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Abstract— There has been an increasing interest in using
neural networks in closed-loop control systems to improve
performance and reduce computational costs for on-line imple-
mentation. However, providing safety and stability guarantees
for these systems is challenging due to the nonlinear and
compositional structure of neural networks. In this paper, we
propose a novel forward reachability analysis method for the
safety verification of linear time-varying systems with neural
networks in feedback interconnection. Our technical approach
relies on abstracting the nonlinear activation functions by
quadratic constraints, which leads to an outer-approximation
of forward reachable sets of the closed-loop system. We show
that we can compute these approximate reachable sets using
semidefinite programming. We illustrate our method in a
quadrotor example, in which we first approximate a nonlinear
model predictive controller via a deep neural network and then
apply our analysis tool to certify finite-time reachability and
constraint satisfaction of the closed-loop system.

I. INTRODUCTION

Deep neural networks (DNN) have seen renewed interest
in recent years due to the proliferation of data and access to
more computational power. In autonomous systems, DNNs
are either used as feedback controllers [1], [2], motion plan-
ners [3], perception modules, or end-to-end controllers [4].
Despite their high performance, DNN-driven autonomous
systems lack safety and stability guarantees. Indeed, recent
studies show that DNNs can be vulnerable to small pertur-
bations or adversarial attacks [5], [6]. This issue is more
pronounced in closed-loop systems, as a small perturbation
in the loop can dramatically change the behavior of the
closed-loop system over time. Therefore, it is of utmost
importance to develop tools for verification of DNN-driven
control systems. The goal of this paper is to develop a
methodology, based on semidefinite programming, for safety
verification and reachability analysis of linear dynamical
systems in feedback interconnection with DNNs.

Safety verification or reachability analysis aims to show
that starting from some initial conditions, a dynamical system
cannot evolve to some unsafe region in the state space. Meth-
ods for reachability analysis can be categorized into exact
(complete) or approximate (incomplete), which compute the
reachable sets exactly and approximately, respectively. Ver-
ification of dynamical systems has been extensively studied
in the past [7]-[9]. More recently, the problem of output
range analysis of neural networks has been addressed in
[10]-[16], mainly motivated by robustness analysis of DNNs
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against adversarial attacks [6]. Compared to these bodies
of work, verification of closed-loop systems with neural
network controllers has been less explored [17]-[20]. In
[20] the authors extend the verification tools for neural
networks to deep reinforcement learning tasks. In [18], a
method for verification of sigmoid-based neural networks in
feedback with a hybrid system is proposed, in which the
neural network is transformed into a hybrid system and then
a standard verification tool for hybrid systems is invoked. In
[17], a new reachability analysis approach based on Bernstein
polynomials is proposed that can verify neural-network-
controlled systems with Lipschitz continuous activation func-
tions. Dutta et al. [19] use a flow pipe construction scheme to
over approximate the reachable sets. A piecewise polynomial
model is used to provide an approximation of the input-
output mapping of the controller and an error bound on the
approximation. This approach, however, is only applicable
to Rectified Linear Unit (ReLU) activation functions.

Contributions. In this paper, we propose a semidefinite
program (SDP) for reachability analysis of linear time-
varying dynamical systems in feedback interconnection with
neural network controllers equipped with a projection oper-
ator, which projects the output of the neural network (the
control action) onto a specified set of control inputs. Our
technical approach relies on abstracting the nonlinear activa-
tion functions as well as the projection operator by quadratic
constraints [14], which leads to an outer-approximation
of forward reachable sets of the closed-loop system. We
show that we can compute these approximate reachable
sets using semidefinite programming. Our approach can be
used to analyze control policies learned by neural networks
in, for example, model predictive control (MPC) [21] and
constrained reinforcement learning [22]. To the best of our
knowledge, our result is the first convex-optimization-based
method for reachability analysis of closed-loop systems with
neural networks in the loop. We illustrate the utility of our
approach in two numerical examples, in which we certify
finite-time reachability and constraint satisfaction of a double
integrator and a 6D quadrotor system.

