1 Asymptotics for semi-discrete entropic optimal transport*
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4 Abstract. We compute exact second-order asymptotics for the cost of an optimal solution to the entropic
5 optimal transport problem in the continuous-to-discrete, or semi-discrete, setting. In contrast to the

6 discrete-discrete or continuous-continuous case, we show that the first-order term in this expansion

7 vanishes but the second-order term does not, so that in the semi-discrete setting the difference in

8 cost between the unregularized and regularized solution is quadratic in the inverse regularization

9 parameter, with a leading constant that depends explicitly on the value of the density at the points
10 of discontinuity of the optimal unregularized map between the measures. We develop these results
11 by proving new pointwise convergence rates of the solutions to the dual problem, which may be of
12 independent interest.

13 Key words. Optimal transport, entropic optimal transport, semi-discrete optimal transport, second-order asymp-i
14 totics

15 AMS subject classifications. 41A60, 58E30, 49N15

16 1. Introduction. The entropically regularized optimal transportation problem, originally
17 inspired by a thought experiment of Schrodinger [52] and the subject of a great deal of recent
18 interest in probability [26,40], statistics [13,27,39,50] and machine learning [19, 28], is an
19 optimization problem which seeks a coupling between two probability measures that minimizes
20 the transport cost between them, subject to an additional entropic penalty. Specifically, given
21 Borel probability measures 1 and v on R? with finite second moment and 7 > 0, the problem
22 reads
2 (L1) inf Ei[|z-y|2]+ S KL(r|pev),

mell(p,v) n
24 where II(u,v) denotes the set of couplings of p and v and KL(-||-) denotes the Kullback—
25 Leibler divergence or relative entropy, defined by

log & (z)dm(z) 7 <
26 KL(7 | p) = Jlog d”( ) (x) P )
+00 otherwise.
27 Recent interest in (1.1) has been driven by the fact that, as 7 - oo, the solution , to (1.1)
28 approaches the solution 7* to the unregularized optimal transport problem [10,35],
20 (1.2 inf E.[|z-y|?],
(12) ot Exfle -y’
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which defines the squared Wasserstein distance W3 (u,v) [57]. In statistics and machine
learning applications, it has been recognized that (1.1) represents a computationally and
statistically attractive proxy for (1.2). Statistically, the entropically regularized problem offers
improved sample complexity [27] and cleaner limit laws [39] than its unregularized counterpart;
computationally, the strict convexity of (1.1) opens the door to much faster algorithms [1,19].
The importance of the 1 - oo limit has spurred a line of work which seeks to quantify
the speed of convergence of m, — 7* and to develop higher-order asymptotics in the n — oo
regime. Of particular interest is the suboptimality of the entropically regularized solution:

Er, [l = y1*] - Ex [z - y[?].

This quantity measures the suitability of 7, as an approximation for 7*, and giving precise
bounds is essential for statistical and computational applications.

Two cases are well understood, with vastly different rates: when p and v are both finitely
supported, then it is known that the difference in cost approaches zero exponentially fast as
n — oo [14,58]. On the other hand, when p and v are absolutely continuous measures with
bounded, compactly supported densities, then precise asymptotics to second order are known
for the cost including the entropic term [13,15,25,47]: as n — oo,

(1) Br, [l =ul*]+ T KL(r, | 0@ v) = W3 Gn.0) = 3108 (2) + 5 (1) + 1(0)

1 -2
+—=1I(u,v)+o ,

1672 (psv) +o(n")
where for a probability measure p with density p(-) with respect to the Lebesgue measure we
write

h(p) =~ [ log(u(@))u(x)da

for the entropy relative to the Lebesgue measure, and where [ is the integrated Fisher infor-
mation along the Wasserstein geodesic connecting i to v. It does not seem possible to extract
asymptotics for the cost Er, [|lz - y[?] directly from (1.3); however, it is easy to show that in
general for absolutely continuous p and v, the suboptimality is linear in ~'. For example,
when p and v are Gaussian measures on R, it can be checked directly that

B[ = y1?) = Exe [f = 9l] = - + o™

The large gulf between these convergence rates—exponential for finitely supported mea-
sures, linear in 1! for absolutely continuous measures—raises the question of which of the two
behaviors should be expected in general. As a first step towards understanding this question,
we study a situation between these two extremes: the semi-discrete case, in which one mea-
sure is absolutely continuous and the other is finitely supported. This setting is important for
both theoretical and practical reasons, but prior work gives no hint of how the suboptimality
in the semi-discrete case should behave. Should one expect to recover the exponential rate or
the linear rate?
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~. Suboptimality S~ Suboptimality

10°
1072}
107}
. . . n . . .
10° 10’ 10? : 10° 10 10? !
(a) p is standard Gaussian distribution, (b) p is standard Laplacian distribution,
2 . . —
i.e., has density u(z) =e™® /2/\/27. i.e., has density p(z) = e7#1/2.

Figure 1: For two toy examples in one dimension, numerics show that the suboptimality
scales quadratically in ™!, and that the leading constant is an explicit function of the value
of the density at 0. Our main result, Theorem 1.1, extends this to the general setting. The
agreement between the predicted limiting value and the numerical results is precise.

A numerical computation in one dimension, where all the quantities are explicit, shows,
perhaps surprisingly, that the rate in the semi-discrete case is something else entirely. Figure 1
plots the suboptimality for two different one-dimensional examples as 7 varies, one where p is
the Gaussian density, and the other where p is the Laplacian density. For both experiments,
we take v to be a discrete measure, uniform on {-1,+1}. The apparent result is that in both
cases, the suboptimality is neither linear nor exponential but quadratic in n7'. Moreover,
the very careful reader will note that the asymptotic suboptimality appears to agree with
m g io)n , where 1(0) is the value of the density p at the origin, which is also the point at
which the optimal unregularized map from p to v changes value from -1 to +1. We give a full
exposition of this example in section 3.

Our main theorem shows that this phenomenon is completely general: in any dimension,
if v is discrete and p has sufficiently regular density with respect to the Lebesgue measure,
then the suboptimality scales as n~2, with leading constant given by the value of ;s density
on the hyperplanes on which the optimal map changes value.

Theorem 1.1. Suppose p and v are Borel probability measures on R? such that v is finitely
supported on Y1, ..., Yn, and p is absolutely continuous and compactly supported, with positive,
continuous density on the interior of its connected support. Then

(1.4 Er (e - 1) = W) + S0 5

” +o(n?),
’L<] yl ”

where w;; is the (d—1)-dimensional integral of p(z) on T (y;)nT~1(y;) for the optimal map
T transporting pu to v (see subsection 2.3), and where ((2) = ==

See section 5 for a precise statement and proof of this result. The assumption that p is com-
pactly supported is mostly for convenience and can be substantially weakened; see Assump-
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tion 2.9 and Proposition 2.10. By contrast, the continuity and positivity of u are essential: in
the absence of these assumptions, the convergence rate is no faster than O(n~!) in general.

