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ABSTRACT

This paper introduces some of the basic mechanisms relating the behavior of the spectral measure of Schrédinger operators near zero energy
to the long-term decay and dispersion of the associated Schrédinger and wave evolutions. These principles are illustrated by means of the
author’s work on decay of Schrédinger and wave equations under various types of perturbations, including those of the underlying metric. In
particular, we consider local decay of solutions to the linear Schrodinger and wave equations on curved backgrounds that exhibit trapping. A
particular application is waves on a Schwarzschild black hole spacetime. We elaborate on Price’s law of local decay that accelerates with the
angular momentum, which has recently been settled by Hintz, also in the much more difficult Kerr black hole setting. While the author’s work
on the same topic was conducted ten years ago, the global semiclassical representation techniques developed there have recently been applied
by Krieger, Miao, and the author [“A stability theory beyond the co-rotational setting for critical wave maps blow up,” arXiv:2009.08843
(2020)] to the nonlinear problem of stability of blowup solutions to critical wave maps under non-equivariant perturbations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0042767

I. INTRODUCTION

This paper mainly serves as an introduction to the techniques used in the papers,”*" which are concerned with the local decay of waves
on a Schwarzschild background. The decay estimates are obtained by separation of variables and the analysis of the flow for each angular
momentum £ in Ref. 29. By means of a semiclassical WKB analysis in the parameter % := £~! carried out by means of a global Liouville-Green
transform, as well as semiclassical Mourre theory at energies near the top of the barrier,’’ these fibered estimates sum up over all angular
momenta incurring the loss of finitely many angular derivatives. Note that Refs. 29 and 30 are not entirely self-contained and rely, in part,
on Refs. 16, 17, 28, 74, and 75. As shown in these references, the Schrédinger flow can be analyzed analogously. The original motivation for
Refs. 74 and 75 was to study the long-term dispersive behavior of solutions to Schrodinger and wave equations on specific non-compact
manifolds exhibiting closed geodesics, such as the hyperboloid of one sheet. In analogy with the unique periodic geodesic on such a hyper-
boloid, which is exponentially unstable, the surface of closed geodesics around a Schwarzschild black hole is known as a photon sphere and
corresponds to the collection of all periodic light rays. The photon sphere is also unstable.

Recently, in joint work with Krieger et al.,”° the semiclassical techniques leading to a precise representation of the resolvent and the
spectral measure for all energies and all small /1 developed in Refs. 16 and 17 played a crucial role in a nonlinear asymptotic stability question
of blowup solutions to energy critical wave maps into the two-sphere. In stark contrast to the linear case, modes of fixed frequencies interact
through the nonlinearities. Controlling these interactions naturally leads to a paradifferential calculus involving several simultaneous semi-
classical parameters. The nonlinear work™ served as the main motivation for writing this paper, which should not be mistaken for a general
review. Numerous references are missing, which touch in one way or another on the ensuing discussion. A survey of dispersive decay of
Schrodinger, wave, and Klein-Gordon evolutions involving electric, magnetic, and metric perturbations, including the semi-classical and
gravitational literature, would require many hundreds of citations. The scope and purpose of this paper is much more limited. For example,
magnetic and time-dependent potentials are not discussed in detail.

The author’s investigations in this area were largely motivated by the book of Bourgain,'’ which states at the end of page 27: On the
other hand, it would be most interesting to prove that analogue of (1.99) in low dimensions d = 1,2. This is certainly a project of independent
importance. Here, (1.99) refers to the pointwise decay of the Schrédinger evolution proved by Journé, Soffer, and Sogge’' (see Sec. I1).
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Il. LOWER ORDER PERTURBATIONS

The free Schrédinger evolution y(t) = ™™

o in RY:! satisfies the basic estimates

[w (&) = [wol e (1)
Iy (t)]eo < CF 2y, @)

as can be seen from the representation
w(t,x) = (2n)~° fR D7) g
= o(d) ! it d
=c(d)t fRde () dy.
For the wave equation Ou = 71 — Au = 0 in d + 1 dimensions, one has constancy of the energy
& (u) = |Vul3 + [0l 3)

as well as the dispersive decay

_dot
)1 57 (10002 + 100 ) @
where Bf | stands for the usual Besov space: | f| B = ZjEZZ“j |Pif |1, where P; is the Littlewood-Paley projection onto frequencies of size 2.
In odd spatial dimensions, one can improve the right-hand side to

4], w1, + |90 ] .

where W*” stands for the homogeneous Sobolev spaces. To obtain (4), one considers a fixed frequency shell {|| ~ 2/} and rescales to j = 0.
Then,

() = [ SO0 &) dE £ () dy,

where y is a cutoff function corresponding to Py. Passing to polar coordinates and applying stationary phase to integrals over spheres then

yield the desired t~ E decay.

While (1) and (3) are a result of the time-translation invariance of the underlying Lagrangians (via Noether’s theorem) and therefore
robust under perturbations that preserve this symmetry, (2) and (4) follow from the form of the fundamental solutions and are therefore
less stable. In fact, much effort has been devoted to deriving similar dispersive estimates for perturbations of the free Schrédinger and wave
equations in the past thirty years. The starting point in these investigations was to consider local decay estimates that are quite different from
the global ones as in (2) and (4) (as we shall see below). Local here refers to the fact that the decay is measured only in weighted spaces rather
than in a uniform sense.

A. Local decay for -A+V
1. The Schrédinger evolution

In Ref. 50, Jensen and Kato showed that for H = —A + V in the three-dimensional case, with real-valued V that is bounded and decays at
a sufficient polynomial, rate one has the local decay

1) €™ Pef iz iy % €60 1) F oz ey (5)

for some ¢ > 0 and with P = y(g,00) (H) being the projection onto the continuous spectrum. Moreover, one needs to assume that zero energy
is neither an eigenvalue nor a resonance of H (which is also referred to as zero energy being regular, the other case being singular).
This latter property refers to the validity of the resolvent estimate

sup [[(x) (=4 +V+2)" (1) 22 < 00 (6)

Imz>0

with o > 0 sufficiently large. Alternatively, it is the same as the nonexistence of f # 0 with

Hf =0, feL* 1 (R%). 7)

>0
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It was already observed by Rauch’’ for exponentially decaying potentials that a zero energy resonance or eigenvalue, i.e., in the case when (7)
admits a nontrivial solution, destroys the dispersive estimate. More specifically, one loses one power of t in the decay law in that case.
To see the relevance of zero energy resonances, we expand the resolvent for z — 0 in Im z > 0 as follows:

R(z):=(-A+V+2)" (8)

=z By +2z :B_, +By+2°B, +p(2),
2

1
2

where B_y, ..., By are bounded in weighted L*(R?)-spaces, and with

1) p(2) fll2 S Il {x)° f 2

for small z. Clearly, B_; is the orthogonal projection onto the zero eigenspace, and zero energy is regular for H iff B_; = B

1 = 0. In general,
2

B_j, B_. are of finite rank. As an example, consider the case V = 0 in three dimensions, for which one has (with z = —( 2)
2

R

(-A- (2)_1(x,y) =1 , Im({>0,

milx -y

and the Laurent expansion (8) is now obtained by Taylor expanding the exponential on the right-hand side. It follows that zero energy is
neither an eigenvalue nor a resonance in that case. In contrast, the one-dimensional case satisfies

il|x—y]|
(-A =) N xy) = % Im¢ >0,

and zero is a resonance (but not an eigenvalue). We used here that (8) remains correct in all odd dimensions, whereas in even dimensions, a
logarithm appears. Indeed, the free resolvent in d-dimensions satisfies

-2

(~8=0)"(xy) = el Iy T HL (G-, ©

and the Hankel functions of integer order exhibit a logarithmic branch point at zero.
To pass to estimates on the evolution, one now uses the Laplace transform (as in the Hille-Yosida theorem) to conclude that

. po+ico
(Mip, = 1 / e R(ip)P. dp, (10)
P

2 0 —i00

where pg > 0 is arbitrary. Assuming for simplicity that V' is compactly supported, it follows from the resolvent identity that the Green function
R(ip)(x,y) admits a meromorphic continuation to the left-half plane. One now deforms the contour in (10) as shown in Fig. 1. The finitely
many residues {{j} of the resolvent in the left-half plane (which lie in C\(—o0,0]) contribute to the exponentially decaying expression

Ze{jtpﬁf’f’
4

FIG. 1. Deforming the contour.
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where Py, is the projection onto the resonant states corresponding to the complex resonance at (; (the resonant states are commonly referred
to as meta-stable states or quasinormal modes). The more slowly decaying tail is a result of the branching of the resolvent at p = 0. More
specifically, it can be read off from (8) via the following standard result, which is known as Watson’s lemma (the notation ~ refers to asymptotic
expansions in the sense of Poincaré):

LemmaILl. Let f be a complex-valued function of a real variable x such that

o f is continuous on (0, 00),
o f(x)~T2pan X! as x > 0+ withO<do <A <...
o f(x)=0(e™) asx — oo for some c > 0.

This condition can be removed since Watson’s lemma is really local on some interval (0,xo), but we choose to state it in this global form. Then,
for every small § > 0, one has

~£%Wﬂﬂﬁ~iﬁﬁﬁﬁ

n=0

as |p| — oo in |arg(p)| < 5 - 6.

3
2

Therefore, if B_, # 0in (8), then one obtains ¢ local decay, whereas, otherwise, the rate is t™ 2, which is the same as in (2). Evidently, the
2

global (i.e., L™) decay can never be faster than the local one—whence the need to exclude zero energy resonance and eigenvalues to preserve
(2). We remark that one can have B_1 # 0 even in case the only solutions to (7) are in L* (in other words, if zero energy is an eigenvalue
2

3
but not a resonance). This implies that ¢~ 2 does not result from applying P, to the evolution even when zero is not a resonance but only an
eigenvalue.
Starting from the spectral representation

ﬂm:fmﬂﬂﬂ) (11)
0

instead of (10) with the spectral measure

1

E(dA) = T[R(A +i0) — R(A - i0)]P. dA,
i

Jensen and Kato derived local decay estimates but under much less severe restrictions on the decay of V and also on the notion of locality in

the decay estimate. However, it is clear from (11) that the main issue here is once again the contributions from A = 0 coming from (8). Indeed,

for energies A > Ag > 0, where Ao > 0 is arbitrary but fixed, one has the so-called limiting absorption resolvent bounds

ill})ll(')”(%‘R()L +i0)(-) 7| < o0

forall 0 < k < ko and with o > 0 depending on k (the value of ko here depends on the decay of V). These bounds allow one to integrate by parts
in (11) in the range A > Ao, which leads to arbitrary decay in time.

