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ABSTRACT: The weakly coordinating fluorinated tetraarylborate anion [B(ArF)4]– (ArF = 3,5-(CF3)2C6H3), routinely used to stabilize highly 
electrophilic cations, is prized for its resistance to decomposition; B–C cleavage requires extremely strong acids. However, cooperation between 
an electrophilic Pt dication, a nucleophilic PMe2OH ligand, and the weak acid water resulted in protonolysis of three [B(ArF)4]– B–C bonds at 
room temperature. Treatment of [Pt((R,R)-Me-FerroLANE)(PMe2OH)][OTf]2 (2) with water and two equiv of [Na][B(ArF)4] gave three 
equiv of the arene ArFH and the metallacycle [Pt((R,R)-Me-FerroLANE)(PMe2OB(ArF)O)][B(ArF)4] (4), via the isolated intermediate metal-
lacycle [Pt((R,R)-Me-FerroLANE)(PMe2OB(ArF)2OH)][B(ArF)4] (3).   

Weakly coordinating fluorinated tetraarylborate anions such as 
[B(ArF)4]– (ArF = 3,5-(CF3)2C6H3) and [B(C6F5)4]– are routinely 
used to stabilize highly electrophilic cations in stoichiometric reac-
tions and in catalysis.1 Unlike BF4

– and BPh4
–, which often 

decompose by B–F or B–C cleavage, these anions are remarkably 
robust.2 For example, [Na][B(ArF)4] did not react with sulfuric acid 
in methanol even after refluxing for 7 d,3 and although the oxonium 
superacid [H(OEt2)2][B(ArF)4] decomposed in CD2Cl2 to ArFH 
and the borane B(ArF)3, the process was slow, with a half-life of about 
20 h.4 Electrophilic metal complexes can also break one or two B–C 
bonds in [B(ArF)4]–, as observed with platinum5 or gold cations6 
(Scheme 1).7  In an example with rhenium, water was proposed to 
be the source of the B–OH product.8 
 
Scheme 1. [B(ArF)4]– B–C Cleavage by Electrophilic Metal 
Complexes 
 

 
 

We hypothesized that repeated B–C cleavage would occur if boron 
could be tethered to an electrophilic metal complex via a ligand bear-
ing a pendant nucleophile, so that B–C activation processes would 
be intramolecular.9 This strategy was inspired by the use of boronic 
acids as competitive inhibitors of the enzyme nitrile hydratase, 
where B-OH coordination to Lewis acidic Co promotes nucleo-
philic attack of a sulfenic acid ligand at boron and metallacycle for-
mation with loss of water (Scheme 2).10 The mechanistic similarity 
between these enzymes and synthetic nitrile hydration catalysts con-
taining phosphinous acid (PR2OH) ligands suggested that B–C 
cleavage and protonolysis of [B(ArF)4]– might occur via similar nu-
cleophile/electrophile/acid cooperation, and the anchored B(ArF)3 
group would then be available for further metal-mediated hydroly-
sis.11  
 
