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Strong recovery of geometric planted matchings

Dmitriy Kunisky* Jonathan Niles-Weed!

Abstract

We study the problem of efficiently recovering the matching between an unlabelled collection of n points
in R? and a small random perturbation of those points. We consider a model where the initial points are
iid. standard Gaussian vectors, perturbed by adding i.i.d. Gaussian vectors with covariance ¢2I,. In this
setting, the maximum likelihood estimator (MLE) can be found in polynomial time as the solution of a linear
assignment problem. We establish thresholds on o2 for the MLE to perfectly recover the planted matching
(making no errors) and to strongly recover the planted matching (making o(n) errors) both for d constant and
d = d(n) growing arbitrarily. Between these two thresholds, we show that the MLE makes nS+°W errors for an
explicit § € (0, 1). These results extend a recent line of work on recovering matchings planted in random graphs
with independently-weighted edges to the geometric setting. Our proof techniques rely on careful analysis of
the combinatorial structure of partial matchings in large, weakly dependent random graphs using the first and
second moment methods.

1 Introduction

Consider a set of n unlabelled particles {x1,...,z,} in R? undergoing random motion. A short time later, the
particles are observed at new locations {yi,...,yn}. Is it possible to ascertain which particles correspond to
which? This problem—known as multitarget tracking—was proposed for theoretical analysis by [15], and has a
wide range of applications in many scientific contexts where it is useful to infer the trajectories of objects from a
succession of still images.

For concreteness, we formalize this question as follows: fix a dimension d € Z, a sample size n € Z,
and a noise variance 02 € Ry. We first draw x1,...,z, ~ N(0,1I,) independently, then draw noise vectors
21,...,2n ~ N(0,0%1,) independently (of one another and the ;) and set y; := x; + z;. We then draw a hidden
permutation 7* ~ Unif(S,) and observe the tuple (x1,...,%Zn, Yr+(1),---sYr+(n)). The goal is to estimate the
planted permutation 7* from this observation.

While this model is quite natural, rigorously analyzing its statistical and computational properties has proven
challenging, chiefly because the pairwise distances {[lz; — y;[*}7;=; are not independent. In the interest of
identifying a mathematically tractable alternative, [15] suggested to study a simpler model where independent
random variables are substituted for these distances. Under this simplified model, we observe a matrix W € R™"*"
where, for a random hidden permutation 7*, the entries W;; are drawn from a distribution P when 7*(i) = j,
and another distribution Q otherwise, all independently.

Models of this type have attracted significant recent interest in the computer science and statistics
communities, and precise results are now known in a number of different settings [18, [36l 42]. Despite this
progress, however, the original problem of recovering planted geometric matchings to our knowledge has not
received any attention since its proposal by [L5].

In this work, we make progress on this original question. We precisely characterize the performance of a natural
recovery procedure based on the linear assignment problem, and establish thresholds on ¢2 for this procedure
to recover the planted matching with various amounts of error. Our results also suggest new conjectures about
the performance of a natural online algorithm for multitarget tracking which has been proposed in the signal
processing literature [12], 40} [41]. Taken as a whole, our results indicate regimes in which it is possible to recover
geometric planted matchings to high accuracy in polynomial time.
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We will focus on the mazimum likelihood estimator (MLE) of 7 from the observations, which is given by

~ 1« R
(1.1) T = arg max exp <_ 202 Z l|: — yw(i)”2> = argmmz i — Yr(ill>-
e n i=1

TESY i=1

One advantage of this estimator is that it does not depend on the variance o2, which may not be known in

practice. Crucially, despite being given as the solution to an optimization problem over S,,, the estimator can be
computed in polynomial time, since it is an instance of the linear assignment problem. Solutions may therefore
be computed efficiently either by an exact relaxation to a linear program over doubly stochastic matrices, or with
specialized combinatorial algorithms such as the Hungarian algorithm [11, [28].

We note that though the MLE is a canonical choice of estimator, it is not the only available polynomial-time
approach. Another natural approach is to estimate 7* by greedily matching each point @; to its nearest neighbor.
One can show that this algorithm is competitive with the MLE in some regimes, but is strictly dominated by
the MLE when the dimension is large. We discuss this algorithm and a similar greedy algorithm which seeks to
maximize the correlation between ; and its matched point in Appendix [A]

We assess the error incurred by the MLE by counting how many indices of [n] it matches incorrectly. We
define the (random) set of such errors,

(1.2) E={icn 7() @)}

We will primarily be concerned with the behavior of the random variable |£]. Tts law is unchanged by fixing 7*,
so we assume without loss of generality that 7* is the identity permutation. We lastly introduce some standard
jargon. We say 7 achieves strong recovery (of 7*) if |€| = o(n), achieves perfect recovery if || = 0, and achieves
near-perfect recovery or sublinear error if 0 < |€| < o(n). In contrast, we say 7T makes a macroscopic number of
errors if |£] = Q(n).

Most prior work on planted matching problems has focused on establishing when strong recovery is or is not
achieved. We will partly address this question, but we will also study the polynomial error rate given by %
As we show below in Section this finer control is valuable in applications to multitarget tracking over time.
We identify this rate by analyzing the cycle decomposition of 7 and counting the associated augmenting cycles
of length greater than one; in particular, much of our analysis depends on a precise analysis of the number of
augmenting 2-cycles, which we interpret as forming a random graph on [n]. We give a further overview of our
proof techniques in Section below.

The limits of recovering planted matchings under independent weights are increasingly well understood. These
models exhibit a phase transition in the recoverability of 7*, which was conjectured by [15], proved in a special
case by [36], and studied in greater detail and generality by [18] 42]. The approach of [36] in particular may be
viewed as an extension to the planted setting of an earlier line of work studying optimal matchings under i.i.d.
weights, the so-called random assignment model [3), 14l 34] [39]. Despite the sophistication of these results, their
techniques rely heavily on the independence assumption, and many of their conclusions remain conjectural in the
geometric matching setting.

More broadly, various problems of estimating combinatorial structures from noisy observations have received
much attention in recent years. As in our case, the models making strong independence assumptions have been
the most amenable to analysis; notable examples include the stochastic block model [1}, [17] [37] and the planted
clique model [5, [10, 26], both of which may be viewed as models of community detection in networks. One of
the remarkable phenomena that such models exhibit is the statistical-to-computational gap, where in a range of
model parameters it is possible to estimate the planted object, but (conjecturally) only with prohibitively costly
algorithms (see, e.g., [9]). There is not yet evidence that planted matching problems ever have such gaps, but it
is an interesting open question to determine if this in fact ever occurs. We note also that the difference between
independent planted matching models and our geometric planted matching model is analogous to the difference
between the stochastic block model of network community structure and the stochastic ball model [8 25] and
similar Gaussian mixture models [32] [35] analyzed more recently in the community detection literature.

Finally, the question of optimally matching i.i.d. random points is a classical topic in probability theory
and computational geometry [2| 6] [14} [29] [30} 311 [44] 45 [46]. This line of work studies a natural null model
counterpart to ours, where all 2n points ®1,...,T,,Y1,...,Yn are i.i.d. This model is the geometric analogue
of the random assignment problem, and it would be interesting to understand whether the optimal transport
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techniques developed for analyzing matchings of i.i.d. points (such as the PDE approach of [6, [14]) can be
imported to the study of geometric planted matching models, in the same way that [36] imported the techniques
of |3 [4] related to local weak convergence from the random assignment problem to their independent planted
matching model.

The remainder of the paper is organized as follows. In this section we present our main results, a stylized
application to multitarget tracking over time, an overview of our proof techniques, and several open questions. In
Section [2| we present some preliminary technical tools. In the remaining two sections we prove our main results,
which constitute upper and lower bounds with high probability on |£]. In Section We prove upper bounds using
the first moment method, and in Section [4] we prove lower bounds using the second moment method.

1.1 Notation Throughout, we focus on the n — oo limit and let d = d(n) and 0? = o%(n) scale at various
rates with n. The asymptotic symbols o(+), O(+),w(-), 2(-), ©(), <, ~, and > will have their usual meanings with
reference to the limit n — oo, subscripts such as O, (+) indicate that the implicit constant depends on the quantity
a, and events which occur with probability 1 — o(1) are said to hold “with high probability.”

We also introduce some further notation for the MLE. We define two cost matrices W, W € R"*" with
entries

(1.3) Wi = s — i,
(1.4) Wij = (@i, yj),
and note that, writing P, for the permutation matrix of a permutation 7, the MLE is equivalently
(1.5) 7 = argmin(W©, P) = argmax(W, Py),
TESn TESR

since, upon expanding the squared distances, each ||z;||* and |y;||* occurs exactly once for any 7.

For a,b € R, we write a V b for the maximum of a and b and a A b for their minimum. Given x > 0, we let
log, (x) := 0V log(x).

1.2 Main Results To state our results, we consider three different regimes: the low-dimensional regime where
d = o(logn), the logarithmic regime where d = ©(logn), and the high-dimensional regime where d = w(logn). In
each, we identify the behavior of |£| as a function of 2. As our proofs make clear, the difference between these
regimes is justified by the fact that the quantity

log(1+ 072
g7 g(l+077)
plays the role of a signal-to-noise ratio for our problem, which suggests that the correct scaling of o is
02 = O(n~¢%) for some & > 0 in the low-dimensional regime, 02> = O(1) in the logarithmic regime, and
02 = O(+%-) in the high-dimensional regime. Our main results verify these claims.
logn

In the low-dimensional regime, we are able to resolve the thresholds between perfect recovery, strong recovery,
and macroscopic error.

THEOREM 1.1. (LOW-DIMENSIONAL REGIME) Suppose that d = o(logn).
1. (Perfect recovery) If 0 = o(n=%/?), then |E| = 0 with high probability.

2. (Small error) If o = ©(n=*), then E|E| is bounded; in particular |E] < f(n) for any f(n) = w(1) with
high probability.

3. (Sublinear error) If n~44 « 0% < n=?/?% then there exists an absolute constant ¢ > 0 such that, for any
f(n) = w(1), with high probability

(1.6) 2 < €| < f(n)oin?.

Vd

In particular, if % log(14+072) — £ € [2,4], then the following convergence in probability holds as n — oo:

log(1V |&]) £

1.7 =Nl bl PN B

4 logn - 2
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2 2/d

4. (Linear or nearly-linear error) If o* > an~ for some a > 0, then there exists ¢ = c(a) such that

|E| > e~ with high probability.

Note that when o2 = Q(n~2/%) and d is a constant not depending on n, Theoremimplies that |€] = Q(n) with
high probability; this is the only regime where we are able to show that the MLE actually incurs macroscopic
error. When 1 < d < logn with the same scaling of o2, we find the nearly macroscopic || = Q(n!=°().
One way to gain some intuition for this statement is to consider instead a greedy matching algorithm, that
matches each x; (in some sequence) to the nearest unmatched y;. The typical minimum distance between any
two of the @; is typically min;»; ||z, — ;|| = O(n~2/4), whereby the expected perfect recovery threshold is
o= @(n’z/d). On the other hand, the minimum distance between any particular x;, say i1, and another x;
is typically minj.; |1 — ;|| = O(n~1/). Moreover, this is simultaneously achieved for most of the z;, so the
expected strong recovery threshold is o = @(n‘l/ 1), We give further comparisons between the MLE and this
greedy algorithm as well as another variant thereof in Appendix [A]

In the logarithmic regime we obtain similar results, except that the range of o2 yielding sublinear errors

appears to end at a point when |€] = ©(n?) for some § < 1. In fact, in Conjecture below we predict the
log(1V|E])

logn > Where the error rate jumps sharply from |£| = o(n’)

existence of a discontinuity in the limiting value of
to |E] = Q(n).

THEOREM 1.2. (LOGARITHMIC REGIME) Suppose that d ~ alogn for some a > 0, and that o2 is constant not
depending on n.

1. (Perfect recovery) If

1
2
(18) o” < m,
then |E] = 0 with high probability.
2. (Sublinear error) If
1 1

1.9 R e
(1.9) e —1=7 S @el/a 11

then the following convergence in probability holds:

log(1V |€])

1.10
( ) logn

—2— glog(l +o072).

