
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

1

Towards an interpretable autoencoder: A
decision-tree-based autoencoder and its

application in anomaly detection

Diana Laura Aguilar , Miguel Angel Medina-Pérez , Octavio Loyola-González , Kim-Kwang Raymond

Choo , Senior Member, IEEE , Edoardo Bucheli-Susarrey

Abstract—The importance of understanding and explaining the associated classification results in the utilization of artificial intelligence

(AI) in many different practical applications (e.g., cyber security and forensics) has contributed to the trend of moving away from black-box

/ opaque AI towards explainable AI (XAI). In this paper, we propose the first interpretable autoencoder based on decision trees, which

is designed to handle categorical data without the need to transform the data representation. Furthermore, our proposed interpretable

autoencoder provides a natural explanation for experts in the application area. The experimental findings show that our proposed

interpretable autoencoder is among the top-ranked anomaly detection algorithms, along with one-class Support Vector Machine (SVM)

and Gaussian Mixture. More specifically, our proposal is on average 2% below the best Area Under the Curve (AUC) result and 3% over

the other Average Precision scores, in comparison to One-class SVM, Isolation Forest, Local Outlier Factor, Elliptic Envelope, Gaussian

Mixture Model, and eForest.

Index Terms—Interpretable artificial intelligence, Autoencoder, Decision tree, Anomaly detection, Explainable artificial intelligence (XAI).

✦

1 INTRODUCTION

D EEP Neural Networks (DNNs) have been utilized in
detection and classification tasks for a large variety of

applications, such as facial recognition [1], [2], palmprint
recognition [3], visual classification [4], [5], traffic safety
[6], object detection [7], [8], video captioning [9], speech
recognition [10], and fault diagnosis [11]. However, a lim-
itation of DNNs is their inability to provide insights into
their complex behavior or reasoning behind the underlying
resolutions [12]. Furthermore, due to the various transfor-
mations to the input data, these architectures are difficult to
understand even for machine learning experts [13].

The need for explainability is more pronounced in sen-
sitive applications such as health care monitoring [14],
where the decisions have real-world physical consequences.
Thus, there has been recent interest in achieving model

D. L. Aguilar is with the Tecnologico de Monterrey, Carretera al Lago de
Guadalupe Km. 3.5, Atizapán, Estado de México 52926, México (e-mail:
a01751168@tec.mx).
M. A. Medina-Pérez is with Altair Management Consultants, Calle de José
Ortega y Gasset 22–24, 5th Floor, 28006 Madrid, Spain; and Tecnologico
de Monterrey, Carretera al Lago de Guadalupe Km. 3.5, Atizapán, Estado
de México 52926, México (e-mail: mmp@altair.consulting, migue@tec.mx).
Corresponding author.
O. Loyola-González is with Altair Management Consultants, Calle de
José Ortega y Gasset 22–24, 5th Floor, 28006 Madrid, Spain (e-mail:
olg@altair.consulting).
K.-K. R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249, USA
(e-mail: raymond.choo@fulbrightmail.org)
E. Bucheli-Susarrey is with the Tecnologico de Monterrey, Carretera al Lago
de Guadalupe Km. 3.5, Atizapán, Estado de México 52926, México (e-mail:
A01016080@itesm.mx).

transparency and accountability in the artificial intelligence
(AI; broadly defined to also include machine and deep
learning techniques) literature [12]. Furthermore, Gilpin et
al. [15] suggested that these explanations ensure the correct
behavior of the algorithm, and they concluded that machine
learning systems would be more widely accepted once they
are capable of providing satisfactory explanations for their
decisions.

Rudin [12] pointed out that there is an increasing number
of works on post-hoc models created to explain an original
black-box. Recent reviews on the topic [15], [16] also echoed
Rudin’s observation [12]. Rudin also raised a number of
concerns in the post-hoc-model approach. First, uncertainty
about explanations leads to uncertainty about the original
model. Second, post hoc explanations are not faithful to
what the original model computes. Third, post hoc expla-
nations may leave out so much information that they may
end up making little or no sense. Reasoning from these facts,
inherent interpretability seems to be a viable option.

Doshi-Velez and Kim [17] defined interpretability as the
ability to provide meaning in such a way that humans
can understand it. Rudin [12] stated that an inherently
interpretable model is capable of producing its faithful
explanations. In other words, interpretable models do not
need a second model to explain themselves as they are
designed to output decisions and explanations. Since these
explanations are an indication of the algorithm accuracy and
impartiality [15], such algorithms can potentially be utilized
in high-stake / sensitive applications, such as anomaly
detection [18], [19]. Chandola et al. [20] defined anomalies
as patterns in data that behave unexpectedly, and anomalies

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2178-4193
https://orcid.org/0000-0003-4511-2252
https://orcid.org/0000-0002-6910-5922
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0002-9304-9967

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

2

in data suggest actionable information in applications such
as health care monitoring.

In recent years, there has been a growing interest in
using autoencoders [21] for anomaly detection. In such an
approach, an encoder transforms an input into a hidden rep-
resentation, and a decoder maps the hidden representation
of the input back into the original space [22]. Autoencoders
are generally built as neural networks, where these deep
architectures consist of encoding and decoding blocks of
non-linear layers [23]. Although these neural networks are
efficient for anomaly detection, their non-linearity and lack
of interpretability make it debatable whether they should
be used for high-stake / sensitive applications [21]. Autoen-
coding can also be performed using decision trees [24], [25],
which can potentially leverage the inherent interpretability
of traditional decision trees [26].

In this paper, we propose a novel approach for anomaly
detection. Specifically, our proposed model is a decision
tree-based autoencoder (hereafter referred to as DTAE) that
can detect anomalies on categorical data. Furthermore, to
the best of our knowledge, it is the first interpretable au-
toencoder for anomaly detection, in the sense that it outputs
not only decisions but also faithful explanations for them.
A comparative summary with six state-of-the-art classifiers,
(i.e., One-class SVM [27], Isolation Forest [28], Local Outlier
Factor [29], Elliptic Envelope [30], Gaussian Mixture Model,
and eForest [25]) shows the utility of our proposed DTAE.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the extant literature. Section 3
introduces our proposed approach, before we present the
evaluation findings in Section 4. Finally, Section 5 concludes
this paper.

2 RELATED LITERATURE

We will now review the related literature on explainability
(see Section 2.1) and autoencoders (see Section 2.2).

2.1 Explainable DNNs

Explainable DNNs can be broadly categorized based on
their explanatory capability, for example in terms of pro-
cessing (Section 2.1.1), representation (Section 2.1.2), gener-
ation (Section 2.1.3) [15]. We will also summarize the chal-
lenges associated with these approaches, their application
domains, the datasets that have been used, the evaluation
metrics, and the availability of the source code in Table 1.

2.1.1 Explaining their processing

Gilpin et al. [15] reported that one fundamental approach
to explaining DNNs is by their processing. Specifically,
systems try to explain a specific output given a specific
input, by summarizing its decision. The fundamental idea
is to create a post hoc model, which the authors referred
to as the proxy model. This allows the explanation of the
original black-box (or referred to as opaque) model in a way
that is easier to understand. Moreover, the authors proposed
using linear models [31], decision trees [32], automatic-
rule extraction [33], and salience mapping [34] to explain
DNN processing. In other words, the input-output rela-
tions are determined by emulating the processing of the

information in the network. The explanations created by
these techniques will reveal information about the network
processing. However, a limitation is the reliance on a post
hoc model to explain the original network; post hoc tech-
niques do not explain the actual reasoning process behind
the network outputs [12]. Moreover, according to Li et al.
[35], post hoc approaches often create explanations that are
difficult for humans to understand, such as the examples
presented in [32].

