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Abstract. We compute exact second-order asymptotics for the cost of an optimal solution to the entropic4
optimal transport problem in the continuous-to-discrete, or semi-discrete, setting. In contrast to the5
discrete-discrete or continuous-continuous case, we show that the first-order term in this expansion6
vanishes but the second-order term does not, so that in the semi-discrete setting the di↵erence in7
cost between the unregularized and regularized solution is quadratic in the inverse regularization8
parameter, with a leading constant that depends explicitly on the value of the density at the points9
of discontinuity of the optimal unregularized map between the measures. We develop these results10
by proving new pointwise convergence rates of the solutions to the dual problem, which may be of11
independent interest.12
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1. Introduction. The entropically regularized optimal transportation problem, originally16

inspired by a thought experiment of Schrödinger [52] and the subject of a great deal of recent17

interest in probability [26, 40], statistics [13, 27, 39, 50] and machine learning [19, 28], is an18

optimization problem which seeks a coupling between two probability measures that minimizes19

the transport cost between them, subject to an additional entropic penalty. Specifically, given20

Borel probability measures µ and ⌫ on Rd with finite second moment and ⌘ > 0, the problem21

reads22

(1.1) inf
⇡∈⇧(µ,⌫)E⇡[�x − y�

2
] +

1

⌘
KL(⇡ �µ⊗ ⌫) ,23

where ⇧(µ, ⌫) denotes the set of couplings of µ and ⌫ and KL(⋅ � ⋅) denotes the Kullback–24

Leibler divergence or relative entropy, defined by25

KL(⇡ �⇢) ∶=
�
��
�
��
�

∫ log
d⇡

d⇢
(x)d⇡(x) ⇡ � ⇢

+∞ otherwise.
26

Recent interest in (1.1) has been driven by the fact that, as ⌘ →∞, the solution ⇡⌘ to (1.1)27

approaches the solution ⇡∗ to the unregularized optimal transport problem [10,35],28

(1.2) inf
⇡∈⇧(µ,⌫)E⇡[�x − y�

2
] ,29
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which defines the squared Wasserstein distance W 2
2 (µ, ⌫) [57]. In statistics and machine30

learning applications, it has been recognized that (1.1) represents a computationally and31

statistically attractive proxy for (1.2). Statistically, the entropically regularized problem o↵ers32

improved sample complexity [27] and cleaner limit laws [39] than its unregularized counterpart;33

computationally, the strict convexity of (1.1) opens the door to much faster algorithms [1,19].34

The importance of the ⌘ → ∞ limit has spurred a line of work which seeks to quantify
the speed of convergence of ⇡⌘ → ⇡∗ and to develop higher-order asymptotics in the ⌘ → ∞
regime. Of particular interest is the suboptimality of the entropically regularized solution:

E⇡⌘[�x − y�
2
] −E⇡∗[�x − y�2] .

This quantity measures the suitability of ⇡⌘ as an approximation for ⇡∗, and giving precise35

bounds is essential for statistical and computational applications.36

Two cases are well understood, with vastly di↵erent rates: when µ and ⌫ are both finitely37

supported, then it is known that the di↵erence in cost approaches zero exponentially fast as38

⌘ → ∞ [14, 58]. On the other hand, when µ and ⌫ are absolutely continuous measures with39

bounded, compactly supported densities, then precise asymptotics to second order are known40

for the cost including the entropic term [13, 15, 25,47]: as ⌘ →∞,41

42

(1.3) E⇡⌘[�x − y�
2
] +

1

⌘
KL(⇡⌘ �µ⊗ ⌫) =W

2
2 (µ, ⌫) −

d

2⌘
log �

⇡

⌘
� +

1

2⌘
(h(µ) + h(⌫))43

+
1

16⌘2
I(µ, ⌫) + o(⌘−2) ,44

45

where for a probability measure µ with density µ(⋅) with respect to the Lebesgue measure we46

write47

h(µ) ∶= −� log(µ(x))µ(x)dx48

for the entropy relative to the Lebesgue measure, and where I is the integrated Fisher infor-49

mation along the Wasserstein geodesic connecting µ to ⌫. It does not seem possible to extract50

asymptotics for the cost E⇡⌘[�x − y�
2
] directly from (1.3); however, it is easy to show that in51

general for absolutely continuous µ and ⌫, the suboptimality is linear in ⌘−1. For example,52

when µ and ⌫ are Gaussian measures on R, it can be checked directly that53

E⇡⌘[�x − y�
2
] −E⇡∗[�x − y�2] =

1

2⌘
+ o(⌘−1) .54

The large gulf between these convergence rates—exponential for finitely supported mea-55

sures, linear in ⌘−1 for absolutely continuous measures—raises the question of which of the two56

behaviors should be expected in general. As a first step towards understanding this question,57

we study a situation between these two extremes: the semi-discrete case, in which one mea-58

sure is absolutely continuous and the other is finitely supported. This setting is important for59

both theoretical and practical reasons, but prior work gives no hint of how the suboptimality60

in the semi-discrete case should behave. Should one expect to recover the exponential rate or61

the linear rate?62
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(a) µ is standard Gaussian distribution,

i.e., has density µ(x) = e−x2�2
�
√
2⇡.

(b) µ is standard Laplacian distribution,
i.e., has density µ(x) = e−�x��2.

Figure 1: For two toy examples in one dimension, numerics show that the suboptimality
scales quadratically in ⌘−1, and that the leading constant is an explicit function of the value
of the density at 0. Our main result, Theorem 1.1, extends this to the general setting. The
agreement between the predicted limiting value and the numerical results is precise.

A numerical computation in one dimension, where all the quantities are explicit, shows,63

perhaps surprisingly, that the rate in the semi-discrete case is something else entirely. Figure 164

plots the suboptimality for two di↵erent one-dimensional examples as ⌘ varies, one where µ is65

the Gaussian density, and the other where µ is the Laplacian density. For both experiments,66

we take ⌫ to be a discrete measure, uniform on {−1,+1}. The apparent result is that in both67

cases, the suboptimality is neither linear nor exponential but quadratic in ⌘−1. Moreover,68

the very careful reader will note that the asymptotic suboptimality appears to agree with69
⇡
2
µ(0)
24 ⌘−2, where µ(0) is the value of the density µ at the origin, which is also the point at70

which the optimal unregularized map from µ to ⌫ changes value from −1 to +1. We give a full71

exposition of this example in section 3.72

Our main theorem shows that this phenomenon is completely general: in any dimension,73

if ⌫ is discrete and µ has su�ciently regular density with respect to the Lebesgue measure,74

then the suboptimality scales as ⌘−2, with leading constant given by the value of µ’s density75

on the hyperplanes on which the optimal map changes value.76

Theorem 1.1. Suppose µ and ⌫ are Borel probability measures on Rd such that ⌫ is finitely77

supported on y1, . . . , yn, and µ is absolutely continuous and compactly supported, with positive,78

continuous density on the interior of its connected support. Then79

(1.4) E⇡⌘[�x − y�
2
] =W 2

2 (µ, ⌫) +
⇣(2)

2⌘2
�

i<j
wij

�yi − yj�
+ o(⌘−2) ,80

where wij is the (d−1)-dimensional integral of µ(x) on T−1(yi)∩T−1(yj) for the optimal map81

T transporting µ to ⌫ (see subsection 2.3), and where ⇣(2) = ⇡
2

6 .82

See section 5 for a precise statement and proof of this result. The assumption that µ is com-83

pactly supported is mostly for convenience and can be substantially weakened; see Assump-84
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tion 2.9 and Proposition 2.10. By contrast, the continuity and positivity of µ are essential: in85

the absence of these assumptions, the convergence rate is no faster than O(⌘−1) in general.86

As an intermediate result, we also obtain an exact second-order expression for the cost87

with the entropic term. In what follows, we writeH(⌫) = −∑n

i=1 ⌫i log ⌫i to denote the Shannon88

entropy of a discrete distribution ⌫ with weights ⌫1, . . . , ⌫n on its atoms.89

Theorem 1.2. Suppose µ, ⌫ are as in Theorem 1.1. Then90

(1.5) E⇡⌘[�x − y�
2
] +

1

⌘
KL(⇡⌘ �µ⊗ ⌫) =W

2
2 (µ, ⌫) +

1

⌘
H(⌫) −

⇣(2)

