W] £0
Repeating this argument for each index j with » > ,/w; > 0, we see E[Z/|W = w, P] is minimized (up to

a 20(n) factor), by w with w; = 0 or ,/w; > r, for all j. Now, fix some positive integers S and t. By
arithmetic-geometric mean inequality,

Lo L T tr? b2
max > =|— =: t
M= = () =

i=1 =1

We apply this to (3.8) for each w € W by letting ¢t denote the number of non-zero indices of w and S = > w;.
Using our observation about the structure of w; in the second inequality,

in E[Z/|W = w] > 27+°(" T A1) > ontem L > gntom) i in fs(t
iy B =22, 1 =2y 1 e R R
1<i<m 1<i<m S:=>"w;
It is a simple calculus exercise that fs(¢) is decreasing for 0 < t < S/(r2e); increasing for ¢t > S/r%e; and
has a global minimum at S/(r?e). Recall S = (1 + o(1))Amn and r < e~'v/An. Then, S/(r?e¢) > m, so the

minimum of fg(t) on [0,m] is at t = m. Recalling the expression for E[Z,|P] given in (3.6),

W;

m
in ElZ W = Pl > 2n+o(n) - — 2n+o(n) L —-F Z’r‘ P o(n)
min E[Z, | w, P> Samn(m) I [Z,|Ple

Since m = o(n) and E[Z,|P] = 2™, then E[Z.|[W = w] = 2™ uniformly over w € W and we are done. [
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Proof of Theorem /. Our goal is to verify that the weak and strong bounds (2.2) and (2.3) hold. Fix a
particular 4; we can henceforth suppress all subscripts ¢ without ambiguity. Then, X = {0, £1, ..., £r} for
some 7 = O(y/w). Define the set Ky, := {(w + k)/2, k € K}; while this is a slight overload of notation, it
will never be ambiguous because the subscript ¢ is suppressed for the remainder of this theorem. Finally,
define the shorthand v := 1 — 5. For the Poisson ensemble conditioned on (w;) described in the theorem
statement, and for ¢ and 1 defined in Lemma 2.2,

_2_wz<w+k/2>

ke
w+k w—k
)= 2w 2 3 2t EgE Bk _gc
w+k wtk! ¢ c B Y
kk'ek N 2 c 2

We first verify the weak bound (2.2). Since we restrict to 5 bounded strictly away from 0 and 1 by constants,
the weak bound will follow easily from standard approximations for binomial coefficients (Lemmas B.1
and B.2). Since r = O(y/w) and |k| < r for each k € K, Stirling’s approximation yields

= o ) Eoli) )

ke

By a similar argument, making the substitution ¢ = fw/2 + j and using again the fact that &k, k' = O(yw),

w=0() 3 3 ((wft Yot ) (7))

< O(\}@) 3 3 6—6(1'2/(10&7))%67

k.k'ER |jl<o(VwTogw)

B |’C2>
_O<wﬁv

Thus, if 8 € [§,1 — §], then ¢(8) < Cs1p?. This completes the weak bound.

The strong bound requires a much finer quantitative estimate of ¢ and ¥ when g is very close to 1/2.
Standard approximation techniques give a (1 + O(wil)) multiplicative error. Unless we restrict ourselves
to the dense case by making the assumption that m = o(w), this error is far too large. Instead, we will use
Stein’s method of exchangeable pairs to compute ¢;(8) in terms of ; for 3 close to 1/2.

Let us consider two balanced vectors, u and v. Since the entries of row A; of A are i.i.d. Poisson random
variables, if we condition on {W = w}, then A; can be constructed by starting with the all-zeroes vector
of length n, and then choosing w coordinates uniformly at random (with replacement) to increment. By
keeping track of whether u is positive or negative in each chosen coordinate, we see (A4;,u) is characterized
by a binomial random variable. Similarly, the pair ((u, 4;), (v, A;)) is characterized by a multinomial random
variable counting how many outcomes in the construction of A; correspond to coordinates where u and v
are both positive, both negative, or of mixed sign.

This description suggests the following construction. We draw w independent random variables from a
categorical distribution with four outcomes, labeled (+,+), (+,—), (—,—), and (—,+), where we assign
£/2 probability to each of the outcomes (+,4) and (—,—) and 7/2 probability to each of the outcomes
(4+,—) and (—,+). We view these four outcomes as reflecting the signs of the entry of v and the entry of u
corresponding to each selected coordinate.

Let o = (04,04, 0=,0%) be the respective counts of how many outcomes of each type are observed. Then
o has a multinomial distribution. By construction,

(uA)—0¢+0¢—ai—a_—w—2(ai+a_)

To obtain an exchangeable pair, we construct another tuple ¢’ by selecting one of the w outcomes uniformly
at random and resampling it from the original categorical distribution. We call the joint law of (o,c’)
generated by this procedure the unconditioned distribution, which we denote by Pjy.

Next, we consider a different process for generating o, which reflects the law of (u, A;) when we condition
on the value of (v, A;). Concretely, we group the four outcomes of our categorical random variables into two
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types depending on their first coordinate: (+,4) and (+, —) are one type and (—, —) and (—, +) are another
type. Define the events

w4k
Ey = {Ji-‘r(fi = 2}, FEx = U Ey
ke

We draw w independent random variables from the same categorical distribution as above, but we condition
on the event Ex that the number of (4,+) and (4, —) outcomes is (w + k)/2 for some k € K. This yields
a new distribution on the tuple 0 = (03,04,0=,05) of counts. To obtain an exchangeable pair, we can
generate another tuple o’ from o by picking one of the w outcomes uniformly at random and resampling it
from the categorical distribution conditioned on the outcome being of the same type. We call the joint law
of the resulting pair the conditioned distribution, which we denote by P..

As above, if we view the outcomes as the signs of the entries of v and u corresponding to each selected
coordinate, then under P,

Ot + 05 —0y —0= Z’LU—Q(O'i—‘rU:)i {{u,A;) | (v,4;) € K}

We focus on the quantity S := S(0) = o+ + o= under the conditioned and unconditioned distributions.
We have by construction:

Po[S € Ku] =¥ =Po[Ex], Pc[S € Ku]t = o(B) (3.9)

Thus, we want to show that the probability that S € K, is close under Py and P.. We will use Stein’s
method to compare these probabilities. As in (3.3), define the Stein operators

Tof(o) = Eo[Ef(S(0), S(o)le], T.f(o) =Ec[2f(S(0), S(0"))lo].

Writing po and p. for the probability measures on N induced by S under Py and P, we find a function f
for which To f(0) = 1g(s)ex,, — Ho(Kw), and then we compute

E [(Te —To) f(S)] = —Ec[Tof(S)] = po(Kw) — pre(Kuw) -

Carrying out these constructions by means of Lemma 3.1, we obtain the following result whose proof is
deferred to the next section.

Lemma 3.2. Define A as the one-step difference operator, Af(s) := f(s+1)— f(s). There exists a function
f satisfying

poll) = oK) = e |- 9)( =57 ) Ar(s)| (3.10)
with the property:
D IAf ()] = O(IKw™) (3.11)
s=0

It remains to bound (3.10). Let = 8 — 1/2. We establish the following proposition.

