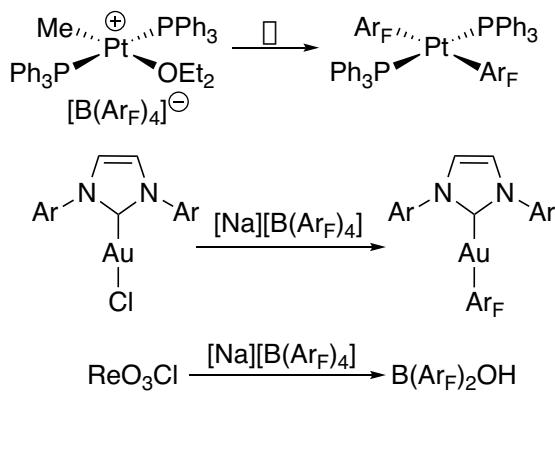
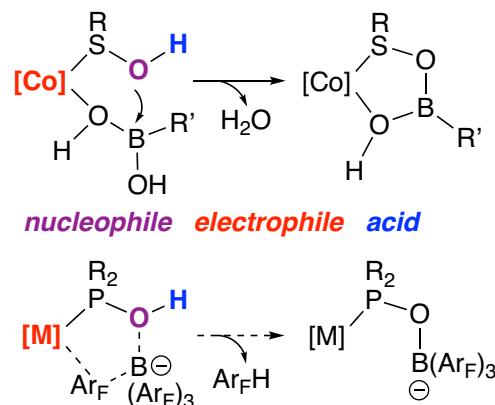


Protonolysis of the $[\text{B}(\text{Ar}_F)_4]^-$ Anion Mediated by Nucleophile/Electrophile/Water Cooperativity in a Platinum- PMe_2OH Complex


Jorge A. Garduño,^a David S. Glueck,^{a*} Ritchie E. Hernandez,^b Joshua S. Figueroa,^b and Arnold L. Rheingold^b

^a 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States ^b Department of Chemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States

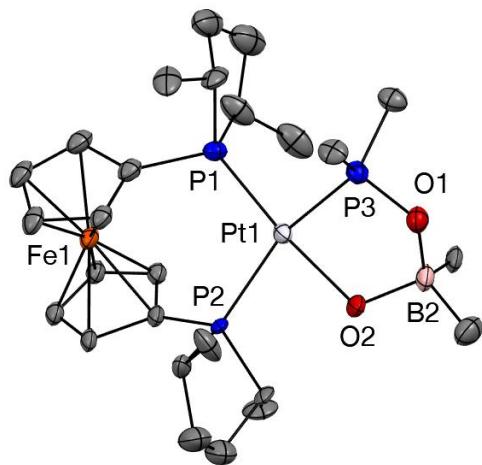
ABSTRACT: The weakly coordinating fluorinated tetraarylborate anion $[\text{B}(\text{Ar}_F)_4]^-$ ($\text{Ar}_F = 3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3$), routinely used to stabilize highly electrophilic cations, is prized for its resistance to decomposition; B–C cleavage requires extremely strong acids. However, cooperation between an electrophilic Pt dication, a nucleophilic PMe_2OH ligand, and the weak acid water resulted in protonolysis of three $[\text{B}(\text{Ar}_F)_4]^-$ B–C bonds at room temperature. Treatment of $[\text{Pt}((R,R)\text{-Me-FerroLANE})(\text{PMe}_2\text{OH})][\text{OTf}]_2$ (**2**) with water and two equiv of $[\text{Na}][\text{B}(\text{Ar}_F)_4]$ gave three equiv of the arene Ar_FH and the metallacycle $[\text{Pt}((R,R)\text{-Me-FerroLANE})(\text{PMe}_2\text{OB}(\text{Ar}_F)\text{O})][\text{B}(\text{Ar}_F)_4]$ (**4**), via the isolated intermediate metallacycle $[\text{Pt}((R,R)\text{-Me-FerroLANE})(\text{PMe}_2\text{OB}(\text{Ar}_F)_2\text{OH})][\text{B}(\text{Ar}_F)_4]$ (**3**).