The quantity on the right side of (L.10) equals zero at the lower limit 02 = —2— and equals 2—alog(2¢!/*—1) €

1

(0,1) at the upper limit o2 ; for any @ > 0. As a — oo, the width of the sublinear error regime

= (261/‘171)27
. . . 1 1 1 e . I 2 "
given in ([1.9) is @e/a-1)E1 " efeT =8 T 0(1), so this is indeed a non-trivial range of o2 on the critical scale

2
o =0(1).

Next, we treat the remaining high-dimensional regime. Here our results only describe perfect recovery;
however, Conjecture will again predict that on the scale of o2 indicated below, greater noise results in
mMAacroscopic error.

THEOREM 1.3. (HIGH-DIMENSIONAL REGIME) Suppose that d = w(logn). If for some e >0

1 d
1.11 <=
(1.11) 7= <4 6) logn’

then |E] = 0 with high probability.

Finally, we state a supplementary conjecture, which we will discuss in greater detail in Section where we
show how it is suggested by the first moment combinatorics of augmenting cycles. If true, this conjecture would
complete the high-level picture described by our results, in each regime of d showing that for the remaining o2
not covered by our results, the MLE makes a macroscopic number of errors.
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CONJECTURE 1.1. Suppose that any of the following conditions holds:

1. 1 < d < logn and, for some € >0, g2 > n~(2-9)/d,

2. d ~ alogn and, for some e >0, o > m +e.

d

logn *

3. d=w(logn) and, for some € >0, 0% > (1 +¢)

Then, for some ¢ = c(e) > 0, |E] > en with high probability.

log(1Vv|€])
logn

If true, Conjecture together with Theorem Would surprisingly imply a discontinuity in the value of

— 1 .
T (2el/a-1)2-1"

2 — alog(2e’/® — 1) strictly smaller than 1, while from the right it would equal 1. As a — 0, the size of this
jump would shrink, recovering in the limit the continuous behavior of the d < log(n) case. We illustrate these
error curves and the predicted jump in Figure |4} see also Section for discussion of theoretical evidence for this
prediction.

as a function of 02 when d = alogn at o2 from the left this quantity would tend to a limit

1.3 Stylized Application: Online Tracking of Brownian Motions As an application of our results, we
consider a stylized motion tracking model, similar to the one proposed by [15]. Suppose that =1 (t),...,®,(t) € R?
are independent standard Brownian motions in dimension d = O(1), started from x;(0) independent standard
Gaussian vectors. We view these Brownian motions as the evolution of indistinguishable particles, whose motion
we would like to track over time: for some fixed § > 0, we observe this collection of particles (but not their labels)
at times t = k¢ for each integer k > 0. On the basis of these observations, we would like to track the identities of
each particle over some large interval ¢ € [0, T] as accurately as possible.

A natural approach is an iterative matching algorithm: having observed the point set X =
{x1(kd),...,x,(kd)} for each integer k > 0, repeatedly compute the MLE matching 7j between Xj_; and
Xy for k > 1. Then, the composition T = 71 ---Tx gives a plausible matching between X and Xg, which
attempts to track the Brownian motions up to time "= K§. In fact, this approach is frequently used in practical
engineering applications in concert with various preprocessing and filtering pipelines [12] 40} 41]. We illustrate a
small example in Figure [I} How large can we make this T" while having the final matching correctly identify at
least, say, half of the particles, i.e., having 7 fix at least half of the points of [n] Let us define the expectation
of this time,

(1.12) Tiax = Tmax(6,n) := 3§ - Emin{ K : T - - - Txc has fewer than n/2 fixed points}.

Clearly we expect decreasing é—taking snapshots more frequently—to increase T,ax. We can use our results
for d constant to make an informal prediction as to the behavior of this tradeoff. The displacement of a Brownian
motion in time & has law A(0,61,), so each time step looks like our earlier setup with o2 = §. Thus suppose
n~44 <« § « n=?/% Then, we expect the error incurred by 7 to be roughly 6%/2n? for each k. Supposing
that these errors affect different indices in each time step, we then expect to make Q(n) errors in total once
K >n/(09%n?) = 6=%2/n. Thus, we expect Tipax ~ 6K = 51742 /n.

One case to which this argument certainly does mot apply is d = 1: in this case, the difference between
the positions of any two particles is itself a Brownian motion which will eventually cross zero (meaning that the
particles will collide), and by a standard argument of time inversion of Brownian motion will in fact cross zero
infinitely many times in the vicinity of any such crossing (meaning that the particles will collide infinitely many
times immediately following their first collision). Indeed, we illustrate in Figure [2| below that, when d = 1, the
error of tracking appears to be driven by such collisions and does not depend at all on the sampling interval §.
However, we conjecture that the above heuristic is sound for larger dimension.

CONJECTURE 1.2. Suppose that d > 2 and § = n~¢/? for some ¢ € [2,4]. Then, Tmax ~ #f(n) =
n&/2=¢/4=1 f(n) for some 1/polylog(n) < f(n) < polylog(n).

TAIl manner of quantities describing the approach of # to a uniformly random permutation, such as total variation distance in

the style of results on Markov chain mixing times, would be interesting to consider; we restrict our discussion to the number of fixed
points for the sake of simplicity.
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A surprising consequence of this conjecture would be that, when d = 2, there is a large range of § over which
the improvement in Tp,.x gained for decreasing ¢§ is only logarithmic in —the situation is hardly better than
d = 1—while once d > 3 this improvement becomes polynomial in §. This criticality of d = 2 seems to resemble
similar phenomena in the structure of optimal matchings of i.i.d. points in the null model [2} 29} [30], 46]. While it
is difficult to make n sufficiently large to overcome finite-size effects and resolve the exponents we are interested
in numerically, as alternative evidence we plot the number of errors over time for a fixed small n and various §
and d in Figure [2l We observe something qualitatively similar to the Conjecture: when d = 2 the error changes
logarithmically over several orders of magnitude of ¢, while once d = 3 the error changes much more rapidly,
plausibly polynomially.

Proving Conjecture [1.2] would require several improvements over our current results, and represents an
interesting question for future work. At a minimum, doing so would require better understanding of the
concentration properties of |€| in the low-dimensional regime. Obtaining stronger concentration bounds would
also open the door to understanding what happens when § < n~*? when each time step is in our “perfect
recovery” regime and most time steps do not introduce new errors.

1.4 Proof Techniques We briefly discuss our proof techniques, with the aim of giving a heuristic theoretical
justification of Conjecture above. The following is the key structural property obeyed by £: because £ is the
set of indices not fixed by 7, by the cycle decomposition of 7 the indices of £ belong to a disjoint union of cycles
in 7, and each such cycle (i1,...,4;) is augmenting, meaning that, performing index arithmetic modulo ¢,

t t
(1.13) > Wiin 2> Wi
k=1

k=1

the reason being simply that the objective value of 7 in must not be increased by replacing any cycle of 7
with the identity mapping Our analysis is based on considering how many augmenting cycles of various sizes
on [n] exist.

There are (})(t—1)! ~ n'/t possible t-cycles on [n] (the approximation holding for ¢ < n), so the total “mass”
or sum of the lengths of these cycles is ~ nt. We show that the probability that any given cycle is augmenting is
related to the Riemann sum of a particular function f(o?, z), thus obtaining that

gt i
1.14 Plt-cycle is ting] < —— 2L
(1.14) [t-cycle is augmenting] < exp 5 ;f (a , t> ,

= .
(1.15) E[mass of augmenting t-cycles] < exp | tlogn — B Z f <02’ i) =: ),
j=1

We will show that these Riemann sums have a discrete concavity property (see Section , and that
consequently c¢(t) is a convex function of ¢, as we illustrate in Figure The threshold that Conjecture
predicts for strong recovery is the location where lim;_,, ¢(t)/t changes sign from negative to positive, i.e. where
the limiting slope of the curves in Figure [3| changes from negative to positive.

When this limiting slope is negative, then in fact the entire curve of ¢(t) is decreasing, so the dominant
contribution is made by augmenting 2-cycles. In this case, we may analyze the number of errors the MLE makes
by counting augmenting 2-cycles with the first and second moment methods. When the limiting slope is positive,
we expect substantial contributions to be made by t-cycles with large ¢, which our techniques here do not handle.
There is a third threshold when there are (n) augmenting 2-cycles, the rightmost threshold in Figure 3] beyond
which in principle our second moment method might be improved to show that the MLE makes Q(n) errors.
There are technical obstructions due to correlations in the second moment method that prevent us from carrying
this out; moreover, as we emphasize in Figure [4| for the case d = O(logn), we do not expect this analysis alone

20ften the term “augmenting cycle” instead refers to an even cycle alternating between rows and columns of W, a cycle in the
weighted bipartite graph on 2n vertices whose weights are given by W. However, we will find it more intuitive to think of cycles as

permutations on [n] instead, as described here.
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Figure 1: Online MLE tracking of Brownian motions. We illustrate how errors accrue in tracking particles
by iteratively computing the MLE. We plot the random walks formed by snapshots of four Brownian motions
in R?, and indicate by a circle two times when the permutation produced by the iterated MLE undergoes a
transposition from the true labeling. For erroneously labelled points, we show their true label in the thin inner
line, and their label by the iterated MLE in the thick outer line. If the points colored orange, red, green, and blue
are respectively labelled 1,2, 3,4 at the beginning, then the estimated permutation changes first to 1,3,2,4, and
then to 1, 3,4, 2.

§=10"*
§=10"°
§=10"6

§=10"2
§=10"%

§=10""
§=10"2
§=10"%

§=10"*

0.2

0.0

0.600 0.601 0.(;02 U.(JOS U.Oll]-l (J.OIUS 010 Ojl 01‘2 013 014 6 i é I; «'1

t t t
Figure 2: Dimension-dependent error scaling of MLE tracking. We plot the error incurred by the iterated
MLE estimator over time for tracking n = 100 independent Brownian motions in dimensions d = 1,2, and 3,
illustrating the differing dependences on the sampling interval . Each curve plots an average of 20 independent
trials and an error bar of one standard deviation.
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Figure 3: First moments of augmenting cycle counts. We illustrate our results and the associated thresholds,
giving a schematic illustration of the polynomial rate of growth of the total mass of augmenting cycles of various
sizes in each regime of the noise parameter o2. Regimes marked in black are those described by our results; the
one in gray is conjectural. In each plot, a star marks the point plotting the expected mass of augmenting 2-cycles,
whose analysis drives our lower bounds on |£].

1.0 1
0.8
8
o |
= 0.6
~ ]
@
N |
= 0.4 1
g ] n = 10000
i = n = 20000
0.2 4 = n = 40000
] mmmmm Predicted error (proved)
1 —— Predicted error (conjectural)
0.0 1 e Best possible 2-cycle lower bound

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 4: Discontinuity in polynomial error rate. We show the predicted jump in the MLE error rate when
d = alogn with a = 4 (bold solid line from Theorem and thin solid line from Conjecture contrasted with
the best possible lower bound that could be proved by analyzing only augmenting 2-cycles (dotted line). For
increasing n, we also plot the average and one standard deviation error bars for 50 random trials of the MLE
at regularly spaced 2. Though convergence is very slow with n, the fact that these curves cross the dotted line
implies that there is non-trivial contribution to the total error from augmenting cycles of length greater than 2,
supporting Conjecture in the d ~ logn regime.
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to prove the correct strong recovery threshold—for that, it appears necessary to argue the existence of larger
augmenting cycles.

Finally, we remark that this latter threshold is a natural one for greedy algorithms that attempt to find a
good matching in the matrix W row by row. In Appendix [A] we show that the greedy algorithm applied to W
in fact achieves strong recovery below this third threshold o2 = ﬁ, which is asymptotically greater than the

strong recovery threshold of the MLE o2 = m d_ while the latter

once d = w(logn) (the former is ~ %@,
is ~ i%). On the other hand, this algorithm fails completely for d = o(logn); by contrast, a greedy algorithm
applied to W(® performs similarly to the MLE in that regime but can be worse outside the low-dimensional
regime. Across all d = d(n) the three algorithms are generally incomparable. We refer the reader to Appendix

for further discussion of these algorithms.

1.5 Open Questions We conclude with several open questions on the estimation of geometric planted
matchings that we find promising for future research.

1. Establish the strong recovery threshold for d > 1, i.e., prove Conjecture
2/d

2. Establish the error curve for constant dimension d: what is the function e(a, d) such that, when o2 = an~
then E|E|/n — e(a,d)?