A. Notation and Preliminaries

We denote the set of real numbers by R, the set of real
n-dimensional vectors by R™, the set of m x n-dimensional
matrices by R”**", the n-dimensional identity matrix by I,,,
and the set of n-by-n symmetric matrices by S™. For A €
R™*™_the inequality A > 0 is component-wise. For A € S",
the inequality A = 0 means A is positive semidefinite.
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II. PROBLEM FORMULATION

A. Neural Network Control System

We consider a discrete-time linear time-varying system
P: Ti41 = AtIt + Btut + ¢, (1)

where z; € R"=, u; € R™ are the state and control vectors,
and ¢; € R™= is an exogenous input. We assume that the
system (1) is subject to input constraints,

Uteut7t:0717”'7 (2)

which represent, for example, actuator limits that are nat-
urally satisfied or hard constraints that must be satisfied
by a control design specification. A specialization that we
consider in this paper is input box constraint u, < us < .
Furthermore, we assume a state-feedback controller 7 (x) :
R™ — R™ parameterized by a multi-layer feed-forward
fully-connected neural network. The map z +— w(z) is
described by the following equations,

Z‘O:JZ‘

df = g(Whah + %) k=0,
m(z) = Wzt +v°,

-1 3)

where Wk € Rms+1Xnk pk c R7e+1 are the weight matrix
and bias vector of the (k + 1)-th layer. The nonlinear
activation function ¢(-) is applied component-wise to the
pre-activation vectors, i.e., ¢(z) = [p(z1) -+ @(x,,)] " = €
R™, where ¢ : R — R is the activation function of each
individual neuron. Common choices include ReLU, sigmoid,
tanh, leaky ReLU, etc. In this paper, we consider ReLU
activation functions in our technical derivations but we can
address other activation functions following the framework
of [14]. To ensure that output of neural network respects
the input constraint, we consider a projection operator in the
loop and define the control input as

ur = Projy, (m(x1)) = min (max (7 (z¢) ,uy) ,Ue) . (4)

We denote the closed-loop system with dynamics (1) and the
projected neural network control policy (4) by

Tip1 = fr (2¢) == Agze + By Projy, (m(z¢)) + ¢, (5)

which is a non-smooth nonlinear system because of nonlinear
activation functions in the neural network as well the pro-
jection operator. For the closed-loop system (5), we denote
by R:(Xp) the forward reachable set at time ¢ from a given
set of initial conditions Xy C R™», which is defined by the
following recursion

Ri1(Xo) = fr(Re(Xp)), Ro(Xo) = Ap. (6)

See Figure 1 for an illustration.

Fig. 1: An illustration of closed-loop reachability with the
initial set Xp, the t-step_forward reachable set R¢(Xp), and
its over-approximation R;(Xp) shown in magenta.

B. Finite-Time Reach-Avoid Verification Problem

In this paper, we are interested in verifying the finite-time
reach-avoid properties of the closed-loop system (5). More
specifically, given a goal set G C R"» and a sequence of
avoid sets A; C R™, we would like to test if all initial
states xg € Xy of the closed-loop system (5) can reach G
in a finite time horizon N > 0, while avoiding A; for all

t=0,---,N. This is equivalent to test if
Rn(X) € G (7a)
Ri(X)N A =0 Ve=0,---,N, (7b)

holds true for (5). There exist efficient methods [23] and
software implementations [24] for testing set inclusion (7a)
and set intersection (7b). However, computing exact reach-
able sets for the nonlinear closed-loop system (5) is, in
general, computationally intractable. Therefore, we resort to
finding outer-approximations of the closed-loop reachable
sets, R¢(Xp) 2 Ri(Xp). To obtain useful certificates, we
want the approximations R;(X;) to be as tight as possible.
Thus our goal is to compute the tightest outer-approximations
of the t-step reachable sets. This can be addressed, for
example, by solving the following optimization problem,

minimize Volume (R (Xp))

_ 8

subject to R¢(Xp) C R¢(Ap). ®)
In the following sections, we will derive a convex relaxation
to the optimization problem (8).