As an intermediate result, we also obtain an exact second-order expression for the cost
with the entropic term. In what follows, we write H(v) = - ¥I' ; v; log v; to denote the Shannon
entropy of a discrete distribution v with weights v1,...,v, on its atoms.

Theorem 1.2. Suppose u,v are as in Theorem 1.1. Then

(15)  En [Jz-y]?]+ %KL(m7 L h®v) = W) + H(V) ) <(2) ) 5

” + 0(17_2) )
i<j Yi — H

It would be interesting to find a heuristic argument to relate (1.5) to (1.3). In any case, the
fact that the right side is O(n~!) rather than O(n'logn) is a manifestation of the fact that
the unregularized optimal coupling 7* has finite relative entropy with respect to the product
measure £ ® v [43].

Our proof techniques differ from prior work on the asymptotics of entropically regularized
optimal transport. Prior work in the continuous setting has exploited a dynamical formu-
lation [11,29,30] analogous to the celebrated Benamou—Brenier formula from the theory of
unregularized optimal transport [5]. Instead, we take a different approach that, similar in
spirit to the one employed in the analysis of the discrete problem [14], focuses on the convex
dual of (1.1). However, our proof techniques depart substantially from those available in the
discrete case, where finite-dimensional considerations make the analysis of the dual problem
more tractable. In particular, the quadratic terms in Theorems 1.1 and 1.2 come from showing
that the discrepancy of the quadratic cost between , and 7* localizes around the boundaries
of the power diagram that determines the optimal unregularized transport map 7*, and then
explicitly computing the resulting integrals up to low-order terms.

Our main technical result, which is of possible independent interest, gives first-order
asymptotics for the convergence of solutions of the convex dual of (1.1) to solutions of the
dual of (1.2), showing that this convergence happens faster than 7!

Theorem 1.3. Suppose p,v are as in Theorem 1.1. Let (fy,gy) and (f*,g*) solve the dual
problems to (1.1) and (1.2), respectively with appropriate normalization constraints. (See
Definitions 2.3 and 2.6.) Then

n(fy - -0
n(gn—9") =0
pointwise, with the latter convergence uniform.

1.1. Related work. The study of optimal transport dates back to the fundamental con-
tributions of Monge in the 18th century [41] and Kantorovich in the 20th [32]. Later in the
20th century, significant progress was made on the qualitative nature of optimal transport
solutions, with many independent discoveries of a fundamental characterization of optimal
transport solutions (Theorem 2.1) [9,17,18,33,51]. Around the turn of the 21st century, it
was recognized that optimal transport gives a deep geometric perspective on the space of
probability distributions [38,45]. This discovery led to new functional inequalities, stable no-

tions of curvature for metric measure spaces, and especially new means of analyzing difficult
PDEs [22,23,37,46, 55].
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ASYMPTOTICS FOR SEMI-DISCRETE ENTROPIC OPTIMAL TRANSPORT 5

In parallel to these theoretical developments, major effort was devoted to practical al-
gorithms for computing optimal transport maps, particularly in the discrete-discrete case.
Standard linear programming methods work quite effectively when the supports of each dis-
tribution are discrete with up to several thousand atoms [19,24]. However, for larger datasets
linear programming methods become prohibitively slow, and approximations are required.
The entropic regularization approach is the most popular approximation, first considered al-
gorithmically by Sinkhorn [53] and Sinkhorn and Knopp [54] in the 1960s. These works gave
fast algorithms based off iterative matrix scaling for computing the approximate optimal cou-
pling. Cuturi introduced this work to the machine learning community in 2013 [19], which
led to an explosion of interest in optimal transport for applications [48]. Subsequently, the
entropic penalty has been applied to variants of the optimal transport problem, where it also
leads to fast and practical algorithms [2,6,7,12].

Apart from its algorithmic implications, the entropic penalty has an interesting proba-
bilistic interpretation dating back to Schrédinger. In Schrodinger’s original motivation, (1.1)
represents a formalization of the following hot gas experiment. Consider a collection of par-
ticles evolving according to Brownian motion, and suppose their initial and final distribution
approximately coincide with the measures p and v, respectively. Schroainger asked for a de-
scription of the “most likely paths” of each particle, conditional on this starting and ending
configuration. The entropically regularized optimal transport problem gives a way of making
mathematical sense of this problem: the path measure governing the evolution of the particles
can be obtained by convolving the optimal coupling 7, given by the solution to (1.1) with a
Brownian bridge [26]. This interpretation has led to a fruitful line of work understanding (1.1)
through the lens of large-deviations principles, which also has helped to clarify the nature of
the convergence of (1.1) to (1.2) as n — oo [35].

Obtaining an asymptotic expansion of the cost Er, [z —y|?] or the entropic cost Er, [[z -
ylI?] + %KL(TI’ | ®v) in the n - oo limit is the subject of a great deal of recent interest.
In the discrete-discrete case, this question was first investigated in the broader context of
entropically regularized linear programs by Cominetti and San Martin [14], who showed that
the suboptimality converges to zero exponentially fast as n — oo.

In the continuous-continuous case, asymptotics have been computed to second order for
the entropic cost, under regularity assumptions (see [15] and references therein). To our
knowledge, however, no general asymptotics for the suboptimality (without the entropic term)
are known, but examples—such as the Gaussian case mentioned above—show that the rate
O(n71) is typical.

Recently, Bernton et al. [8] developed a structural characterization of m, which allows
them to establish a large-deviations principle for the convergence of m, to 7*, but they do
not extract asymptotics for the cost. Our results in section 2 develop a similar structural
characterization for semi-discrete couplings by a direct argument.

The semi-discrete case, which is the central focus of this work, is important both for theo-
retical and practical reasons. For instance, it reflects the practical situation of the statistician
who has access to an empirical distribution v = % isq 0x, of samples from an unknown mea-
sure, and wishes to compare these samples to an absolutely continuous reference measure pu.
From a theoretical perspective, the semi-discrete setting is closely connected to the optimal
quantization problem [21,31,49], which seeks the best approximation of an absolutely continu-
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6 JASON M. ALTSCHULER, JONATHAN NILES-WEED, AND AUSTIN J. STROMME

ous measure by a measure with finite support. The study of the structure of optimal couplings
for semi-discrete problems has a long history in computational geometry, where such couplings
are known as “power diagrams” [3,4]. We draw extensively on the properties of such diagrams
in our geometrical results of section 2.

