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ods alone. The AMR further adds computational efficiency by effectively placing

fronts. The novelty of this study is in the integration of a fourth-order IMEX ARK
method with AMR for a high-order finite-volume scheme and the application
to solving complex reacting flows governed by the compressible Navier-Stokes
equations with very stiff chemistry in a practical combustor geometry. The
effectiveness and performance of the adaptive ARK4 is assessed for complex
reacting flows by examining properties, such as the presence of shock waves, the
time-scale changes in response to AMR levels, and the size and stiffness of reac-
tion mechanisms for various fuels such as H,, CHy, and C3Hg. The new adaptive
ARK4 method is verified and validated using a convection-diffusion-reaction
problem and shock-driven combustion, respectively. The validated algorithm is
then applied to solve the stiff C3;Hg-air combustion in a bluff-body combustor. A
significant speedup of three orders of magnitude is achieved in comparison to
the standard ERK4 method at the given solution accuracy.
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1 | INTRODUCTION

While traditional combustion engines will continue to be used for power generation and vehicle propulsion for the next
two or three decades, cleaner combustion engine technology must be developed to help slow down global warming and
climate change. Computational fluid dynamics (CFD) modeling will continue to play a critical role in assisting innovative
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designs of combustion devices. Nevertheless, effi ien and accurate modeling of practical combusting flows remains a
difficult task for CFD. One of the primary difficulties is the fast time scales of chemical reactions compared to the advective
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Applying the coordinat ransformation to the on inuity, momentum, energy, and species transport equations yields
the governing equations for a compressible, thermally perfect, reacting multispecies fluid

209+ - (N'p) =0, (1)

% (Jpid) + Ve - (NT(pﬁﬁ +p?)) = V. (NTT), (2)

9 Jpe)+ .- (NTpﬁ (e + E)) =V, (NT(;T" : ﬁ)) ~ V.- (NTé) : 3)
ot p

%(Jpcn) + V- (NTpeyit) = =V - (NTjn) +Ipin, n=1 .. N, (4)

where p is the density, i is the velocity vector, and p is the pressure of the gaseous mixture. A total of N, species comprise
the gaseous mixture, with N; transport equations. The ideal gas law provides the relation between density, pressure, and

temperature for the mixture. I is the identity tensor, and e = |ii|*/2 + Z}:;lcnhn — p/p is the total specific energy, where
¢, and h,, are the mass fraction and the specific enthalpy for species n. The calculation of the specific absolute enthalpy
h,, can be found in Gao et al..!* Essentially, the species enthalpy, thermal conductivity, and viscosity are calculated from
a polynomial fit described by McBride et al.'®? and the Joint-Army-Navy-Air Force (JANAF) thermochemical tables.*!
To close the system, the molecular stress, heat flux, and species diffusion must be approximated.?* The molecular

stress, 7, is linearly proportional to the strain rate based on the Newtonian fluid assumption

7 =2m (§ L, (NTa)) , 5)
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with the strain rate tensor, S, given by

5-3 ((%) (NTT) + ((\?fﬁ) (NTT))T) (6)

- N-= -
Q=—<K7V¢T—Z(hn:f”)), (7)
where x is the thermal conductivity coefficient and J,, is the mass diffusion of species n
- N=
Jn = _pDnTVECn- (8)

The molecular diffusivity D, for species n can be computed from the dynamic viscosity p, using the Schmidt number Sc
as Dy, = u,/(pSc) or through the given Lewis number Le and the heat capacity at constant pressure c, by the relation of
D, = k/pcyLe. Bulk viscosity is assumed to be negligible and there are no body forces present.

The reacting source term is based on the finite rate chemistry model described by Gao, Owen etc..>***> For conve-
nience, they are briefly described here, since the chemical source Jacobian is required in the study and its derivation is
dependent on the model of chemical source production rate. The mean reaction rate for species n is calculated from the
general form of the law of mass action®® with

N,

: N, N, N,
in =223 (= L) (Za,-.,[le) [kf,]'[([xi])"f-r ke [T | 9
j=1 i=1 i=1

p r=1

where M,, is the molar mass of species n, [X,] = pc, /M, is the molar concentration of the nth species, N, is the number
of chemical reaction steps, ":';c are the stoichiometric coefficients for the products, vi’ , are the stoichiometric coefficients
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for the reactants, and «;, ar he third-body coeffi ien s specified in the reaction mechanism. The forward reaction rates
are computed with the Arrhenius form k;, = Aexp (—E, /R, T) and, for reversible reactions, the backward reaction rate
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the Piece-wise Parabolic M hod limiter.*** This rea es a left and right state of the face-averaged quantities, where an
upwind scheme is applied by solving a Riemann problem at each face. A time integration method may then be used to
evolve the semi-discrete ODEs in time (Equation 15). While the standard fourth-order ERK4 method has been used in
Chord for time integration, the present work is to enable ARK4 for efficient solution of stiff combustion simulations.

2 | FOURTH-ORDERIMEX ARK METHOD
Kennedy and Carpenter’*® provide a great deal of detail for the ARK4 family of time marching methods, and their
work serves as an excellent reference. Herein, for completeness and convenience, we briefly describe the main solution
procedure and features that are employed and adapted for our work.

In the general ARK procedure, a semi-discrete form of the governing equations, such as Equation (15), has the
right-hand side (RHS) split into N terms

N
d

—(JU)=L({JU)) = Y LEJU), 16
3¢V =LUY) = 2L0) (16)
where L((JU))!! represents one of the N additive terms from which the RHS is constructed. The N terms are integrated
by an m-stage Runge-Kutta method where each stage i is computed from

N m
(JUY) = (JU™) + ALY N gl L0, (17)

v=l j=1

where (JU™) = (JU(")) is the solution at time step n, (JU?) = (JU(" + ¢;At™)) the solution at the ith stage, and LM =
L((JU"“})IVI the additive term v. A nonlinear problem arises from Equation (17), for which the specifics of solving depend
on the exact ARK method employed. At the end of the mth stage, the solution is updated with
N m
(JU(”“)) = (JU™) + AI(n)ZZbEL'IL[v],(i), (18)

v=1i=1

where (JU“”“) = (JU(" + At"™)) is the solution at time step n+1. The present study uses step-size control for
considerations of accuracy, iteration, and stability, and therefore the embedded scheme is included as

N m
(7Y = Uy + a0y Y b L, (19)

v=li=1

L . . . . e (ntl), . . . . .
where * indicates a quantity associated with the embedded scheme. The solution (JU " ) is used in conjunction with
the dense output for computing stage value predictors as initial guess for the nonlinear solver. The coefficients an”], bE"],

~lv]

b ', and cﬁ”] are Butcher tableau coefficients and can be found in References 4,36.

For the present study, the 2-ARK,(3)6L[2]SA scheme is used, whose format is uniquely identified as that there are two
additive terms, the order of the main method is 4, the order of the embedded method is 3, there are six stages, it is L-stable,
the second-order accuracy of the stage-order of the implicit method, and the stiff term is integrated with the explicit singly
diagonal implicit Runge-Kutta (ESDIRK) method. ESDIRK is a subclass of Runge-Kutta methods that, like ERK, utilize
a lower-diagonal Butcher tableau, but are better suited for stiff problems. Explicit singly diagonal indicates that the first
stage is computed explicitly and that the diagonal coefficients of the Butcher tableau are identical. Each stage after the
first is solved implicitly, providing better performance compared to fully implicit methods.*’

Accordingly, Equation (15) is split into two additive terms, a nonstiff term solved explicitly, and a stiff term solved
implicitly. As the goal of this study is to increase the time-stepping size for advancing chemical reactions, the reacting
source term is chosen to be solved implicitly while the inertial and viscous fluxes are chosen to be solved explicitly. This
Witlisthethwaéetingiscrete ARK form

%(JU) = L((JU)) = LTUY™ + LU, (20)
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LUy = —%DZ‘: ((NTaB)yy 00 = NTaB)p_ ) = (NTaG) iy 200 = (N"aB)iser ) ) )

d=0
LU = (IS);. (22)

