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Abstract

We study the problem of e�ciently recovering the matching between an unlabelled collection of n points

in Rd
and a small random perturbation of those points. We consider a model where the initial points are

i.i.d. standard Gaussian vectors, perturbed by adding i.i.d. Gaussian vectors with covariance �2Id. In this

setting, the maximum likelihood estimator (MLE) can be found in polynomial time as the solution of a linear

assignment problem. We establish thresholds on �2
for the MLE to perfectly recover the planted matching

(making no errors) and to strongly recover the planted matching (making o(n) errors) both for d constant and

d = d(n) growing arbitrarily. Between these two thresholds, we show that the MLE makes n�+o(1)
errors for an

explicit � 2 (0, 1). These results extend a recent line of work on recovering matchings planted in random graphs

with independently-weighted edges to the geometric setting. Our proof techniques rely on careful analysis of

the combinatorial structure of partial matchings in large, weakly dependent random graphs using the first and

second moment methods.

1 Introduction

Consider a set of n unlabelled particles {x1, . . . ,xn} in Rd undergoing random motion. A short time later, the
particles are observed at new locations {y1, . . . ,yn}. Is it possible to ascertain which particles correspond to
which? This problem—known as multitarget tracking—was proposed for theoretical analysis by [15], and has a
wide range of applications in many scientific contexts where it is useful to infer the trajectories of objects from a
succession of still images.

For concreteness, we formalize this question as follows: fix a dimension d 2 Z+, a sample size n 2 Z+,
and a noise variance �2 2 R+. We first draw x1, . . . ,xn ⇠ N (0, Id) independently, then draw noise vectors
z1, . . . , zn ⇠ N (0, �2Id) independently (of one another and the xi) and set yi := xi +zi. We then draw a hidden
permutation ⇡? ⇠ Unif(Sn) and observe the tuple (x1, . . . ,xn,y⇡?(1), . . . ,y⇡?(n)). The goal is to estimate the
planted permutation ⇡? from this observation.

While this model is quite natural, rigorously analyzing its statistical and computational properties has proven
challenging, chiefly because the pairwise distances {kxi � yjk2}ni,j=1 are not independent. In the interest of
identifying a mathematically tractable alternative, [15] suggested to study a simpler model where independent
random variables are substituted for these distances. Under this simplified model, we observe a matrix W 2 Rn⇥n

where, for a random hidden permutation ⇡?, the entries Wij are drawn from a distribution P when ⇡?(i) = j,
and another distribution Q otherwise, all independently.

Models of this type have attracted significant recent interest in the computer science and statistics
communities, and precise results are now known in a number of di↵erent settings [18, 36, 42]. Despite this
progress, however, the original problem of recovering planted geometric matchings to our knowledge has not
received any attention since its proposal by [15].

In this work, we make progress on this original question. We precisely characterize the performance of a natural
recovery procedure based on the linear assignment problem, and establish thresholds on �2 for this procedure
to recover the planted matching with various amounts of error. Our results also suggest new conjectures about
the performance of a natural online algorithm for multitarget tracking which has been proposed in the signal
processing literature [12, 40, 41]. Taken as a whole, our results indicate regimes in which it is possible to recover
geometric planted matchings to high accuracy in polynomial time.
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We will focus on the maximum likelihood estimator (MLE) of ⇡? from the observations, which is given by

(1.1) b⇡ := arg max
⇡2Sn

exp

 
� 1

2�2

nX

i=1

kxi � y⇡(i)k2

!
= arg min

⇡2Sn

nX

i=1

kxi � y⇡(i)k2.

One advantage of this estimator is that it does not depend on the variance �2, which may not be known in
practice. Crucially, despite being given as the solution to an optimization problem over Sn, the estimator can be
computed in polynomial time, since it is an instance of the linear assignment problem. Solutions may therefore
be computed e�ciently either by an exact relaxation to a linear program over doubly stochastic matrices, or with
specialized combinatorial algorithms such as the Hungarian algorithm [11, 28].

We note that though the MLE is a canonical choice of estimator, it is not the only available polynomial-time
approach. Another natural approach is to estimate ⇡? by greedily matching each point xi to its nearest neighbor.
One can show that this algorithm is competitive with the MLE in some regimes, but is strictly dominated by
the MLE when the dimension is large. We discuss this algorithm and a similar greedy algorithm which seeks to
maximize the correlation between xi and its matched point in Appendix A.

We assess the error incurred by the MLE by counting how many indices of [n] it matches incorrectly. We
define the (random) set of such errors,

(1.2) E = {i 2 [n] : b⇡(i) 6= ⇡?(i)}.

We will primarily be concerned with the behavior of the random variable |E|. Its law is unchanged by fixing ⇡?,
so we assume without loss of generality that ⇡? is the identity permutation. We lastly introduce some standard
jargon. We say b⇡ achieves strong recovery (of ⇡?) if |E| = o(n), achieves perfect recovery if |E| = 0, and achieves
near-perfect recovery or sublinear error if 0 < |E|  o(n). In contrast, we say b⇡ makes a macroscopic number of
errors if |E| = ⌦(n).

Most prior work on planted matching problems has focused on establishing when strong recovery is or is not
achieved. We will partly address this question, but we will also study the polynomial error rate given by log(1_|E|)

logn .
As we show below in Section 1.3, this finer control is valuable in applications to multitarget tracking over time.
We identify this rate by analyzing the cycle decomposition of b⇡ and counting the associated augmenting cycles
of length greater than one; in particular, much of our analysis depends on a precise analysis of the number of
augmenting 2-cycles, which we interpret as forming a random graph on [n]. We give a further overview of our
proof techniques in Section 1.4 below.

The limits of recovering planted matchings under independent weights are increasingly well understood. These
models exhibit a phase transition in the recoverability of ⇡?, which was conjectured by [15], proved in a special
case by [36], and studied in greater detail and generality by [18, 42]. The approach of [36] in particular may be
viewed as an extension to the planted setting of an earlier line of work studying optimal matchings under i.i.d.
weights, the so-called random assignment model [3, 4, 34, 39]. Despite the sophistication of these results, their
techniques rely heavily on the independence assumption, and many of their conclusions remain conjectural in the
geometric matching setting.

More broadly, various problems of estimating combinatorial structures from noisy observations have received
much attention in recent years. As in our case, the models making strong independence assumptions have been
the most amenable to analysis; notable examples include the stochastic block model [1, 17, 37] and the planted
clique model [5, 10, 26], both of which may be viewed as models of community detection in networks. One of
the remarkable phenomena that such models exhibit is the statistical-to-computational gap, where in a range of
model parameters it is possible to estimate the planted object, but (conjecturally) only with prohibitively costly
algorithms (see, e.g., [9]). There is not yet evidence that planted matching problems ever have such gaps, but it
is an interesting open question to determine if this in fact ever occurs. We note also that the di↵erence between
independent planted matching models and our geometric planted matching model is analogous to the di↵erence
between the stochastic block model of network community structure and the stochastic ball model [8, 25] and
similar Gaussian mixture models [32, 35] analyzed more recently in the community detection literature.

Finally, the question of optimally matching i.i.d. random points is a classical topic in probability theory
and computational geometry [2, 6, 14, 29, 30, 31, 44, 45, 46]. This line of work studies a natural null model
counterpart to ours, where all 2n points x1, . . . ,xn,y1, . . . ,yn are i.i.d. This model is the geometric analogue
of the random assignment problem, and it would be interesting to understand whether the optimal transport
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techniques developed for analyzing matchings of i.i.d. points (such as the PDE approach of [6, 14]) can be
imported to the study of geometric planted matching models, in the same way that [36] imported the techniques
of [3, 4] related to local weak convergence from the random assignment problem to their independent planted
matching model.

The remainder of the paper is organized as follows. In this section we present our main results, a stylized
application to multitarget tracking over time, an overview of our proof techniques, and several open questions. In
Section 2 we present some preliminary technical tools. In the remaining two sections we prove our main results,
which constitute upper and lower bounds with high probability on |E|. In Section 3 we prove upper bounds using
the first moment method, and in Section 4 we prove lower bounds using the second moment method.

1.1 Notation Throughout, we focus on the n ! 1 limit and let d = d(n) and �2 = �2(n) scale at various
rates with n. The asymptotic symbols o(·), O(·), !(·), ⌦(·), ⇥(·), ⌧, ⇠, and � will have their usual meanings with
reference to the limit n ! 1, subscripts such as Oa(·) indicate that the implicit constant depends on the quantity
a, and events which occur with probability 1 � o(1) are said to hold “with high probability.”

We also introduce some further notation for the MLE. We define two cost matrices W (0),W 2 Rn⇥n with
entries

W (0)
ij := kxi � yjk2,(1.3)

Wij := hxi,yji,(1.4)

and note that, writing P⇡ for the permutation matrix of a permutation ⇡, the MLE is equivalently

(1.5) b⇡ = arg min
⇡2Sn

hW (0),P⇡i = arg max
⇡2Sn

hW ,P⇡i,

since, upon expanding the squared distances, each kxik2 and kyjk2 occurs exactly once for any ⇡.
For a, b 2 R, we write a _ b for the maximum of a and b and a ^ b for their minimum. Given x > 0, we let

log+(x) := 0 _ log(x).

1.2 Main Results To state our results, we consider three di↵erent regimes: the low-dimensional regime where
d = o(log n), the logarithmic regime where d = ⇥(log n), and the high-dimensional regime where d = !(log n). In
each, we identify the behavior of |E| as a function of �2. As our proofs make clear, the di↵erence between these
regimes is justified by the fact that the quantity

d

log n
log(1 + ��2)

plays the role of a signal-to-noise ratio for our problem, which suggests that the correct scaling of � is
�2 = ⇥(n�⇠/d) for some ⇠ > 0 in the low-dimensional regime, �2 = ⇥(1) in the logarithmic regime, and
�2 = ⇥( d

logn ) in the high-dimensional regime. Our main results verify these claims.
In the low-dimensional regime, we are able to resolve the thresholds between perfect recovery, strong recovery,

and macroscopic error.

Theorem 1.1. (Low-dimensional regime) Suppose that d = o(log n).

1. (Perfect recovery) If �2 = o(n�4/d), then |E| = 0 with high probability.

2. (Small error) If �2 = ⇥(n�4/d), then E|E| is bounded; in particular |E|  f(n) for any f(n) = !(1) with
high probability.

3. (Sublinear error) If n�4/d ⌧ �2 ⌧ n�2/d, then there exists an absolute constant c > 0 such that, for any
f(n) = !(1), with high probability

(1.6)
cp
d
�dn2  |E|  f(n)�dn2.

In particular, if d
logn log(1+��2) ! ⇠ 2 [2, 4], then the following convergence in probability holds as n ! 1:

(1.7)
log(1 _ |E|)

log n
! 2 � ⇠

2
.
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4. (Linear or nearly-linear error) If �2 � an�2/d for some a > 0, then there exists c = c(a) such that
|E| � e�cdn with high probability.

Note that when �2 = ⌦(n�2/d) and d is a constant not depending on n, Theorem 1.1 implies that |E| = ⌦(n) with
high probability; this is the only regime where we are able to show that the MLE actually incurs macroscopic
error. When 1 ⌧ d ⌧ log n with the same scaling of �2, we find the nearly macroscopic |E| = ⌦(n1�o(1)).
One way to gain some intuition for this statement is to consider instead a greedy matching algorithm, that
matches each xi (in some sequence) to the nearest unmatched yj . The typical minimum distance between any
two of the xi is typically mini 6=j kxi � xjk = ⇥(n�2/d), whereby the expected perfect recovery threshold is
� = ⇥(n�2/d). On the other hand, the minimum distance between any particular xi, say x1, and another xj

is typically minj 6=1 kx1 � xjk = ⇥(n�1/d). Moreover, this is simultaneously achieved for most of the xi, so the
expected strong recovery threshold is � = ⇥(n�1/d). We give further comparisons between the MLE and this
greedy algorithm as well as another variant thereof in Appendix A.

In the logarithmic regime we obtain similar results, except that the range of �2 yielding sublinear errors
appears to end at a point when |E| = ⇥(n�) for some � < 1. In fact, in Conjecture 1.1 below we predict the

existence of a discontinuity in the limiting value of log(1_|E|)
logn , where the error rate jumps sharply from |E| = ⇥(n�)

to |E| = ⌦(n).

Theorem 1.2. (Logarithmic regime) Suppose that d ⇠ a log n for some a > 0, and that �2 is constant not
depending on n.

1. (Perfect recovery) If

(1.8) �2 <
1

e4/a � 1
,

then |E| = 0 with high probability.

2. (Sublinear error) If

(1.9)
1

e4/a � 1
 �2 <

1

(2e1/a � 1)2 � 1
,

then the following convergence in probability holds:

(1.10)
log(1 _ |E|)

log n
! 2 � a

2
log(1 + ��2).

The quantity on the right side of (1.10) equals zero at the lower limit �2 = 1
e4/a�1

, and equals 2�a log(2e1/a�1) 2
(0, 1) at the upper limit �2 = 1

(2e1/a�1)2�1
for any a > 0. As a ! 1, the width of the sublinear error regime

given in (1.9) is 1
(2e1/a�1)2�1

� 1
e4/a�1

= 1
8 + o(1), so this is indeed a non-trivial range of �2 on the critical scale

�2 = ⇥(1).
Next, we treat the remaining high-dimensional regime. Here our results only describe perfect recovery;

however, Conjecture 1.1 will again predict that on the scale of �2 indicated below, greater noise results in
macroscopic error.

Theorem 1.3. (High-dimensional regime) Suppose that d = !(log n). If for some ✏ > 0

(1.11) �2 
✓

1

4
� ✏

◆
d

log n
,

then |E| = 0 with high probability.

Finally, we state a supplementary conjecture, which we will discuss in greater detail in Section 1.4, where we
show how it is suggested by the first moment combinatorics of augmenting cycles. If true, this conjecture would
complete the high-level picture described by our results, in each regime of d showing that for the remaining �2

not covered by our results, the MLE makes a macroscopic number of errors.
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Conjecture 1.1. Suppose that any of the following conditions holds:

1. 1 ⌧ d ⌧ log n and, for some ✏ > 0, �2 � n�(2�✏)/d.