Scheme 2. Proposed Mechanism of Inhibition of Nitrile Hydra-
tase by Boronic Acids (above), and the Potential for Analogous 
Cooperative Reactivity by Precursors for Metal-Catalyzed Ni-
trile Hydration (below) Pt
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We report here that this approach led to Pt-mediated [B(ArF)4]– 
protonolysis under mild conditions at room temperature with 
cleavage of three B–C bonds to yield the arene ArFH.  NMR mon-
itoring of these reactions and the isolation of intermediate and 
product metallacycles with two or one remaining B–ArF groups 
provided mechanistic information and highlighted the cooperative 
action of the P-O nucleophile, the Pt electrophile, and water.12 
Sequential treatment of Pt((R,R)-Me-FerroLANE)Cl2 with silver 
triflate and dimethylphosphine oxide,13 then more AgOTf, gave 
formally three-coordinate dication 2 (Scheme 3), which we are in-
vestigating as a catalyst for enantioselective nitrile hydration.14 As 
in related complexes, FeàPt donation in 2 was evident from 
NMR spectroscopy.15 
Ion exchange of sparingly soluble [2][OTf]2 with [Li][B(C6F5)4] 
generated the highly soluble borate salt [2][B(C6F5)4]. In contrast, 
treatment of [2][OTf]2 with two equiv of [Na][B(ArF)4] resulted 
in formation of three equiv of the arene ArFH, observed by 1H and 
19F NMR spectroscopy, and metallacycle 4 (Scheme 3). Adding 
water was not required; residual water in the solvent (CD2Cl2 or 
C2D2Cl4) or in commercial [Na][B(ArF)4]•xH2O (x ~ 2.5) was 
sufficient to promote this process.16 Treatment with water, stirring 
the mixture, or heating accelerated the process. For example, reac-
tion of a CH2Cl2 suspension of [2][OTf]2 with two equiv of 
undried [Na][B(ArF)4] and 9 equiv of water at room temperature 
in air gave 4 after stirring overnight. Instead, drying the solvent and 
[Na][B(ArF)4] enabled observation and isolation of an intermedi-
ate zwitterionic metallacycle 3.17,18 
Multinuclear NMR spectroscopy showed that complex 3 con-
tained two inequivalent BArF substituents and an OH group (1H 
NMR (CD2Cl2): d 2.84; IR(KBr): 3579 cm–1) which exchanged 
with D2O,18a with 11B NMR signals for the [B(ArF)4]– anion (sharp, 
d –6.6) and the metallacyclic borate (broad, d 9.5).19  The 31P{1H} 
NMR spectrum included signals for the trans Me-FerroLANE and 
PMe2O groups (JPP = 357 Hz), while the large JPt-P coupling (3826 
Hz) for the other Me-FerroLANE 31P nucleus was consistent with 
the weak trans influence of the OH-B ligand.20 Complex 3 under-
went further B–C cleavage in the presence of water with formation 
of ArFH and metallacycle 4, whose NMR and IR spectra were sim-
ilar to those of 3, but indicated that there was only one remaining 
B-ArF group and no B-OH.21 The ArFBO2 three-coordination was 
consistent with the 11B NMR spectrum of the cation (broad, d 
32.0).22 The structures of 3 and 4 were confirmed by X-ray crystal-
lography (Figure 1). The PtPOBO metallacycle structure was sim-
ilar in both complexes, with distorted square planar Pt, and tetra-
hedral and trigonal planar geometry at B in 3 and 4, respectively 
(see Table S22 in the SI for selected bond lengths and angles). 
 
Figure 1. ORTEP diagrams of the cations in 3 (left) and 4 (right), 
showing only the ipso ArF carbons in 3, with disorder omitted.  
 
 
 
 
 
 
 
 

 
Scheme 3. Pt-Mediated Protonolysis of the [B(ArF)4]– Anion 
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Scheme 4 shows a possible protonolysis mechanism for conver-
sion of 2 to 3, with observed or isolated species in blue and pro-
posed intermediates in black.  After triflate/borate anion exchange, 
B–C cleavage by dication 2, as in Scheme 1, yields a Pt-ArF group 
in 5. O-coordination of the resulting borane acidifies the P-OH 
group, which protonates the Pt-aryl to yield ArFH and “three-coor-
dinate” 6, an analog of 2 which could also be stabilized by FeàPt 
donation. Consistent with this idea, the 31P{1H} NMR spectrum of 
intermediate 6, observed under low-water conditions, was similar 
to that of 2.23 Further B–C cleavage and hydrolysis could occur by 
two possible cooperative mechanisms (Scheme 4): (a) transmeta-
lation of the pendant B-ArF group to Pt, followed by protonolysis 
mediated by B-coordinated water in 7,24 or (b) B-ArF protode-
boronation25 by acidic Pt-bound H2O in 8.26 Further studies will be 
required to investigate these possibilities, their role in conversion 
of 3 to 4, and the generality of the metal-mediated borate proto-
nolysis.  
 
Scheme 4. Possible Mechanisms of Pt-Mediated [B(ArF)4]– Pro-
tonolysis of 2 to 3 via Observed Intermediate 6 (blue) and Pro-
posed Intermediates 5 and 7-8 (black) a 

 

 

Although the [B(ArF)4]– anion is extremely resistant to protonoly-
sis and stabilizes reactive electrophilic cations, these results show 
that a dicationic Pt electrophile bearing a nucleophilic P-OH 
group can act cooperatively with the weak acid water to cleave 
three B–C bonds under mild conditions at room temperature.  
Such cooperative reactivity of metal-hydroxyphosphine com-
plexes is also valuable in nitrile hydration catalysis,11 and its further 
development may offer a general approach to stoichiometric and 
catalytic activation of normally unreactive substrates. 
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