Weakly coordinating fluorinated tetraarylborate anions such as $[\text{B}(\text{Ar}_F)_4]^-$ ($\text{Ar}_F = 3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3$) and $[\text{B}(\text{C}_6\text{F}_5)_4]^-$ are routinely used to stabilize highly electrophilic cations in stoichiometric reactions and in catalysis.¹ Unlike BF_4^- and BPh_4^- , which often decompose by B–F or B–C cleavage, these anions are remarkably robust.² For example, $[\text{Na}][\text{B}(\text{Ar}_F)_4]$ did not react with sulfuric acid in methanol even after refluxing for 7 d,³ and although the oxonium superacid $[\text{H}(\text{OEt}_2)_2][\text{B}(\text{Ar}_F)_4]$ decomposed in CD_2Cl_2 to Ar_FH and the borane $\text{B}(\text{Ar}_F)_3$, the process was slow, with a half-life of about 20 h.⁴ Electrophilic metal complexes can also break one or two B–C bonds in $[\text{B}(\text{Ar}_F)_4]^-$, as observed with platinum⁵ or gold cations⁶ (Scheme 1).⁷ In an example with rhenium, water was proposed to be the source of the B–OH product.⁸

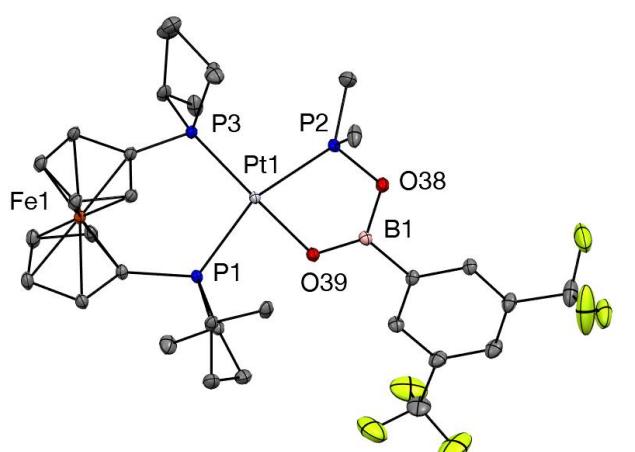
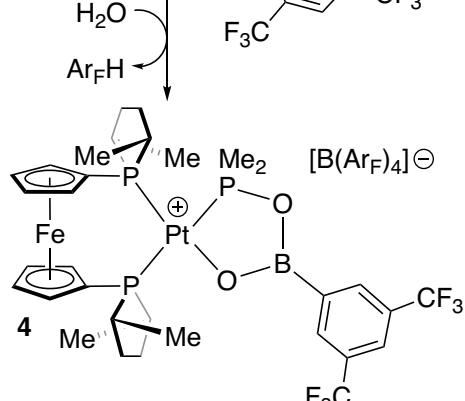
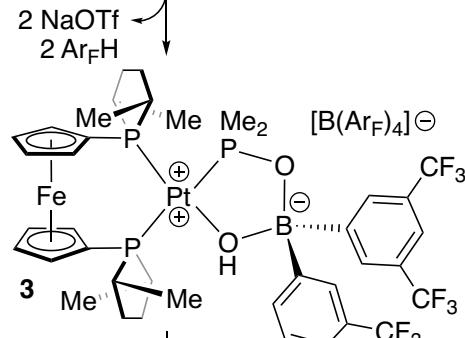
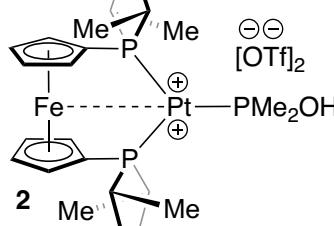
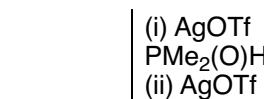
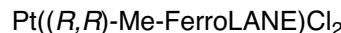
Scheme 1. $[\text{B}(\text{Ar}_F)_4]^-$ B–C Cleavage by Electrophilic Metal Complexes

We hypothesized that repeated B–C cleavage would occur if boron could be tethered to an electrophilic metal complex via a ligand bearing a pendant nucleophile, so that B–C activation processes would be intramolecular.⁹ This strategy was inspired by the use of boronic acids as competitive inhibitors of the enzyme nitrile hydratase, where B–OH coordination to Lewis acidic Co promotes nucleophilic attack of a sulfenic acid ligand at boron and metallacycle formation with loss of water (Scheme 2).¹⁰ The mechanistic similarity between these enzymes and synthetic nitrile hydration catalysts containing phosphinous acid (PR_2OH) ligands suggested that B–C cleavage and protonolysis of $[\text{B}(\text{Ar}_F)_4]^-$ might occur via similar nucleophile/electrophile/acid cooperation, and the anchored $\text{B}(\text{Ar}_F)_3$ group would then be available for further metal-mediated hydrolysis.¹¹