III. PROBLEM ABSTRACTION VIA QUADRATIC
CONSTRAINTS

In this section, we use the framework of Quadratic
Constraints (QCs) to abstract the reachable set estimation
problem. The main idea is to replace the original closed-
loop system f. in (5) with an abstracted system f; in the
sense that fr over-approximates the output of the original
system for any given initial set Xp, i.e. fr(Xy) C fW(XO).
Based on this abstracted system, we will then show that we
can compute the reachable sets via semidefinite programming
(SDP). In the following, we will develop such an abstraction.
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A. Quadratic Constraints

We begin with a formal definition of QCs for sets and
functions [14].

Definition 1 (Quadratic Constraints) Let X C R™ be a
nonempty set and define

xT

1

Then we say X satisfies the QC defined by P. The vector
[J;T 1] T is called the basis of this QC.

For each fixed P € P, the set of x’s satisfying the quadratic
inequality in (9) is a superset of X'. Indeed, we have that

xc {xeR" mTPm zo}. (10)

PcP
In this paper, we use polytopes and ellipsoids to represent
sets. Nonetheless, as addressed by [14], other sets such as
hyper-rectangles and zonotopes can also be used.

.
P={PecsS"| m P[ } >0vVzeX}. (9)

Proposition 1 (QC for polytope [14]) The polytope X =
{z € R"™ | Hx < h} with H € R™*"=_ h € R™ satisfies
the QC defined by
T _gT
P:{P’P:{H 'H H'Th

hTTh

ot },res ,rzo}.

(1)

Proposition 2 (QC for ellipsoid [14]) The ellipsoid X =
{x e R"™ | ||Ax +b||2 < 1} with A € S™ and b € R"=
satisfies the QC defined by

—ATA —ATb

In light of Definition 1, we define QCs for functions
as quadratic constraints satisfied by their graph, G(¢) =

{(z,9) [y = ¢(2)}.

Definition 2 (QC for functions [14]) Let ¢: R* — R"
and suppose Q C S?"*1 is the set of all symmetric indefinite
matrices @) such that

T T T
¢(z)| Q|o()| =0. (13)
1 1

Then we say ¢ satisfies the QC defined by Q.

We will focus on the ReLU function throughout the paper
but other types of activation functions such as sigmoid and
tanh can also be represented by QCs [14]. In the following
lemma, we abstract ReLU functions via QCs.

Lemma 1 (QC for ReLU function [14]) The ReLU acti-
vation function ¢(x) = max(0,z) : R™ — R" satisfies the
QC defined by

with basis [v7 ¢(z)" 1]T. The submatrices are

Q11 = O, Q12 = diag(\) + T,
Q13 = =V, Q22 = —2(diag(\) + 1), (15)
Q23 =v+mn, Q33 = 0.
Here, n,v > 0 and T € S} is given by
n n-1 n
T =3 Newel + 303 Njlei—e;)ei—e5) T, (16)
i=1 i=1 j>i

where \;;j > 0 and e; € R™ has 1 in the i-th entry and 0
everywhere else.

Proof: See [14]. |
As we will see in Section IV, the @ matrix in (14) will
appear as a decision variable in the SDP. Note that the
QC in (14) holds globally for the whole space R™. When
restricted to a local region in the state space, these QCs
can be tightened to provide tighter bounds [14]. This would
require one to compute lower and upper bounds on the
preactivation values in each layer, which can be done by
using interval arithmetic [25] or linear programming [16] as
a presolve step.