Proposition 3.1. Uniformly over s,
Ec(0= — 02) 1] = O(mwlm)e*@(%)(%*sy .

The proof of Proposition 3.1 is the most involved part of the theorem. This task, though technical, is sig-
nificantly simplified by the fact that it suffices to estimate the quantity in question to constant multiplicative

error, whereas our original goal required estimating ¢;(8) to error 1+ o(%). Before proving Proposition 3.1,
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we first show how it implies the strong bound. Applying Proposition 3.1 to (3.10) yields
|10(Kw) = pe(Kuw)| = 2|Ec[(0= — 04)Af(5)]]

ZEC[(U: —o04)ls=s|]Af(s)
s=0

<0 (xzwl/z) i O (F-9)°|Af(s)]

0

=T

S

< O(a?w'/?) §:j IAf(s)]

- (’)(x2|lC|w_1/2> :

g

where the last step follows from (3.11).

Since S under Py has distribution Bin(w,1/2), the de Moivre-Laplace theorem (Lemma B.1) implies
that if £k = O(Vw), then po({(w + k)/2}) = O(uo({w/2})). In particular, this holds for all &k € K. Thus,
¥ = po(Ky) = O(|KJw1/2). Rearranging yields |K| = ©(uo(Kw)v/w). So,

|1e(Kuw) = po(Kuw)| = O(2% o (Kw)) = O(2™)

The last equality follows from the identity (3.9). Using (3.9) again yields the strong bound (2.3) for some
universal positive constant C.

¢>(1 " x> = Ype(Cw) = (14 Ca)y?

2
We have now shown all the assumptions of Lemma 2.2 are satisfied. Thus the second moment method
succeeds for the Poisson ensemble conditioned on {W = w}, proving Theorem 4. (]

It remains to prove Proposition 3.1, modulo some technical lemmas which we defer to the following section.

Proof of Proposition 3.1. Let G(k,c) :=P.Jo= = ¢, S = s|Eg] = P.lo= = ¢,04 = s — ¢|E]. Conditioned on
Ey, o— and oy are independent, with o4 having distribution Bin((w + k)/2,v) and o— having distribution
Bin((w — k)/2, 8). We can therefore write G(k, ¢) as a product of binomial densities:

) = () (B s

s—C C

Fix s with 0 < s < w. Our goal is to prove uniformly for k € K:

Ecf(0- — 04)ls_s|Ey] = ZS:(QC — §)G(k,c) = o(ml/?)e*@(%)(%*s)z , (3.12)

c=0

The first equality is by definition; the second is the claim that directly yields the proposition after averaging
over k € K. We begin with a crude approximation for G. By standard binomial inequalities:

Lemma 3.3. Uniformly over c,

G(k,c) = O(i}) exp{_@<(s fw/2)2w+ (C,BS)Q)}

We will employ the following basic fact about Gaussian sums, which follows immediately upon comparison
with a Gaussian integral.

Lemma 3.4. Let ¢ > 0, r € R, and w > 1. For some implicit constant depending only on q,
Sy — rfge ) — @(w<q+1)/z),
yEL

We consider three cases separately, depending on the size of x.
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Case 1: |z| > w~ /2. Here, Lemma 3.3 suffices. Indeed, also applying Lemma 3.4 yields

S

N _o(L O3 (e—Bs)*+(s—w/2)?)
IE.[(0— ai)ILSsEkH—O(w) D (2c—s)e

c=0

:O(i,> (228:(|$5|+|C—ﬁs\) O} o0 (E) (o)

=0
= [O(mwl/z) + 01 }e ) (g-9)?
:o(ml/?) —0()(3-3)?

)

where the last step uses the assumption that |z| > w~1/2. Averaging over k € K completes the proposition
in the case x > w~1/2.

Case 2: || < w™!. For this case, we need to exploit a symmetry. We have assumed that k& € K implies
—k € K. And, since S Low— S, we also have P [Ey] = P.[F_i]. Thus:

|]EC[(0': — 0+ ]ls ‘ < ZUE O= — 0+ ]ls é|E]k] —|—E [( — o'i)]lS:s|E—k]|Pc[Ek]
k>0
= P.[E] Z\zc—sua (k,c) — G(=k,s — ¢)| (3.13)
k>0

The case when |z| < w™! now follows from easy arguments. We have:

— Gk, 0) <1 _ (5) _HC”S>

Since z = O(w™'), note that z(k + 4c — 2s) = O(1). Hence, observing 3/y = 1 + O(z) yields

(2" ot 20,

In total, combining this with Lemma 3.3, we obtain

Gk, ¢) — Gk, s — &) = Ok + de — 25))0(;> exp{@<i}> [(s — w/2)% + (Bs — c)z]} .

Recall z :=  — 1/2. Since z = O(wil) by assumption, |2c — s| < |2¢ — 28s| + 1. Applying Lemma 3.4,

w—+k
2

—2c+s B"JT'HC—Q(:+S,Y “’;k +2c—s)

D [2e = sk ) = G—kys = o) = O ) D (K20 = 5| + |20 — sf?)em O llem /2400
w
c=0 c=0

—o(x _ _ Bs[2)e—©(3)(s—w/2)*+(8s—c)’]
O(=) Y21+ [klle = Bs| + e — Bs]?)e

c=0

= O(xwl/Q)efe(%)(%is)Q
Since this holds uniformly for k € K, returning to (3.13) completes the proposition for z < w™1

Case 3: w™' < |z| < w™'/2. For this case, we again employ a symmetrized expression. Fix a k > 0. As
n (3.13), we have

Bel(0= — 04)Ls=s]] <Y [Ec[(0= — 04)Ls—s|Bx] + Ee[(0= — 04) Lo | E_][Pc[Ey]
k>0
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First, note that we can assume that |s — w/2| = O(y/wlogw). Indeed, by Lemma 3.3,

Bel(0= — 04)Ls—s| Bi] + Ee[(0= — 04)Ls—| E_¢]| <Y [2¢ = 8]|G(k, c) — G(~k,s — c)|

w) Y G(k,¢) + G(—k,s — c)

c=0
_ C(s—w/2)?
= O<w1/2) e w

for some positive constant C; if |s — w/2| > C’v/wlogw for a sufficiently large positive constant C’, then

_ C(s—w/2)? C(s—w/2)? C(s—w/2)?

w S w_le_T = O(x)e_ 2w
Therefore, if |s — w/2| > C'\/wlogw, we already have

3 J2¢ - sl|G(k,¢) — G(~k,s — o)| = o(wl/?)e—@%)(%—sf :
c=0
which is the desired bound. We therefore assume in what follows that s — w/2| = O(vwlogw).
For this case, we develop a slightly different symmetrized expression based on (3.13). Fix some k > 0.
Writing [zs] for the nearest integer to zs, we have

S

Ee[(o= — 04)Ls—s|Er] + Eo[(0= — 04 )lg—s|E_i] = Z(?c— $)G(k,c) +Z 2¢ — 8)G(—k, ¢)