3. Prove information-theoretic lower bounds on the |£] achievable by any computation, and determine in what
regimes the MLE is information-theoretically optimal.

4. Are algorithms other than the MLE (including the greedy algorithms we discuss in Appendix algorithms
computing matchings corresponding to Wasserstein distances W), with p # 2, algorithms computing entropy-
regularized relaxations of the linear assignment problem [16], and the belief propagation algorithm proposed
by [15]) more effective in certain regimes of d and o2?

5. Establish the dimension-dependent scaling of the time for which online MLE tracking can consistently track
n particles given in Conjecture and determine what happens for small time intervals § < n~4/4.

6. More generally, what are effective algorithms for the motion tracking application proposed in Section [1.3[/
Is there an offline algorithm (processing the entire set of snapshots concurrently) that is superior to the kind
of online algorithm we propose?

7. What are the statistics of permutations obtained by computing optimal matchings between a collection
of points and their evolution under Brownian motion for some period of time (either just once or with an
iterated MLE or greedy algorithm)? How quickly do such permutations converge to the uniform distribution?

2 Preliminaries

2.1 Graph Laplacians and Spectra Given a graph G = (V, E), we write L& € RY*V for the graph Laplacian
of G, the symmetric matrix with quadratic form

(2.16) x L% = Z (T4 — T2
{v,w}eE

We will particularly be interested in the path and cycle graphs. We write P, and C; for the path or cycle,
respectively, on ¢ vertices, where we require t > 3 for C; to be defined. The following gives the spectra of their
respective Laplacians (see, e.g., Example 8.8 for cycles and the discussion following Lemma 10.18 for paths in
138).

PROPOSITION 2.1. The eigenvalues of L™t are 2(1 — cos(”Tk)) fork=0,...,t—1, and the eigenvalues of Lt are
2(1 — cos(2£)) = 4sin*(ZE) for k=0,...,t — 1.

t
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2.2 Riemann Sums We have indicated in Section and will see more precisely below, that probabilities
of cycles being augmenting for the MLE give rise to expressions of the form Trlog(1 + (402)"'L¢). Per
Proposition these may in turn be viewed as Riemann sums of a certain periodic function, and the asymptotic
probability of being augmenting for large cycles is therefore related to the integral of this function. Below we set
some notation for these objects and present the properties of theirs that we will use.

DEFINITION 2.1. For any t > 2, 0% > 0 define

(2.17) f(o? x) :=log (1 + i(l - cos(27mc))> = log (1 + % sinz(wa:)> ,

202

(2.18) I(0?) == /O (02, 7) da,
(2.19) S(0?%,t) = if <02, i) :

In fact, it is possible to evaluate I(0?) in closed form.

PROPOSITION 2.2. For all o > 0,

(2.20) (%) = 2log <1+ J;“) .

We give the proof in Appendix [B by translating the real integral to a complex contour integral.
By elementary real analysis, as f(02,) is continuous on [0, 1], we have the following convergence.

PROPOSITION 2.3. For any o > 0, we have
(2.21) im 50 _

We will, however, need to be substantially more precise for our applications. The following are the main
technical results that much of our analysis will rely on, a discrete analog of concavity for the Riemann sums of
f(0?,-) as well as a matching opposite bound, which together allow us to formulate linear lower bounds on the
S(o?2,t).

LEMMA 2.1. (RIEMANN SUM DISCRETE CONCAVITY) For o2 > 0, S(02,t) — S(02,t — 1) is strictly decreasing in
t > 3 and approaches I(c?) ast — co. In particular, S(o?,t) — S(0?,t — 1) > I(0?) for all t > 3.

LEMMA 2.2. (RIEMANN SUM UPPER BOUND) Fort > 2 and 02 >0, S(0%,t) < tI1(c?).
COROLLARY 2.1. (RIEMANN SUM LOWER BOUND) For all tg > 2 and t > to, we have
(2.22) S(a2,t) > S(0%,to) + (t — to)[(0?) = tI(0?) — (toI(0?) — S(0?, 1)),
where the constant term satisfies tol (%) — S(o?,t9) > 0.

The third result follows immediately from the first two. We give the proofs of the first two results in Appendix[C.
The proofs rely on a combinatorial relationship between the sums S(0?,t) and the Lucas polynomials, which
solve a Fibonacci-like recurrence that allows very precise asymptotics via a polynomial-valued analogue of Binet’s
formula.

3 Upper Bounds and First Moment Method

3.1 Counting Augmenting Cycles To prove upper bounds on |£|, we use the first moment method and
bound E|£| by counting the numbers of augmenting cycles of various sizes. First, we bound the probability that
a cycle of a given size is augmenting.
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PROPOSITION 3.1. Let C be any fized t-cycle in [n]. Then,

(3.23) P[C is augmenting] < exp (;S(O’Q,t)) .

Proof. Without loss of generality we may suppose that C' = (1,...,¢). Let us consider the cases t = 2 and ¢ > 3
separately. If t = 2, then C' is augmenting if and only if

(3.24) Wia+Waq 2> Wi+ Wao,
which in turn holds if and only if
(3.25) <Zl,w2—ﬂ$1>+ <Z2,IL’1 —1112> > ||Il?1 —SCQHZ.

Here, conditional on the @;, the law of the left-hand side is A'(0,202|x; — x2||?) since z; and z, are i.i.d. with
law A (0,021,). Therefore, we compute

P[C augmenting] = E P l9> ||z — z2|]
T1,T2 g~N(0,202 ||z —22]2)
T, — xl|?
_E b [g > ”122]
z1,22 g~N(0,1) 20

_ 2
S E exp <M>

T1,To 40‘2

To evaluate the remaining expectation, we must understand the spectrum of the quadratic form involved. Writing
x for the concatenation of x; and @, we may write ||&; — x> = " (L™ ® I;)x, where L™ € R?*? is the
Laplacian of the path graph on two vertices, using the notation of Proposition 2.1} By the Proposition, the
eigenvalues of L are 0 and 2. Therefore, continuing by applying an orthogonal change of basis diagonalizing
the quadratic form and evaluating the y? moment generating function that appears, we find

1 —-1/2
= det (Igd + ﬁ(LP2 ® Id))

1 —d/2
=det | Iy + — L*>
¢ <2+20'2 )

1\ /2
-(1+)
d 1
= exp (—2 log (1 + J2)>
dg o
(3.26) = exp —55(0 ,2) ),
as claimed.

Now, suppose t > 3. Then C is augmenting if and only if

t—1 t

(3.27) Wi+ Z Wiiv1 2 Z Wi

i=1 i=1
which in turn holds if and only if

t

t
1
(3.28) (z1,@0 — 1) + Y (20, @1 — i) > 3 <|sr:t —w |5+ i1 — x|§)

=2 =2
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Again, let  be the concatenation of the x;. Then, we have

t
(3:29) e — @3+ iy — @3 =2 (L9 © Ly,

1=2

where L¢* is the Laplacian of the cycle graph C; on t vertices. Thus the law of the left-hand side of
conditional on the x; is N'(0, 02z " (LY @ I,)x), while the right-hand side is = (L% ® I)z. (We note the two
differences from the case ¢ = 2: the path graph is replaced by the cycle graph, and an extra factor of % appears
on the right-hand side.) An analogous computation to before gives

P[C augmenting] = E
T1,.8t goN(0,022 7 (LCtQ1I4)x)

T (LC @ I;)x
_ e p [ ST AT
x1,...,xs g~N(0,1) 4o
' (LC @ I)x
E exp (_(Qd)>
T1,...,T¢ 8o

1 —1/2
det (Idt +——L%® Id>

[9 Lz (L e Id)w]
= 2

IN

402

1 —d/2
=det ( I; + —5 L%
€ <t+40_2 )

and substituting in the eigenvalues of L from Proposition we have

1 —d/2
- 1 2mj
= I I 14+ — _
j=0
d A 1 omj
= exp _5 E log (1 =+ ﬁ (1 — COS (t)))

j=0
deoi o
(3.30) = exp —55(0 0 )
again giving the result. 0

COROLLARY 3.1. For any d,n,o0?,

(3.31) ElE| < Zexp <t10gn — ;IS(JQ’t)> .

t=2

Proof. £ is a disjoint union of augmenting cycles, so |£| is at most the sum of the lengths of all augmenting cycles.
The result then follows from linearity of expectation and applying that the number of ¢-cycles in [n] is < n'/t
and the probability bound of Proposition [3.1 ]

With these expressions for the expected masses of augmenting cycles of various sizes in hand, we may
describe more precisely why the situation presented in Figure [3| arises: the limiting exponent above as ¢ — oo
is ~ tlogn(1l — 21(fgnf(az)), thus the transition around I(o?) = 2log(11Y 12""772) = 21(3;", or 02 = W,
determines whether the expected mass of large augmenting cycles diverges or not, which we conjecture is the
correct strong recovery threshold. Moreover, it will turn out that when strong recovery is possible, then the
dominant contribution is by augmenting 2-cycles, whose exponent is 2 logn — %S(O’g, 2) =2logn— % log(1+072),
and this changes sign at o2 = ﬁ, which is the perfect recovery threshold.
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3.2 Perfect Recovery In this section we give a sufficient condition for perfect recovery, which proves Part 1
of Theorem Part 1 of Theorem and Theorem [1.3]

LEMMA 3.1. Let so := 2%, and suppose that

1
3.32 o< —
(3.32) - s‘a’(l)n4/d -1

Then, E|E] — 0, so, in particular, |E| = 0 with high probability.
Before proceeding with the proof, let us indicate how this implies the claimed results for specific scalings of d.
When d < logn, then sq is bounded and the denominator in the bound above goes to infinity as n — oo, so the
condition is satisfied whenever 02 < n~%/4, giving Part 1 of Theorem

When d = alogn, then n*/? = e*/¢ and there exists f(n) = w(1) such that sg(") — 1. Thus the condition is
satisfied whenever o2 is bounded below Wiqv giving Part 1 of Theorem

Finally, when d = w(logn), then for any € > 0 again we may choose f(n) = w(1) such that sg(n) =2f(m)/d <
n¢/¢. Thus the condition is satisfied whenever o2 < —a7a ™ ﬁ%, giving Theorem

2

Proof. Rearranging the assumption on ¢, we have

dlog(l+ 072) dlog sg 1
3.33 — S(0%,2)=2— —>—— 7 < _ = — .
(3.33) 2logn (0%.2) 2logn = logn @ logn
Also, since by Lemma [2.2| we have S(0?,2) < 2I(0?), we further have
(3.34) P S(0%,2) > 2 — d 2I(c*) =2(1— d I(c?)

' 2logn ’ 2logn N 2logn ’

Towards bounding the exponents appearing in Corollary we manipulate
S(o?, t)>
(5(0%.2)+ (¢~ 21(0%))

dq o
tlogn — 55‘(0 ,t) =logn <t STogn

(by Corollary With to = 2) <logn (t ~ Tlogn

— logn (2 - QIjgns(Uzﬂ) +(t—-2) <1 - 2ljgnl(02)>)

and substituting in our bounds from above,

t
< -1 2 — S(0?,2

< Lien - g si0%)
(3.35) < —w(l)-t.
Applying this to Corollary we find
(3.36) E[E] <) (e =0(1),

t=2
and the second result follows by Markov’s inequality. ]

3.3 Small Error Upper Bound We next prove a similar result to the above that gives Part 2 of Theorem [I.1]
and the upper bound for the case of Part 2 of Theorem H where o2 takes its lower bound, 02 =

et/a—1-"

LEMMA 3.2. Let s := 2%, and suppose that

1
(3.37) i —
soo(l)n‘l/d -1

Then, E|E] = O(1), so, in particular, for any f(n) = w(1), we have |E| < f(n) with high probability.

The argument from the previous proof applies verbatim with w(-) replaced by O(-) throughout, and shows that
E|&| = O(1), whereby the result again follows by Markov’s inequality.
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3.4 Sublinear Error Upper Bound Finally we give an upper bound on |£| that holds in the sublinear error
regime. This implies the upper bound of Part 3 of Theorem [I.1] and the remainder of the upper bound of Part 2
of Theorem not covered by the previous proof.