2⌘2
�

i<j
wij

�yi − yj�
+ o(⌘−2) .91

It would be interesting to find a heuristic argument to relate (1.5) to (1.3). In any case, the92

fact that the right side is O(⌘−1) rather than O(⌘−1 log ⌘) is a manifestation of the fact that93

the unregularized optimal coupling ⇡∗ has finite relative entropy with respect to the product94

measure µ⊗ ⌫ [43].95

Our proof techniques di↵er from prior work on the asymptotics of entropically regularized96

optimal transport. Prior work in the continuous setting has exploited a dynamical formu-97

lation [11, 29, 30] analogous to the celebrated Benamou–Brenier formula from the theory of98

unregularized optimal transport [5]. Instead, we take a di↵erent approach that, similar in99

spirit to the one employed in the analysis of the discrete problem [14], focuses on the convex100

dual of (1.1). However, our proof techniques depart substantially from those available in the101

discrete case, where finite-dimensional considerations make the analysis of the dual problem102

more tractable. In particular, the quadratic terms in Theorems 1.1 and 1.2 come from showing103

that the discrepancy of the quadratic cost between ⇡⌘ and ⇡∗ localizes around the boundaries104

of the power diagram that determines the optimal unregularized transport map ⇡∗, and then105

explicitly computing the resulting integrals up to low-order terms.106

Our main technical result, which is of possible independent interest, gives first-order107

asymptotics for the convergence of solutions of the convex dual of (1.1) to solutions of the108

dual of (1.2), showing that this convergence happens faster than ⌘−1.109

Theorem 1.3. Suppose µ, ⌫ are as in Theorem 1.1. Let (f⌘, g⌘) and (f
∗, g∗) solve the dual110

problems to (1.1) and (1.2), respectively with appropriate normalization constraints. (See111

Definitions 2.3 and 2.6.) Then112

⌘(f⌘ − f
∗
)→ 0113

⌘(g⌘ − g
∗
)→ 0114115

pointwise, with the latter convergence uniform.116

1.1. Related work. The study of optimal transport dates back to the fundamental con-117

tributions of Monge in the 18th century [41] and Kantorovich in the 20th [32]. Later in the118

20th century, significant progress was made on the qualitative nature of optimal transport119

solutions, with many independent discoveries of a fundamental characterization of optimal120

transport solutions (Theorem 2.1) [9, 17, 18, 33, 51]. Around the turn of the 21st century, it121

was recognized that optimal transport gives a deep geometric perspective on the space of122

probability distributions [38,45]. This discovery led to new functional inequalities, stable no-123

tions of curvature for metric measure spaces, and especially new means of analyzing di�cult124

PDEs [22,23,37,46,55].125
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In parallel to these theoretical developments, major e↵ort was devoted to practical al-126

gorithms for computing optimal transport maps, particularly in the discrete-discrete case.127

Standard linear programming methods work quite e↵ectively when the supports of each dis-128

tribution are discrete with up to several thousand atoms [19,24]. However, for larger datasets129

linear programming methods become prohibitively slow, and approximations are required.130

The entropic regularization approach is the most popular approximation, first considered al-131

gorithmically by Sinkhorn [53] and Sinkhorn and Knopp [54] in the 1960s. These works gave132

fast algorithms based o↵ iterative matrix scaling for computing the approximate optimal cou-133

pling. Cuturi introduced this work to the machine learning community in 2013 [19], which134

led to an explosion of interest in optimal transport for applications [48]. Subsequently, the135

entropic penalty has been applied to variants of the optimal transport problem, where it also136

leads to fast and practical algorithms [2, 6, 7, 12].137

Apart from its algorithmic implications, the entropic penalty has an interesting proba-138

bilistic interpretation dating back to Schrödinger. In Schrödinger’s original motivation, (1.1)139

represents a formalization of the following hot gas experiment. Consider a collection of par-140

ticles evolving according to Brownian motion, and suppose their initial and final distribution141

approximately coincide with the measures µ and ⌫, respectively. Schrod̈inger asked for a de-142

scription of the “most likely paths” of each particle, conditional on this starting and ending143

configuration. The entropically regularized optimal transport problem gives a way of making144

mathematical sense of this problem: the path measure governing the evolution of the particles145

can be obtained by convolving the optimal coupling ⇡⌘ given by the solution to (1.1) with a146

Brownian bridge [26]. This interpretation has led to a fruitful line of work understanding (1.1)147

through the lens of large-deviations principles, which also has helped to clarify the nature of148

the convergence of (1.1) to (1.2) as ⌘ →∞ [35].149

Obtaining an asymptotic expansion of the cost E⇡⌘[�x−y�
2
] or the entropic cost E⇡⌘[�x−150

y�2] + 1
⌘
KL(⇡ �µ ⊗ ⌫) in the ⌘ → ∞ limit is the subject of a great deal of recent interest.151

In the discrete-discrete case, this question was first investigated in the broader context of152

entropically regularized linear programs by Cominetti and San Mart́ın [14], who showed that153

the suboptimality converges to zero exponentially fast as ⌘ →∞.154

In the continuous-continuous case, asymptotics have been computed to second order for155

the entropic cost, under regularity assumptions (see [15] and references therein). To our156

knowledge, however, no general asymptotics for the suboptimality (without the entropic term)157

are known, but examples—such as the Gaussian case mentioned above—show that the rate158

⇥(⌘−1) is typical.159

Recently, Bernton et al. [8] developed a structural characterization of ⇡⌘ which allows160

them to establish a large-deviations principle for the convergence of ⇡⌘ to ⇡∗, but they do161

not extract asymptotics for the cost. Our results in section 2 develop a similar structural162

characterization for semi-discrete couplings by a direct argument.163

The semi-discrete case, which is the central focus of this work, is important both for theo-164

retical and practical reasons. For instance, it reflects the practical situation of the statistician165

who has access to an empirical distribution ⌫ = 1
n
∑

n

i=1 �Xi of samples from an unknown mea-166

sure, and wishes to compare these samples to an absolutely continuous reference measure µ.167

From a theoretical perspective, the semi-discrete setting is closely connected to the optimal168

quantization problem [21,31,49], which seeks the best approximation of an absolutely continu-169
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ous measure by a measure with finite support. The study of the structure of optimal couplings170

for semi-discrete problems has a long history in computational geometry, where such couplings171

are known as “power diagrams” [3,4]. We draw extensively on the properties of such diagrams172

in our geometrical results of section 2.173

We emphasize that throughout this paper, the optimal transport problem is defined with174

respect to the quadratic cost �x − y�2. This corresponds to the 2-Wasserstein distance over175

Euclidean space, which plays a preponderant role in both the theory and application of optimal176

transport [48, 56, 57]. It is an interesting question how the results we develop change if the177

transportation cost is di↵erent—e.g., if one considers a non-Euclidean ground metric or p-178

Wasserstein distances, p ≠ 2. We suspect that the analysis techniques we develop may still179

be useful, but new challenges arise. For example, in the case of general costs, the optimal180

unregularized map is given by a much more complicated partition of Rd than a power diagram,181

and this raises new challenges for developing the integration identities that we establish in182

this paper for the quadratic cost.183

1.2. Organization of the remainder of the paper. In section 2, we formalize important184

definitions and establish basic geometrical results on the structure of the optimal regular-185

ized and unregularized couplings. To illustrate our ideas, in section 3 we develop the one-186

dimensional example mentioned above, and give a preview of the argument that will follow187

in the general case. Section 4 contains the proof of our main technical result, Theorem 1.3,188

which is at the heart of our arguments. In section 5, we apply this convergence result to prove189

Theorem 1.1. Finally, section 6 contains necessary background information on the dilogarithm190

and zeta functions, as well as several intermediate integration lemmas needed for the proofs191

of our main theorems. It also contains the proofs of two technical results from section 2.192

2. Background on semi-discrete OT and Sinkhorn problems. In this section we recall193

relevant background on semi-discrete OT and Sinkhorn problems, as well as provide several194

useful propositions and intuitions for the work that comes. For further background we refer195

the reader to the standard textbooks [48, 56, 57], as well as to the detailed treatment of the196

semi-discrete setting in [42, section 4].197

2.1. Semi-discrete optimal transport. The foundational observation in optimal trans-198

port theory declares the existence, uniqueness, and structure of the optimal coupling in the199

transport problem. For a proof, see e.g., [56, Theorem 2.12].200

Theorem 2.1. Suppose µ, ⌫ are probability measures with finite second moment. Then there
is an optimal coupling ⇡∗ ∈ ⇧(µ, ⌫) such that

W 2
2 (µ, ⌫) = E⇡∗[�x − y�2].