2. d ⇠ a log n and, for some ✏ > 0, �2 � 1
(2e1/a�1)2�1

+ ✏.

3. d = !(log n) and, for some ✏ > 0, �2 � ( 1
4 + ✏) d

logn .

Then, for some c = c(✏) > 0, |E| � cn with high probability.

If true, Conjecture 1.1 together with Theorem 1.2 would surprisingly imply a discontinuity in the value of log(1_|E|)
logn

as a function of �2 when d = a log n at �2 = 1
(2e1/a�1)2�1

: from the left this quantity would tend to a limit

2 � a log(2e1/a � 1) strictly smaller than 1, while from the right it would equal 1. As a ! 0, the size of this
jump would shrink, recovering in the limit the continuous behavior of the d ⌧ log(n) case. We illustrate these
error curves and the predicted jump in Figure 4; see also Section 1.4 for discussion of theoretical evidence for this
prediction.

1.3 Stylized Application: Online Tracking of Brownian Motions As an application of our results, we
consider a stylized motion tracking model, similar to the one proposed by [15]. Suppose that x1(t), . . . ,xn(t) 2 Rd

are independent standard Brownian motions in dimension d = O(1), started from xi(0) independent standard
Gaussian vectors. We view these Brownian motions as the evolution of indistinguishable particles, whose motion
we would like to track over time: for some fixed � > 0, we observe this collection of particles (but not their labels)
at times t = k� for each integer k � 0. On the basis of these observations, we would like to track the identities of
each particle over some large interval t 2 [0, T ] as accurately as possible.

A natural approach is an iterative matching algorithm: having observed the point set Xk =
{x1(k�), . . . ,xn(k�)} for each integer k � 0, repeatedly compute the MLE matching b⇡k between Xk�1 and
Xk for k � 1. Then, the composition b⇡ = b⇡1 · · · b⇡K gives a plausible matching between X0 and XK , which
attempts to track the Brownian motions up to time T = K�. In fact, this approach is frequently used in practical
engineering applications in concert with various preprocessing and filtering pipelines [12, 40, 41]. We illustrate a
small example in Figure 1. How large can we make this T while having the final matching correctly identify at
least, say, half of the particles, i.e., having b⇡ fix at least half of the points of [n]?1 Let us define the expectation
of this time,

(1.12) Tmax = Tmax(�, n) := � · E min{K : b⇡1 · · · b⇡K has fewer than n/2 fixed points}.

Clearly we expect decreasing �—taking snapshots more frequently—to increase Tmax. We can use our results
for d constant to make an informal prediction as to the behavior of this tradeo↵. The displacement of a Brownian
motion in time � has law N (0, �Id), so each time step looks like our earlier setup with �2 = �. Thus suppose
n�4/d ⌧ � ⌧ n�2/d. Then, we expect the error incurred by b⇡k to be roughly �d/2n2 for each k. Supposing
that these errors a↵ect di↵erent indices in each time step, we then expect to make ⌦(n) errors in total once
K > n/(�d/2n2) = ��d/2/n. Thus, we expect Tmax ⇠ �K = �1�d/2/n.

One case to which this argument certainly does not apply is d = 1: in this case, the di↵erence between
the positions of any two particles is itself a Brownian motion which will eventually cross zero (meaning that the
particles will collide), and by a standard argument of time inversion of Brownian motion will in fact cross zero
infinitely many times in the vicinity of any such crossing (meaning that the particles will collide infinitely many
times immediately following their first collision). Indeed, we illustrate in Figure 2 below that, when d = 1, the
error of tracking appears to be driven by such collisions and does not depend at all on the sampling interval �.
However, we conjecture that the above heuristic is sound for larger dimension.

Conjecture 1.2. Suppose that d � 2 and � = n�⇠/d for some ⇠ 2 [2, 4]. Then, Tmax ⇠ �1�d/2

n f(n) =

n⇠/2�⇠/d�1f(n) for some 1/polylog(n)  f(n)  polylog(n).

1All manner of quantities describing the approach of b⇡ to a uniformly random permutation, such as total variation distance in
the style of results on Markov chain mixing times, would be interesting to consider; we restrict our discussion to the number of fixed
points for the sake of simplicity.
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A surprising consequence of this conjecture would be that, when d = 2, there is a large range of � over which
the improvement in Tmax gained for decreasing � is only logarithmic in �—the situation is hardly better than
d = 1—while once d � 3 this improvement becomes polynomial in �. This criticality of d = 2 seems to resemble
similar phenomena in the structure of optimal matchings of i.i.d. points in the null model [2, 29, 30, 46]. While it
is di�cult to make n su�ciently large to overcome finite-size e↵ects and resolve the exponents we are interested
in numerically, as alternative evidence we plot the number of errors over time for a fixed small n and various �
and d in Figure 2. We observe something qualitatively similar to the Conjecture: when d = 2 the error changes
logarithmically over several orders of magnitude of �, while once d = 3 the error changes much more rapidly,
plausibly polynomially.

Proving Conjecture 1.2 would require several improvements over our current results, and represents an
interesting question for future work. At a minimum, doing so would require better understanding of the
concentration properties of |E| in the low-dimensional regime. Obtaining stronger concentration bounds would
also open the door to understanding what happens when � ⌧ n�4/d, when each time step is in our “perfect
recovery” regime and most time steps do not introduce new errors.

1.4 Proof Techniques We briefly discuss our proof techniques, with the aim of giving a heuristic theoretical
justification of Conjecture 1.1 above. The following is the key structural property obeyed by E : because E is the
set of indices not fixed by b⇡, by the cycle decomposition of b⇡ the indices of E belong to a disjoint union of cycles
in b⇡, and each such cycle (i1, . . . , it) is augmenting, meaning that, performing index arithmetic modulo t,

(1.13)
tX

k=1

Wikik+1 �
tX

k=1

Wikik ,

the reason being simply that the objective value of b⇡ in (1.5) must not be increased by replacing any cycle of b⇡
with the identity mapping.2 Our analysis is based on considering how many augmenting cycles of various sizes
on [n] exist.

There are
�n
t

�
(t�1)! ⇡ nt/t possible t-cycles on [n] (the approximation holding for t ⌧ n), so the total “mass”

or sum of the lengths of these cycles is ⇡ nt. We show that the probability that any given cycle is augmenting is
related to the Riemann sum of a particular function f(�2, x), thus obtaining that

P[t-cycle is augmenting]  exp

0

@�d

2

t�1X

j=1

f

✓
�2,

j

t

◆1

A ,(1.14)

E[mass of augmenting t-cycles]  exp

0

@t log n � d

2

t�1X

j=1

f

✓
�2,

j

t

◆1

A =: nc(t).(1.15)

We will show that these Riemann sums have a discrete concavity property (see Section 2.2), and that
consequently c(t) is a convex function of t, as we illustrate in Figure 3. The threshold that Conjecture 1.1
predicts for strong recovery is the location where limt!1 c(t)/t changes sign from negative to positive, i.e. where
the limiting slope of the curves in Figure 3 changes from negative to positive.

When this limiting slope is negative, then in fact the entire curve of c(t) is decreasing, so the dominant
contribution is made by augmenting 2-cycles. In this case, we may analyze the number of errors the MLE makes
by counting augmenting 2-cycles with the first and second moment methods. When the limiting slope is positive,
we expect substantial contributions to be made by t-cycles with large t, which our techniques here do not handle.
There is a third threshold when there are ⌦(n) augmenting 2-cycles, the rightmost threshold in Figure 3, beyond
which in principle our second moment method might be improved to show that the MLE makes ⌦(n) errors.
There are technical obstructions due to correlations in the second moment method that prevent us from carrying
this out; moreover, as we emphasize in Figure 4 for the case d = ⇥(log n), we do not expect this analysis alone

2Often the term “augmenting cycle” instead refers to an even cycle alternating between rows and columns of W , a cycle in the
weighted bipartite graph on 2n vertices whose weights are given by W . However, we will find it more intuitive to think of cycles as
permutations on [n] instead, as described here.
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t = 0.00 t = 0.06 t = 0.20

t = 0.50 t = 0.62

Figure 1: Online MLE tracking of Brownian motions. We illustrate how errors accrue in tracking particles
by iteratively computing the MLE. We plot the random walks formed by snapshots of four Brownian motions
in R2, and indicate by a circle two times when the permutation produced by the iterated MLE undergoes a
transposition from the true labeling. For erroneously labelled points, we show their true label in the thin inner
line, and their label by the iterated MLE in the thick outer line. If the points colored orange, red, green, and blue
are respectively labelled 1, 2, 3, 4 at the beginning, then the estimated permutation changes first to 1, 3, 2, 4, and
then to 1, 3, 4, 2.
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Figure 2: Dimension-dependent error scaling of MLE tracking. We plot the error incurred by the iterated
MLE estimator over time for tracking n = 100 independent Brownian motions in dimensions d = 1, 2, and 3,
illustrating the di↵ering dependences on the sampling interval �. Each curve plots an average of 20 independent
trials and an error bar of one standard deviation.
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perfect recovery

0

1

0

1

0

1

0

1

near-perfect recovery macroscopic error (conjectural for d ≫ 1)

Figure 3: First moments of augmenting cycle counts. We illustrate our results and the associated thresholds,
giving a schematic illustration of the polynomial rate of growth of the total mass of augmenting cycles of various
sizes in each regime of the noise parameter �2. Regimes marked in black are those described by our results; the
one in gray is conjectural. In each plot, a star marks the point plotting the expected mass of augmenting 2-cycles,
whose analysis drives our lower bounds on |E|.
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n = 20000

n = 40000

Predicted error (proved)

Predicted error (conjectural)

Best possible 2-cycle lower bound

Figure 4: Discontinuity in polynomial error rate. We show the predicted jump in the MLE error rate when
d = a log n with a = 4 (bold solid line from Theorem 1.2 and thin solid line from Conjecture 1.1) contrasted with
the best possible lower bound that could be proved by analyzing only augmenting 2-cycles (dotted line). For
increasing n, we also plot the average and one standard deviation error bars for 50 random trials of the MLE
at regularly spaced �2. Though convergence is very slow with n, the fact that these curves cross the dotted line
implies that there is non-trivial contribution to the total error from augmenting cycles of length greater than 2,
supporting Conjecture 1.1 in the d ⇠ log n regime.
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to prove the correct strong recovery threshold—for that, it appears necessary to argue the existence of larger
augmenting cycles.

Finally, we remark that this latter threshold is a natural one for greedy algorithms that attempt to find a
good matching in the matrix W row by row. In Appendix A, we show that the greedy algorithm applied to W
in fact achieves strong recovery below this third threshold �2 = 1

n2/d�1
, which is asymptotically greater than the

strong recovery threshold of the MLE �2 = 1
(2n1/d�1)2�1

once d = !(log n) (the former is ⇠ 1
2

d
logn , while the latter

is ⇠ 1
4

d
logn ). On the other hand, this algorithm fails completely for d = o(log n); by contrast, a greedy algorithm

applied to W (0) performs similarly to the MLE in that regime but can be worse outside the low-dimensional
regime. Across all d = d(n) the three algorithms are generally incomparable. We refer the reader to Appendix A
for further discussion of these algorithms.

1.5 Open Questions We conclude with several open questions on the estimation of geometric planted
matchings that we find promising for future research.

1. Establish the strong recovery threshold for d � 1, i.e., prove Conjecture 1.1.

2. Establish the error curve for constant dimension d: what is the function e(a, d) such that, when �2 = an�2/d,
then E|E|/n ! e(a, d)?

3. Prove information-theoretic lower bounds on the |E| achievable by any computation, and determine in what
regimes the MLE is information-theoretically optimal.

4. Are algorithms other than the MLE (including the greedy algorithms we discuss in Appendix A, algorithms
computing matchings corresponding to Wasserstein distances Wp with p 6= 2, algorithms computing entropy-
regularized relaxations of the linear assignment problem [16], and the belief propagation algorithm proposed
by [15]) more e↵ective in certain regimes of d and �2?

5. Establish the dimension-dependent scaling of the time for which online MLE tracking can consistently track
n particles given in Conjecture 1.2, and determine what happens for small time intervals � ⌧ n�4/d.

6. More generally, what are e↵ective algorithms for the motion tracking application proposed in Section 1.3?
Is there an o✏ine algorithm (processing the entire set of snapshots concurrently) that is superior to the kind
of online algorithm we propose?

7. What are the statistics of permutations obtained by computing optimal matchings between a collection
of points and their evolution under Brownian motion for some period of time (either just once or with an
iterated MLE or greedy algorithm)? How quickly do such permutations converge to the uniform distribution?

2 Preliminaries

2.1 Graph Laplacians and Spectra Given a graph G = (V, E), we write LG 2 RV ⇥V for the graph Laplacian
of G, the symmetric matrix with quadratic form

(2.16) x>LGx =
X

{v,w}2E

(xv � xw)2.

We will particularly be interested in the path and cycle graphs. We write Pt and Ct for the path or cycle,
respectively, on t vertices, where we require t � 3 for Ct to be defined. The following gives the spectra of their
respective Laplacians (see, e.g., Example 8.8 for cycles and the discussion following Lemma 10.18 for paths in
[38]).

Proposition 2.1. The eigenvalues of LPt are 2(1� cos(⇡kt )) for k = 0, . . . , t� 1, and the eigenvalues of LCt are
2(1 � cos( 2⇡k

t )) = 4 sin2(⇡kt ) for k = 0, . . . , t � 1.
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2.2 Riemann Sums We have indicated in Section 1.4, and will see more precisely below, that probabilities
of cycles being augmenting for the MLE give rise to expressions of the form Tr log(1 + (4�2)�1LCt). Per
Proposition 2.1, these may in turn be viewed as Riemann sums of a certain periodic function, and the asymptotic
probability of being augmenting for large cycles is therefore related to the integral of this function. Below we set
some notation for these objects and present the properties of theirs that we will use.