2.1.2 Explaining their representation

According to Gilpin et al. [15], another approach is to
explain their representation; that is to say, this approach
aims to explain the data flow through the network. In other
words, data to be studied is divided by layers [36], single
units [37], or representation vectors. While such approaches
that focus on the internal workings of DNNs allow us to
interpret activation data through the network, it is difficult
to evaluate the performance of these methods directly [15].
Additionally, their results are difficult to understand as they
focus on the data inside the network and not to explain
particular network decisions nor reasoning.

2.1.3 Generating explanations

The third approach is to create more transparent DNNs,
in the sense that they are built to explain themselves [15].
Example approaches include attention-based networks [38],
networks trained to learn disentangled representations [39],
and generated explanations [40]. Vaswani et al. [38], for
example, proposed a neural architecture based on self-
attention for machine translation. Furthermore, they noted
that self-attention could help to build more interpretable
models. However, a significant drawback of this approach is
that it does not generate explanations that humans can un-
derstand. Zhang et al. [39] introduced interpretable CNNs.
Specifically, each filter in a high convolutional layer encodes
different object parts per object category, and they are acti-
vated by a single part of the object only. Their experiments
showed that their interpretable CNNs encoded more mean-
ingful information than their traditional non-interpretable
counterparts. However, this approach is only applicable
to different types of CNNs, and it requires datasets with
ground-truth annotations of object landmarks.

Kanehira et al. [40] presented a system that classifies an
input object and outputs linguistic explanations and exam-
ples that justify it. This architecture has four components,
namely: an explainer, a selector, a reasoner, and a predictor.
The predictor is the target model of the explanations, and
it is not trained; while the explainer, the selector, and the
reasoner are trained to explain the output of the predictor
in a post-hoc manner. Although the model is capable of
providing human-readable explanations, its post-hoc nature
raises questions regarding this approach that we have al-
ready discussed. Furthermore, it requires a dataset with
attributes assigned to be trained, such as the work in [39].

2.2 Autoencoders

Autoencoders are models that can transform dimensional-
ity and aim to reconstruct the original input data. These
architectures work with encoding and decoding functions,

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

3

TABLE 1: Current approaches to explaining DNNs. In the Approach to explanation column, I stands for Processing, II for
Representation, and III for Generating explanations. In the Disadvantage column, 1 stands for post hoc model that does not explain
the actual decisions of the DNN, 2 for explanations are difficult to understand, 3 for it requires dataset with ground-truth annotations
of object landmarks.

Authors
Approach
to expla-

nation
Problem

Application
domain

Datasets Pub.
Evaluation

metrics
Aval. Dis.

Ribeiro et al. [31]
I

Linear model
Binary

classification

Text classification
Image

classification

Sentiment
analysis dataset
Hand-selected

images

Yes
No

Faithfulness of
explanations

Trustworthiness
of the model

Yes 1

Zilke et al. [32]
I

Decision tree
Binary

classification

Image
classification

Artificial problem
XOR problem

MNIST dataset
Letter Recognition

Artif I
Artif II

Yes
Yes
No
No

Successful
attempts to rule
extraction Com-

prehensibility and
fidelity of rules

No 1,2

Augasta and
Kathirvalavaku-

mar [33]

I
Automatic-rule

extraction

Binary
classification
Multi-class

classification

Plant
classification

Medical diagnosis
Credit risk Signal

processing

Iris dataset
Breast Cancer Wisconsin

Pima Indian diabetes
German credit card

Hepatitis dataset
Ionosphere dataset

Yes

Accuracy, com-
prehensibility,
and fidelity of

rules

No 1

Selvaraju et al.
[34]

I
Saliency
mapping

Multi-class
classification

Image
classification

Image captioning
VQA

ImageNet dataset
PASCAL VOC

2007
Yes

Localization
capability Class-
discriminative
visualizations

Trustworthiness
of explanations

Yes 1

Shin et al. [36]
II

By layers
Binary

classification
Medical imaging

classification

Lymph node
detection datasets

Multimedia
database of

interstitial lung
diseases

Yes
Explanations

were not directly
evaluated

No 2

Yosinski et al. [37] II
By units

Multi-class
classification

Image
classification

ImageNet dataset Yes
Explanations

were not directly
evaluated

Yes 2

Vaswani et al. [38]
III

Attention-based
Multi-class

classification
Machine

translation

WMT 2014
English-German

and
English-French

datasets

Yes
Explanations

were not directly
evaluated

Yes 2

Zhang et al. [39]
III

Disentangled
representation

Single-class
classification
Multi-class

classification

Image
classification

ImageNet dataset
CUB200-2011 dataset
PASCAL VOC 2007

Yes

Part
interpretability

Location
instability

Yes 3

Kanehira et al.
[40]

III
Generated

explanations

Binary
classification
Multi-class

classification

Image
classification

Aesthetics with
Attributes Database

CUB200-2011 dataset

Yes

Accuracy and
consistency of

predictions
Complementarity

of explanations

No 1, 3

where the encoder computes a representation h(x) of an
input x and the decoder maps the representation h(x) back
into the input space. This creates a reconstruction g(h(x)) of
the input [22] – see Fig. 1.

The potential of using autoencoders for anomaly detec-
tion is explained in a recent literature review [21]. Existing
approaches generally use unsupervised learning methods
[21] although there are also approaches that use semi-
supervised learning [41] and supervised learning [42]. How-
ever, autoencoders are usually non-linear because of the
activation functions used in the neural network paradigm.
This limits its ability to provide interpretability, which is an
increasingly valued property in anomaly detection.

There have also been recent attempts to design autoen-
coding models using decision trees [24], [25]. Irsoy and
Alpaydin [24], for example, presented an autoencoder based
on soft trees. Classification with soft trees is achieved by
following every path from the root node to the leaves, unlike
traditional trees. In soft decision trees, a logistic model is

Fig. 1: Autoencoder architecture.

used in every leaf. Although soft trees are reported to be
more accurate, there is not a simple mechanism to explain
how they work (unlike traditional decision trees that can be
explained as a set of rules, which can be easily understood
by the users).

Another autoencoder based on decision trees is eForest

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

4

[25], which is a tree ensemble that can encode and decode
data. Encoding is performed by sending the input data
through all the decision trees in the ensemble to find out
in which leaf node the input data ends up. Decoding is
achieved by using the Maximal Compatible Rule (MCR).
MCR is defined by the decision paths the input data follows
when it traverses down from the root nodes to all the
leaves in all decision trees, that is, when being encoded.
The authors showed that decision trees can outperform
neural networks in some autoencoding tasks, namely: image
reconstruction using MNIST and CIFAR-10. Moreover, the
authors speculated that decision-tree-based autoencoders
can handle categorical data without transforming it into
numerical (i.e., no supporting evidence since their study
focused on numerical data only).

We observe that existing autoencoders are not capa-
ble of working with categorical data. Consequently, they
need to transform all categorical data into a numerical
representation by using an encoding method, such as one
hot, ordinal, sum, and binary [43], [44], [45]. However,
when transforming data from categorical to numerical, the
new representation contains significantly more attributes
than the original representation, and this translates into
higher computational complexity. In addition, all proposed
encoding methods ignore every relation among values of
categorical attributes, which can produce poor classification
results [46].