Scheme 2. Proposed Mechanism of Inhibition of Nitrile Hydratase by Boronic Acids (above), and the Potential for Analogous Cooperative Reactivity by Precursors for Metal-Catalyzed Nitrile Hydration (below)

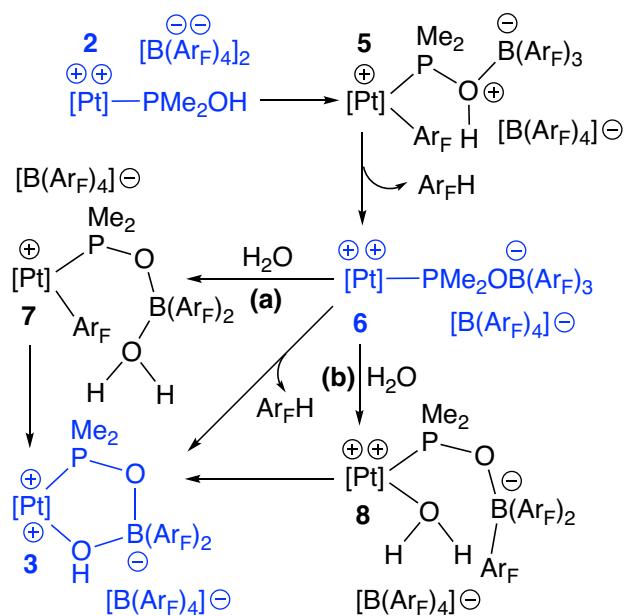

We report here that this approach led to Pt-mediated $[\text{B}(\text{Ar}_F)_4]^-$ protonolysis under mild conditions at room temperature with cleavage of three B–C bonds to yield the arene Ar_FH . NMR monitoring of these reactions and the isolation of intermediate and product metallacycles with two or one remaining B–Ar_F groups provided mechanistic information and highlighted the cooperative action of the P–O nucleophile, the Pt electrophile, and water.¹²

Sequential treatment of $\text{Pt}((R,R)\text{-Me-FerroLANE})\text{Cl}_2$ with silver triflate and dimethylphosphine oxide,¹³ then more AgOTf, gave formally three-coordinate dication **2** (Scheme 3), which we are investigating as a catalyst for enantioselective nitrile hydration.¹⁴ As in related complexes, $\text{Fe} \rightarrow \text{Pt}$ donation in **2** was evident from NMR spectroscopy.¹⁵







Ion exchange of sparingly soluble **2**[OTf]₂ with [Li][B(C₆F₅)₄] generated the highly soluble borate salt **2**[B(C₆F₅)₄]. In contrast, treatment of **2**[OTf]₂ with two equiv of [Na][B(Ar_F)₄] resulted in formation of three equiv of the arene Ar_FH, observed by ¹H and ¹⁹F NMR spectroscopy, and metallacycle **4** (Scheme 3). Adding water was not required; residual water in the solvent (CD₂Cl₂ or C₂D₂Cl₄) or in commercial [Na][B(Ar_F)₄]•xH₂O (x ~ 2.5) was sufficient to promote this process.¹⁶ Treatment with water, stirring the mixture, or heating accelerated the process. For example, reaction of a CH₂Cl₂ suspension of **2**[OTf]₂ with two equiv of undried [Na][B(Ar_F)₄] and 9 equiv of water at room temperature in air gave **4** after stirring overnight. Instead, drying the solvent and [Na][B(Ar_F)₄] enabled observation and isolation of an intermediate zwitterionic metallacycle **3**.^{17,18}

