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Abstract—Shamir’s secret sharing scheme is widely used in
many cryptographic protocols such as secure multi-party com-
putation. It allows a secret to be distributed to n parties such
that any t parties learn no information about the secret, whereas
any t+1 parties can recover the secret. However, the worst-case
recovery guarantees come at the price of O(n2) computation cost.
This quadratic cost limits its scalability to applications involving
only a small number of participants.

This paper presents a framework, called FastShare, for de-
signing secret sharing schemes that ensures worst-case security
guarantees at a lower computation cost by relaxing the recovery
constraint from worst-case to average-case in a statistical sense.
In particular, FastShare considers the setup where each party
takes part in the recovery process with some probability ρ,
independently of others. The core idea of FastShare is to construct
a ‘signal’ using the secret and random masks by inserting zeros at
judiciously chosen locations, and take its finite field fast Fourier
transform (FFT) to generate the shares. We present a scheme
designed using FastShare where the judicious zero placement
ensures that the shares form a codeword of a locally recoverable
code. The locality property along with the FFT allows us to
recover the secret with O(n logn) computational complexity,
from a ‘random’ subset of shares of large enough size. We
analyze its security and recovery thresholds, and characterize a
trade-off between ρ and the probability of successfully recovering
the secret. Further, we carry out numerical simulations to
demonstrate the applicability of the proposed scheme for a wide
range of values of n.

I. INTRODUCTION

Secret sharing, introduced by Shamir [1] and Blakeley [2], is
a fundamental primitive that forms the central building block
of many cryptograpic protocols including secure multi-party
computation [3], threshold cryptography [4], and secure cloud
storage [5]. The canonical setup for a secret sharing scheme
consists of a source (called a dealer) with a secret (from some
finite alphabet), a set of n parties, and two collections A
and B of subsets of parties, called the access-list and block-
list, respectively. A secret-sharing scheme allows the dealer
to generate n shares from the secret and distribute them to
n parties such that: (i) any subset in A can reconstruct the
secret from its shares, and (ii) any subset in B cannot learn
any information about the secret. (See [6] for a survey.)

Shamir’s scheme [1] and its variants [7]–[9] are the most
widely used class of secret sharing schemes, which realize
access- and block-lists with a threshold structure. In particular,
for any given n and t < n, Shamir’s scheme ensures that any t
parties cannot learn any information about the secret, whereas
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any t+ 1 parties can completely recover the secret. However,
this worst-case recovery guarantee of Shamir’s scheme comes
at the price of O(t2) computation cost. This can be a severe
bottleneck when t is some constant fraction of n and n is large,
as in emerging applications like privacy-preserving federated
learning [10], secure network statistics [11], and multi-cloud
secure storage [12].

In this paper, we develop a framework for secret sharing that
allows one to construct scalable schemes with low computation
cost. Our design philosophy is guided by the following key
observation. In may applications of secret sharing, such as
secure smart-meter aggregation [13], secure aggregation for
federated learning [10], secure aggregation for network statis-
tics [11], and secure cloud storage [5], the recovery needs to
be performed in a dynamic environment where parties fail or
drop out due to natural reasons, e.g., wireless outages. In such
applications, it is often sufficient to recover the secret from
a random set of shares of a certain (large enough) average
size. At the same time, it is critical to ensure worst-case
guarantees for security. This is because privacy breaches are
often inflicted by malicious participants, who can violate any
strong assumptions such as only random sets of parties may
collude. Leveraging this observation, FastShare cuts down the
computation cost of secret recovery from O(n2) to O(n log n)
by relaxing worst-case requirements to average-case require-
ments, while ensuring worst-case security guarantees.

To highlight this point, let us consider the following typical
application scenario for secret sharing (see, e.g., [5]). A dealer
wants to store a secret file over 10000 servers distributed
over multiple cloud networks with a 30% security threshold.
The dealer can achieve this by using Shamir’s scheme with
t = 2999. This allows them to recover the secret file from
any 3000 servers, requiring O(106) computations, while being
secure if any set of fewer than 3000 servers collude. In
contrast, when servers have 60% availability (meaning that,
for each server, there is a 60% chance that it is online during
recovery), FastShare can recover the secret with 99.99% suc-
cess at O(104) complexity, while ensuring the same security
guarantee as Shamir’s scheme. In fact, FastShare can achieve
a trade-off between the probability of successfully recovering
the secret and the probability that parties participate during
the recovery process (see Fig. 1 on the next page).