3 A NOVEL INTERPRETABLE AUTOENCODER

BASED ON DECISION TREES

As discussed earlier, existing autoencoders can handle nu-
merical data only. When working with categorical data, a
common solution is to use one-hot encoding. However, such
an approach has two key limitations [46]. First, they are
high-dimensional and sparse, and they ignore the relations
among different values of categorical attributes. Second,
existing autoencoders lack interpretability. Our proposed
interpretable autoencoder is designed to mitigate these two
limitations.

In our approach, given the value of an attribute, it
correlates with some other values of the other attributes.
For example, weather value very cold is correlated with
hemisphere value north when month is December. Hence,
our hypothesis is that we can accurately model the struc-
ture of a dataset with an interpretable autoencoder if we
automatically learn to encode and decode the values of the
attributes based on their correlations with values of other
attributes.

Fig. 2 shows the architecture of our proposed ap-
proach. In the training phase, our input is a dataset T =
{x(1),x(2), . . . ,x(m)}, in which every object x

(i) is repre-

sented by a tuple of attributes values (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n) ∈

D1 × D2 × . . . × Dn. Here, Di is the definition do-
main of the i-th categorical attribute, e.g. D1 =
{north, south, east, west} and D2 = {true, false}. Then,
for each i-th attribute, a new decision tree trains with the
dataset T (projected into the attributes different from the
i-th one) using the i-th attribute as the target class.

In the classification phase, given an unseen object x

represented by a tuple of attributes values (x1, x2, . . . , xn),
decision tree 1 receives tuple x−1 = (x2, x3 . . . , xn) and

outputs a vector (h
(1)
1,1, h

(1)
1,2 . . . , h

(1)
1,k1

) that represents how
probable the obtained class is for every value in the attribute
domain D1. This procedure is repeated for each decision tree
and eventually the argmax pooling layer outputs the values
of the attributes corresponding to the highest probabilities
output by each decision tree. The more similar the output
object x

′ is to x, the more similar x is to the knowledge
learned from the training dataset.

TABLE 2: Synthetic objects to exemplify (in Fig. 3) how to
build and use the model of our autoencoder. Each row rep-
resents an object, and each column represents an attribute.
The first row includes the name of the attributes.

att1 att2 att3 att4

a p n u

a p n u

a p n u

a p n u

b p n u

b q m w

b q m w

b q m w

b q m w

c q m w

c q m u

c q m u

c q m u

We will explain how our proposed approach works
using the dataset in Table 2. In Fig. 3, one can observe that
the top box has three outgoing connections to the top output
neuron, while the rest of the boxes have only two outgoing
connections. This is because the top box contains a tree with
class att1, whose domain contains three values ({a, b, c}),
while the trees in the other boxes use, as classes, attributes
that only have two possible values each.

Let us focus on the decision tree at the top. In the root
node, there is a vector [4, 5, 4] of length |D1| since its target
is att1. Each number represents how many objects in the
dataset in Table 2 have a particular attribute value for att1.
Initially, there are four objects with att1 = a, five with
att1 = b, and four with att1 = c. As we go deeper in the
tree, we observe that there are four objects with att1 = a and
att2 = p, one with att1 = b and att2 = p, and none with
the combination att1 = c and att2 = p. This explanation
applies to the other nodes in the tree, and for the other trees
as well.

Fig. 3 shows that when inputting the tu-
ple (a, p,m,w), the autoencoder encodes it to
(0.8, 0.2, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0), and it decodes it
to (a, q, n, u), which is similar to the input only in att1.
When we study the training dataset in Table 2, we observe
that there is no combination of three attribute values
matching the input tuple (a, p,m,w). This indicates that the
input tuple is an anomaly of the training dataset. In order
to interpret how the autoencoder decode this tuple, we find
the rules that classify the tuple in each tree as follows:

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

5

,
()

…

,
()

,

()

,
()

,
()

…

,

()

…… …

,
()

…

,
()

,

()

Decision tree 1

Decision tree 2

Decision tree

Fig. 2: Architecture of our proposed decision tree-based autoencoder for categorical attributes. In the architecture, the i-th
decision tree trains with all the attributes except the i-th attribute. In the classification phase, the i-th decision tree receives
a tuple x−i that contains all the attributes values except xi, and outputs a probability vector which the argmax pooling
layer uses to infer x′

i. The length of the i-th vector depends on the number of possible values in the definition domain Di

of the i-th categorical attribute. The end-user can look at the path traversed by the object x−i into the i-th tree, because this
path indicates the pattern learned from the training dataset. Hence, the classification result is interpretable.

Decision tree with class

,

,

,

,

,

,

,

,

Decision tree with class

Decision tree with class

Decision tree with class

[4,5,4]

= =

[4,1,0] [0,4,4]

= =

[0,0,3][0,4,1]

[5,8]

= =

[5,0] [0,8]

[8,5]

[0,5] [8,0]

= =

[8,5]

[1,4]

[1,0] [0,4]

[4,0]

[3,1]=

= =

=

=

0.8,0.8

0.2,0.2

0.0,0.0

1.0,0.0

0.0,1.0

0.0,0.0

1.0,1.0

0.75,1.0

0.25,0.0

Fig. 3: Model of architecture in Fig. 2, which is trained with the dataset in Table 2. The figure shows the outputs of layer 1
and the decoded tuples when inputting the objects (a, p,m,w) and (c, p, n, u) in that order.

1) The top tree classifies (p,m,w) according to the rule
(att2 = p) =⇒ (att1 = a). This is the only rule that
correctly decodes one attribute value (att1 = a).

2) The second tree, from top to bottom, classifies (a,m,w)
according to the rule (att3 = m) =⇒ (att2 = q). This
explains why the autoencoder incorrectly decodes the

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

6

attribute value att2 = p as att2 = q.
3) The third tree, from top to bottom, classifies (a, p, w)

according to the rule (att2 = p) =⇒ (att3 = n). This
explains why the autoencoder incorrectly decodes the
attribute value att3 = m as att3 = n.

4) The fourth tree, from top to bottom, classifies (a, p,m)
according to the rule (att1 = a) =⇒ (att4 = u). This
explains why the autoencoder incorrectly decodes the
attribute value att4 = w as att4 = u.

Fig. 3 shows that when inputting the tu-
ple (c, p, n, u), the autoencoder encodes it to
(0.8, 0.2, 0.0, 1.0, 0.0, 0.0, 1.0, 0.75, 0.25), and it decodes
it to (a, p, n, u) which is similar to the input in three out
of four attributes. In the training dataset (Table 2), the
combination (p, n, u) of the input tuple appears five times.
In order to interpret how the autoencoder decodes this
tuple, we find the rules that classify the tuple in each tree
as follows:

1) The top tree classifies (p, n, u) according to the rule
(att2 = p) =⇒ (att1 = a). This explains why the
autoencoder decodes the value att1 = c as att1 = a.

2) The second tree, from top to bottom, classifies (c, n, u)
according to the rule (att3 = n) =⇒ (att2 = p).
This explains why the autoencoder correctly decodes
the attribute value att2 = p.

