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ABSTRACT
This paper introduces some of the basic mechanisms relating the behavior of the spectral measure of Schrödinger operators near zero energy
to the long-term decay and dispersion of the associated Schrödinger and wave evolutions. These principles are illustrated by means of the
author’s work on decay of Schrödinger and wave equations under various types of perturbations, including those of the underlying metric. In
particular, we consider local decay of solutions to the linear Schrödinger and wave equations on curved backgrounds that exhibit trapping. A
particular application is waves on a Schwarzschild black hole spacetime. We elaborate on Price’s law of local decay that accelerates with the
angular momentum, which has recently been settled by Hintz, also in the much more difficult Kerr black hole setting. While the author’s work
on the same topic was conducted ten years ago, the global semiclassical representation techniques developed there have recently been applied
by Krieger, Miao, and the author [“A stability theory beyond the co-rotational setting for critical wave maps blow up,” arXiv:2009.08843
(2020)] to the nonlinear problem of stability of blowup solutions to critical wave maps under non-equivariant perturbations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0042767

I. INTRODUCTION
This paper mainly serves as an introduction to the techniques used in the papers,29,30 which are concerned with the local decay of waves

on a Schwarzschild background. The decay estimates are obtained by separation of variables and the analysis of the flow for each angular
momentum ℓ in Ref. 29. By means of a semiclassical WKB analysis in the parameter h ∶= ℓ−1 carried out by means of a global Liouville–Green
transform, as well as semiclassical Mourre theory at energies near the top of the barrier,30 these fibered estimates sum up over all angular
momenta incurring the loss of finitely many angular derivatives. Note that Refs. 29 and 30 are not entirely self-contained and rely, in part,
on Refs. 16, 17, 28, 74, and 75. As shown in these references, the Schrödinger flow can be analyzed analogously. The original motivation for
Refs. 74 and 75 was to study the long-term dispersive behavior of solutions to Schrödinger and wave equations on specific non-compact
manifolds exhibiting closed geodesics, such as the hyperboloid of one sheet. In analogy with the unique periodic geodesic on such a hyper-
boloid, which is exponentially unstable, the surface of closed geodesics around a Schwarzschild black hole is known as a photon sphere and
corresponds to the collection of all periodic light rays. The photon sphere is also unstable.

Recently, in joint work with Krieger et al.,56 the semiclassical techniques leading to a precise representation of the resolvent and the
spectral measure for all energies and all small h developed in Refs. 16 and 17 played a crucial role in a nonlinear asymptotic stability question
of blowup solutions to energy critical wave maps into the two-sphere. In stark contrast to the linear case, modes of fixed frequencies interact
through the nonlinearities. Controlling these interactions naturally leads to a paradifferential calculus involving several simultaneous semi-
classical parameters. The nonlinear work56 served as the main motivation for writing this paper, which should not be mistaken for a general
review. Numerous references are missing, which touch in one way or another on the ensuing discussion. A survey of dispersive decay of
Schrödinger, wave, and Klein–Gordon evolutions involving electric, magnetic, and metric perturbations, including the semi-classical and
gravitational literature, would require many hundreds of citations. The scope and purpose of this paper is much more limited. For example,
magnetic and time-dependent potentials are not discussed in detail.

The author’s investigations in this area were largely motivated by the book of Bourgain,10 which states at the end of page 27: On the
other hand, it would be most interesting to prove that analogue of (1.99) in low dimensions d = 1, 2. This is certainly a project of independent
importance. Here, (1.99) refers to the pointwise decay of the Schrödinger evolution proved by Journé, Soffer, and Sogge51 (see Sec. II).
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II. LOWER ORDER PERTURBATIONS
The free Schrödinger evolution ψ(t) = e−itΔψ0 in Rd+1

t,x satisfies the basic estimates

∥ψ(t)∥Hs = ∥ψ0∥Hs , (1)

∥ψ(t)∥∞ ≤ Ct− d
2 ∥ψ0∥1, (2)

as can be seen from the representation

ψ(t, x) = (2π)−d
∫Rd

ei(t∣ξ∣2+x⋅ξ) f̂ (ξ) dξ

= c(d)t− d
2∫Rd

ei ∣x−y∣2

4t f (y) dy.