The most general results on local decay for the Schrédinger evolution were obtained by Murata.®> He derived expansions in time for
evolutions ¢ in all dimensions and with elliptic H = —p(D) + V, where V is a compact operator in suitable weighted Sobolev spaces. As a
general rule, the coefficients in these expansions corresponding to nongeneric threshold behavior (i.e., slow decay resulting from threshold
eigenvalues or resonances) are finite rank operators that can be computed in terms of the eigenfunctions and resonant states. As an example,
the one-dimensional free evolution satisfies

e =t [0y p(0f (),
1) p(O) fla S £ 1() f o

The appearance of the projection f + [ f(y)dy onto the constant functions is natural in view of the fact that the resonant function of —9;
at zero energy is f = 1. This also shows that one should expect £72 local decay for one-dimensional operators without zero energy resonance
(note that, however, the global decay as in (2) is never faster than £73ifd= 1), at least assuming sufficient decay of V. This is indeed the
case (see Ref. 65). In two dimensions, Murata obtained the faster local L*(R?) decay ™' log™*t for operators without resonance. Erdogan and
Green® established the more difficult sharp weighted L' — L™ version of these global bounds in R?, assuming that zero energy is regular.
These faster local decays (as compared to the global L™ decay) play a crucial role in certain applications to nonlinear stability results (see the
work of Buslaev and Perelman'® Krieger and Schlag”” for the one-dimensional case and Kirr and Zarnescu™ for examples of two-dimensional
applications. Loosely speaking, the point here is that in contrast to the global decay rates these, faster non-resonant local rates are integrable
in time, which allows one to close certain bootstrap arguments involving the Duhamel formula.
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2. The wave evolution

Similar considerations apply to the wave equation. Indeed, let Ou = 0, with (u(0), 9;u(0)) = (0, g) [initial data (f,0) are then handled
by differentiating in time]. Then, instead of (10), one has

B sin(tv/H) 1 e
u(n) = g = /

N = e?R(p*)P. gdp, (12)

po—ico

where py > 0. In contrast to the Schrédinger case, the resolvent R(p*) in odd dimensions is now analytic around p = 0 (assuming that there is
no zero energy resonance or eigenvalue), which results in arbitrary local decay of u(t). More precisely, if V decays exponentially, thus allowing
for analytic continuation of the Green function to the left-half plane, one obtains exponential decay in time relative to weighted L? in space.
This is, of course, a consequence of the sharp Huyghens principle in odd dimensions, which states that the fundamental solution of the free
wave equation is localized to a sphere with radius given by the time. We see from this informal discussion that this principle is robust under
perturbations [at least in the sense that the perturbed wave u(t) will decay very rapidly at distances < ¢ from the origin, which, of course,
is far from being able to describe the fundamental solution]. Note the stark contrast between the strong local decay of the wave equation as
compared to the specific global decay given by (4).

On the other hand, in even dimensions, the resolvent will exhibit a log p singularity [see (9)]. Due to this branching of the resolvent at
p =0, Watson’s lemma implies an explicit power law depending on the dimension governing the tail of the wave near the origin. This is in
agreement with the fact that there is no sharp Huyghens principle in even dimensions.

To summarize this section, one sees that the local decay for both the Schrodinger and the wave equation is entirely determined by the
singularity (often but not necessarily by branching) of the resolvent (A + V + z) ™" at p = 0, where z = —ip in the former case and z = p? in
the latter case.

B. Global decay for -A + V
1. The Schrédinger evolution

The first result that proved (2) for H = —A + V in dimensions d > 3 was obtained by Journé, Soffer, and Sogge.”! Following the
unpublished work by Ginibre, we now give a short proof of a simpler estimate, namely,

e Pefllposrzqray S (82 [ flinre ey (13)

assuming that V has sufficient decay and that H has no zero energy eigenvalue or resonance. The logic here is that the Duhamel formula
allows one to upgrade local decay to global one. More precisely, if

—0 i -4 4
[(x) €™ Pefll 2 may S ()2 [(0) fll 2 mey

and if V decays sufficiently fast, then the same estimate holds without weights in the sense of (13) (provided d > 2). More precisely, applying
the Duhamel formula twice yields

) ) t . )
eMp, = ¢7p if e—z(t—s)AvetsHPE ds
0
) t . )
=e ™p, 4+ if P VP ™A ds

0
t s . . ’ s
+ / f ¢ (=) il )HPC Ve A ds' ds.
o Jo
Applying the local decay for ¢ from Sec. 11 A (with \4E acting as weight, say) as well as the bound
—itA -4
le™ fllizsreray S ()2 | f iz ey
to this expression yields for || f || ;1nz2(rey = 1,
i _d t _d, o _d
[Pl izqrny 5 ()77 + [ (0577 (s) 7 ds

+ fotfosﬁ—s)_g(s—sl)_g(”_g ds' ds (t>_g
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as claimed, provided d > 3. The main gist of Ref. 51 is now to remove the L*-piece from this argument. This is subtle, as the free estimate
involved (t - s)_% , which is not integrable at s = t. To overcome this difficulty, Journé, Soffer, and Sogge used the bound

sup e " Ve ooy < |V

1<p<oo

The point here is that the left-hand side for V = ¢ is a translation operator composed of a unimodular factor and therefore I bounded.
Rodnianski and the author’! proved that for all ¢ > 0,

i _3
1€ £l rey < COVYE 2| £l Ry, (14)

assuming that

sup M dy < 4nm (15)

xR IR [x =)
as well as that the so-called Rollnick norm of V is less than 47. The left-hand side in (15) is commonly referred to as the Kato norm | - k.
The Rollnick condition precludes any spectral problems, such as eigenvalues and a zero energy singularity. The approach of Ref. 71 to the
pointwise bounds is based on an expansion into an infinite Born series followed by term-wise estimation of the resulting kernels. The smallness
condition on V guarantees convergence.

Remarkably, Beceanu and Goldberg® were able to show that the finiteness of the Kato norm alone suffices. More precisely, they showed
that (14) holds for ¢™ P, in three dimensions assuming (15) with 47 replaced by co and that there are no imbedded eigenvalues and resonances
in the continuous spectrum. They accomplished this by means of Beceanu’s Wiener algebra techniques (see Ref. 4). Recall that Wiener’s
classical theorem states that for any f € L' (R), the equation (8 + f) * (8o + g) = 8 has a (unique) solution with g € L' (R) if and only if
1+ f # 0 on RR. The relevance of this to the decay of solutions to

(i0: = A+ V)y =F, y(0) = yo,

can be seen as follows: let V1V, = V, |V}| = |V;| and set
(Tv, v, F)(t) = fotVzei(t‘s)H°V1F(s) ds,
with Hy = —A. Then, on one hand, one has
Vay(t) = (dold - iTVZ,Vl)_IVz(eitHOI/IO — fo = g gy ds),

which is to be interpreted in the convolution algebra & (L*(R?), .#:L*(R?)), where .4 are the complex measures on the line. On the other
hand, Ty, v, (1) = iVaRy (A) V1, with Ry (A) = (Ho — (A = i0))™". Hence, the invertibility of 8oId — iTv, v, in & (L*(R?), #L*(R?)) is the
same as the pointwise invertibility of the Birman-Schwinger operator Id + V2R (1) V. This equivalence is delicate and requires V ¢ L (R*)
the Lorentz space, whence V1, V> € 13? (]R3), and also the Keel-Tao Strichartz endpoint.”* For the abstract Wiener theorem in this context,
see Theorem 1.1 of Ref. 4 and Theorem 3 of Ref. 5.

An alternative and very general approach to proving I bounds on both wave and Schrédinger evolutions was found by Yajima®"*> who
proved I? boundedness of the wave operators, with the limit being taken in the strong L*-sense,
W = lime e (16)

t—o0

for all 1 < p < oo and d > 3. The fact that these operators exist and are isometries L* — Ran(P:(H)) is a classical fact (see Ref. 52). They
intertwine the free evolution with that of H in the sense that (with Hy = —A)

f(H)P(H) = W f(Ho)W"
for any Borel function f on R. In particular, e™#P,(H) = We™ W*, and (2) therefore implies the bound
i _d
[ Pefloe < CE2[ £

whenever W : L — L, W* : L' — L', Yajima obtains similar results on W*? assuming more regularity on V (the amount of regularity
depends on k). In view of our discussions of the role of zero energy resonances for local decay, it follows that Yajima’s result®! can only hold
under the assumption that zero energy is neither a resonance nor an eigenvalue. In three dimensions,*! the result requires |V (x)| < (x) ¢ with
0 > 5 and therefore improves on.”!
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Yajima derives his L bounds by means of a finite Born series expansion with a remainder term involving the perturbed resolvent. In
the case of small potentials, one can sum up the infinite Born expansion, leading to more precise results in terms of conditions on V. In view
of the preceding discussion of Wiener theorems as a means of summing divergent series, it is natural to ask if Yajima’s theorem could be
approached by means of a suitable Wiener algebra. Beceanu and the author® carried this out and proved that the wave operators given by (16)
in R? are superpositions of reflections and translations. In fact, assuming that |V (x)| $ C (x>,§,5 and that zero energy is neither an eigenvalue
nor a resonance, they showed that there exists g(x, y, ) € L,.#,L;° (with .4, being finite Borel measures in ), i.e.,

I8y, )]. = do < o,

such that for f € L*(R?), one has the representation formula for the wave operator
WHE) =0+ [ [ glodnw)f(Sux—y) do,

where Syx = x — 2(x - w)w is a reflection. This, of course, implies that W : X — X is bounded for any function space X on R? with a norm that
is invariant under translations and reflections. The proof of this representation formula in Ref. 6 is not entirely straightforward. On one hand,
the algebra to which the Wiener theorem is applied is somewhat delicate and requires casting the finite order Born series terms in Yajima’s
work®" (which involve only finitely many potentials and free resolvents) in some iterative algebraic framework. In other words, one needs
to find the correct algebra &/ and composition law & as well as operator T to write the third Born term, say, in the form T® T ® T in <.
Furthermore, the classical scattering theory based on weighted L? spaces does not suffice, and it is necessary to invoke the author’s work with
the work of Ionescu,* which revisits the classical Agmon-Kato-Kuroda theorem in the context of Fourier restriction and the Stein-Tomas
theorem, as well as the Keel-Tao endpoint.”* This, in turn, relies on the Carleman theorems and absence of imbedded eigenvalues obtained in
Ref. 48. It is not known whether a structure theorem holds under a scaling-invariant assumption on V; see, however,Ref. 7 for such a result,
albeit involving small scaling-invariant potentials.