—Z 2¢ — 8)G(k,c) —l—zs+4x5]—2c)G(—k,s+2[xs]—c)

CcEZ c€EZ
—2207258 k,c) — G(—k,s +2[zs] — ¢))
CcEL
—&—21"32 —k,s+2[zs] — ¢))
cEL
4[zs] Z G(—k,s+ 2[zs] — ).
CEL

We first claim that the last two sums are small enough. Indeed, using Lemmas 3.3 and 3.4, we see that
both terms are bounded by

@<E)Z —0(3)l(s—w/2)*+(c—B3)’] _@<xw1/2>e—e(r},)(%—s)2,

w
cEZ

which is of the desired size. Moreover, we further claim that
Z(ZC—Zﬁs)(G(k,C)—G(—k,s+2[x5]—c)) = Z (2¢—285)(G(k,c) — G(—k, s+ 2[xs] —¢))
cEL \C—Bs|:(’)(\/m)
+ O(mwlﬂ)e_@(%)(%_s)Z .

This truncation is valid because Lemma 3.3 guarantees that there exists a positive constant C' such that the
portion of the sum outside the range |¢ — fs| < C'v/wlogw contributes at most

w—1/2€—@<%)(%—s)2

to the sum; since we have assumed that w=! < |z], this error is also of size O(mw1/2)efe($)(%75)2.
Combining the above bounds, we obtain that

Bel(0= — 04)ls=s]| = Y Pc[Ex] > (2¢ — 2835)(G(k, c) — G(—k,s + 2[xs] — ¢))
k=20 le—Bs|=0(vwlogw)
+0(aw/2)e@(HE | (3.14)
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so it suffices to obtain an accurate approximation of the first sum under the restriction that both |s — w/2|
and |c — Bs| are O(y/wlogw). We use the following refinement of Lemma 3.3.

Lemma 3.5. Definel :=s— %5 and j = c— fs. Let |j| = O(\/wlogw), 1| = O(\/wlogw), and k € K.

For x < w‘l/Q,
1 12 +2j2}
G(k,c) = (14 E(4,l)) —— expq — 3.15
(ki) = (14 B 0) —— o] - (3.15)
where E(j,1) denotes a quantity satisfying
, 1 (I v Jip?
Continuing to write [ and j as in the statement of Lemma 3.5, we obtain
1 12 + 252 - 1 12 4 252
G(k,c)—G(=k,s+2[zs]—c)) = (1+E(j,1 exp{— }— 1+FE(—j,1 exp{— }
(60, ) =Gk s+2fas] ~0)) = (1+ B D)—— (B D) e
where
Ji=s5+2[xs] —c— Bs=7j+2([xs] — xs).
Since |j — j| < 2, we have in particular that E(—j,1) = O(E(j,1)), as well as:
12+252} ( (;)) { 12+2j2} { 12+2j2}
expq — =14+0( =) )expl— =(14+O(E(j4,1))) exps —
p{ T D) )exvl == | = (4 0BG D) exp] ———
We obtain
(G(k, ¢) — Gl—k, s+ 2[xs] — )| = O(B(j, 1) —— e { s +2j2} (3.16)
) - — - = ? X - :
P By P Bryw

By Lemma 3.4,
. 1 _ 124252 1 _ a2 c—ﬂs 0—584 C—ﬁS 13 -6 %
Z|c—5s|E(]7Z) e~ Bvu = ()e Byw Z(' Y | + | | + | 2” | e < )
cEZ

g TByw © w? w
1 G P
~(o(am) +o(um) )

1 L
:O(w1/2>e R

E 2 2
where the last step uses that O(%)e_ﬁ = O(ﬁ)e_ 2w
Since w—1/2 = O(:rwl/Q), combining this calculation with (3.16) yields

S le— Bsll(Glk, c) — G(~k, s+ 2[xs] - ¢))| = o(xwlﬂ)e—@(%)(%—sf ,

cEZ

and combining this fact with (3.14) finishes the proof of Proposition 3.1. (]
3.3. Proofs of lemmas.

Proof of lemma 3.2. We let S = S(0) and S = S(¢’), so that (5,S") is an exchangeable pair under both Py
and P.. Define ag and bg,

- b
PoS' >S5 |S]= "5 95 pig<s| 8= = (3.17)
2w w 2w w
On the other hand, conditioning on Fj for some k € K:
PC[S/ <S8 | Ui,U:,Ek] = Ma
()2 - KJ2— 0)8 + (w2 + k)2 — 02) (3.18)
P.S" > S |oy,0-,E] = = - £)7

Consider the space of functions on [w]. We define a skew-symmetric operator = on such functions by

(Ef)(57 5/) = w(f(sl)]ls/zs-i-l - f(s)]ls=s’+1)
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We then define the Stein operators

Explicitly, by (3.17),
Tof(o) = asf(S+1) —bsf(5).
In particular, Ty f depends on o only through S(o), so that Ty agrees with the operator T' on functions on
[w] defined by
Tf(s)=asf(s+1)=bsf(s) Vseuw]. (3.21)
Using the tower property of conditional expectation (i.e. the identity E[E[X|Y]] = E[X]) to condition
over Ey, for each k € K via (3.18),

T.1(0) = Tof () = (= ) 3 ( (5572 ) AF(S) + (5 + 1) | Pulul )

kel

— (-0 (ZFTE)ASS) £+ T el - PE-ilEx])

ke, k>0

Marginally, oy + o+ ~ Bin(w, 1/2), so o1 + o+ Low— (04 + 0+) and therefore P [Ey|Ex] = P [E_j|Ex] for
all k € K. So, the summation in the last equation cancels to zero and we obtain

T.f(0) = Tf () = (- 8)( =57 ) AS(S) (322)

Since S(o) under pg is an unbiased Binomial random variable with w trials, it is easy to check that taking
1= p1p(S), as and by as given in (3.17), and T as in (3.21), satisfies condition (3.4). Thus, for each k € K, we
may apply Lemma 3.1 with ¢ := (w+k)/2 to obtain a function fi. Defining the superposition f := >, i fx,
we have from the linearity of Tp,

Tof(o) = 1sex — po(Kuw)
Taking expectations of both sides of (3.22) with this choice of f establishes the first desired claim:

B (0= (7575 ) AFS) | = o) — el

We now turn to bounding E’;zo |Af(s)|]. Fix some k € K and let ¢t := (w + k)/2. Then k = O(y/w), and
so |tV (w —t)| = ©(w). By Lemma 3.1, part ¢, we have

Afp(t) <min(a; ', b7 ") =min(t ™!, (w—1)7") = O(1>

w

Lemma 3.1, part d, then implies Y, [Afy(s)| = O(w™"). Summing over k € K yields the second desired
result, completing the lemma.