The superscript [ns] indicates the nonstiff term that is solved explicitly and the superscript [s] indicates the stiff term that
is solved implicitly. Substitute these two terms into Equation (17) to get the specific stage values

m
(UO) = (U™) + AL Y a0 4 gBILE0, (23)
j=1

The stage values must be found by solving the nonlinear problem

(UYy = (U™ + XD + Ay L0 i > 2, (24)

where previous stage values are used to compute X explicitly by
i-1
X0 = ALY (@l ILI0 4 gL ), (25)
j=1

with y = 1/4. The coefficients a!f.“sl correspond to matrix entries from the Butcher tableau used to integrate the nons-
tiff terms explicitly, while al[.;” corresponds to matrix entries from the Butcher tableau used to integrate the stiff terms
implicitly. A modified Newton iteration method is employed to solve Equation (24) by linearizing the nonlinear term
with respect to the reference time " and the solution at ith stage and Newton iteration k: (JU'”),. Designate the Jacobian
J = oL /9U, take the first two terms of the Taylor expansion, eliminate the explicit dependence on time, then expand
about (JUD),,, to arrive at
). (i 5).(0) i) i i
LM = L0 4 30 (U ) — (TUOY) (26)

This expansion is substituted into Equation (24)

(JUO) = (U™) + XD + Ay L 4+ Aty 3" (JUO)p = (JUOY) i 2 2, 27)
and rearranging it leads to the form of
(I = AtyI))AU = —((JUY, = (JU™)) + XO + Ay LS, (28)

where k is the Newton iteration and AU = ((JU" )iy, — (JU"),). A converged solution from Equation (28) provides the
value (U" ) which is the solution of stage i, that is (U?).
The step update to time "1 is

6 6
(JU("H)) - (JU(nJ> + A ( biL[ns],ii) + beL““”) , (29)
=1 i=1

for the fourth-order method, and

<J’ij.(!’l+1}> — (JU(n)) +At(ﬂ)(

1

6 6
BiL[nS].(I') + ZB[_L[SL(U) , (30)
=1

i=1

for the third-order embedded method.
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2.1 | Time step size control

For better control of accuracy, iteration, and stability, we consider the PID-controller as described in Kennedy and
Carpenter* using
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(n)
Atpm:i(/_\t(”)[ €PID ][”5 |0 ] [l €PID ] 31)

|60+ D] o €PID |61

In this formula, § is the difference between the solution state associated with the fourth-order method (Equation 29) and
—~ 1

the solution state associated with the third-order embedded method (Equation 30): 60 = (JU"*V) — (JU(R+ )> The

max norm is evaluated over all solution components. In the present study, we found through numerical experimenta-

tion that eprp = 5.0 x 107'° provides a stable time integration method without limiting the step size significantly. Other
parameters are specified as x = 0.9 and the exponents by

200,
= ki +k
“ T+ P+(1+mn

w]!
)kn] /p. B =lkp+2wkp| /p, ¥= ( 20 )/p, (32)

1+ w,

with p = 3 the order of the embedded method, k; = 0.25, kp = 0.14, kp = 0.1, and w, = AW /A1,

2.2 | Stage-value predictors

To potentially provide a better initial guess for the nonlinear solve of Equation (24), the dense output format is used to
extrapolate stage-value guesses for stage i. Concerning the stability, we adopt a second-order dense output method*® and
the specific form is given by

(TUO) (€7 + ,A1") = (TU™) + At Y b7 (6) (LIPSO 4 LIHD) | (33)

i=1

with the extrapolation coefficient 8; = 1 4 rc;, where r = At™ /At""V, The coefficients b;“ and ¢; are in the Butcher
tableau.*?¢

2.3 | Stability of 2-ARK,(3)6L[2]SA

A stability analysis is performed using a scalar ODE with both stiff and nonstiff terms

dé

= Alnslgy 4 A8l 34
T ¢+ 2%, (34)

with nonstiff eigenvalues A™! from the L™ term that is solved explicitly and stiff eigenvalues A™! from the L'/ term that
is solved implicitly.
The stability function is***

R(A™IAL AAL = 1+ (A AL+ A5IA) B(T— APSTALARS) - JIAAL) e, (35)
where e = {1,1, ... , 1} and the equation satisfies’

det (T — AIPSTALATST — ASIALAT] 4+ (A0SIAL 4+ ASIAL) e - b)
RO AL A9 AY) = - (36)
det (I — ASIAIAD)

Substituting in the Butcher Table coefficients b, A[™!, and A"l and plotting the stable region |R (4™ At, A8 Af)| < 1 yields
Figure 1. Clearly, ARK4 indeed provides a much larger stability region than ERK4.

3 | IMPLEMENTATION OF ARK4IN ASINGLE-LEVEL ALGORITHM

First, the ARK4 scheme is described for a single-level grid before introducing AMR. Algorithm 1 presents the pseudocode
for the single-level algorithm for ARK4 as a reference. In Algorithm 1, the linear system, Equation (39), can be solved
directly or iteratively. If an iterative approach is employed, then the linear solver has a separate convergence criterion
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FIGURE 1 Stability region for ARK4 when treating the reaction term implicitly and the advection physics explicitly. (A) Overview of

the stability region; (B) Stability region near the origin [Colour figure can be viewed at wileyonlinelibrary.com]
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from the nonlinear solver. The present study does a direct solve using LAPACK’s LU decomposition with partial pivoting
and row interchanges.*” As the implicit method is of stage-order two, the chemical Jacobian, dL"¥!/dU, is computed
using cell-averaged quantities that are approximated by cell-centered values. This leads to a block-diagonal matrix for the
Jacobian. In Equation (39), the matrix A is a block diagonal matrix

. oLl oL
A = diag [I—Aty ] s ey [I—Aty . (37)
( U lk]ya oU lilyn
Algorithm 1. Algorithm to solve the nonlinear problem
Objective: Solve nonlinear problem (JU?) = (JU™) + X + Aty "M
1 X e AUT gL 4 abILE |
2 (JUDY g « (JUED) & Initial guess of (JU") at iteration k = 0
3: while not converged do
4. Linearize the problem about (JU");,;:
L™ (0) 0
I— Aty——i | ((TUD )1 = (JUD )
Jdu
= — (U = (JU™)) + X' + AryLE. (38)
s:  Solve this linear Aj:)fc(i) = Bj‘:) problem for (JU"),,, where:
. [s]
AY = (I - Aty% k) , (39)
% = (TUD)1 = (U, (40)
b = — ((JUD) = (JU™)) + X' + Ay L. (41)
o A R) < (Tp D) enis or [[E) ] < (Jp@)psr enis then
7 Converged
8: else
9 (JUD )1 < (JUDY + AT &> 1 is step length
10: end if

11: With residual ?1(:) = Afcii).
12: end while
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Matrix A being block diago al results in an efficient solution proc ss for the data locality that allows each cell to be
solved independently. Further, this allows each level of the AMR hierarchy to be advanced independently as in standard
ERK4. For the outer nonlinear solver, the step length is computed as described in Section 3.1, though other line search
methods such as the Goldstein-Armijo method described by Dennis and Schnabel*' could be considered. After a number
of numerical experiments, the tolerance value of exrs = 1.0 X 10~* is found to work well for the problems considered
herein. Note that the convergence tests scale the tolerance value by the current mapped density value, {Jp'"),.1, which
in practice leads to a convergence tolerance on the order of 1.0 x 1074,

3.1 | Nonlinear solver’s step length calculation

Large step lengths in the nonlinear solver may cause negative species mass fractions. If species mass fractions in a cell are
allowed to become significantly negative, then the thermodynamic state in that cell becomes inconsistent and a physically
valid temperature and pressure cannot be determined. Typical methods of preventing negative species mass fractions,
such as using an inert species to absorb error or renormalizing the species to sum to unity,?>**** were found to lead the
species into inconsistent thermodynamic states in this study.