Multinuclear NMR spectroscopy showed that complex **3** contained two inequivalent BAr_F substituents and an OH group (¹H NMR (CD₂Cl₂): δ 2.84; IR (KBr): 3579 cm⁻¹) which exchanged with D₂O,^{18a} with ¹¹B NMR signals for the [B(Ar_F)₄]⁻ anion (sharp, δ –6.6) and the metallacyclic borate (broad, δ 9.5).¹⁹ The ³¹P{¹H} NMR spectrum included signals for the *trans* Me-FerroLANE and PMe₂O groups ($J_{\text{PP}} = 357$ Hz), while the large $J_{\text{Pt-P}}$ coupling (3826 Hz) for the other Me-FerroLANE ³¹P nucleus was consistent with the weak *trans* influence of the OH-B ligand.²⁰ Complex **3** underwent further B–C cleavage in the presence of water with formation of Ar_FH and metallacycle **4**, whose NMR and IR spectra were similar to those of **3**, but indicated that there was only one remaining B–Ar_F group and no B–OH.²¹ The Ar_FBO₂ three-coordination was consistent with the ¹¹B NMR spectrum of the cation (broad, δ 32.0).²² The structures of **3** and **4** were confirmed by X-ray crystallography (Figure 1). The PtPOBO metallacycle structure was similar in both complexes, with distorted square planar Pt, and tetrahedral and trigonal planar geometry at B in **3** and **4**, respectively (see Table S22 in the SI for selected bond lengths and angles).

Figure 1. ORTEP diagrams of the cations in **3** (left) and **4** (right), showing only the ipso Ar_F carbons in **3**, with disorder omitted.



Scheme 3. Pt-Mediated Protonolysis of the $[\text{B}(\text{Ar}_F)_4]^-$ Anion

Scheme 4 shows a possible protonolysis mechanism for conversion of **2** to **3**, with observed or isolated species in blue and proposed intermediates in black. After triflate/borate anion exchange, B–C cleavage by dication **2**, as in Scheme 1, yields a Pt–Ar_F group in **5**. O-coordination of the resulting borane acidifies the P–OH group, which protonates the Pt–aryl to yield Ar_FH and “three-coordinate” **6**, an analog of **2** which could also be stabilized by Fe→Pt donation. Consistent with this idea, the ³¹P{¹H} NMR spectrum of intermediate **6**, observed under low-water conditions, was similar to that of **2**.²³ Further B–C cleavage and hydrolysis could occur by two possible cooperative mechanisms (Scheme 4): (a) transmetalation of the pendant B–Ar_F group to Pt, followed by protonolysis mediated by B-coordinated water in **7**,²⁴ or (b) B–Ar_F protodeboronation²⁵ by acidic Pt-bound H₂O in **8**.²⁶ Further studies will be required to investigate these possibilities, their role in conversion of **3** to **4**, and the generality of the metal-mediated borate protonolysis.

Scheme 4. Possible Mechanisms of Pt-Mediated [B(Ar_F)₄][−] Protonolysis of **2** to **3** via Observed Intermediate **6** (blue) and Proposed Intermediates **5** and **7–8** (black)^a

^a [Pt] = Pt((*R,R*)-Me-FerroLANE)

Although the [B(Ar_F)₄][−] anion is extremely resistant to protonolysis and stabilizes reactive electrophilic cations, these results show that a dicationic Pt electrophile bearing a nucleophilic P–OH group can act cooperatively with the weak acid water to cleave three B–C bonds under mild conditions at room temperature. Such cooperative reactivity of metal-hydroxyphosphine complexes is also valuable in nitrile hydration catalysis,¹¹ and its further development may offer a general approach to stoichiometric and catalytic activation of normally unreactive substrates.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures and characterization data (PDF)

X-ray crystallography data (CIF)

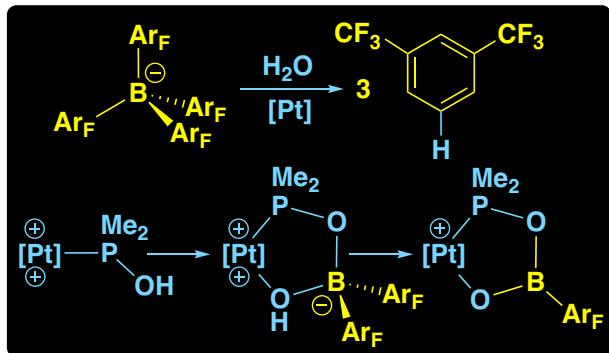
AUTHOR INFORMATION

Corresponding Author

* glueck@dartmouth.edu

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.


Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the American Chemical Society Petroleum Research Fund (60035-ND3) and the National Science Foundation (CHE-1954412) for support.