STAFE)] <30S A S (s)] = O(IKw™?)

s kek
U

Proof of lemma 3.3: Write | = s — w/2, and let j = ¢ — 8s. By standard tail bounds for binomial random
variables (Lemma B.3), we have

<(w + k)/2>ﬁw;kws+jwsj _ 0(1) exp{Q(vl —Jj —k/2)? }

vs—1J Vw w+k
(w—k)/2 spj wek_ge i 1 2(ﬁl+j+ﬂk/2)2
< Bs +j >6M72 ’ JO(@)‘”{P’{ w—k }

Multiplying these two inequalities together and using the fact that k = O(wl/ 2) yields
1 l k)? 1+2j + k)2
G(k, Bs + j) :0(w> exp{—( Tk @l 425+ k) }

2w
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There are three cases to check. If |I,|j] = O(w1/2), then the quantity in the exponent is of constant order,
so the entire expression is O(1), which agrees with the desired bound. If [I| = w(w'/?) and || > |4,
then (I + 2k)? = ©(1%) = ©(I> + j?), which yields the desired bound. if |j| = w(w'/2) and |j| > |I|, then
(zl+2j + k)? = ©(5%) = O(1* + j2) as well. All together, we have

ot s=of )l o(27)}.

as claimed. 0

Proof of Lemma 3.5. Rewrite the definition of G as the product of two binomial densities:

. w-zi_k Wik _ystj, ys—j 2 Bs+j . Lgr—Bs—j
G(k,Bs+j):= |82 v By
s —J Bs+j

Let

Then, ¢ — v = O((|4] V |I])/w) = o(1). Indeed,

g—y:(i—WXHO(D) (3.23)

and this is o(1) since we have assumed that j and [ are both O(\/wlog w).
Applying Lemma B.1 and recalling that k = O(wl/ 2), we obtain

w+k
( % >[3w'{’“ 7'ys+j,Y’YS*j = <1 + O<1>) ;e_W(ET:{P+O(k(c—7)2)+O(C—7)+O(w((—7)3)
rETd w m(w + k) By
1 ] ; 3 1 ey?
= (1+0(L) +o(HIYI) ;o WYY e
v w w (w+k)By
(3.24)
Similarly, if we let
_ Bs+j
- (w—k)/2’

then an identical computation shows

b (L2 (1o 2)) 52
and

kN 1 Ml (131 v 11y? 1 g2
Bs+ 5 Bs — _ A8~
(s )= (0(G) o () + o (M) ) ™
(3.26)

We would like to multiply (3.24) and (3.26) together in order to derive an approximation for G. First,
the product of the polynomial prefactors is

v~ (+0() )7 - (+0())m
ThyvVw? — k2 w? ) ) wBy w) ) Twhy’
Combining (3.23) and (3.25) and using the fact that k = O(\/E) and 2 < w™1/? yields

(=72 + (- B)? = (Ho(f}))(iﬂW) _ (”O(w1/2))(il§+8£>%

therefore, the product of the exponential terms is

212 4 452 s (g V D2\ - 2izag?
o 2ol ) (o))
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We conclude that

ownn (1-0(2) o(28) o U2 ol ) i
<

1 (] v [u)? 1 22y
1 2B w
+(’)<w1/2)+0< 2 p— 7

as claimed. O

g

3.4. Proof of Theorem 1. The proof will closely follow the proof of Theorem 2. Again by Lemma 2.1 and
Lemma 1.1, the following suffices:

Theorem 5. Let A be from the (m,n,p)-Bernoulli ensemble with n > Cmlogm, where C > (2log?2)71!,
and let P be the event that each row of A sums to an even number. Let W be the vector of row weights.
Then, for any such w € (2N)™ with w; < .49n for all i,

E[Z§|W =w] = (14 0(1)E[Zo|W = w]?

To obtain Theorem 1, let A be from the (m,n,p)-Bernoulli ensemble, conditioned on the event P that
each row of A sums to an event number. By assumption p < 1/2. And, Theorem 3 already established that
disc(A) = 0 with high probability if m = o(np), so we may assume that p < .48. Then, with high probability,
W; < .49n for all ¢ simultaneously. In other words the collection of events {W = w} for w € (2N)™ with
w; < .49n satisfy

Z]P’ =w|P]=1-0(1).

Therefore, by Lemma 2.1, proving Theorem 5 will imply that disc(A) = 0 with high probability. Finally,
removing the conditioning on P by Lemma 1.1 proves the claim.

We will check the three conditions of Lemma 2.2 for K = {0} when A is from the Bernoulli ensemble
conditioned on W = w. Say u and v are balanced {—1,+1}" vectors agreeing on fn coordinates, and again
suppress the subscript ¢ whenever not ambiguous, e.g. w = w;, ¢ = ¢;, and ©» = 1;. Recalling v =1— 3, we

have
w/2

= () () = () (a2 ()

By Stirling’s formula (Lemma B.2), 1 = ©(w~'/2) = Q(n~'/2). Now consider ¢(3) with 8 € [6,1 — 4] for
some universal constant § > 0. Since we have assumed that w; < .49n for all i, the binomial coefficients
in the definition of ¢ are all non-zero by taking ¢ sufficiently small. For a sufficiently large constant M,
standard hypergeometric tail bounds (Lemma B.4) yield

(o), 5 CECREC)

[t—Bw/2|<M+/wlogw

G 065 N I S ' R S L e

[t—Bw/2|<M+/wlog w

o) )

tez
= (’)(w_l) .

where the last step uses Lemma 3.4. Since

E[Zo|W = w] = <n’;2) ]:[1¢ = (n%) Q(n71/2> s exp{nlogz —(1+ o(1))% 1ogn} ,

the assumption that n > Cmlogm for C > (2log2)~! implies that the first-moment condition (2.1) holds.
Similarly, the weak bound (2.2) holds: for some implicit constants that depend only on d,

¢(B) = O(w™) < Csyi .
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It remains to establish the strong inequality (2.3). As in the proof of Theorem 2, Stirling’s approximation
only allows us to compute ¢ and @ up to an error of (1 + (’)(w‘l)), which we cannot afford. We again use
Stein’s method to circumvent this challenge.

We adopt a modified version of the construction used in Theorem 2. If we condition on the event that
W; = w, we can generate A; by choosing w coordinates uniformly without replacement from {1,...,n} and
setting the corresponding coordinates of A; to 1. Given two balanced vectors u and v, it again suffices to
track how many of the chosen coordinates correspond to entries of v and v which are both positive, both
negative, or of mixed sign.

Consider a urn of n balls labeled with (4, +), (+, —), (—,+) or (—, —), where we assign n/2 to the labels
(+,4+) and (—,—) and yn/2 to (+,—) and (—,+). We select w balls independently without replacement
from this urn, and view each outcome as reflecting the signs of the entry of v and entry of u corresponding
to the selected coordinate. As before, we define the vector o = (0,04, 0—,07) of counts, and construct an
exchangeable copy of ¢’ by choosing one of the w selected balls uniformly at random and swapping it with
a random ball in the urn. The joint law of (o, ¢’) is the unconditioned distribution, Py.