Moreover, we have the following form of strong duality:201

(2.1) W 2
2 (µ, ⌫) = sup(f,g)∈L1(µ)×L1(⌫) ∶ f(x)+g(y)≤�x−y�2 Eµ [f] +E⌫ [g] .202

If µ has a density with respect to the Lebesgue measure, then in fact there is a unique optimal
⇡∗, it is supported on the graph of a function T ∶Rd

→ Rd, and T is the gradient of a (proper,

This manuscript is for review purposes only.
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lower semi-continuous) convex function. We shall usually write T = Tµ→⌫ = ∇�µ→⌫ . In this
case the supremum in the dual problem (2.1) is attained by

(f, g) = (�x�2 − 2�µ→⌫ , �y�
2
− 2�cµ→⌫)

where we are using the Legendre conjugate

�cµ→⌫(y) ∶= sup
x

�x, y� − �µ→⌫(x).

The optimal f and g are typically not unique. However, the following assumptions guar-203

antee that, up to an additive shift, f and g are unique µ (respectively, ⌫) almost surely [8,20].204

Assumption 2.2. The measure ⌫ is finitely supported and µ is absolutely continuous with205

finite second moment. The interior of the support of µ is connected, the boundary of the206

support has zero Lebesgue measure, and µ has positive density on the interior of its support.207

Under Assumption 2.2, we can therefore uniquely identify a pair of optimal dual solutions.208

Definition 2.3 (Optimal unregularized potentials). We denote by (f∗, g∗) optimal solutions209

to (2.1) subject to the additional normalization constraint that E⌫[g
∗
] = 0.210

Using Theorem 2.1, we can completely characterize the optimal transport maps in the211

semi-discrete case. In what follows, we identify µ with its Lebesgue density µ(⋅), and write212

{yi}
n

i=1 for the support of ⌫.213

Theorem 2.4 ( [4]). Adopt Assumption 2.2. Then, µ-almost surely,

Tµ→⌫(x) = argmin
yi∈supp(⌫)

(�x − yi�
2
− g∗(yi)).

Proof. For ease of notation, write � ∶= �µ→⌫ . Since � is convex and closed, we know that
� = (�c)c, where (⋅)c denotes Legendre conjugation. Therefore,

�(x) =max
yi
�x, yi� − �

c
(yi).

Since µ is absolutely continuous, there is a unique maximizer for µ-almost every x, and if yi
is the unique maximizer for such an x, then ∇�(x) = yi, and

�x − yi�
2
− �yi�

2
+ 2�c(yi) < �x − yj�

2
− �yj�

2
+ 2�c(yj) ∀j ≠ i .

Therefore we have shown that µ-almost everywhere,

T (x) = argmin
yi

(�x − yi�
2
− (�yi�

2
− 2�c(yi))).

This yields the result by the characterization in Theorem 2.1.214

In view of this result, the next definition is natural.215

Definition 2.5 ( [3]). We define the power cells with respect to the optimal dual potential
g∗ by

Si ∶= {x ∈ Rd
∶ ∀j �x − yi�

2
− g∗(yi) ≤ �x − yj�2 − g∗(yj)}, i = 1, . . . , n.

This manuscript is for review purposes only.
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Figure 2: Illustration of a power diagram, or equivalently the optimal coupling for a semi-
discrete OT problem. Each shaded region is a power cell Si corresponding to the point yi
with the same color.

216

The significance of the power cells Si is that they are precisely the pull-back of yi under
Tµ→⌫ :

Si = T
−1
µ→⌫(yi).

The power cells for ⇡∗ form a convex polyhedral partition of Rd. In Figure 2 we show an217

example of an optimal mapping between a measure on the larger rectangle and a finitely218

supported measure. Note that a point yi in the support of ⌫ can lie in the power cell Sj219

corresponding to a di↵erent point yj ≠ yi. For example, this occurs if µ is supported on220

(−∞,−2] and ⌫ = (1�2)�−1 + (1�2)�1.221

2.2. Semi-discrete entropic optimal transport. In this subsection, we discuss the entropy222

regularized version of the semi-discrete optimal transport problem. Denote by ⇢ the counting223

measure on the support of ⌫. We first note that for any ⇡ ∈ ⇧(µ, ⌫), we have224

(2.2) KL(⇡ �µ⊗ ⌫) = KL(⇡ �µ⊗ ⇢) +H(⌫) .225

The regularized optimal transport problem (1.1) is therefore equivalent to226

(2.3) inf
⇡∈⇧(µ,⌫)E⇡[�x − y�

2
] +

1

⌘
KL(⇡ �µ⊗ ⇢) .227
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The benefit of the formulation (2.3) is that under Assumption 2.2,228

KL(⇡∗ �µ⊗ ⇢) = 0 ,229

which leads to a simplification in some of the formulas appearing in what follows.230

Csiszár’s theory of “I-projection” [16] implies that as long as µ and ⌫ have finite second231

moment, the value of (2.3) equals the value of the dual problem232

sup(f,g)∈L1(µ)×L1(⌫)Eµ[f] +E⌫[g] −
1

⌘

n

�

j=1�Rd
e−⌘(�x−yj�2−f(x)−g(yj))µ(x)dx + 1

⌘
.(2.4)233

234

Moreover, the optimal solution to (2.3) satisfies235

(2.5)
d⇡⌘

d(µ⊗ ⇢)
(x, y) = e−⌘(�x−y�2−f⌘(x)−g⌘(y)) ,236

where f⌘ and g⌘ solve (2.4).237

The strict convexity of (2.4) implies that f⌘ and g⌘ are unique up to an additive shift; as238

above, we therefore fix a unique optimal pair by adding an additional constraint.239

Definition 2.6 (Optimal regularized potentials). We denote by (f⌘, g⌘) solutions to (2.4),240

subject to the additional normalization constraint E⌫[g⌘] = 0.241

2.3. Useful geometric notions. The power cell decomposition of Definition 2.5 gives us242

a useful way to separate the subproblems arising in our proof into individual problems over243

the cells Si. In the service of analyzing these problems, we will focus on the distance of a244

point x ∈ Si, from each of the hyperplanes defining Si. We call these quantities the slacks, in245

reference to the fact that they represent the slack in the dual feasibility constraints in (2.1).246

Definition 2.7 (Slack). Let i, j ∈ [n]. The j-th slack at point x ∈ Si is247

(2.6) �ij(x) ∶= �x − yj�
2
− f∗(x) − g∗(yj).248

We establish several basic properties of this slack operator.249

Lemma 2.8 (Properties of slack). For i, j ∈ [n] and x ∈ Si,250

● Nonnegativity. �ij(x) ≥ 0, with strict inequality µ-almost everywhere if i ≠ j.251

● Diagonals vanish. �ij(x) = 0 if i = j.252

● Expression via g∗. �ij(x) = 2�x, yi − yj� − �yi�
2
+ �yj�

2
− g∗(yj) + g∗(yi).253

Proof. Nonnegativity follows by feasibility of (f∗, g∗) for the dual OT problem (2.1), with254

strict inequality following from the fact that �x−yi�
2
−g∗(yi) < �x−yj�2−g∗(yj) in the interior255

of Si. The vanishing �ii ≡ 0 follows from the fact that �x − y�2 − f∗(x) − g∗(y) = 0 ⇡∗-almost256

surely, by strong duality. For the final item, observe that257

�ij(x) = �x − yj�
2
− f∗(x) − g∗(yj) = �x − yj�2 − �x − yi�2 + g∗(yi) − g∗(yj)258

where the second step is because �x− yi�
2
= f∗(x)+ g∗

i
by the previous item �ii(x) = 0. Now259

expand the square.260
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Figure 3: Power diagram with our Hki(t), Hij(s;a) notation depicted. The region Sij(a)
defined in (2.7) is the subset of Si obtained by pushing in the hyperplanes separating Si from
all neighboring cells other than Sj .