REFERENCES

- (a) Krossing, I.; Raabe, I. Noncoordinating Anions - Fact or Fiction? A Survey of Likely Candidates. *Angew. Chem. Int. Ed.* **2004**, *43*, 2066-2090. (b) Riddlestone, I. M.; Kraft, A.; Schaefer, J.; Krossing, I. Taming the Cationic Beast: Novel Developments in the Synthesis and Application of Weakly Coordinating Anions. *Angew. Chem. Int. Ed.* **2018**, *57*, 13982-14024.
- (a) Chen, E. Y. X.; Lancaster, S. J. 1.24 - Weakly Coordinating Anions: Highly Fluorinated Borates. In *Comprehensive Inorganic Chemistry II (Second Edition)*, Reedijk, J.; Poeppelmeier, K., Eds. Elsevier: Amsterdam, 2013; pp 707-754. (b) Martínez-Martínez, A. J.; Weller, A. S. Solvent-free anhydrous Li⁺, Na⁺ and K⁺ salts of [B(3,5-(CF₃)₂C₆H₃)₄]⁻, [BAr^F₄]⁻. Improved synthesis and solid-state structures. *Dalton Trans.* **2019**, *48*, 3551-3554.
- (a) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Highly Lipophilic Stable Anionic Agent for Solvent-extraction of Cations. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2600-2604. (b) Kobayashi, H.; Sonoda, T.; Iwamoto, H.; Yoshimura, M. Tetrakis[3,5-Di-(F-Methyl)phenyl]borate as the First Efficient Negatively Charged Phase Transfer Catalyst. Kinetic Evidences. *Chem. Lett.* **1981**, *10*, 579-580.
- Brookhart, M.; Grant, B.; Volpe Jr., A. F. [(3,5-(CF₃)₂C₆H₃)₄B]⁻[H(OEt₂)₂]⁺: A Convenient Reagent for Generation and Stabilization of Cationic, Highly Electrophilic Organometallic Complexes. *Organometallics* **1992**, *11*, 3920-3922.
- Konze, W. V.; Scott, B. L.; Kubas, G. J. First example of B-C bond cleavage in the BAr_F (B[C₆H₃(CF₃)₂-3,5]4) anion mediated by a transition metal species, *trans*-[(Ph₃P)₂Pt(Me)(OEt₂)]⁺. *Chem. Commun.* **1999**, 1807-1808.
- Weber, S. G.; Zahner, D.; Rominger, F.; Straub, B. F. A cationic gold complex cleaves BArF₂₄. *Chem. Commun.* **2012**, *48*, 11325-11327.
- Other examples with different metals include: (a) (Rh) Salem, H.; Shimon, L. J. W.; Leitus, G.; Weiner, L.; Milstein, D. B-C Bond Cleavage of BAr_F Anion Upon Oxidation of Rhodium(I) with AgBAr_F. Phosphinite Rhodium(I), Rhodium(II), and Rhodium(III) Pincer Complexes. *Organometallics* **2008**, *27*, 2293-2299. (b) (Cu/Pt) Deolka, S.; Rivada-Wheelaghan, O.; Aristizábal, S. L.; Fayzullin, R. R.; Pal, S.; Nozaki, K.; Khaskin, E.; Khusnudinova, J. R. Metal-metal cooperative bond activation by heterobimetallic alkyl, aryl, and acetylidy Pt^{II}/Cu^I complexes. *Chem. Sci.* **2020**, *11*, 5494-5502. (c) (Pt) Kuo, Y.-Y.; Da Costa, R. C.; Sparkes, H. A.; Haddow, M. F.; Owen, G. R. Palladium and Platinum Complexes Containing Diphenyl-2-(3-methyl)indolylphosphine. *Eur. J. Inorg. Chem.* **2020**, *2020*, 4195-4202. (d) (Cu) Ziegler, M. S.; Levine, D. S.; Lakshmi, K. V.; Tilley, T. D. Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ -Aryl Dicopper(I,II) Complexes. *J. Am. Chem. Soc.* **2016**, *138*, 6484-6491.
- Lai, Y.-Y.; Bornand, M.; Chen, P. Homogeneous Model Complexes for Supported Rhenia Metathesis Catalysts. *Organometallics* **2012**, *31*, 7558-7565.
- For B-C cleavage in metal-coordinated O-B(C₆F₅)₃ groups, see: (a) Bell, N. L.; Shaw, B.; Arnold, P. L.; Love, J. B. Uranyl to Uranium(IV) Conversion through Manipulation of Axial and Equatorial Ligands. *J. Am. Chem. Soc.* **2018**, *140*, 3378-3384. (b) Neculai, A.-M.; Cummins, C. C.; Neculai, D.; Roesky, H. W.; Bunkóczki, G.; Walforth, B.; Stalke, D. Elucidation of a Sc(I) Complex by DFT Calculations and Reactivity Studies. *Inorg. Chem.* **2003**, *42*, 8803-8810. (c) Neculai, D.; Roesky, H. W.; Neculai, A. M.; Magull, J.; Walforth, B.; Stalke, D. Formation and Characterization of the First Monoalumoxane, LAIO•B(C₆F₅)₃. *Angew. Chem. Int. Ed.* **2002**, *41*, 4294-4296. (d) For intramolecular protonolysis of a B-C₆F₅ group by a P-OH acid, see: Kather, R.; Rychagova, E.; Sanz Camacho, P.; Ashbrook, S. E.; Woollins, J. D.; Robben, L.; Lork, E.; Ketkov, S.; Beckmann, J. Increasing the Brønsted acidity of Ph₂PO₂H by the Lewis acid B(C₆F₅)₃. Formation of an eight-membered boraphosphinate ring [Ph₂POB(C₆F₅)₂O]₂. *Chem. Commun.* **2016**, *52*, 10992-10995.
- Martinez, S.; Wu, R.; Sanishvili, R.; Liu, D.; Holz, R. The Active Site Sulfenic Acid Ligand in Nitrile Hydratases Can Function as a Nucleophile. *J. Am. Chem. Soc.* **2014**, *136*, 1186-1189.
- Glueck, D. S. Intramolecular Attack on Coordinated Nitriles: Metallacycle Intermediates in Catalytic Hydration and Beyond. *Dalton Trans.* **2021**, *50*, 15953-15960.