3) The third tree, from top to bottom, classifies (c, p, u)
according to the rule (att2 = p) =⇒ (att3 = n).
This explains why the autoencoder correctly decodes
the attribute value att3 = n.

4) The fourth tree, from top to bottom, classifies (c, p, n)
according to the rule (att1 = c) =⇒ (att4 = u).
This explains why the autoencoder correctly decodes
the attribute value att4 = u.

During the induction procedure, our approach builds n

decision trees from the m objects of the training dataset
projected into n − 1 attributes. The time complexity for
building an unpruned decision tree is O(m∗log(m)). Hence,
the time complexity for building the model of the proposed
autoencoder is O(n ∗m ∗ log(m)).

Testing an autoencoder depends on the application do-
main. The next section introduces the experimental frame-
work to evaluate the utility of the proposed autoencoder
in anomaly detection. However, it is necessary to add
an additional layer in our architecture to allow us to

return a single value (see Fig. 4). Each weight w
(1)
i,j is

the recall of the i-th decision tree for the j-th attribute
value in the definition domain Di (the recall measure
is computed from the confusion matrix obtained after

five-fold cross-validation). Each weight w
(2)
i is the AUC

[47] of the i-th decision tree computed from the same
confusion matrix obtained after five-fold cross-validation.
The algorithm source code in C# and Python can be
found at https://github.com/miguelmedinaperez/DTAE
and https://github.com/ebucheli/DT-Autoencoder, re-
spectively.

4 EVALUATION

Here, we will present the selected datasets, the k strati-
fied cross-validation procedure, the selected classifiers for
anomaly detection, and the performance metrics used to
evaluate the selected classifiers. We will also present the
findings in this section.

4.1 Setup

Table 3 describes the 28 datasets used in our experimental
setup, which were obtained from the UCI Machine Learning
Repository [48]. For each dataset, Table 3 shows the number
of attributes (#Att.) and the number of objects by class (#
Obj. by Class). The tested datasets range from four to 69 for
the number of attributes, from 20 to 12,960 for the number of
objects, and from one to 47.79 for the class imbalance ratio,
see (1) [49].

IR =
| Classmaj |

| Classmin |
(1)

In the above equation, | Classmaj | denotes the number of
objects belonging to the majority class and | Classmin | is
the number of objects belonging to the minority class. Fur-
thermore, most of the datasets contain imbalanced classes
[49], and the numbers of attributes and objects are heteroge-
neous, which is typical of anomaly detection [50], [51].

We transformed each dataset with two balanced classes
or with multiple imbalanced classes into several datasets
(the obtained datasets can be differentiated by a suffix
in the dataset name), changing the minority class every
time because we want to measure the performance of the
algorithms for anomaly detection. Then, for each dataset
in Table 3, we executed a five-fold Distribution Optimally
Balanced Stratified Cross-Validation (DOB-SCV) procedure, as
suggested by [52], [49]. Lastly, we moved the objects of the
minority class from each training partition to its respective
testing partition. Therefore, we transformed every binary
classification dataset into an anomaly detection dataset.

We compared the performance of our proposed DTAE
with six other state-of-the-art classifiers, namely: One-class
SVM [27], Isolation Forest [28], Local Outlier Factor [29],
Elliptic Envelope [30], Gaussian Mixture Model, and eForest
[25]. In the performance evaluation, we leveraged the scikit-
learn library [53] using the parameter values recommended
by their authors (see also Table 4). For each of the six
classifiers, we used the one-hot encoding method [54] to
transform the values of all categorical attributes because it
provides better results than other state-of-the-art encoding
methods [43], [44], [45]. By using the one-hot encoding
method, all categorical attributes were encoded by creating
a binary column for each value, and this procedure returns
a sparse matrix or dense array [54].

Some existing literature suggests that a threshold should
be set so as to differentiate between normal objects and
anomalies [21]. However, this necessitates the involvement
of human experts because of their knowledge and experi-
ence [55]. Thus, we chose two evaluation metrics that take
into account all possible thresholds to assess the selected
classifiers. First, we utilized the Area Under the Receiver
Operating Characteristic Curve (AUC) measure [56]. AUC
was selected because it is an objective measure (i.e., not

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

https://github.com/miguelmedinaperez/DTAE
https://github.com/ebucheli/DT-Autoencoder

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

7

,
()

…

,
()

,

()

,
()

,
()

…

,

()

…… …

,
()

…

,
()

,

()

Decision tree 1

Decision tree 2

Decision tree

…

Fig. 4: An anomaly detection architecture from the autoencoder in Fig. 2.

TABLE 3: All datasets used in our experimental setup, taken from the UCI Machine Learning Repository [48].

Name # Att.
Obj. by

Class
Name # Att.

Obj. by
Class

audiology 69 207/19 balloons 4 12/8
breast-cancer 9 201/85 car 6 1663/65
chess 36 1669/1527 hayes-roth 4 129/31
hiv-1 8 5230/1360 lenses 4 15/9
lymphography 18 81/67 molecular Promoter− 57 53/53
molecular Promoter+ 57 53/53 monks-1-0 6 278/278
monks-1-1 6 278/278 mushroom 22 4208/3916

nursery 8 12630/330
postoperative-patient-
data

8 64/26

primary-tumor 17 318/21 solar-flare1 12 294/29
solar-flare2 12 1023/43 soybean-l 35 669/14
soybean-s-D1 35 37/10 soybean-s-D2 35 37/10
soybean-s-D3 35 37/10 spect 22 212/55
splice 60 2423/767 sponge 44 70/6
tic-tac-toe 10 626/332 vote 16 267/168

TABLE 4: Parameters used for the tested classifiers.

Classifier Parameters

One-class SVM
[27]

kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0,
tol=0.001, nu=0.5, shrinking=True, cache size=200,
verbose=False, max iter=-1

Isolation Forest
[28]

n estimators=100, max samples=’auto’,
contamination=’auto’, max attributes=1.0,
bootstrap=False, n jobs=None, behaviour=’new’,
random state=970, verbose=0, warm start=False

Local Outlier
Factor [29]

n neighbors=20, algorithm=’auto’, leaf size=30,
metric=’minkowski’, p=2, metric params=None,
contamination=’auto’, novelty=False, n jobs=None

Elliptic Envelope
[30]

store precision=True, assume centered=False,
support fraction=None, contamination=0.1,
random state=None

Gaussian Mixture
Model

n components=1, covariance type=’full’, tol=0.001,
reg covar=1e-06, max iter=100, n init=1,
init params=’kmeans’, weights init=None,
means init=None, precisions init=None,
random state=None, warm start=False, verbose=0,
verbose interval=10

eForest [25] n trees=1000

affected by subjective indicators) and it is insensitive to

changes in the distribution of both training and testing
datasets [47], [57], [58]. The AUC was computed directly
from the ROC curve (True Positive Rate versus False Pos-
itive Rate) [47]. Second, we evaluated the classifiers with
the Area Under the Precision vs. Recall Curve (AUC-PR)
[59]. Furthermore, we used the Average Precision Score as
an estimate of AUC-PR [60]. We utilized this metric as it
has been recommended as an alternative for domains with
highly imbalanced classes [59], [60].

Finally, to know if there are statistical differences among
the tested classifiers, we performed a comparison among
all obtained classification results using the Friedman non-
parametric test, which provides a ranking. Additionally, the
Finner post-hoc procedure was applied, as suggested in [61],
[49].