LEMMA 3.3. Let s := 2%, and suppose that

1

(3.38) o2 < .
(25 Wpt/d —1)2 — 1

Then,

(3.39) EIE| =0 ((1 + ;) - n2> ,

so in particular for any f(n) = w(1) we have, with high probability,

1\ 42
510 i< s (1 %) w2
Proof. Rearranging the assumption on o2, we have

d <1+\/1+02> ( 1 )
log 5 < —w 5

B logn logn

d

3.41 —
( ) 2logn

I(c®) =1

as before (the difference with the above settings being that such a bound no longer holds for 2 — 21c(>igns (02,2)).
Following the previous argument applied to Corollary we find

g

n —d/2
(342) E‘5| < ZnQ_215gns(0272)(e—w(1))t_2 = O(n2_21§gns(0272)) =0 ((1 + 12) n2> ,
t=2

and the second result again follows by Markov’s inequality. 0

4 Lower Bounds and Second Moment Method

To prove lower bounds on |£|, we will apply the second moment method to show that there exists a large number
of vertex-disjoint augmenting 2-cycles. That is, we will study the random variable

(4.43) M := maximum number of vertex-disjoint augmenting 2-cycles in [n].

The following shows that M being large guarantees a large number of errors in the MLE.

ProPOSITION 4.1. |E] > M.

Proof. Tt is impossible for (i, ) to be an augmenting transposition and to have both 7(i) = ¢ and 7(j) = j, since
then 7 formed by composing the transposition (4, j) with 7 would have a higher likelihood than 7. Thus, for every
pair in a maximal collection of M augmenting 2-cycles, at least one of its vertices must be labelled incorrectly by
7, and the result follows. d

Conveniently, this quantity admits a graph-theoretic interpretation. Namely, the set of augmenting 2-cycles
may be described by a graph on [n]:

(4.44) G .= (V =[n], E={{i,j}: (,7) is an augmenting 2-cycle}).
With this notation, M is the size of the largest matching in this graph:

(4.45) M = number of edges in the largest matching in G“8.
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Thus our task is to show that a large matching exists in a random graph. In particular, we will want to show
that there exists a matching of size Q(|E| A n), i.e., a matching of size asymptotically as large as possible subject
to the basic constraints that it can exceed neither the number of vertices nor the number of edges.

There is an extensive literature on similar questions for Erdés-Rényi (ER) random graphs; however, most
of these results analyze concrete algorithms for finding large matchings rather than using the second moment
method [7, 20} 27, [47]. Indeed, to the best of our knowledge no previous work has tried to show the existence of
large matchings in random graphs using the second moment method—perhaps thanks to the success of analyzing
algorithms and to the “effectiveness” of such results, which provide an algorithm in addition to an existence proof.
However, our graph G2 has a more complicated dependence structure, so the second moment method is more
convenient, and we draw inspiration from a line of work applying an adjusted second moment method to other
extremal problems in ER random graphs, especially the chromatic number and independence number |22 33] [43].

REMARK 4.1. When the degree of all vertices in G®"¢ is bounded with high probability by some dmax, then
algorithmic techniques do show that a large matching exists, since a greedy algorithm matching vertices arbitrarily
until no more can be matched will produce a matching of at least |E|/2dmax edges. One may control the maximum
degree in our case by appealing to the probability bounds of Proposition[{.3 for the star graph. However, this no
longer applies in the critical regime where the average degree is constant (when we expect a nearly-linear number
of errors in the MLE), in which case in an ER graph the largest degree is of logarithmic order, and we expect a
similar behavior for G2“8.

4.1 Statistics of G*"¢ We will think of G“8 as being well-approximated by an ER random graph, albeit with
some stronger dependencies among various subgraphs. We begin by precisely describing the probability of any
particular edge belonging to G®“¢, which is the edge probability of the analogous ER graph.

PROPOSITION 4.2. (EDGE PROBABILITY IN G?'€) Define
(4.46) pi=P[i,j} € E(G*®)],

-~
(4.47) P xp(—28(02,2))

which do not depend on i,j € [n] distinct. Then, for all n, d, and o2 < %d,

1 1+ 02

4.4 —
(4.48) 1000 d

<p<l

We give the proof, an application of bounds on Gaussian Mills’ ratios, in Appendix [Dl
Next, we control more coarsely the probability that a given graph occurs as a subgraph of G®“8. The following
is a general parametrized bound, which relates these probabilities to Laplacians with weighted edges.

PROPOSITION 4.3. Suppose G = (V, E) for some V C [n]. Let A € REXV be the edge-vertex incidence matriz for
G, i.e., the matriz having non-zero entries Ay, jy p only when i =k or j =k, with one of these equaling 1 and the
other equaling —1 (chosen arbitrarily) for each row index {i,j} € E. Note that AT A = L, the graph Laplacian.
Then, for any diagonal matriz D = 0,

PG C ™) < det Iy + 24T DA — (AT DAY)
d V]
4.49 =exp| —= IOg 1+ 2)\1 ATDA _ 0'2)\1' ATDA 2 ’
2

i=1
where \;(A) denote the eigenvalues of a symmetric matriz A.

Proof. The event that G C G®“€ is the same as that, for all {i,j} € E, we have W, ; + W;,; < W;; + Wj ;.
Rewriting, this is the event that, for all {i,j} € E,

(4.50) — (2 — zjmi — ) > @ — ).
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Let X, Z € RV*? have the x; and the —z; as their rows, respectively. Then, the system above may be rewritten
with the help of A as

(4.51) diag(AZ(AX)") > diag(AX(AX)").
Whenever this is true, then we also have

(4.52) (D,AZ(AX)") > (D,AX(AX)T),
or, rewriting to isolate Z,

(4.53) (Z, ATDAX) > (XX, ATDA).

Since the entries of Z are i.i.d. with law A(0,0?), taking a Chernoff bound and evaluating the Gaussian
moment generating function yields
Ezexp ((Z,ATDAX))
exp((XXT,ATDA))

P[G C G*¢] <Ex

= Ex exp (C;2||ATDAX||2F — (XX, ATDA>>

and, noting that [ATDAX|2 = Tr(XT(ATDA)?X) = (XX T,(ATDA)?), we find
= Ex exp <<XXT, (’;(ATDA)2 — ATDA>)

and evaluating this as a x? moment generating function after an orthogonal change of basis diagonalizing the
matrix on the right, we obtain

(4.54) — det (Iy + 2AT DA — c2(ATDAY?)?,

as claimed. |

It is an interesting question to optimize the choice of D in this bound. For our purposes, it suffices to use a simple
version for G a path or cycle.

PROPOSITION 4.4. For any G = P, witht > 2 or G = Cy witht > 3,
d
(4.55) P[G C G*"¢] < exp <—25(J2,t)> :

In words, this shows that the probability that a path or cycle in G®"¢ on t vertices has augmenting 2-cycles for
all of its edges is at most our bound (Proposition [3.1)) on the probability that a cycle on ¢ vertices is augmenting.

Proof. For G = P» the result follows from Proposition We first note that, since P; is a subgraph of Cj,
P[C: C G*“8] < P[P, C G?“8] for all t > 3 (since the event that P, C G?"¢ contains the event that C; C G®"8 for
suitable labellingb of the two graphs), so it suffices to consider G = P;. For this case, we choose D = ﬁIt_l in
Proposition [£.3] That gives

au AN 1 P, 1 P,
P[P, C G®8] < exp <—Zlog (1+/\-(L ) — p/\i(L )2)>

o482 () 2 (2))
:eXp( Zlog <1+ <7Ttk>)>
n((fe),

1\3\&.

1\3\&

(4.56) = exp S(o

completing the proof.
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REMARK 4.2. While this approach to bounding P[G C G®“8] may seem rather naive, there is reason to believe
it is close to optimal up to constant factors in o?: we know from the proof of Proposition fort = 2 that
P{i,j} € E(G™®) | w;, ;] ~ exp(— 2z | — x;|?), so if we heuristically suppose that the edges of G*“& occur
independently conditional on x, then we find
PG C G*¢| ~ E H P{i,j} € E(G®) | x;, ;]
“ {i}eBG)

1 TG
~ Eexp <—402w (L ®Id)w>

1 —d/2
=det ( Iy + —L¢
e<v+202 )

and if, for instance, G = C; then following the computations in Proposition[3.1 for t > 3 we would find

s (-5 (70))

differing only by a factor of 2 in o2 from the bound of Proposition lﬂ

4.2 Concentration-Enhanced Second Moment Method We next review a version of the second moment
method that can sometimes improve a weak result of the ordinary method—showing an object exists with quite
low probability—to a strong result with high probability by combining it with a concentration inequality. Below,
Part (b) is the typical result of a second moment method that has not succeeded in showing that a random
variable is positive with high probability, instead only giving a lower bound of exponentially small probability.
Part (a) is a concentration inequality, which in our case will come from a martingale argument, showing that the
random variable also enjoys concentration around its mean with Gaussian tails. Exploiting the interplay of these
two inequalities, we may in fact “repair” the ineffective second moment, as follows.

LEMMA 4.1. Suppose X > 0 is a random variable and m > 0 are such that the following two statements hold, for
some constants 0 < B < a:

(a) PIX —EX < —t] VP[X —EX >t] < exp(—at?/m) for all t > 0.
(b) P[X > m] > exp(—fm).
Then, for any 0 <y <1—+/8/a,

2
(4.58) P[X >ym]>1—exp | —« (1 —/ == 'y) m

Proof. Suppose ¢ € (0,1). Then, whenever EX < (1 — d)m, we have
exp(—pfm) < P[X > m)]
< P[X > EX + dm)|

(4.59) = exp(—ad*m),

whereby § < \//a. Thus, by contrapositive, EX > (1 — §)m for all § > \/5/«a, so EX > (1 —+/B/a)m.
Now, for all 0 < v < 1 — +/8/a, we have

P[Xg'ym]gPngEX—<l—\/§—'y>m]
2
(4.60) <exp | —«a (1—@—7) m |,
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as claimed. |

Our formulation here is very similar to that of Frieze in [22], who treats the largest independent set in an ER
graph; a similar idea also appeared earlier in [43] for the chromatic number of an ER graph. See also [33] for a
survey of related methods.

4.3 Type (a) and (b) Inequalities We now proceed to the main computations for using the concentration-
enhanced second moment method, which we state as general claims for all dimensions d. In the following sections
we will derive specific consequences for different scalings of d.

Unfortunately, applying our method directly to the random variable M does not afford us sufficient flexibility
to adjust the constants o and 8 such that the condition f < « is satisfied. Instead, we will proceed by applying
Lemma to the following adjustment of M, which is also directly analogous to the approach of Frieze in
[22], there credited to Luczak, to the existence of independent sets. Given r € Z, let n’ := |n/r|, and let
A, = {(k = 1)r+1,...,kr} for k € [n/]. Then, we call a matching r-good if all of its vertices belong to
Ay U---UA,, and it contains at most one vertex in each A;. We then work with the random variable

(4.61) M) := number of edges in the largest r-good matching in G28.
Clearly, M > M),

LEMMA 4.2. (TYPE (A) INEQUALITY) For allt >0,

2
(4.62) P[M(’") —EM™ < —t] Vv P[M(T) —EM™ > ] < exp (_Zt,) .
n

That is, inequality (a) of Lemma@ holds for M) for any m > 0 with

m

Proof. For an arbitrary graph G on vertex set [n], let M(")(G) denote the number of edges in the largest 7-good
matching in G.

We first claim that, if there exists some k € [n/] such that G and G’ differ only on edges incident with Ay,
then |M)(G) — M) (G")| < 1. Indeed, if the largest matching in G’ contains no edge incident with Ay, then the
same matching exists in M) (G), so M(G) > M) (G"). If the largest matching in G’ does contain an edge
incident with Ay, then the matching formed by removing that edge exists in M ("(G), so M")(G) > M) (G") —1.
Thus M)(G") — M(")(G) < 1, and symmetrically M) (G) — M"(G") < 1.

Now, view M) = M()(G?“€) as a function of @1, 21,...,%,,2,. Form the Doob’s martingale M,gr) =
EM™ | {@:}ica, 04, U{2itiea,uoa,] for k= 0,1,...,n/, for which M{"” = EM® and M} = M™. By
the above claim, |M ,gr) - M,5T7)1| < 1 for all k, and the result then follows from the Azuma-Hoeffding inequality
(see Lemma 1.2 of [33]). O

Our type (b) inequality involves the multinomial entropy function H, defined for zy,...,x; > 0 satisfying
r1+ -+ x <1as

k k k
(4.64) H(xy,...,x5) == — in log x; — (1 — le> log (1 — sz> .
i=1 i=1 i=1

We use the slightly non-standard notation of omitting what is usually the last argument 1 — Zle xr; to

shorten the expressions that arise below; this is, however, in agreement with the standard notation H(z) =
—zlogx — (1 — x)log(1 — x) for the binomial entropy.