We emphasize that throughout this paper, the optimal transport problem is defined with
respect to the quadratic cost |z —y|?. This corresponds to the 2-Wasserstein distance over
Euclidean space, which plays a preponderant role in both the theory and application of optimal
transport [48,56,57]. It is an interesting question how the results we develop change if the
transportation cost is different—e.g., if one considers a non-Euclidean ground metric or p-
Wasserstein distances, p # 2. We suspect that the analysis techniques we develop may still
be useful, but new challenges arise. For example, in the case of general costs, the optimal
unregularized map is given by a much more complicated partition of R? than a power diagram,
and this raises new challenges for developing the integration identities that we establish in
this paper for the quadratic cost.

1.2. Organization of the remainder of the paper. In section 2, we formalize important
definitions and establish basic geometrical results on the structure of the optimal regular-
ized and unregularized couplings. To illustrate our ideas, in section 3 we develop the one-
dimensional example mentioned above, and give a preview of the argument that will follow
in the general case. Section 4 contains the proof of our main technical result, Theorem 1.3,
which is at the heart of our arguments. In section 5, we apply this convergence result to prove
Theorem 1.1. Finally, section 6 contains necessary background information on the dilogarithm
and zeta functions, as well as several intermediate integration lemmas needed for the proofs
of our main theorems. It also contains the proofs of two technical results from section 2.

2. Background on semi-discrete OT and Sinkhorn problems. In this section we recall
relevant background on semi-discrete OT and Sinkhorn problems, as well as provide several
useful propositions and intuitions for the work that comes. For further background we refer
the reader to the standard textbooks [48,56,57], as well as to the detailed treatment of the
semi-discrete setting in [42, section 4].

2.1. Semi-discrete optimal transport. The foundational observation in optimal trans-
port theory declares the existence, uniqueness, and structure of the optimal coupling in the
transport problem. For a proof, see e.g., [56, Theorem 2.12].

Theorem 2.1. Suppose u,v are probability measures with finite second moment. Then there
is an optimal coupling 7* € I(u,v) such that

W3 (p,v) = Ens[| 2 - y[?].
Moreover, we have the following form of strong duality:

(2.1) W3 (1, v) = sup E.[f]+E,[q].
(F-9) L ()X L1 () : f(2) +g(y)<] oy 2

If 1w has a density with respect to the Lebesgue measure, then in fact there is a unique optimal
7%, it is supported on the graph of a function T:R? - R?, and T is the gradient of a (proper,
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lower semi-continuous) convex function. We shall usually write T =T}, = V¢us,. In this
case the supremum in the dual problem (2.1) is attained by

(£,9) = (I=]* = 20 [yl1* - 265;2)

where we are using the Legendre conjugate
G (y) = sup(z,y) — dpn ().
X

The optimal f and g are typically not unique. However, the following assumptions guar-
antee that, up to an additive shift, f and g are unique p (respectively, v) almost surely [8,20].

Assumption 2.2. The measure v is finitely supported and p is absolutely continuous with
finite second moment. The interior of the support of u is connected, the boundary of the
support has zero Lebesque measure, and p has positive density on the interior of its support.

Under Assumption 2.2, we can therefore uniquely identify a pair of optimal dual solutions.

Definition 2.3 (Optimal unregularized potentials). We denote by (f*,g*) optimal solutions
to (2.1) subject to the additional normalization constraint that E,[g*] = 0.

Using Theorem 2.1, we can completely characterize the optimal transport maps in the
semi-discrete case. In what follows, we identify p with its Lebesgue density p(-), and write
{yi}7-, for the support of v.

Theorem 2.4 ( [4]). Adopt Assumption 2.2. Then, p-almost surely,

Tyop(z) = argmin (|2 - yi|* - g* (w:))-
yiesupp(v)

Proof. For ease of notation, write ¢ := ¢,_,,,. Since ¢ is convex and closed, we know that
o = (¢°)¢, where (-)¢ denotes Legendre conjugation. Therefore,

P(x) = HZ?X(% Yi) = ¢ (yi)-

Since p is absolutely continuous, there is a unique maximizer for p-almost every z, and if y;
is the unique maximizer for such an z, then V¢(z) = y;, and

o= will® = lwall® + 26 () <l = 5> = s 1 + 26 () Vi # 3.

Therefore we have shown that p-almost everywhere,
T(x) = argmin(| - yi|* = (Jyi[* ~ 26°(9:)))-
Yi

This yields the result by the characterization in Theorem 2.1. |
In view of this result, the next definition is natural.

Definition 2.5 ( [3]). We define the power cells with respect to the optimal dual potential

*

g* by
Si={v eREV) |z —yi|* - 9" (i) < |z - y1* - 9" (yj)}, i=1,....n.

This manuscript is for review purposes only.
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Figure 2: Illustration of a power diagram, or equivalently the optimal coupling for a semi-
discrete OT problem. FEach shaded region is a power cell S; corresponding to the point y;
with the same color.

The significance of the power cells S; is that they are precisely the pull-back of y; under
Tyou:
-1
Si=T,5,(Yi)-
The power cells for 7* form a convex polyhedral partition of R?. In Figure 2 we show an
example of an optimal mapping between a measure on the larger rectangle and a finitely
supported measure. Note that a point y; in the support of v can lie in the power cell S;

corresponding to a different point y; # y;. For example, this occurs if ;4 is supported on
(—o0,-2] and v = (1/2)d-1 + (1/2)01.

2.2. Semi-discrete entropic optimal transport. In this subsection, we discuss the entropy
regularized version of the semi-discrete optimal transport problem. Denote by p the counting
measure on the support of v. We first note that for any = € IT(u, ), we have

(2.2) KL(r||pov)=KL(r|p®p)+H(v).

The regularized optimal transport problem (1.1) is therefore equivalent to

. 1
(2.3) inf Eq[la—y|?]+ = KL(r | n®p).
mell(p,v) n

This manuscript is for review purposes only.



230
231
232

233
234

N DN NN NN
ot O ot Ot
[GLEIEN w N

b

(W2 B2 BN S |

[\)
(@)

-

()
ot
oo

259

260

ASYMPTOTICS FOR SEMI-DISCRETE ENTROPIC OPTIMAL TRANSPORT 9

The benefit of the formulation (2.3) is that under Assumption 2.2,

KL(m" [p®p) =0,

which leads to a simplification in some of the formulas appearing in what follows.
Csiszér’s theory of “I-projection” [16] implies that as long as u and v have finite second
moment, the value of (2.3) equals the value of the dual problem

(2.4) sup E.[f]1+E.[g] - 1 i f e Nlz-y; HQ—f(x)—g(yj))#(x)dx + 1 .
(f.9)eL  ()x Lt (v) n j=1 IR n

Moreover, the optimal solution to (2.3) satisfies

dm,

2
—1 _(z,y) = e~ l=yl"=fn(2)=gn (1))
d(p® p)(

(2.5)

where f, and g, solve (2.4).
The strict convexity of (2.4) implies that f, and g, are unique up to an additive shift; as
above, we therefore fix a unique optimal pair by adding an additional constraint.