4.2 Findings

Now, we will present the evaluation findings, including the
statistical tests performed to determine whether there are
statistical differences between the classification results.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

8

Fig. 5 and Fig. 6 are the box-plots of all AUC and Aver-
age Precision values. The box-plot shows the minimum and
maximum values, the median (black line inside the box),
and the first and third quartiles (top and bottom sides of the
box, respectively) for the evaluation metric. Small boxes and
whiskers closer to the median indicate lower variability in
the measure; the lower variability and the higher median
value, the better and more consistent the results. Values
considered as outliers are usually shown as dots outside
the whiskers. The best possible value for AUC and Average
Precision is one that corresponds to perfect classification.

eForest LOF EE IF DTAE ocSVM GM

0.5

0.6

0.7

0.8

0.9

1.0

AUC distribution in 2 datasets

Fig. 5: A box-plot showing the distribution of the AUC [56]
obtained by all seven classifiers using the 28 datasets of UCI
Machine Learning repository [48]. The algorithms are sorted
from left to right in ascending order of the median: eForest
[25], LOF (Local Outlier Factor) [29], EE (Elliptic Envelope)
[30], IF (Isolation Forest) [28], proposed DTAE, ocSVM (One-
class SVM) [27], and GM (Gaussian Mixture).

ocSVM EE IF LOF GM eForest DTAE

0.5

0.6

0.7

0.8

0.9

1.0

Average precision distribution in 2 datasets

Fig. 6: A box-plot showing the distribution of the Average
Precision Score [59] obtained by all seven tested classifiers
in 28 datasets of UCI Machine Learning repository [48]. The
algorithms are sorted from left to right in ascending order
of the median: ocSVM (One-class SVM) [27], EE (Elliptic
Envelope) [30], IF (Isolation Forest) [28], LOF (Local Out-
lier Factor) [29], GM (Gaussian Mixture), eForest [25], and
DTAE.

One can observe from Fig. 5 that in terms of AUC, DTAE
outperforms Elliptic Envelope, Isolation Forest, and the
other decision-tree-based autoencoder from the literature
(i.e., eForest). Besides, the third quartile of One-class SVM
is above that of DTAE. However, the first quartile of DTAE
is far above the one of One-class SVM. Yet both quartiles of
the Gaussian Mixture Model outperform those of the other
classifiers.

For the Average Precision Score, one can observe from
Fig. 6 that the distribution of DTAE is similar to that of the
Gaussian Mixture Model, but the first quartile of DTAE is
better. Additionally, our autoencoder is better than eForest
as well. Hence, one can conclude that DTAE outperforms all
the classifiers. A closer inspection of the results presented
in Table 6 also reveals that DTAE achieves good AUC and
Average Precision.

Table 7 and Table 8 show the average of AUC and
Average Precision, respectively. They also include the cor-
responding standard deviation (SD), the average ranking
according to the Friedman’s test, and the adjusted p-value
of the Finner’s procedure for all tested classifiers (based
on all the datasets outlined in Table 3). The findings in
Table 7 and Table 8 are ordered according to the average
of the Friedman’s ranking value, and the thin horizontal
line indicates the point after which there is a statistically
significant difference with the best result in the Friedman’s
ranking (p-value < 0.05).

Table 7 shows that DTAE significantly outperforms eFor-
est, Isolation Forest, Elliptic Evelop, and Local Outlier Fac-
tor. Although Gaussian Mixture Model and One-class SVM
have better performance than DTAE, these results show that
there are no statistical differences among them. Considering
Table 8, DTAE has the best position based on Friedman’s
ranking, without statistical differences.

In summary, Table 5 shows that our proposal is, on
average, 2% below the best AUC result, and according
to Table 7 that there are no statistical differences. Table 6
shows that our proposal is, on average, 3% over the other
classifiers as to Average Precision without statistically sig-
nificant differences (see Table 8). Moreover, based on our
earlier discussion in Section 3, we can conclude that our
proposal is the first autoencoder working with categorical
attributes that does not require us to transform the data
from categorical into numerical. Additionally, our proposal
can be understood by experts in the application area in a
language close to the one they use.

5 CONCLUSIONS AND FUTURE WORK

Given the potential of deep learning algorithms to solve
real-world problems such as anomaly detection and foren-
sic investigation, it is not surprising that designing more
efficient and effective deep learning algorithms is an active
research area. One existing trend is to design models that
allow users to understand the associated classification re-
sults. For example, how we can develop the explanatory
capability of opaque models such as autoencoders to pro-
vide the reasoning behind their decisions. In this paper,
we introduced DTAE, the first interpretable autoencoder
for anomaly detection using categorical data. DTAE is a

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

9

TABLE 5: Results, in terms of to AUC [56], for all the tested classifiers, considering all the tested databases. The best results
per database appear in bold.

Dataset eForest [25]
Local Outlier

Factor [29]

Elliptic
Envelope

[30]

Isolation
Forest [28]

ocSVM [27]
Gaussian
Mixture
Model

DTAE

audiology 0.7336 0.6470 0.7140 0.6444 0.7395 0.8093 0.6700

balloons 0.8750 0.5750 0.8500 0.5125 0.8333 0.8500 0.9417

breast-cancer 0.5270 0.6965 0.6396 0.6803 0.6999 0.6433 0.6643

car 0.5959 0.5000 0.7253 0.5567 0.7520 0.7530 0.7703

chess 0.5055 0.7358 0.6084 0.6450 0.6809 0.7384 0.7647

hayes-roth 1.0000 0.9937 0.9673 0.8081 0.9985 0.9967 0.6840

hiv-1 0.5619 0.5110 0.5012 0.5778 0.5173 0.5026 0.5552

lenses 0.7037 0.5963 0.7222 0.7556 0.6000 0.7556 0.5333

lymphography 0.7499 0.7901 0.7724 0.7673 0.8181 0.7974 0.7303

molecular Promoter+ 0.8238 0.9660 0.6091 0.8141 0.9787 0.9394 0.9283

molecular Promoter- 0.5427 0.5318 0.5067 0.5197 0.6105 0.6298 0.5490

monks-1-0 0.8063 0.7869 0.5261 0.7344 0.7922 0.8183 0.5261

monks-1-1 0.5513 0.5708 0.6060 0.5270 0.5046 0.5422 0.9765

mushroom 0.9637 0.9129 0.6261 0.8019 0.9002 0.9339 0.9598

nursery 0.5327 0.5000 0.6174 0.6290 0.7905 0.7595 0.6929

postoperative-patient-data 0.5218 0.5072 0.5310 0.5108 0.5303 0.5319 0.5648

primary-tumor 0.5352 0.5074 0.5618 0.5341 0.5503 0.5488 0.5356

solar-flare1 0.5051 0.5612 0.5064 0.5201 0.5553 0.5911 0.6216

solar-flare2 0.5048 0.5395 0.7402 0.7518 0.7318 0.6376 0.7507

soybean-l 0.9458 0.6145 0.5741 0.8826 0.9778 0.9761 0.9970

soybean-s-D1 0.9900 0.6763 0.8183 0.5646 0.8800 1.0000 0.9550

soybean-s-D2 1.0000 0.9825 1.0000 0.8758 0.9975 1.0000 0.9675

soybean-s-D3 0.5493 0.5449 0.8158 0.7576 0.5562 1.0000 0.9225

spect 0.5679 0.7525 0.7494 0.8128 0.7910 0.7620 0.7806

splice 0.5100 0.5356 0.5207 0.5873 0.5992 0.5232 0.5159

sponge 0.7452 0.5381 0.6333 0.5738 0.6452 0.7167 0.5810

tic-tac-toe 0.5436 0.5026 0.5211 0.5422 0.5217 0.9720 0.7354

vote 0.5414 0.5590 0.7826 0.9358 0.9411 0.7613 0.9022

TABLE 6: Results, in terms of Average Precision [59], for all the tested classifiers, considering all the tested databases. The
best results per database appear in bold.