It is worth noting that the computation cost of recovering
the secret in Shamir’s scheme stems from Lagrange’s inter-
polation. Typical algorithms for Lagrange’s interpolation take
O(t2) complexity for a polynomial of degree t (see, e.g., [14]).
Several practical applications of secret sharing consider the
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Fig. 1. Dotted black line shows Shamir’s scheme and solid blue line show
FastShare-LRC for n = 10000 and the security threshold of 30%. When
ρ = 0.6, FastShare-LRC can successfully recover the secret with probability
at least 99.99%.

regime of t = O(n), for which the complexity of recovering
the secret scales quadratically in the number of parties. There
exist asymptotically fast algorithms for polynomial interpola-
tion that allow the recovery in O(n log2 n log log n) time (see,
e.g., [14]–[18]). However, for practical values of n, quadratic
time algorithms are faster than the theoretically asymptotically
fast algorithms for polynomial interpolation due to moderate-
sized constants hidden by the big-Oh notation (see, e.g., [19]).
This heavy computation cost limits the scalability of Shamir’s
scheme to only a small number of participants.

Our Contributions: We develop a novel framework Fast-
Share for designing computationally efficient secret sharing
schemes which provide a worst-case security guarantee and
average-case recovery guarantee. In particular, FastShare en-
ables one to design schemes with the following properties: (i)
Information-theoretic perfect security of the secret is guaran-
teed against any set of less than τ fraction of shares, i.e., sets of
shares of size less than τn cannot learn any information about
the secret. (ii) Suppose each party participates in the recovery
process with probability ρ, τ ≤ ρ ≤ 1, independently of the
other parties. Then, FastShare achieves a trade-off between ρ
and the probability of successfully recovering the secret.

The core idea of FastShare is to first construct a signal
using the secret and an appropriate number of random masks
(which depends on the security threshold) by inserting zeros at
judiciously chosen locations, and then take its finite field fast
Fourier transform (FFT) to generate the shares. We present
a scheme designed using FastShare, where the shares form a
codeword of a locally recoverable code (LRC) (see Sec. II-C
for details on LRCs). In particular, we ensure these local
parity-check relations by essentially designing the spectrum of
the shares – our judicious zero placement induces local parity-
checks due to the aliasing property of the Fourier transform.
This spectral interpretation used in the FastShare framework
is inspired by the seminal work of Blahut [20] (which takes a
spectral view of algebraic codes) and [21], [22] (which take a
spectral view of product and sparse-graph codes).

For this scheme, referred to as FastShare-LRC, we charac-
terize the average-case recovery threshold ρ as a function of

n and τ , and show that for any ρ > τ , FastShare-LRC can
guarantee recovery with probability 1−O(1/n) for sufficiently
large n. Moreover, via numerical simulations, we demonstrate
that, for a wide range of values of n, FastShare-LRC can
guarantee recovery at values of ρ that are useful in practical
applications.

We build on our prior work [23], where we proposed
a variant of the FastShare framework to design efficient
‘multi-secret’ sharing schemes for the application of privacy-
preserving federated learning. Specifically, the schemes pro-
posed in [23] are designed to share k secrets to n parties for
k = O(n), whereas our focus is on sharing a single secret.

Related Work: Several works have considered designing
efficient secret sharing schemes where encoding and decoding
allow only XOR-operations on binary strings, see e.g., [24]–
[26]. However, the number of operations still remain quadratic
in the number of shares. Our goal is to reduce the number of
computations in encoding and recovery. Security for locally re-
coverable codes is considered in [27]. Communication efficient
secret sharing is considered in [28] (see also [29], [30] and
references therein), where the goal is to reduce communication
required to recover the secret as a function of the number of
parties participating in the process.

II. PRELIMINARIES

Notation: For a prime power q, we will denote the finite
field with q elements by Fq . For a positive integer n, let [n] =
{1, 2, . . . , n} and [n−] = {0, 1, . . . , n − 1}. For a set A, let
2A denote its power set. For a matrix G, let 〈G〉 denote the
column-span of G. For a vector C ∈ Fnq and a set A ⊆ [n], let
CA denote the projection of C onto the coordinates in A. For
random variables X and Y, let I(X;Y) denote the mutual
information between X and Y (see, e.g., [31]).