IV. REACH-SDP: COMPUTING REACHABLE SETS VIA
SEMIDEFINITE PROGRAMMING

In this section, we propose Reach-SDP, an optimization-
based approach that uses the QC abstraction developed in the
previous section to recursively estimate the reachable sets,

ﬁt—‘—l(){o) = Reach_SDP (Qt(XO)) 3 (17)

fort =0,---, N —1. To begin, consider the system (1) with
the projected neural network controller (4):

Ti41 — Atl't + Btut + Cty, Tt S ﬁt(XO) (183)

) = 2y (18b)
Pt = max(Wrzk +%,0) k=0,--- -1
it = max(Wzt 4 b — u,,0)
242 = max(—2 + @y — u,,0)

Uy = —xf“ + Uy,

where we have embedded the projection operator (4) as two
additional ReLU layers into the neural network. The road
map to developing the method is as follows. First we abstract
the input set R;(Xy) and the neural network by quadratic
constraints, each with a different basis vector. Then, we
will use congruence transformations to represent all these
quadratic constraints with the same basis vector

RIS A A

) 1}7 c R7lm+nn+2nu+1’

19)
i.e., the vector obtained by concatenating the state vector z
and all the activation values z}, - -- , z:™2. Finally, we show

that we can propagate the quadratic constraints through the

Q11 Q12 Qi3 abstracted neural network by the S-procedure in the form of
Q=1QesS™ Q= |Q Qn Qs ,  (14) a semidefinite program. In the sequel, we will go through
Ig Q;?, Q33 the technical details of the overall procedure.
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A. Input Set

Proposition 3 Suppose the set Ri(Xy) satisfies the QC
defined by P. Then, for any P € P, we have

{Xt}T My (P) {Xt] >0 V€ Re(Xo), (20)

1 1
where M, (P) = E,] PEy,. The change-of-basis matrix is
I, 0 0 0
B = [ 0 0 0 1] '

B. Reachable Set

In our framework, we assume the candidate set Ry 1(Xp)
that over-approximates R;41(Xp) is represented by the in-
tersection of finitely many quadratic inequalities,

T
Tt+1 Tt4+1
] s <o,
(2D
where the matrices S; € S™=+! capture the shape and volume
of the set and will appear as decision variables in the SDP.
Typically, (21) is able to describe polytopic and ellipsoidal
sets, which we discuss in detail now.

1) Polytopic reachable set: If the reachable set is to
be over-approximated by a polytope, i.e. Rip1(Xy) =
{z € R" | Hx < h}, then,

0 H;
5= i)
where H;' € RX"= is the i-th row of H € R™*" and
h; € R is the i-th entry of h € R™. Here, we require the
H matrix, which determines the orientation of each facet of
the polytope, to be given while we leave h;’s as decision
variables in the SDP.

2) Ellipsoidal reachable set: 1If the reachable set is
to be over-approximated by the ellipsoid Riy1(Xy) =
{z € R" | || Az + b||2 < 1}, then,

ATA  ATh
b'TA b'b—1 } ’
where A € S™» and b € R™= are decision variables describ-
ing the center, orientation, and volume of the ellipsoid.

m

Ris1(Xo) = ﬂ

i=1

{mt—&-l c R

(22)

S,;_S_{ (23)

Proposition 4 Let x;, be defined as in (19) and R11(Xo)

as in (21). Then
T
Xt Xt
M SiM SO}, 24)

Si Eout- The change-of-basis matrix

i=1

Ris1(Xo) = m {Xt € R"

where Moy (S;) = EJ.

out
A
E o At 0o --- 0 —Bt Btﬂt—l—ct
1o 0 - 00 1 '

Proposition 5 Consider the projected neural network (18b)
and let Q be defined as in (14). Then for any Q € Q we

have

.
{ﬂ Muia(Q) {ﬂ >0 Va,eR™, (25)

where My;ia(Q) = E;idQEmid. The change-of-basis matrix
is

E1 €1
Epna= [E2 0f, (26)
0 1
where
_ bO
wo 0 0 0
FEi = e = Z;l
0 wetoo0 o0 bgbi "
o -~ 0 -I,, 0 _ t
- U — Uy
(27)
0 I, 0 0 0
: © 0
Ey=10 o I, 0 0
0 0 0 I, O
0 0 0 0 I,

We are now ready to state our main result for over-
approximating the reachable set R;y1(Xp) for the closed-
loop system (18).