For the conditioned distribution, we again divide the balls into two types—{(+,+), (+, —)} on the one
hand, {(—,—),(—,+)} on the other—and consider drawing as above w balls without replacement from the
urn, but conditioned on the event that exactly w/2 balls of each type are chosen. We obtain a different
distribution on count vectors o; to construct an exchangeable pair, we generate another vector ¢’ by choosing
one of the w selected balls uniformly at random and swapping it with a random ball in the urn of the same
type. This induces a joint law on (o, ¢’) under which these variables are again exchangeable, which we call
the conditioned distribution, P..

We again focus on S = S(0) = 04 + o—. Adopting the same notation as in the proof of Theorem 2 (note
that now K = {0}), we have

PolS =w/2] =9 =Py|Ex], P.[S=w/2Y = ¢(5) (3.27)
We also have the following analogue of Lemma 3.1.

Lemma 3.6. There is a function f satisfying the identity
1
ctuf2) = o) = e (0= = o2 = nto- — 02 (5~ 3 ) Jar(s)| (3.25)
as well as:

> 181(6) = o( ) (3.20)

The proofs of this and all succeeding technical lemmas are deferred to the next section. We turn to bound-
ing (3.28). Just as in Theorem 2, the main technical difficulty of this theorem is to bound E¢[(0= — o4 )1g—s].
The analogue of Proposition 3.1 is the following estimate.

Proposition 3.2. Uniformly over s,
E.[(0— — o4)Ls_s]| = o(mlﬂ)e—@(%)(f—s)z .

We need a similar result to control the remaining part of (3.28). The proof will follow trivially from the
techniques developed in Proposition 3.2.

Proposition 3.3. Uniformly over all s € [w],
Ec[(az - Ui)Q]lS:s] = <0<m2w3/2> + O(wlm))e_@(%)(%_s)z .

Let us first show that together these propositions imply the strong bound before proving them. Combining
Proposition 3.2 and Eq. (3.29), we obtain

(zn)Ec[(o= — o) Af(9)] = O(xZwl/Qn) Zw:e—@(%)(%ﬂ)sz(sﬂ _ O(wa‘l/Q) 7

s=0
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Similarly, using Proposition 3.3 and recalling n = Q(w) yields
Bol(o- —028(9)] = (0(u2) + 0(w'2)) 3 e o= a5
s=0
_ O(x2w’1/2) n O(n’lw’lm)
Applying these to Eq. (3.28), we obtain:

|0 (w/2) — pre(w/2)] < o(gﬂw—m) n @(n-lw_m)

The desired strong bound (2.3) then follows from the identities (3.27). Indeed, under the unconditioned law
Py, the variables o4 and o— are independent hypergeometric variables

H(w n n) I% w fn n
o4 ~ —— = O_ ~ —— =
+ 21272 ) = 27272

So, recalling 1 = ug(w/2) = @(w*1/2),

¢<; + x) = Ypc(w/2) = (1 + 0@))11)2(1 +0(a%)).

This verifies the assumptions of Lemma 2.2 and proves the claim. We conclude by proving Proposition 3.2
and Proposition 3.3.

Proof of Proposition 3.2. We proceed identically to the proof of Proposition 3.1, except with the simplifica-
tion of only considering k£ = 0.

Let F(c) == P.lo= =¢, S =s] =P.lo= =¢,01 = s —c|]. We can write this explicitly as a product of
hypergeometric densities:

o= (P ) ()

Fix s with 0 < s < w. We aim to show the inequality

E[(0= — 04 )lgy] = i(zc —$)F(c) < O(xw1/2>e’@(%)(%*s)2 (3.30)

c=0

We begin by giving a crude tail bound on F'. Using Lemma B.4 yields

o - o L) exp{ - U= HI =51

As in Proposition 3.1, we consider three cases for the size of |z|.

Lemma 3.7. For all c,

Case 1: |z| > w~'/2. Just as in Proposition 3.1, Lemma 3.7 is already enough when |z| > w=/2. The
calculation is identical, but with Lemma 3.7 in place of Lemma 3.3, so we omit the details.

Case 2: || < w™!. For the remaining cases, we again exploit the symmetry ¢ — s — ¢ just as in Proposi-
tion 3.1.

S

Ecl(o= — 0s)lg—s] = % > (2c—s)F(c) + > (2c = 5)F(c)
c=0

c=0

= 3 e 9)F(e) ~ F(s o) (3.31)

c=0
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If z = 0, then (3.31) is identically zero, proving the claim. So assume that z # 0, which implies that |zn|
is a positive integer. If x > 0, then expanding the definition of F yields

(%) (20) G o) (2202)

F(C) _ c w/2—c/ \w/2—(s—c)) \ s—c
PG00~ P ) O
_ ﬁ <Z—12”+c—|—r> T —s+tc+r
r=—xn+1 %—C-ﬁ-’l" %_(%_8+0)+T
- H <1+(9(20w/2>)<1+@<w/2+2025)>
r=—xn+1 n n

(1+0(202) o 2220 )™

If z < 0, then the numerator and denominator of the product in the second line are flipped, but the third
line is reached unchanged. So, regardless of the sign of z, this computation holds. Then, recalling |z| < w™!,
we are justified in using a first-order Taylor expansion:

F(e)
F(s—c¢)
where the second equality follows from the fact that
|2¢ —w/2| < |w/2 — s| + 2|c — Bs| + 2|xs],
and the analogous bound for |w/2—2(s—c)|. Since |z| < w™!, we have 22s = O(x) and [2c—s| < 2|c—Bs|+1.
Applying Lemmas 3.4 and 3.7, we obtain

=1+ 0(z(2c—w/2)) + O(z(w/2 —2(s — ¢))) = 1+ O(z*s) + O(z(c — Bs)) + O(z(w/2 — 5)),

s s
T

> 2= s)(F(e) = Fls =) = O( =) 3 (O((e — B3)?) + O((w/2 - 5)2))e‘@<

c=0 c=0

= (O(xwl/z) + O(xwfl/z(s _ w/2)2)>e—®(%)(%_s)2
= O(aw'/?)e 0H)( )",

where the last step uses the fact that, for any positive constant C,

(C7BS)2+(sfw/2>2>

y2eny2/w _ O(w)enyg/Qw )

This finishes the proof of the second case.

Case 3: w™! < |z| < w™/2. Again our plan is to derive a careful estimate for F'(c) near ¢ = 3s via a Taylor
expansion of Stirling’s formula. Because of the tail estimate Lemma 3.7, as in the proof of Proposition 3.1

we may again restrict to the region where |c — 8s| = O(y/slogs) and |s — w/2| = O(y/slog s).
Following precisely the steps of the proof of Case 3 in Proposition 3.1, using the tail estimate Lemma 3.7
in place of Lemma 3.3, we obtain that

EJ(0- — 04)ls_s] = 3 (zc—ws)(F(c)—F(s+2[xs]—c))+0(mlﬂ)e*@(%)(%ﬂV . (3.32)
le—ps|=0(VwTogw)

The only difference from Proposition 3.1 is that we are dealing with a product F' of hypergeometric
distributions rather than the product G of binomial distributions. However, F' and G are conveniently
related because they describe hypergeometric and binomial distributions respectively with the same mean
and number of trials. Denote G(c) := G(0,c¢). An explicit expansion of the hypergeometric density [35]
yields:

F(c) = G(c)Rs(c)Ry(s — ¢), (3.33)
(1 ) THA 7 (1 - 5)
W (1= i)

Rﬁ(c) =
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Let us write § = s + 2[xs]. Since |G(¢) — G(5 — ¢)| was already bounded in Proposition 3.1, it suffices to
bound Rg(c)R(s —c) — Rg(5§ —c)R,(s — 5+ ¢).