Therefore, two different methods are implemented to limit the step length. First, the step length is reduced based on
the change in species mass fractions at each iteration of the nonlinear solver. Each nonlinear iteration starts with a step
length of unity, # = 1. For iteration k, species n is evaluated for a change in sign. If the sign has changed in this iteration,
that is, if

(UMY, >0, and (JUDYi;, <0, (42)
then the step length is reduced by
. —(JU
n =min|n, (—l)" (43)
xk.n

If species n at iteration k is negative and becomes more negative, that is, if (JU"),, < 0 and xl(:)n

prevented from becoming highly negative by directly setting the update value to

< 0, then the species is

X0 = =(Ip")=0 ents, (44)

.n

where ey is the previously defined nonlinear solver convergence tolerance.

Even with the reduction in step length from the first method, the iteration counts remain high in some situations. In
cases where the iteration count exceeds 10 iterations, the solution is typically oscillating between two states. Reducing
the step length allows for converging on a single state. Accordingly, a reduction in step length is also implemented after
a fixed number of nonlinear iterations, as shown in Equation (45). Both methods are necessary for robust convergence.

min(y, 0.5) if k> 10,
n =13 min(y, 0.25) if k> 20, (45)
min(y, 0.1) if k> 30.
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3.2 | Time step size evaluation

The time step is calculated based on the maximum wave-speed for inviscid flux, the von Neumann number for diffusive
flux, and a species destruction rate for the reacting terms. Since uniform grid spacing and refinement is used in compu-
tational space, A& = Ay = A{, and only A¢ is used in the following notation. The maximum wave-speed calculation is
similar to the CFL number for convection terms?®”#

A

Alinertial = ot (46)
(|a] +a)

max
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where A¢ is the grid spacing, t e stability constraint @ = 1.3925 is d rived by Colella et al.,* |i| is the magnitude of
velocity, and a is the speed of sound (so that (|ii| +a) may 18 the maximum wave speed in the domain). The von Neumann
number is used to calculate the stable At for the second-order diffusive terms?”!

A& p

Atyiscous = 2.5————,
VIsCcous Ildlma‘\P{D

(47)

where | A4|max is a stability constraint for the mapped grids,* u is the dynamic viscosity, and D the number of spatial
dimensions. The chemical time step is determined by

o [X]
n = —_— ], 48
T, = min ( 5 ) (48)

n
with [X,] the molar concentration and &, the destruction rate for the nth species defined by*®

N,

N, N;
(bn — E (V;,rkf.rH[XiJvi‘r + Vp’qr_rkb.rl_‘[[Xi]v'-’) . (49)
1 i=1

r=1 i=

where all the terms and notation for the chemical time step are the same as for the source term (Equation 9). The time
step based on the destruction rate is given by Afchemical = Min (rl, T2, oen TA;) for Ny number of species. The overall time
step size is calculated using®

-1
1 1 1
At = + + , (50)
l( CFLA linertial At‘vismus Atchemical ) ]

with typically CFL < 1. In this work, the chemical source term is treated implicitly and therefore the chemical step size is
removed from the overall time-step constraint. Indeed, this is the purpose of employing ARK4, because the chemical time
step is usually expected to be the smallest step size among them. Correspondingly, the overall time step size is determined
by

=1
1 1
o . . 51
phySlCS l ( CFLAfinertial At\)iscuus ) ] ( )

For pathologically stiff reaction mechanisms, instability still occurs. The last resort is to solve a nonlinear optimization
problem as proposed and described in Section 3.4. Nevertheless, a solution of this optimization process may yield drasti-
cally different temperature or species mass fractions from the previous time step or from its neighboring cells. Although
not ideal, the nonlinear optimization is used as a final attempt to find a consistent thermodynamic state which will help
the dynamical system to recover gradually over the following time steps.

A more optimal solution is to avoid the instability issues, which can largely be accomplished by limiting the time step
size with the PID-controller. However, in some cases the PID-controller predicts a step size smaller than the chemical
time step size, particularly when a solution involves shock waves. It is unclear exactly why this happens, but it should
be avoided for the sake of computational efficiency. Since the chemical time step size is the limiting factor for stability in
this study, the following is proposed and works reasonably well as a criterion for determining the ARK4 time-step size

Af = mln{ max{ AI[‘PID» At::hemical }s At]:ihysics } . (52)
Note that the PID-controller has a self-starting issue because it requires information from two previous time steps. There-
fore, for the first two time steps, Equation (51) is used. For a case with extremely stiff chemical kinetics that begins at the
initial conditions, the more conservative Equation (50) is used.

3.3 | Chemical source Jacobian

The chemical source term in the present ARK4 scheme is treated as a stiff term and thus is integrated implic-

itlir i firmme Thevrafare the catiree Tacrnhian or enecificallyr the crhamical enativee Tarohian miict bhe Aotertminad wwhon
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solving Equation (28) for the ext iteration. Since the reacting sourc term is local, the implicit solve, and therefore
the Jacobian, is computed at every cell independently of the other cells. The chemical source Jacobian is deter-
mined analytically based on the finite rate Arrhenius formula.*’ A numerical Jacobian was also approximated by
finite difference. However, the analytical Jacobian is preferred in the present study for two reasons. First, the for-
mulation is more accurate while still applicable to arbitrary fuels and reaction mechanisms. Secondly, the analytical
form takes into account third-body reactions precisely. This consideration of nonlinearity helps the numerical sta-
bility. Through the study, the reaction Jacobian is found to have a major impact on the solution accuracy and
stability.

3.4 | Optimization method for inconsistent thermodynamic states

An important issue that deserves attention is how to handle a physical quantity that becomes unphysical during the
numerical solution process. Often in numerical combustion, due to discretization error and round-off error, a species
concentration may become negative, or the summation of all species mass fractions may be greater or less than unity, or
both scenarios happen. Because of this, more than often, the temperature of the mixture could be out of the physical range.
All is deemed unphysical. Previously, a simple renormalization correction method was used,? and it worked well for the
reactions used in that reference. For convenience and comparison, the simple renormalization method is duplicated here.
This process is applied to both cell-averaged values and cell-point values, so the cell-averaged indicators, {-), are omitted
for the remainder of this section. For a species n, the mass fractions are truncated to the range of physically possible
values if necessary pc, = max(0, min(p, pc,)). Then, the species are normalized by the sum of species mass fractions pc, =
(#ep) / (2375 ).

Nevertheless, the renormalization method works less ideally for the hydrocarbon reactions, such as CHy-air
and C;Hg-air, considered in the present study. The reaction mechanisms for CHy-air and C;Hg-air are 13-species
38-reactions® and 25-species 66-reactions,* respectively. Both reactions are stiff. Repeatedly, unphysical phenomena
were observed during the solution process for the CHj-air and CiHg-air combustion. In addition to the differ-
ent fuel combustion kinetics, the present study introduces an additional nonlinear solver arising from the ARK4.
Usually, the symptom would be demonstrated by the nonlinear solver which solves the temperature from the
total energy by finding the root of the specific total energy of the mixture f(T) = Zf;lcnhn(T) —RT—e+ |’ /2,
where the kinetic energy and total energy can be found directly from the conservative state. On top of this tem-
perature nonlinear solve, ARK4 adds the nonlinear solve as Algorithm 1. All may contribute to the unphysical
issue.

With extensive and thorough numerical experiments by devising various correction methods, an optimal method
which is based on BFGS® is achieved. The motivation behind the use of BFGS is built on the concept that the numer-
ical correction of species in the solution process should be consistent in the mathematical and numerical sense. Due
to discretization and round-off errors, the numerical system produces unphysical quantities and must then adjust itself
through an optimization process to become physical again. The unphysical situation has been predominately associ-
ated with the species mass fractions. The species distribution should be adjusted by an optimization process while
satisfying the total energy of the system, which is conserved. The optimization method is L-BFGS-B, a limited-memory
quasi-Newton code for bound-constrained optimization. Its main concept is the use of limited-memory BFGS matrices
to approximate the Hessian of the objective function. The method is especially useful when the Hessian matrix is not
practical to compute. L-BFGS-B is widely used and well documented. Briefly, for our case, the objective functions and the
constraints are

N5 N.T

FT.2) = Y Eahn(T) = Y &R T — e+ |a2| /2, (53)
n=1 n=1
min  P(T,¢,) = [f(T, &), (54)

NS
st. 0<c <1, 290 < T <5590, and & = ¢/ )¢ (55)

J=1



1 CHRISTOPHER ET / L.
WILEY

For the present combustion problems, the method has demonstrated a reasonable balance between the species
correction and the overall numerical stability in comparison to the simple renormalization method. The computational
cost is negligible.