In higher dimensions, it turns out that one needs to assume some regularity of V in order for the expected L' (R?) — L (R?) bounds
to hold. Indeed, Goldberg and Visan*’ showed that the dispersive bound can fail in dimensions d > 3 for potentials that belong to the class

c5 (R?). The logic here is that the free resolvent takes the form (in odd dimensions)

ilr % )
(~A -2 +i0)7(r) = ;Tzzcj (Ar), (17)
j=0

i3 s
and the highest power A 2 here corresponds to a % derivative loss on V. In the positive direction, Erdogan and Green’” proved the dispersive

bound in dimensions d = 5,7, assuming that V e C B (R%) (zero energy resonances cannot arise in dimensions d > 5).

The case of low dimensions d = 1 and d = 2 always requires a separate analysis since the free resolvent in those cases exhibits a zero
energy singularity (more precisely, there is a zero energy resonance given by the constant state f = 1). We refer to the reader to Refs. 23,
41, and 80 for the one-dimensional case and Ref. 73 for dispersive estimates for the two-dimensional case, provided zero energy is regular.
Erdogan and Green®® carried out a more complete analysis of the dispersive decay in R?, allowing for s and p-wave resonances at zero energy.
This classification refers to nonzero solutions y of Hy = 0, which (i) are asymptotic to a nonzero constant at spatial co for s-waves and (ii)
are in LY(R?) for all q > 2 for p-waves. They showed that the s-wave resonance, which arises in the V = 0 case, leads to the same ¢! decay as
in the free evolution, whereas the p-wave destroys this rate of decay. With Goldberg, these authors also obtained such a classification in R*.
Finally, more recently, Erdogan, Green, and Toprak applied spectral methods to analyze the delicate dispersive decay of the Dirac operator
(see Ref. 35).

2. The wave equation

Starting with Beals and Strauss,”’ many authors considered the problem of proving the dispersive estimate (4) for equations (O + V)u
=0, (u,0iu)(0) = (f,g) (it will suffice to set f = 0). In Refs. 2 and 3, the potential is assumed to be either non-negative or small (which
excludes any spectral problems), as well as rapidly decaying and smooth. The result is of the form (4) but with slightly more derivatives on
the data. Georgiev and Visciglia'’ assumed that 0 < V < (x) ™" in three dimensions and obtained (4) for energies away from zero as well as
Strichartz estimates for all energies. Cuccagna'® proved Strichartz estimates in three dimensions, assuming that [8*V (x)| § (x) ™~ for |a| < 2
and that zero energy is regular. D’Ancona and Pierfelice’” proved global dispersive (4) for d = 3, assuming that |min(V,0)|x < 27 but with
B{,l on the right-hand side. Pierfelice®® obtained the same result under the smallness assumption (15) (the arguments in Ref. 58 yield the same
but with || V¢]|: instead of the Besov norm). D’Ancona and Fanelli’* considered the wave and Dirac equations in three dimensions,

Uy — (V+iA)2u+ Vu=0,
iUy —2U + MU =0,
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respectively. Assuming smallness of A, V, M but allowing nearly scaling-invariant singularities of these functions both at zero and infinity
(which are |x|™, |x| %, and |x|7%, respectively), the £ global decay is obtained but for data in weighted Soboloev and Besov spaces. By the
aforementioned results of Yajima et al. on the W*"-boundedness of the wave operators, one can obtain L? decay estimates for the wave
equation from the free estimates (4). Note that the Besov spaces are then defined relative to H rather than the free Laplacian, but it is often
possible to pass between the two. For a more recent reference on the integrated decay of waves, which also allows for magnetic perturbations,
see the work of D’Ancona.”

3. The case of singular zero energy

Certain stability problems in physics lead to linear operators with a zero energy eigenvalue or resonance. Examples are the energy critical
wave equation Ou — u° = 0 in R**?, which admits the stationary solutions W) (x) = A(1 + Az\x|2/3)_% for A > 0. Linearizing around W) leads
to H = —A — 5W}, which has 9, W) as a resonant mode of zero energy. Another example is the critical Yang-Mills problem in dimensions
4 + 1. It is therefore necessary to obtain dispersive bounds in this context as well. Note that the local decay of Sec. II A easily allows for this
as the asymptotic expansions in time (as derived in Refs. 50 and 65, for example) isolate the contributions of the threshold singularities and
identify them as being of finite rank. In the case of L' = L, this required some additional work (see Refs. 36, 37, and 83 for the case of the
Schrédinger evolution). Yajima®™ obtained explicit expressions for the term Bt3, which needs to be subtracted to obtain the ¢ decay of
the bulk (explicit here means that B can be computed from the zero energy and resonance states). The wave equation in three dimensions is
analyzed in Ref. 58. We recall the main linear result from the latter reference.

Proposition 11.2. Assume that V is a real-valued potential such that |V (x)| S (x)™", where x > 3 is fixed but arbitrary. If zero energy is
regular for H, then
sin(tv/H)

Tpcf

for all t > 0. Now assume that zero is a resonance but not an eigenvalue of H = —A + V. Let y be the unique resonance function normalized so
that [ Vy(x)dx = 1. Then, there exists a constant co + 0 such that

%Pcf— a(ye® "’)fHW S flwn ey o

S flwa e

oo

forallt>0.

Several results exist on the boundedness of the wave operators on L in the case zero energy is singular. However, they are limited to
a smaller range of p (in d = 3, one needs % < p < 3) and are less useful for nonlinear applications, at least in three dimensions. On the other
hand, in R?, Erdogan, Goldberg, and Green®” showed that the wave operators remain bounded in the full range 1 < p < oo if zero energy
exhibits only an s-wave resonance or only a zero energy eigenvalue.

For the Klein-Gordon equation on the line with a non-generic decaying potential (i.e., the associated Schrodinger operator exhibits a
zero energy resonance), an analog of Proposition I1.2 was obtained in Ref. 59, albeit for local decay. This is part of a larger body of work aiming
at understanding kink stability.

lll. METRIC PERTURBATIONS

If one replaces —A by the elliptic operator H := — ;szlaj(ajk (x)8%), then one encounters a new obstruction to proving decay estimates
in addition to the zero energy resonance or eigenvalue of Sec. II: the phenomenon of trapping, which is a large energy problem. Trapping refers

to the possibility that the classical Hamiltonian
d

hsd)i= 5 Y an()Ey

k=1

exhibits closed trajectories. More precisely, assuming symmetry a;x = ayj, one has the Hamiltonian equations

QU

X = 1aj.(x)«fj, &=

J

N | —

d
i
Z Vxﬂjk(x)f E]>
k=1
which might exhibit time-periodic trajectories. To understand the crucial effect of the existence of closed geodesics, we consider the method
of proving decay estimates using energy estimates,

OA(t)
ot

d :
$(u,A(t)u) = (u,i[H,A(t)Ju) + (u,

u),

J. Math. Phys. 62, 061509 (2021); doi: 10.1063/5.0042767 62, 061509-8
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where u = u(x, t) is the solution of the Schrédinger equation, with Hamiltonian H. A similar identity can be applied for the wave equation

(see Ref. 8). Next, suppose that the expectation of A(t) is bounded from above, uniformly in ¢, by |u|, and, moreover, that the commutator

is positive in the sense that

OA(t)
ot

i[H,A(t)] + >0B*B

for some 6 > 0 and some operator B. Upon integration over time, we obtain an integrated decay estimate for B,

[ 1Bl de < clu(o) .

The operator family A(#) is variably called a multiplier, a propagation observable, an escape function, or a conjugate operator.
To illustrate this further, let h(x, &) be a classical Hamiltonian on R*?. If [x(t), £(¢)] is an orbit under the Hamiltonian flow of h, then

B ax(0)6)) = U} (<(0), (1),

where the right-hand side is the Poisson bracket. For the Euclidean case, i.e., h(x,&) = 1€ + V(x), one can take a(x,&) = x- & = {h, }[x[*},
which gives {h,a} = 2h— 2V — x - VV. Now, suppose that -2V (x) —x - VV(x) > 0 for |x| > R > 0, say. Since h is conserved, we conclude
that a trajectory with 4 = & > 0, which remains in |x| > R, satisfies

2

&SRO 2 2

and therefore |x(t)| grows linearly in ¢. This indicates that (x(t), x(t)) undergoes scattering like a free particle. Under a short-range condition
on V(x), i.e, [V(x)| < C{x)™'7%, this is indeed the case; i.e., all trajectories that are not trapped are asymptotically free. See the book by
Derezinski and Gerard”® for a systematic development of these techniques in both classical and quantum mechanics.

Positive commutator methods are also used to prove refined average decay estimates that hold on subsets of the phase space. Such
estimates for the wave and Schrodinger equations were first derived by Morawetz using the radial derivative operator and the generator of the
conformal group as multipliers. These multipliers also work if repulsive interactions are added. However, modifications are needed if trapped
geodesics are present and usually only lead to weaker estimates. A major step in this direction is the use of a sharp localization of the energy
due to Mourre.*’ The energy estimate can be obtained by taking the derivative with respect to time of the expectation value of some operator,
also called propagation observable as in Ref. 76. The remarkable paper by Hunziker, Sigal, and Soffer*® presents a time-dependent approach
to Mourre theory based on the commutator expansion lemma of Sigal and Soffer. The latter refers to expressing [ f(A), B] through a series of
Taylor type involving higher-order commutators between A and B.

A parallel development to this approach was based on ¥YDO methods. In this approach, one constructs a function on the phase space
that has positive Poisson bracket with the principal symbol of the Hamiltonian. Then, one uses the quantized symbol of this function as a
propagation observable and, by means of ¥DO theory, and in particular, Garding’s inequality, passes to the desired smoothing (or limiting
absorption) bound. Some of the earliest implementations of this approach are Refs. 15 and 27, and since then, a vast literature has developed
in this direction.

The importance of a nontrapping condition is readily understood: it allows for the construction of monotonic propagation observables,
globally in the phase space. In the presence of closed trajectories, this is not possible. However, when the trajectories are closed but (strongly)
unstable, there is now substantial evidence that the decay estimates continue to hold in some sense.