Our second main assumption on the measure µ relates to the regularity of the density261

along level sets defined by the slacks. We require several definitions. For i ≠ j and a ≥ 0, set262

Sij(a) ∶= {x ∈ Rd
∶ �x − yi�

2
− g∗i ≤ �x − yk�2 − g∗k − a1k≠i,j , ∀k ∈ [n]}(2.7)263

= {x ∈ Si ∶�ik(x) ≥ a, ∀k ≠ i, j} .264265

When a = 0, Sij(0) = Si. Also, for t ≥ 0, let Hij(t;a) = {x ∈ Sij(a) ∶ �ij(x) = t} be the266

intersection of this set with a hyperplane parallel to the boundary between Si and Sj . See267

Figure 3 for an illustration.268

269

Since 1[x ∈ Sij(a)]µ(x) is in L1
(Rd
), we can define270

(2.8) hij(t;a) ∶= �
Hij(t;a) µ(x)dHd−1(x) ∈ L1

(R)271

where Hd−1 denotes the (d − 1)-dimensional Hausdor↵ measure on Hij(t;a). When a = 0, we272

abbreviate Hij(t;a) and hij(t;a) by Hij(t) and hij(t), respectively.273

The benefit of this definition is that it gives us a convenient way to integrate functions274

that depend only on the slacks; indeed, the coarea formula implies that for any nonnegative275

� ∶ R→ R,276

(2.9) �
Sij(a) �(�ij(x))µ(x)dx =

1

2�yi − yj�
�

∞
0

�(t)hij(t;a)dt .277
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We require the following crucial condition on the measure µ.278

Assumption 2.9. For all i ≠ j and a ≥ 0 su�ciently small, the functions t � hij(t;a) and279

a� hij(0;a) are continuous at 0.280

Assumption 2.9 is a strong requirement on the regularity of µ along hyperplanes, and it is281

essential for our results. As alluded to in the statement of Theorem 1.1, it is possible to verify282

Assumption 2.9 under easy conditions on µ. Say that µ is dominated along hyperplanes if for283

any a�ne hyperplane H orthogonal to a vector v there exists a nonnegative  ∶ Rd−1
→ R,284

integrable with respect to the Lebesgue measure, and an a�ne isometry P ∶ H → Rd−1 such285

that286

µ(x + tv) ≤  (Px) ∀t ∈ R, x ∈H .287

If µ is pointwise bounded and compactly supported, then it is dominated along hyperplanes;288

however, some non-compactly supported measures, such as the standard Gaussian measure289

on Rd also enjoy this property.290

Proposition 2.10. If µ is continuous and dominated along hyperplanes, then Assumption 2.9291

holds.292

Finally, we record a simple consequence of the connectedness of the support of µ, which293

we will rely on extensively in section 4.294

Lemma 2.11. Under Assumption 2.2, we have hij(0) = hji(0) for all i ≠ j, and the graph295

on [n] with edge set {(i, j) ∶ hij(0) > 0} is connected.296

The proofs of Proposition 2.10 and Lemma 2.11 appear in section 6.297

3. Case study: symmetric one-dimensional measures. In order to provide intuition298

for our main result, we consider here a toy example which, despite its simplicity, illustrates299

many of the key underlying phenomena. Specifically, in this section we explicitly compute300

the suboptimality in the case where µ has a symmetric density on R and ⌫ is the discrete301

distribution ⌫ = (1�2)�−1 + (1�2)�1. The symmetry of both distributions around 0 allows us to302

compute closed-form expressions for ⇡∗ and ⇡⌘, and hence also for the suboptimality. These303

closed-form expressions hold for any ⌘ > 0 and facilitate understanding our assumptions and304

main techniques.305

Unregularized optimal transport plan ⇡∗. By symmetry of µ, the optimal coupling ⇡∗ is306

supported on the graph a function that sends x ∈ supp(µ) to sgn(x). That is,307

⇡∗(x, y) = 1[y = sgn(x)] ⋅ µ(x).308309

Regularized optimal transport plan ⇡⌘. Let us compute the dual potentials f⌘, g⌘ from
Definition 2.6. Symmetry of the distributions around 0 implies

⇡⌘(x, y) = ⇡⌘(−x,−y).

Using (2.5) and solving, this means f⌘(x) − f⌘(−x) = g⌘(−y) − g⌘(y) for all x ∈ supp(µ) and310

y ∈ supp(⌫). Replacing x with −x, we see that both f⌘ and g⌘ must be even functions. By311

our convention in Definition 2.6, it follows that g⌘(1) = g⌘(−1) = 0.312
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Figure 4: For the toy example in section 3, the conditional distribution ⇡⌘(Y = 1�X = x) of the
regularized plan ⇡⌘ is the sigmoid function 1�(1 + e−4⌘x) by (3.1). As ⌘ → ∞, this converges
to the conditional distribution ⇡∗(Y = 1�X = x) = 1[sign(x) = 1] of the unregularized plan ⇡∗.
The convergence is exponential in ⌘ at any x ≠ 0. There is a symmetric region around the
origin of width ⇥(1�⌘) on which ⇡⌘(Y = 1�X = x) is bounded away from 0 and 1.

We can now solve for f⌘ using the marginal constraint µ(x) = ⇡⌘(x,1)+⇡⌘(x,−1). Plugging
in the optimality conditions (2.5) for ⇡⌘ and simplifying implies

e⌘f⌘(x) = 1

e−⌘(x−1)2 + e−⌘(x+1)2 .
Rearranging, we conclude that313

(3.1) ⇡⌘(x, y) =
e−⌘(x−y)2

e−⌘(x−1)2 + e−⌘(x+1)2 µ(x) =
µ(x)

e2⌘x(1−y) + e−2⌘x(1+y) .314

See Figure 4 for an intuitive interpretation of ⇡⌘ as a smoothed version of ⇡∗.315

Explicit evaluation of suboptimality. By symmetry, marginal constraints, and the for-316

mula (3.1), we find317

E⇡⌘[(x − y)
2
] −E⇡∗[(x − y)2] = 2�

∞
0
�(x − 1)2(⇡⌘(x,1) − 1) + (x + 1)

2⇡⌘(x,−1)�dx318

= 2�
∞

0
((x + 1)2 − (x − 1)2)⇡⌘(x,−1)dx319

= 8�
∞

0

x

1 + e4⌘x
µ(x)dx.(3.2)320

321

The dominant part of (3.2) as ⌘ →∞ is at x = 0, and if µ is continuous it can be shown that322

it is valid to replace µ(x) by µ(0) to obtain323

E⇡⌘[(x − y)
2
] −E⇡∗[(x − y)2] ≈ 8�

∞
0

x

1 + e4⌘x
µ(0)dx = −

Li2(−1)µ(0)

2⌘2
=
⇡2µ(0)

24⌘2
.324

Here, Li2 is the dilogarithm function, which will play a central role in our argument. More325

details about this function—as well as the so-called Fermi-Dirac integral identity used above—326

can be found in section 6.327
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Necessity of assumptions. If µ fails to be continuous at zero, convergence to 0 may be
slower than quadratic. Consider µ(x) = cp�x�

−p on [−1,1] for p < 1 and normalizing constant
cp = (1−p)�2. The analysis above holds unchanged up to Equation 3.2. However, the following
step, in which we approximated the integral by replacing µ(x) with µ(0), does not hold here
since µ is not continuous at 0. Specifically,

E⇡⌘[(x − y)
2
] −E⇡∗[(x − y)2] = 8cp�

1

0

x1−p
1 + e4⌘x

dx =
2cp
⌘2−p �

4⌘

0

u1−p
1 + eu

du = ⇥�
1

⌘2−p� .