4 | INTEGRATION OF ARK4 WITH AMR

Now, the ARK4 scheme is implemented with AMR. Implementing the ARK4 method in the context of AMR presents
numerical challenges. Furthermore, coupling high-order IMEX time integrators with high-order finite-volume methods
introduces robustness issues. Operators to address the challenges are discussed. Subcycling and the temporal interpolation
scheme required to enable ARK4 with AMR are briefly described.

41 | Subcycling

Subcycling allows for adaptive refinement in time. The time step size of the fine grid, ét, is scaled from the time step size of
the coarse mesh, At, by the refinement ratio n..s = At/ét. A fixed ratio n for all levels maintains the same CFL condition
for all spatial resolutions.

This process is shown in Figure 2 for a two-level grid. The coarse level, Q°, is first integrated from time point t° to
! using At. Next, the fine level, Q' is integrated in smaller steps from ° to * using 6t, which is one-fourth of At. Prior
to each step on the fine grid, interpolations in space and time fill the invalid ghost cells surrounding the fine grid, as
indicated by the upwards pointing arrows. Also refer to Figure 3 for the definition of ghost cells. After the fine grid has
been integrated to the end of the subcycling interval (t*), the fine solution is averaged down to the overlaying region on
the coarse grid and flux corrections occur in adjacent coarse cells to preserve single-valued fluxes along the coarse-fine
interface.

4.2 | Interpolation in time

In AMR with subcycling, invalid ghost cells need to be filled at interfaces via interpolation from the next coarser grid.
Since subcycling leads to the finer grid being solved at some time intermediate time relative to the time points of
the coarser grid, a time interpolation is required in addition to a spatial interpolation. Dense output as described by
Kennedy-Carpenter® is used for the interpolation in time, and a fourth-order least squares approximation as described
by McCorquodale-Colella* is used for the interpolation in space. As the spatial interpolator requires no changes to work
with ARK4, only the time interpolation technique is described.
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FIGURE 2 Subcycling allows coarse spatial meshes to take larger time steps than the nested fine spatial meshes. This allows each level
to take time integrations with step sizes near the stability limit of the level [Colour figure can be viewed at wileyonlinelibrary.com]
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of level Q
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FIGURE 3 An adaptive mesh refinement (AMR) hierarchy with a coarse level Q°~" and a fine level Q. Invalid ghost cells form a halo
around Q’ and allow centered stencil operations to be used on the fine level at the AMR interfaces [Colour figure can be viewed at
wileyonlinelibrary.com]
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First, the invalid ghost cells that need to be filled by interpolation are described. Figure 3 shows two grids in the
AMR hierarchy, a coarse level Q°~! and a fine level Q°. The base level, denoted by Q°, contains no invalid ghost cells
because any ghost cells outside the domain on Q" are either physical boundary ghost cells that are filled by the physical
boundary conditions or are periodic ghost cells. Therefore, only the AMR levels above the base grid are of concern for
this interpolation process (i.e., for levels Q7, # > 0). Due to the proper nesting requirements,* all invalid ghost cells on
Q7, # > 0have a sufficient number of cells on grid Q! to perform the interpolation procedure using only the valid cells
of Q71

During coarse grid integration from time 1~ to time £~V + At~ the coarse stage values (Equation 23) are stored
for use in temporal interpolation. Then, the fine grid is integrated in time over that same interval with multiple smaller
steps of size Ar'). At each stage of each step on the fine level, the coarse solution is interpolated in time and space to fill
the invalid ghost cells of level Q°.

Dense output provides high-order interpolation of the coarse grid solution to any point between time -V
and 7=V 4+ At~V Given a fine level at time 1 = £~V + AL~V such that (7= < ) < =D 4 Af?=D where 6 =
(17 = ¢“=1) /At“~D, interpolation is performed with

s
(JU)(f’_l) (t(n) + GAI) — (JU(")) + (At)(n)zbi* ) (Llnsl.(i) + Llsl.(i)) , (56)

i=1

where b;“ (0) is the dense output coefficient b;“ 9) = Z"il b;‘.&f and the values of b* are given in the Butcher tableau.
An assumption is made that by =b’ =b; which is valid for the ARK4 scheme used in the present study per
Kennedy-Carpenter.* After the interpolated solution of the coarse grid is evaluated, the spatial interpolator is used to fill
the invalid ghost cells of the fine grid.

Stage-value prediction via extrapolation, as described in Section 2.2, can be performed with AMR with one caveat.
Extrapolation requires the stage values from one previous time step, so stage-value prediction cannot be performed on
the first time step. Likewise, when new finer AMR levels are created, previous step stage values are not available. There-
fore, extrapolation is not done on the first step of a newly created fine level. Similarly, when an AMR level regrids, the
previous step stage values are not defined on newly refined regions. After regridding, extrapolation is not used for the first
step.

PID step size control also requires information from two previous step solution values to be calculated. More pre-
cisely, it requires the max norm of the difference between the fourth-order solution and the solution associated with
the third-order embedded method for the previous two time steps. When a new level is created, Equation (51) is used
for computing the step size for the first two time steps. When regridding happens, that is when the grids on an existing
level adjust to updated solution conditions, the norms from the previous time steps may be used and the PID method
can be used for step size control. Shown in Algorithm 2 is the solution process for updating the solution on a level Q"
with AMR.
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Algorithm 2. Recursive time advancement with AMR and ARK4

function ADVANCE(#)
Advance (JU)' from time ' to time ' + At per Section 3:
1. Solve for stage i values as described in Algorithm 1
2. Store stage values for interpolation on finer levels
3. Accumulate flux values at faces on boundaries between Q and Q“*!
4. Update solution per Equation (18)
while ¢ *1<t” do
Call Advance(? + 1)
end while
Synchronize the solution on level # with the solution on level # + 1:
1. Average solution down from overlying fine regions
2. Perform flux corrections at boundaries between Q7 and Q“*!
3. Update time t* « t* + At”
Adapt the grid to the solution, if necessary
end function

Species Mass Fractions

0 002 0.04 0.06 0.08

T, 1m

FIGURE 4 The initial hydrogen and oxygen mass fractions for the convection-diffusion-reaction test case

5 | VERIFICATION

To verify the ARK4 algorithm, a grid convergence study is performed on a quasi two-dimensional CDR test case with no
gradients in the y-direction. A rectangular domain is used with periodic boundaries on all sides with a length of 8 cm and
a height of 0.25 cm. A set of four meshes were used, from the coarse grid with 256 x 8 cells up to a fine grid of 4096 x 128
cells, with a refinement ratio of two between two consecutive grids. The H,-0O, combustion is modeled with a chemical
mechanism of 8 species and 18 reactions without the inert N,.°' A Gaussian distribution of the fuel, H», is defined by
CH, = €Xp (—(x —Xx)%/ (202)) ,where ¢ = 0.005 is the width of the distribution and x, = 3.7 cm is the center of distribution.
The oxidizer, Oy, isset to co, = 1 — ¢y, and all other species are initialized to zero. A profile of the initial conditions for the
hydrogen and oxygen mass fractions is shown in Figure 4. The temperature of the fuel is Ty;, = 1000 K and the temperature
of the oxidizer is To, = 2000 K, the density of the mixture is initialized to pmix = Paum (c1,Ru, Th, + co,Ro, TOZ)_l where
Ry, and Ro, are the gas constants of the fuel and oxidizer, respectively, and p,, is the standard atmospheric pressure.
The entire domain is initialized with standard atmospheric pressure and a constant flow of Uy = 20 m s™! in the positive
x-direction.