On the level of the resolvents, one considers (H — z) ™" with H being a variable coefficient operator as above, with a;j being a short-range
perturbation of a constant elliptic symbol. Furthermore, assume that all classical Hamiltonian orbits of large initial velocity are not trapped.
Then, the limiting absorption principle

sup  [[()7(H ~2)" qu(H)(:) " sz < 00 (19)

Imz>0,Rez>N

holds with N > 0 and ¢ > 0 sufficiently large (see Ref. 64). In fact, the nontrapping condition is necessary (see Theorem 2 in Ref. 64), and one
also obtains (19) for derivatives in z of the resolvent. The latter property then clearly implies local decay on the time-evolution restricted to
high energies.

In fact, while Doi*” and Murata® showed that smoothing estimates and the usual decay estimates do not hold in the presence of trap-
ping, Ikawa®’ shows that one still obtains local decay estimates for the Laplacian dynamics on R” with several convex obstacles removed.
In the meantime, the microlocal analysis on manifolds with unstable closed geodesics, of the resolvent of the Laplacian on one hand and
the Schrddinger evolution on the other hand, has grown into a vast area in and of itself, which is intimately connected to the semiclassical
analysis of scattering resonances. See, for example, the recent research monograph’ on Resonances for homoclinic trapped sets or Dyatlov’s
introduction to the fractal uncertainty principle.”!

In general relativity, unstable closed geodesics arise naturally in the study of the linear wave evolution on the background of both
Schwarzschild and Kerr black holes. A substantial amount of work has accumulated around this topic (see, for example, the early works
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by Blue and Soffer; see Ref. 8 as well the very recent study of Price’s law by Hintz**). The latter paper was preceded by the work of Tataru,”® as
well as the results by Donninger, Soffer, and the author™ on the spatially local, but temporally global, decay of linear waves on Schwarzschild.
Metcalfe, Tataru, and Tohaneanu® subsequently established Price’s law on nonstationary spacetimes with sufficient decay in a suitable sense.
Very recently, Angelopoulos, Aretakis, and Gajic' presented a “physical space” approach to Price’s law on Kerr spacetimes in contrast to
Hintz’s microlocal technique. We now set out to describe the author’s results in more detail.

A. Asymptotically conical surfaces of revolution

As a model case for the Schwarzschild manifold, Soffer, Staubach, and the author’*”® studied wave evolutions on surfaces of rev-
olution with conic ends. Let Q c RY be an embedded compact d-dimensional Riemannian manifold with metric dsé, and define the
(d + 1)-dimensional manifold

M= {(xr(x)w) | xR, weQ},
ds* = ¥ (x)dsp + (1 + 7' (x)%)dx’,

where r € C™(R) and inf, gr(x) > 0. We say that there is a conical end at the right (or left) if
r(x) =[x (1 +h(x), BPx)=0x"") vkzo0 (20)

asx — oo(x —> —o0).

Of course, one can consider cones with arbitrary opening angles, but this adds nothing of substance. Examples of such manifolds are
given by surfaces of revolution with O = S' such as the one-sheeted hyperboloid that satisfies r(x) = /1 + x2. They have the property that
the entire Hamiltonian flow on . is trapped on the set [xo, 7(x0 )] when r’(xo) = 0. From now, we will only consider S' as cross section Q
:H'le) ZZ

for the sake of simplicity. The only difference from the general case is that instead of {e }Zo’ one has a complete system { Yy, pn }og of

L*-normalized eigenfunctions and eigenvalues, respectively, of Ag. In other words, —~Aq Y, = p2Y,, where 0 = g < (2 <3 < ...

Note that we do not specify the local geometry of .# but only the asymptotic one at the ends. This allows for very different behaviors of
the geodesics. For the case of the one-sheeted hyperboloid, for example, the geodesic flow around the unique periodic geodesic is hyperbolic
in the sense of dynamical systems, whereas if we place a section of § in the middle of . , then we encounter a set of positive measures in the
cotangent bundle, leading to stable periodic geodesics. These two scenarios are depicted in Fig. 2. It is natural to ask to what extent this local
geometry affects the dispersion of the flow. The following result summarizes what is proved in Refs. 29 and 30 for the case of Q = S' (see those
references for general compact Q):

FIG. 2. Unstable vs stable geodesic flow.
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Theorem IIL.1. Let / be a surface that is asymptotically conical at both ends as defined above. For each £ > 0 and all 0 < o < \/2(, there
exist constants C(¢, M ,0) and C, (¢, M ,0) such that for all t > 0,

; c, 4 ,0)
ngel‘A,ﬂ fHL‘X’(/%) - tl+a H Ll(-/%) (21)
= Ci(6, Mo
Iwa €24 flimary < %( W H ) (22)
2 o o) L)

provided f = f(x,80) = “%F (x), where f does not depend on 6. Here, wo(x) := (x)™° are weights on J .

In (22), one can obtain somewhat finer results by distinguishing between cos(t\/-A 4 ) and Sm(f V;A“”) (see Ref. 29 for statements of that
-Au

kind). Needless to say, o = 0 is the analog of the usual dispersive decay estimate for the Schrédinger and wave evolutions on R?. We remark
that as in the case of the plane R?, the free Laplacian A 4 exhibits a zero energy resonance, which is, however, only visible at £ = 0 (this case
is treated separately in Ref. 74, whereas Ref. 75 studies ¢ > 0).

Clearly, the local decay given by o > 0 has no analog in the Euclidean setting, and it also has no meaning for £ = 0. The restriction \/2¢ is
optimal in Theorem IIL1, at least for the Schrédinger equation, and no faster decay can be obtained than the one stated in (21). The \/2-factor
comes from the opening angle of 7 and changing that angle leads to different constants, namely, m, where 0 is the opening angle of the
asymptotic cone.

A heuristic explanation for the existence of this accelerated local decay is given by the geodesic flow combined with the natural dispersion
present in these equations. Indeed, the former will push any nontrapped geodesics into the ends (with ¢ playing the role of the velocity of the
geodesics), whereas the latter will spread any data that are initially highly localized around a periodic geodesic away from it, thus making it
susceptible to the mechanism we just described.

What is not clear from this heuristic is whether or not the localized decay law should depend on the local geometry (by which we mean
the geometry that is not described by the asymptotic cones). Theorem III.1 shows that this is not so, since the local decay is fixed and given
by a specific power. Therefore, one sees that the local geometry manifests itself exclusively through the constants C(¢,.# , o). This is natural,
as one would expect a much longer waiting time before the large ¢ behavior of the theorem sets in if ./ exhibits stable geodesics. In fact, the
constant C(¢) grows exponentially in that case as can be seen by solutions that are highly localized (microlocally) around a periodic geodesic
(see Refs. 72 and 77).

In contrast, the methods of Ref. 30 show that this constant grows like ¢ if the manifold .4 has a unique periodic geodesic and is
uniformly convex near it. This then allows one to sum up the estimates for each angular momentum as described by the following theorem:

Theorem IIL.2. Let /M be asymptotically conical at both ends as above, and suppose that M has a unique periodic geodesic and is
uniformly convex near it. Then, for all t > 0 and any & > 0 and with D = 1 - 93,

i C .% &
[wrsee™™ Wisef |2y < %”9 flleqays (23)

C(-%t ,S) ”92+€

[ wie™ wif oy < fllays (24)

provided f = f(x, ) is Schwartz on M , say. For the wave equation, one has

le Y

C1 (% 8)
(1):

wii flea)

(12° flecay + 127 fleca) ), (25)

le+ e:tit\/—A./ﬂ
C] (ﬂ 8)(
tz

wi fli=ca)

124 0cf [0y + |12+ f”L‘(/%)) (26)

The weights w; and w 14 appearing in (24) and (26), respectively, are a by-product of our proof and can most likely be removed. The

origin of the weights in our method will be explained in Sec. I1I B. One also obtains the accelerated decay rates that are better by ¢ ° as in
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FIG. 3. Two planes joined by a neck.

Theorem III.1, provided one puts in the weights as before, makes the number of derivatives required on the right-hand side depend on o,
and provided the data are perpendicular to ¢’ for ¢ > v/2¢ > 0. We remark that one can think of the surfaces in Theorem IIL1 as two planes
joined by a neck (see Fig. 3). On the other hand, the methods that are currently used to prove Theorems III.1 and III.2 do not extend to the
case of more necks, as then there is no clear way of separating variables.

There is no reason to expect that the number of derivatives required on the data in Theorem IIL.2 is optimal, in fact, it most certainly is
not. Heuristically speaking, these derivatives measure the spreading or non-concentration of solutions near hyperbolic orbits in dependence
on the angular momentum, which is a quantum effect. See, for example, the work of Christianson'* on this topic.

Doi”” proved that the presence of trapping destroys the so-called local smooth1n§ estimate for the Schrodinger evolution. More precisely,
he showed that one loses (even locally in time) the >-derivative gain present in e"”. Note that this does not constitute a contradiction to
Theorem III.2 as the latter does not claim any gain of regularity (on the contrary, we lose angular derivatives). In a similar vein, Burgq,
Guillarmou, and Hassell'” proved that Strichartz estimates may remain valid on metrics with trapping.

We now describe the method of proof leading to Theorem III.1. Later, we will discuss how to obtain Theorem IIL.2, which requires
considerably more work. We will then also describe the result’ for linear waves on Schwarzschild, which is very close to Theorem II1.2.