We temporarily define an unorthodox convention for the product that will save us much case work. If
a < b, then define Hfza Ti = TqZay1..-Tp as usual. However, if a > b, we define Hf:a z; = [[Z b1+1$c !

Then, expanding the definition of R,

-—1 w/2—c—1
Rs(c) _ -1 (1 - 575/2> e (1 - 'yn/2)

Ry(s—35+¢) -5t (1 _ m) :;/1275%7071 (1 _ HT/Z)

s—35+c—1 ]‘_ﬁT/Q c—1 " w/2—c—1 1_7;/2 w/2—s+5—c—1 ¢
- 1l (1 ) I (1mp) 1 (1—) (5

t=1 /2 ) t=s—3 t=1 Bn/2 t=w/2—c

A similar expansion yields:

R (S B C) B §—c—1 /1 _ #/2 s—c—1 ¢ w/2—5+c—1 1 m w/2—s+c—1 ;
m B H <1—t H (1 - 7n/2> t]-_[l 1 _t_ H <1 - 6”/2)

t=1 Bn/2 5 yn/2 t=w/2—3§+c

t=s5—c =

In total, our goal is to bound how far the following expression is from one.

RyORys-c)  _“{i (lome\ i (omE) ot
R,(s—§+c)Rg(3—¢c) H (1_t> H (1 t> H (1 5”/2) (3.34)

3 yn/2 t=w/2—5+c Bn/2 t=s—5+c

t=s—c
w/2—s+5—c—1 w/2—s+c—1

<0 (e5m) 0-5m) I (-50)

t=w/2—c t=5—c t=w/2—35+c

We bound this expression in several parts. Throughout, we will repeatedly use the arithmetic fact that
(zw)? + [zw(c — Bs)| = O((zw)? + (c — Bs)?). Observe that 2c — §+ s — 5§ = O(xs) + O(c — Bs). Noting
at/n = O(w1/2/n) = 0o(1), we may apply a first-order Taylor expansion:
(1o(3))
t=w/2—3+c

s—&+c—1 1,% w/2—c—1 1f42 s—5+c—1 ot
I(522) 1 (722)-"10 (reo(2) T
. 1—m . 1_ﬁn/2 5 "
ofepfo( Ltk a))

t=5—c t=w/2—3+c t=5—c
—14 (’)(”’12“’2 + (= fs)° ) Xp{c_ﬁs)} (3.35)

w/2c1

n n

In the last line, we used that z2w?/n = O(1) as well as the inequality e¥ < 1+ yeY for all y € R. Next, by
our product notation convention,

c—1 ¢ s—c—1 ¢ c—1 1_5%/2
L (o) IL(-5) - I (2

t=s—5+c t=s—5+c

(o) o(:9)

t=s—c

Both zt/n = o(1) and (2¢ — s)/n = o(1), so we may apply a first-order Taylor expansion again. Since
|5 — 3] = O(ww),

(1 5) IL(1-5) = o (2570) o)

tms e
=1+O(g”2 W+ (0_68)) (3.36)

n
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The last line follows from observing 2¢ — s = 2(¢c — 8s + xs), and hence 2¢ — s = O(c — 8s) + O(zw). An
identical computation also yields control over the remaining products in (3.34).

w/2—s+5—c—1 w/2—s+c—1 9 o 9
t t z?w? + (¢ — Bs)
| I 1———F- I I 1———=1] =1 3.37
t=w/2—c ( ’yn/Q) tw/2§+c( ﬂn/2> ' O< K ) ( )

Hence the contribution of (3.35) dominates those of (3.36) and (3.37). Returning to (3.34),

Rg(fi(gﬁzi n 2)_ 5=t O(xsz i T(f — 58)2) exp{ xw(cn_ Bs) } (3.38)

This bound is sufficient to control R. Next, recall that by Lemma 3.5 from Proposition 3.1,
‘G<C) - G(g - C)| S G(C)E(]7 l) )

where we have set [ = s —w/2 and j = ¢ — 8s. Returning to (3.33) with this fact and (3.38), and then using
the tail bound on F' given in Lemma 3.7, we have:

o) £ runeof25) )

Apart from the m term, this is same bound obtained as equation (3.16) in Proposition 3.1. From
here, the proof in Proposition 3.1 may be followed exactly to see:

2.2 .2 zwj
ziw 45" Tl

3 (2~ 8)|[F(c) — F(s — o)| = o(xwlﬂ)e*@(%) (3.39)

c

s O((IwSI + 17 (z*w? +j2)>eo(z;5f)e—@("2$’2)

nw

Let us simplify the exponents. Recalling z = O(w™1/2) and n = Q(w), we have zwj/n = O(j/Vw).

o(zui) —o(L£2) —o(242) o
Fixing b > 0 large enough, if j > by/w, then e (%) e ) — e ) And, if j < by/w, then

2 (5) = O(1). So, in total, we have by Lemma 3.4,

ZO(““' T i) (e? + |ij>)6@<%69<%12) _ zo(““' + i) (2w + |ij|>>ee(f2;ﬂ)

nw nw
2
= O(xw1/2>67®<%)
Combining this with (3.39) and (3.32), we are done. This completes the proposition for all possible z. O

Proof of Proposition 3.3. Our goal is to bound:

S

Ee[(os — 0=)*lg=s] = (2c—5)°F(c) =4 (c— Ps+xs)°F(c) = o(E(gﬂsZ + (c— 65)2)F(c)>

c=0 c=0 c=0
We can directly apply the crude tailbound Lemma 3.7 on F' to conclude. By Lemma 3.4,
S

Ec[(ox — 0-)"1s=] < O(1>e@(i)(;’s)2 S @8 4 (e~ 55)2)@"9(%)

w
c=0

= (O(m2w3/2> + (9(1111/2))67@(%)(%75)2 .
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3.5. Proofs of lemmas.