Richardson extrapolation is used to verify the fourth-order error convergence rates using the 4096 x 128 case as
the reference solution. Chord has previously been verified as achieving fourth-order error convergence for nonreacting
multi-species flow,'* so this study focuses on verifying the convergence rate for reacting flows with ARK4 time integra-
tion. The reference case is run for 1600 time steps with a fixed At = 2.5 x 1077 s. For the subsequent cases, the time step
size and number of time steps are scaled in accordance with the CFL number. Figure 5 shows the errors of the conserva-
tive quantities pcy, and pcp, as the mesh is refined from 256 cells to 2048 cells in the x-direction, along with two guidelines
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FIGURE 5 Error reduction rates of pcn, and pcy, converge to four as the mesh is refined [Colour figure can be viewed at

wileyonlinelibrary.com]
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showing a fourth-order and fifth-order slope. This shows that the solution errors for pco, and pcy, are converging with
fourth-order accuracy as the grid is refined, confirming that the fourth-order accuracy of the algorithm is maintained
with ARK4 time integration. For completeness and reference, the solution error and convergence rates for all conserved
solution quantities are tabulated in Table 1.

6 | VALIDATION

To further validate Chord’s ARK4 time stepping with reacting flows and shock waves, a two-dimensional H, bubble is
convected through a shock. The case geometry and initial conditions are shown in Figure 6, which replicates the geometry
and initial conditions of Owen et al.,” where the standard ERK4 method was used to validate Chord against Billet et al.>?
and Attal et al..>* As such, the new ARK4 time integration method is compared against the pressure profile published by
Owen et al. as well as the results from Chord’s existing standard ERK4 time integration. Slip walls bound the upper and
lower boundaries of the y-direction, while extrapolated boundary conditions are used on the left and right x-direction
boundaries.

A Mach 2 steady planar shock is located 0.75cm to the right of the origin and parallel to the y-axis, and
the hydrogen bubble is located just upstream of the shock. The initial velocities Uy = Uy = 1.24 X 10° cm s™! and
Up =4.34x10* cm s7! are the upstream and downstream velocities of the shock. For the reaction mechanism,
the same H,-0, mechanism in Section 5 is used for all shock bubble cases. The hydrogen mass fraction is
initialized to

2

cH, = % [1 + tanh (rcc—r)] . r= \/((x—xO)Z +(=30?), (57)

with r, the radius of the bubble and the coordinate (xp,y,) the center of the bubble. The coefficient C, determines the
sharpness of the interface between the H, bubble and the surrounding air. The case parameters are C; = 3 x 1073 cm™!,
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TABLE 1 Solution errors measured with the L.-, L;-, and L,-norms at 4.0 x 10~° and convergence rates between consecutive grid
resolutions for the convection-diffusion-reaction case

Variable Li-norm 256 X 8 Rate 512 x 16 Rate 1024 x 32 Rate 2048 x 64
P Le 7.074 x 107* 1.856 1.954 x 1074 3.335 1.937 x 1073 3.887 1.309 x 1078
L, 1.716 X 1073 2.763 2527 x107° 3.713 1.927 x 1077 3.887 1.303 x 1078
L, 8.796 x 1073 2.410 1.655x 1073 3.511 1.451 x 107° 3.908 9.669 x 108
pu Lo 5.941 x 107! 1.638 1.909 x 107* 3.181 2.106 x 1072 3.905 1.405 x 1073
Ly 1.576 x 1072 2.642 2.525x 1073 3.660 1.997 x 107* 3.898 1.339 x 1073
L, 8.029 x 1072 2.283 1.650 x 1072 3.459 1.500 x 1073 3.894 1.009 x 107*
pe Lo 1.657 x 10° 1.878 4.509 x 10? 3.285 4.625 x 10! 3.901 3.097 x 10°
L, 3.924 x 10! 2.734 5.890 x 10° 3.696 4.543x 107! 3.894 3.056 x 1072
L, 2.032 x 10? 2.395 3.865 x 10! 3.500 3.416 x 10° 3.906 2.279 x 107!
pew, Mo 1.965x 107% 1.544 6.738 x 1079 3.052 8.121 x 10797 3.719 6.166 x 107%
T 3.837 x 10777 2.151 8.639 x 107% 3.350 8.473 x 107 3.910 5.637 x 10710
i 1.967 x 107" 1.830 5.531 x 1077 3.253 5.803 x 107" 3.848 4.029 x 107"
peo. Lo 4.895x 107" 1751 1.454 % 107" 3.205 1.577 x 107% 3.940 1.027 x 107%
7 L 1.111 x 107 2.516 1.943 x 107 3.546 1.664 % 1077 3.913 1.105 x 1078
L, 5.638 x 107%° 2.203 1.224 x 1079 3.386 1.171 x 107% 3.909 7.792 x 1078
P . 1.327 x 107% 2.600 2.189 x 107% 3.900 1.466 x 1077 3.746 1.093 x 107%
Ly 1.814 x 10777 2,933 2374 x 107% 3.848 1.649 x 107% 3.900 1.104 x 10710
L, 1.161 x 107 2.791 1.678 x 1077 3.850 1.164 x 107% 3.923 7.674 x 10710
co L 1.569 x 10~ 3.164 1.751 x 107 4.183 9.641 x 1077 3.675 7.549 x 1078
L 1.987 % 107% 3.766 1.460 x 107 3.992 9.177 x 107 3.559 7.789 x 10710
L, 1.377 x 107% 3.515 1.204 x 107 4.178 6.654 x 107" 3.547 5.691 x 107"
pCon My 9.613 x 107% 2.550 1.642 x 107% 3.822 1.161 x 107% 3.621 9.434 x 107%
L, 1.495x 107% 3.250 1.572 x 10777 4.206 8.517 x 107% 3.631 6.873 x 10710
L, 8.836 x 107% 2.877 1.203 x 107% 4.015 7.437 x 107% 3.664 5.868 x 10~%
PCio, Lo, 2.457 x 107% 2.209 5.314 x 10798 3.448 4.868 x 10~% 3.671 3.823 x 10~1°
_ L 8.672 x 107" 3.033 1.059 x 10~"° 3.622 8.604 x 1071 3.752 6.388 x 10712
L, 3.553 % 107% 2.770 5.210 x 10~ 3.604 4.285x 10710 3.915 2.841 x 1071
peio0, Mo 3.829 x 10°"7 3.372 3.697 x 107%8 4.534 1.596 x 10~% 3.915 1.058 x 10~1°
iy 5.394 % 107% 4.087 3.173 x 10710 4315 1.594 x 107! 3.893 1.073 x 10712
L, 3.666 x 107% 3.811 2.613x 107" 4.531 1.130 x 1071° 4,024 6.948 x 10712
PeHL0 Le 2.507 x 10°™ 2.202 5.449 x 10~ 3.841 3.804 x 107 4.044 2.306 x 10777
L 4.560 x 107 2.970 5.819 x 1077 4.102 3.388 x 107%8 3.921 2.236 x 107"
L, 2.633x107% 2.647 4.203 x 107" 3.977 2.670 x 1077 3.999 1.670 x 107"
| T
: I (Air) 11 (Air) !
é |, Center line i ~
i Shock E
- 2\

FIGURE 6 The shock bubble case setup: an H,-bubble in air is advected through a standing shock of Ma = 2 [Colour figure can be
viewed at wileyonlinelibrary.com|
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FIGURE 7 Pressure, density, H,O mass fraction, and OH mass fraction profiles along the center line at t = 3.5 us for the shock bubble
case with three adaptive mesh refinement levels. (A) Pressure; (B) Density; (C) H,O mass fraction; (D) OH mass fraction [Colour figure can

be viewed at wileyonlinelibrary.com]
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re = 0.28 cm, and (xo, yo) = (0.4,0.75) cm. The mass fractions for the surrounding air are set to ¢y, = 0.767 and ¢o, = 0.233
both upstream and downstream of the shock.