We give a coarsely-bounded exponential rate function below; this will suffice for our purposes and we make no
efforts to optimize our analysis at the level of constants on the exponential scale in m. More precise expressions
are mentioned in our proof to follow.
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LEMMA 4.3. (TYPE (B) INEQUALITY) Suppose n’ > 4m and o* < 4. Define as before p := P[{i, j} € E(G"¢)].
Then,

(4.65) PM™ > m] > exp (—m sup F(z) — O(log n')) :
xzcA
where, for an absolute positive constant K (e.g., one may take K = 50),
(4.66) A= {(a,b,c,j,k () [0,1]°:2a+b+2c+j+k+(< 1},
n”
(4.67) Ry =K +log | —— |,
pn?m
d
(4.68) Ry := K +d(S(0%,2) — I(0?)) + 4log., <1+02> —2log,

(4.69) F(a,b,c,j,k,0) :=TH (a,a,b,¢,¢,j,k,0) + (a+b+c+j+k+0) (R V Ry).

That is, if n' and m are functions of n — oo with n' = €™ then, for any € > 0, for all sufficiently large n,
inequality (b) of Lemma@ holds with

(4.70) B = sup F(x) +e.
xzcA

The basic idea of the remaining analysis will be to choose r and m to ensure that R; and Ry are very negative,
forcing @, b, ¢, 7, k, £ to be small at the maximizing point. In R;, we will accomplish this by taking n’ = Cm for
some fixed C, and m = cpn? for some sufficiently small c. Then, the first term of F is also small, so sup F' and
therefore 8 may be made arbitrarily small by lowering c¢. On the other hand, « = m/2n’ = 1/2C, so we may
ensure 8 < « and apply Lemma finding that with high probability M > M) > ¢/pn? for some 0 < ¢’ < c.

The following is the main technical preliminary to our proof, which bounds the moment generating function
of the number of connected components in the union of two random edge-disjoint perfect matchings.

PROPOSITION 4.5. (CYCLE MOMENT GENERATING FUNCTION) Let £ be even and let K, be the complete graph
on vertex set [£]. Let Q1 be any perfect matching in Ky, and let Qo be a uniformly random perfect matching in
K, with the edges of Q1 removed. Write X, for the random variable giving the number of connected components
n Q1 UQs. Then, for all £ >4 and all a > ¢,

) (¢2a £/4 e3a ¢/4
(4.71) Ea™¢ < WQ))” < (€> )

where ¢ = (14 +/5)/2 denotes the golden ratio.

Proof. We prove our bound inductively. For any fixed a, write m, := Ea™* for each even £, where we take mg = 1
and mg = 0. We will prove that

a 1
(472) my = mmg_4 + (1 — E—) my_9o.

Let us assume that (4.72) holds for now and show how to derive the claim. Clearly the first inequality in (4.71))
holds for £ = 0,2,4. For the inductive step, suppose the bound holds for all values smaller than a given £ > 6.
The induction hypothesis then implies

a (¢2a)£/4—1 1 (¢2a)£/4—1/2
S TR (2= T (1_ e—3> /2= 1)
a (¢2a)£/4—1 (¢2a)e/4—1/2a1/2
S wz—an T

_ @y
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where we have used that £ — 3 > ¢/2 for all £ > 6 and that (£/2 — 1)!! > (¢/2)!!//€ > (£/2)!!/\/a. Since
¢=? + ¢! = 1, this completes the induction and proves the first inequality in (4.71]), and the second is an
immediate consequence.

All that is left is to establish the promised recurrence . Note that (Q1, @2) as described are two uniformly
random perfect matchings on [¢] conditioned to be edge disjoint. Each connected component of Q1 UQs is a cycle
whose edges alternate between Q1 and Q). Let us condition on the size of the component containing the vertex
1. Write ¢ for the neighbor of 1 in @)1, and j and k for the neighbors of 1 and i, respectively, in Q2. Since ()1 and
Q2 are edge-disjoint perfect matchings, 1, ¢, j, and k are distinct.

If 1 lies in a 4-cycle, then {j,k} € @1, and removing the vertices {1, 4, 7, k}, and corresponding edges from ¢,
and Q2 yields two uniformly random, edge-disjoint perfect matchings on ¢ — 4 vertices, with one fewer connected
component than @1 U Q2. Since k is a uniform random vertex from [¢] \ {1,4,7}, this situation occurs with
probability ﬁ This gives the first term of .

On the other hand, if 1 lies in a cycle of length greater than 4, then {j,k} ¢ Q1. In this case, removing the
vertices 1 and ¢ as well as the edges {1,7} from @7 and {1,j} from Q2 and replacing the edge {i,k} by {j,k}
in @2 yields two uniformly random, edge-disjoint perfect matchings on ¢ — 2 vertices, whose union has the same
number of connected components as @1 U Q2. Since this occurs with probability 1 — ﬁ, this yields the second

term of (4.72). 0

We will also use the following inequalities among the various functions of o2, whose proofs we defer to

Appendix

PROPOSITION 4.6. For o2 > 0, define

(4.73) m =m(c?) = 25(02,2) - 35(02,4),
(4.74) 1 =m(0?) 1= 5(6%,2) - 15(0%3).
(4.75) ng = n3(0?) i= %5(02,2) - %I(O’Q).

Then, we have

(4.76) N S N3 <

5 —|—3802 for each i € {1,2,3}.
We remark that these results are qualitatively sharp, in that the given quantities indeed approach positive
constants as 02 — 0, and decay as O(c~2) as 02 — oo; proofs of matching opposite bounds follow from similar
elementary manipulations to those we give in the proof.

Finally, we will use the following standard properties of the multinomial entropy function H. We note that
we adopt the same convention for multinomial coefficients of omitting the last argument as we do for H:

m m!
4.77 = .
( ) <a1,...,a;€> al - caplim—ay — - —ag)!

PROPOSITION 4.7. The function H satisfies the following properties:
1. H(xy,...,21) <log(k+1).
2. For any x € (0,1), tH(xz/t) is a strictly increasing function of t.

3. For any x1,...,x > 0 with x1 + -+ xx < 1, H(xy + 22,23,...,2%) < H(x1,22,%3,...,2%), and for any
K <k, Hxy,...,20) < H(z1,...,28).

4. A multinomial coefficient is bounded by the entropy as

(4.78) exp <mH (% %) —Ok(logm)) < (a1 m ak) < exp (mH (ﬂ ‘Lk))

e m m
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Proof. [Proof of Lemma Define the random variable

(4.79) N := #{r-good matchings on 2m vertices of G*“¢}.
We then have

(4.80) P[M™ > m] =P[N > 0],

and we will bound the latter from below by the second moment method.
Let M denote the set of r-good matchings of 2m vertices of the complete graph on [n], whose cardinality is

!
(4.81) M| = (an) 2™ (2m — )11,
We then have by linearity of expectation that
(4.82) EN =p™M|.

Let Qo be a fixed r-good matching of m elements in the complete graph on [n] (say, the graph with edges
{1,2},{3,4},...,{2m — 1,2m}). By symmetry, we have

(4.83) = M| > PQUQ C G™8,

QeM

and therefore the moment ratio may be written as an average,

EN Qo U Q c )
4.84
(454 N = ng

Given a graph G, write cc(G) for the set of its connected components, ccy(G) for the set of its connected
components isomorphic to the path on two vertices, cc3(G) for the set of those isomorphic to the path on three
vertices, and cc>4(G) for the set of the remaining connected components. Let us abbreviate G := Qo U Q. Note
that all components of G are then either cycles of even length at least 4 or paths. Then, by Proposition for
any connected component H € cc>4(G) we have

(4.85) Pl € G < xp ({0 V(1)

and, applying Corollary [2.1] with ¢, = 4, we have
d
(4:86) < (-5(VEDIT- ).

where I = I(0?) and J = J(0?) = 41(0?) — S(0?,4) > 0. For the remainder of this proof, let us follow the above
convention abbreviating I = I(0?) and J = J(0?), and also writing S; = S(0?,t). Using this bound for connected
components on at least four vertices and Proposition for connected components on three vertices, we then
have

PG C G*¢]

[1 PlH C G
Hece(G)

< exp [ leca(@)llogp — lees(@) 385 — 5 32 (VI J)

Hece>4(G)

= exp (loca @) log = [ca(G) 51 ~ V(6] - 2eca(G)] - Beca( GG + leesa(Cl 5 )

3d

(4.87) = exp (—V(G);ZI + |cca (@) | (dI +1og p) + |ccs(G)| < )

d
I— Sg) + |CC24(G)|2J> .

854 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 06/09/22 to 74.101.149.252 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

O \Q OynQ 0\Qy
Type 4 (j)
o—© o o oo
®-..... °
Type 5 (k) @ Dype6(0)
/. .l .l Ecycles
° 5 ..
A U B SO o
—o .\ o ®

Y Type 1 (a)

—e

—e
Type 2 (b) \. ................................ o o ... ®
. ................... .
o—
. - .
Type 3
ype 3 (¢) o o
.\\ @
S R

Figure 5: Union of two matchings. We illustrate the decomposition of two partial matchings of [n] from the
proof of Lemma The center region contains all vertices of V(Qo) NV (@), solid lines indicate edges of E(Qo),
and dotted lines indicate edges of E(Q).

We now divide the sum over @ € M into portions over which we may uniformly bound this probability. To
do this, for any given @ we introduce the following classification of the vertices of Qy N @, into “types” 1, 2, 3,
4, 5, and 6. Next to each type, we give the letter that will denote the number of vertices of this type, a,b,c, j, k,

and ¢, respectively:

1. a vertices whose neighbor in Qg lies in Qg \ @ and whose neighbor in @ lies in Qo N Q.

2. b vertices whose neighbor in Qg lies in Qo N @ and whose neighbor in @ lies in @ \ Qo.

3. ¢ vertices whose neighbor in Qg lies in Qo \ @ and whose neighbor in @ lies in @ \ Qo.

4. j vertices whose neighbors in both @y and @ are equal.

5. k vertices which belong to a path connected component and whose neighbors in Qg and @ are different but

both lie in Qg N Q.

6. ¢ vertices which belong to a cycle connected component and whose neighbors in Qg and @ are different but

both lie in Qg N Q.

We also denote by ¢ the number of cycle connected components in QoUGQ (which all consist of Type 6 vertices). See
Figure [5| for an illustration of this decomposition. With these notations, recalling that |V (Qo)| = |V (Q)| = 2m,
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we have

(4.88) V(Qo)NV(Q)=a+b+c+j+k+Y,
V(QoU Q) = [V(Qo) + [V(Q) = [V(Q:) NV(Q)]

(4.89) =dm—-—a—-b—c—j—k—V{,
|CC2(QOUQ)|:%+2m—2a—b—22c—]—kz—5+2m—a—2b—226—]—k—€

3 3 1

(4.90) =2m—Za-gb—2—zj—k—{,

(4.91) lecs(QoU Q)| =c,

(4.92) |CCZ4(QQUQ)| = %a-ﬁ-%b—&-z

the final claim following because every path component of length 4 or greater contains exactly two internal vertices
of Type 1 or Type 2. _
Let Ma,b,c,j,k,f,z be the set of @ such that Qg U @ has the specified number of vertices of each type, and ¢

cycle connected components. We note that this set is empty unless j, k + a, and k + b, and ¢ are all even, since
these sets of vertices must admit perfect matchings (from restrictions of both Q and @, @, Qo, and both Qg and

Q, respectively). For Q € M, bejko i We have
P[QoUQ C G*¢]
p2m
. d
<exp| —(dm—a—-b—c—j fkfé)if

3 3 1
MM — 2a— b—2c—=j—k—0)(dl +1
—|—<m 59 2b c=5i k E)(d + log p)

3d d
+ C (21 — 253)

1 1 ~\ d

— 2mlog p>

4

1 d d ~(d

and, using that logp = _gSQ + log P,

d 3 d 3 d
= exp <a <—dI+ —-J - 2logp) +b (—dI+ ZJ_ 2logp) +c (—25'3 — 2logp>

3. . .
= exp ((a +b) (md 5 logp) + ¢ (ned — 2log p) + (k + £) (nsd — log p)

(4.93) +j (—;logp) +l7<;lJ> )

with 7; as defined in Proposition
1 3 3 1

4.94 =_J4+ = g, —=2q9 _ =
(4.94) m + 37+ 58 =28~ 15,
1
(4.95) o = Sy — 553’
1 1
4.96 = -8, — =T.
( ) 13 B 2 B
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By Proposition We have n; < n3, and by Proposition We have p > 101%1/ H'd”z. Here and in the remainder

of the proof, let K be a large constant that may vary line to line. Substituting these bounds,

PlQouQ € G™¢

p2m

d
Sexp((a+b+0+k) (K+n3d+10g+ <W)>

. 1 d ~(d

We must also control the size of the subsets M, ikl which is the content of the following technical
lemma, whose proof we defer to the conclusion of thls section.