Dataset eForest [25]
Local Outlier

Factor [29]

Elliptic
Envelope

[30]

Isolation
Forest [28]

ocSVM [27]
Gaussian
Mixture
Model

DTAE

audiology 0.5624 0.7378 0.7546 0.7403 0.7687 0.9123 0.8165

balloons 0.8034 0.7677 0.7061 0.7959 0.7144 0.7333 0.8900

breast-cancer 0.6810 0.6006 0.6079 0.6064 0.5988 0.5397 0.5719

car 0.8756 0.8365 0.7912 0.7265 0.5418 0.7407 0.9413

chess 0.7992 0.7237 0.7430 0.7730 0.7556 0.5934 0.5738

hayes-roth 0.7132 0.6474 0.6444 0.5983 0.6479 1.0000 0.6604

hiv-1 0.5172 0.5979 0.5569 0.6476 0.5569 0.5532 0.6052

lenses 0.6212 0.7739 0.6804 0.6556 0.7659 0.5878 0.5417

lymphography 0.8657 0.6858 0.6887 0.6943 0.6651 0.5440 0.5817

molecular Promoter+ 0.8909 0.6573 0.8819 0.7091 0.6538 0.8125 0.7832

molecular Promoter- 0.7696 0.8423 0.8661 0.8275 0.8146 0.7195 0.7866

monks-1-0 0.8969 0.7389 0.8547 0.9269 0.7681 0.6030 0.7020

monks-1-1 0.7884 0.8252 0.8091 0.8345 0.8312 0.5417 0.9590

mushroom 0.9036 0.6653 0.7227 0.6934 0.6659 0.8926 0.8520

nursery 0.8792 0.8845 0.5104 0.6676 0.6153 0.7949 0.9221

postoperative-patient-data 0.6181 0.6848 0.6964 0.7024 0.6913 0.6185 0.5578

primary-tumor 0.7469 0.7326 0.7224 0.7089 0.7039 0.7572 0.7352

solar-flare1 0.7030 0.5335 0.5009 0.5485 0.5992 0.6776 0.7629

solar-flare2 0.8205 0.8104 0.8623 0.8744 0.8781 0.9092 0.9281

soybean-l 0.7907 0.9045 0.9162 0.9368 0.9440 0.9976 0.9997

soybean-s-D1 0.7194 0.5860 0.5103 0.6069 0.5350 1.0000 0.9633

soybean-s-D2 0.7211 0.6004 0.6033 0.5588 0.6030 1.0000 0.9671

soybean-s-D3 0.5433 0.6735 0.5129 0.7922 0.6307 1.0000 0.9147

spect 0.5566 0.7883 0.8138 0.8424 0.8272 0.6897 0.6879

splice 0.6007 0.6065 0.6166 0.6852 0.7007 0.5269 0.5557

sponge 0.6211 0.5717 0.6865 0.6332 0.6909 0.8651 0.7651

tic-tac-toe 0.7469 0.7026 0.8150 0.7390 0.7361 0.8787 0.5327

vote 0.7452 0.7522 0.5908 0.5673 0.5654 0.7281 0.8566

decision-tree-based autoencoder, designed to detect anoma-
lies and provide the explanations behind its decisions by
finding the correlations among different attribute values.

Performance evaluation of DTAE and six other state-of-
the-art classifiers demonstrated that our classifier achieves
good performance, with a minimal trade-off between per-

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

10

TABLE 7: Statistical results, according to AUC [56], for all the tested classifiers, considering all the tested databases. The
algorithms are sorted from top to bottom, according to the Friedman ranking [62]. The last column shows the adjusted
p-value obtained with the Finner post-hoc [62] when comparing the best-ranked algorithm with the rest of the algorithms.
The thin horizontal line indicates the point after which there is a statistically significant difference with the best result in
Friedman’s ranking (p-value ≤ 0.05).

Classifier Average of AUC
Standard
deviation

Ranking Adjusted p-value

Gaussian Mixture 0.7675 0.1654 2.7143 -

One-class SVM [27] 0.7319 0.1637 3.1071 0.4962

DTAE 0.7420 0.1660 3.3571 0.3094

eForest [25] 0.6761 0.1799 4.3571 0.0066

Isolation Forest [28] 0.6722 0.1323 4.6607 0.0015

Elliptic Envelope [30] 0.6695 0.1388 4.7321 0.0014

Local Outlier Factor [29] 0.6476 0.1585 5.0714 0.0003

TABLE 8: Statistical results, according to Average Precision [59], for all the tested classifiers, considering all the tested
databases. The algorithms are sorted from top to bottom, according to the Friedman ranking [62]. The last column shows
the adjusted p-value obtained with the Finner post-hoc [62] when comparing the best-ranked algorithm with the rest of
the algorithms.

Classifier
Average of

Average
Precision

Standard
deviation

Ranking Adjusted p-value

DTAE 0.7647 0.1561 3.4286 -

eForest [25] 0.7321 0.1167 3.7857 0.6022

Isolation Forest [28] 0.7176 0.1071 3.7857 0.6022

Gaussian Mixture 0.7577 0.1651 3.8571 0.6009

Elliptic Envelope [30] 0.7023 0.1243 4.2500 0.3253

One-class SVM [27] 0.6953 0.1046 4.3929 0.3253

Local Outlier Factor [29] 0.7118 0.0994 4.5000 0.3253

formance and interpretability.
However, like any study, our proposed approach is not

without limitation. First, our architecture should be used
in datasets with less than a thousand attributes because it
builds a tree for each attribute. Building thousands of trees
is time-consuming, although this limitation may be over-
come with access to better computing resources. Second,
our proposal may fail to build decision trees for attributes
with tens of different values in the definition domain. In
the near future, our plan is to extend our proposal to
work simultaneously with categorical and numerical data.
Furthermore, we plan to train the weights of the anomaly
detector using stochastic gradient descent.

ACKNOWLEDGMENTS

This work is partly supported by the National Council
of Science and Technology of Mexico under the scholar-
ship grant 1006864. The authors also thank Drs. Bárbara
Cervantes, Raúl Monroy, Jose E. Ramirez-Marquez, and
Aythami Morales-Moreno because our discussions moti-
vated this study.

REFERENCES

[1] A. George, Z. Mostaani, D. Geissenbuhler, O. Nikisins, A. Anjos,
and S. Marcel, “Biometric face presentation attack detection with
multi-channel convolutional neural network,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 42–55, 2020.

[2] H. Chen, G. Hu, Z. Lei, Y. Chen, N. M. Robertson, and S. Z.
Li, “Attention-based two-stream convolutional networks for face
spoofing detection,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 578–593, 2020.

[3] A. Genovese, V. Piuri, K. N. Plataniotis, and F. Scotti, “Palmnet:
Gabor-pca convolutional networks for touchless palmprint recog-
nition,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 12, pp. 3160–3174, 2019.