12. van Leeuwen, P. W. N. M.; Cano, I.; Freixa, Z. Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis. *Chem-CatChem* **2020**, *12*, 3982-3994.

13. The cation $[\text{Pt}((R,R)\text{-Me-FerroLANE})(\text{PMMe}_2\text{OH})(\text{Cl})][\text{OTf}]$ (**1**) was generated previously, but not characterized, in high-throughput screening of catalyst precursors for nitrile hydration. Xing, X.; Xu, C.; Chen, B.; Li, C.; Virgil, S. C.; Grubbs, R. H. Highly Active Platinum Catalysts for Nitrile and Cyanohydrin Hydration: Catalyst Design and Ligand Screening via High-Throughput Techniques. *J. Am. Chem. Soc.* **2018**, *140*, 17782-17789.

14. (a) Gulyas, H.; Rivilla, I.; Curreli, S.; Freixa, Z.; van Leeuwen, P. W. N. M. Highly active, chemo- and enantioselective Pt-SPO catalytic systems for the synthesis of aromatic carboxamides. *Catal. Sci. Technol.* **2015**, *5*, 3822-3828. (b) Tao, J.; Liu, J.; Chen, Z. Some Recent Examples in Developing Biocatalytic Pharmaceutical Processes. In *Asymmetric Catalysis on Industrial Scale*, Wiley-VCH Verlag GmbH & Co. KGaA: 2010; pp 1-12.

15. (a) Li, C.; Chang, X.-Y.; Huo, L.; Tan, H.; Xing, X.; Xu, C. Hydration of Cyanohydrins by Highly Active Cationic Pt Catalysts: Mechanism and Scope. *ACS Catal.* **2021**, *11*, 8716-8726. (b) Oberhauser, W. Monophosphite coordination and hydrolysis by Pt(II) bearing 1,1'-bis(di(o-methoxyphenyl)phosphanyl)ferrocene. *Inorg. Chim. Acta* **2020**, *511*, 119844. (c) Cabrera, K. D.; Rowland, A. T.; Szarko, J. M.; Diaconescu, P. L.; Bezpalko, M. W.; Kassel, W. S.; Nataro, C. Monodentate phosphine substitution in $[\text{Pd}(\kappa^3\text{-dppf})(\text{PR}_3)_2][\text{BF}_4]_2$ (dppf = 1,1'-bis(diphenylphosphino)ferrocene) compounds. *Dalton Trans.* **2017**, *46*, 5702-5710. (d) Sato, M.; Shigeta, H.; Sekino, M.; Akabori, S. Synthesis, some reactions, and molecular structure of the $\text{Pd}(\text{BF}_4)_2$ complex of 1,1'-bis(diphenylphosphino)ferrocene. *J. Organomet. Chem.* **1993**, *458*, 199-204.