LEMMA 4.4. Given £ and K let Ry be a perfect matching of [¢], and write Cyc(ﬁ Z) for the number of perfect
matchings R of [¢] edge- dzsyomt from Ry such that Ry U R contains exactly ‘ cycles. Define normalizations
a:=a/2m and likewise b,¢,j,k, and £. Then /\/la be kb0 satisfies

|Ma b,c,j,k e,Z‘ T _ = o ,
(4.98) T <exp|m|bH (a,a,b,c,c,j,k,g) + (a+¢)log4| 4+ O(logn') |-

—a—b—c—j—k—¢ 1 CyC(&Z)

" G-l (e—Dn
Putting the bounds (4.97) and (| - together,
EN? Mg PlQoUQ C Gus
_< Z | b, ,g,k,e,e| max [Qo 622 = ]
(EN) ] ~ |M| QEM, 4 ke pe
a,b,c,j, k0.0
< ) exp (m {5H (a,a,b,c,c,j,k, 1)
a,b,c,j,k,l
. d
+(@+b+c+k)| K+ 2n3d+2log, 1102 —2logr
+j(—logp—2logr)
_ d
+/ (K + 2n3d + 2log <1+02> - 210g7’> } + O(logn’))
Cyc(¥, € 47\7
(4'99) j_lllz g_lll 2)
‘

For the remaining sum over /, we use Proposition We note first that, since (¢ — 1)!l is the total number
of matchings on [¢] and Cyc(¢,¢) is the number of such matchings that are disjoint from a fixed matching and

whose union with that matching contains ¢ cycles, we may generally bound } 7 Czc(f l;,) f ) < Ef(Xy), where X,
is the random variable from Proposition If e/ </, then we may bound

(1.100) 3 G a0y < 57 G g < ey
¢ ¢

If 27 > {, then we have

Cyell, D), 4, AN
(4.101) > (6—1)”(62 ) < 7 .
7
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For the remaining term involving 5, we bound (5 —1)!! > (5/e)’/2. Combining these estimates,we may incorporate
everything under the exponential as

2
EN" 3 exp<m{5H(_,C—l7575a57j7Ev@

2
(EN) a,b,c,jk,l
+(@a+b+c+k)R,
- 1
+J (1 —logp — 2logr + log <)>
J
7 (K + 2msd + 2108, (—L ) —2logr+0v (L7 + Tiog (2
3 0g+ 11 o2 ogr 4 9 0g ]
(4.102) + O(log n’)>
To bound the remaining rates, we first consider the j term. Recall that n’ = |n/r| > n/2r, so r > n/2n’.
Thus we have
1 1
—logp — 2logr + log () =log ——
J pr=g
an”
< log ——
pn=j
2n” .
(4.103) —log —— —logj.
pn2m

Extracting a similar expression by adding and subtracting %log p in the ¢ term when the second term of the
maximum is greater than zero,

d d 1 1
K +2n3d +2log . <1+02> 7210gr+1J+§log (€>

2

1 d 1 1 2n -
<K+ (27}3 + 4J) d+2log, <1+02> + ilogpflongr §log‘pn2m — log ¢

1.1 d 1. 20/ _
<K 2 -J—=5)d+ 21 — ] =1 -1 — log /¢
< +(n3+4 1 2> + og+<1+02) ogr+2ogpn2m og

and we notice 213 + %J — ng =Sy —IT+1-— iS4 — %SQ = %Sg — iS4 = 11, so, using Proposition to bound
m S ns,

2

1 2n -
< K +mn3d+2log. (HO’Q) —logr + iloganm — log ¥

(4.104) < —(R1 + Ry) —logt

N |

We note also that —jlogj < H(j) and likewise —flog¢ < H({), and both of these are bounded by
H(a,a,b,c,éj,k,f) by Proposition
Applying these observations,

2
EN" _ > exp(m{7H(c_L,EL,l_7,6,6,j,l;:,l7)

(EN)? — :
a,b,c,j,k,l
+@+b+e+k)Ry+ jR;
_ 1
+ ¢ max {RQ, *(Rl + Rz)} :|
(4.105) + O(log n’)> ;
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which implies the result. 0

To complete the proof, it remains to justify Lemma [4.4

Proof. [Proof of Lemma We begin with a combinatorial bound. Below, line by line, the factors count the
number of ways to choose the vertices of V(Q)NV (Qp), the number of ways to choose the vertices of V/(Q)\V(Qo),
the number of ways to draw the edges of E(Q) incident with V(Q) NV (Qq), and the number of ways to draw the
edges of E(Q) between pairs of V(Q) \ V(Qo):

Mgkl
m
< 2a+c
b+k j ¢
a, C, 2 19279
1 c J k £

n —a—%— T 2727 2\, 2mea—boc—j—k—t,
2m—a—-b—c—j—k -/

btk om—a—b—c—j—k—¢ ~
( ; >(k:+a—1)!!( moa b+cc J )(b+c)!Cyc(€,£).
2m—a—-2b—2c—j—k—¢—1)N

Let us introduce C := n’/2m, which satisfies C > 2 by assumption. Then, applying the entropy bound for
multinomial coefficients wherever possible,

< exp (m {H (2a,2¢,b+ k,j,0)

1. 12 1. 12 l—-a—-b—¢c—j—k—1
+2(C—(a+-b+e+=j+-k+=C)|H _ A
< <a 2 7T T 2)) (C(d+§b+6+§j+;k+;))
+
c

j
+2(b+k)H (M) 2(a+¢)log 2] >

_|_
prmoasbmei=h=b} 4 g — (b4 c)(2m —a—2b—2c—j —k — £ — D)I(G — DN — )N

1 Cyc(4,0)

(4.106) G- DI (€— 1D

We will in particular need to bound the fraction of M occupied by each of these subsets. To that end, we note
that

(4.107) M| = (2’;‘%) P27 (2m — 1)1 > exp (m [QCH (é)} _ O(logn')) P2 (2m — 1)1,

Considering the quotient of factorials and double factorials that will remain, an entropy bound again yields
(k+a-1Nb+)l2m—a—-20—2c—j—k—¢—DN{G -1 -1

(2m — 1!
(4.108) <exp(—mH (a+k,b+¢b+¢j,0) +O(logn')),

where we have used Proposition that Al!l obeys the same exponential asymptotics as v A!, and that m = O(n’)
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so that we may replace the log m term with logn’. Thus we find

|Ma,b,c,j,k,tz,i |

M|

< exp <m {H (2a,2¢,b+k,j,0)

+2(0b+k)H B%% +2(a+e¢) log2] +O(logn’)>
r—a—b—c—]—k—[ 1 Cyc(&Z)
(G—D (=1

and repeatedly use Proposition to bound the entropies,

< exp (m [5H (a,a,b,c,c, 4,k 0) + (a+c) 10g4] + O(IOgn/))

(4.109) pamb—e—j—k—t__ 1 Cye(t,0)
G- -1
where we have used that C' > 2 ensures that the sum of the two terms involving C is at most zero. 0

4.4 Sublinear Error Lower Bound We now prove the following application of the above results, which
implies the lower bound of Part 3 of Theorem and of Part 2 of Theorem [1.2

LEMMA 4.5. Define di=14+dA logn > 2 and s := dvd, Suppose that

1 2 1
(4.110) septd =1 =7 = (geepi/d — 12— 1"

Then, there exists an absolute constant ¢ > 0 such that, with high probability,

—d/2
c 1 9

Vd
Proof. Let us bound p from below under these assumptions, which amounts to bounding 145% from above. We
always have HS% < d, and, using the lower bound above along with 1 — e™® < z, we have

d 1), —4/d —-4/d
(4.112) o7 <d(1—s*Wn=44) < d(1 —n=Y?) < 4logn.
Thus,
d ~

and so, by Proposition

1 [1ye2_ 1 -,
114 > > /2
(4.114) P= o000V —a = 20007
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Next, we bound the other term of p, exp(—%S(oQ, 2)), from above and below. Since S(0?2,2) is a decreasing
function of 02, by the lower bound on ¢? we have

~

1 _ 4logn — w(logd)
2 _ w(1), 4/d
(4.115) S(c%,2) < S (sw(l)n4/d — 1,2) log(s n*/ %) < 7 ,
and thus
d 1 -~
(4.116) exp (—25(02,2)> > — exp(w(log d)),
n

whereby pn? = ﬁexp(—%S(oQ, 2))n? — 0o as n — oo. On the other hand, by the upper bound on o2 we have

1 2logn
. 2 9y > - w@)pt/d 1y > >
(4.117) S(0%,2) _S<(2sw(1)n1/d—1)2—1’2) 2log(2s*n ) > I
whereby
d 1
4.11 —=8(0?%,2)) < —
(4.118) exp (~55(0%,2)) < .

so0, since p < 1, pn < 1 as well.
With these properties in mind, let us set up an application of Lemma [4.1] via Lemmata and with
which we will seek to show that M > pn? with high probability. Fix ¢ > 0 a small constant, and take

(4.119) - QJ ¢ {1,4],
L cpn cpn’ epn
1
(4.120) n = _%J c [4cpn2,cpn2} ,
1 1 1
(4.121) m = _320anJ € [Mcpnawcpnﬂ .

Then by Lemma [4.2] the type (a) inequality, holds with a = m/2n’ > 5.
For the type (b) inequality, we have n’ > 4m by our choice, and by the upper bound on o2,

1 1 d
4122 2 < < <
(4.122) 7 = 4nA(nt/d —1) = 4(nt/d 1) = 4logn’

so, for sufficiently large n, the conditions of Lemma [4.3| are satisfied. It remains to control the rates R; and Rs
appearing in the Lemma, and thus to bound S.
We note in advance that, by the upper bound on o2 and since I(0?) is a decreasing function,

o~

1 2logn 2logn + w(d)
2 _ _
(4.123) I(c*)>1 <(25W(1)n1/d 1)21> = +w(logs) = 7 .
The quantities appearing in these rates satisfy
/2
4.124 < 64
( ) pn?m — ¢
d(S(c%,2) — I(c?)) — 2logr < —dI(0?*) + 2logn + 2logc
d
<—logn( 1(0'2)—2>
logn
(4.125) < —w(logd).
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We thus have

2

(4.126) Ry = K +log ( n2 ) < K + log 64c,
pnim

d ~
(4.127) Ry = K +d(S(0?,2) — I(c?)) + 4log., <1+2) —2logr = —w(logd),
g

using in the latter our earlier result that H% = O(c/l\)
For any D > 0, we may therefore choose ¢ small enough that R; < —D for i = 1,2, so the whole rate function
F in Lemma [£3] satisfies

The first term is bounded uniformly by 7log9, so sufficiently large D we may ensure that F' is negative if any of
a,b,¢ 7, k, or £ is at least e. On the other hand if all of the parameters are at most e, then the first term is at
most —7(8eloge + (1 — €)log(1l — €)), which tends to zero as e — 0. Thus for sufficiently small ¢ we may make
the supremum sup,c 4 F'() bounded by any arbitrarily small positive number. In particular, for any € > 0 there
exists ¢ > 0 such that the type (b) inequality holds with 8 < €. For ¢ sufficiently small we may thus ensure, e.g.,
8 < 5% < . Thus we may take v = % in Lemma which gives that, with high probability, M > ﬁcpnz.
Substituting our lower bound on p then gives the result as stated. ]

4.5 Linear or Nearly-Linear Error Lower Bound Finally, we prove the following result, which yields
Part 4 of Theorem [L.1]

LEMMA 4.6. Let s := d'?. Suppose that 1 < d < logn, and that for some a € R,

1
4.128 2> .
( ) 7 = (2sept/d —1)2 — 1

Then, there exists ¢ = c(a) > 0 such that

(4.129) €] > e %n

with high probability.