[4] H. Shi, Y. Zhang, Z. Zhang, N. Ma, X. Zhao, Y. Gao, and J. Sun,
“Hypergraph-induced convolutional networks for visual classifi-
cation,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 10, pp. 2963–2972, Oct 2019.

[5] F. Liu, L. Jiao, and X. Tang, “Task-oriented gan for polsar image
classification and clustering,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 9, pp. 2707–2719, Sep. 2019.

[6] Z. Gao, X. Wang, Y. Yang, C. Mu, Q. Cai, W. Dang, and S. Zuo,
“Eeg-based spatio–temporal convolutional neural network for
driver fatigue evaluation,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 9, pp. 2755–2763, Sep. 2019.

[7] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with
deep learning: A review,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 11, pp. 3212–3232, Nov 2019.

[8] Y. Chen, J. Wang, B. Zhu, M. Tang, and H. Lu, “Pixelwise deep
sequence learning for moving object detection,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 29, no. 9, pp. 2567–
2579, 2019.

[9] J. Song, Y. Guo, L. Gao, X. Li, A. Hanjalic, and H. T. Shen, “From
deterministic to generative: Multimodal stochastic rnns for video
captioning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 30, no. 10, pp. 3047–3058, Oct 2019.

[10] H. Kwon, Y. Kim, H. Yoon, and D. Choi, “Selective audio adver-
sarial example in evasion attack on speech recognition system,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
526–538, 2020.

[11] L. Wen, L. Gao, and X. Li, “A new deep transfer learning based
on sparse auto-encoder for fault diagnosis,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 49, no. 1, pp. 136–144,
2019.

[12] C. Rudin, “Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead,”
Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[13] O. Loyola-González, “Black-box vs. white-box: Understanding
their advantages and weaknesses from a practical point of view,”
IEEE Access, vol. 7, pp. 154 096–154 113, 2019.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

11

[14] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang,
S. Ippolito, and O. Kavehei, “Convolutional neural networks for
seizure prediction using intracranial and scalp electroencephalo-
gram,” Neural Networks, vol. 105, pp. 104 – 111, 2018.

[15] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Ka-
gal, “Explaining explanations: An overview of interpretability of
machine learning,” in 2018 IEEE 5th International Conference on Data
Science and Advanced Analytics (DSAA), 2018, pp. 80–89.

[16] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box
models,” ACM Comput. Surv., vol. 51, no. 5, pp. 93:1–93:42, 2018.

[17] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” ArXiv, vol. abs/1702.08608, 2017.

[18] J. Pereira and M. Silveira, “Learning representations from health-
care time series data for unsupervised anomaly detection,” in
2019 IEEE International Conference on Big Data and Smart Computing
(BigComp), 2019, pp. 1–7.

[19] B. Wang, D. Liu, X. Peng, and Z. Wang, “Data-driven anomaly
detection of uav based on multimodal regression model,” in
2019 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), 2019, pp. 1–6.

[20] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.

[21] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detec-
tion techniques: A survey,” IEEE Access, vol. 7, pp. 107 964–108 000,
2019.

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, pp. 3371–3408, 2010.

[23] A. Shrestha and A. Mahmood, “Review of deep learning algo-
rithms and architectures,” IEEE Access, vol. 7, pp. 53 040–53 065,
2019.

[24] O. Irsoy and E. Alpaydin, “Autoencoder trees,” ArXiv, vol.
abs/1409.7461, 2015.

[25] J. Feng and Z.-H. Zhou, “Autoencoder by forest,” ArXiv, vol.
abs/1709.09018, 2018.

[26] Y. Yang, I. G. Morillo, and T. M. Hospedales, “Deep neural decision
trees,” ArXiv, vol. abs/1806.06988, 2018.

[27] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, Jul.
2001.

[28] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, Dec 2008, pp. 413–
422.

[29] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
Identifying density-based local outliers,” SIGMOD Rec., vol. 29,
no. 2, p. 93–104, 2000.

[30] P. Rousseeuw and K. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, pp. 212–
223, 1999.

[31] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust
you?”: Explaining the predictions of any classifier,” in Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. ACM, 2016, pp. 1135–
1144.

[32] J. R. Zilke, E. Loza Mencı́a, and F. Janssen, “Deepred – rule extrac-
tion from deep neural networks,” in Discovery Science, T. Calders,
M. Ceci, and D. Malerba, Eds. Springer International Publishing,
2016, pp. 457–473.

[33] M. G. Augasta and T. Kathirvalavakumar, “Reverse engineering
the neural networks for rule extraction in classification problems,”
Neural Processing Letters, vol. 35, no. 2, pp. 131–150, 2012.

[34] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in 2017 IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 618–626.

[35] L. Oscar, L. Hao, C. Chaofan, and R. Cynthia, “Deep learning for
case-based reasoning through prototypes: A neural network that
explains its predictions,” in Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, 2018, pp.
3530–3537.

[36] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural
networks for computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning,” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1285–1298, 2016.

[37] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,”
2015. [Online]. Available: https://arxiv.org/abs/1506.06579

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention
is all you need,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran
Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[39] Q. Zhang, Y. N. Wu, and S. Zhu, “Interpretable convolutional
neural networks,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8827–8836.

[40] A. Kanehira and T. Harada, “Learning to explain with comple-
mental examples,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[41] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and
L. Benini, “A semisupervised autoencoder-based approach for
anomaly detection in high performance computing systems,”
Eng. Appl. of AI, vol. 85, pp. 634–644, 2019. [Online]. Available:
https://doi.org/10.1016/j.engappai.2019.07.008

[42] Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary set
variational autoencoder for supervised anomaly detection,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 2366–2370.

[43] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study
of categorical variable encoding techniques for neural network
classifiers,” International Journal of Computer Applications, vol. 175,
no. 4, pp. 7–9, 2017.

[44] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier,
and A. Maida, “Deep learning in spiking neural networks,”
Neural Networks, vol. 111, pp. 47 – 63, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018303332

[45] S. Yu and J. C. Prı́ncipe, “Understanding autoencoders
with information theoretic concepts,” Neural Networks,
vol. 117, pp. 104 – 123, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608019301352

[46] C. Guo and F. Berkhahn, “Entity embeddings of categorical
variables,” CoRR, vol. abs/1604.06737, 2016. [Online]. Available:
http://arxiv.org/abs/1604.06737

[47] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, Jun. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.patrec.2005.10.010

[48] D. Dua and C. Graff, “UCI machine learning repository,” 2019.
[Online]. Available: http://archive.ics.uci.edu/ml

[49] O. Loyola-González, J. F. Martı́nez-Trinidad, J. A. Carrasco-Ochoa,
and M. Garcı́a-Borroto, “Cost-Sensitive Pattern-Based classifica-
tion for Class Imbalance problems,” IEEE Access, vol. 7, no. 1, pp.
60 411–60 427, 2019.

[50] K. Guo, D. Liu, Y. Peng, and X. Peng, “Data-driven anomaly detec-
tion using ocsvm with boundary optimzation,” in 2018 Prognostics
and System Health Management Conference (PHM-Chongqing), Oct
2018, pp. 244–248.

[51] G. A. Susto, A. Beghi, and S. McLoone, “Anomaly detection
through on-line isolation forest: An application to plasma etch-
ing,” in 2017 28th Annual SEMI Advanced Semiconductor Manufac-
turing Conference (ASMC), May 2017, pp. 89–94.