A. Secret Sharing

In a secret sharing scheme, a dealer takes a secret S ∈ Fq ,
generates n shares C = (C1, C2, . . . , Cn) ∈ Fnq , and dis-
tributes the shares to n parties with one share to each party.
The shares are generated such that they satisfy a given access-
list A ⊆ 2[n], which specifies recovery constraints, and a
block-list B ⊆ 2[n], which specifies security constraints. In
particular, for any set A ∈ A, the dealer can recover the
secret from the shares CA; whereas, for any set B ∈ B, the
shares CB do not contain any information about the secret. A
secret sharing scheme is called a ramp threshold scheme, if
for some t < r ≤ n, we have A = {A ⊆ [n] : |A| ≥ r} and
B = {B ⊂ [n] : |B| ≤ t}. In other words, in a ramp threshold
secret sharing scheme, any r parties can recover the secret,
while any t parties cannot learn anything about the secret. In
this case, we say that the scheme has a worst-case recovery
threshold r and a worst-case security threshold t.

Shamir’s Scheme: Let q ≥ n + 1 be a prime power, and
α1, α2, . . . , αn be n distinct non-zero elements of Fq . To share
a secret S ∈ Fq , the dealer first chooses t random elements K1,
K2, . . ., Kt from Fq , independently with uniform distribution.
We refer to these as random masks. Then, using these random
masks together with the secret, the dealer defines a polynomial
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P (x) = S +
∑t
i=1Kix

i. The share of party j, j ∈ [n], is
computed as Cj = P (αj). Using the Lagrange’s interpolation
theorem, one can show that Shamir’s scheme has a worst-case
security threshold of t and a worst-case recovery threshold of
t+ 1 (see, e.g., [6, Section 3.1]).

B. Worst-Case Security and Average-Case Recovery Model

We are interested in designing ramp secret sharing schemes
with an average-case recovery threshold and worst-case secu-
rity threshold. In particular, our goal is to recover the secret
from a random set of shares of a large enough average size,
when each party fails with a certain probability, independently
of others. Formally, we consider the following setup1.

Definition 1 ((τ, ρ) Ramp Secret Sharing). Let Fq be a finite
field for a prime power q, n be a positive integer, and τ , ρ be
positive constants such that 0 < τ ≤ ρ < 1. A secret sharing
scheme consists of a stochastic encoder ENC : Fq → Fnq and
a decoder DEC : (Fq∪{⊥})n → Fq∪{⊥}. For every S ∈ Fq ,
the stochastic encoder ENC outputs a vector of n shares C =
(C1,C2, . . . ,Cn) ∈ Fnq , such that the following conditions
are satisfied:

1) Security: any set of less than τ fraction of shares does
not leak any information about the secret. Specifically,
for every P ⊂ [n], |P| < τn, it holds that

I (S;CP) = 0, (1)

where S denotes the random variable for the secret.
2) Recovery: It is possible to recover the secret with high

probability from a set of shares where each share is
selected independently with probability ρ. Specifically,
for any S ∈ Fq and C = ENC(S), define the vector
C̃ ∈ (Fq ∪ {⊥})n as

C̃i =

{
Ci with probability ρ,
⊥ with probability 1− ρ.

(2)

Then, it holds that

Pr
(

DEC(C̃) = S
)
≥ 1−O

(
1

poly(N)

)
, (3)

where the probability is computed over the randomness
of generating C̃ given C.

We refer to τ as the worst-case security threshold and ρ as
the average-case recovery threshold of the scheme.

C. Locally Recoverable Codes (LRCs)

Here, we briefly review a class of erasure codes called
Locally Recoverable Codes (LRCs) (see [32]–[34], and ref-
erences therein). Consider an (n, k) code C with block-length
n and dimension k. Consider an ` that divides n. The code
C is said to be an LRC with (`,m) locality [33] if the n
coordinates can be partitioned into n/` subsets of cardinality

1For simplicity, we assume that the secret as well as each share is an
element of a finite field Fq . Indeed, Shamir’s scheme as well as our proposed
framework operates in this regime. In general, a secret can belong to Fql and
shares can belong to Fqm , where m ≥ l/(r − t), see e.g., [6].

Fourier
Transform𝑥Secret + random

masks + zeros Shares𝐶

Local 
 Decoding

Inverse Fourier
Transform

Random subset
of shares

𝐶 ̃  𝐶

All Shares Secret + random
masks + zeros

𝑥

Fig. 2. FastShare framework generates shares by first constructing a ‘signal’,
and then taking the finite field Fast Fourier Transform (FFT). The recovery
from a ‘random’ subset of shares involves obtaining the missing shares via
‘local decoding’, and then taking the inverse finite field FFT.