Definition 2.1. For any t � 2, �2 > 0 define

f(�2, x) := log

✓
1 +

1

2�2
(1 � cos(2⇡x))

◆
= log

✓
1 +

1

�2
sin2(⇡x)

◆
,(2.17)

I(�2) :=

Z 1

0
f(�2, x) dx,(2.18)

S(�2, t) :=
t�1X

j=1

f

✓
�2,

j

t

◆
.(2.19)

In fact, it is possible to evaluate I(�2) in closed form.

Proposition 2.2. For all �2 > 0,

(2.20) I(�2) = 2 log

 
1 +

p
1 + ��2

2

!
.

We give the proof in Appendix B by translating the real integral to a complex contour integral.
By elementary real analysis, as f(�2, ·) is continuous on [0, 1], we have the following convergence.

Proposition 2.3. For any �2 > 0, we have

(2.21) lim
t!1

S(�2, t)

t
= I(�2).

We will, however, need to be substantially more precise for our applications. The following are the main
technical results that much of our analysis will rely on, a discrete analog of concavity for the Riemann sums of
f(�2, ·) as well as a matching opposite bound, which together allow us to formulate linear lower bounds on the
S(�2, t).

Lemma 2.1. (Riemann sum discrete concavity) For �2 > 0, S(�2, t) � S(�2, t � 1) is strictly decreasing in
t � 3 and approaches I(�2) as t ! 1. In particular, S(�2, t) � S(�2, t � 1) > I(�2) for all t � 3.

Lemma 2.2. (Riemann sum upper bound) For t � 2 and �2 > 0, S(�2, t) < tI(�2).

Corollary 2.1. (Riemann sum lower bound) For all t0 � 2 and t > t0, we have

(2.22) S(�2, t) > S(�2, t0) + (t � t0)I(�2) = tI(�2) � (t0I(�2) � S(�2, t0)),

where the constant term satisfies t0I(�2) � S(�2, t0) > 0.

The third result follows immediately from the first two. We give the proofs of the first two results in Appendix C.
The proofs rely on a combinatorial relationship between the sums S(�2, t) and the Lucas polynomials, which
solve a Fibonacci-like recurrence that allows very precise asymptotics via a polynomial-valued analogue of Binet’s
formula.

3 Upper Bounds and First Moment Method

3.1 Counting Augmenting Cycles To prove upper bounds on |E|, we use the first moment method and
bound E|E| by counting the numbers of augmenting cycles of various sizes. First, we bound the probability that
a cycle of a given size is augmenting.
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Proposition 3.1. Let C be any fixed t-cycle in [n]. Then,

(3.23) P[C is augmenting]  exp

✓
�d

2
S(�2, t)

◆
.

Proof. Without loss of generality we may suppose that C = (1, . . . , t). Let us consider the cases t = 2 and t � 3
separately. If t = 2, then C is augmenting if and only if

(3.24) W1,2 + W2,1 � W1,1 + W2,2,

which in turn holds if and only if

(3.25) hz1,x2 � x1i + hz2,x1 � x2i � kx1 � x2k2.

Here, conditional on the xi, the law of the left-hand side is N (0, 2�2kx1 � x2k2) since z1 and z2 are i.i.d. with
law N (0, �2Id). Therefore, we compute

P[C augmenting] = E
x1,x2

P
g⇠N (0,2�2kx1�x2k2)

[g � kx1 � x2k2]

= E
x1,x2

P
g⇠N (0,1)

"
g �

r
kx1 � x2k2

2�2

#

 E
x1,x2

exp

✓
�kx1 � x2k2

4�2

◆

To evaluate the remaining expectation, we must understand the spectrum of the quadratic form involved. Writing
x for the concatenation of x1 and x2, we may write kx1 � x2k2 = x>(LP2 ⌦ Id)x, where LP2 2 R2⇥2 is the
Laplacian of the path graph on two vertices, using the notation of Proposition 2.1. By the Proposition, the
eigenvalues of LP2 are 0 and 2. Therefore, continuing by applying an orthogonal change of basis diagonalizing
the quadratic form and evaluating the �2 moment generating function that appears, we find

= det

✓
I2d +

1

2�2
(LP2 ⌦ Id)

◆�1/2

= det

✓
I2 +

1

2�2
LP2

◆�d/2

=

✓
1 +

1

�2

◆�d/2

= exp

✓
�d

2
log

✓
1 +

1

�2

◆◆

= exp

✓
�d

2
S(�2, 2)

◆
,(3.26)

as claimed.
Now, suppose t � 3. Then C is augmenting if and only if

(3.27) Wt,1 +
t�1X

i=1

Wi,i+1 �
tX

i=1

Wi,i,

which in turn holds if and only if

(3.28) hz1,xt � x1i +
tX

i=2

hzi,xi�1 � xii � 1

2

✓
kxt � x1k2

2 +
tX

i=2

kxi�1 � xik2
2

◆
.
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Again, let x be the concatenation of the xi. Then, we have

(3.29) kxt � x1k2
2 +

tX

i=2

kxi�1 � xik2
2 = x>(LCt ⌦ Id)x,

where LCt is the Laplacian of the cycle graph Ct on t vertices. Thus the law of the left-hand side of (3.28)
conditional on the xi is N (0, �2x>(LCt ⌦ Id)x), while the right-hand side is 1

2x
>(LCt ⌦ Id)x. (We note the two

di↵erences from the case t = 2: the path graph is replaced by the cycle graph, and an extra factor of 1
2 appears

on the right-hand side.) An analogous computation to before gives

P [C augmenting] = E
x1,...,xt

P
g⇠N (0,�2x>(LCt⌦Id)x)


g � x>(LCt ⌦ Id)x

2

�

= E
x1,...,xt

P
g⇠N (0,1)

"
g �

r
x>(LCt ⌦ Id)x

4�2

#

 E
x1,...,xt

exp

✓
�x>(LCt ⌦ Id)x

8�2

◆

= det

✓
Idt +

1

4�2
LCt ⌦ Id

◆�1/2

= det

✓
It +

1

4�2
LCt

◆�d/2

and substituting in the eigenvalues of L from Proposition 2.1, we have

=

0

@
t�1Y

j=0

⇢
1 +

1

2�2

✓
1 � cos

✓
2⇡j

t

◆◆�1

A
�d/2

= exp

0

@�d

2

t�1X

j=0

log

✓
1 +

1

2�2

✓
1 � cos

✓
2⇡j

t

◆◆◆1

A

= exp

✓
�d

2
S(�2, t)

◆
,(3.30)

again giving the result.

Corollary 3.1. For any d, n,�2,

(3.31) E|E| 
nX

t=2

exp

✓
t log n � d

2
S(�2, t)

◆
.

Proof. E is a disjoint union of augmenting cycles, so |E| is at most the sum of the lengths of all augmenting cycles.
The result then follows from linearity of expectation and applying that the number of t-cycles in [n] is  nt/t
and the probability bound of Proposition 3.1.

With these expressions for the expected masses of augmenting cycles of various sizes in hand, we may
describe more precisely why the situation presented in Figure 3 arises: the limiting exponent above as t ! 1
is ⇠ t log n(1 � d

2 lognI(�2)), thus the transition around I(�2) = 2 log( 1+
p

1+��2

2 ) = 2 logn
d , or �2 = 1

(2n1/d�1)2�1
,

determines whether the expected mass of large augmenting cycles diverges or not, which we conjecture is the
correct strong recovery threshold. Moreover, it will turn out that when strong recovery is possible, then the
dominant contribution is by augmenting 2-cycles, whose exponent is 2 log n� d

2S(�2, 2) = 2 log n� d
2 log(1+��2),

and this changes sign at �2 = 1
n4/d�1

, which is the perfect recovery threshold.
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3.2 Perfect Recovery In this section we give a su�cient condition for perfect recovery, which proves Part 1
of Theorem 1.1, Part 1 of Theorem 1.2, and Theorem 1.3.

Lemma 3.1. Let s0 := 21/d, and suppose that

(3.32) �2  1

s!(1)
0 n4/d � 1

.

Then, E|E| ! 0, so, in particular, |E| = 0 with high probability.

Before proceeding with the proof, let us indicate how this implies the claimed results for specific scalings of d.
When d ⌧ log n, then s0 is bounded and the denominator in the bound above goes to infinity as n ! 1, so the
condition is satisfied whenever �2 ⌧ n�4/d, giving Part 1 of Theorem 1.1.

When d = a log n, then n4/d = e4/a, and there exists f(n) = !(1) such that sf(n)
0 ! 1. Thus the condition is

satisfied whenever �2 is bounded below 1
e4/a�1

, giving Part 1 of Theorem 1.2.

Finally, when d = !(log n), then for any ✏ > 0 again we may choose f(n) = !(1) such that sf(n)
0 = 2f(n)/d 

n✏/d. Thus the condition is satisfied whenever �2  1
n(4+✏)/d�1

⇠ 1
4+✏

d
logn , giving Theorem 1.3.

Proof. Rearranging the assumption on �2, we have

(3.33) 2 � d

2 log n
S(�2, 2) = 2 � d log(1 + ��2)

2 log n
 �!

✓
d log s0

log n

◆
= �!

✓
1

log n

◆
.

Also, since by Lemma 2.2 we have S(�2, 2) < 2I(�2), we further have

(3.34) 2 � d

2 log n
S(�2, 2) > 2 � d

2 log n
2I(�2) = 2

✓
1 � d

2 log n
I(�2)

◆
.

Towards bounding the exponents appearing in Corollary 3.1, we manipulate

t log n � d

2
S(�2, t) = log n

✓
t � d

2 log n
S(�2, t)

◆

 log n

✓
t � d

2 log n
(S(�2, 2) + (t � 2)I(�2))

◆
(by Corollary 2.1 with t0 = 2)

= log n

✓
2 � d

2 log n
S(�2, 2) + (t � 2)

✓
1 � d

2 log n
I(�2)

◆◆

and substituting in our bounds from above,

 t

2
log n

✓
2 � d

2 log n
S(�2, 2)

◆

 �!(1) · t.(3.35)

Applying this to Corollary 3.1, we find

(3.36) E|E| 
nX

t=2

(e�!(1))t = o(1),

and the second result follows by Markov’s inequality.

3.3 Small Error Upper Bound We next prove a similar result to the above that gives Part 2 of Theorem 1.1
and the upper bound for the case of Part 2 of Theorem 1.2 where �2 takes its lower bound, �2 = 1

e4/a�1
.

Lemma 3.2. Let s0 := 21/d, and suppose that

(3.37) �2  1

sO(1)
0 n4/d � 1

.

Then, E|E| = O(1), so, in particular, for any f(n) = !(1), we have |E|  f(n) with high probability.

The argument from the previous proof applies verbatim with !(·) replaced by O(·) throughout, and shows that
E|E| = O(1), whereby the result again follows by Markov’s inequality.
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3.4 Sublinear Error Upper Bound Finally we give an upper bound on |E| that holds in the sublinear error
regime. This implies the upper bound of Part 3 of Theorem 1.1 and the remainder of the upper bound of Part 2
of Theorem 1.2 not covered by the previous proof.

Lemma 3.3. Let s0 := 21/d, and suppose that

(3.38) �2  1

(2s!(1)
0 n1/d � 1)2 � 1

.

Then,

(3.39) E|E| = O

 ✓
1 +

1

�2

◆�d/2

n2

!
,

so in particular for any f(n) = !(1) we have, with high probability,

(3.40) |E|  f(n)

✓
1 +

1

�2

◆�d/2

n2.

Proof. Rearranging the assumption on �2, we have

(3.41) 1 � d

2 log n
I(�2) = 1 � d

log n
log

 
1 +

p
1 + ��2

2

!
 �!

✓
1

log n

◆
,

as before (the di↵erence with the above settings being that such a bound no longer holds for 2 � d
2 lognS(�2, 2)).

Following the previous argument applied to Corollary 3.1, we find

(3.42) E|E| 
nX

t=2

n2� d
2 log nS(�2,2)(e�!(1))t�2 = O(n2� d

2 log nS(�2,2)) = O

 ✓
1 +

1

�2

◆�d/2

n2

!
,

and the second result again follows by Markov’s inequality.

4 Lower Bounds and Second Moment Method

To prove lower bounds on |E|, we will apply the second moment method to show that there exists a large number
of vertex-disjoint augmenting 2-cycles. That is, we will study the random variable

(4.43) M := maximum number of vertex-disjoint augmenting 2-cycles in [n].

The following shows that M being large guarantees a large number of errors in the MLE.

Proposition 4.1. |E| � M .

Proof. It is impossible for (i, j) to be an augmenting transposition and to have both b⇡(i) = i and b⇡(j) = j, since
then ⇡ formed by composing the transposition (i, j) with b⇡ would have a higher likelihood than b⇡. Thus, for every
pair in a maximal collection of M augmenting 2-cycles, at least one of its vertices must be labelled incorrectly by
b⇡, and the result follows.

Conveniently, this quantity admits a graph-theoretic interpretation. Namely, the set of augmenting 2-cycles
may be described by a graph on [n]:

(4.44) Gaug := (V = [n], E = {{i, j} : (i, j) is an augmenting 2-cycle}).

With this notation, M is the size of the largest matching in this graph:

(4.45) M = number of edges in the largest matching in Gaug.
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Thus our task is to show that a large matching exists in a random graph. In particular, we will want to show
that there exists a matching of size ⌦(|E| ^ n), i.e., a matching of size asymptotically as large as possible subject
to the basic constraints that it can exceed neither the number of vertices nor the number of edges.

There is an extensive literature on similar questions for Erdős-Rényi (ER) random graphs; however, most
of these results analyze concrete algorithms for finding large matchings rather than using the second moment
method [7, 20, 27, 47]. Indeed, to the best of our knowledge no previous work has tried to show the existence of
large matchings in random graphs using the second moment method—perhaps thanks to the success of analyzing
algorithms and to the “e↵ectiveness” of such results, which provide an algorithm in addition to an existence proof.
However, our graph Gaug has a more complicated dependence structure, so the second moment method is more
convenient, and we draw inspiration from a line of work applying an adjusted second moment method to other
extremal problems in ER random graphs, especially the chromatic number and independence number [22, 33, 43].