This shows that in fact any polynomial rate faster than 1�⌘ is achievable when our assumptions328

are violated. Morever, taking µ supported away from 0 shows that an exponential rate can329

be obtained when µ is not supported at the decision boundary.330

4. Convergence of dual potentials. In this section, we develop an asymptotic expansion331

for the solution g⌘ of (2.4) around the optimal solution g∗ to the unregularized problem (2.1).332

Recall that Assumption 2.2 implies that g∗ is unique, and also [44] that under this assumption333

g⌘ converges to g∗. The main result of this section is a more precise result, showing that this334

convergence happens at the rate o(⌘−1).335

We prove the following.336

Theorem 4.1. Under Assumptions 2.2 and 2.9, the following convergence holds:337

lim
⌘→∞ �⌘(g⌘ − g

∗
)�∞ = 0 .338

A consequence of Theorem 4.1 is that ⌘(f⌘ − f
∗
) → 0 pointwise, though we stress that this339

convergence is not uniform. Together, these results establish Theorem 1.3.340

Corollary 4.2. Under Assumptions 2.2 and 2.9, the following pointwise convergence holds:341

lim
⌘→∞⌘(f⌘ − f

∗
) = 0 .342

From the general theory of entropic optimal transport, these results Theorem 4.1 and Corol-343

lary 4.2 are unexpected, and they reflect particular features of the semi-discrete setting. For344

instance, when µ and ⌫ are both discrete, the quantities ⌘(g⌘ − g
∗
) and ⌘(f⌘ − f

∗
) both con-345

verge to positive limits in general. Moreover, Assumption 2.2 is essential: if µ is not positive346

on the interior of its support, it is possible for ⌘(g⌘ − g
∗
) to diverge.1347

The proof of Theorem 4.1 also yields the following corollary on the di↵erence between the348

Wasserstein distance and the entropic cost, which gives Theorem 1.2.349

Corollary 4.3. Under Assumptions 2.2 and 2.9,350

lim
⌘→∞⌘

2
�E⇡∗[�x − y�2] − (E⇡⌘[�x − y�

2
] +

1

⌘
KL(⇡⌘ �µ⊗ ⇢))� =

⇣(2)

2
�

i<j
hij(0)

�yi − yj�
.351

1This occurs, for instance, when µ decays to zero at di↵erent rates on opposite sides of one of the hyperplane
boundaries Hij .
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Equivalently,352

(4.1) E⇡⌘[�x − y�
2
] +

1

⌘
KL(⇡⌘ �µ⊗ ⌫) =W

2
2 (µ, ⌫) +

1

⌘
H(⌫) −

⇣(2)

2⌘2
�

i<j
hij(0)

�yi − yj�
+ o(⌘−2) .353

Below, we prove Theorem 4.1 in subsection 4.1, and then we show how Corollaries 4.2354

and 4.3 follow from this in subsection 4.2.355

4.1. Proof of Theorem 4.1. To prove Theorem 4.1, we define the function356

d⌘ ∶= ⌘(g⌘ − g
∗
) .357

We will show that d⌘ is the unique solution to an auxiliary convex optimization problem358

whose solution gives the first-order di↵erence between the Wasserstein distance W 2
2 (µ, ⌫) and359

the entropic cost E⇡⌘[�x − y�
2
] +

1
⌘
KL(⇡⌘ �µ ⊗ ⇢). By showing that the zero function is an360

approximate optimizer of this auxiliary problem and establishing a form of strong convexity361

around 0 in the limit, we obtain that d⌘ → 0, proving the claim.362

We begin by defining these auxiliary optimization problems.363

Proposition 4.4. The function d⌘ is the unique solution of364

(4.2) min
d∈L1(⌫) ∶E⌫d=0

n

�

i=1�Si

log(1 +�
j≠i e

d(yj)−d(yi)−⌘�ij(x))µ(x)dx .365

Moreover, if we denote by �(⌘) the value of (4.2), then366

(4.3) �(⌘) = ⌘ �E⇡∗[�x − y�2] − (E⇡⌘[�x − y�
2
] +

1

⌘
KL(⇡⌘ �µ⊗ ⇢))� ,367

and ⇡⌘ satisfies368

(4.4)
d⇡⌘

d(µ⊗ ⇢)
(x, yj) =

ed⌘(yj)−⌘�ij(x)
∑k ed⌘(yk)−⌘�ik(x) ∀x ∈ Si, i ∈ [n] .369

Proof. Recall that f⌘ and g⌘ are the unique solutions to (2.4) subject to the constraint370

E⌫[g⌘] = 0, so they also uniquely solve371

⌘ ⋅ min(f,g)∈L1(µ)×L1(⌫)
E⌫[g]=0

Eµ[f
∗
]+E⌫[g

∗
]−Eµ[f]−E⌫[g]+

1

⌘

n

�

j=1�Rd
e−⌘(�x−yj�2−f(x)−g(yj))µ(x)dx− 1

⌘
.372

By duality, the optimal value of this program is exactly (4.3). Decomposing the integrals over373

the cells Si and recalling (2.6), we obtain that f⌘ and g⌘ are the unique solutions to374

375

(4.5) min(f,g)∈L1(µ)×L1(⌫)
E⌫[g]=0

n

�

i=1�Si

�⌘(f∗(x) − f(x)) + ⌘(g∗(yi) − g(yi))376

+

n

�

j=1 e
−⌘(�ij(x)+f∗(x)−f(x)+g∗(yj)−g(yj))�µ(x)dx − 1 .377

378
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Reparametrizing in terms of �f = ⌘(f − f∗) and �g = ⌘(g − g∗) yields the equivalent379

representation380

min(�f ,�g)∈L1(µ)×L1(⌫)
E⌫[�g]=0

n

�

i=1�Si

� − 1 − �f(x) − �g(yi) +
n

�

j=1 e
�f (x)+�g(yj)−⌘�ij(x)�µ(x)dx ,381

with optimal solutions ⌘(f⌘ − f
∗
) and ⌘(g⌘ − g

∗
). Fixing �g and minimizing this expression382

with respect to �f yields that the optimal solutions �f and �g are related by383

�f(x) = − log
�

�

n

�

j=1 e
�g(yj)−⌘�ij(x)�

�
(4.6)384

385

for µ-almost every x ∈ Si. Plugging in this expression gives386
387

min
�g∈L1(⌫) ∶E⌫[�g]=0

n

�

i=1�Si

� log �
n

�

j=1 e
�g(yj)−⌘�ij(x)� − �g(yi)�µ(x)dx388

= min
�g∈L1(⌫)∶E⌫[�g]=0

n

�

i=1�Si

log �1 +�
j≠i e

�g(yj)−�g(yi)−⌘�ij(x)�µ(x)dx .389

390

Writing d for �g yields (4.2).391

Finally, applying the same argument to (2.5) yields392

d⇡⌘
d(µ⊗ ⇢)

(x, yj) = e
−⌘(�x−yj�2−f⌘(x)−g⌘(yj)393

= e�f (x)+�g(yj)−⌘�ij(x)394

=
ed⌘(yj)−⌘�ij(x)
∑k ed⌘(yk)−⌘�ik(x)395

396

for all x ∈ Si and i ∈ [n], as desired.397

To prove the theorem, we require two intermediate results. First, we obtain an upper398

bound on � by comparing it to the value of (4.2) at d = 0. Though crude, this comparison399

will turn out to be accurate to first order.400

Lemma 4.5.

lim sup
⌘→∞ ⌘�(⌘) ≤

⇣(2)

4
�

i≠j
hij(0)