[52] J. G. Moreno-Torres, J. A. Saez, and F. Herrera, “Study on
the Impact of Partition-Induced Dataset Shift on k-Fold Cross-
Validation,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 8, pp. 1304–1312, Aug. 2012.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[54] W. Zhang, T. Du, and J. Wang, “Deep learning over multi-field
categorical data,” in Advances in Information Retrieval, N. Ferro,
F. Crestani, M.-F. Moens, J. Mothe, F. Silvestri, G. M. Di Nunzio,
C. Hauff, and G. Silvello, Eds. Cham: Springer International
Publishing, 2016, pp. 45–57.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1506.06579
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1016/j.engappai.2019.07.008
http://www.sciencedirect.com/science/article/pii/S0893608018303332
http://www.sciencedirect.com/science/article/pii/S0893608019301352
http://arxiv.org/abs/1604.06737
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://archive.ics.uci.edu/ml

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3148331, IEEE
Transactions on Dependable and Secure Computing

12

[55] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for
time series with recurrent autoencoder ensembles,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial In-
telligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 2019, pp. 2725–2732.

[56] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” Knowledge and Data Engineering, IEEE Trans-
actions on, vol. 17, no. 3, pp. 299–310, Mar. 2005.

[57] N. Japkowicz, “Assessment Metrics for Imbalanced Learning,”
in Imbalanced Learning: Foundations, Algorithms, and Applications,
H. He and Y. Ma, Eds. John Wiley & Sons,
Inc., 2013, ch. 8, pp. 187–206. [Online]. Available:
http://dx.doi.org/10.1002/9781118646106.ch8

[58] H. He and E. A. Garcia, “Learning from imbal-
anced data,” IEEE Trans. on Knowl. and Data Eng., vol. 21,
no. 9, pp. 1263–1284, Sep. 2009. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2008.239

[59] J. Davis and M. Goadrich, “The relationship between precision-
recall and roc curves,” in Proceedings of the 23rd International
Conference on Machine Learning, ser. ICML ’06. Association for
Computing Machinery, 2006, p. 233–240.

[60] K. Boyd, K. H. Eng, and D. Page, “Area under the precision-recall
curve: Point estimates and confidence intervals,” in ECML/PKDD,
2013.

[61] L. Cañete-Sifuentes, R. Monroy, M. A. Medina-Pérez, O. Loyola-
González, and F. Vera Voronisky, “Classification Based on Multi-
variate Contrast Patterns,” IEEE Access, vol. 7, no. 1, pp. 55 744–
55 762, 2019.

[62] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms,”
Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

Diana Laura Aguilar received a BSc degree in Bionics Engineering
from the National Polytechnic Institute, México, in 2019, and an MSc de-
gree in Computer Science at Tecnologico de Monterrey, Campus Estado
de México in 2021. She has worked as a data engineer and is currently
working as an IT project coordinator at a multinational company. She is a
machine learning enthusiast and her research focuses on interpretable
models.

Miguel Angel Medina-Pérez received a Ph.D. in Computer Science
from the National Institute of Astrophysics, Optics, and Electronics,
Mexico, in 2014. He is currently an Artificial Intelligence Manager at
Altair Management Consultants. He has rank 1 in the Mexican Research
System. He has published in “Information Fusion,” “IEEE Transactions
on Affective Computing,” “Pattern Recognition,” “IEEE Transactions on
Information Forensics and Security,” “Knowledge-Based Systems,” “In-
formation Sciences,” “Expert Systems with Applications,” etc. He has
extensive experience developing software to solve Pattern Recognition
problems. A successful example is a fingerprint and palmprint recogni-
tion framework, which has more than 1.3 million visits and 135 thousand
downloads.

Octavio Loyola-González received his B.Eng. in Informatics Engineer-
ing in 2010 and his M.Sc. degree in Applied Informatics in 2012, both
from University of Ciego de Ávila. After, he received his PhD degree
in Computer Science from the National Institute for Astrophysics, Op-
tics and Electronics, Mexico, in 2017. He received the Best Thesis
Award ”José Negrete” for the Doctoral Thesis Category on Artificial
Intelligence sponsored by the Mexican Society for Artificial Intelligence
(SMIA). Prizewinner in the XXXI National Contest of Computer Science
Thesis (ANIEI). Prizewinner to the best PhD Thesis in the Computer
Science Coordination at National Institute of Astrophysics, Optics and
Electronics. Currently, he is an Artificial Intelligence Manager at Altair
Management Consultants. Also, he is a member of the GIEE-ML (Ma-
chine Learning) research group at the Tecnologico de Monterrey, and
the GIARP Group. These groups are devoted to research on pattern
recognition, where we have developed a fingerprint verification frame-
work and a data mining framework. Currently, he is a Member of the
Mexican Researchers System (Rank 1).

Kim-Kwang Raymond Choo (Senior Member, IEEE) received the
Ph.D. in Information Security in 2006 from Queensland University of
Technology, Australia, in 2006. He currently holds the Cloud Technology
Endowed Professorship at The University of Texas at San Antonio. He
is the founding co-Editor-in-Chief of ACM Distributed Ledger Technolo-
gies: Research & Practice, founding Chair of IEEE TEMS Technical
Committee on Blockchain and Distributed Ledger Technologies, an ACM
Distinguished Speaker and IEEE Computer Society Distinguished Vis-
itor (2021 - 2023), and a Web of Science’s Highly Cited Researcher
(Computer Science – 2021, Cross-Field – 2020). He is the recipient
of the 2019 IEEE Technical Committee on Scalable Computing Award
for Excellence in Scalable Computing (Middle Career Researcher), the
British Computer Society’s 2019 Wilkes Award Runner-up, the Fulbright
Scholarship in 2009, the 2008 Australia Day Achievement Medallion,
and the British Computer Society’s Wilkes Award in 2008. He has also
received best paper awards from IEEE Systems Journal in 2021, IEEE
Computer Society’s Bio-Inspired Computing Special Technical Com-
mittee Outstanding Paper Award for 2021, 2021 IEEE Conference on
Dependable and Secure Computing, IEEE Consumer Electronics Mag-
azine for 2020, Journal of Network and Computer Applications for 2020,
EURASIP Journal on Wireless Communications and Networking in
2019, IEEE TrustCom 2018, and ESORICS 2015; the IEEE Blockchain
2019 Outstanding Paper Award; and Best Student Paper Awards from
Inscrypt 2019 and ACISP 2005. He has received the Outstanding Editor
Award for 2021 from Future Generation Computer Systems.

Edoardo Bucheli-Susarrey was born in Saltillo, Mexico, in 1992. He
received a B.S. in sound engineering from Tecnologico de Monterrey,
Campus Santa Fe, in Mexico City in 2015, and an MSc in Computer
Science from Tecnologico de Monterrey Campus Estado de Mexico in
the State of Mexico in 2019. He has worked as a professional musician
and sound engineer and as a teacher in Mathematics and Information
Technologies. His research interests lie at the intersection of Signal
Processing, Feature Engineering, and Machine Learning. His recently
finished Master’s thesis is related to feature extraction techniques for
audio classification using Fourier and Deep Learning Methods.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 09,2022 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1002/9781118646106.ch8
http://dx.doi.org/10.1109/TKDE.2008.239