Proof of Lemma 3.6. The proof is almost identical to that of Lemma 3.2. Let S := S(o) and S’ := S(¢’).
A simple computation yields:

Py[S' > S | 8] = w(%_w)(%fs(w+g) +8%) = ﬁ
) . b (3.40)
Pos' < S| 5] = m(s@ —w)+87) = e
Similarly,
PS> S |0y, o] = ﬁ((ai)z +(02)* — (ox + U:)% + U:(g - 7“) + O'i’l“)
P.S< S |og, o_] = ﬁ((oif +(0=)* + % — (o4 + 0,)% — o4 (g — r) - a:r)

Recall the definitions of the skew-symmetric operator = and Ty given in (3.3). Then

Tof(S) = asf(S+1) = bsf(5) (3.41)
Recall Af(S) is the one-step forward difference operator. For any function f that depends only on S,

T.f(0) = Tof () = |(o2 — 0 = nlo- ~ a8~ 3 )| 19 (3.42)

We aim to find an f such that Tof = 1(S = w/2) — po(w/2). Since S(o) under pg is a hypergeometric
random variable with w trials, success population n/2 and total population n, it is easy to check that taking
= po(S), as and bg as given in (3.40), and T as in (3.41) satisfies (3.4). Thus, we may apply Lemma
3.1 with ¢ := w/2 to obtain such an f. Taking the expectation of both sides of (3.42) with this choice of f
yields the first desired claim, (3.28).

Next, we have by definition of a and b, as well as the assumption that n — w = ©(n),

Af(w/2) < min(a;%,b;b) = ﬁ = O(nlw)

The second desired claim, (3.29), then directly follows from the third and fourth parts of Lemma 3.1:

S 1as/2)=0(5)
]

Proof of Lemma 3.7. Except for two changes, the proof is the same as that of Lemma 3.3. First, we now
have the simplification & = 0. Second, we use Lemma B.4 in place of Lemma B.3. O

APPENDIX A. OMITTED PROOFS

A.1. Proof of Lemma 1.1. Let p be either the Poisson or Binomial distribution on Z. We will construct
a variable X ~ p as well as another random variable X’ satisfying |X — X’| < 1 almost surely, such that X’
has the same distribution as X conditioned on the event that X is even. If we can construct such a coupling
(X, X"), then we can couple a matrix A (from either the Bernoulli or Poisson ensemble) with A’ from the
same ensemble conditioned on P (the event of even row parities), such that each row of A and A’ differ in
at most one entry.

To construct this coupling, consider a matrix A drawn from either the Poisson on Bernouli ensemble
and write X;, ¢ = 1,...,m for its row sums. For each 4, use the above coupling to construct an X with
|X; — X/| <1 and X/ even. For A drawn from the Bernoulli ensemble, copy the rows of A to A’ with the
following modification: if X! = X; — 1, flip a one to a zero uniformly at random from row i. If X/ = X; +1,
then flip a zero to a one uniformly at random. For A drawn from the Poisson ensemble: if X! = X; — 1,
decrement a non-zero entry of the row i, with entry A;; picked with probability proportional to A;;. If
X! = X; + 1, increment an entry of row ¢ uniformly at random.
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It remains to construct the desired coupling (X, X’). We use a construction due to Pinelis [34]. Denote by
' the distribution induced by conditioning 1 on being even, and define the shorthand p; := u(i), p = /' (4).
The coupling is defined as follows:
PIX = 25, X' = 2j] = pa;
PIX =2j — 1, X' = 2j] =t
PX =2j -1, X" =2(j — 1)] = poj—1 — ta;
We claim that we can define ¢ to satisfy the following conditions for all j € Z N [—1, o0]:

Poj = pizj + baj + p2j1 — tojp2 (A.1)
0 <t9; < poj1 (A.2)
If such a t exists, then (X, X’) is clearly the desired coupling, so let us construct it. First, let @ be the
probability that X ~ g is even. This probability is positive if u is a Poisson distribution. In the Binomial

case, since we have assumed that p < 1/2 in the definition of the Bernoulli ensemble, we also have @ > 0.
If @ = 1, then X is even almost surely and there is nothing to show, so we assume in what follows that

Q€ (0,1).

Let @ be the probability that X ~ p is even; then pg;/Q = ,u’Qj. Since both the binomial and Poisson
distribution are supported on nonnegative integers, we will set ¢; = 0 for all j < —2. Now we construct ¢ to
exactly satisfy (A.1).

1
tojo = toj + 2 (1 - Q) + H2j41

It remains to check that this construction satisfies (A.2). We check the two inequalities individually. First,

7—1 J—1
1
toj = Z ta(it1) —t2i = Z H2; (1 - Q) + H2j11

1=—2 i=—1
From the expression we have just derived for ¢, it is clear that to; > t5(;_1) if and only if % > % — 1. For
i

both the Poisson and Binomial cases, the sequence p is log-concave:

W > pjpj Vi €Z,

H25—1
H2j—2

which implies that the sequence of ratios y is decreasing. Therefore, the sequence t»; changes from
increasing to decreasing at most once. Since t_1 = 0 = t, and tg > 0, this implies that ¢ can never be

negative. Similarly, we can write a telescoping sum to check the other condition:

j—1
1
toj — poj—1 = Z f2j (1 - Q) + p25-1

i=—1

By identical reasoning, this expression is always non-negative, so indeed (A.2) is satisfied. This completes
the lemma. 0

A.2. Laplace’s Method: Proof of Lemma 2.2. By assumption, the columns of A ~ M are exchangeable,
so ¥; and ¢; do not depend on particular choices of u© and v. We also assumed the rows of A are independent,
so the expectation of Z is given by

E[Z]? = (ZP[u € 6@1)2 - (szﬁﬁ (A.3)

ueB

Turning to the second moment, the number of pairs of balanced vectors that are equal in 2r indices and
different in the remaining n/2 — 2r indices is:

n n/2 2
n/2 T
The first coefficient gives the number of ways to pick a balanced vector u; then, looking at the n/2 coordinates

each where u is +1 and —1 we must pick r coordinates from each for v to agree with v and have v differ on
the remaining coordinates.
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We will break the second moment calculation into three regimes. Consider r € [n] and define 8 = 2r/n.
Let § € (0,1/2) be small enough that 2H(20) < ¢, where ¢ is the constant appearing in the first-moment
bound (2.1). Let I :={r: g € (1/2—¢,1/2+¢€)} be the central region, I :={r: S € [§,1 -]\ I1} be an
annulus, and I5 := [n] \ (I3 U I2)} be the remainder. Then:

n/2

21 () 5 () e ()= () 2, (7) e (3)

reli Ul UI,

We begin by showing the annular region I is negligible. Recall 5 := 2r/n and let « := § — 1/2. Using the
weak bound (2.2) and standard tail bounds on binomial coefficients (Lemma B.3) yields

(S () TLown < () () woever i
< E[Z]? exp{-6O(n) + ©(m)}
— E[2)? exp{-O(n)} (A4)

The second line follows from the fact that § is bounded away from 1/2 on I, and the third line uses m = o(n).
Now, we show the outermost region is also negligible. Using the trivial bound that ¢;(3) < v; for all g,

(o) () T () = e ()

]E[Z] (1+O(1))nH(2§)
E

IN

IN

[Z]Q 7(1+0(1))nH(26) (A5)

2nH(26)  Hence the contribution of I3 is

where the final inequality uses the assumption that E[Z] > e > e
also exponentially small.