16. Yakelis, N. A.; Bergman, R. G. Safe Preparation and Purification of Sodium Tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBArF_{24}): Reliable and Sensitive Analysis of Water in Solutions of Fluorinated Tetraarylborates. *Organometallics* **2005**, *24*, 3579-3581.

17. For analogous MPOBO metallacycles formed by $[\text{BF}_4]^-$ hydrolysis, see: (a) den Reijer, C. J.; Rüegger, H.; Pregosin, P. S. A New Phosphinite Chelate, $(\text{aryl})_2\text{POBF}_2\text{OH}$, Complexed to Ruthenium(II). HBF_4 -Induced P-C Bond Cleavage in Chiral MeO-Biphep Complexes. *Organometallics* **1998**, *17*, 5213-5215. (b) den Reijer, C. J.; Wörle, M.; Pregosin, P. S. P-C Bond Splitting Reactions in Ruthenium(II) Complexes of Binap and MeO-Biphep Using $\text{CF}_3\text{SO}_3\text{H}$ and HBF_4 . A Novel Ru-F-H Interaction. *Organometallics* **2000**, *19*, 309-316. (c) Geldbach, T. J.; Pregosin, P. S.; Rizzato, S.; Albinati, A. Structural studies on novel Ru(II)-Binap complexes. *Inorg. Chim. Acta* **2006**, *359*, 962-969.

18. Related Pt complexes of O-coordinated hydroxyborates are known. For $\text{HOB}(\text{C}_6\text{F}_5)_3$, see: (a) Hill, G. S.; Manojlovic-Muir, L.; Muir, K. W.; Puddephatt, R. J. Electrophilic Methylplatinum Complexes: First Structure of a Hydroxytris(pentafluorophenyl)borate Complex. *Organometallics* **1997**, *16*, 525-530. (b) Driver, T. G.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. Mechanism of C-H Bond Activation of Alkyl-Substituted Benzenes by Cationic Platinum(II) Complexes. *Organometallics* **2005**, *24*, 3644-3654. (c) Zhang, F.; Kirby, C. W.; Hairsine, D. W.; Jennings, M. C.; Puddephatt, R. J. Activation of C-H Bonds of Arenes: Selectivity and Reactivity in Bis(pyridyl) Platinum(II) Complexes. *J. Am. Chem. Soc.* **2005**, *127*, 14196-14197. For other examples, see: (d) Khaskin, E.; Zavalij, P. Y.; Vedernikov, A. N. Oxidatively Induced Methyl Transfer from Boron to Platinum in Dimethyldi(2-pyridyl)boratoplatinum Complexes. *Angew. Chem. Int. Ed.* **2007**, *46*, 6309-6312. (e) Latronico, M.; Mastorilli, P.; Gallo, V.; Dell'Anna, M. M.; Creati, F.; Re, N.; Englert, U. Hydrido Phosphanido Bridged Polynuclear Complexes Obtained by Protonation of a Phosphinito Bridged Pt(I) Complex with HBF_4 and HF. *Inorg. Chem.* **2011**, *50*, 3539-3558. (f) Barnett, B. R.; Moore, C. E.; Rheingold, A. L.; Figueiroa, J. S. Cooperative Transition Metal/Lewis Acid Bond-Activation Reactions by a Bidentate (Boryl)iminomethane Complex: A Significant Metal-Borane Interaction Promoted by a Small Bite-Angle LZ Chelate. *J. Am. Chem. Soc.* **2014**, *136*, 10262-10265.

19. Klis, T.; Libura, A.; Serwatowski, J. Formation of Arylboron Complexes from Arylmagnesium Reagents and Trialkoxyboranes. *Main Group Met. Chem.* **2002**, *25*, 479-484. For the borate $[\text{MgBr}][\text{Ar}_2\text{B}(\text{O}-i\text{-Pr})_2]$ ($\text{Ar} = 3\text{-CF}_3\text{-C}_6\text{H}_4$), a model for the $(\text{ArF})_2\text{BO}_2$ coordination in **3**, the ^{11}B NMR chemical shift was 6.5 ppm.