` such that the coordinates in each subset form a maximum
distance separable (MDS) code of length ` and dimension m.
We denote such a code as an (n, k, `,m) LRC. An efficient
construction of such LRCs is presented in [34, Section V-C].

III. FASTSHARE FRAMEWORK

In this section, we present a framework FastShare that
allows one to design computationally efficient secret sharing
schemes.

To introduce FastShare, we briefly review the basics of the
finite field Fourier transform (for details, see, e.g., [35]). Let
n be a positive integer such that n divides (q − 1) and ω be
a primitive n-th root of unity in Fq . The finite field Fourier
transform of a signal x = [x0 x1 . . . xn−1] is defined as

Xj =

n−1∑
i=0

ωijxi, j = 0, 1, . . . , n− 1. (4)

The inverse finite field Fourier transform is given by

xi =
1

n

n−1∑
j=0

ω−ijXj , i = 0, 1, . . . , n− 1, (5)

where 1/n denotes the reciprocal of the sum of n ones in
the field Fq . Fast Fourier transform (FFT) algorithms over the
complex field can be readily adapted to the case of finite field
Fourier transform [35]. These fast algorithms allow one to
compute the transform and the inverse in O(n log n) time.

At a high level, FastShare framework consists of two stages.
First, it constructs a length-n ‘signal’ by taking the secret
and (an appropriate number of) random masks, and inserting
zeros at judiciously chosen locations. Second, it takes the fast
Fourier transform of the signal to generate the shares (see
Fig. 2). The shares can be considered as the ‘spectrum’ of
the signal constructed in the first stage. While constructing
the signal, the zeros are placed at specific locations such
that they induce local parity-check constraints on the shares.
At the recovery phase, these local parity-check constraints
allow us to recover the missing shares in a computationally
efficient manner. Then, we can simply take the inverse Fourier
transform of the spectrum to obtain the signal, and read off
the secret from the appropriate index.
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𝑛1

⌈(1 − 𝜏) ⌉𝑛0

0

⌊𝑗/ ⌋𝑛0



𝑗 mod 𝑛0

⌊𝜏 ⌋𝑛0

Fig. 3. Indices j ∈ [n−] are assigned to a 2-dimensional grid using the
mapping f(j) = (j mod n0, bj/n0c). Sets Z0 and S are defined in (6), (7),
respectively. Set S is used for the secret, set Z0 is used for zeros, and the
remaining locations are used for random masks (see (8)).

A. FastShare Scheme Inducing an LRC (FastShare-LRC)

Here, we describe a specific signal construction which
induces the spectral components (i.e., shares) to be codewords
of a locally recoverable code (LRC). We refer to this scheme
as FastShare-LRC.

Generate Shares: A dealer is given a composite number n
and a prime power q such that n divides (q − 1), a constant
0 < τ < 1, and a secret S ∈ Fq . Define t = bτnc − 1.
Choose positive integers n0 ≥ 2 and n1, such that n = n0n1.
Let f : [n−] → [n−0 ] × [n−1 ] be a linear bijection given as
f(j) = (j mod n0, bj/n0c). Note that, given f(j) = (a, b),
we have f−1((a, b)) = bn0 + a (= j). Define the following
sets (see Fig. 3):

Z0 = {(a, b) : 0 ≤ a ≤ d(1− τ)n0e − 1} , (6)
S = (n0 − 1, 0). (7)

The dealer first constructs a length-n signal by placing zeros
at indices corresponding to Z0, placing the secret at the index
corresponding to S, and placing a uniform random mask from
Fq (chosen independently of other masks and the secret) at
each of the remaining indices.

To formally describe the signal construction, choose an arbi-
trary bijection σ : [t]→ [n−]\{f−1(u) : u ∈ S∪Z0}. Choose
t random masks K1,K2, . . . ,Kt, from Fq , independently with
uniform distribution. For j ∈ [n−], define the signal x as:

xj =


S if f(j) ∈ S,
0 if f(j) ∈ Z0,

Kσ(j) otherwise.
(8)

Next, the dealer generates the shares by taking the (fast)
Fourier transform of the signal x, i.e., for j ∈ [n−], Cj =∑n−1
i=0 ω

ijxi, where ω is a primitive n-th root of unity in Fq .