Definition 2.6 (Optimal regularized potentials). We denote by (fy,gy) solutions to (2.4),
subject to the additional normalization constraint E,[g,] = 0.

2.3. Useful geometric notions. The power cell decomposition of Definition 2.5 gives us
a useful way to separate the subproblems arising in our proof into individual problems over
the cells S;. In the service of analyzing these problems, we will focus on the distance of a
point x € S;, from each of the hyperplanes defining .S;. We call these quantities the slacks, in
reference to the fact that they represent the slack in the dual feasibility constraints in (2.1).

Definition 2.7 (Slack). Let i,j € [n]. The j-th slack at point x € S; is

(2.6) Aij(@) = = y1* = () = 9" ()
We establish several basic properties of this slack operator.

Lemma 2.8 (Properties of slack). Fori,je[n] and z € S;,
o Nonnegativity. A;j(x) >0, with strict inequality p-almost everywhere if i # j.
e Diagonals vanish. Ajj(z) =0 if i =j.

12+ ;12

o Eapression via g*. Aij(z) = 2(z,y; —y;) = |yil* + |y;1* - 97 (y;) + 9" (i)

Proof. Nonnegativity follows by feasibility of (f*,g*) for the dual OT problem (2.1), with
strict inequality following from the fact that |z —v;|?-g*(v;) < |z -y;|?-g* (y;) in the interior
of S;. The vanishing A;; = 0 follows from the fact that |z - y|> - f*(z) - ¢*(y) = 0 7*-almost
surely, by strong duality. For the final item, observe that

2 2 2
Aj() = |z =y; " = f(2) =97 ;) = |z = y5" = |2 =il + 97 (vi) = 97 (v)
where the second step is because |z —y;[? = f*(x) + g} by the previous item A;;(x) = 0. Now
expand the square. |
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Figure 3: Power diagram with our Hy;(t), H;j(s;a) notation depicted. The region S;j(a)
defined in (2.7) is the subset of S; obtained by pushing in the hyperplanes separating S; from
all neighboring cells other than S;.

Our second main assumption on the measure p relates to the regularity of the density
along level sets defined by the slacks. We require several definitions. For ¢ # j and a > 0, set
(2.7) Sij(a) = {z e R : |z = 4il* - gf < |z - ye[® - gj; - alywij, Vke[n]}

={zeS;:Au(x)>a, Yk+i,j}.
When a = 0, S;;(0) = S;. Also, for t > 0, let H;j(t;a) = {z € Sij(a) : Ajj(z) = t} be the

intersection of this set with a hyperplane parallel to the boundary between S; and S;. See
Figure 3 for an illustration.

Since 1[x € Sj;(a)]u(z) is in LY(R?), we can define
(2.8) hij(t;a) = f 1(z)dHao1 () € L(R)
Hi]-(t;a)
where H4_; denotes the (d - 1)-dimensional Hausdorff measure on H;;(t;a). When a =0, we
abbreviate H;;(t;a) and hi;(t;a) by H;;(t) and hyj(t), respectively.
The benefit of this definition is that it gives us a convenient way to integrate functions

that depend only on the slacks; indeed, the coarea formula implies that for any nonnegative
¢:R—>R,

1 (=)
(2.9 S PO @) = 5 [ 60 (0.
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We require the following crucial condition on the measure .

Assumption 2.9. For all i # j and a > 0 sufficiently small, the functions t — h;j(t;a) and
a+ h;ij(0;a) are continuous at 0.

Assumption 2.9 is a strong requirement on the regularity of ;1 along hyperplanes, and it is
essential for our results. As alluded to in the statement of Theorem 1.1, it is possible to verify
Assumption 2.9 under easy conditions on p. Say that p is dominated along hyperplanes if for
any affine hyperplane H orthogonal to a vector v there exists a nonnegative ¢ : R - R,
integrable with respect to the Lebesgue measure, and an affine isometry P : H - R%! such
that

u(x +tv) <(Px) VteRzeH.

If p is pointwise bounded and compactly supported, then it is dominated along hyperplanes;
however, some non-compactly supported measures, such as the standard Gaussian measure
on R? also enjoy this property.

Proposition 2.10. If i is continuous and dominated along hyperplanes, then Assumption 2.9
holds.

Finally, we record a simple consequence of the connectedness of the support of u, which
we will rely on extensively in section 4.

Lemma 2.11. Under Assumption 2.2, we have h;;(0) = h;;(0) for all i # j, and the graph
on [n] with edge set {(i,7) : hij(0) >0} is connected.

The proofs of Proposition 2.10 and Lemma 2.11 appear in section 6.

3. Case study: symmetric one-dimensional measures. In order to provide intuition
for our main result, we consider here a toy example which, despite its simplicity, illustrates
many of the key underlying phenomena. Specifically, in this section we explicitly compute
the suboptimality in the case where p has a symmetric density on R and v is the discrete
distribution v = (1/2)d-1 + (1/2)d1. The symmetry of both distributions around 0 allows us to
compute closed-form expressions for 7* and 7,, and hence also for the suboptimality. These
closed-form expressions hold for any 1 > 0 and facilitate understanding our assumptions and
main techniques.

Unregularized optimal transport plan 7*. By symmetry of i, the optimal coupling 7* is
supported on the graph a function that sends z € supp(p) to sgn(x). That is,

7 (z,y) = 1[y = sgn(x)] - p(x).

Regularized optimal transport plan 7,. Let us compute the dual potentials f,, g, from
Definition 2.6. Symmetry of the distributions around 0 implies

Wn(xay) = Wn(_xa _y)'

Using (2.5) and solving, this means f,(x) - f,(-z) = g,(-y) — g,(y) for all = € supp(p) and
y € supp(v). Replacing x with —z, we see that both f, and g, must be even functions. By
our convention in Definition 2.6, it follows that g, (1) = g, (1) = 0.
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m(Y=1]|X=x)
1

— n=10

X

=10 -5 5 10

Figure 4: For the toy example in section 3, the conditional distribution m, (Y = 1|X = z) of the
regularized plan m, is the sigmoid function 1/(1 + e 1% by (3.1). As 1 — oo, this converges
to the conditional distribution 7*(Y = 1|X = x) = 1[sign(z) = 1] of the unregularized plan 7*.
The convergence is exponential in n at any « # 0. There is a symmetric region around the
origin of width ©(1/n) on which 7, (Y = 1|X = z) is bounded away from 0 and 1.

We can now solve for f;, using the marginal constraint p(x) = m,(x,1)+m,(x,-1). Plugging
in the optimality conditions (2.5) for m, and simplifying implies
1

enfn(ff) — .
e~n(z-1)2 4 o-—n(z+1)?