Theorem 1 (SDP for one-step reachable set) Consider
the closed-loop system (18). Suppose the set Ri(Xy) satisfies
the QC defined by P. Let Q be defined as in (14). Define
Ri11(Xo) as in (21). Consider the LMI’s

Min(P) + Mmia(Q) + Mout (S) < 0. (28)

fori=1,--- ,m. If there exists matrices (P, Q:))eEPxQ
that satisfy (28), then Riy1(Xo) C Rit1(Xo)-

Proof: Suppose (28) holds for some matrices (P;, Q;) €
P x Q. By left- and right-multiplying both sides of (28) by
[x/ 1] and [x, 1]T, the basis vector in (19), we have

x,] " X x,] " X %] X
t t t t t t
o) e [3 [ s (3] 2 [ <0
The first two quadratic terms are nonnegative for all x; €
R+(Xy) by Proposition 3 and 5, respectively. Consequently,

the last quadratic term must be nonpositive for all z; €
Rt(XO)s

-
ht] Mot (S) ht] <O0Va € Ry(Xy).  (29)

By Proposition 4, the above condition is equivalent to z;11 €
Rit1(Xo). u

C. Minimum-Volume Approximate Reachable Set

Theorem 1 provides a sufficient condition for over-
approximating the reachable set Ri:i1(Xp). Now we can
use this result to reformulate problem (8), which finds a
minimum-volume approximate reachable set R 1(Xp).

If the approximate reachable set is parametrized by a
polytope as in (22), it is difficult to find a minimum-volume
polytope directly. However, given a matrix H € R™*"=
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that describes the facets of the polytope, we can solve the
following SDP problem,

inimi h; bject to (28 30
eI e bl 0 @9, GO
for all ¢+ = 1,--- ,m. For each fixed facet H; € R"* in

H, SDP (30) finds the tightest halfspace {y | H,'y < h;}
that contains R;11(Xp). Finally, the polytopic approximate
reachable set is given by the intersection of those halfspaces,
ie. Rir1(Xo) = {y | Hy < h}, as in Section IV-B.

If the approximate reachable set is parametrized by an
ellipsoid as in (23), we can easily obtain a minimum-volume
ellipsoid that encloses R 1(Xp) by solving,

—log det(A) subject to (28). 31

minimize
PeP, QeQ,
AeS™e | beR"®
Note that (28) is not convex in A and b. Nonetheless we
can find a convex constraint equivalent to (28) using Schur
complements. See [26] for details.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate our approach with two ap-
plication examples. The controllers used to generate training
data were implemented in YALMIP [27]. All neural network
controllers were trained with ReLU activation functions
and the Adam algorithm in PyTorch. We used MATLAB,
CVX [28] and Mosek [29] to solve the semidefinite pro-
grams.

A. Double Integrator

We first consider a double integrator system

1 1 0.5
l‘t+1=|:0 1:| Z‘t+|:1:|ut,
——— ——

A B

(32)

discretized with sampling time ¢; = 1s and subject to
state and input constraints, A% = [=5,5] x [—5,5] and
U = [—1, 1], respectively. We implemented a standard linear
MPC following [30] with a prediction horizon Nypc = 10,
weighting matrices Q = I, R = 1, the terminal region
OLRE and the terminal weighting matrix P, synthesized
from the discrete-time algebraic Riccati equation. The MPC
is designed as a stabilizing controller which steers the
system to the origin while satisfying the constraints. We
then use the MPC controller to generate 2420 samples of
state and input pairs (z, mvpc(z)) for learning. The neural
network has 4 hidden layers each with 10 neurons and
ReLU activation function. Our goal is to verify if all initial
states in Xp = [3,4] x [0.5,1.5] can reach the set § =
[-0.5,0.5] x [—0.5,0.5], a region near the origin, in N =
6 steps while avoiding A at all times. We computed the
polytopic approximate reachable sets R1(Xp), - - - , Re(Xp)
using the Reach-SDP introduced in Section IV. As shown in
Figure 2, our approach yielded a tight outer-approximation
of the reachable sets and successfully verified the safety
properties sought.