�yi − yj�
.401

Proof. Choose d = 0 in (4.2). The subadditivity of the function ↵ � log(1 + ↵) for ↵ > 0402

and the optimality of d(⌘) then imply403

�(⌘) ≤
n

�

i=1�Si

log
�

�
1 +�

j≠i e
−⌘�ij(x)�

�
µ(x)dx404

≤

n

�

i=1�j≠i�Si

log(1 + e−⌘�ij(x))µ(x)dx .405

406
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Multiplying by ⌘, taking the limit, and applying Lemma 6.3 (with Sij(0) = Si) yields the407

claim.408

Next, we use Lemma 4.5 to show that the solutions to (4.2) remain bounded.409

Proposition 4.6. Under Assumption 2.2, d⌘ is bounded as ⌘ →∞.410

Proof. The claim is obvious if n = 1, so assume n ≥ 2. Fix (i, j) for which hij(0) > 0.411

(Such a pair exists by Lemma 2.11.) Then by Proposition 4.4,412

⌘�(⌘) = ⌘
n

�

i=1�Si

log(1 +�
j≠i e

d⌘(yj)−d⌘(yi)−⌘�ij(x))µ(x)dx413

≥ ⌘�
Si

log(1 + ed⌘(yj)−d⌘(yi)−⌘�ij(x))µ(x)dx.414
415

To bound this integral, we require the following lemma.416

Lemma 4.7. For any a ≥ 0 and b ∈ [0,1],417

(4.7) log(1 + ab) ≥ log(1 + a) log(1 + b) .418

Proof. Fix b ∈ [0,1]. Then (4.7) holds for a = 0, and the derivative of the left side in a is419

b�(1+ab) ≥ b�(1+a), whereas the derivative of the right side in a is (log(1+b))�(1+a) ≤ b�(1+a).420

We obtain that (4.7) therefore holds for all a ≥ 0.421

With this lemma in hand, we obtain422

⌘�(⌘) ≥ log(1 + ed⌘(yj)−d⌘(yi)) ⋅ ⌘�
Si

log(1 + e−⌘�ij(x))µ(x)dx.423
424

Taking the limit of both sides and using the change-of-variables (2.9) and Lemmas 4.5 and 6.2,425

we obtain426

�

i′≠j′
hi′j′(0)
�yi′ − yj′�

≥ lim sup
⌘→∞ log(1 + ed⌘(yj)−d⌘(yi)) hij(0)

�yi − yj�
,427

showing that d⌘(yj) − d⌘(yi) is bounded above for all (i, j) for which hij(0) > 0. Now by428

Lemma 2.11, the graph on [n] with edge set {(i, j) ∶ hij(0) > 0} is connected, so for any429

(i, j) ∈ [n]2 we may find a path (kl)
L

l=1 such that k1 = i and kL = j, and d⌘(ykl+1) − d⌘(ykl) is430

bounded above for all l = 1, ..., L − 1; as a result, we conclude that in fact d⌘(yj) − d⌘(yi) is431

bounded for all (i, j) ∈ [n]2. Finally, since E⌫d⌘ = 0, we conclude that d⌘ is bounded.432

We now turn to the proof of the theorem. The boundedness of d⌘ allows us to extract a433

convergent subsequence, and by passing to the limit we obtain strong convexity of (4.2) in434

the limit around 0.435

Proof of Theorem 4.1. As above, we may assume n ≥ 2. We will show that for any se-436

quence (⌘s)s≥1, there exists a subsequence along which d⌘ → 0. Let us fix such a sequence.437

Since d⌘ is bounded, by passing to a subsequence—which we again denote by ⌘s—we may438

assume that d⌘ tends to a limit d∞.439
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Now, fix an " > 0. Recall from section 2 that Sij(") is the subset of Si on which �ik ≥ "440

for all k ≠ i, j. By definition, then, the sets Sij(") ∩ {x ∈ Si ∶ �ij < "} for j ≠ i are disjoint441

subsets of Si. We can therefore decompose the integral over Si into these sets to obtain442

�(⌘) =
n

�

i=1�Si

log(1 +�
k≠i

ed⌘(yk)−d⌘(yi)−⌘�ik(x))µ(x)dx443

≥

n

�

i=1�j≠i�Sij(")∩{x∈Si∶�ij<"} log(1 +�k≠i
ed⌘(yk)−d⌘(yi)−⌘�ik(x))µ(x)dx444

≥

n

�

i=1�j≠i�Sij(")∩{x∈Si∶�ij<"} log(1 + e
d⌘(yj)−d⌘(yi)−⌘�ij(x))µ(x)dx .445

446

Multiplying by ⌘ and taking the limit using Lemma 6.3 yields for " su�ciently small447

lim inf
s→∞ ⌘s�(⌘s) ≥�

i≠j −Li2(−e
d∞(yj)−d∞(yi)) hij(0; ")

2�yi − yj�
.448

Letting "→ 0 and applying Assumption 2.9, we obtain449

lim inf
s→∞ ⌘s�(⌘s) ≥�

i≠j −Li2(−e
d∞(yj)−d∞(yi)) hij(0)

2�yi − yj�
.450

Since hij(0) = hji(0) by Lemma 2.11, we may symmetrize this sum to obtain451

lim inf
s→∞ ⌘s�(⌘s) ≥�

i≠j
1

2
�−Li2(−e

d∞(yj)−d∞(yi)) − Li2(−ed∞(yi)−d∞(yj))� hij(0)

2�yi − yj�
.452

By the inversion formula for the dilogarithm function [36, A.2.1(5)],453

1

2
�−Li2(−e

d∞(yj)−d∞(yi)) − Li2(−ed∞(yi)−d∞(yj))� = ⇣(2)
2
+
1

4
(d∞(yj) − d∞(yi))2 .454

Combined with Lemma 4.5, we conclude455

⇣(2)

4
�

i≠j
hij(0)

�yi − yj�
≥ lim sup

s→∞ ⌘s�(⌘s)456

≥ lim inf
s→∞ ⌘s�(⌘s)457

≥
⇣(2)

4
�

i≠j
hij(0)

�yi − yj�
+
1

8
�

i≠j(d∞(yj) − d∞(yi))
2 hij(0)

�yi − yj�
,458

459

implying that d∞(yj) = d∞(yi) if hij(0) ≠ 0, and that460

(4.8) lim
⌘→∞⌘�(⌘) =

⇣(2)

4
�

i≠j
hij(0)

�yi − yj�
=
⇣(2)

2
�

i<j
hij(0)

�yi − yj�
.461

We conclude as in the proof of Proposition 4.6.462
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4.2. Proof of Corollaries 4.2 and 4.3.463

Proof of Corollary 4.2. For shorthand, denote �f ∶= ⌘(f⌘ − f∗) and �g ∶= ⌘(g⌘ − g∗).464

By (4.6), these functions are related by the identity465

�f(x) = log
�

�

n

�

j=1 e
�g(yj)−⌘�ij(x)�

�
466

for µ-almost every x ∈ Si. Now by Theorem 4.1, lim⌘→∞ �g(yj) = 0 for all j ∈ [n]. And467

by Lemma 2.8, for µ-almost every x ∈ Si, the slack �ij(x) is zero for j = i and otherwise is468

strictly positive for j ≠ i. Thus, for µ-almost every x,469

lim
⌘→∞ �f(x) = log 1 = 0.470

Proof of Corollary 4.3. This is immediate in light of (4.8), (4.3), and (2.2).471

5. Convergence of the suboptimality. In this section we prove our main result, from472

which Theorem 1.1 follows.473

Theorem 5.1. Under Assumptions 2.2 and 2.9,474

lim
⌘→∞⌘

2
(E⇡⌘[�x − y�

2
] −E⇡∗[�x − y�2]) =

⇣(2)

2
�

i<j
hij(0)

�yi − yj�
.475

The proof uses two lemmas. The first lemma decomposes the suboptimality of an arbitrary476

coupling ⇡ ∈ ⇧(µ, ⌫) into a sum of nonnegative terms involving the slack operators �ij .477