Remark 4.1. When the degree of all vertices in Gaug is bounded with high probability by some dmax, then
algorithmic techniques do show that a large matching exists, since a greedy algorithm matching vertices arbitrarily
until no more can be matched will produce a matching of at least |E|/2dmax edges. One may control the maximum
degree in our case by appealing to the probability bounds of Proposition 4.3 for the star graph. However, this no
longer applies in the critical regime where the average degree is constant (when we expect a nearly-linear number
of errors in the MLE), in which case in an ER graph the largest degree is of logarithmic order, and we expect a
similar behavior for Gaug.

4.1 Statistics of Gaug We will think of Gaug as being well-approximated by an ER random graph, albeit with
some stronger dependencies among various subgraphs. We begin by precisely describing the probability of any
particular edge belonging to Gaug, which is the edge probability of the analogous ER graph.

Proposition 4.2. (Edge probability in Gaug
) Define

p := P[{i, j} 2 E(Gaug)],(4.46)

bp :=
p

exp(�d
2S(�2, 2))

,(4.47)

which do not depend on i, j 2 [n] distinct. Then, for all n, d, and �2  1
40d,

(4.48)
1

1000

r
1 + �2

d
 bp  1.

We give the proof, an application of bounds on Gaussian Mills’ ratios, in Appendix D.
Next, we control more coarsely the probability that a given graph occurs as a subgraph of Gaug. The following

is a general parametrized bound, which relates these probabilities to Laplacians with weighted edges.

Proposition 4.3. Suppose G = (V, E) for some V ✓ [n]. Let � 2 RE⇥V be the edge-vertex incidence matrix for
G, i.e., the matrix having non-zero entries �{i,j},k only when i = k or j = k, with one of these equaling 1 and the
other equaling �1 (chosen arbitrarily) for each row index {i, j} 2 E. Note that �>� = L, the graph Laplacian.
Then, for any diagonal matrix D ⌫ 0,

P[G ✓ Gaug]  det
�
IV + 2�>D� � �2(�>D�)2

��d/2

= exp

0

@�d

2

|V |X

i=1

log
�
1 + 2�i(�

>D�) � �2�i(�
>D�)2

�
1

A ,(4.49)

where �i(A) denote the eigenvalues of a symmetric matrix A.

Proof. The event that G ✓ Gaug is the same as that, for all {i, j} 2 E, we have Wi,j + Wj,i  Wi,i + Wj,j .
Rewriting, this is the event that, for all {i, j} 2 E,

(4.50) � hzi � zj ,xi � xji � kxi � xjk2.

Copyright c� 2022 by SIAM
Unauthorized reproduction of this article is prohibited848

D
ow

nl
oa

de
d 

06
/0

9/
22

 to
 7

4.
10

1.
14

9.
25

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Let X,Z 2 RV ⇥d have the xi and the �zi as their rows, respectively. Then, the system above may be rewritten
with the help of � as

(4.51) diag(�Z(�X)>) � diag(�X(�X)>).

Whenever this is true, then we also have

(4.52) hD,�Z(�X)>i � hD,�X(�X)>i,

or, rewriting to isolate Z,

(4.53) hZ,�>D�Xi � hXX>,�>D�i.

Since the entries of Z are i.i.d. with law N (0, �2), taking a Cherno↵ bound and evaluating the Gaussian
moment generating function yields

P[G ✓ Gaug]  EX
EZ exp

�
hZ,�>D�Xi

�

exp (hXX>,�>D�i)

= EX exp

✓
�2

2
k�>D�Xk2

F � hXX>,�>D�i
◆

and, noting that k�>D�Xk2
F = Tr(X>(�>D�)2X) = hXX>, (�>D�)2i, we find

= EX exp

✓⌧
XX>,

�2

2
(�>D�)2 � �>D�

�◆

and evaluating this as a �2 moment generating function after an orthogonal change of basis diagonalizing the
matrix on the right, we obtain

= det
�
IV + 2�>D� � �2(�>D�)2

��d/2
,(4.54)

as claimed.

It is an interesting question to optimize the choice of D in this bound. For our purposes, it su�ces to use a simple
version for G a path or cycle.

Proposition 4.4. For any G = Pt with t � 2 or G = Ct with t � 3,

(4.55) P[G ✓ Gaug]  exp

✓
�d

2
S(�2, t)

◆
.

In words, this shows that the probability that a path or cycle in Gaug on t vertices has augmenting 2-cycles for
all of its edges is at most our bound (Proposition 3.1) on the probability that a cycle on t vertices is augmenting.

Proof. For G = P2 the result follows from Proposition 3.1. We first note that, since Pt is a subgraph of Ct,
P[Ct ✓ Gaug]  P[Pt ✓ Gaug] for all t � 3 (since the event that Pt ✓ Gaug contains the event that Ct ✓ Gaug for
suitable labellings of the two graphs), so it su�ces to consider G = Pt. For this case, we choose D = 1

2�2 It�1 in
Proposition 4.3. That gives

P[Pt ✓ Gaug]  exp

 
�d

2

tX

i=1

log

✓
1 +

1

�2
�i(L

Pt) � 1

4�2
�i(L

Pt)2
◆!

= exp

 
�d

2

t�1X

k=1

log

 
1 +

2

�2

✓
1 � cos

✓
⇡k

t

◆◆
� 1

�2

✓
1 � cos

✓
⇡k

t

◆◆2
!!

= exp

 
�d

2

t�1X

k=1

log

✓
1 +

1

�2
sin2

✓
⇡k

t

◆◆!

= exp

✓
�d

2
S(�2, t)

◆
,(4.56)

completing the proof.
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Remark 4.2. While this approach to bounding P[G ✓ Gaug] may seem rather naive, there is reason to believe
it is close to optimal up to constant factors in �2: we know from the proof of Proposition 3.1 for t = 2 that
P[{i, j} 2 E(Gaug) | xi,xj ] ⇡ exp(� 1

4�2 kxi � xjk2), so if we heuristically suppose that the edges of Gaug occur
independently conditional on x, then we find

P[G ✓ Gaug] ⇡ E
x

Y

{i,j}2E(G)

P[{i, j} 2 E(Gaug) | xi,xj ]

⇡ E
x

exp

✓
� 1

4�2
x>(LG ⌦ Id)x

◆

= det

✓
IV +

1

2�2
LG

◆�d/2

and if, for instance, G = Ct then following the computations in Proposition 3.1 for t � 3 we would find

= exp

✓
�d

2
S

✓
�2

2
, t

◆◆
,(4.57)

di↵ering only by a factor of 2 in �2 from the bound of Proposition 4.4.

4.2 Concentration-Enhanced Second Moment Method We next review a version of the second moment
method that can sometimes improve a weak result of the ordinary method—showing an object exists with quite
low probability—to a strong result with high probability by combining it with a concentration inequality. Below,
Part (b) is the typical result of a second moment method that has not succeeded in showing that a random
variable is positive with high probability, instead only giving a lower bound of exponentially small probability.
Part (a) is a concentration inequality, which in our case will come from a martingale argument, showing that the
random variable also enjoys concentration around its mean with Gaussian tails. Exploiting the interplay of these
two inequalities, we may in fact “repair” the ine↵ective second moment, as follows.

Lemma 4.1. Suppose X � 0 is a random variable and m > 0 are such that the following two statements hold, for
some constants 0 < � < ↵:

(a) P[X � EX  �t] _ P[X � EX � t]  exp(�↵t2/m) for all t > 0.

(b) P[X � m] � exp(��m).

Then, for any 0 < � < 1 �
p

�/↵,

(4.58) P[X > �m] � 1 � exp

0

@�↵

 
1 �

r
�

↵
� �

!2

m

1

A .

Proof. Suppose � 2 (0, 1). Then, whenever EX  (1 � �)m, we have

exp(��m)  P[X � m]

 P[X � EX + �m]

 exp

✓
�↵(�m)2

m

◆

= exp(�↵�2m),(4.59)

whereby � 
p

�/↵. Thus, by contrapositive, EX > (1 � �)m for all � >
p

�/↵, so EX � (1 �
p

�/↵)m.

Now, for all 0 < � < 1 �
p

�/↵, we have

P[X  �m]  P

"
X  EX �

 
1 �

r
�

↵
� �

!
m

#

 exp

0

@�↵

 
1 �

r
�

↵
� �

!2

m

1

A ,(4.60)
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as claimed.

Our formulation here is very similar to that of Frieze in [22], who treats the largest independent set in an ER
graph; a similar idea also appeared earlier in [43] for the chromatic number of an ER graph. See also [33] for a
survey of related methods.

4.3 Type (a) and (b) Inequalities We now proceed to the main computations for using the concentration-
enhanced second moment method, which we state as general claims for all dimensions d. In the following sections
we will derive specific consequences for di↵erent scalings of d.

Unfortunately, applying our method directly to the random variable M does not a↵ord us su�cient flexibility
to adjust the constants ↵ and � such that the condition � < ↵ is satisfied. Instead, we will proceed by applying
Lemma 4.1 to the following adjustment of M , which is also directly analogous to the approach of Frieze in
[22], there credited to Luczak, to the existence of independent sets. Given r 2 Z+, let n0 := bn/rc, and let
Ak = {(k � 1)r + 1, . . . , kr} for k 2 [n0]. Then, we call a matching r-good if all of its vertices belong to
A1 [ · · · [ An0 , and it contains at most one vertex in each Ak. We then work with the random variable

(4.61) M (r) := number of edges in the largest r-good matching in Gaug.

Clearly, M � M (r).

Lemma 4.2. (Type (a) inequality) For all t > 0,

(4.62) P[M (r) � EM (r)  �t] _ P[M (r) � EM (r) � t]  exp

✓
� t2

2n0

◆
.

That is, inequality (a) of Lemma 4.1 holds for M (r) for any m > 0 with

(4.63) ↵ =
m

2n0 .

Proof. For an arbitrary graph G on vertex set [n], let M (r)(G) denote the number of edges in the largest r-good
matching in G.

We first claim that, if there exists some k 2 [n0] such that G and G0 di↵er only on edges incident with Ak,
then |M (r)(G)�M (r)(G0)|  1. Indeed, if the largest matching in G0 contains no edge incident with Ak, then the
same matching exists in M (r)(G), so M (r)(G) � M (r)(G0). If the largest matching in G0 does contain an edge
incident with Ak, then the matching formed by removing that edge exists in M (r)(G), so M (r)(G) � M (r)(G0)�1.
Thus M (r)(G0) � M (r)(G)  1, and symmetrically M (r)(G) � M (r)(G0)  1.

Now, view M (r) = M (r)(Gaug) as a function of x1, z1, . . . ,xn, zn. Form the Doob’s martingale M (r)
k :=

E[M (r) | {xi}i2A1[···[Ak [ {zi}i2A1[···[Ak ] for k = 0, 1, . . . , n0, for which M (r)
0 = EM (r) and M (r)

n0 = M (r). By

the above claim, |M (r)
k � M (r)

k�1|  1 for all k, and the result then follows from the Azuma-Hoe↵ding inequality
(see Lemma 1.2 of [33]).

Our type (b) inequality involves the multinomial entropy function H, defined for x1, . . . , xk � 0 satisfying
x1 + · · · + xk  1 as

(4.64) H(x1, . . . , xk) := �
kX

i=1

xi log xi �
 

1 �
kX

i=1

xi

!
log

 
1 �

kX

i=1

xi

!
.

We use the slightly non-standard notation of omitting what is usually the last argument 1 �
Pk

i=1 xi to
shorten the expressions that arise below; this is, however, in agreement with the standard notation H(x) =
�x log x � (1 � x) log(1 � x) for the binomial entropy.

We give a coarsely-bounded exponential rate function below; this will su�ce for our purposes and we make no
e↵orts to optimize our analysis at the level of constants on the exponential scale in m. More precise expressions
are mentioned in our proof to follow.
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Lemma 4.3. (Type (b) inequality) Suppose n0 � 4m and �2  d
40 . Define as before p := P[{i, j} 2 E(Gaug)].

Then,

(4.65) P[M (r) � m] � exp

✓
�m sup

x2A
F (x) � O(log n0)

◆
,

where, for an absolute positive constant K (e.g., one may take K = 50),

A :=

⇢
(ā, b̄, c̄, j̄, k̄, ¯̀) 2 [0, 1]6 : 2ā + b̄ + 2c̄ + j̄ + k̄ + ¯̀ 1

�
,(4.66)

R1 := K + log

 
n02

pn2m

!
,(4.67)

R2 := K + d(S(�2, 2) � I(�2)) + 4 log+

✓
d

1 + �2

◆
� 2 log r,(4.68)

F (ā, b̄, c̄, j̄, k̄, ¯̀) := 7H
�
ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀

�
+
�
ā + b̄ + c̄ + j̄ + k̄ + ¯̀

�
(R1 _ R2).(4.69)

That is, if n0 and m are functions of n ! 1 with n0 = eo(m) then, for any ✏ > 0, for all su�ciently large n,
inequality (b) of Lemma 4.1 holds with

(4.70) � = sup
x2A

F (x) + ✏.

The basic idea of the remaining analysis will be to choose r and m to ensure that R1 and R2 are very negative,
forcing ā, b̄, c̄, j̄, k̄, ¯̀ to be small at the maximizing point. In R1, we will accomplish this by taking n0 = Cm for
some fixed C, and m = cpn2 for some su�ciently small c. Then, the first term of F is also small, so sup F and
therefore � may be made arbitrarily small by lowering c. On the other hand, ↵ = m/2n0 = 1/2C, so we may
ensure � < ↵ and apply Lemma 4.1, finding that with high probability M � M (r) � c0pn2 for some 0 < c0 < c.

The following is the main technical preliminary to our proof, which bounds the moment generating function
of the number of connected components in the union of two random edge-disjoint perfect matchings.

Proposition 4.5. (Cycle moment generating function) Let ` be even and let K` be the complete graph
on vertex set [`]. Let Q1 be any perfect matching in K`, and let Q2 be a uniformly random perfect matching in
K` with the edges of Q1 removed. Write X` for the random variable giving the number of connected components
in Q1 [ Q2. Then, for all ` � 4 and all a � `,

(4.71) EaX`  (�2a)`/4

(`/2)!!

✓

e3a

`

◆`/4

,

where � = (1 +
p

5)/2 denotes the golden ratio.