Bl Exact
Reach-SDP
1 Goal

T2
o
)

Fig. 2: [Illustration of the initial set A; (black), exact
reachable sets R(Xp) (blue), approximate reachable sets
R+(Xp) (red) given by Reach-SDP and the goal set G (green).
The solid black line represents the state constraint x; < 5.

B. 6D Quadrotor

In the second example, we apply Reach-SDP to a 6D
quadrotor model in [31]. The dynamics are given as follows,

O3x3
tan(6)
. O3x3 I3 g 0 0551
T = T+ tan +

[O3><3 03><3:| 0 —yg T(¢) -9

0 ~~

A N— c

%/_/ u
B

(33)
where ¢ is the gravitational acceleration, the state vector
T = [Pz, Py, P2, Uz, Uy, v;] | include positions and velocities
of the quadrotor in the 3D space and the control vector u
is a function of @ (pitch), ¢ (roll) and 7 (thrust), which are
the control inputs of the original model. The control task
is to steer the quadrotor to the origin while respecting the
state constraints A% = [~5,5] x [~5, 5] x [=5, 5] x [~1,1] x
[~1,1] x [~1,1] and the actuator constraints [0, ¢, 7]’ €
[-7/9,7/9] x [-7/9,7/9] x [0,2g]. We implemented a
nonlinear MPC with a prediction horizon Nypc = 30,
weighting matrices Q@ = Ig, R = I, and the terminal
constraint xn,,. = 0. The continuous-time model in (33)
is discretized with a sampling time ¢, = 0.1s using the
RungeKutta 4th order method. A total number of 4531
feasible samples of state and input pairs (x, mvpc(z)) were
generated and used to train a neural network with 2 hidden
layers and 32 neurons in each layer. Note that the actual
control input 6 and ¢ fed into the quadrotor can be effectively
obtained by applying arctan to the first two entries in
mupc(z). The initial set is given as an ellipsoid Xy =
E(qo, Qo), where qo = [4.7 4.7 3 0.95 0 0] is the center
and Qo = diag(0.052,0.05%,0.05%,0.01%,0.01%,0.01%) is
the shape matrix. Here, we want to verify if all initial states
in Xp can reach the set G = [3.7,4.1] x [2.5,3.5] x [1.2,2.6],
which is defined in the (p,py,p.)-space, in ¢t = 1 second
subject to the state and input constraints. We approximated
the ellipsoidal forward reachable sets R1(Xp), -+ , Ri0(Xo)
using the Reach-SDP. The resulting approximate reachable
sets are plotted in Figure 3 which shows that our method is
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able to verify the given reach-avoid specifications. [12]
° Bl xact
s [ Reach-spp  [13]
1 Goal
4 [14]
‘ 35
[15]
3
/
28 3.8 4 42 4.4 4.6 48 5 5.2 [16]
Pe
Fig. 3: Tllustration of the exact and approximate reachable (7]
sets of the quadrotor system in the (p,,py)-space. The solid
black line represents the state constraint p, < 5.
[18]
VI. CONCLUSIONS
In this paper, we propose a novel convex-optimization-  [19]
based reachability analysis method for linear systems in
feedback interconnection with neural network controllers.
Our approach relies on abstracting the nonlinear components  [20]
of the closed-loop system by quadratic constraints. Then we
show that we can compute a guaranteed outer-approximation 21]
of the reachable sets via semidefinite programming. Future
work includes extending the current approach to incorporate
nonlinear dynamics and to approximate backward reachable [22]
sets, which is useful for certifying invariance properties.
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