313  Rearranging, we conclude that

e @y)? (z) = p(x)
on(e-1)? 4 g-n(z+1)2 c2n2(1-y) 4 e-2n2(l+y)

314 (3.1) T (2,y) =

315 See Figure 4 for an intuitive interpretation of m, as a smoothed version of 7*.

316 Explicit evaluation of suboptimality. By symmetry, marginal constraints, and the for-
317 mula (3.1), we find
318 ]E,Tn[(a:—y)2]—IE7r*[(:1:—y)2] :2f0 ((x—1)2(7rn(:c,1)—1)+(a:+1)27r,7(a:,—1))da:
319 =2f0 ((z+1)2 - (z - 1)%)1y (2, ~1)da
© gz
520 (3.2 -8 / dz.
321 (3:2) 0o 1+ e4’ifﬁﬂ(x) o

322 The dominant part of (3.2) as ) — oo is at « = 0, and if p is continuous it can be shown that
323 it is valid to replace pu(z) by 1(0) to obtain
- Li(-Du(0) _ wp(0)

0)dx =
1+e477w'u( Jdo 2n? 24n?

324 Eﬂn[(m—y)ﬂ —Er[(z-y)?] 8/0
325 Here, Lis is the dilogarithm function, which will play a central role in our argument. More

326 details about this function—as well as the so-called Fermi-Dirac integral identity used above—
327 can be found in section 6.
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Necessity of assumptions. If y fails to be continuous at zero, convergence to 0 may be
slower than quadratic. Consider p(z) = ¢plz|™ on [-1,1] for p < 1 and normalizing constant
¢p = (1-p)/2. The analysis above holds unchanged up to Equation 3.2. However, the following
step, in which we approximated the integral by replacing u(z) with 1(0), does not hold here
since p is not continuous at 0. Specifically,

1 glp % dn o l-p 1
Eﬂn[(x—y)Z]—Eﬂ*[($—y)2] =8cp_/0 dr = =2 ‘/0 duz@(ﬁ).

1+ ednz n2-P 1+ev

This shows that in fact any polynomial rate faster than 1/ is achievable when our assumptions
are violated. Morever, taking p supported away from 0 shows that an exponential rate can
be obtained when p is not supported at the decision boundary.

4. Convergence of dual potentials. In this section, we develop an asymptotic expansion
for the solution g, of (2.4) around the optimal solution g* to the unregularized problem (2.1).
Recall that Assumption 2.2 implies that g* is unique, and also [44] that under this assumption
gy converges to g*. The main result of this section is a more precise result, showing that this
convergence happens at the rate o(n™!).

We prove the following.

Theorem 4.1. Under Assumptions 2.2 and 2.9, the following convergence holds:
Jim gy = g7)lee =0

A consequence of Theorem 4.1 is that n(f, — f*) — 0 pointwise, though we stress that this
convergence is not uniform. Together, these results establish Theorem 1.3.

Corollary 4.2. Under Assumptions 2.2 and 2.9, the following pointwise convergence holds:
Jim n(fy = f7)=0.

From the general theory of entropic optimal transport, these results Theorem 4.1 and Corol-Ji
lary 4.2 are unexpected, and they reflect particular features of the semi-discrete setting. For
instance, when p and v are both discrete, the quantities n(g, — ¢*) and n(f, — f*) both con-
verge to positive limits in general. Moreover, Assumption 2.2 is essential: if p is not positive
on the interior of its support, it is possible for (g, — g*) to diverge.'

The proof of Theorem 4.1 also yields the following corollary on the difference between the
Wasserstein distance and the entropic cost, which gives Theorem 1.2.

Corollary 4.3. Under Assumptions 2.2 and 2.9,

¢(2) D hi;(0)

. 1
i o (Bx (o - 31%] - (B, [l - y1?) + - KL(m, [ 1 0))) - .
n—>o0 n 2 i<j lyi = ysll

!This occurs, for instance, when p decays to zero at different rates on opposite sides of one of the hyperplane
boundaries H;j .
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Equivalently,
1 1 ¢(2 (0) _
@1 B Loyl KL(ry |1 v) = W) + L HO) - S ¥ 0 wo?),
77 77 i<j ”yl ”
Below, we prove Theorem 4.1 in subsection 4.1, and then we show how Corollaries 4.2
and 4.3 follow from this in subsection 4.2.

4.1. Proof of Theorem 4.1. To prove Theorem 4.1, we define the function

dy = 77(977 _g*) .

We will show that d, is the unique solution to an auxiliary convex optimization problem
whose solution gives the first-order difference between the Wasserstein distance W3 (y,v) and
the entropic cost Er, [z - y[?] + %KL(W,7 | #® p). By showing that the zero function is an
approximate optimizer of this auxiliary problem and establishing a form of strong convexity
around 0 in the limit, we obtain that d;, — 0, proving the claim.

We begin by defining these auxiliary optimization problems.

Proposition 4.4. The function d,, is the unique solution of

4.2 min f log(1 + S~ (i) =d(yi)=n2i; (@)Y |, ( ) .
(4.2) deL1 (v):Eyd= oZ 8( ; Yu(x)

Moreover, if we denote by ®(n) the value of (4.2), then

1
(43) @(n) = (Ex- Lo - 01%) = (B (12~ 9l) + KLy |12 0)))
and T, satisfies
dm, e (yi)—nly(z) .
(44) W(l’,y]) = Zk edn(yk)*nAik(m) Vx e Sz‘,’L € [n] .

Proof. Recall that f, and g, are the unique solutions to (2.4) subject to the constraint
E,[gy] =0, so they also uniquely solve

1

: min E,[f*1+E,[¢*]-E 1+ / e z=9; P~ @) -9 (Vs — = .

! (f,g)eEL1[(yj)BL1(V) wl7] ")~ Bulf]- 77;:1 R4 ul=) n
v|9]=

By duality, the optimal value of this program is exactly (4.3). Decomposing the integrals over
the cells S; and recalling (2.6), we obtain that f, and g, are the unique solutions to

(4.5) n(f*(x) = f(x)) +n(g" (vi) - 9(vi))

(f, g)eLl(u)XLl(V) i=1 [

E.[g]=0

N i e MA@ @6 )90 ) () s - 1.
j=1
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Reparametrizing in terms of §y = n(f - f*) and §; = n(g — ¢*) yields the equivalent
representation

n

min L p(a) = 8 (y) + 3 DT @ )G @) (1) d
<6f,6gI>EeL[g<;]L>xLl<u);[si( 7(2) = 94(y1) ]Zl Ju(a)
v|0g =0

with optimal solutions n(f, - f*) and n(g, - ¢*). Fixing §, and minimizing this expression
with respect to d; yields that the optimal solutions §; and ¢, are related by

(4.6) 5f(33) = _1Og(2 e5g(yj)—77Az‘j(a:))

j=1
for p-almost every z € S;. Plugging in this expression gives

min Z[ log zn:e(Sg(yj)—nAn(m))_5g(y2.))lu($)dm
j=1

1) ELl(I/) ]E,,

_ mln 10 1 + 66 (yj) J (yz) nAzJ(x) T dfl:
Syl (V) Eu[5,]- Zf a( ]z;; (@)

Writing d for d, yields (4.2).
Finally, applying the same argument to (2.5) yields

dm, 12 .
— T (z,y;) = e e 1P In(@)=gn ()
d(pep) "
= 07 (@)+84(y;)-nAij (2)
e@n(yi)-nli (z)
T3, el nAn(@)
for all x € S; and i € [n], as desired. [ |

To prove the theorem, we require two intermediate results. First, we obtain an upper
bound on ® by comparing it to the value of (4.2) at d = 0. Though crude, this comparison
will turn out to be accurate to first order.