For the wave equation ◻u = ∂2
t u − Δu = 0 in d + 1 dimensions, one has constancy of the energy

ℰ (u) = ∥∇u∥2
2 + ∥∂tu∥2

2 (3)

as well as the dispersive decay

∥u(t)∥∞ ≲ t− d−1
2 (∥u(0)∥

Ḃ
d+1

2
1,1

+ ∥∂tu(0)∥
Ḃ

d−1
2

1,1

), (4)

where Ḃα
1,1 stands for the usual Besov space: ∥ f ∥Ḃα1,1

= ∑j∈Z2αj
∥Pj f ∥1, where Pj is the Littlewood–Paley projection onto frequencies of size 2j.

In odd spatial dimensions, one can improve the right-hand side to

∥u(0)∥
Ẇ

d+1
2 ,1 + ∥∂tu(0)∥

Ẇ
d−1

2 ,1 ,

where Ẇα,p stands for the homogeneous Sobolev spaces. To obtain (4), one considers a fixed frequency shell {∣ξ∣ ∼ 2j
} and rescales to j = 0.

Then,
eit

√
−ΔP0 f (x) = ∫R2d

ei((x−y)⋅ξ+t∣ξ∣)χ(ξ) dξ f (y) dy,

where χ is a cutoff function corresponding to P0. Passing to polar coordinates and applying stationary phase to integrals over spheres then
yield the desired t− d−1

2 decay.
While (1) and (3) are a result of the time-translation invariance of the underlying Lagrangians (via Noether’s theorem) and therefore

robust under perturbations that preserve this symmetry, (2) and (4) follow from the form of the fundamental solutions and are therefore
less stable. In fact, much effort has been devoted to deriving similar dispersive estimates for perturbations of the free Schrödinger and wave
equations in the past thirty years. The starting point in these investigations was to consider local decay estimates that are quite different from
the global ones as in (2) and (4) (as we shall see below). Local here refers to the fact that the decay is measured only in weighted spaces rather
than in a uniform sense.

A. Local decay for − Δ +V
1. The Schrödinger evolution

In Ref. 50, Jensen and Kato showed that for H = −Δ + V in the three-dimensional case, with real-valued V that is bounded and decays at
a sufficient polynomial, rate one has the local decay

∥⟨x⟩−σeitHPc f ∥L2(R3) ≲ ⟨t⟩− 3
2 ∥⟨y⟩σ f ∥L2(R3) (5)

for some σ > 0 and with Pc = χ(0,∞)(H) being the projection onto the continuous spectrum. Moreover, one needs to assume that zero energy
is neither an eigenvalue nor a resonance of H (which is also referred to as zero energy being regular, the other case being singular).

This latter property refers to the validity of the resolvent estimate

sup
Im z>0

∥⟨x⟩−σ
(−Δ + V + z)−1

⟨x⟩−σ
∥2→2 < ∞ (6)

with σ > 0 sufficiently large. Alternatively, it is the same as the nonexistence of f ≢ 0 with

H f = 0, f ∈ ⋂
ε>0

L2,− 1
2 −ε

(R3
). (7)
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It was already observed by Rauch70 for exponentially decaying potentials that a zero energy resonance or eigenvalue, i.e., in the case when (7)
admits a nontrivial solution, destroys the dispersive estimate. More specifically, one loses one power of t in the decay law in that case.

To see the relevance of zero energy resonances, we expand the resolvent for z → 0 in Im z > 0 as follows:

R(z) ∶= (−Δ + V + z)−1 (8)

= z−1B−1 + z− 1
2 B− 1

2
+ B0 + z

1
2 B 1

2
+ ρ(z),

where B−1, . . . , B1 are bounded in weighted L2
(R3

)-spaces, and with

∥⟨x⟩−σρ(z) f ∥2 ≲ ∣z∣∥⟨x⟩σ f ∥2

for small z. Clearly, B−1 is the orthogonal projection onto the zero eigenspace, and zero energy is regular for H iff B−1 = B− 1
2
= 0. In general,

B−1, B− 1
2

are of finite rank. As an example, consider the case V = 0 in three dimensions, for which one has (with z = −ζ2)

(−Δ − ζ2
)