Remark 1. Consider the case of Shamir’s scheme when the n
distinct non-zero evaluation points are chosen as the powers
of a primitive n-th root of unity in Fq , i.e., αi = ωi−1,
i ∈ [n]. Let t (< n) be the security threshold, S be the
secret, and K1, . . ., Kt be t random masks. It is easy to

𝑥0 𝑥1 𝑥2

𝑥3 𝑥4 𝑥5

𝑥6 𝑥7 𝑥8

𝑗 mod 3

⌊𝑗/3⌋

𝐶0 𝐶1 𝐶2

𝐶3 𝐶4 𝐶5

𝐶6 𝐶7 𝐶8

𝑗 mod 3

⌊𝑗/3⌋

Fig. 4. Example with n = 9 and τ = 2/3. Choose n0 = n1 = 3, and
represent 0 ≤ j ≤ 8 in a 2D-grid as (j mod 3, bj/3c). Place zeros at
gray locations (i.e., Z0 = {(0, 0), (0, 3), (0, 6)}), and the secret at the blue
location (i.e., S = {(2, 0)}). We consider F19, in which a primitive 9-th
root of unity exists. The careful zero placement induces parity checks on the
shares in each row due to aliasing property of the Fourier transform, i.e.,
[C0 +C1 +C2, C3 +C4 +C5, C6 +C7 +C0] = [0, 0, 0]. Therefore, any
one missing share in a row can be recovered using the parity-check structure.
E.g., dropped out red shares can be recovered by locally decoding each row.

see that the shares C = (C1, C2, · · · , Cn) generated by
Shamir’s scheme is a finite field Fourier transform of the signal
x = (S,K1, · · · ,Kt, 0, · · · , 0). Observe that, in Shamir’s
scheme, all the zeros in the signal are grouped together.
In contrast, FastShare-LRC judiciously disperses the zeros
throughout the signal.

In the following lemma, we show that the judiciously placed
zeros in the signal ensure that the shares form a codeword
of a locally recoverable code. The proof essentially follows
from the subsampling and aliasing properties of the Fourier
transform, and is similar to the proof of [23, Lemma 3.2].

Lemma 1. For any S ∈ Fq and (K1, . . . ,Kt) ∈ Ftq , let C =
(C1, C2, . . . , Cn) denote the shares generated by FastShare-
LRC. Then, C is a codeword of an (n, bτnc, n0, bτn0c)
LRC. More specifically, for every j ∈ [n−1 ], the vec-
tor (Cjn0 , Cjn0+1, · · · , C(j+1)n0−1) is a codeword of an
(n0, bτn0c) Reed-Solomon code.

The above lemma shows that when shares are represented
in a 2D-grid using the bijection f(·), each row is a codeword
of an (n0, bτn0c) Reed-Solomon code. These local parity-
check constraints on the shares make it possible to locally
decode missing shares in each row. Note that a codeword of
an (n0, bτn0c) Reed-Solomon code can be viewed as a vector
of n0 evaluations of a polynomial of degree at most bτn0c−1.
Therefore, up to 1 − τ fraction of erasures per row can be
recovered via polynomial interpolation.

Recover the secret: Given a vector C̃ ∈ (Fq ∪ {⊥})n, the
dealer first decodes the Reed-Solomon code corresponding to
each row to obtain as many missing shares as possible. If
this local decoding fails for any row, the dealer outputs ⊥,
and declares failure. Otherwise, it has recovered the vector C.
Then, it takes the inverse (finite field) fast Fourier transform
of C (using ω) to obtain the signal x. Finally, it outputs the
coordinate of x indexed by S (in the 2D-grid representation)
as the secret, i.e., S = xf−1(S). We present a toy example for
n = 9, τ = 2/3, n0 = n1 = 3 in Fig. 4.

It is worth noting that FastShare-LRC is one specific scheme
realized using the FastShare framework. In general, the Fast-
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Share framework allows one to choose the placement of zeros,
the secret, and random masks in several ways. How to leverage
this flexibility to obtain the best possible recovery and security
thresholds is an interesting future direction.

IV. PERFORMANCE ANALYSIS OF FASTSHARE-LRC

A. Theoretical Analysis for Large n

In this section, we analyze the security and recovery guar-
antees of FastShare-LRC for the large-n regime.

Theorem 1. For a given 0 < τ < 1 and any 0 < ε < 1, for
sufficiently large n, there exists a FastShare-LRC scheme that
achieves

1) The average-case recovery threshold of τ+ε
1+ε with prob-

ability at least 1−O
(
1
n

)
such that the cost of encoding

as well as recovery is O(n log n); and
2) The worst-case security threshold of τ .