Lemma 5.2 (Suboptimality decomposition). For any ⇡ ∈ ⇧(µ, ⌫),478

E⇡[�x − y�
2
] −E⇡∗[�x − y�2] =�

i≠j �Si

�ij(x)d⇡(x, yj) .(5.1)479

480

Proof. By strong duality and the fact that ⇡ ∈ ⇧(µ, ⌫),481

E⇡∗[�x − y�2] = Eµf
∗
+E⌫g

∗
= E⇡[f

∗
(x) + g∗(y)] .482

Therefore483

E⇡[�x − y�
2
] −E⇡∗[�x − y�2] = E⇡[�x − y�

2
− f∗(x) − g∗(y)]484

=�

i,j

�
Si

[�x − yj�
2
− f∗(x) − g∗(yj)]d⇡(x, yj)485

=�

i,j

�
Si

�ij(x)d⇡(x, yj) ,486

487

where the last step uses the definition of �ij (2.7). Since �ij(x) = 0 if i = j, the diagonal488

terms vanish, proving the claim.489

The second lemma explicitly computes the integrals that result from using this decompo-490

sition on the coupling ⇡⌘. We recall the notation d⌘ = ⌘(g⌘ − g
∗
) from section 4.491
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Lemma 5.3 (Sigmoid slack integrals). Under Assumptions 2.2 and 2.9, for any i ≠ j,492

lim
⌘→∞⌘

2
�
Si

�ij(x)e
d⌘(yj)−⌘�ij(x)

∑k ed⌘(yk)−⌘�ik(x) µ(x)dx =
⇣(2)hij(0)

4�yi − yj�
.(5.2)493

494

Proof. First,495

lim
⌘→∞⌘

2
�
Si

�ij(x)e
d⌘(yj)−⌘�ij(x)

∑k ed⌘(yk)−⌘�ik(x) µ(x)dx ≤ lim
⌘→∞⌘

2
�
Si

�ij(x)e
d⌘(yj)−d⌘(yi)−⌘�ij(x)

1 + ed⌘(yj)−d⌘(yi)−⌘�ij(x) µ(x)dx ,496

and since d⌘ → 0 by Theorem 4.1, we can apply Lemma 6.4 to conclude that the limit is497

bounded above by498

−Li2(−1)
hij(0)

2�yi − yj�
=
⇣(2)hij(0)

4�yi − yj�
.499

On the other hand, for any " > 0 and c > 1, we have500

501

lim
⌘→∞⌘

2
�
Si

�ij(x)e
d⌘(yj)−⌘�ij(x)

∑k ed⌘(yk)−⌘�ik(x) µ(x)dx ≥ lim
⌘→∞⌘

2
�
Sij(")

�ij(x)e
d⌘(yj)−⌘�ij(x)

∑k ed⌘(yk)−⌘�ik(x) µ(x)dx502

≥ lim
⌘→∞⌘

2
�
Sij(")

�ij(x)e
d⌘(yj)−⌘�ij(x)

ed⌘(yi) + (n − 2)e2�d⌘�∞−⌘" + ed⌘(yj)−⌘�ij(x)µ(x)dx503

≥ lim
⌘→∞⌘

2
�
Sij(")

�ij(x)e
d⌘(yj)−⌘�ij(x)

c + ed⌘(yj)−⌘�ij(x) µ(x)dx ,504
505

where we have used the fact that d⌘ → 0, so that ed⌘(yi) + (n − 2)e2�d⌘�∞−⌘" < c for all ⌘506

su�ciently large. By Lemma 6.4, for " su�ciently small, this limit is507

−Li2(−1�c)
hij(0; ")

2�yi − yj�
,508

and taking c → 1 and " → 0 and applying Assumption 2.9, we obtain that the limit is also509

bounded below by510

⇣(2)hij(0)

4�yi − yj�
,511

completing the proof.512

With these two lemmas in hand, the proof of Theorem 1.1 follows readily.513

Proof of Theorem 1.1. By Lemma 5.2 and (4.4),514

lim
⌘→∞⌘

2
(E⇡⌘[�x − y�

2
] −E⇡∗[�x − y�2]) = lim

⌘→∞�
i≠j ⌘

2
�
Si

�ij(x)
ed⌘(yj)−⌘�ij(x)
∑k ed⌘(yk)−⌘�ik(x)µ(x)dx .515

516
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By Lemma 5.3, this is equal to517

⇣(2)

4
�

i≠j
hij(0)

�yi − yj�
.518

519

Summing over i ≠ j and using the symmmetry520

hij(0)

�yi − yj�
=

hji(0)

�yj − yi�
521

finishes the proof.522

6. Supplementary results. This section collects several supplementary lemmas relating523

to the integration of relevant quantities depending on the slacks in the cell Si, as well as the524

proofs of two technical claims from section 2.525

6.1. The dilogarithm function. The properties of our asymptotic expansion—including526

the presence of the constant ⇣(2)�2—rely on several classical properties of the dilogarithm527

function. The claims below appear in [36].528

Definition 6.1. The dilogarithm function is given by529

Li2(z) =
∞
�

s=1
zs

s2
�z� ≤ 1530

and extended to C � (1,∞) by analytic continuation.531

An immediate consequence of this definition is the special value532

(6.1) Li2(−1) =
∞
�

s=1
(−1)s

s2
= −

⇣(2)

2
= −

⇡2

12
.533

Moreover, the analyticity of Li2 away from the branch cut implies in particular that it is534

continuous on the negative reals.535

The appearance of the dilogarithm in our proofs follows directly from two of its integral536

representations, which arise naturally from the solutions of the entropic optimal transport537

problem in the semi-discrete setting studied in this paper. These integral identities are often538

called Fermi-Dirac integrals in the mathematical physics literature.539

Lemma 6.2 ( [36]). The dilogarithm satisfies540

−Li2(−1�c) = �
∞

0

te−t
c + e−t dt = �

∞
0

log(1 + e−t�c)dt541

for all c > 0. In particular,542

−Li2(−1) = �
∞

0

te−t
1 + e−t dt = �

∞
0

log(1 + e−t)dt = ⇣(2)
2

.543

Rather than using Lemma 6.2 directly, we will typically be integrating with respect to the544

measure µ over a power cell. However, as the following lemmas show, in the large-⌘ limit we545

can still employ the integral identities of Lemma 6.2 to obtain explicit expressions in terms of546

the dilogarithm.547

This manuscript is for review purposes only.



ASYMPTOTICS FOR SEMI-DISCRETE ENTROPIC OPTIMAL TRANSPORT 21

Lemma 6.3. Let M⌘ be such that lim⌘→∞M⌘ =M > 0, and let a > 0 be small enough that548

Assumption 2.9 holds. Then549

lim
⌘→∞⌘�Sij(a) log(1 +M⌘e

−⌘�ij(x))µ(x)dx = −Li2(−M) hij(0;a)
2�yi − yj�

.550

The same claim holds if Sij(a) is replaced by Sij(a) ∩ {x ∈ Si ∶�ij(x) < a}.551

Proof. By a change of variables, we can write552

⌘�
Sij(a) log(1 +M⌘e

−⌘�ij(x))µ(x)dx = ⌘

2�yi − yj�
�

∞
0

log(1 +M⌘e
−⌘t
)hij(t;a)dt .553

Since M⌘ tends to a limit, it is bounded, and so for any " > 0 the function ⌘ log(1 +M⌘e
−⌘t
)554

tends uniformly to 0 on [",∞). Since hij(t;a) ∈ L1, this implies that555

lim
⌘→∞⌘�

∞
"

log(1 +M⌘e
−⌘t
)hij(t;a)dt = 0 .556

The integral therefore only depends on an interval near zero; in particular, replacing the set557

Sij(a) by Sij(a)∩{x ∈ Si ∶�ij(x) < a}, which has the e↵ect of integrating from 0 to a instead558

of 0 to ∞, does not a↵ect the value of the limit.559

A second change of variables gives560

lim
⌘→∞

⌘

2�yi − yj�
�

"

0
log(1+M⌘e

−⌘t
)hij(t;a)dt = lim

⌘→∞
1

2�yi − yj�
�

⌘"

0
log(1+M⌘e

−t
)hij(⌘

−1t;a)dt .561

Let us first consider replacing hij(⌘
−1t;a) by hij(0;a). Dominated convergence and Lemma 6.2562

then imply563

lim
⌘→∞

hij(0;a)

2�yi − yj�
�

⌘"