This case uses the same base resolution and AMR levels as in Owen et al.,’ that is, a base resolution of 1024 x 512 with
three levels of AMR and a refinement ratio of 2 for each level. With AMR, the interlevel ARK4 operations are validated.
The grids are refined based on gradients of density and pressure. The case is run to a solution time of t = 10 us and
solution profiles are taken along the center line marked in Figure 6.

The pressure profile by ARK4, shown in Figure 7A, tracks nearly exactly to both Owen et al.* and the ERK4 case,
with only a slight over-prediction of pressure at the right reflected shock. Density in Figure 7B is also in nearly identical
agreement, with a reciprocating slight under-prediction in the right reflected shock. Shown in Figure 7C are the traces of
H,0 mass fraction found from ARK4 and ERK4. There is nearly identical agreement between the two methods. Likewise,
the mass fraction of OH found from ARK4 matches well with the ERK4 case, as seen in Figure 7D. This validates the
accurate predictions by ARK4.

The evolution of the solution over time for three different cases is shown in Figure 8. In addition to the reacting
ARK4 and ERK4 cases, a nonreacting ERK4 case is run in order to observe the effects of reactions on the acoustic waves.
The figures show pressure contour lines ranging from 1 to 7.37 atm. Overlaid on the pressure contours are shadings
of H, mass fractions. In the first row, Figure 8A-C shows the solution at time ¢ = 1.5us. The initial H, mass fraction
bubble has started to impinge on the standing shock and is being compressed, while reflected, refracted, and trans-
mitted waves are being produced. In the second row, solutions at time ¢ = 3.5us are shown in Figure 8D-F. A right
reflected shock forms downstream of the H; bubble, and a left reflected wave forms inside the H, bubble. Also seen
in all three cases is the secondary transmitted wave forming to the left of the H, bubble. Lastly, in the bottom row,
Figure 8G-I shows the solutions at time ¢ = 10 us. A wave is reflected from the top boundary, and two counter-rotating
vortices have developed in the H, bubble. At all three solution times, the ARK4 and ERK4 pressure waves are
nearly identically located, while the no-reaction case pressure waves slightly lag behind the pressure waves of the reaction



l—l—Wl LEY CHRISTOPHER ET AL.

FIGURE 8 Pressure contour lines (1-7.37 atm) superimposed on ¢y, (grayscale) obtained by ARK4 and ERK4 with reactions,
respectively, in addition to ERK4 with no reactions. These shock bubble cases are run with three levels of adaptive mesh refinement. (A)
ARK4, t = 1.5us; (B) ERK4, t = 1.5us; (C) ERK4 No Reactions, t = 1.5us; (D) ARK4, t = 3.5us; (E) ERK4, { = 3.5us; (F) ERK4 No Reactions,
t = 3.5us; (G) ARK4, t = 10us; (H) ERK4, t = 10us; (I) ERK4 No Reactions, t = 10us
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cases. This indicates that the reactions are driving the pressure waves forward, as expected, and that ARK4 does correctly
model the reactions driving the pressure waves.

The comparison of time step sizes for the inertial, viscous, chemical, and total time step size is shown in Figure 9. In
these figures, level 0 corresponds to the coarsest mesh resolution and level 2 corresponds to the finest mesh resolution.
Due to the subcycling algorithm, the finer AMR level requires more steps than the coarser level, in this case at a ratio of
2 per level. The x-axes of levels 1 and 2 have been scaled to the same length as the level 0 x-axis in order to correctly align
each level’s time step number with the solution time. On the finer levels, the inertial step size decreases proportional to
the mesh spacing, as required by the CFL condition. Likewise, the von Neumann condition can be seen with the viscous
step size decreasing quadratically to the mesh spacing. The chemical time step size increases as the mesh is refined, and
varies over time as the reactions begin and then stabilize over time. The ARK4 time step size represents the time step size
computed from Equationn (52). For this high-resolution shock bubble case, the inertial time step size is smaller than the
chemical time step size, and so ARK4 cannot provide a speedup over ERK4 as expected. Again, the purpose of this case
is to demonstrate that ARK4 properly resolves the strong shock waves, flame fronts, and chemical reactions.

7 | RESULTS AND DISCUSSION

The ARK4 algorithm is now applied to solve reacting flows in a bluft-body combustor, a case that is near-intractable for
explicit tim stepping. Research into aerospace combustors is accelerating due to a demand for increased efficiency and
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FIGURE 9 The step size found from inertial, viscous, and chemical time scales on the base level and three adaptive mesh refinement
levels of the two-dimensional shock bubble case, along with the step size taken by ARK4. Due to subcycling, the finer levels take more steps
than the coarser level at a ratio of 2 per level. (A) Inertial At; (B) viscous At; (C) chemical At; (D) ARK4 At [Colour figure can be viewed at
wileyonlinelibrary.com|
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fewer emissions, but the complexity of fluid and combustion interactions in practical applications presents a significant
challenge to numerical combustion. The efficient numerical techniques are tested by using the bluff-body combustor as
a representative for practical combustors. Common physical processes are sufficiently represented, such as shear layers,
a region of recirculation behind the flame holder with geometric complexity, volumetric expansion in the wake, and

complex thermoacoustic instabilities.****

7.1 | Combustion in 2D bluff-body combustor

The bluff body, as shown in Figure 10 by the equilateral triangle shaded in gray, sits in a straight channel with three
sections of interest: the inlet, the combustor, and the outlet. At the inlet, a gaseous mixture consisting of 4.01% Cs;Hs,
22.36% 05, and 73.62% N, by mass fraction flows into the domain at a velocity of 15.7 m s~!. The mixture has a temperature
of 310K and a pressure of 101,325 Pa. The initial conditions in the domain are set to the same values as the inlet, except
for a small region around the bluff body. Near the bluff body, the gas mixture is initialized to 12% CO,, 6.54% H,O0, 5.14%
0,, and 73.62% N», with a temperature of 1300 K and a pressure of 106,661 Pa. This hot spot acts as the ignition to initiate
reactions. The velocity near the bluff body is the same as the initial conditions.

A base mesh of 11,008 cells is used, with the following cases using various AMR levels. The Cartesian computational
domain is transformed from the physical domain using the MMB technique, enabling Chord to handle relatively com-
plex geometries, such as the bluff body, while efficiently using the finite-volume algorithm on a Cartesian grid with AMR.
Cells are grouped into grid boxes, and grid boxes are distributed across processors to achieve spatial parallelization. The
initial grid boxes are shown in Figure 11A, with the domain comprised of seven mapped blocks. During time integra-
tion, the AMR algorithm tags regions in the domain based on the va ues of OH and CH,O mass fractions, subject to

— 152.4 mm 4‘ No-slip wall
. 5 g
.i; ‘ :ES.I min 3: b:-
UT (0,0) No-slip wall
- 828.4 mm

FIGURE 10 A diagram of the bluff-body combustor geometry
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FIGURE 11 Inthe physical domain: grids at the initial conditions and after some solution time. (A) The initial grid boxes for the
bluff-body combustor; (B) Grid boxes showing dynamic adaptation to the solution at t = 5.2 ms. (C) At f = 5.2 ms the cells are dynamically
refined for chemically reacting regions. This is a close up view of the cells in the region outlined in red in (B) [Colour figure can be viewed at
wileyonlinelibrary.com|

Con X ccn,0 > 2.0 X 1079, A representative set of grid boxes at t = 5.2 ms is shown in Figure 11B, and the individual cells
may be seen at this solution time in Figure 11C in a close-up view.

For all cases considered here, neither the PID step-size controller nor the extrapolation for initial stage value guesses
in the ARK4 scheme is invoked. The PID step-size controller is found unnecessary to control the stability, while in
some cases, extrapolating initial stage value guesses appears to prevent the nonlinear solver from converging. Regard-
ing the nonlinear convergence tolerance, it is set to exys = 1.0 X 1078, but is scaled by Jp which leads to a typical value
of exts &~ 1.0 x 107, A very tight convergence tolerance is required to ensure a consistent thermodynamic state in a
cell.