Proof. We prove our bound inductively. For any fixed a, write m` := EaX` for each even `, where we take m0 = 1
and m2 = 0. We will prove that

(4.72) m` =
a

` � 3
m`�4 +

✓
1 � 1

` � 3

◆
m`�2 .

Let us assume that (4.72) holds for now and show how to derive the claim. Clearly the first inequality in (4.71)
holds for ` = 0, 2, 4. For the inductive step, suppose the bound holds for all values smaller than a given ` � 6.
The induction hypothesis then implies

m`  a

` � 3
· (�2a)`/4�1

(`/2 � 2)!!
+

✓
1 � 1

` � 3

◆
(�2a)`/4�1/2

(`/2 � 1)!!

 a

`/2
· (�2a)`/4�1

(`/2 � 2)!!
+

(�2a)`/4�1/2a1/2

(`/2)!!

=
(�2a`/4)

(`/2)!
(��2 + ��1) ,
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where we have used that ` � 3 � `/2 for all ` � 6 and that (`/2 � 1)!! � (`/2)!!/
p

` � (`/2)!!/
p

a. Since
��2 + ��1 = 1, this completes the induction and proves the first inequality in (4.71), and the second is an
immediate consequence.

All that is left is to establish the promised recurrence (4.72). Note that (Q1, Q2) as described are two uniformly
random perfect matchings on [`] conditioned to be edge disjoint. Each connected component of Q1 [Q2 is a cycle
whose edges alternate between Q1 and Q2. Let us condition on the size of the component containing the vertex
1. Write i for the neighbor of 1 in Q1, and j and k for the neighbors of 1 and i, respectively, in Q2. Since Q1 and
Q2 are edge-disjoint perfect matchings, 1, i, j, and k are distinct.

If 1 lies in a 4-cycle, then {j, k} 2 Q1, and removing the vertices {1, i, j, k}, and corresponding edges from Q1

and Q2 yields two uniformly random, edge-disjoint perfect matchings on ` � 4 vertices, with one fewer connected
component than Q1 [ Q2. Since k is a uniform random vertex from [`] \ {1, i, j}, this situation occurs with
probability 1

`�3 . This gives the first term of (4.72).
On the other hand, if 1 lies in a cycle of length greater than 4, then {j, k} /2 Q1. In this case, removing the

vertices 1 and i as well as the edges {1, i} from Q1 and {1, j} from Q2 and replacing the edge {i, k} by {j, k}
in Q2 yields two uniformly random, edge-disjoint perfect matchings on ` � 2 vertices, whose union has the same
number of connected components as Q1 [ Q2. Since this occurs with probability 1 � 1

`�3 , this yields the second
term of (4.72).

We will also use the following inequalities among the various functions of �2, whose proofs we defer to
Appendix C.3.

Proposition 4.6. For �2 > 0, define

⌘1 = ⌘1(�
2) :=

3

4
S(�2, 2) � 1

4
S(�2, 4),(4.73)

⌘2 = ⌘2(�
2) := S(�2, 2) � 1

2
S(�2, 3),(4.74)

⌘3 = ⌘3(�
2) :=

1

2
S(�2, 2) � 1

2
I(�2).(4.75)

Then, we have

⌘i  ⌘3  3

2 + 8�2
for each i 2 {1, 2, 3}.(4.76)

We remark that these results are qualitatively sharp, in that the given quantities indeed approach positive
constants as �2 ! 0, and decay as O(��2) as �2 ! 1; proofs of matching opposite bounds follow from similar
elementary manipulations to those we give in the proof.

Finally, we will use the following standard properties of the multinomial entropy function H. We note that
we adopt the same convention for multinomial coe�cients of omitting the last argument as we do for H:

(4.77)

✓
m

a1, . . . , ak

◆
:=

m!

a1! · · · ak!(m � a1 � · · · � ak)!
.

Proposition 4.7. The function H satisfies the following properties:

1. H(x1, . . . , xk)  log(k + 1).

2. For any x 2 (0, 1), tH(x/t) is a strictly increasing function of t.

3. For any x1, . . . , xk � 0 with x1 + · · · + xk  1, H(x1 + x2, x3, . . . , xk)  H(x1, x2, x3, . . . , xk), and for any
k0 < k, H(x1, . . . , xk0)  H(x1, . . . , xk).

4. A multinomial coe�cient is bounded by the entropy as

(4.78) exp
⇣
mH

⇣a1

m
, · · · ,

ak

m

⌘
� Ok(log m)

⌘

✓

m

a1, . . . , ak

◆
 exp

⇣
mH

⇣a1

m
, · · · ,

ak

m

⌘⌘
.
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Proof. [Proof of Lemma 4.3] Define the random variable

(4.79) N := #{r-good matchings on 2m vertices of Gaug}.

We then have

(4.80) P[M (r) � m] = P[N > 0],

and we will bound the latter from below by the second moment method.
Let M denote the set of r-good matchings of 2m vertices of the complete graph on [n], whose cardinality is

(4.81) |M| =

✓
n0

2m

◆
r2m(2m � 1)!!.

We then have by linearity of expectation that

(4.82) EN = pm|M|.

Let Q0 be a fixed r-good matching of m elements in the complete graph on [n] (say, the graph with edges
{1, 2}, {3, 4}, . . . , {2m � 1, 2m}). By symmetry, we have

(4.83) EN2 = |M|
X

Q2M
P[Q0 [ Q ✓ Gaug],

and therefore the moment ratio may be written as an average,

(4.84)
EN2

(EN)2
=

1

|M|
X

Q2M

P[Q0 [ Q ✓ Gaug]

p2m
.

Given a graph G, write cc(G) for the set of its connected components, cc2(G) for the set of its connected
components isomorphic to the path on two vertices, cc3(G) for the set of those isomorphic to the path on three
vertices, and cc�4(G) for the set of the remaining connected components. Let us abbreviate G := Q0 [ Q. Note
that all components of G are then either cycles of even length at least 4 or paths. Then, by Proposition 4.4, for
any connected component H 2 cc�4(G) we have

P[H ✓ Gaug]  exp

✓
�d

2
S(�2, |V (H)|)

◆
(4.85)

and, applying Corollary 2.1 with t0 = 4, we have

 exp

✓
�d

2
(|V (H)|I � J)

◆
,(4.86)

where I = I(�2) and J = J(�2) = 4I(�2) � S(�2, 4) > 0. For the remainder of this proof, let us follow the above
convention abbreviating I = I(�2) and J = J(�2), and also writing St = S(�2, t). Using this bound for connected
components on at least four vertices and Proposition 4.4 for connected components on three vertices, we then
have

P[G ✓ Gaug]

=
Y

H2cc(G)

P[H ✓ Gaug]

 exp

0

@|cc2(G)| log p � |cc3(G)|d
2
S3 � d

2

X

H2cc�4(G)

(|V (H)|I � J)

1

A

= exp

✓
|cc2(G)| log p � |cc3(G)|d

2
S3 � (|V (G)| � 2|cc2(G)| � 3|cc3(G)|)d

2
I + |cc�4(G)|d

2
J

◆

= exp

✓
�|V (G)|d

2
I + |cc2(G)| (dI + log p) + |cc3(G)|

✓
3d

2
I � d

2
S3

◆
+ |cc�4(G)|d

2
J

◆
.(4.87)
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Type 3 (c)

Type 2 (b)

Type 1 (a)

Type 4 (j)

Q0 \ Q Q \ Q0 

Type 6 (ℓ)
ℓ cycles

Type 5 (k)
~

Q0 ∩ Q

Figure 5: Union of two matchings. We illustrate the decomposition of two partial matchings of [n] from the
proof of Lemma 4.3. The center region contains all vertices of V (Q0) \ V (Q), solid lines indicate edges of E(Q0),
and dotted lines indicate edges of E(Q).

We now divide the sum over Q 2 M into portions over which we may uniformly bound this probability. To
do this, for any given Q we introduce the following classification of the vertices of Q0 \ Q, into “types” 1, 2, 3,
4, 5, and 6. Next to each type, we give the letter that will denote the number of vertices of this type, a, b, c, j, k,
and `, respectively:

1. a vertices whose neighbor in Q0 lies in Q0 \ Q and whose neighbor in Q lies in Q0 \ Q.

2. b vertices whose neighbor in Q0 lies in Q0 \ Q and whose neighbor in Q lies in Q \ Q0.

3. c vertices whose neighbor in Q0 lies in Q0 \ Q and whose neighbor in Q lies in Q \ Q0.

4. j vertices whose neighbors in both Q0 and Q are equal.

5. k vertices which belong to a path connected component and whose neighbors in Q0 and Q are di↵erent but
both lie in Q0 \ Q.

6. ` vertices which belong to a cycle connected component and whose neighbors in Q0 and Q are di↵erent but
both lie in Q0 \ Q.

We also denote by èthe number of cycle connected components in Q0[Q (which all consist of Type 6 vertices). See
Figure 5 for an illustration of this decomposition. With these notations, recalling that |V (Q0)| = |V (Q)| = 2m,
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we have

|V (Q0) \ V (Q)| = a + b + c + j + k + `,(4.88)

|V (Q0 [ Q)| = |V (Q0)| + |V (Q)| � |V (Q0) \ V (Q)|
= 4m � a � b � c � j � k � `,(4.89)

|cc2(Q0 [ Q)| =
j

2
+

2m � 2a � b � 2c � j � k � `

2
+

2m � a � 2b � 2c � j � k � `

2

= 2m � 3

2
a � 3

2
b � 2c � 1

2
j � k � `,(4.90)

|cc3(Q0 [ Q)| = c,(4.91)

|cc�4(Q0 [ Q)| =
1

2
a +

1

2
b + è,(4.92)

the final claim following because every path component of length 4 or greater contains exactly two internal vertices
of Type 1 or Type 2.

Let Ma,b,c,j,k,`,è be the set of Q such that Q0 [ Q has the specified number of vertices of each type, and è
cycle connected components. We note that this set is empty unless j, k + a, and k + b, and ` are all even, since
these sets of vertices must admit perfect matchings (from restrictions of both Q0 and Q, Q, Q0, and both Q0 and
Q, respectively). For Q 2 Ma,b,c,j,k,`,è, we have

P[Q0 [ Q ✓ Gaug]

p2m

 exp

✓
� (4m � a � b � c � j � k � `)

d

2
I

+

✓
2m � 3

2
a � 3

2
b � 2c � 1

2
j � k � `

◆
(dI + log p)

+ c

✓
3d

2
I � d

2
S3

◆

+

✓
1

2
a +

1

2
b + è

◆
d

2
J

� 2m log p

◆

= exp

✓
a

✓
�dI +

d

4
J � 3

2
log p

◆
+ b

✓
�dI +

d

4
J � 3

2
log p

◆
+ c

✓
�d

2
S3 � 2 log p

◆

+ j

✓
�1

2
log p

◆
+ k

✓
�d

2
I � log p

◆
+ `

✓
�d

2
I � log p

◆
+ è

✓
d

2
J

◆◆

and, using that log p = �d
2S2 + log bp,

= exp

✓
(a + b)

✓
⌘1d � 3

2
log bp

◆
+ c (⌘2d � 2 log bp) + (k + `) (⌘3d � log bp)

+ j

✓
�1

2
log p

◆
+ è

✓
d

2
J

◆◆
,(4.93)

with ⌘i as defined in Proposition 4.6,

⌘1 = �I +
1

4
J +

3

4
S2 =

3

4
S2 � 1

4
S4,(4.94)

⌘2 = S2 � 1

2
S3,(4.95)

⌘3 =
1

2
S2 � 1

2
I.(4.96)
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By Proposition 4.6 we have ⌘i  ⌘3, and by Proposition 4.2 we have bp � 1
1000

q
1+�2

d . Here and in the remainder

of the proof, let K be a large constant that may vary line to line. Substituting these bounds,

P[Q0 [ Q ✓ Gaug]

p2m

 exp

✓
(a + b + c + k)

✓
K + ⌘3d + log+

✓
d

1 + �2

◆◆

+ j

✓
�1

2
log p

◆
+ `

✓
K + ⌘3d + log+

✓
d

1 + �2

◆◆
+ è

✓
d

2
J

◆◆
.(4.97)

We must also control the size of the subsets Ma,b,c,j,k,`,è, which is the content of the following technical
lemma, whose proof we defer to the conclusion of this section.

Lemma 4.4. Given ` and è, let R0 be a perfect matching of [`], and write Cyc(`, è) for the number of perfect

matchings R of [`] edge-disjoint from R0 such that R0 [ R contains exactly è cycles. Define normalizations
ā := a/2m and likewise b̄, c̄, j̄, k̄, and ¯̀. Then Ma,b,c,j,k,`,è satisfies

(4.98)
|Ma,b,c,j,k,`,è|

|M|  exp

✓
m


5H
�
ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀

�
+ (ā + c̄) log 4

�
+ O(log n0)

◆
·

r�a�b�c�j�k�` 1

(j � 1)!!

Cyc(`, è)
(` � 1)!!

.

Putting the bounds (4.97) and (4.98) together,

EN2

(EN)2


X

a,b,c,j,k,`,è

|Ma,b,c,j,k,`,è|
|M| max

Q2Ma,b,c,j,k,`, è

P[Q0 [ Q ✓ Gaug]

p2m


X

a,b,c,j,k,`

exp

✓
m


5H
�
ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀

�

+ (ā + b̄ + c̄ + k̄)

✓
K + 2⌘3d + 2 log+

✓
d

1 + �2

◆
� 2 log r

◆

+ j̄ (� log p � 2 log r)

+ ¯̀
✓

K + 2⌘3d + 2 log+

✓
d

1 + �2

◆
� 2 log r

◆�
+ O(log n0)

◆

1

(j � 1)!!

X

è

Cyc(`, è)
(` � 1)!!

(e
d
2 J)

è
(4.99)

For the remaining sum over è, we use Proposition 4.5. We note first that, since (` � 1)!! is the total number

of matchings on [`] and Cyc(`, è) is the number of such matchings that are disjoint from a fixed matching and

whose union with that matching contains è cycles, we may generally bound
P

è
Cyc(`,è)
(`�1)!! f(è)  Ef(X`), where X`

is the random variable from Proposition 4.5. If e
d
2 J  `, then we may bound

(4.100)
X

è

Cyc(`, è)
(` � 1)!!