0
log(1 +M⌘e

−t
)dt =

hij(0;a)

2�yi − yj�
�

∞
0

log(1 +Me−t)dt = −Li2(−M) hij(0;a)
2�yi − yj�

,564

which is the desired limit.565

It therefore su�ces to show that replacing hij(⌘
−1t;a) by hij(0, a) is justified. If we make566

this replacement, we incur an error of size at most567

sup
�≤" �hij(�;a) − hij(0, a)�

1

2�yi − yj�
�

⌘"

0
log(1 +M⌘e

−t
)dt .568

Since the integral is bounded and hij(t;a) is continuous at t = 0 (Assumption 2.9), this error569

vanishes as "→ 0, completing the proof.570

Lemma 6.4. Let M⌘ be such that lim⌘→∞M⌘ = M > 0, let a ≥ 0 be small enough that571

Assumption 2.9 holds, and let c > 0 be arbitrary. Then572

lim
⌘→∞⌘

2
�
Sij(a)

�ij(x)M⌘e
−⌘�ij(x)

c +M⌘e−⌘�ij(x) µ(x)dx = −Li2(−M�c)
hij(0;a)

2�yi − yj�
.573
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Proof. The proof is exactly analogous to that of Lemma 6.3. Fix " > 0. First, by change574

of variables and the uniform convergence of ⌘
2
tM⌘e

−⌘t
c+M⌘e

−⌘t to 0 on [",∞), it su�ces to evaluate575

lim
⌘→∞

1

2�yi − yj�
⌘2�

"

0

tM⌘e
−⌘t

c +M⌘e−⌘thij(t;a)dt = lim
⌘→∞

1

2�yi − yj�
�

"⌘

0

tM⌘e
−t

c +M⌘e−thij(⌘
−1t;a)dt .576

As above, replacing hij(⌘
−1t;a) by hij(0;a) incurs error that vanishes as " → 0. We obtain577

that the desired limit is578

lim
⌘→∞

hij(0;a)

2�yi − yj�
�

"⌘

0

tM⌘e
−t

c +M⌘e−tdt .579

By dominated convergence and Lemma 6.2, this is580

−Li2(−M�c)
hij(0;a)

2�yi − yj�
,581

as desired.582

6.2. Proof of Proposition 2.10. The proof is inspired by [42, Lemma 46]. For any i ≠ j,583

define the hyperplane584

Hij = {x ∈ Rd
∶ 2�x, yi − yj� − �yi�

2
+ �yj�

2
− g∗j + g∗i = 0} .585

We require the following lemma.586

Lemma 6.5. If g∗ is optimal, then Hij ≠Hik for all j ≠ k.587

Proof. Suppose that Hik and Hij coincide for some j ≠ k. Then the definition of Hjk588

implies that it coincides with Hik and Hij as well. The cells Si, Sj , and Sk are convex sets with589

positive µ (and hence positive Lebesgue) measure; therefore, because the boundary of a convex590

set has zero Lebesgue measure (e.g., [34, Theorem 1]), it follows that the cells Si, Sj , and Sk591

have non-empty interiors. If we consider the two open halfspaces defined by the hyperplane592

Hij = Hik = Hjk, then there exist two of the cells—say, Si and Sj—whose interiors lie in the593

same open halfspace. But this contradicts the fact that 2�x, yi −yj�− �yi�
2
+ �yj�

2
− g∗

j
+ g∗

i
> 0594

for all x ∈ int(Si), and 2�x, yi − yj� − �yi�
2
+ �yj�

2
− g∗

j
+ g∗

i
< 0 for all x ∈ int(Sj). So Hik and595

Hij cannot coincide, as claimed.596

Let us fix an a ≥ 0 su�ciently small and prove the continuity of t � hij(t;a). Given a597

nonnegative sequence tn → 0, consider598

hij(tn;a) − hij(0;a) = �
Hij(tn;a) µ(x)dHd−1(x) −�

Hij(0;a) µ(x)dHd−1(x)599

= �
Hij

(1[x + tnv ∈ Sij(a)]µ(x + tnv) − 1[x ∈ Sij(a)]µ(x))dHd−1(x).600
601

Here v denotes the vector (yi−yj)�(2�yi−yj�
2
), c.f., Lemma 2.8. Continuity of µ implies that602

µ(x + tn) → µ(x) pointwise. We will now show that 1[x + tnv ∈ Sij(a)] → 1[x ∈ Sij(a)] for603
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Hd−1-almost every x. First, since Sij(a) is closed, if x ∉ Sij(a) then x ∉ Sij(a) − tnv for all tn604

su�ciently close to 0. Thus, lim supn→∞ 1[x + tnv ∈ Sij(a)] ≤ 1[x ∈ Sij(a)].605

On the other hand, the set Sij(a) is a convex set defined by the constraints606

2�x, yi − yj� − �yi�
2
+ �yj�

2
− g∗j + g∗i ≥ 0607

2�x, yi − yk� − �yi�
2
+ �yk�

2
− g∗

k
+ g∗i ≥ a ∀k ≠ i, j .608609

By Lemma 6.5, Hij ≠Hik for all k ≠ i, j. It follows that for all k ≠ i, j and all a ≥ 0 su�ciently610

small, the intersection of Hij and {x ∈ Rd
∶ 2�x, yi − yk� − �yi�

2
+ �yk�

2
− g∗

k
+ g∗

i
= a} has611

codimension at least 2. Therefore, for Hd−1-almost every x ∈ Sij(a) ∩Hij ,612

2�x, yi − yj� − �yi�
2
+ �yj�

2
− g∗j + g∗i = 0613

2�x, yi − yk� − �yi�
2
+ �yk�

2
− g∗

k
+ g∗i > a ∀k ≠ i, j .614615

For such x, we therefore have that x+tnv ∈ Sij(a) for tn su�ciently close to 0, and lim infn→∞ 1[x+616

tnv ∈ Sij(a)] ≥ 1[x ∈ Sij(a)]. Therefore, 1[x + tnv ∈ Sij(a)] → 1[x ∈ Sij(a)] for Hd−1-almost617

every x.618

Since µ is dominated along hyperplanes, 1[x + tnv ∈ Sij(a)]µ(x + tnv) − 1[x ∈ Sij(a)]µ(x)619

is dominated by an integrable function on Hij , and the claim follows.620

The second argument is simpler: given a sequence an → 0, we have621

hij(0;an) − hij(0; 0) = �
Hij

(1[x ∈ Sij(an)] − 1[x ∈ Si])µ(x)dHd−1(x) .622

Since Sij(an) ⊆ Si, it is clear that lim supn→∞ 1[x ∈ Sij(an)] ≤ 1[x ∈ Si]. And as above,623

Hd−1-almost every x ∈ Sij ∩Hij satisfies624

2�x, yi − yj� − �yi�
2
+ �yj�

2
− g∗j + g∗i = 0625

2�x, yi − yk� − �yi�
2
+ �yk�

2
− g∗

k
+ g∗i > 0 ∀k ≠ i, j .626627

and for these x, lim infn→∞ 1[x ∈ Sij(an)] ≥ 1[x ∈ Si]. This proves the claim.628

6.3. Proof of Lemma 2.11. That hij(0) = hji(0) follows from the fact that Hij(0) =629

Hji(0) = Si ∩ Sj .630

Now, we show that the graph with edge set {(i, j) ∶ hij(0) > 0} is connected. Since µ is631

positive on the interior of its support, if hij(0) = 0, then int(supp(µ))∩(Si∩Sj) has zero Hd−1632

measure. By [42, Lemma 49], this implies that the set633

Z ∶= int(supp(µ)) �
�

�
�

ij∶hij(0)=0
Si ∩ Sj

�

�
634

is path connected.635

Now, suppose that the graph has K connected components. For each component Ck ⊆ [n],636

let637

Zk = �

i∈Ck

(Z ∩ Si) .638
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Since each cell Si is closed and has positive µ mass, each Zk is nonempty and closed in the639

subspace topology on Z. Moreover, they are disjoint by the definition of Z. Therefore the Zk640

form a non-empty, closed partition of the connected set Z, so K = 1.641
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