Lemma 4.5.

. C(2) hi;(0)
1 [}
m P () < 2 T

Proof. Choose d =0 in (4.2). The subadditivity of the function a ~ log(1+ «) for a > 0
and the optimality of d(n) then imply

d(n) < Z f log (1 +> e 77A”(:'3)) w(z)dx

]#z

< Z > f log(1 + e 4@ y(z)da .

i=1j#1i
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Multiplying by n, taking the limit, and applying Lemma 6.3 (with S;;(0) = S;) yields the
claim. |
Next, we use Lemma 4.5 to show that the solutions to (4.2) remain bounded.

Proposition 4.6. Under Assumption 2.2, d,, is bounded as 1 — oo.

Proof. The claim is obvious if n = 1, so assume n > 2. Fix (4,j) for which h;;(0) > 0.
(Such a pair exists by Lemma 2.11.) Then by Proposition 4.4,

i=1 i

J#i

> fs log(1 + e (W) =dn(i)=n2i; (@)) ) (7).

To bound this integral, we require the following lemma.

Lemma 4.7. For any a>0 and be[0,1],
(4.7) log(1+ ab) >log(1+a)log(1l+b).

Proof. Fix be[0,1]. Then (4.7) holds for a = 0, and the derivative of the left side in a is
b/(1+ab) > b/(1+a), whereas the derivative of the right side in a is (log(1+b))/(1+a) < b/(1+a).
We obtain that (4.7) therefore holds for all a > 0. [ |

With this lemma in hand, we obtain
n®(n) > log(1 + W)= (w)y . fs log(1 + e 4@y (z)d.

Taking the limit of both sides and using the change-of-variables (2.9) and Lemmas 4.5 and 6.2,
we obtain

i (0) > limsup log(1 + ed"(yj)_d”(yi))—hij(()) ;
iy v =yl noeo lyi =l

showing that d,(y;) — d,(y;) is bounded above for all (i,j) for which h;;(0) > 0. Now by
Lemma 2.11, the graph on [n] with edge set {(¢,j) : hi;(0) > 0} is connected, so for any
(i,7) € [n]*> we may find a path (k;)%, such that ki =i and ki, = j, and d,,(yx,,,) — dy(yx,) is
bounded above for all [ = 1,...,L - 1; as a result, we conclude that in fact d,(y;) - d,(y;) is
bounded for all (,4) € [n]?. Finally, since E,d, =0, we conclude that d,, is bounded. |

We now turn to the proof of the theorem. The boundedness of d,, allows us to extract a
convergent subsequence, and by passing to the limit we obtain strong convexity of (4.2) in
the limit around 0.

Proof of Theorem 4.1. As above, we may assume n > 2. We will show that for any se-
quence (7)5)s>1, there exists a subsequence along which d,, - 0. Let us fix such a sequence.

Since d,, is bounded, by passing to a subsequence—which we again denote by 75—we may
assume that d; tends to a limit de..
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Now, fix an € > 0. Recall from section 2 that Sj;(¢) is the subset of S; on which A, > €
for all k #4,j. By definition, then, the sets S;j(e) n{x € S; : A;; < e} for j # i are disjoint

subsets of S;. We can therefore decompose the integral over .S; into these sets to obtain

k+i
> f log(1 + en () =dn (yi)=nAi(z) pw(z)dz
-1 ;L S”(g)ﬁ{zesi:Aij<E} ( ]; ) ( )
> n 1 1 dn(yj)_dn(yi)_nAij(x) d
g; [S”(a)ﬁ{a:eS,-:Aij@} Og( e )N(l') v

Multiplying by n and taking the limit using Lemma 6.3 yields for e sufficiently small

i (0
llmlnfnsq>(ns)>z —Lig (—efee W) 7de= (1)) hij (0;€)

i#] 2||yi_yj“ ‘

Letting € - 0 and applying Assumption 2.9, we obtain

hi; (0
hm1nf77$<1>(775)>z —Lig(—efee (Wi)~deo(yi)y 127 ;(0)

i*j 2Hy2_yJH ‘

Since h;;(0) = hj;(0) by Lemma 2.11, we may symmetrize this sum to obtain

liminf ny®(ns) > > % [—LiQ(—ed“(yﬂ')_d“(yi)) - Lig(—ed“(y")_d“’(yﬂ'))]

1#]

By the inversion formula for the dilogarithm function [36, A.2.1(5)],

1[ Lis (- edoo (U5)— doo(yz)) Lis(~ edoo (Vi)- doo(yj))] C(2)+ (d (4;) - do (yz)) .

Combined with Lemma 4.5, we conclude

(2)2 hi; (0) > limsup nsP(ns)

%] Hyl —Yj “ §—>00

> lim inf NsP(ns)

Q) )
e

Z(d (y5) = doo (4i))

i) lyi = Yj ” #]

implying that deo(y;) = deo (i) if hi;(0) # 0, and that

62) ¢ hii(0) () ¢ his(0)
(4.8) Jim n@(n) = g”ylj yl 2 ;Hyzj vil

We conclude as in the proof of Proposition 4.6.
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4.2. Proof of Corollaries 4.2 and 4.3.

Proof of Corollary 4.2. For shorthand, denote 6 = n(f, — f*) and &4 = (g, — g*).
By (4.6), these functions are related by the identity

5f(a:) = log(zn: e5g(yj)—77Aij (Jﬁ))

J=1

for p-almost every x € S;. Now by Theorem 4.1, lim, e d¢(y;) = 0 for all j € [n]. And
by Lemma 2.8, for p-almost every x € S, the slack A;;j(x) is zero for j =i and otherwise is
strictly positive for j #¢. Thus, for p-almost every z,

77lg{)locsf(a:):10g1:0. -

Proof of Corollary 4.3. This is immediate in light of (4.8), (4.3), and (2.2). [ |

5. Convergence of the suboptimality. In this section we prove our main result, from
which Theorem 1.1 follows.

Theorem 5.1. Under Assumptions 2.2 and 2.9,

o o _<(®@) hi;(0)
S B, [l =)~ Bl —o1%) = S50 32 0O

The proof uses two lemmas. The first lemma decomposes the suboptimality of an arbitrary
coupling 7 € IT(p, v) into a sum of nonnegative terms involving the slack operators A;;.