Recovery threshold: For some c ≥ 2, choose n0 =
4c

(1−τ)ε2 log n. Note that ρ = (τ + ε)/(1 + ε) implies that
(1− τ)n0 = (1 + ε)(1− ρ)n0. Consider the subset of shares
corresponding to an arbitrary row in the 2-dimensional grid
representation of the shares. Since each share participates in
the recovery process independently with probability ρ, by
using the Chernoff bound, it is straightforward to show that the
probability that the local decoding of the row fails is at most
exp(−ε2(1 − τ)/(2(1 + ε))). Then, by the union bound and
using the expression for n0 in terms of n, it is easy to show
that the local decoding fails with probability at most 1/nc−1.
Computation cost: Encoding consists of constructing the signal
and then taking the FFT. This results in O(n log n) cost due
to the FFT. Recovering the secret consists of two steps: local
decoding to obtain the missing shares, and taking the inverse
FFT. Decoding each local code takes O(n20) = O(log2 n)
cost, and there are n1 = n/O(log n) number of row codes.
Therefore, the total cost of local decoding is O(n log n). The
cost of inverse FFT is also O(n log n). Hence, recovery can
be performed in O(n log n) cost.
Security threshold: We present a sketch of the proof, which
builds on the techniques used in [23]. First, observe that the
shares (as a length-n column vector) can be written as C =
G[S K]T , where S is the secret and K is the vector of random
masks, and G ∈ Fn×tq is the submatrix of the n × n DFT
matrix (i.e. Vandermonde matrix with powers of ω) obtained
by removing the columns corresponding to Z0 and permuting
the remaining columns so that the column corresponding to S
is the first column.

Next, we show that the information-theoretic security con-
dition in (1) can be guaranteed by a particular linear algebraic
condition on the columns of submatrices of G. In particular,
the following lemma is can be proved as a corollary of [36,
Lemma 6].

Lemma 2. Let S, K, and C = G[S K]T be random
variables representing the secret, random masks, and shares,
respectively. For an arbitrary set P ⊂ [n], let GP denote
the sub-matrix of G corresponding to the rows indexed by P .

0.0 0.2 0.4 0.6 0.8 1.0
Probability that a party is present in the recovery process
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n=100000,FastShare-LRC

Fig. 5. Probability of success vs ρ for n = 1000, 10000, 100000, and the
security threshold of 30%. As n increases the ρ with successful recovery
approaches τ .

Let G1 be the first column of GP and G2 be its remaining
columns. If K is uniform over Ftq , then it holds that

G1 ∈ 〈G2〉 =⇒ I(S;CP) = 0. (9)

To complete the proof, we show that for any P ⊂ [n] of
size bτnc−1, it holds that G1 ∈ 〈G2〉. Recall from Sec. III-A
that t = bτnc − 1, and observe that G2 is a square matrix.
Now, if G2 is full-rank for a particular P , then clearly G1 ∈
〈G2〉. The more challenging case is when P is such that G2 is
rank-deficient. In this case, it is possible to show G1 ∈ 〈G2〉
by leveraging the Vandermonde sub-matrix structure of GP .
Towards this end, we use similar steps as in [23, Appendix C]
which involve iteratively using [23, Lemma C.2].

B. Numerical Simulations

In this section, we numerically evaluate the recovery perfor-
mance of FastShare-LRC for various values of n. In particular,
we fix τ = 0.3, and consider n = 1000, 10000, and 100000.
For n = 1000, we take n0 = 10 and n1 = 100; for n = 10000,
we take n0 = 50 and n1 = 200; and for n = 100000, we
take n0 = 100 and n1 = 1000. We plot the probability of
successful recovery versus ρ in Fig. 5. For n = 1000, 10000,
and 100000, we get ρ = 0.825, 0.6, and 0.52, respectively, that
guarantees successful recovery with probability 99.99%. Note
that for τ = 0.3, Shamir’s scheme achieves ρ = 0.3. One
can observe that the ρ with guaranteed successful recovery
approaches τ as n grows larger.

To see how FastShare-LRC can be beneficial in practical
applications, consider the moderately large value of n =
10000, which is typical in federated learning [37]. At this
n, FastShare-LRC achieves ρ ≈ 0.6 with guaranteed recovery,
allowing parties to fail with ∼40% probability. This works
well for federated learning, where it is observed that 6% to
10% of participants fail on average [37]. As discussed in the
Introduction, for n = 10000 and τ = 0.3, FastShare-LRC cuts
down the recovery cost by 100× — from O(106) to O(104).
This demonstrates that the FastShare framework can be used
to design schemes that are well suited in practical applications.
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