−1
(x, y) =

eiζ∣x−y∣

4π∣x − y∣
, Im ζ > 0,

and the Laurent expansion (8) is now obtained by Taylor expanding the exponential on the right-hand side. It follows that zero energy is
neither an eigenvalue nor a resonance in that case. In contrast, the one-dimensional case satisfies

(−Δ − ζ2
)

−1
(x, y) =

eiζ∣x−y∣

2iζ
, Im ζ > 0,

and zero is a resonance (but not an eigenvalue). We used here that (8) remains correct in all odd dimensions, whereas in even dimensions, a
logarithm appears. Indeed, the free resolvent in d-dimensions satisfies

(−Δ − ζ2
)

−1
(x, y) = cd ζ

d−2
2 ∣x − y∣−

d−2
2 H+

d−2
2
(ζ∣x − y∣), (9)

and the Hankel functions of integer order exhibit a logarithmic branch point at zero.
To pass to estimates on the evolution, one now uses the Laplace transform (as in the Hille–Yosida theorem) to conclude that

eitHPc =
1

2π∫
p0+i∞

p0−i∞
etpR(ip)Pc dp, (10)

where p0 > 0 is arbitrary. Assuming for simplicity that V is compactly supported, it follows from the resolvent identity that the Green function
R(ip)(x, y) admits a meromorphic continuation to the left-half plane. One now deforms the contour in (10) as shown in Fig. 1. The finitely
many residues {ζ j} of the resolvent in the left-half plane (which lie in C/(−∞, 0]) contribute to the exponentially decaying expression

∑
ζj

eζjtPϕj ,

FIG. 1. Deforming the contour.
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where Pϕj is the projection onto the resonant states corresponding to the complex resonance at ζ j (the resonant states are commonly referred
to as meta-stable states or quasinormal modes). The more slowly decaying tail is a result of the branching of the resolvent at p = 0. More
specifically, it can be read off from (8) via the following standard result, which is known as Watson’s lemma (the notation ∼ refers to asymptotic
expansions in the sense of Poincaré):

Lemma II.1. Let f be a complex-valued function of a real variable x such that

● f is continuous on (0, ∞),
● f (x) ∼ ∑∞

n=0an xλn−1 as x → 0+ with 0 < λ0 < λ1 < . . .,
● f (x) = O(ecx

) as x →∞ for some c > 0.

This condition can be removed since Watson’s lemma is really local on some interval (0, x0), but we choose to state it in this global form. Then,
for every small δ > 0, one has

∫

∞

0
e−xp f (x) dx ∼

∞
∑
n=0

an

pλn
Γ(λn)

as ∣p∣ → ∞ in ∣ arg(p)∣ ≤ π
2 − δ.

Therefore, if B− 1
2
≠ 0 in (8), then one obtains t− 1

2 local decay, whereas, otherwise, the rate is t− 3
2 , which is the same as in (2). Evidently, the

global (i.e., L∞) decay can never be faster than the local one—whence the need to exclude zero energy resonance and eigenvalues to preserve
(2). We remark that one can have B− 1

2
≠ 0 even in case the only solutions to (7) are in L2 (in other words, if zero energy is an eigenvalue

but not a resonance). This implies that t− 3
2 does not result from applying Pc to the evolution even when zero is not a resonance but only an

eigenvalue.
Starting from the spectral representation

eitHPc = ∫

∞

0
eitλ E(dλ) (11)

instead of (10) with the spectral measure

E(dλ) =
1

2πi
[R(λ + i0) − R(λ − i0)]Pc dλ,

Jensen and Kato derived local decay estimates but under much less severe restrictions on the decay of V and also on the notion of locality in
the decay estimate. However, it is clear from (11) that the main issue here is once again the contributions from λ = 0 coming from (8). Indeed,
for energies λ > λ0 > 0, where λ0 > 0 is arbitrary but fixed, one has the so-called limiting absorption resolvent bounds

sup
λ>λ0

∥⟨⋅⟩
−σ∂k

λR(λ ± i0)⟨⋅⟩
−σ

∥ < ∞

for all 0 ≤ k ≤ k0 and with σ > 0 depending on k (the value of k0 here depends on the decay of V). These bounds allow one to integrate by parts
in (11) in the range λ > λ0, which leads to arbitrary decay in time.