(e
d
2 J)

è 
X

è

Cyc(`, è)
(` � 1)!!

(`)
è  (e3)`/4.

If e
d
2 J � `, then we have

(4.101)
X

è

Cyc(`, è)
(` � 1)!!

(e
d
2 J)

è 
 

e3+ d
2 J

`

!`/4

.
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For the remaining term involving j, we bound (j�1)!! � (j/e)j/2. Combining these estimates,we may incorporate
everything under the exponential as

EN2

(EN)2


X

a,b,c,j,k,`

exp

✓
m


5H
�
ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀

�

+ (ā + b̄ + c̄ + k̄)R2

+ j̄

✓
1 � log p � 2 log r + log

✓
1

j

◆◆

+ ¯̀
✓

K + 2⌘3d + 2 log+

✓
d

1 + �2

◆
� 2 log r + 0 _

✓
d

4
J +

1

2
log

✓
1

`

◆◆◆�

+ O(log n0)

◆
(4.102)

To bound the remaining rates, we first consider the j̄ term. Recall that n0 = bn/rc � n/2r, so r � n/2n0.
Thus we have

� log p � 2 log r + log

✓
1

j

◆
= log

1

pr2j

 log
4n02

pn2j

= log
2n02

pn2m
� log j̄.(4.103)

Extracting a similar expression by adding and subtracting 1
2 log p in the ¯̀ term when the second term of the

maximum is greater than zero,

K + 2⌘3d + 2 log+

✓
d

1 + �2

◆
� 2 log r +

d

4
J +

1

2
log

✓
1

`

◆

 K +

✓
2⌘3 +

1

4
J

◆
d + 2 log+

✓
d

1 + �2

◆
+

1

2
log p � log r +

1

2
log

2n02

pn2m
� log ¯̀

 K +

✓
2⌘3 +

1

4
J � 1

4
S2

◆
d + 2 log+

✓
d

1 + �2

◆
� log r +

1

2
log

2n02

pn2m
� log ¯̀

and we notice 2⌘3 + 1
4J � 1

4S2 = S2 � I + I � 1
4S4 � 1

4S2 = 3
4S2 � 1

4S4 = ⌘1, so, using Proposition 4.6 to bound
⌘1  ⌘3,

 K + ⌘3d + 2 log+

✓
d

1 + �2

◆
� log r +

1

2
log

2n02

pn2m
� log ¯̀

 1

2
(R1 + R2) � log ¯̀(4.104)

We note also that �j̄ log j̄  H(j̄) and likewise �¯̀log ¯̀  H(¯̀), and both of these are bounded by
H(ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀) by Proposition 4.7.

Applying these observations,

EN2

(EN)2


X

a,b,c,j,k,`

exp

✓
m


7H
�
ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀

�

+ (ā + b̄ + c̄ + k̄)R2 + j̄R1

+ ¯̀max

⇢
R2,

1

2
(R1 + R2)

��

+ O(log n0)

◆
,(4.105)
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which implies the result.

To complete the proof, it remains to justify Lemma 4.4.

Proof. [Proof of Lemma 4.4] We begin with a combinatorial bound. Below, line by line, the factors count the
number of ways to choose the vertices of V (Q)\V (Q0), the number of ways to choose the vertices of V (Q)\V (Q0),
the number of ways to draw the edges of E(Q) incident with V (Q) \ V (Q0), and the number of ways to draw the
edges of E(Q) between pairs of V (Q) \ V (Q0):

|Ma,b,c,j,k,`,è|


✓

m

a, c, b+k
2 , j

2 , `
2

◆
2a+c·

✓
n0 � a � b

2 � c � j
2 � k

2 � `
2

2m � a � b � c � j � k � `

◆
r2m�a�b�c�j�k�`·

✓
b + k

k

◆
(k + a � 1)!!

✓
2m � a � b � c � j � k � `

b + c

◆
(b + c)!Cyc(`, è)·

(2m � a � 2b � 2c � j � k � ` � 1)!!

Let us introduce C := n0/2m, which satisfies C � 2 by assumption. Then, applying the entropy bound for
multinomial coe�cients wherever possible,

 exp

✓
m


H
�
2ā, 2c̄, b̄ + k̄, j̄, ¯̀

�

+ 2

✓
C �

✓
ā +

1

2
b̄ + c̄ +

1

2
j̄ +

1

2
k̄ +

1

2
¯̀
◆◆

H

✓
1 � ā � b̄ � c̄ � j̄ � k̄ � ¯̀

C � (ā + 1
2 b̄ + c̄ + 1

2 j̄ + 1
2 k̄ + 1

2
¯̀)

◆

+ 2(1 � ā � b̄ � c̄ � j̄ � k̄ � ¯̀)H

✓
b̄ + c̄

1 � ā � b̄ � c̄ � j̄ � k̄ � ¯̀

◆

+ 2(b̄ + k̄)H

✓
k̄

b̄ + k̄

◆
+ 2(ā + c̄) log 2

�◆
·

r2m�a�b�c�j�k�`(k + a � 1)!!(b + c)!(2m � a � 2b � 2c � j � k � ` � 1)!!(j � 1)!!(` � 1)!!·

1

(j � 1)!!

Cyc(`, è)
(` � 1)!!

(4.106)

We will in particular need to bound the fraction of M occupied by each of these subsets. To that end, we note
that

(4.107) |M| =

✓
n0

2m

◆
r2m(2m � 1)!! � exp

✓
m


2CH

✓
1

C

◆�
� O(log n0)

◆
r2m(2m � 1)!!.

Considering the quotient of factorials and double factorials that will remain, an entropy bound again yields

(k + a � 1)!!(b + c)!(2m � a � 2b � 2c � j � k � ` � 1)!!(j � 1)!!(` � 1)!!

(2m � 1)!!

 exp
�
�mH

�
ā + k̄, b̄ + c̄, b̄ + c̄, j̄, ¯̀

�
+ O(log n0)

�
,(4.108)

where we have used Proposition 4.7, that A!! obeys the same exponential asymptotics as
p

A!, and that m = O(n0)
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so that we may replace the log m term with log n0. Thus we find

|Ma,b,c,j,k,`,è|
|M|

 exp

✓
m


H
�
2ā, 2c̄, b̄ + k̄, j̄, ¯̀

�

+ 2

✓
C �

✓
ā +

1

2
b̄ + c̄ +

1

2
j̄ +

1

2
k̄ +

1

2
¯̀
◆◆

H

✓
1 � ā � b̄ � c̄ � j̄ � k̄ � ¯̀

C � (ā + 1
2 b̄ + c̄ + 1

2 j̄ + 1
2 k̄ + 1

2
¯̀)

◆

+ 2(1 � ā � b̄ � c̄ � j̄ � k̄ � ¯̀)H

✓
b̄ + c̄

1 � ā � b̄ � c̄ � j̄ � k̄ � ¯̀

◆

� H
�
ā + k̄, b̄ + c̄, b̄ + c̄, j̄, ¯̀

�
� 2CH

✓
1

C

◆

+ 2(b̄ + k̄)H

✓
k̄

b̄ + k̄

◆
+ 2(ā + c̄) log 2

�
+ O(log n0)

◆

r�a�b�c�j�k�` 1

(j � 1)!!

Cyc(`, è)
(` � 1)!!

and repeatedly use Proposition 4.7 to bound the entropies,

 exp

✓
m


5H
�
ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀

�
+ (ā + c̄) log 4

�
+ O(log n0)

◆

r�a�b�c�j�k�` 1

(j � 1)!!

Cyc(`, è)
(` � 1)!!

,(4.109)

where we have used that C � 2 ensures that the sum of the two terms involving C is at most zero.

4.4 Sublinear Error Lower Bound We now prove the following application of the above results, which
implies the lower bound of Part 3 of Theorem 1.1 and of Part 2 of Theorem 1.2.

Lemma 4.5. Define bd := 1 + d ^ log n � 2 and s := bd1/d. Suppose that

(4.110)
1

s�!(1)n4/d � 1
 �2  1

(2s!(1)n1/d � 1)2 � 1
.

Then, there exists an absolute constant c > 0 such that, with high probability,

(4.111) |E| � cp
bd

✓
1 +

1

�2

◆�d/2

n2.

Proof. Let us bound bp from below under these assumptions, which amounts to bounding d
1+�2 from above. We

always have d
1+�2  d, and, using the lower bound above along with 1 � e�x  x, we have

(4.112)
d

1 + �2
 d(1 � s!(1)n�4/d)  d(1 � n�4/d)  4 log n.

Thus,

(4.113)
d

1 + �2
 d ^ 4 log n  4bd,

and so, by Proposition 4.2

(4.114) bp � 1

1000

r
1 + �2

d
� 1

2000
bd�1/2.
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Next, we bound the other term of p, exp(�d
2S(�2, 2)), from above and below. Since S(�2, 2) is a decreasing

function of �2, by the lower bound on �2 we have

(4.115) S(�2, 2)  S

✓
1

s�!(1)n4/d � 1
, 2

◆
= log(s�!(1)n4/d)  4 log n � !(log bd)

d
,

and thus

(4.116) exp

✓
�d

2
S(�2, 2)

◆
� 1

n2
exp(!(log bd)),

whereby pn2 = bp exp(�d
2S(�2, 2))n2 ! 1 as n ! 1. On the other hand, by the upper bound on �2 we have

(4.117) S(�2, 2) � S

✓
1

(2s!(1)n1/d � 1)2 � 1
, 2

◆
= 2 log(2s!(1)n1/d � 1) � 2 log n

d
,

whereby

(4.118) exp

✓
�d

2
S(�2, 2)

◆
 1

n
,

so, since bp  1, pn  1 as well.
With these properties in mind, let us set up an application of Lemma 4.1 via Lemmata 4.2 and 4.3, with

which we will seek to show that M & pn2 with high probability. Fix c > 0 a small constant, and take

r :=

�
2

cpn

⌫
2


1

cpn
,

4

cpn

�
,(4.119)

n0 :=
jn

r

k
2

1

4
cpn2, cpn2

�
,(4.120)

m :=

�
1

32
cpn2

⌫
2


1

64
cpn2,

1

16
cpn2

�
.(4.121)

Then by Lemma 4.2, the type (a) inequality, holds with ↵ = m/2n0 � 1
128 .

For the type (b) inequality, we have n0 � 4m by our choice, and by the upper bound on �2,

(4.122) �2  1

4n1/d(n1/d � 1)
 1

4(n1/d � 1)
 d

4 log n
,

so, for su�ciently large n, the conditions of Lemma 4.3 are satisfied. It remains to control the rates R1 and R2

appearing in the Lemma, and thus to bound �.
We note in advance that, by the upper bound on �2 and since I(�2) is a decreasing function,

(4.123) I(�2) � I

✓
1

(2s!(1)n1/d � 1)2 � 1

◆
=

2 log n

d
+ !(log s) =

2 log n + !(bd)

d
.

The quantities appearing in these rates satisfy

n02

pn2m
 64c(4.124)

d(S(�2, 2) � I(�2)) � 2 log r  �dI(�2) + 2 log n + 2 log c

 � log n

✓
d

log n
I(�2) � 2

◆

 �!(log bd).(4.125)
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We thus have

R1 = K + log

 
n02

pn2m

!
 K + log 64c,(4.126)

R2 = K + d(S(�2, 2) � I(�2)) + 4 log+

✓
d

1 + �2

◆
� 2 log r = �!(log bd),(4.127)

using in the latter our earlier result that d
1+�2 = O(bd).

For any D > 0, we may therefore choose c small enough that Ri  �D for i = 1, 2, so the whole rate function
F in Lemma 4.3 satisfies

F (ā, b̄, c̄, j̄, k̄, ¯̀)  7H(ā, ā, b̄, c̄, c̄, j̄, k̄, ¯̀) � D(ā + b̄ + c̄ + j̄ + k̄ + ¯̀)

The first term is bounded uniformly by 7 log 9, so su�ciently large D we may ensure that F is negative if any of
ā, b̄, c̄, j̄, k̄, or ¯̀ is at least ✏. On the other hand if all of the parameters are at most ✏, then the first term is at
most �7(8✏ log ✏ + (1 � ✏) log(1 � ✏)), which tends to zero as ✏ ! 0. Thus for su�ciently small c we may make
the supremum supx2A F (x) bounded by any arbitrarily small positive number. In particular, for any ✏ > 0 there
exists c > 0 such that the type (b) inequality holds with � < ✏. For c su�ciently small we may thus ensure, e.g.,
�  1

512  ↵
4 . Thus we may take � = 1

4 in Lemma 4.1, which gives that, with high probability, M � 1
2048cpn2.

Substituting our lower bound on bp then gives the result as stated.

4.5 Linear or Nearly-Linear Error Lower Bound Finally, we prove the following result, which yields
Part 4 of Theorem 1.1.

Lemma 4.6. Let s := d1/d. Suppose that 1  d ⌧ log n, and that for some a 2 R,

(4.128) �2 � 1

(2san1/d � 1)2 � 1
.

Then, there exists c = c(a) > 0 such that

(4.129) |E| � e�cdn

with high probability.

Proof. We first produce similar preliminary bounds to before. As before we have d
1+�2  d, and thus

(4.130) bp � 1

1000
d�1/2.

For the bounds on the other, exponential factor in p, we have, again assuming n is su�ciently large,

(4.131) S(�2, 2)  S

✓
1

(2san1/d � 1)2 � 1
, 2

◆
= 2 log(2san1/d � 1)  2 log(2san1/d),

whereby

(4.132) exp

✓
�d

2
S(�2, 2)

◆
� 1

2dsadn
=

d�a

2dn
.