Lemma 5.2 (Suboptimality decomposition). For any 7 e II(p,v),

(5.1) Erllr - ylP)~Ex[le-ul?)= 3 [ Aij(a)dn(e.y,).

’L¢]

Proof. By strong duality and the fact that = € II(u,v),

wlle =y = Euf* +Bug” =Ealf" () +9°W)].
Therefore
Exle ~yl’) = Exe [la~y1) = Ecll2 ~yl = () =g ()]
R ACS S AORIADILLERN

= %:fs Agj(z)dm(z,y5)

where the last step uses the definition of A;; (2.7). Since Ayj(z) = 0 if ¢ = j, the diagonal
terms vanish, proving the claim. |

The second lemma explicitly computes the integrals that result from using this decompo-
sition on the coupling m,. We recall the notation d, = n(g, — ¢*) from section 4.
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Lemma 5.3 (Sigmoid slack integrals). Under Assumptions 2.2 and 2.9, for any
Ay dn(yj)-nli;(z) 2)hi:(0

n=>oc0 S, Y edn(yr)-nA Ay sl
Proof. First,

Ajj(x)ednWi)=dn(yi)=nli; (z)

lim 772 Az‘j(x)edn(yj)—nAij(x)

. 2
L fg T et naatn H@)de <l n fg

1 + e (Yi)=dn(yi)-nAi; ()

1%,

p(z)de,

and since d, — 0 by Theorem 4.1, we can apply Lemma 6.4 to conclude that the limit is

bounded above by

hij(0) _ ¢(2)hi;(0)

~Lis(-1) - .
2|y —yil 4Allyi -5l

On the other hand, for any € >0 and ¢ > 1, we have

Ayj(x)ednWi)=nhi (@) Ay (x)ednWi)=nhi; (@)
. 2 i . 2 vj
7 fs 5, e (o) 7B (7) pl@)de > Tim fsij(g) 5, e (o) 72 (7) plz)de
Au(x)@dﬂ(yj)_nAi]'(x)
. 2 ]
Z fsij@) ST + (= 2) 2T 1 gty nig ey )4
A, .(x)edn(yj)—n&j(x)
. 2 iJ
> Jim fsu(g) PN o e e RGO

where we have used the fact that d,, - 0, so that e®®) + (n - 2)e2ldnlle=nz < ¢ for all g

sufficiently large. By Lemma 6.4, for ¢ sufficiently small, this limit is
hi;(0;€)

—Lio(-1
A —

I

and taking ¢ - 1 and € - 0 and applying Assumption 2.9, we obtain that the limit is also

bounded below by
¢(2)hi;(0)
Ay -yl

completing the proof.
With these two lemmas in hand, the proof of Theorem 1.1 follows readily.
Proof of Theorem 1.1. By Lemma 5.2 and (4.4),

. ) 9 i 2 [ A edn(y;)-nlij(z)
S B, [ = y1?) B =yl = i S [ 80yt
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By Lemma 5.3, this is equal to

¢(2) 5 hi;(0)
4 i lyi =l .
Summing over ¢ # j and using the symmmetry
hij(0) _ _hji(0)
lyi =yl lyi - wil
finishes the proof. |

6. Supplementary results. This section collects several supplementary lemmas relating
to the integration of relevant quantities depending on the slacks in the cell S;, as well as the
proofs of two technical claims from section 2.

6.1. The dilogarithm function. The properties of our asymptotic expansion—including
the presence of the constant ((2)/2—rely on several classical properties of the dilogarithm
function. The claims below appear in [36].

Definition 6.1. The dilogarithm function is given by

00,8
LiQ(Z) = Z ) |Z| <1
s=15

and extended to C~ (1,00) by analytic continuation.

An immediate consequence of this definition is the special value

| = (-1)° (@) =
(6.1) Lia( 1)_52 I R
Moreover, the analyticity of Lis away from the branch cut implies in particular that it is
continuous on the negative reals.

The appearance of the dilogarithm in our proofs follows directly from two of its integral
representations, which arise naturally from the solutions of the entropic optimal transport
problem in the semi-discrete setting studied in this paper. These integral identities are often
called Fermi-Dirac integrals in the mathematical physics literature.

Lemma 6.2 ( [36]). The dilogarithm satisfies

tet

c+et

Lig(~1/c) = f0°°

for all ¢> 0. In particular,

L= [T = [Trogueetyar= 42,

l+et 2
Rather than using Lemma 6.2 directly, we will typically be integrating with respect to the
measure p over a power cell. However, as the following lemmas show, in the large-n limit we
can still employ the integral identities of Lemma 6.2 to obtain explicit expressions in terms of
the dilogarithm.

dt = /Ooo log(1+e7'/c)dt
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Lemma 6.3. Let M, be such that lim, .., M; = M >0, and let a >0 be small enough that
Assumption 2.9 holds. Then

hi; (0;

lim n log(1 + Mnean"j(x))u(ac)da; = —Lig(—M)M )
e JSia) 2[yi -y

The same claim holds if Sij(a) is replaced by Sij(a) n{x € S;: Ajj(x) <a}.

Proof. By a change of variables, we can write

- ij (T n < -nt
77[ log(1 + Mye ™))y (z)da = —f log(1+ Mye ™ )h;;(t;a)dt.
Sij(a) ! 2lyi =5l Jo ! ’

Since M, tends to a limit, it is bounded, and so for any & > 0 the function nlog(1 + M,e ™)
tends uniformly to 0 on [e, 00). Since h;j(¢;a) € Ly, this implies that

lim 7 f log(1 + Mye ™ )hij(t;a)dt = 0.
=00 €

The integral therefore only depends on an interval near zero; in particular, replacing the set
Sij(a) by Sij(a) n{x €S;: Ajj(z) < a}, which has the effect of integrating from 0 to a instead
of 0 to oo, does not affect the value of the limit.