Proof. We first produce similar preliminary bounds to before. As before we have H% < d, and thus

Ld—l/?

41 5>
(4.130) P = 7000

For the bounds on the other, exponential factor in p, we have, again assuming n is sufficiently large,

1
(4.131) S(0?,2)< S <(2 TR T 2> = 2log(25*n'/% — 1) < 2log(2s*n!/?),
sent/4 — —
whereby
d 1 d—e
4.132 ——85(0%,2) ) > —r = —.
(4.132) exp( QS(U ’ )> — 2dgadp  2dp

Thus we may bound

d 1
(4.133) pn = pexp (25(02, 2)> n > md*“fl/z’rd.
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We take a similar choice of parameters to the previous proof, only now taking r a constant not depending on
n. Let ¢ = ¢(a) > 0 be a constant to be fixed later, and take

(4.134) 7= L2eCdJ € [eCd,4eCd] ,
1
(4.135) n' = LgJ € [46Cdn,ec‘in} )
1 1 1
41 = J— —cd — —cd _ —cd .
(4.136) m {326 nJe{&le n1ge M

Then by Lemma the type (a) inequality, holds as before with « = m/2n’ > %. The conditions of Lemma
are again satisfied. To control the rates appearing there, we again have

< 645— = O((2e=°)%do+1/2),

4.137
( ) pn2m pn

and for the other rate we use that, by Proposition for all 02 we have S(02,2) — I(0?) <

oo

, SO
2 2 3
(4.138) d(S(c=,2) — I(o ))—210gr<d<2—2c>.
Thus, for ¢ sufficiently large the rates appearing in F are
) <K -S4
- 2

(4.140) Ry = K +d(S(02,2) — I(c?)) + 4log, (

72

(4.139) Ry = K +1log ( =
pnZm

c
— ) =21 <K--d
1+ 02> cer =550
thus choosing ¢ large enough we may again make both rates arbitrarily negative, and the remainder of the proof

goes through as before. 0
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A Greedy Algorithms and a Gaussian Limit

To supplement our discussion of the MLE, we describe two natural greedy algorithms for estimating the planted
permutation 7* and discuss their performance heuristically. We believe the computations presented here are
accurate, but for the sake of brevity we will not give detailed proofs. The algorithms we analyze here are also
improper in the sense that they do not return a permutation; rather, they output an assignment of each x; to
an element of {y1,...,y,} with no restriction that each element is matched exactly once. We leave more careful
analysis of greedy algorithms which output a permutation to future work.

To summarize before presenting the details, the first greedy algorithm, where distance is measured as ordinary
¢? distance, will match the performance of the MLE when d = o(logn) but will make n — o(n) errors once
d = w(logn). The second, which greedily selects the point with largest inner product with @;, will make n — o(n)
errors when d = o(logn) but will sometimes (though not always) improve on the MLE in the d = w(logn) regime.
It is unclear what simplifying assumptions are reasonable when d = ©(logn), so we leave this case aside here;
numerical evidence suggests that all three algorithms are competitive and none strictly dominates another in this
regime.

A.1 Algorithm 1: Greedy Distance The first algorithm we consider is perhaps the most immediately
appealing greedy algorithm, which attempts to match each point to its nearest neighbor. This may be viewed as
greedily matching rows to columns in the matrix W(® of pairwise squared distances between the x; and y; formed
as an intermediate step in our derivation of the MLE. As a proxy for the error incurred by such an algorithm,
we consider the number of @; whose nearest neighbor among the {y; 7—1 is not equal to y;, the set of which we
denote

(A1) Edt =i e [n]: ||z — yil|® > || — y;]|? for some j # i}
As another, simpler variant, we may also consider

(A:2) E¥ot = {(i,5) € [l e — will® > i — w12},
which satisfies

1 odis is odis
(A.3) mlsd | < e < [E.

By linearity of expectation, we have
EIE™| = n(n—1)-Pllzr —y1|* > @1 — yo||*)

Here, we note that @; — y; = z; whose squared norm has law x?(d) scaled by ¢?, and is independent from
T] — Y2 = T] — To — 23, whose squared norm has law y2(d) scaled by 2 + o2. Thus, we may rewrite this
probability in terms of two independent A, B ~ x?(d) as

A o2
—”<”—1)'P{B<z+a2]

272
0% = 0(1), we will have from integrating an initial segment of this density that

The ratio A/B has the F distribution F(<, %), whose density is %md/%l(l + 2)~dz. Thus, so long as

(A4) < oln?,

which, up to lower-order terms, is the same as the expected number of augmenting 2-cycles for the MLE. In
particular, E|£9t| is bounded by the same quantity and it is reasonable to believe, so long as this is O(n), that
this bound is tight. We also expect this first moment computation to be an accurate estimate of the typical size
of £9t, Thus, we find that the error rate of a greedy distance algorithm asymptotically that of the MLE so long
as d = o(logn).
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Figure 6: Greedy algorithm proximal regions. We illustrate the regions which must not contain any other
y; in order for x; to be matched with y; in the two greedy algorithms we consider in Appendix E

However, once d = w(logn) this algorithm is much less effective than the MLE. In that case, in the critical

scaling for the MLE we have 02 = @(%) = w(1), so 2‘1% — 1 as n — oo. By evaluating the probability as a
Laplace integral, we thus find

A o2 I'(d) 1 o? o?
——p|Z ~ Stog (=T ) —tog (14 -7
5 <)~ (13 (55) s (4555
1 o2 2 + 202

(A.5) = exp (dlog 02(2—|—02)> ,

¢

1402

whereby

log(1 V EJE% d 1+02)? d 1 d
(A.6) og(1 VEIE |)z27 log (L+07%) ~2— log|{l+— | ~2— —rv—.
logn 2logn " o%2(2+0?) 2logn ot 20%logn

So, while the MLE achieves perfect recovery for some 02 = ©(d/logn), the greedy distance algorithm only
achieves perfect recovery for the asymptotically smaller o2 = O(y/d/logn).

A more informal way to make the same prediction is to first observe that, for large d, we have the distributional
approximation x?(d) ~ N(d,2d). Then, when o? > 1 the distances ||z; — y;||* are distributed approximately
as N((2 4+ 0%)d,2(2 + 02)?d). Likewise the ||z; — y;||* = ||z;|* are distributed approximately as N (02d, 20d).
Moreover, we may make the simplifying assumption of thinking of these distances as independent. Then, we
expect strong recovery to only be possible when min;; [|2;]|? & (2 + 02)d — \/4(2 + 02)2dlogn is at least the

typical ||z;|? ~ o2d. This gives (2 + 02)y/dlogn < d, or 02 < +/d/logn, as claimed above.

A.2 Algorithm 2: Greedy Inner Product The second algorithm we consider applies the same greedy
matching approach to the cost matrix W formed for the MLE by subtracting out the norm terms when the
squared distances are expanded. The analogous error set is then

(A.7) gl = {i € [n] : (mi,y;) < (xi,y,) for some j # i}.
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Here a useful shortcut allows us to dispense with the low-dimensional case easily: as is apparent from Figure 6]
if i ¢ £P°9 then y; is a vertex of the convex hull of y1,...,y,. In particular then, this algorithm will only achieve
even weak recovery when the convex hull of n i.i.d. standard Gaussian vectors in R? has Q(n) vertices with high
probability. As has been shown in the literature on this so-called Gaussian polytope (e.g., [24]), the expected
number of vertices is (log n)o(d), whereby whenever d = o(logn/loglogn) the greedy inner product algorithm
will not achieve even weak recovery, having |EP¢| = n — o(n).

On the other hand, when d = w(log n) we believe that the instance W should, loosely speaking, behave in law
like a matrix with independent entries (we will say more about how our computations here relate to prior work
on such models below). In this case, the “planted” or diagonal and “null” or off-diagonal distributions should be
approximately

d
(A8) Wi = (i) = il + (@0, 21) S N(d,0?d) = P,
(d)
(A.9) Wij = (@5, y;) = (i, @5 + 2;) = N(0,0°d) =: Q,

where we use that, because o2 > 1, we may neglect the fluctuations coming from terms not involving any z;.
If this approximation is sound, then we expect max;.; Wi; ~ y/202dlogn. On the other hand, n — o(n) of
the diagonal terms are of size ©(d). Therefore we expect the strong recovery regime to be when /202dlogn < d,

or 02 < 2 logn This is strictly larger than the strong recovery regime o2 < 4 logn of the MLE. We note that the
former threshold o2 = %lod as the threshold we illustrated in Figure |3| when the number of augmenting 2-cycles
gn

for the MLE becomes macroscopic.
On the other hand, we also expect min; W;; = d — \/202d logn, so we expect the perfect recovery regime for

the greedy inner product algorithm to be when d V202dlogn < \/202dlogn, or 0% < This is strictly

8 log n"
smaller than the perfect recovery regime o2 < 4 logn of the MLE (which is the same as the strong recovery regime

of the MLE). Thus the final picture that emerges for the greedy inner product algorithm when d = w(log n) is

2 1_d 1
that it achieves strong recovery for a greater range of o<, but has a region of sublinear error g oan < o’ < 2 logn’
d

4logn’

while the MLE has no region of sublinear error on this scale instead achieving perfect recovery when o2 <
from the point of view of the polynomial error rate, the two algorithms are thus incomparable.

A.3 Gaussian Limit in High Dimension The independent Gaussian limit discussed above falls in the range
of models treated by previous works [18, 36] 42]. In particular, it was predicted in [36] [42] and proved for certain
models (not including the Gaussian model of P and Q above) in [18] that the strong recovery threshold in such
a model should correspond to /nB(P,Q) = 1, where B(P, Q) is the Bhattacharyya coefficient. This may be
computed in closed form for Gaussian distributions, which gives that the critical o should satisfy

3+ 207 d
(A.10) n= 2,/(2+ 02 (1 + 02 xp (2(3 + 202)> ’

As n — oo the prefactor and the constant term in the exponent denominator are irrelevant, so this predicts a
critical transition at n = exp(d/40?), or 0% = ilogn

Per our discussion above, this is the correct strong recovery threshold for the MLE; indeed, the proof of
the positive results in [18] goes by analyzing the MLE, so this is not surprising. However, the greedy algorithm
applied to this model (to agree with the setting of [18], we should think of the input as the matrix W with entries
distributed roughly according to P and Q, rather than the “raw” point sets {z;} and {y;}) achieves a better
strong recovery threshold of o2 = élogn Essentially the same is noted in Remark 1 of [18], where the authors
bring up a similar independent Gaussian model as an instance where the Bhattacharyya coefficient does not give
a correct prediction.

Our discussion above, however, gives some further nuance to this point if one is interested in sublinear error
rates in addition to just strong recovery. Namely, both in our model for high dimension and in the independent
Gaussian model, the greedy algorithm achieves an inferior perfect recovery threshold, and, more generally, an

inferior sublinear error rate to the MLE whenever o2 < Z logn’ but a superior rate whenever il— <o?< i

2 logn
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B Evaluation of Integral: Proof of Proposition

Recall our claim,

1 —
(B.11) (%) := /0 log (1 + #(1 - cos(27rm))) dx = 2log <1+\/12+ﬁ> :

To lighten the notation, let us set A = o2. Differentiating under the integral sign, we have

RN ! 1 — cos(27mz)
') = _X/O (2A 4+ 1) — cos(27x)

which we may write as a contour integral over C' the complex unit circle

1 17% dz

C2mA Jo (204 1) - 2 iz

_ 1 (z—1)2 "
S 2miA fc 2(22 — (AN +2)z+ 1)

where the integrand has poles at z = 0, p_, py for pr = 2XA+ 1+ 2V/A2+ X. Only z = 0, p_ lie inside C, so by
the residue theorem we have
1 1 _—1)?
_ 1 ( L= )
ANpip—  p=(p- — p+)
which after some algebra reduces to

1 A
B.12 = (1—4/ .
( ) A( >\+1>
Since limy_,o0 I(A\) = 0, we then have
<1
I(A):/ <1—,/t>dt
\ 1 t4+1

where the integrand has the explicit antiderivative log(t) — log(1 + t_%l) +log(1— 4/ H—Ll) whose limit as ¢t — oo
is —log(4), whereby we finish

by by
—log(4) — log(\) +log [ 1 2 ) —log (1 -4/
og(4) 0g()+og<+ )\+1> og< /\+1>
1+ /125

1= /25)

which after some algebra reduces to

= log

2
V/ 1
(B.13) = log <H12+>\> ,

as claimed.
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Figure 7: Spanning forests and matchings. We illustrate the bijection between rooted spanning forests on

the t-cycle and matchings on the 2¢-cycle used in the proof of Lemma

C Riemann Sum Analysis
In this appendix we prove our bounds on the Riemann sums S(o2,t). We will proceed by relating S(o?,t) to the
following well-known family of polynomials.