Thus we may bound

(4.133) pn = bp exp

✓
�d

2
S(�2, 2)

◆
n � 1

2000
d�a�1/22�d.
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We take a similar choice of parameters to the previous proof, only now taking r a constant not depending on
n. Let c = c(a) > 0 be a constant to be fixed later, and take

r :=
⌅
2ecd

⇧
2
⇥
ecd, 4ecd

⇤
,(4.134)

n0 :=
jn

r

k
2

1

4
e�cdn, e�cdn

�
,(4.135)

m :=

�
1

32
e�cdn

⌫
2


1

64
e�cdn,

1

16
e�cdn

�
.(4.136)

Then by Lemma 4.2, the type (a) inequality, holds as before with ↵ = m/2n0 � 1
128 . The conditions of Lemma 4.3

are again satisfied. To control the rates appearing there, we again have

n02

pn2m
 64

e�cd

pn
= O((2e�c)dda+1/2),(4.137)

and for the other rate we use that, by Proposition 4.6, for all �2 we have S(�2, 2) � I(�2)  3
2 , so

d(S(�2, 2) � I(�2)) � 2 log r  d

✓
3

2
� 2c

◆
.(4.138)

Thus, for c su�ciently large the rates appearing in F are

R1 = K + log

 
n02

pn2m

!
 K � c

2
d,(4.139)

R2 = K + d(S(�2, 2) � I(�2)) + 4 log+

✓
d

1 + �2

◆
� 2 log r  K � c

2
d,(4.140)

thus choosing c large enough we may again make both rates arbitrarily negative, and the remainder of the proof
goes through as before.
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A Greedy Algorithms and a Gaussian Limit

To supplement our discussion of the MLE, we describe two natural greedy algorithms for estimating the planted
permutation ⇡? and discuss their performance heuristically. We believe the computations presented here are
accurate, but for the sake of brevity we will not give detailed proofs. The algorithms we analyze here are also
improper in the sense that they do not return a permutation; rather, they output an assignment of each xi to
an element of {y1, . . . ,yn} with no restriction that each element is matched exactly once. We leave more careful
analysis of greedy algorithms which output a permutation to future work.

To summarize before presenting the details, the first greedy algorithm, where distance is measured as ordinary
`2 distance, will match the performance of the MLE when d = o(log n) but will make n � o(n) errors once
d = !(log n). The second, which greedily selects the point with largest inner product with xi, will make n � o(n)
errors when d = o(log n) but will sometimes (though not always) improve on the MLE in the d = !(log n) regime.
It is unclear what simplifying assumptions are reasonable when d = ⇥(log n), so we leave this case aside here;
numerical evidence suggests that all three algorithms are competitive and none strictly dominates another in this
regime.

A.1 Algorithm 1: Greedy Distance The first algorithm we consider is perhaps the most immediately
appealing greedy algorithm, which attempts to match each point to its nearest neighbor. This may be viewed as
greedily matching rows to columns in the matrix W (0) of pairwise squared distances between the xi and yj formed
as an intermediate step in our derivation of the MLE. As a proxy for the error incurred by such an algorithm,
we consider the number of xi whose nearest neighbor among the {yj}nj=1 is not equal to yi, the set of which we
denote

(A.1) Edist := {i 2 [n] : kxi � yik2 > kxi � yjk2 for some j 6= i}.

As another, simpler variant, we may also consider

(A.2) eEdist := {(i, j) 2 [n]2 : kxi � yik2 > kxi � yjk2},

which satisfies

(A.3)
1

n � 1
|eEdist|  |Edist|  |eEdist|.

By linearity of expectation, we have

E|eEdist| = n(n � 1) · P[kx1 � y1k2 > kx1 � y2k2]

Here, we note that x1 � y1 = z1 whose squared norm has law �2(d) scaled by �2, and is independent from
x1 � y2 = x1 � x2 � z2, whose squared norm has law �2(d) scaled by 2 + �2. Thus, we may rewrite this
probability in terms of two independent A, B ⇠ �2(d) as

= n(n � 1) · P


A

B
<

�2

2 + �2

�

The ratio A/B has the F distribution F (d2 , d
2 ), whose density is �(d)

�(d/2)2 xd/2�1(1 + x)�ddx. Thus, so long as

�2 = o(1), we will have from integrating an initial segment of this density that

. �dn2,(A.4)

which, up to lower-order terms, is the same as the expected number of augmenting 2-cycles for the MLE. In
particular, E|Edist| is bounded by the same quantity and it is reasonable to believe, so long as this is O(n), that
this bound is tight. We also expect this first moment computation to be an accurate estimate of the typical size
of Edist. Thus, we find that the error rate of a greedy distance algorithm asymptotically that of the MLE so long
as d = o(log n).
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greedy 
inner 
product

greedy 
distance

Figure 6: Greedy algorithm proximal regions. We illustrate the regions which must not contain any other
yj in order for xi to be matched with yi in the two greedy algorithms we consider in Appendix A.

However, once d = !(log n) this algorithm is much less e↵ective than the MLE. In that case, in the critical

scaling for the MLE we have �2 = ⇥( d
logn ) = !(1), so �2

2+�2 ! 1 as n ! 1. By evaluating the probability as a
Laplace integral, we thus find

== P


A

B
<

�2

2 + �2

�
⇡ �(d)

�(d2 )2
exp

✓
d


1

2
log

✓
�2

2 + �2

◆
� log

✓
1 +

�2

2 + �2

◆�◆

⇡ exp

✓
d


1

2
log

✓
�2

2 + �2

◆
� log

✓
2 + 2�2

2 + �2

◆
+ log 2

�◆

= exp

 
d log

p
�2(2 + �2)

1 + �2

!
,(A.5)

whereby

(A.6)
log(1 _ E|eEdist|)

log n
⇡ 2 � d

2 log n
log

(1 + �2)2

�2(2 + �2)
⇡ 2 � d

2 log n
log

✓
1 +

1

�4

◆
⇡ 2 � d

2�4 log n
.

So, while the MLE achieves perfect recovery for some �2 = ⇥(d/ log n), the greedy distance algorithm only
achieves perfect recovery for the asymptotically smaller �2 = O(

p
d/ log n).

A more informal way to make the same prediction is to first observe that, for large d, we have the distributional
approximation �2(d) ⇡ N (d, 2d). Then, when �2 � 1 the distances kxi � yjk2 are distributed approximately
as N ((2 + �2)d, 2(2 + �2)2d). Likewise the kxi � yik2 = kzik2 are distributed approximately as N (�2d, 2�4d).
Moreover, we may make the simplifying assumption of thinking of these distances as independent. Then, we
expect strong recovery to only be possible when minj 6=i kzjk2 ⇡ (2 + �2)d �

p
4(2 + �2)2d log n is at least the

typical kzik2 ⇡ �2d. This gives (2 + �2)
p

d log n . d, or �2 .
p

d/ log n, as claimed above.

A.2 Algorithm 2: Greedy Inner Product The second algorithm we consider applies the same greedy
matching approach to the cost matrix W formed for the MLE by subtracting out the norm terms when the
squared distances are expanded. The analogous error set is then

(A.7) Eprod := {i 2 [n] : hxi,yii < hxi,yji for some j 6= i}.
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Here a useful shortcut allows us to dispense with the low-dimensional case easily: as is apparent from Figure 6,
if i /2 Eprod then yi is a vertex of the convex hull of y1, . . . ,yn. In particular then, this algorithm will only achieve
even weak recovery when the convex hull of n i.i.d. standard Gaussian vectors in Rd has ⌦(n) vertices with high
probability. As has been shown in the literature on this so-called Gaussian polytope (e.g., [24]), the expected
number of vertices is (log n)O(d), whereby whenever d = o(log n/ log log n) the greedy inner product algorithm
will not achieve even weak recovery, having |Eprod| = n � o(n).

On the other hand, when d = !(log n) we believe that the instance W should, loosely speaking, behave in law
like a matrix with independent entries (we will say more about how our computations here relate to prior work
on such models below). In this case, the “planted” or diagonal and “null” or o↵-diagonal distributions should be
approximately

Wii = hxi,yii = kxik2 + hxi, zii
(d)
⇡ N (d, �2d) =: P,(A.8)

Wij = hxi,yji = hxi,xj + zji
(d)
⇡ N (0, �2d) =: Q,(A.9)

where we use that, because �2 � 1, we may neglect the fluctuations coming from terms not involving any zi.
If this approximation is sound, then we expect maxj 6=i Wij ⇡

p
2�2d log n. On the other hand, n � o(n) of

the diagonal terms are of size ⇥(d). Therefore we expect the strong recovery regime to be when
p

2�2d log n < d,
or �2 < 1

2
d

logn . This is strictly larger than the strong recovery regime �2 < 1
4

d
logn of the MLE. We note that the

former threshold �2 = 1
2

d
logn as the threshold we illustrated in Figure 3 when the number of augmenting 2-cycles

for the MLE becomes macroscopic.
On the other hand, we also expect mini Wii ⇡ d �

p
2�2d log n, so we expect the perfect recovery regime for

the greedy inner product algorithm to be when d �
p

2�2d log n <
p

2�2d log n, or �2 < 1
8

d
logn . This is strictly

smaller than the perfect recovery regime �2 < 1
4

d
logn of the MLE (which is the same as the strong recovery regime

of the MLE). Thus the final picture that emerges for the greedy inner product algorithm when d = !(log n) is
that it achieves strong recovery for a greater range of �2, but has a region of sublinear error 1

8
d

logn < �2 < 1
2

d
logn ,

while the MLE has no region of sublinear error on this scale, instead achieving perfect recovery when �2 < 1
4

d
logn ;

from the point of view of the polynomial error rate, the two algorithms are thus incomparable.

A.3 Gaussian Limit in High Dimension The independent Gaussian limit discussed above falls in the range
of models treated by previous works [18, 36, 42]. In particular, it was predicted in [36, 42] and proved for certain
models (not including the Gaussian model of P and Q above) in [18] that the strong recovery threshold in such
a model should correspond to

p
nB(P, Q) = 1, where B(P, Q) is the Bhattacharyya coe�cient. This may be

computed in closed form for Gaussian distributions, which gives that the critical �2 should satisfy

(A.10) n =
3 + 2�2

2
p

(2 + �2)(1 + �2)
exp

✓
d

2(3 + 2�2)

◆
.

As n ! 1 the prefactor and the constant term in the exponent denominator are irrelevant, so this predicts a
critical transition at n = exp(d/4�2), or �2 = 1

4
d

logn .
Per our discussion above, this is the correct strong recovery threshold for the MLE; indeed, the proof of

the positive results in [18] goes by analyzing the MLE, so this is not surprising. However, the greedy algorithm
applied to this model (to agree with the setting of [18], we should think of the input as the matrix W with entries
distributed roughly according to P and Q, rather than the “raw” point sets {xi} and {yi}) achieves a better
strong recovery threshold of �2 = 1

2
d

logn . Essentially the same is noted in Remark 1 of [18], where the authors
bring up a similar independent Gaussian model as an instance where the Bhattacharyya coe�cient does not give
a correct prediction.

Our discussion above, however, gives some further nuance to this point if one is interested in sublinear error
rates in addition to just strong recovery. Namely, both in our model for high dimension and in the independent
Gaussian model, the greedy algorithm achieves an inferior perfect recovery threshold, and, more generally, an
inferior sublinear error rate to the MLE whenever �2 < 1

4
d

logn , but a superior rate whenever 1
4

d
logn < �2 < 1

2
d

logn .
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B Evaluation of Integral: Proof of Proposition 2.2

Recall our claim,

(B.11) I(�2) :=

Z 1

0
log

✓
1 +

1

2�2
(1 � cos(2⇡x))

◆
dx = 2 log

 
1 +

p
1 + ��2

2

!
.

To lighten the notation, let us set � = �2. Di↵erentiating under the integral sign, we have

I 0(�) = � 1

�

Z 1

0

1 � cos(2⇡x)

(2� + 1) � cos(2⇡x)
dx

which we may write as a contour integral over C the complex unit circle

= � 1

2⇡�

I

C

1 � z+z�1

2

(2� + 1) � z+z�1

2

dz

iz

= � 1

2⇡i�

I

C

(z � 1)2

z(z2 � (4� + 2)z + 1)
dz

where the integrand has poles at z = 0, ⇢�, ⇢+ for ⇢± = 2� + 1 ± 2
p

�2 + �. Only z = 0, ⇢� lie inside C, so by
the residue theorem we have

= � 1

�

✓
1

⇢+⇢�
+

(⇢� � 1)2

⇢�(⇢� � ⇢+)

◆

which after some algebra reduces to

= � 1

�

 
1 �

r
�

� + 1

!
.(B.12)

Since lim�!1 I(�) = 0, we then have

I(�) =

Z 1

�

1

t

 
1 �

r
t

t + 1

!
dt

where the integrand has the explicit antiderivative log(t) � log(1 +
q

t
t+1 ) + log(1 �

q
t

t+1 ) whose limit as t ! 1
is � log(4), whereby we finish

= � log(4) � log(�) + log

 
1 +

r
�

� + 1

!
� log

 
1 �

r
�

� + 1

!

= log

0

@
1 +

q
�

1+�

4�(1 �
q

�
1+� )

1

A

which after some algebra reduces to

= log

0

@
 

1 +
p

1 + ��1

2

!2
1

A ,(B.13)

as claimed.
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(6, 7)(7, 8)

(8, 1)

3
4

5

6
7

8

Figure 7: Spanning forests and matchings. We illustrate the bijection between rooted spanning forests on
the t-cycle and matchings on the 2t-cycle used in the proof of Lemma C.1.

C Riemann Sum Analysis

In this appendix we prove our bounds on the Riemann sums S(�2, t). We will proceed by relating S(�2, t) to the
following well-known family of polynomials.

Definition C.1. (Lucas polynomials) The Lucas polynomials Lk(x) 2 R[x] for k � 0 are defined by the
recursion

L0(x) = 2,(C.14)

L1(x) = x,(C.15)

Lk(x) = xLk�1(x) + Lk�2(x) for k � 2.(C.16)

The recursion may be solved as follows, a version of the usual approach for a second-order recurrence, only now
parametrized by x (see, e.g., [23]).

Proposition C.1. (Binet’s formula) Let ↵(x), �(x) be the roots of t2 � tx � 1, i.e.,

↵(x) =
x +

p
x2 + 4

2
,(C.17)

�(x) =
x �

p
x2 + 4

2
.(C.18)

Then, Ln(x) = ↵(x)n + �(x)n.

The following is then the key statement relating the Lucas polynomials to our Riemann sums.