To begin with, let £ be the arclength along a generator of .Z . Then, the Laplacian takes the form

Ay = (f)af(r(f)af)"' z(f)
Now,
()M (72 () F ()= Hof,
with
R 262 1
Hi=-0f+ Ve,  Vi(§) = art +0((5)7), 27)

RGE

where each &-derivative of the O(-)-term gives one extra power of £ as decay. We remark that the leading (&)™ decay is critical for several
reasons. For us, most relevant is the behavior of the Jost solutions as the energy A% tends to zero; in fact, these Jost solutions are continuous
in A around A = 0, provided the decay of the potential is at least (£) >~ for some & > 0. At € = 0, this property is lost—which is precisely what
allows for the accelerated decay of Theorem IIL.1. To be more specific, one first reduces Theorem IIL1 [at least the Schrédinger bound (21),
the wave equation being similar] via the spectral theorem to the point-wise bound

’))—il-[oooeiszml:f*’Z(g’A)f’z(fl’/\)

sup
00>E>E>—00

We ()
Ad\| < Cot™' 0, (28)

where Cy is a uniform constant and o = \/2(. Here, f. ; are the (outgoing) Jost solutions, which satisfy % f..c = A2 fy.¢ and fi ¢ ~ e*™ as

& — +oo. Moreover, W, (A) is the Wronskian of f;, f-. We remark that the quantity inside the absolute values in (28) is exactly

foweisz(ﬁuz)(f, f’),
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where E(dA?)(-,-) is the kernel of the spectral resolution of %;. As usual,

ImAE=D vy @

F(EA) =P+ ff

From this formula, one immediately sees the aforementioned discontinuity at A = 0 since V(&) ¢ L' (0, 00). Setting & = & =0, (21) of
Theorem IIL1 reduces to the standard stationary phase type bound (with v := /2 £)

‘/“’eirﬂ/\lﬂvx()t) a| <o,
0

where y is a smooth cutoff function to the interval [0, 1], say. To see why the spectral measure should be as flat as A'*2"d, let us first give an
informal proof of the fact that

We(A) =A™ (1 +0(1)) 1-0, (29)

where ¢ # 0. Since this Wronskian appears in the denominator of the resolvent, it at least serves as an indication that the spectral measure
might be this small for small A [one has to be very careful here, since the numerator is of the same size—however, the imaginary part of the
resolvent has the desired size O(A?")]. To begin with, recall from basic scattering theory that the Wronskian is given by

-2l

W= 10y

(30)

where T(A) is the transmission coefficient (see Fig. 4) (in that figure, the dashed line is supposed to indicate an energy level k%, and the turning
points are defined as the projections of the intersection of the graph with that line). By the so-called WKB approximation, one has to leading
order that T(A) = ¢ with the action S given by

sw= [TVEHT-R
= h_lfxl\/Z(y)*z - h?A2 dy,

with xo < 0 < x; being the turning points that are defined as V(x¢) = V(x1) = A%. Note that we modified the potential by removing the cubic
corrections as well as the — i ()72 part of the potential (the latter obviously requiring some justification). Furthermore, we used that v = \/2¢
and assumed £ > 0. As a result,

S(A) =2v|log A|(1 +0(1)) A =0,

which then gives (29) to leading order. To justify the removal of the § (£ )~2-part of the potential V¢, we simply note that the usual WKB ansatz
for the zero energy solutions of #, viz., #¢ f = 0 is the approximate equality

£ = v, @V

FIG. 4. Reflection and transmission coefficients.
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1 _1
In view of (27), one obtains the asymptotic behavior £2*V Yol as & — 00. On the other hand, the exact solutions of

2 1
v 4

£+ 3z

are of the form £3*’. The WKB approximation can therefore only be correct, provided the —iffz term is removed from the potential V,
[for a precise rendition—with control of error terms—of this heuristic discussion (see Sec. II of Ref. 75)]. Another important comment
concerning V is that (30), while true to leading order semi-classically as h = £7' — 0, provided the energy A > o > 0 (where the latter is
fixed), does not necessarily hold as A — 0. The key property here is that %, does not have a zero energy resonance, which means that there
is no globally subordinate (or recessive) solution. This refers to solutions of the slowest allowed growth at both ends. For example, consider

f=0

the operator H = —dd—; +V, where V = V satisfies (1 + |x|)V(x) € L'(R). Then, by the usual Jost/Volterra perturbation analysis, there is a
fundamental system of solutions to Hf = 0 consisting of f1(x) ~ x, respectively, f2(x) ~ 1 as x — oo. Thus, f> is the unique (up to nonzero
factors) subordinate solution at +oo. A resonance at zero energy therefore occurs if Hf = 0 admits a solution f # 0, which is asymptotic to
a constant for both x — 0. Since the only other option would be some linear growth at either end, this is equivalent to f € L>°(IR). This
is a universal characterization of 0 energy resonances through solutions of Hf = 0 even if V violates (1 + |x|)V(x) € L'(R) as in Bessel-type
potentials arising in most problems discussed in this note, or for that matter, for V that are strongly singular. The latter means that V is locally
bounded (for simplicity) but [ ° |V (x)| dx = 00, and we assume that H is limit point at both ends. Depending on the specific choice of V, one
needs to find a fundamental system of Hf = 0 at both +c0 and then select the subordinate solution. A resonance is characterized by a solution,
which is globally subordinate.

While our discussion has been largely heuristic, we emphasize that (29) is proved in Ref. 75 by means of an asymptotic description of the
Jost solutions as A — 0. Moreover, it is shown there that the constant ¢ in (29) vanishes in the case of a zero energy resonance, which indicates
that the WKB approximation fails in that case as A — 0. Finally, we emphasize that the only natural small parameter in Ref. 75 for fixed £ > 1 is
the energy A. This is in contrast to the summation problem in £, where % := £~" represents another (and most important) small parameter. In
fact, for large 4, the errors in the WKB approximations are controlled in terms of this small parameter rather than in terms of the small energy
(we will return to this matter below). In order to be able to distinguish the two potentials in Fig. 5 or manifolds with distinct local geometries
in Fig. 2, we therefore need to obtain precise asymptotics for the Jost solutions and the spectral measure for both small energies 0 < A < A9 and
all large |¢|, simultaneously. This sets these problems apart from most of the semi-classical literature in several ways: (i) it is not enough to
compute the limit # — 0. In fact, we need a precise asymptotic representation of the Jost solutions uniformly in small # and all energies. This
will be explained in more detail in Sec. ITI B. (ii) The need for uniform control for all small energies is also in stark contrast to the literature,
which typically restricts any semi-classical analysis to positive or large energies.

The rigorous proof of (29) proceeds by means of a classical matching method. To be more specific, consider the Schrodinger operator on
the line (for notational convenience, we write x instead of &)

%, -0 + ( 2_ i)(x)_z _U(x),

dev x 3
dx’E : =0

FIG. 5. Potentials corresponding to the surfaces in Fig. 2.
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forall k > 0 as x - oo and with v > 0 fixed. To describe the Jost solution f+,,(x) on the interval x > 1, we start from the zero energy solutions

() =5 (14 O™,
ul,(x) = x%_v(l +0(x")) asx — oo,
which form a fundamental system of %, f = 0 [and with a := min(1,2v)]. Next, one perturbs these solutions with respect to the energy A.

More specifically, one shows via Volterra iteration that there is a basis {ug,(x,1), u{,(x,1)} of solutions to the equation %, f = A>f, which
satisfy (at least for v > 1)

4, (x,A) = ), (x) (1 + O(X°x%)) (31)
on the interval 1 < x < A~ (we are only considering small A for now). Clearly, one has
Fer(x4) = ar (V) ugy(6,A) + bey(M)uf, (x,1),
where the coefficients are given by

asy(A) = -W(fer(51), uli,v('J))»

£ (32)
biy(A) = W(fer(5A)s upu(51)).

The aforementioned matching means nothing else than computing these Wronskians. The point where they are computed is chosen to be
A~'*¢ with & > 0 small and fixed. On one hand, this choice guarantees that the errors in (31) are O(A*), which is admissible. On the other
hand, it requires that we obtain a sufficiently accurate description of the Jost solutions on [A™'*%, c0). The latter is accomplished by comparing
the outgoing Jost solution of the operator 7, to that of #,, given by

Hoy = -0r + (v2 - i)x_z.

The outgoing Jost solution of this operator on & > 1 equals

\/gei(2v+l)n/4\/aH§+)(fA))

which is asymptotic to ¢ as £ - oo. Here, H$+) (z) = Jv(z) +iY,(z) is the usual Hankel function. Carrying out the perturbative analysis
with %, as giving the leading order allows one to approximate f; (& 1) with small errors on the interval (A™'*¢, c0). With this asymptotic
representation in hand, one now has the following result (see Proposition 3.12 in Ref. 75):

Proposition II1.3. Let f3, := ﬁei(zwl)”/‘l. With nonzero real constants a&v,ﬂf{,v and some sufficiently small € > 0,

asy(N) = 1278, (o, + O(AF) + i0(A1727%)),

1 (33)
b+,v(A) = il‘iivﬁv(/jg,v i O(AS) " iO(A(1+2v)8))

as A — 0+ with real-valued O(-) that behave like symbols under differentiation in A. The asymptotics as A — 0— follows from that as A — 0+ via
the relations a4,y (—=A) = a4,y (1), boy(=1) = bey(R).

Analogous expressions hold for a_, and b_,, which, of course, refers to the solutions on x < —1. From these expansions, one then
concludes the following statement for the Wronskian between f; (-,A) and f-(-,1):

Wo(A) = ie”™ 172 (Wo, + Oc (X)) as A — 0 +.

Here, Wy, is a real constant and O¢ (1) is complex valued and of symbol type (meaning that each derivative loses one power). Most impor-
tantly, Wo,, = 0 if and only if zero is a resonance of %,. For the case of surfaces of revolutions, it is easy to exclude zero energy resonances of
the associated Schrodinger operator, at least for £ > 1. In fact, with % denoting the operator obtained for fixed angular momentum ¢ > 1,
$d
L o4y n
Fo(rie) =0, y(&) = / e
o r(n)

Because y is odd, the smaller branch at £ = co has to be the larger one at £ = —co, which places us in the nonresonant case. It is perhaps worth
mentioning that the potentials arising from surfaces of revolution do not need to be non-negative (for positive potentials, it is evident that
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zero is not a resonance). In fact, if .4 has very large curvature, then the potential can be negative. We remark that for £ = 0, it is proved in
Ref. 74 that

Wo(A) = ZA(I +ics + iglog )L) + O(A%_s) as A > 0 +.
VA

On a technical level, the logarithmic term in A makes the £ = 0 case somewhat harder to analyze than the cases £ > 1. Not surprisingly, in
proving dispersive estimates for —Ag: + V, one encounters similar logarithmic issues (see Ref. 73).
In conclusion, we would like to stress that the estimates in Ref. 75 produce constants that grow very rapidly in ¢, somewhat faster than

¢’ to be precise. This is due to a number of sources. First, for the small energy analysis we just described to work, one needs to choose the
energy cutoff Ag = A9(¢) to depend on ¢, which already introduces large constants into the proof. Second, for energies A > Ao (£) > 0, one uses
a very crude method, namely, term-wise estimation of a Born series that cannot distinguish the sign of the potential. Even replacing the crude
Born series by something more elaborate would not make much of a difference. Indeed, by the preceding discussion, the two manifolds in
Fig. 2 behave very differently as far as the dependence of the constant on ¢ is concerned.