So, I is the only region with meaningful contribution. The sum over I; can be understood through
Laplace’s method: away from r = n/4, the term ("7{ 2) decays exponentially in n and [];_, ¢; grows at most
exponentially in m. In order for the central term when r = n/4 to agree with E[Z]? to first order, we
therefore need that ¢;(1/2) = (14 o(m™'))4?2, and to ensure that the central term is the dominant one we
need to show that ¢;(1/2 + x) grows at most quadratically in a window of constant radius around z = 0.
This is the purpose of the inequality (2.3). Using (A.4) and (A.5) to ignore I and I3, and then applying
(2.3) to bound ¢ in I,

E[Z*] <(1 +o(1))<n72> rezh (n:2>2f[1(1 —l—o(;)) (1 +C(n - ;>2>¢§

< (1+0(1)) (7;;2) Bz ; (”7{2>2 exp <mC(2; - ;)2> (A.6)

Recall m = o(n) and I} = {r: |r —n/4| < en}. Using Stirling’s approximation (Lemma B.2), we obtain

Z (n/2>26m0(2¥'§)2 = (1+0(1)) Z (ni?) Zemc(%%y

[r—n/4|<en " |r—n/4|<V/nlogn
n+2 T n r
= (14 o(1)? R S R
n

7
\rfn/4\<\/nlogn

n+2
2 Ze 22 (1+0(2))
JEZL

_ <1+ \/>2nz _nr2? (1+0o( %))

= (1+o0o(1)
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where in the last line we have used the functional equation for the Jacobi theta function [413, Theorem 3.2].
Since 1/ 2-2" = (1 +o(1 )(n%) and 32 e —nmti® (po(m)) _ 1+ o(1), we have shown

3 (”7{2>26m0(i"%)2 —a +0(1))<n7;2> .

[r—n/4|<en

Returning to (A.6) and applying this bound for Iy, the lemma is established: E[Z2] < (14 o(1))E[Z]2. O

A.3. Proof of Lemma 3.1. Denote by U, the integers {0, ..., s} and use the shorthand p; := p({i}). Define
f by

_ bs,us (Lics — p(Us—1)) Vs ed{l,...,w}. (A.7)

Then, since ps11 = psas/bsy1, we have for all s € [w],

0 (5 +1) — by (s) = (w“+ -l v+ ;M(Us_g)
Z‘t [(Lecors — Tica) = (u(Us) = p(Us-r))]
= Lo=t — it
This establishes claim (a). Now we prove (b). Note that as,bs,pbs > 0 for all s. So, if s < ¢, then
fs) = —g-p(Us—1) < 0. And, if s > t+1, then f(s) = 3%-(1—pu(Us-1)) > 0 since po < 1. This establishes

the sign of f. Next is monotonicity. Since ¢t > 1, we have f( ) < 0= f(0), so f is non-increasing from f(0)
to f(1). Now, say 2 < s < t. We have:

o 1) = (M) _ ) @M(I—bb‘”‘)) >0

bsﬂs b571p¢5,1 bsﬂs s—1Ms—1M14i
The last inequality follows from ¢ < s —1 < t and the fact that a is decreasing and b is increasing:

bsﬂs,ui—l _ as—1b; <1

be—1pts—1pti  Qi—1bs—1 ~

The argument for s > ¢ + 1 is almost identical and yields the reverse inequality. Now, we prove (¢). By (b),
we already know sup |Af(s)| < Af(t). So, we just need to show that Af(t) < min(a; ', b;").

3 et St (30 e St ) < o($)

1=t+1 1=t+1

The last inequality again uses the monotonicity of a and b and the fact g sums to 1. The proof that
Af(t) < b; ! is essentially identical so we omit it.

Finally, we turn to claim (d) of the lemma. We need three facts that we have already established:
Af(s) < 0for all s # t; f(s) <0 for s <t and f(s) > 0 for s > t. Combining the first two facts,
D os<i_1 |Af(s)| telescopes and is bounded above by |f(t)|. Similarly, combining the second two facts,

Seser1 AF(S)] |t + D). Since [f(t+ 1)+ |f(t)] = F(t+1) — f(t) = |Af(2)],
STIALS) = D IAFG)+IALBI+ D> IAFG$)] < @)+ AF@O)]+][f(E+ 1)

s s<t—1 t+1<s

=2|Af(1)].
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APPENDIX B. LOCAL LIMIT THEOREMS
We collect several approximations which we use throughout.

Lemma B.1 (De Moivre-Laplace [22, Theorem VIL.3.1]). Let p € [§,1 — §] for a constant § € (0,1/2), and
write q =1 —p. Let k =r —np. For anyr € {0,...,n}, it holds

(Z)p’”(l —p)" T = (1 +0 (1)> __ 1 mtmroi)ro(l)

n 2mnp(1 —p)
Specializing to p = 1/2 yields the following simplified bound.
Lemma B.2 (Stirling’s approximation for Binomial coefficients [11, Equation (5.43)]). If |r — n/2| =

o(n=2/3), then
n 2 2
- (1 1 £ 9n —2(r—n/2) /n
(1) = oy 22

We also have a coarser estimate valid for all r.

Lemma B.3 (Gaussian tails for Binomial). In the same setting as Lemma B.1, for any r € {0,...,n},

n 1 k2
(1 —p)" " = — e #np(-p) |
(7”>p -p) O(\/ﬁ>e

Proof. When k = o(n?/3), this bound follows from Lemma B.1. When k = Q(n?/3), we employ Hoeffding’s
bound [27]; letting X ~ Bin(n,p),

" (1 TSP X —E[X]| > k] <2 2 ?12 ) =0 1 1 ?12 )
— — np(l—p) = np(1—p
r p p) — H [ ]|— ]— € \/’7?, € 9

where the last step uses ek — O(ﬁ) if k= Q(n2/3)_ 0
Lemma B.4 (Gaussian tail for Hypergeometric distribution [25, Theorem 2, (i)]). Consider a hypergeometric

random variable X ~ H(w;pn,n) with w trials, n total population, and np population successes. There is
some universal constant K such that for any A > 0,

o< el 2 (13220 )]

In particular, if n —w = ©(n),

(TZD) <n5‘}1:/§)) (Z) B - O(\/%)e_e(i)(k—wmz

Lemma B.5 (Edgeworth Series for lattice sums [33, Theorem 2]). Let {X;}ien be independent identically
distributed random variables with X1 € {-1,0,1}, E[X1] = 0, and E[X}] = o®. Denote by r, the r-th
cumulant of X1, and denote by ¢ the density of standard unit Gaussian. Define the quantities

N
o\v/n

Then, there exists a collection of polynomials {gs, (x)},en, each of degree 3v with coefficients depending only
on the moments of X1 up to order v+ 2 (inclusive), satisfying

P(N)=P|> X;=N|, z=
j=1

o(1)
(T + a7

k—2
o VAP(N) — o) — 3 BADOAD)

v=1

In particular, g3, = 0 for any odd v, and the first non-zero q is qg given by:
1 1
N I A € 2246
w(@o(e) = (3000 @) + 5346000))

where A\, = 2= and ") is the rth derivative of the Gaussian density.
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Lemma B.6 (Exponential upper-tail for Poisson distribution [15, Theorem 1] ). If S has Poisson distribution
with mean \, then
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