20. (a) Appleton, T. G.; Clark, H. C.; Manzer, L. E. The *trans*-influence: its measurement and significance. *Coord. Chem. Rev.* **1973**, *10*, 335-422. (b) Appleton, T. G.; Bennett, M. A. Preparation and Properties of Hydroxo(methyl)-1,2-bis(diphenylphosphino)ethaneplatinum(II). A Trans-influence Series Including σ Carbon Donor Ligands Based on Platinum-Phosphorus Coupling Constants. *Inorg. Chem.* **1978**, *17*, 738-747.

21. For related Pt-O-B groups in metallacycles or as terminal ligands, see: (a) Pantcheva, I.; Osakada, K. Synthesis and Reactivity of a Platinum(II) Complex with a Chelating Dehydro(arylboronic anhydride) Ligand. Transmetalation of Arylboronic Acid. *Organometallics* **2006**, *25*, 1735-1741. (b) Pantcheva, I.; Nishihara, Y.; Osakada, K. Arylplatinum Complexes with Arylboronate Ligands. Their Preparation, Structure, and Relevance to Transmetalation. *Organometallics* **2005**, *24*, 3815-3817. (c) Miyamoto, T.; Ichida, H. A Chelate Ring Structure of a Platinum(II) Diborate. *Chem. Lett.* **1991**, *20*, 435-436.

22. Murphy, J. M.; Tzschucke, C. C.; Hartwig, J. F. One-Pot Synthesis of Arylboronic Acids and Aryl Trifluoroborates by Ir-Catalyzed Borylation of Arenes. *Org. Lett.* **2007**, *9*, 757-760. For the boronic acid $\text{Ar}_2\text{B}(\text{OH})_2$, a model for the Ar_2BO_2 coordination in **4**, the ^{11}B NMR chemical shift was 28.6 ppm.

23. $^{31}\text{P}\{\text{H}\}$ NMR data in CD_2Cl_2 : For **2**, δ 86.7 (t, $J = 12$, $J_{\text{Pt-P}} = 4471$), 18.9 (d, $J = 12$, $J_{\text{Pt-P}} = 2239$). For proposed intermediate **6**, δ 68.9 (t, $J = 11$, $J_{\text{Pt-P}} = 4499$), 19.8 (d, $J = 11$, $J_{\text{Pt-P}} = 2341$). The ^{11}B NMR shift assigned to **6** (δ 5.8) is consistent with that of the model $\text{Et}_3\text{PO}-\text{B}(\text{ArF})_3$ (δ 4.3, Herrington, T. J.; Thom, A. J. W.; White, A. J. P.; Ashley, A. E. Novel H_2 activation by a tris[3,5-bis(trifluoromethyl)phenyl]borane frustrated Lewis pair. *Dalton Trans.* **2012**, *41*, 9019-9022.)

24. Danopoulos, A. A.; Galsworthy, J. R.; Green, M. L. H.; Doerrer, L. H.; Cafferkey, S.; Hursthouse, M. B. Equilibria in the $\text{B}(\text{C}_6\text{F}_5)_3$ - H_2O system: synthesis and crystal structures of $\text{H}_2\text{O}\bullet\text{B}(\text{C}_6\text{F}_5)_3$ and the anions $[\text{HOB}(\text{C}_6\text{F}_5)_3]^-$ and $[(\text{F}_5\text{C}_6)_3\text{B}(\mu\text{-OH})\text{B}(\text{C}_6\text{F}_5)_3]^-$. *Chem. Commun.* **1998**, 2529-2560.

25. Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH-Rate Profiles, Autocatalysis, and Disproportionation. *J. Am. Chem. Soc.* **2016**, *138*, 9145-9157.

26. Hughes, R. P.; Lindner, D. C.; Rheingold, A. L.; Liable-Sands, L. M. Facile Activation of Carbon-Fluorine Bonds in Saturated Fluoroalkyl Ligands by Coordinated Water in Fluoroalkyl Aqua Complexes of Rhodium. *J. Am. Chem. Soc.* **1997**, *119*, 11544-11545.