Since the small energy matching method outlined above cannot easily distinguish between these manifolds, we shall now discuss an
approach that is capable of differentiating between them, albeit only for large £. For this reason, the finite £ analysis of Refs. 74 and 75 is
needed in the Proof of Theorem III.2.

B. Summation over all angular momenta

We shall now prove Theorem III.2. We will follow Ref. 30 and sketch how to obtain (23) and (24), with the case of the wave equation
being similar. With V as in (27), we claim the following bound:

[ @7 @ des 07 [ @) (34

The proof of (34) will be discussed below. Taking it for granted, suppose that f is a Schwartz function on .# and write

fE0)= 3 e"‘”fe<£>:§: ¢ (Eyug (8).

f=—o00
Then,
eim“ﬂf — i eitA/fZ [e"wr_%(f)ue(f)]
f=—o00
- @) u (),
f=—o0
whence

[ wie™™ %)
> . 1 . 2
2 e (E)e" ™ ue | (8)| (&) dido

- [T [ pX

S 3 [T o

{=—o00

oo

S 070" [ @ U©rrE) d

oo
f=—0c0 e

S0 [ T a1 00 dopr(e) at

f=—oc0
SO w1 =08) f 2

which is (23). To prove (34), it is clear from Theorem III.1 that it suffices to consider £ large, say, |¢| > £y > 1. Fixing such an ¢, one switches
to a semi-classical representation via the identity

=M gp(h) = —RO} + BV,
where V is as in (27) and with 7 := £'. By construction, V(&%) = h* V(&) has the property that its maximal height is now essentially fixed

at Vinax (1) = Vinax (0) + O(h*) with Vinax(0) = 1. The essential property of the potential is that it has a unique nondegenerate maximum, i.e.,
it looks like the one on top in Fig. 4.
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For the remainder of this section, % will be small. From the spectral representation, one has

ismy _ 22 [ P fe(x. Esh) f- (', E;h)
e h /0 e Im[ W B (<) EdE, (35)

with fi being the outgoing Jost solutions for the semi-classical operator # (%), which means that

(-K*0; + V(x;h)) fu (x, Esh) = E* fo(x, Es )

fe(xEh) ~ e ™ x> too.

With € > 0 fixed and small (independently of %), one now considers energies 0 < E < ¢ (low), ¢ < E < 100 (intermediate), and E > 100 (large)
separately. The middle interval is further split into energies ¢ < E < Vinax(0) — & Vmax(0) — € < E < 100, respectively. The latter interval is to
some extent the most important of all as it contains the nondegenerate maximum of the potential V' (%1). We shall see that it is precisely this
maximum that determines the number of derivatives lost in the process of summing over £.

The easiest region is E > 100. Indeed, for these energies, the potential is essentially negligible and a classical WKB approximation reduces
matters to the free case. This means (again heuristically) that (23) is a consequence of the L' — L (R*) bound on ¢"&*, which explains the
weights w1 ..

1. WKB in the doubly asymptotic limith - 0 and E - 0

The low-lying energies 0 < E < ¢ are also treated by means of WKB, but there one faces the difficulty that the WKB approximation
of the generalized eigenfunctions needs to be accurate in the entire range 0 < E < ¢ and 0 <% < fip. There exists an extensive literature
on the validity of the WKB approximation, provided the energy stays away from zero, i.e., E > Ey > 0 uniformly in # (see, for example,
Refs. 67 or 69. However, the issue of controlling all errors in the WKB method uniformly in small # and small E does not seem to have been
considered before. For the problem of sending E — 0, it is, of course, most relevant that the potential has the (critical) inverse square decay,
as was already apparent in the discussion of the matching method in Sec. I1I A.

This lead Costin, Schlag, Staubach, and Tanveer'® to carry out a systematic analysis of this two-parameter WKB problem for inverse
square potentials. More specifically, they considered the scattering matrix

oy | t(ER)  r—(EBh)| _[Zu(Eh) Zi(Eh)
2(E;h) = [r+(E;h) +(Esh) ] - [z;(m) ZZ(E;h)]

for the semiclassical operator

, &
P(x, hD) = —h ﬁ + V(x)

with inverse square V (asymptotically, as |x| - o0) and obtained the following result:
Theorem IIL4. Let V e C*°(R) with V > 0 and V(x) = y2x™% + O(x™*) as x — +oo, where y # 0, p— # 0, and 850(x>) = O(x>7%)
forallk > 0. Denote

2
Vo(xsh) == Vi(x) + hZ(x)fz, (36)

and let Ey > 0 be such that for all 0 < E<Ey and 0 <h <1, Vo(x;h) = E has a unique pair of solutions, which we denote by x,(E;h) <0
< x1(E;h). Define

e - [0 T Ea
To(Eh) = xi (E; h)\/_ [ W VE) dy, (37)
T_(Esh) = —x(EsA)VE - [ W VE) dy,
as well as T(E;h) := T4 (Esh) + T-(E;h). Then, for all 0 < h < ho, where ho = ho(V') > 0 is small and 0 < E < Ey,

S (Esh) = e 1 CEDTTED) (14 b o (B ),

(38)
Si(Eh) = —ie » BN (1 4 hoy(Eh))
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where the correction terms satisfy the bounds
|0k 11 (E: )| + 105 o2 (Esh)| < CLE™* Y k>0, (39)

with a constant Cy that only depends on k and V. The same conclusion holds if instead of (36) we were to define Vo as Vo := V + h*Vy with
Vi e C®(R), Vi(xsh) = 2(x) 72 + O(x7) as x - +oo with HRO(x7%) = O(x ) for all k > 0 and uniformly in 0 < h < 1.

Note the correction of the original potential by %z(x)_z in (36). Without this correction, the errors o1, etc., diverge as E — 0. The
proof of this result, of course, requires a careful analysis of the Jost solutions, which is then needed in the analysis of the stationary phase
analysis of (35).

The analysis of the Jost solutions is based on the Liouville—-Green transform, which we now recall (see Ref. 67). Given any second order
equation f"(x) = Q(x) f(x) on some interval I and any diffeomorphism w : I — J onto some interval ], define g(w) := (W'(x))% f(x), where
w = w(x). Then, by the chain rule, " = Qf is the same as g’ (w) = Q(w)g(w), where

QX)W N RO (W ()
W(x))? (w'(x)) 2 0:(w'(x))
Q) _3(wW'(x)’ 1 w"(x)

w0 AW 2w

Qw) =

To apply this transformation, one chooses w so that
Q(x)

wiy ~ 4

where Qo is some normal form. Then, the problem becomes

¢ () = Qu(w)g(w) - V(w)g(w),
oo 3 1w (x) (41)
YO = )T 2 w0

where V is treated as a perturbation. This is only admissible if Qo is in some suitable sense close to Q. The determination of Qp is done on a
case by case basis. For example, if Q does not vanish on I, then one can take Qp = sign(Q), which leads to the classical WKB ansatz, i.e.,

Q’i (x)eif*; V) dy or |Q|7i (X)eiif"; VIQ») d},,

depending on whether Q >0 or Q < 0, respectively. If Q does vanish at x € I with Q'(xo) # 0, then one maps xo to w =0 and chooses
Qo(w) = w. In other words, the comparison equation is the Airy equation. The equation for w in that case is w(x)w’(x)? = Q(x), which
yields

3 rx 2
w(x) = sign(x )5 [ VIRl (42)

which is known as the Langer transform.®” It is easy to check that w is (locally around xo) smooth (or analytic), provided Q is smooth (or
analytic). It is precisely this Langer transform that is used in Ref. 16, where it is written as follows for x > 0:

{={(x,Eh)
3 rx 2
= sign(x—xl(E;h))|f/ V| Vo(x ) — E| dyl3,
2 Jx (Eh)
with x; (E; i) > 0 being the unique turning point (for E small). The equation transforms as follows:

Lemma II1.5. There exists Ey = Eo(V) > 0 so that for all 0 < E < Eq, one has the following properties: the equation Vo(x;h) — E = 0 has a
unique (simple) solution on x > 0, which we denote by x1 = x1(E; h). With Qo := Vo — E,

{={(x,Eh) (43)
3 x 2
= sign(x - x1 (E;h))|5f(E'h)\/|Qo(u,E;h)|du|s
defines a smooth change of variables x — ( for all x > 0. Let q := —%. Then, q > 0, % ={"=./q, and

- f +(V-E)f=0
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transforms into

- B(0) = (§+ K V(G Esh)w(() (44)
under w = \/?f = q%f. Here, " = d% and
_— 1 4, > -1 dzqi
Vi g4 0 -

The asymptotic description of the Jost solutions is found by matching the Airy approximations at the turning point w = 0. A fundamental
solution of the transformed equation (i.e., in the { variable) to the left of the turning point is described in terms of the Airy function Ai, Bi by
the following result from Ref. 16:

Proposition I11.6. Let hy > 0 be small. A fundamental system of solutions to (44) in the range { < 0 is given by

$1((E 1) = Ai(7)[1 + hay (L E B)],
$2(8, 1) = Bi(1)[1 + hay (0, E )]

with 7= —k3 (. Here, a1, a; are smooth, real-valued, and satisfy the bounds for all k > 0 and j = 1,2 and with {, := {(0, E),
|0Fa (¢ B )| $ B min[ 3 (h30)2,1] (45)
1080y (¢ B )| 5 B[ (30 K aga) + I gt
uniformly in the parameters 0 < h < ho, 0 < E < Ej.
Note that from the standard asymptotic behavior of the Airy functions, viz.,
Bi(x) = nféxi‘le%x% [1 + O(xfg)] as x — oo,

Bi(x) > Bi(0) >0 V x>0,

wiw

Ai(x) = %ﬂ_%x_ie_gx% [1 + O(x_ )] as x — oo,

Ai(x)>0 Vx>0,
the action integral appears naturally in this context [cf. (43)]. To the right of the turning point, one has the following oscillatory basis.
Proposition II1.7. Let hg > 0 be small. In the range { > 0, a basis of solutions to (44) is given by

vi(GER) = (Ai(r) + Bi(1))[1 + kb1 (§ Es )],
v (G ER) = (Ai(r) - Bi(1))[1 + hba((, Es )]

with T := 7h7% ( and where by, b, are smooth, complex-valued, and satisfy the bounds for all k > 0 and j = 1,2,

10k b(CEsh)| < CETM(0) 2,

. (46)
|0;05bi(LE)| < GRE ™R3 (h3¢) 2 (¢)

uniformly in the parameters 0 <h < ho, 0 < E < Eg, { > 0.