Lemma C.1. For any t � 3, exp(S(�2, t)) = (4�2)�t(L2t(2�) � 2).

We note that the same formula does not hold for t = 2: the left-hand side is 1 + ��2, while the right-hand side
is 1 + ��2/4. As we will see in the course of the proof, that is because the formula depends on the eigenvalues of
the t-cycle graph C3 appearing in the summation in S(�2, t).

Proof. [Proof of Lemma C.1] Recall that we denote by Ct the cycle on t vertices and by LCt its graph Laplacian.
Let �t,1, . . . , �t,t denote the eigenvalues of LCt . Then, we have

(C.19) exp(S(�2, t)) =
tY

j=1

✓
1 +

1

4�2
�t,j

◆
=

tX

k=0

Ek(�t,1, . . . , �t,t)(4�2)�k,

where

(C.20) Ek(a1, . . . , at) :=
X

1i1<···<ikt

ai1 · · · aik
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t - 1 t 1 t - 2 12

t - 1 1t - 2

Figure 8: Contracting matchings in cycles. We illustrate the bijection between matchings in a t-cycle and
those in either a (t � 1)- or (t � 2)-cycle used in the proof of Lemma C.1.

are the elementary symmetric polynomials.
By a generalization of the matrix-tree theorem (see Theorem 7.5 of [13]), Ek(�t,1, . . . , �t,t) is equal to the

number of spanning forests of Ct containing t � k connected components and with each connected component
having an assigned root vertex. The condition of a spanning forest having t � k connected components is, for the
specific case of the graph Ct, also equivalent to the forest containing k edges.

When k < t, then these forests are in bijection with the matchings on C2t also containing k edges. An explicit
bijection is as follows. Suppose the vertices of C2t are labelled 0, . . . , 2t�1 and the vertices of Ct labelled 0, . . . , t�1.
Suppose M is a matching in C2t. We build a spanning forest F of Ct by including the edge {i, i + 1} whenever
either {2i, 2i+1} or {2i+1, 2i+2} is included in M , and by declaring i a root vertex in Ct if 2i is not adjacent to
any edges of M in C2t. We illustrate this mapping in Figure 7, which shows that every connected component of
F formed this way indeed has a unique root vertex (located where the pairs of consecutive edges containing edges
of M switch from “leaning” counterclockwise to clockwise), and that the knowledge of the connected components
and the root vertices of F uniquely determines the preimage M . This holds so long as k < t; however, when
k = t, then there are two matchings on C2t with k = t edges, while Et(�t,1, . . . , �t,t) = det(LCt) = 0.

Let Mt,k denote the number of matchings of k edges in Ct. The result then follows from showing that Lt(x)
is the matching polynomial of Ct for t � 3:

(C.21) Lt(x) =

bt/2cX

k=0

Mt,kx
t�2k.

This fact is known, though often phrased di↵erently (e.g., Section 6 of [21]), but we give the simple proof here for
the sake of completeness. The statement is easily verified for t = 3, 4, and then it su�ces to show the coe�cient
recursion for t � 5 that

(C.22) Mt,k = Mt�1,k + Mt�2,k�1.

We present a bijective proof of this recursion in Figure 8: fixing a sequence of three consecutive edges in Ct, we
map any matching in Ct to a matching in either Ct�1 or Ct�2 by a suitable replacement of this sequence by either
two edges or one edge, and this mapping is visibly a bijection.

C.1 Discrete Concavity: Proof of Lemma 2.1 It su�ces to show that S(�2, t) � S(�2, t � 1) is decreasing
in t. (This establishes that the limit limt!1(S(�2, t) � S(�2, t � 1)) exists, and since S(�2, t)/t ! I(�2), the
former limit must then equal I(�2).) Equivalently, it su�ces to show that, for all t � 3,

(C.23) 2S(�2, t)
?
> S(�2, t � 1) + S(�2, t + 1).

We consider separately the case t = 3. Introducing for the sake of convenience a new variable y = ��2, we
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have the polynomials

exp(S(y�1, 2)) = 1 + y sin2

✓
1

2
⇡

◆

= 1 + y,(C.24)

exp(S(y�1, 3)) =

✓
1 + y sin2

✓
1

3
⇡

◆◆✓
1 + y sin2

✓
2

3
⇡

◆◆

=

✓
1 +

3

4
y

◆2

,(C.25)

exp(S(y�1, 4)) =

✓
1 + y sin2

✓
1

4
⇡

◆◆✓
1 + y sin2

✓
2

4
⇡

◆◆✓
1 + y sin2

✓
3

4
⇡

◆◆

=

✓
1 +

1

2
y

◆2

(1 + y)(C.26)

Thus it su�ces to show that, for all y > 0,

(C.27)

✓
1 +

3

4
y

◆4
?
>

✓
1 +

1

2
y

◆2

(1 + y)2,

which follows by the arithmetic-geometric mean inequality which gives (1 + 1
2y)(1 + y) < ( 1

2 (1 + 1
2y + 1 + y))2 =

(1 + 3
4y)2.

Now, suppose t � 4. Then, exponentiating both sides and applying Lemma C.1, it su�ces to show that

(C.28) (L2t(x) � 2)2
?
> (L2t�2(x) � 2)(L2t+2(x) � 2)

for all x > 0. Letting a = ↵(x)2 > 1, we have �(x)2 = a�1. In terms of a, we may then expand either side as

(L2t(x) � 2)2 = 6 + a2t + a�2t � 4at � 4a�t,(C.29)

(L2t�2(x) � 2)(L2t+2(x) � 2) = 4 + a2t + a�2t + a2 + a�2 � 2at�1 � 2a�t+1 � 2at+1 � 2a�t�1.(C.30)

Therefore, it su�ces to show that, for all a > 0,

0
?
< 2 � 4at � 4a�t � a2 � a�2 + 2at�1 + 2a�t+1 + 2at+1 + 2a�t�1

= 2 + 2at�1(1 � a)2 + 2a�t+1(1 � a�1)2 � a2 � a�2.(C.31)

Viewing t for a moment as a continuous parameter, we note that the derivative of the above expression with
respect to t is 2 log a(at�1(1 � a)2 � a�t+1(1 � a�1)2) > 0 for any t > 1 and a > 1, since at�1 > a�t+1 and
(1 � a)2 > (1 � a�1)2 = (a�1

a )2. Thus this expression is increasing in t, so it su�ces to consider t = 4. In that
case, we have the factorization

(C.32) 2 + 2a3(1 � a)2 + 2a�3(1 � a�1)2 � a2 � a�2 =
(a � 1)4(2a6 + 4a5 + 6a4 + 7a3 + 6a2 + 4a + 2)

a5
,

which shows strict positivity for any a > 1.
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C.2 Upper Bound: Proof of Lemma 2.2 We want to show S(�2, t) < tI(�2). Exponentiating either side,
we observe that

exp(tI(�2)) =

 
1 +

p
1 + ��2

2

!2t

,(C.33)

exp(S(�2, t)) = (4�2)�t
⇣
↵(

p
4�2)2t + �(

p
4�2)2t � 2

⌘

= (4�2)�t

0

@
 p

4�2 +
p

4�2 + 4

2

!2t

+

 p
4�2 �

p
4�2 + 4

2

!2t

� 2

1

A

=

 
1 +

p
1 + ��2

2

!2t

+

 
1 �

p
1 + ��2

2

!2t

� 2(4�2)�t

= exp(tI(�2)) +

 
1 �

p
1 + ��2

2

!2t

�
✓

21/t

4�2

◆t

.(C.34)

Thus it su�ces to show that

(C.35)
21/t

4�2

?
>

 p
1 + ��2 � 1

2

!2

,

which we verify as

(C.36)
21/t

4�2
�
 p

1 + ��2 � 1

2

!2

>
1

4�2
�
 p

1 + ��2 � 1

2

!2

=
1

2

⇣p
1 + ��2 � 1

⌘
> 0.

C.3 Miscellaneous Rate Functions: Proof of Proposition 4.6 Again introducing y = ��2 and using our
expressions for St for t = 2, 3, and 4 from (C.24), (C.25), and (C.26), respectively, as well as the expression

(C.37) exp(I(y�1)) =

✓
1 +

p
1 + y

2

◆2

2
h
1 +

y

4
, 1 +

y

2

i
,

we may compute as follows:

exp(⌘1) =
(1 + y)3/4

(1 + 1
2y)1/2(1 + y)1/4

=

s
1 + y

1 + 1
2y

,(C.38)

exp(⌘2) =
1 + y

1 + 3
4y

,(C.39)

exp(⌘3) =
2
p

1 + y

1 +
p

1 + y
.(C.40)

Thus we find ⌘3 � ⌘1, since by concavity of the square root 1
2 (1 +

p
1 + y) 

q
1 + 1

2y. We also have, by the

arithmetic-geometric mean inequality,

(C.41)
exp(⌘1)

exp(⌘2)
=

1 + 3
4y

q
(1 + y)(1 + 1

2y)
� 1,
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so ⌘3 � ⌘1 � ⌘2. For the upper bound on ⌘3, we have

exp(⌘3) 
s

1 + y

1 + 1
4y

=

s

1 +
3
4y

1 + 1
4y

 exp

✓ 3
4y

2 + 1
2y

◆

= exp

✓
1

2
3 + 8

3�2

◆
.(C.42)

D Edge Probability Prefactor: Proof of Proposition 4.2

We begin by producing the following formula for p: let g ⇠ N (0, �2) and u ⇠ �2(d) be independent. Then,

(D.43) p = P
⇥
g �

p
u
⇤
.

We work directly from the earlier expression, in the special case t = 2:

P[(1, 2) is augmenting] = P
⇥
hz1 � z2,x2 � x1i � kx2 � x1k2

⇤

= P
⌧

z1 � z2p
2

,
x2 � x1

kx2 � x1k

�
�
����
x2 � x1p

2

����

�
,(D.44)

where we observe now that (x2 � x1)/kx2 � x1k has the law of a uniformly distributed unit vector, and is
independent from kx2 � x1k/

p
2, which has the law of the norm of a standard gaussian vector, which is that ofp

u. Moreover, (z1 � z2)/
p

2 has the law N (0, �2Id), so the left-hand side of the probability has law N (0, �2),
giving the claim.

Note that the upper bound on p̂ follows from Proposition 3.1. For the lower bounds, we first give two
quantitative lower bounds, a looser one that holds for all d � 1 and a tighter one that holds for all d � 4. We will
use the following “Mills’ ratio” lower bounds on Gaussian tails (see, e.g., [19]): for all t > 0,

(D.45) P
g⇠N (0,1)

[g � t] � t

1 + t2
1p
2⇡

exp

✓
� t2

2

◆
�
✓

1

t
� 1

t3

◆
1p
2⇡

exp

✓
� t2

2

◆

For our first lower bound, we use the first lower bound of (D.45):

p = E
u⇠�2(d)

P
g⇠N (0,1)


g �

r
u

�2

�

�
r

�2

2⇡
E
u

p
u

�2 + u
exp

⇣
� u

2�2

⌘

=

r
�2

2⇡

1

2d/2�(d2 )

Z 1

0

u
d�1
2

�2 + u
exp

✓
�1 + ��2

2
u

◆
du

=

r
�2

2⇡

1

2d/2�(d2 )

✓
1 + ��2

2

◆� d�1
2
Z 1

0

v
d�1
2

1+�2

2 + v
e�vdv

= exp

✓
�d

2
S(�2, 2)

◆ p
1 + �2

2
p

⇡

1

�(d2 )

Z 1

0

v
d�1
2

1+�2

2 + v
e�vdv.(D.46)

Copyright c� 2022 by SIAM
Unauthorized reproduction of this article is prohibited872

D
ow

nl
oa

de
d 

06
/0

9/
22

 to
 7

4.
10

1.
14

9.
25

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Working now with the remaining integral,

Z 1

0

v
d�1
2

1+�2

2 + v
e�vdv � 1

1 + �2

Z 1

0

v
d�1
2

1 + v
e�vdv

� 1

1 + �2

Z 1

1

v
d�1
2

2v
e�vdv

=
1

2(1 + �2)
�

✓
d � 1

2
, 1

◆
,(D.47)

and we find that, for all d � 1,

bp � 1

4
p

⇡(1 + �2)

�(d�1
2 , 1)

�(d2 )

and, bounding the � functions,

� 1

40
p

⇡d(1 + �2)
.(D.48)

For our second lower bound, we suppose that d � 4 and use the second lower bound of (D.45):

p � 1p
2⇡

E
u

 ✓
�2

u

◆1/2

�
✓

�2

u

◆3/2
!

exp
⇣
� u

2�2

⌘

=
1p
2⇡

1

2d/2�(d2 )

✓
�

Z 1

0
u

d�3
2 exp

✓
�1 + ��2

2
u

◆
du � �3

Z 1

0
u

d�5
2 exp

✓
�1 + ��2

2
u

◆
du

◆

where both integrals converge due to our assumption that d � 4. Performing the same change of various as before,
we find

=
1p
2⇡

1

�(d2 )

 
�(d�1

2 )
p

2
(1 + �2)1/2 �

�(d�3
2 )

2
p

2
(1 + �2)3/2

!
exp

✓
�d

2
S(�2, 2)

◆
,(D.49)

and thus, rearranging, we find that

bp � 1

2
p

⇡
·
�(d�1

2 )

�(d2 )
(�2 + 1)

1
2 � 1

4
p

⇡
·
�(d�3

2 )

�(d2 )
(�2 + 1)3/2

and bounding the � function ratios from above and below,

� 1p
2⇡

✓
1 + �2

d

◆ 1
2

� 2

✓
1 + �2

d

◆3/2

(D.50)

For 1  d  40, by assumption we have �2  1, so by our first bound we find

(D.51) bp � 1

40
p

80⇡
� 1

1000

r
1 + �2

d
,

using that 1 + �2  2 and d � 1. For d � 40, we have 1  d
40 , so 1 + �2  d

20 . On the interval x 2 [0, 1
20 ] we have

1p
2⇡

x1/2 � 2x3/2 � 1
4x1/2, so by our second bound we have

(D.52) bp � 1

4

r
1 + �2

d
.

Combining the two cases gives the result.
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