DEFINITION C.1. (LucAs POLYNOMIALS) The Lucas polynomials Ly(x) € Rlx] for k > 0 are defined by the
Tecursion

(C.14) Lo(z) = 2,
(C.15) Li(z) = =,
(C.16) Li(z) = xLp_1(z) + Ly_o(x) for k > 2.

The recursion may be solved as follows, a version of the usual approach for a second-order recurrence, only now
parametrized by = (see, e.g., [23]).

ProPOSITION C.1. (BINET’S FORMULA) Let a(x), B(x) be the roots of t? —tx — 1, i.e.,

T+ V244

(C.17) alz) = 5
(C.18) Bx) = LoV td V;Q”

Then, Ly, (z) = a(z)™ + B(x)™.
The following is then the key statement relating the Lucas polynomials to our Riemann sums.
LEMMA C.1. For any t > 3, exp(S(02,t)) = (40%) 7t (Lot (20) — 2).

We note that the same formula does not hold for ¢ = 2: the left-hand side is 1 + o~2, while the right-hand side
is 1 +072/4. As we will see in the course of the proof, that is because the formula depends on the eigenvalues of
the t-cycle graph C3 appearing in the summation in S(o?,t).

Proof. [Proof of Lemma Recall that we denote by C; the cycle on t vertices and by L®* its graph Laplacian.

Let At 1,..., A+ denote the eigenvalues of L. Then, we have
t 1 t
(C.19) exp(S(o?,t)) = H (1 + sz/\t,]) = Z By M) (40?)7F,
j=1 k=0
where
(C.20) Bi(ay,...,a) = Y ai---aq

1<ip <-- < <t
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Figure 8: Contracting matchings in cycles. We illustrate the bijection between matchings in a t-cycle and
those in either a (t — 1)- or (¢ — 2)-cycle used in the proof of Lemma [C.1}

are the elementary symmetric polynomials.

By a generalization of the matrix-tree theorem (see Theorem 7.5 of [13]), Ex(A¢1,. .., Aet) is equal to the
number of spanning forests of C; containing ¢ — k connected components and with each connected component
having an assigned root vertex. The condition of a spanning forest having ¢t — k connected components is, for the
specific case of the graph (Y, also equivalent to the forest containing k edges.

When k < t, then these forests are in bijection with the matchings on Cy; also containing k edges. An explicit
bijection is as follows. Suppose the vertices of Cy; are labelled 0, ..., 2t—1 and the vertices of C; labelled O, ..., t—1.
Suppose M is a matching in Cy;. We build a spanning forest F' of C; by including the edge {i,i + 1} whenever
either {2,2i4+1} or {2i+1,2i+ 2} is included in M, and by declaring i a root vertex in C} if 2i is not adjacent to
any edges of M in Cy:. We illustrate this mapping in Figure [7] which shows that every connected component of
F formed this way indeed has a unique root vertex (located where the pairs of consecutive edges containing edges
of M switch from “leaning” counterclockwise to clockwise), and that the knowledge of the connected components
and the root vertices of F' uniquely determines the preimage M. This holds so long as k < t; however, when
k =t, then there are two matchings on C?* with k =t edges, while E;(A\¢ 1,. .., ;) = det(L%) = 0.

Let M, j denote the number of matchings of k edges in C;. The result then follows from showing that L (z)
is the matching polynomial of Cy for t > 3:

L¢/2]
(021) Lt(.’E) = Z Mt’kxt_Qk.
k=0

This fact is known, though often phrased differently (e.g., Section 6 of [21]), but we give the simple proof here for
the sake of completeness. The statement is easily verified for ¢ = 3,4, and then it suffices to show the coefficient
recursion for ¢ > 5 that

(C.22) My =M1k + M2 51

We present a bijective proof of this recursion in Figure [8} fixing a sequence of three consecutive edges in Cy, we
map any matching in Cy to a matching in either C;_; or C;_s by a suitable replacement of this sequence by either
two edges or one edge, and this mapping is visibly a bijection. O

C.1 Discrete Concavity: Proof of Lemma It suffices to show that S(0?,t) — S(0?,t — 1) is decreasing
in t. (This establishes that the limit lim; . (S(0?,t) — S(0?,t — 1)) exists, and since S(0?,t)/t — I(0?), the
former limit must then equal I(c?).) Equivalently, it suffices to show that, for all ¢ > 3,

(C.23) 25(02,t) > S(02,t — 1) + S(o?,t + 1).

We consider separately the case t = 3. Introducing for the sake of convenience a new variable y = 02, we
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have the polynomials

(C.24) =1+y,

exp(S(y1,3)) = (1 + ysin? (;)w)) (1 + ysin? @w))
(C.25) - (1 ¥ jy)

st (e () 1 () (0 3)
(C.26) = (1 + ;y>2 (I+y)

Thus it suffices to show that, for all y > 0,
3\* 1\2 )

which follows by the arithmetic-geometric mean inequality which gives (1+2y)(1+y) < (3(1+ iy +1+y))% =
1+ 3y)*
Now, suppose ¢ > 4. Then, exponentiating both sides and applying Lemma [C.1] it suffices to show that

?
(C.28) (Lao(2) = 2% 2 (L (&) — 2) (Lo () — 2)
for all z > 0. Letting a = a(x)? > 1, we have 3(x)? = a~!. In terms of a, we may then expand either side as

(C.29) (Lot(x) —2)? =6+ a®* +a™ " — 4a’ —4a™",
(C.30) (Lat—o(z) = 2)(Lapia(x) —2) =4 +a* +a * +a* +a? — 24" — 27" — 20" — 247171

Therefore, it suffices to show that, for all a > 0,

?
0<2—4at —dat—a?—a2+2a "+ 207 +2¢1H! + 2471
(C.31) =242 1 -a)? +2a7 "1 —aH)? —a® —a2

Viewing ¢ for a moment as a continuous parameter, we note that the derivative of the above expression with
respect to t is 2loga(a’™1(1 —a)? — a1 (1 —a"1)?) > 0 for any t > 1 and a > 1, since a’~! > a~'*! and
1-a)?>1-at)?= (C‘T—l)2 Thus this expression is increasing in ¢, so it suffices to consider ¢ = 4. In that
case, we have the factorization

(a — 1)*(2a8 + 4a® + 6a* + 7a® + 6a% + 4a + 2)

(C.32) 2+2a*(1—a)?* +2a (1 —a1)? —a?>—a 2=
au)

?

which shows strict positivity for any a > 1.
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C.2 Upper Bound: Proof of Lemma We want to show S(02,t) < tI(c?). Exponentiating either side,
we observe that

2t
(C.33) exp(tI(02)) = (” ”;") ,
exp(S(o?,t)) = (40%) (a(\/@)% + ﬁ(\/@)% — 2)

_ o7yt (x/@+\/7402+4)2t+(@—\/74024—4)%_2
2 2

[(1+V1+02 . 1-V1+02 “ 042t
S\ ) T2 )

2t
1—\/1+02> - (21/t>t

(C.34) = exp(tI(c?)) + ( ) 152

Thus it suffices to show that

(C.35) = .

2
21/t 2 (x/l +072 - 1)

which we verify as

(C.36) W_(Wq) >1—<m_1> =%(\/m_1)>0.

402 2 402 2

C.3 Miscellaneous Rate Functions: Proof of Proposition Again introducing y = o~2 and using our
expressions for Sy for ¢ = 2,3, and 4 from (C.24)), (C.25)), and ([C.26), respectively, as well as the expression

S

(C.37) exp(I(y™1)) = 14 Q, 1+ Q} ,

4 2
we may compute as follows:

(14 y)3/*
1+ 5y)t/2(1+y)t/4

1
Y

exp(m) = (

1+
2+/1 +
(C.40) exp(ng) = Y

1+ /I4y

Thus we find n3 > 71, since by concavity of the square root %(1 +V14y) <4/1+ %y We also have, by the
arithmetic-geometric mean inequality,

1+ 3
(C.41) exp(m) _ 1Y -
o®(n) 1 +y)(1+ 1)
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S0 173 > 11 > m2. For the upper bound on 73, we have

1

D Edge Probability Prefactor: Proof of Proposition
We begin by producing the following formula for p: let g ~ N(0,02) and u ~ x?(d) be independent. Then,

(D.43) p=Plg>Vu].
We work directly from the earlier expression, in the special case t = 2:

P[(1,2) is augmenting] = P [(z1 — 22,25 — 1) > |lz2 — a1|]
Z1 — 22 Lo — X1
D.44 _p , > ,
(D44 Ca eea) |

where we observe now that (xs — x1)/||x2 — x1|| has the law of a uniformly distributed unit vector, and is
independent from ||z — x;||/v/2, which has the law of the norm of a standard gaussian vector, which is that of
Vu. Moreover, (z; — 25)/+/2 has the law N(0,021,), so the left-hand side of the probability has law A(0,c?),
giving the claim.

Note that the upper bound on p follows from Proposition For the lower bounds, we first give two
quantitative lower bounds, a looser one that holds for all d > 1 and a tighter one that holds for all d > 4. We will
use the following “Mills’ ratio” lower bounds on Gaussian tails (see, e.g., [19]): for all ¢ > 0,

(D.45) polgzi> 1 L ( t2)>(1 1) 1 ( tQ)
. ———exp|—— -— = | —exp|—=
g~N(0,1)g_ T 1+ 2on P 2) =\t ) Vor P 2

For our first lower bound, we use the first lower bound of (D.45):

P [gz\/“;}
u~x2(d) g~N(0,1) o

T2 — T

V2

p= E

e (~5,3)
02 + u 202
d

\/> i 14072 p
xp -9
2d/2F% 02+uep B) U U

d—1

L+~ - _vE e Ydv
2d/2F g 92 o % )

d \/1-|-f0'2 1 o0 'Udz;l
D46 =exp | —55(0%2 ) / e Vdv.
(D.46) p( S50 0) S s [
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Working now with the remaining integral,

/ #e_vdvz 1 2/ VP evdy
0 7"’_20 + v 1+O— 0 1+U
d—1
1 vz
—ug
1+a2/1 2w ¢ %
1 d—1
D4 = r 1
(D47 e ()
and we find that, for all d > 1,
1 INE= )

and, bounding the I' functions,

(D.48)

> .
~404/md(1 4 0?)

For our second lower bound, we suppose that d > 4 and use the second lower bound of (D.45):

L (N (2 (-4)
b= 27 u U U xp 202

1 1 > s 14072 p 5 [T 4= 14072 p
_EWF(%)UO exp | — 5 U u—aou exp | — 5 u | au

where both integrals converge due to our assumption that d > 4. Performing the same change of various as before,
we find

_ 11 (riEE NI ) 213/2 deo o
(D.49) = V) ( 7 (1+40%)"7% - 27\/5(14—0 )3/2 ) exp (—25(0 ,2)),

and thus, rearranging, we find that

BRI
Wr T(3)

‘ -

T

P2 o T

(02 +1)% - (02 +1)%

2

S

[ V)

and bounding the I' function ratios from above and below,

(D.50) o1 (140 3 , (110 3/2
' ~Vor d d

For 1 < d < 40, by assumption we have o2 < 1, so by our first bound we find

1 1 1402
D.51 p > > ,
(D:51) P=40v/80x — 1000V d

using that 1402 < 2 and d > 1. For d > 40, we have 1 < 4%, sol+o2< %. On the interval x € [0, %] we have

L 12 _943/2 > %xl/Q, so by our second bound we have

V2r
1 [1402
D.52 .- .
0:52) P=V 4
Combining the two cases gives the result.
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