First, two cases, one with ARK4 and the other with ERK4, are run to a solution time of t = 1 ms. For a fair compar-
ison, both cases use the same base grid. Results are presented to compare the solution accuracy and efficiency between
the ERK4 and ARK4 time integration methods. Statistical data on the average time step size and average wall-clock time
per step are collated in Table 2. This demonstrates that the ARK4 time integration is able to take time step sizes of approx-
imately thr e orders of magnitude larger than the ERK4 time integration, with a wall clock time of approximately half
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TABLE 2 A comparison between ARK4 and ERK4 for the average step size and average wall-clock time per step (in seconds) for the
two-dimensional bluff-body combustor

Case Average At Average wall-clock/step Speedup
ERK4 2.5%107° 0.091 —
ARK4 1.0x107° 0.521 70

an order of magnitude longer per time step. This leads to an average speedup of 70x by using ARK4 for the bluff body
problem while providing an acceptable solution accuracy. The ERK4 and ARK4 time integrators require 310,000 steps
and 1200 steps, respectively, to reach the same solution time. Figure 12 compares the contours of temperature, ccy,o, and
cop in a region immediately behind the bluff body where the flow and flame dynamics is important. The difference in the
temperature contours between the two time integrators is negligible for both the structure and the magnitude. The ccy,0
contours are also nearly indistinguishable. Although the difference between the con contours is visible in a few spatial
locations, the structures remain identical. The visible difference is not a concern because OH variation over time is much
more dynamic than other species, and its impact on the flame dynamics overall seems to be short-lived. The difference
in a mean distribution over a characteristic timescale is significantly less than that shown in an instantaneous snapshot.
The ARK4 time integrator achieves a 70x speed-up for this test.

The case with the ARK4 time integrator was further advanced to a solution time of = 5.2 ms, while two additional
levels of AMR were employed with a refinement ratio of 2 for each level. Figure 13 shows the temperature, density, ¢y, 0,
and coy contours at the same physical region as that in Figure 12. As seen in Shanbhogue et al.,” the recirculation and the
beginning of the generation of flame wrinkling are clearly observed. Using AMR, the flow and flame details are efficiently
resolved while greatly reducing the computational cost for this ARK4 case. Without AMR, the base grid did not resolve
the fine structure. Without AMR, it is simply not affordable for a uniformly refined grid that has the same finest resolution
asitin this AMR case,

More interestingly, the time step sizes for the convective, diffusive, and reactive physics on each AMR level are shown
in Figure 14. As shown in Figure 14A, the inertial time step size decreases proportionally to the mesh resolution, as
expected from the CFL condition (Equation 46). Figure 14B shows the viscous time step size decreases quadratically
to the mesh resolution, as expected from the von Neumann condition (Equation 47). As the mesh is refined, the aver-
age step size for chemical reactions increases, as shown by Figure 14C. Nevertheless, the chemical time step is still the
limiting one on each AMR level. Lastly, the combined ARK4 time step size, as computed by Equation (51), is shown
in Figure 14D.

Inspired by the observation through numerical experiments that the geometry has demonstrated an impact on chem-
istry stiffness, the impact on stiffness of the H,-air combustion in the bluff body configuration is compared to the shock
bubble configuration where there is no geometric complexity. Figure 15 shows the evolution of the inertial (convective),
viscous, chemical, and ARK4 time-step sizes over the solution time and the AMR level. Similarly to the C;Hg-air com-
bustion, the inertial and viscous time step sizes for the H,-air flame decrease proportionally to the mesh spacing and
mesh spacing squared, respectively. The same is also observed that the chemical step size increases as the spatial resolu-
tion increases. However, the evolution of the chemical time step for the C;Hg-air is much less oscillatory than that for
the H,-air flame. The overall time step size determined by ARK4 for the former is about two orders of magnitude larger
than the latter. Furthermore, the time step size on the base grid (level 0) for the H,-air flame is significantly smaller than
that on the finer levels, indicating a strong need for implicit time marching for the chemical source term. The average
time step values are summarized in Table 3 for the 2D shock bubble with the H,-air mechanism, as well as 2D bluff body
cases with H,-air and C;Hg-air mechanisms. This demonstrates that the H,-air combustion is more stiff in the bluff-body
combustor than in the shock bubble configuration. However, the difference in the stiffness can also be a consequence
of the operating conditions. Additionally, H,-air combustion is more stiff than C;Hg-air combustion in the bluff-body
combustor.



CHRISTOPHER ET AL. Wl LEY 2
7.2 | Combustion in 3D bluff-body combustor

For the 3D bluff body case, the domain size and boundary conditions remain the same as the 2D case, except for
th addition of the span-wise direction with a depth of 127mm. The combustor is extruded to the entire depth.
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FIGURE 12 Distributions of temperature, H,O mass fraction, and OH mass fraction behind the bluff body, comparing ARK4 and
ERK4 at t = 1 ms for the C3Hg-air chemistry. (A) Temperature for ARK4 after 1200 steps. (B) Temperature for ERK4 after 310,000 steps. (C)
H, O mass fraction for ARK4 after 1200 steps. (D) H,O mass fraction for ERK4 after 310,000 steps. (E) OH mass fraction for ARK4 after 1200
steps. (F) OH mass fraction for ERK4 after 310,000 steps [Colour figure can be viewed at wileyonlinelibrary.com]
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Periodic conditions are used on the boundaries normal to the span-wise direction. The base mesh in the 3D case
contains approximately 330,000 cells, and one level of refinement is added at a refinement ratio of 2. As with
the 2D case, the flow-direction mesh resolution stretched logarithmically from 1 mm immediately behind the bluff
body to 11 mm at the outlet. A level of mesh refinement is applied to resolve the complex dynamics immediately
behind the bluff body. Only the ARK4 time integration is employed for these 3D cases since the computational time
of using ERK4 is infeasible. First, the C;Hg-air mechanism is demonstrated, then the CH,—air mechanism is also
considered.

Figure 16 shows the instantaneous isosurfaces of the vorticity, temperature, and mass fractions of H,O and OH, respec-
tively, for the 3D C;Hg-air flame at a solution time of t = 246 ms. The flame is much more developed at 4.9 flow-through
times. Note that a flow-through time is 50 ms. The vorticity contours demonstrate a significant recirculation zone immedi-
ately behind the combustor, as well as vortex shedding in the wake. The temperature, cop, and cy,o plots show resolution
of the flam front, hot products in the wake, and flame wrinkling.
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FIGURE 13 Distributions of temperature, density, H, O mass fraction, and OH mass fraction behind the bluff body at t = 5.2 ms for the
C;Hg-air combustion with two levels of adaptive mesh refinement. (A) Temperature, ARK4; (B) Density, ARK4; (C) H,O mass fraction,
ARK4. (D) OH mass fraction, ARK4 [Colour figure can be viewed at wileyonlinelibrary.com|
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FIGURE 14 The step size found from inertial, viscous, chemical, and ARK4 time scales on the base grid and two adaptive mesh
refinement levels of the C3;Hg—-air chemistry in the two-dimensional bluff-body combustor. Due to subcycling, the finer levels take more steps
than the coarser level at a ratio of 2 per level. (A) Inertial At; (B) viscous At; (C) chemical At; (D) ARK4 At [Colour figure can be viewed at
wil yonlinelibrary.com|
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FIGURE 15 The step size found from inertial, viscous, chemical, and ARK4 time scales on the base level and two adaptive mesh
refinement levels of the H,-air combustion in the two-dimensional bluff-body combustor. Due to subcycling, the finer levels take more steps
than the coarser level at a ratio of 2 per level. (A) Inertial At; (B) viscous At; (C) chemical At; (D) ARK4 At [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 The average At (in s) for the H;-air and C3Hg-air chemistry for the shock bubble and bluff body cases

Case
Shock bubble
(H,-air)

Bluff body

(H,-air)

Bluff body
(C3Hg-ajr)