The most general results on local decay for the Schrödinger evolution were obtained by Murata.65 He derived expansions in time for
evolutions eitH in all dimensions and with elliptic H = −p(D) + V , where V is a compact operator in suitable weighted Sobolev spaces. As a
general rule, the coefficients in these expansions corresponding to nongeneric threshold behavior (i.e., slow decay resulting from threshold
eigenvalues or resonances) are finite rank operators that can be computed in terms of the eigenfunctions and resonant states. As an example,
the one-dimensional free evolution satisfies

e−it∂2
x f (x) = ct− 1

2 ∫ f (y) dy + ρ(t) f (x),

∥⟨⋅⟩
−σρ(t) f ∥2 ≲ t− 3

2 ∥⟨⋅⟩
σ f ∥2.

The appearance of the projection f ↦ ∫ f (y)dy onto the constant functions is natural in view of the fact that the resonant function of −∂2
x

at zero energy is f ≡ 1. This also shows that one should expect t− 3
2 local decay for one-dimensional operators without zero energy resonance

(note that, however, the global decay as in (2) is never faster than t− 1
2 if d = 1), at least assuming sufficient decay of V . This is indeed the

case (see Ref. 65). In two dimensions, Murata obtained the faster local L2
(R2

) decay t−1 log−2t for operators without resonance. Erdogan and
Green34 established the more difficult sharp weighted L1

→ L∞ version of these global bounds in R2, assuming that zero energy is regular.
These faster local decays (as compared to the global L∞ decay) play a crucial role in certain applications to nonlinear stability results (see the
work of Buslaev and Perelman13 Krieger and Schlag57 for the one-dimensional case and Kirr and Zarnescu55 for examples of two-dimensional
applications. Loosely speaking, the point here is that in contrast to the global decay rates these, faster non-resonant local rates are integrable
in time, which allows one to close certain bootstrap arguments involving the Duhamel formula.
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2. The wave evolution
Similar considerations apply to the wave equation. Indeed, let ◻u = 0, with (u(0),∂tu(0)) = (0, g) [initial data ( f , 0) are then handled

by differentiating in time]. Then, instead of (10), one has

u(t) =
sin(t

√
H)

√
H

Pcg =
1

2πi∫
p0+i∞

p0−i∞
etpR(p2

)Pc gdp, (12)

where p0 > 0. In contrast to the Schrödinger case, the resolvent R(p2
) in odd dimensions is now analytic around p = 0 (assuming that there is

no zero energy resonance or eigenvalue), which results in arbitrary local decay of u(t). More precisely, if V decays exponentially, thus allowing
for analytic continuation of the Green function to the left-half plane, one obtains exponential decay in time relative to weighted L2 in space.
This is, of course, a consequence of the sharp Huyghens principle in odd dimensions, which states that the fundamental solution of the free
wave equation is localized to a sphere with radius given by the time. We see from this informal discussion that this principle is robust under
perturbations [at least in the sense that the perturbed wave u(t) will decay very rapidly at distances ≪ t from the origin, which, of course,
is far from being able to describe the fundamental solution]. Note the stark contrast between the strong local decay of the wave equation as
compared to the specific global decay given by (4).

On the other hand, in even dimensions, the resolvent will exhibit a log p singularity [see (9)]. Due to this branching of the resolvent at
p = 0, Watson’s lemma implies an explicit power law depending on the dimension governing the tail of the wave near the origin. This is in
agreement with the fact that there is no sharp Huyghens principle in even dimensions.

To summarize this section, one sees that the local decay for both the Schrödinger and the wave equation is entirely determined by the
singularity (often but not necessarily by branching) of the resolvent (−Δ + V + z)−1 at p = 0, where z = −ip in the former case and z = p2 in
the latter case.