We remark that the Langer transform is not the only possibility here. In fact, in Ref. 17, an alternative approach is used, which reduces
the potential to a Bessel normal form. This is again done by means of a suitable stretching, i.e., a Liouville-Green transform.

2. Intermediate energies and the top of the barrier

Intermediate energies, including the maximum energy of the potential, can be treated by means of an approximation of the generalized
eigenfunctions. This was carried out in detail by Costin, Park, and the author by means of a Liouville-Green transformation that reduces the
potential near the maximum to a purely quadratic normal form (see Ref. 18, Proposition 2). In this way, one arrives at a perturbed Weber
equation instead of the Airy equation as above.

However, Ref. 30 follows a different route: a Mourre estimate followed by a semi-classical version of the propagation bounds in Ref. 46.
Mourre® introduced the powerful idea that the quantum analog, i.e.,

xr(H)i[H,Alxi(H) 2 6y (H) >0,
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where H=-A+V,A =px+xp, p=—iV, and y;(H) localizes H to some compact interval I of positive energies, entails a limiting absorption
bound on the resolvent localized to I (which is some form of scattering). Hunziker, Sigal, and Soffer’® developed a time-dependent and
abstract approach to Mourre theory by means of propagation estimates in the spirit of Sigal and Soffer.”* The main result of Ref. 46 is the
following theorem:

Theorem IIL.8. Let A, H be self adjoint operators on some Hilbert space, and assume the Mourre estimate
E[i[H,A]E[ > OE;, (47)

where 0> 0, I c R is some compact interval, and E; is the spectral projector onto I relative to H. Assume, furthermore, that all iterated
commutators of f(H) with A are bounded where f € C5°(R). Let x* be the indicator functions of R, respectively. Then, for any m > 1,

I~ (A-a- 60" g(H)y" (A-a)] < C(m,0,6) "

forany g € Ci°(I) and any 0 < 6’ < 0 uniformly in a € R.

As simple consequence of this result is the following propagation estimate, which is clearly most important in the context of
Theorem III.2:

[(4) e ™ g (H)(A) ™| < Co) (1) (48)

for any a > 0. In application, one typically takes A = 1 (px + xp), the generator of dilations, or some variant thereof. Taking a = 1 shows that
one needs at least w; in the Schrodinger case of Theorem III.2.
One needs to resolve the following two issues before applying this theory to Theorem III.2:

e We require a semi-classical version of Ref. 46.
o The top of the barrier energy is trapping in the classical sense.

While the first issue is a routine variant of Ref. 46, the second is not. In the nontrapping case, Graf*’ and Hislop and Nakamura® showed
that the classical nontrapping condition {a,h} > a > 0 on the entire energy level {h = E; > 0} implies the Mourre estimate (47) for I some
small interval around Ey (in the semi-classical case with 7 sufficiently small). In the case of surfaces of revolution as in Theorem III.2, this fact,
together with Theorem IIL.8, implies that one can handle energies in the range ¢ < E < Vinax(0) — € since they verify a classical nontrapping
condition. On the other hand, for energies near Vimax(0), this fails since the top energy is classically trapping. Nevertheless, the Heisenberg
uncertainty principle (or the semiclassical harmonic oscillator) guarantees (47).

Indeed, with V(x) = 1 - 2(Qx,x) + O(|x|*) with Q positive definite,

{ha) =& ~x- YV =& +(Qux) + O(Ixf’) 2 (8" + )

for small x. However, p> + q° > ¢ > 0 by the uncertainty principle, which indicates that one should expect that (47) continues to hold at a
non-degenerate maximum. For a rigorous rendition of this argument, see Refs. 11, 30, and 66.

Generally speaking, the problem of obtaining a representation of the resolvent and the spectral measure and of proving a limiting absorp-
tion principle for energies near a potential barrier has received much attention (see the monograph by Bony et al.” and the earlier literature
cited there, such as the classical work by Helffer and Sjostrand in the 1980s).

This concludes our informal sketch of the proof of (23). As for (24), one proceeds analogously by dividing energies into three
regions, low, intermediate, and high. In the low and high cases, one obtains pointwise bounds without weights from the WKB arguments
outlined above, followed by oscillatory integral estimates as in Ref. 75. For the intermediate regime, one uses the L* bound (from the
Mourre-Hunziker-Sigal-Soffer estimates), which requires a weight w; followed by the Sobolev embedding theorem. Note that the latter
costs one power of £, whereas summation over £ requires another weight of the form £'*, which explains the loss of (1 - d;)"** on the
right-hand side of (24) as compared to (23).

As a final remark, we would like to emphasize that the sketch of Proof of Theorem III.2, which we just concluded, is an adaptation of the
argument, which was developed for the Schwarzschild case in Ref. 30.

C. The Schwarzschild case

The results on surfaces of revolution are relevant to another problem, namely, the decay of linear waves on a Schwarzschild black
hole background. To be more specific, choose coordinates such that the exterior region of the black hole can be written as (t,7,(0,¢)) € R
x (2M, 00) x §* with the metric

g =—F(r)dt’ + E(r)"'dr’ + (6" + sin® 0d¢’*),
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where F(r)=1- @ and, as usual, M > 0 denotes the mass. We now introduce the well-known Regge-Wheeler tortoise coordinate rs,

which (up to an additive constant) is defined by the relation
_dr
- df'x— ’

In this new coordinate system, the outer region is described by (¢, 7+, (6,¢)) € R x R x §?,
g = —F(r)dt’ + F(r)drs + r*(d6" + sin” 6d¢’), (49)

with F as above and r is now interpreted as a function of r.. Explicitly, r« is computed as

re =1 +2M log(ﬁ - 1).

Generally, the Laplace-Beltrami operator on a manifold with metric g is given by

1 v
O = Way(v\det(gw)lg” 3v)>

and thus, for the metric g in (49), we obtain

_ 1 1
Dg =F 1(—8? + ﬁar*(rzar*)) + ﬁAsz.

By setting y(t,7+,6,¢) = r(r+)¥(t, 7+, 6, ¢) and writing x = r,, the wave equation Og§ = 0 is equivalent to

» .. FdF_F_
—atl//+axl//— ?El//‘i' ﬁASZW_O‘ (50)

The mathematically rigorous analysis of this equation goes back to Wald’® and Kay,”* who established uniform boundedness of solutions.
In the spirit of the positive commutator methods outlined above, Dafermos and Rodniansk’' found a robust approach based on carefully
chosen vector fields and multipliers. See the work of Luk®”‘ that is in a similar spirit. As already noted, Blue and Soffer® proved local decay
estimates using Morawetz estimates. Dafermos and Rodnianski?’ proved Price’s t~* decay law for a nonlinear problem but assuming spherical
symmetry.

The purpose of this section is to discuss recent work of Donninger and the authors on pointwise decay for solutions to Eq. (50). Different
types of decay estimates have been proved before. Our results differ from the above in certain respects: the methods we use are based on
constructing the Green’s function and deriving the needed estimates on it. Previous works in this direction include mainly the series of papers
by Finster, Kamran, Smoller, and Yau (see, for example, Ref. 39, where the first pointwise decay result for Kerr black holes was proved).

As in the case for surfaces of revolution, we freeze the angular momentum £ or, in other words, we project onto a spherical harmonic.
More precisely, let Y, be a spherical harmonic [that is, an eigenfunction of the Laplacian on S$? with eigenvalue —£(¢ + 1)], and insert the
ansatz y(t,x,0,¢) = Yom(t,x) Yo, (6,¢) in Eq. (50). This yields the Regge- Wheeler equation

8?1//2,#1 - ail//é,m + VE,U(x)V/Z,m =0

with ¢ = 1, where

f, _ 2M \[4(£+1)  2Mo
W"’(")‘(l r(x))( () +r3(x>)

is known as the Regge- Wheeler potential. The other physically relevant values of the parameter ¢ are ¢ = —3,0. For more background, we refer
the reader to the introduction of Refs. 20 or 29.

We immediately note some crucial features of V,: it decays exponentially as x — —oo, it decays according to an inverse square law as
X — +o0, provided ¢ > 0, and like an inverse cube if £ = 0. Moreover, it has a unique nondegenerate maximum that is located at the photon
sphere. It consists of closed light rays and replaces the unique periodic geodesic, which we encountered in Theorem IIIL.2.

Hence, we expect that at least some of the machinery that we described above in the surface case applies here as well. However, the
Regge-Wheeller potential is considerably more difficult to deal with.
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The main result of Ref. 29 is the following pointwise decay, which captures the so-called Price law for fixed angular momentum. Strictly
speaking, it is still off by one power of ¢ from the sharpest form of Price’s law, which is ¢ 2=, whereas the following result proves t ‘> (we
shall comment on that issue below). Note how the accelerated decay for higher values of £ mirrors what we saw for the surfaces of revolution
in Theorem IIL.1. Hintz"* recently closed the gap of the missing power of ¢ and thus finished the proof of Price’s law.

Theorem IIL9. Let (4,0) ¢ {(0,0),(0,-3),(1,-3)}, a € N and 1 < a <20+ 3. Then, the solution operators for the Regge- Wheeler
equation satisfy the estimates
Wa Ll(R))

|
Ry We

I

Wa

I €051/ )l o < C"““)“(H

and

b

Wa

sin(t\/#v,5) f
V %Z,U

< Ce)u<t>7a+l
L= (R)

W

LY(R)

forallt >0, where wq(x) := (x)™"

The values of (o, £) that we exclude here are precisely those where the Regge-Wheeler potential gives rise to zero energy resonances.
Physically speaking, they correspond to a gauge invariance, such as changing the mass, and are therefore irrelevant.