Level ARK4 At
0 5.6x 107"
1 2.7x107°
2 1.3x107°
3 5.5%x 10710
0 1.8 x 1077
1 1.0x 1077
2 5.8x10°%
0 1.1x107®
1 5.3x 1077
2 2.6 %1077

Inertial At
6.4 %107
3.2x107°
1.6 x107°
8.0x 10710
1.1x107°
5.3x 1077
2.6x1077
1.1x107®
5.6 %1077
2,75 %1077

Viscous At
1.4x 1077
3.5x1078
8.9x 1077
2.2x%107°
7.9x 1074
1.9x107*
48x107°
8.3x 107
20x 1074
44x107°

Chemical At
1.4x 1078
2.6 %1078
50x107*
9.8 %1078
8.8 x 10712
9.6 x 107°
21x107®
3.3x107
6.2 % 107°
1.1x 1078
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While 3D images are more interesting to view than 2D images, the latter is usually easier for visualizing the details
using contour lines. To show the contour lines, a mid-z-plane is taken from Figure 16, as shown in Figure 17. Several
important physical structures can be identified in the 2D contours. Vortex shedding is seen in the vorticity plot, along
with the recirculation zone behind the combustor and its interaction with the shear layer. The temperature plot shows
flame wrinkling and the hot wake generated by the combustion.

The time step sizes for an AMR bluff-body case with the C;Hg-air mechanism are shown in Figure 18. The inertial
time step size decreases as the mesh resolution increases, and the diffusive time step size decreases quadratically to the
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FIGURE 16 Vorticity, temperature, H,O mass fraction, and OH mass fraction of the C;Hg-air flame in the three-dimensional
bluff-body combustor at solution time ¢ = 246 ms. (A) Vorticity; (B) temperature; (C) H,O mass fraction; (D) OH mass fraction [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 17 A cross section of the contours of vorticity, temperature, H,O mass fraction, and OH mass fraction of the C;Hg-air flame
in the three-dimensional bluff-body combustor at solution time t = 246 ms. (A) Vorticity; (B) temperature; (C) H,O mass fraction; (D) OH

mass fraction [Colour figure can be viewed at wileyonlinelibrary.com]|
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mesh resolution. As with previous cases, the chemical time step size increases as the mesh resolution increases. For all
three physical processes, the time step sizes started decreasing as the solution time advanced.

A 13-species, 38-reaction CHy—air mechanism is used to evaluate ARK4 time integration with methane as a fuel.*® The
instantaneous isosurfaces of temperature and OH mass fraction are shown in Figure 19 at a solution time of t = 834 ms,
or 16.7 flow-through times.

Interestingly, the chemical time scales for the methane reaction mechanism is of the same order of magnitude as the
inertial time scales. Not surprisingly, CHy—air combustion is much less stiff than C;Hg-air combustion. The average time
st psizes for the CH,—air mechanism on the 3D bluff body geometry is shown in Table 4. On the first level of refinement,
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FIGURE 18 The step size found from inertial, viscous, and chemical time scales on the base level and two AMR levels of the
three-dimensional bluff body case with C;Hg—-air chemistry. Due to subcycling, the finer levels take more steps than the coarser level at a
ratio of 2 per level. (A) Inertial At; (B) viscous Af; (C) chemical At; (D) ARK4 At [Colour figure can be viewed at wileyonlinelibrary.com|
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FIGURE 19 Temperature and OH mass fraction of the three-dimensional (3D) bluff body CH,—air case at solution time ¢ = 834 ms. (A)
Temperature, 3D contour; (B) OH mass fraction, 3D contour; (C) Temperature, two-dimensional (2D) cross section; (D) OH mass fraction, 2D
cross section [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 4 The average At (in s) for the C3;Hg-air and CH,-air combustion in the three-dimensional bluff-body combustor

Case Level ARK4 At Inertial At Viscous At Chemical At
C;Hg-air 0 8.4x1077 8.4x1077 3.1x1074 7.9x 101

1 42x%1077 4.2x1077 7.6 %1073 2.4x1071°
CH,-air 0 8.6 x 1077 8.6x 1077 3.4x107* 1.5x 1077

1 4.2%x1077 42x1077 8.2x107° 3.8x107°

the chemical time step size is larger than the inertial time step size, rendering ARK4 ineffective at obtaining speedups.
On the coarse level (level 0), the C3Hg-air mechanism takes an average step size of 8.4 x 1077 s while the chemical step
size would limit an ERK4 time integration method to an average step size of 7.9 x 107! s. This corresponds to taking a
step size 10,000 larger in ARK4 than in ERK4. On the fine level, the average step size of 4.2 x 1077 s is 2000 larger than
the chemical step size of 2.4 x 10710 s,

8 | CONCLUSION AND FUTURE WORK

In the present study, the 2-ARK4(3)6L[2]SA scheme has been implemented with AMR and validated in Chord, a
fourth-order finite-volume CFD software infrastructure where numerical capabilities of solving complex fluid dynamics
problems include the mapped multiblock technique for accommodating real geometries, the large eddy simulation for
turbulence modeling, and the species transport and chemical kinetics for a range of fuels (hydrogen and hydrocarbons)
for simulating reacting flows. The AMR technique is one of the foundational numerical features in the framework for
maximizing computational efficiency in solving stiff problems. While ARK4 is not new, a successful building of ARK4
into this complex software framework has required a few new strategies, particularly in the context of AMR. For example,
the integration overcomes the challenge of subcycling by utilizing dense output to enable temporal interpolation of ghost
cells on finer levels. The incorporation of ARK4 has enabled Chord to efficiently model practical combustion problems
occurring in a realistic combustor geometry with stiff chemical mechanisms.

The computational efficiency and accuracy have been demonstrated and assessed for the C;Hg—air premixed flame in
the bluff-body combustor. The chemical kinetics involves 24 species and 66 reactions, which is much more stiff than the
same premixed lean CHy—air combustion. For example, the ARK4 time step on level 0 (the base mesh) is on the order of
8.0 x 107%7 s while the global chemical step is on the order of 8.0 x 107" s; that is a 10,000 increase in time step sizes. On
level 1, the ARK4 time step is about 4.0 x 10~°7 s while the global chemical time step is about 2.0 x 1071%s; that is a 2000
increase in time step size. If using ERK4, this C;Hg-air premixed flame in the bluff-body combustor simulation would take
21 days of wall-clock time on 200 CPUs to achieve one flow-through time, which is evidently impractical. However, using
ARK4, the simulation can be performed efficiently within 7.2 h on 200 CPUs. As shown, the global chemical time step
increases as the mesh resolution is refined. At some fine level, one would expect the chemical time step would eventually
not be the limiting time scale for the overall computation. At this point, treating the chemical term implicitly becomes
unnecessary. Therefore, in the algorithm, ARK4 is programmed to respond to the level of AMR where it is automatically
engaged or disengaged based on the chemical time scale. We also anticipate that the viscous term might become the
stiff term as the mesh is refined. Then, the viscous term would be treated implicitly. Nevertheless, for all applications of
interest to the present study, the viscous physics has always been less stiff than the chemical reactions.

Another major challenge was the species correction strategy. We have implemented a new robust method to cope with
the unphysical phenomenon in species caused by numerical errors. The nonlinear solvers employed during the solution
process experienced convergence difficulty when an unphysical species mass fraction occurs. To prevent this, we have
employed an optimization strategy based on the L-BFGS-B solver to redistribute the species mass fraction when either a
single species or the sum of all species is out of bounds. This method has proven to be superior to any simple redistribution
scheme by renormalizing and weighting. We have also found that the analytical chemical Jacobian performs better than
the approximate one in terms of computational efficiency and accuracy for the stiff chemical reactions.

Future work will be focused on highly turbulent combusting flows. It is anticipated that the ARK4 would gain a
more significant computational speedup for turbulent combustion at high-Reynolds numbers in realistic combustors.
The resulting CFD framework will improve our fundamental understanding of turbulent combustion by solving practical
reacting flows more efficiently, which otherwise would be infeasible or take too long to solve.
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