A second change of variables gives

. Ui fs —nt . 1 e -t -1
im ——— log(1+Mpe ") hi;(t;a)dt = lim ——— f log(1+Mpe " )hij(n " t;a)dt.
o0 2|y; =y Jo ! i o0 2|y; =y Jo o

Let us first consider replacing h;;(n™'t;a) by h;(0;a). Dominated convergence and Lemma 6.2
then imply

hij(0;a)
2[yi -y

hij(0;a)

. hij(0;a)
hm R TEE—
2] yi — vy

=0 2|y; = yj

Y

ne oo
~[1og(1+M,7e’t)dt= j‘bgMWRﬂﬁ:{@&M)
0 0
which is the desired limit.
It therefore suffices to show that replacing h;;(n™'t;a) by hi;(0,a) is justified. If we make
this replacement, we incur an error of size at most

1 fne _t
—_— log(1 + M,e™")dt.
yill Jo !

sup |h;;(6;a) — hi; (0,a
5§£)| ]( ) .7( )|2”y2_

Since the integral is bounded and h;;(t;a) is continuous at t = 0 (Assumption 2.9), this error
vanishes as € - 0, completing the proof. |

Lemma 6.4. Let M, be such that lim, .o M, = M > 0, let a > 0 be small enough that
Assumption 2.9 holds, and let ¢ >0 be arbitrary. Then

hi]’ (0; a)

wu(zx)dx = =Lig(-M/c) M= wil

lim n
7—>00

[ Bt
Si]' (CL) Cc+ Mne_nAij(x)
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Proof. The proof is exactly analogous to that of Lemma 6.3. Fix ¢ > 0. First, by change

of variables and the uniform convergence of % to 0 on [e,00), it suffices to evaluate
1 e tM e_nt €n tM e

lim ——7? f n—thij(t; a)dt = lim —— f ij(nflt; a)dt.
oo 20y —y;l T Jo e+ Mye™ 0o 2IIyz yil c+ Myet

As above, replacing h;;(n7't;a) by hi;(0;a) incurs error that vanishes as ¢ - 0. We obtain
that the desired limit is

lim hi;(0;a) /En tMe Qb
n—o0 2||y; =y c+ Myet

By dominated convergence and Lemma 6.2, this is

hij(0;a)
2|y -yl

as desired. m

—Lig(—M/C)

6.2. Proof of Proposition 2.10. The proof is inspired by [42, Lemma 46]. For any i # j,
define the hyperplane

Hij={z e R : 2z, y; - y;) - |wil® + |y;1% - g} + gf =0}

We require the following lemma.
Lemma 6.5. If g* is optimal, then H;; #+ Hy, for all j + k.

Proof. Suppose that H;, and H;; coincide for some j # k. Then the definition of Hjy
implies that it coincides with H;;, and H;; as well. The cells S;, S;, and Sy, are convex sets with
positive 1 (and hence positive Lebesgue) measure; therefore, because the boundary of a convex
set has zero Lebesgue measure (e.g., [34, Theorem 1)), it follows that the cells S;, S;, and Sj
have non-empty interiors. If we consider the two open halfspaces defined by the hyperplane
H;; = H;, = Hjj, then there exist two of the cells—say, S; and S;—whose interiors lie in the
same open halfspace. But this contradicts the fact that 2(x, v; —y;) - v >+ |y;|* - ¢ g;+9; >0
for all z € int(S;), and 2(z,y; —y;) — |yl + |y;|* — g} + g; <0 for all z € int(S;). So Hy, and
H;; cannot coincide, as claimed. |

Let us fix an a > 0 sufficiently small and prove the continuity of ¢t = h;;(t;a). Given a
nonnegative sequence t,, — 0, consider

is(tnsa) ~hig(@a) = [ e () = [ ()i ()

= fmj(l z+tnv € Sij(a)ju(x + tnv) = 1z € Sija) Ju(z))dHa1 (2).

Here v denotes the vector (y; —v;)/(2|yi —y;|?), c.f., Lemma 2.8. Continuity of 1 implies that
p(x +t,) - p(x) pointwise. We will now show that 1[x +t,v € Si;(a)] - 1[z € S;j(a)] for
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Hq-1-almost every x. First, since Sj;(a) is closed, if « ¢ S;j(a) then z ¢ Sj;(a) - t,v for all ¢,
sufficiently close to 0. Thus, limsup,, . 1[z + t,v € Sij(a)] < 1[z € S;j(a)].
On the other hand, the set S;;(a) is a convex set defined by the constraints

2
17+ Ny

+]y;l*-gj +g9i 20

+lykl® - gi +9; 2a  Vk#i,j.

2(w, yi — y5) — llyi

2, yi - yr) — |yil?

By Lemma 6.5, H;; # Hyy, for all k # 4, j. It follows that for all k # 4, j and all a > 0 sufficiently
small, the intersection of H;; and {x € R? : 2(x,y; — yk) — |vil® + |wl® - gf + 97 = a} has
codimension at least 2. Therefore, for H4_1-almost every x € S;;(a) N Hyj,

2 2
H H

+y5l" - g5 +97 =0
+lykl® - gi+9f >a  Vk#ij.

2(w, yi — y5) — llvi

2w, yi — yr) — |yi]?

For such x, we therefore have that x+t,v € S;;(a) for t,, sufficiently close to 0, and liminf,, . 1 [z+]
thv € Sij(a)] > 1{z € S;j(a)]. Therefore, 1[x + t v € S;j(a)] = 1[x € S;j(a)] for Hy4_1-almost
every .

Since p is dominated along hyperplanes, 1[x +t,v € Sjj(a)|pu(x + t,v) — 1[x € S;j(a)]pu(x)
is dominated by an integrable function on H;;, and the claim follows.

The second argument is simpler: given a sequence a,, - 0, we have

iy (0:0) = hig (0:0) = [ (U e Siy(an)] - 1 € S, Dp(@)dHar (x)

Since Sij(an) € S;, it is clear that limsup,_ ., [z € Sij(an)] < 1[xz € S;]. And as above,
Hq-1-almost every x € S;; N H;; satisfies

20z, yi —y;) ~ |yl

2(x, yi —yr) — |y

+y; > - g +9; =0

1+ lyel? - g5 +9f >0 Vk#id,j.

and for these z, liminf, .o 1[x € S;j(an)] > 1[x € S;]. This proves the claim.

6.3. Proof of Lemma 2.11. That h;;(0) = hj(0) follows from the fact that H;;(0) =
HJZ(O) = Sz n Sj.

Now, we show that the graph with edge set {(4,7) : h;;(0) > 0} is connected. Since p is
positive on the interior of its support, if h;;(0) = 0, then int(supp(u))n(S;n.S;) has zero Hg1
measure. By [42, Lemma 49], this implies that the set

Z :=int(supp(p)) ~ ( U Sin Sj)
ij:hij(0)=0

is path connected.
Now, suppose that the graph has K connected components. For each component Cj, € [n],
let

Zk = U (Z n Sl) .
1€Cy,
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Since each cell S; is closed and has positive p mass, each Zj is nonempty and closed in the
subspace topology on Z. Moreover, they are disjoint by the definition of Z. Therefore the Z
form a non-empty, closed partition of the connected set Z, so K = 1.
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