The Proof of Theorem IIL9 is based on representing the solution as an oscillatory integral in the energy variable A; schematically, one
may write

¥(tx) = f U (6 0)Im(Gpo (3,2, 1) | £(x') d'd,

where U(t,1) is a combination of cos(#A) and sin(t1) terms and G, (x, x",1) is the kernel (Green’s function) of the resolvent of the operator
# 10. In analogy with Theorem III.1, G/, (x, x',)t) is constructed in terms of the Jost solutions, and we obtain these functions in various
domains of the (x,1) plane by perturbative arguments: for |xA| small, we perturb in A around A = 0, whereas for |xA| large, we perturb off
of Hankel functions. This is done in such a way that there remains a small window where the two different perturbative solutions can be
glued together. One of the main technical difficulties of the proof lies with the fact that we need good estimates for arbitrary derivatives
of the perturbative solutions. This is necessary in order to control the oscillatory integrals. The most important contributions come from
A ~ 0, and we therefore need to derive the exact asymptotics of the Green’s function and its derivatives in the limit A — 0. For instance,
we prove that

Im [Gr(0,0,1)] = AP, (A*) + O(A**™1)

as A — 0+, where Py is a polynomial of degree £ — 1 (we set Py = 0) and the O-term satisfies 0% (A2*1) = O(A%*17*) for all k € N,.
As already noted before, for £ = 0, the Regge—-Wheeler potential decays like an inverse cube as x — oco. This case is covered by the
following result of Donninger and the author:*

Theorem IIL10. Let Ve CIMY(R) with V(x) = |x|*[cs + O(|x| )] as x > oo, where 2<a <4, p= Ha-2)% cseR, and
IO (x| )| s |x| 7 for k= 1,2,...,[a] + 1. Denote by A the self-adjoint Schridinger operator Af == —f" + Vf in L*(R), and assume that
A has no bound states and no resonance at zero energy. Then, the following decay bounds hold:

1677 cos(tV/A) fllu=qy < (7 (1O ey + 10 fluey)

and
a1 Sin(tV/A) —a)p a1
e S SO flo e
H VA L= (R)
forallt>0.
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In particular, this gives t ™ for a = 3, which is the sharp form of Price’s law for £ = 0. It is important to realize that the decay of the waves
in Theorems II1.9 and IIL.10 is really a manifestation of transport rather than of dispersion. Indeed, D’Alembert’s formula shows that any
solution of

Oth — Ot = 0, u(0) = f, Ou(0) =g

with Schwartz data (say) and | g(x)dx = 0 satisfies
() u(t) oo < C(a) £

for any « > 0. This vanishing mean condition can be attributed to the zero energy resonance for the free Laplacian in one dimension. Needless
to say, the one-dimensional problem does not exhibit any sort of dispersion but is governed by linear transport that leads to this arbitrary local
decay of the waves. It is very interesting to note (but perhaps not immediately clear) that the sharp Huyghens principle in three dimensions

is still visible in the local decay law of Theorem IIL9. In fact, we claim that the sharp "2~ Price law (at least for £ > 1) is a result of the
log X

correction term of the form in the Regge-Wheeler potential rather than the leading inverse square decay as x — +oo.
To clarify this point, we now present a simple model case from Ref. 17. With a > 0,

0 if x < -1
= +V, V(x)={2_1

4 .
5 if x> 1.

X

Moreover, V € C* (R) is such that % has no zero energy resonance, which means that there does not exist a globally subordinate (or recessive)
solution & f = 0 other than f = 0. Recall that this refers to solutions of the slowest allowed growth at both ends, which means here that

f(x) =0(1) as x > —oo and f(x) = O(xéfa) as x — +o0o. Then, one has the following local decay estimates for the wave equation with
potential V:

Proposition IIL.11. Under the above assumptions on I,

I LD gy gl < A

[(x)™ c0s(tV/F)Po,00) (F ) flloo < C(t) 7 (1) f 11 + 1) f 1)

where o > 0 is sufficiently large depending on a. These decay rates are optimal, provided a ¢ Z§ + 1. In the latter case, one obtains decay t™ for
any N (provided o is taken sufficiently large depending on N).

Proof. We prove the first bound, the second one being very similar. Thus, let y(t, x) be a solution of the problem
Oy -0+ Vy=0, w(0,x)=0, dy(0,x) =g,
where g is Schwartz, say, and set for Re(p) > 0,
w@ﬁy3/wfw@@w.
0

Then,
 +p)i(p) = &

which has a unique bounded solution

Wpx) = [ Gixy)g0) dy

— [;f+(x’£){£)(y’p) g(}’) dy
[TEUDEGR ),

with constant Wronskian W(p) := f (x,p) f-(x,p) = f+ (x,p) f- (x, p). Here, f.(x,p) are the Jost solutions

(% +p") f(~p) =0, fe(x,p) ~e P asx - +oo.
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The goal is now to obtain the expansion of fi(x,p) in small p, as this then yields the large time asymptotics of, with arbitrary po > 0,

R
2mi

oo po+ico
v = oo [ " Gy dpg() dy (51)

via contour deformation and Watson’s lemma. By the choice of potential V,
f-(x,p) = forx < —1,

fe(xp) = %eam/zH[El)(ipx)(2"496)E forx > 1.
w

One can continue f-(x,p) to the right of x = —1, which yields an entire function in p for each fixed x. The nonresonance condition for p = 0
means that f_(-,0) and xé_“ are linearly independent at x = 1. Since H‘Sl) = Ja + iY, and, up to constant factors,

Jo(u) ~ u(1+0?)),  Ya(u) ~u"(1+0())

as u — 0 with analytic O(u*) (at least provided a is not an integer), we conclude that

W(p) = (V) p2[1+0(p") + &(V) p™(1+ O(p*))] asp — 0,

with O(p*) analytic in a neighborhood of p = 0 and with ¢(V) # 0. This is obtained by computing W(p) at x = 1, say, and by noting that

the most singular contribution to W(p) around p = 0 is c¢(V) péf". By inspection, ¢(V) = 0 is the same as a zero energy resonance, which is
excluded. If a is a positive integer, then as p — 0,

W(p) = (V) p>~"[1+0(p") +2(V) p** log(p) (1 + O(p"))].

For simplicity, let us first freeze x, y, say, x = y = 1. Then, one concludes from the preceding that

G(ps1,1) = C(V) p*[1+ 0(p*) + (V) p*(1+ 0(p*))] (52)
for small p € C\(—o0,0] and analytic O(p?) around p = 0, whereas for the case of a € Z,

G(ps1,1) = C(V) p** log(p)[1 + O(p’)
+&(V) p** log(p)(1+0(p*))].

The stated decay law now follows via Watson’s lemma in a standard fashion. Note the special role of integer but odd 2a (which is the excep-
tional case in the statement of the proposition): in that case, (52) is analytic in small p, whence one can push the contour in (51) through p = 0,

leading to exponential decay (at least as far as the contribution of small p is concerned).
We now discuss the Watson lemma in more detail. First, we move the contour in (51) onto the imaginary axis,

RS el v
y(t1) = Zﬂi.[iwe G(p;1,1) dp.

The contribution due to 1 — y(p) is shown via integration by parts to decay faster than any power of ¢ [use that G(iE; x,y) = O(E™") for large
E, uniformly in x, y]. On the other hand, for the contribution of y, we retain only finitely many terms from G(p; 1, 1) with a remainder that is
smooth enough around p = 0 so as to yield the desired decay again by integration by parts. Finally, the first remaining term is of the form [up
to a constant factor C(V)]

[ " p"x(p) dp.

We also have a log p factor if a € Z. One now extends this to

/et" P> dp, (53)

Y
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where y is a curve that contains [—ie,ie] and is asymptotic to [0,ec0] and [-€o0,0], respectively, and the ends. Note that the
integrals we inserted here decrease like t ™ for any N by integration by parts. By Cauchy’s theorem, this is the same as

2 sin(2a7r)/ e p**dp = 2 sin(2an)t > 'T(2a + 1),
0

which is the decay rate stated in the proposition. Note that if a = £ + %, then this term vanishes, leading to the exceptional behavior stated
above. On the other hand, if a € Z, then this contribution does not vanish due to the log(p) factor. Finally, we need to remove the restriction
x = y = 1. However, we have set up our argument in such a way that this modification is easy. First, the contribution of |p| > € is again shown
to decay at an arbitrary rate via integration by parts. Now, this procedure brings down as many powers of x, y as given by the desired power
of t7!. Next, the contribution of the finitely many terms involving pZ”, etc., is similar to before, and each one of these terms comes with a
corresponding weight in x and y. Finally, the remainder in G(p; x, y) after subtracting that initial segment is again sufficiently smooth in p,
and therefore, integration by parts yields the desired decay leading to another instance of requiring large o. ]

The significance of this proposition lies with proximity of V' to the Regge-Wheeler potential. Indeed, we replaced the exponential tails
on the left by zero and retained the inverse square tails on the right (ignoring the higher-order corrections). In the case of the Regge—-Wheeler

potential, one has o - i ={(£+ 1), which implies that a = £ + % which is the exceptional case of Proposition III.11. Formally speaking,

26-3 i5 therefore seen to be a result of the

2a+ 1 =2+ 2 corresponds exactly to the decay rate of Theorem IIL.9, whereas the Price law ¢~
1

0)%3 X
p*® in (53). To accomplish this, one derives an expansion of f. (x,p) in small p, taking into account as many terms from V,, as required for
obtaining Price’s law and the next few corrections to it. The route taken in Ref. 17 consists of a reduction of the Regge-Wheeler potential to a

normal form by means of a Liouville-Green transform. The normal form here consists of the potential without any corrections to the leading

correction to the far field in V. In fact, it is shown in Ref. 17 that the Price law is due to the nonanalytic term p***' log p instead of

Z(iizﬂ) decay. The branching around p = 0 then results from the change of independent variable. Arguing as in the previous proof then yields

the sharp 2> Price law.
To conclude this survey, let us state the main local decay result from Ref. 30.

Theorem II1.12. The following decay estimates hold for solutions v of (50) with data w[0] = (o, y1):

1) 72Ty (0) 1 5 40) 7 1) 2" (1 By ¥ v0, X ) s (54)

160 (@) = 540 1) (0 Oy, ¥ 90, 079 s, (55)

where J7 stands for the angular derivatives. The notation a+ stands for a + & where € > 0 is arbitrary (the choice determines the constants

involved). In addition, instead of (}7'°, §7°) in (55), one needs less, namely, (¥7°*", %), where o > 8 is arbitrary. Here, L* := L2(R; L*(S%)),
L= Ly (R; L' (8%)), and L™ = LT (R; L= (S?)).

It is obtained by summation in £ following the same line of reasoning that lead to Theorem III.2 above. The most significant complication

is due to the asymmetry of the Regge-Wheeler potential: while the inverse square potential for x — oo is covered by Ref. 16 as before, the
exponentially decaying part on the left requires another WKB analysis. We refer the reader to Ref. 30 for the details.
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