B. Global decay for −Δ +V
1. The Schrödinger evolution

The first result that proved (2) for H = −Δ + V in dimensions d ≥ 3 was obtained by Journé, Soffer, and Sogge.51 Following the
unpublished work by Ginibre, we now give a short proof of a simpler estimate, namely,

∥eitHPc f ∥L∞+L2(Rd) ≲ ⟨t⟩− d
2 ∥ f ∥L1∩L2(Rd), (13)

assuming that V has sufficient decay and that H has no zero energy eigenvalue or resonance. The logic here is that the Duhamel formula
allows one to upgrade local decay to global one. More precisely, if

∥⟨x⟩−σeitHPc f ∥L2(Rd) ≲ ⟨t⟩− d
2 ∥⟨y⟩σ f ∥L2(Rd)

and if V decays sufficiently fast, then the same estimate holds without weights in the sense of (13) (provided d > 2). More precisely, applying
the Duhamel formula twice yields

eitHPc = e−itΔPc + i∫
t

0
e−i(t−s)ΔVeisHPc ds

= e−itΔPc + i∫
t

0
e−i(t−s)ΔVPce−isΔ ds

+ ∫

t

0
∫

s

0
e−i(t−s)ΔVei(s−s′)HPcVe−is′Δ ds′ ds.

Applying the local decay for eisH from Sec. II A (with ∣V ∣
1
2 acting as weight, say) as well as the bound

∥e−itΔ f ∥L2+L∞(Rd) ≲ ⟨t⟩− d
2 ∥ f ∥L1∩L2(Rd)

to this expression yields for ∥ f ∥L1∩L2(Rd) = 1,

∥eitHPc f ∥L∞+L2(Rd) ≲ ⟨t⟩− d
2 + ∫

t

0
⟨t − s⟩− d

2 ⟨s⟩− d
2 ds

+ ∫

t

0
∫

s

0
⟨t − s⟩− d

2 ⟨s − s′
⟩

− d
2 ⟨s′

⟩
− d

2 ds′ ds ≲ ⟨t⟩− d
2
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as claimed, provided d ≥ 3. The main gist of Ref. 51 is now to remove the L2-piece from this argument. This is subtle, as the free estimate
involved (t − s)− d

2 , which is not integrable at s = t. To overcome this difficulty, Journé, Soffer, and Sogge used the bound

sup
1≤p≤∞

∥e−itΔVeitΔ
∥p→p ≤ ∥V̂∥1.

The point here is that the left-hand side for V = eixη is a translation operator composed of a unimodular factor and therefore Lp bounded.
Rodnianski and the author71 proved that for all t > 0,

∥eitH f ∥L∞(R3) ≤ C(V)t− 3
2 ∥ f ∥L1(R3), (14)

assuming that

sup
x∈R3
∫R3

∣V(y)∣
∣x − y∣

dy < 4π (15)

as well as that the so-called Rollnick norm of V is less than 4π. The left-hand side in (15) is commonly referred to as the Kato norm ∥ ⋅ ∥K .
The Rollnick condition precludes any spectral problems, such as eigenvalues and a zero energy singularity. The approach of Ref. 71 to the
pointwise bounds is based on an expansion into an infinite Born series followed by term-wise estimation of the resulting kernels. The smallness
condition on V guarantees convergence.

Remarkably, Beceanu and Goldberg5 were able to show that the finiteness of the Kato norm alone suffices. More precisely, they showed
that (14) holds for eitHPc in three dimensions assuming (15) with 4π replaced by ∞ and that there are no imbedded eigenvalues and resonances
in the continuous spectrum. They accomplished this by means of Beceanu’s Wiener algebra techniques (see Ref. 4). Recall that Wiener’s
classical theorem states that for any f ∈ L1

(R), the equation (δ0 + f ) ∗ (δ0 + g) = δ0 has a (unique) solution with g ∈ L1
(R) if and only if

1 + f̂ ≠ 0 on R. The relevance of this to the decay of solutions to

(i∂t − Δ + V)ψ = F, ψ(0) = ψ0,

can be seen as follows: let V1V2 = V , ∣V1∣ = ∣V2∣ and set

(TV2 ,V1 F)(t) = ∫
t

0
V2ei(t−s)H0 V1F(s) ds,

with H0 = −Δ. Then, on one hand, one has

V2ψ(t) = (δ0Id − iTV2 ,V1)
−1V2(eitH0ψ0 − i∫

t

0
ei(t−s)H0 F(s) ds),

which is to be interpreted in the convolution algebraℬ (L2
(R3

),ℳtL2
(R3

)), whereℳt are the complex measures on the line. On the other
hand, T̂V2 ,V1(λ) = iV2R−

0 (λ)V1, with R−
0 (λ) = (H0 − (λ − i0))−1. Hence, the invertibility of δ0Id − iTV2 ,V1 in ℬ (L2

(R3
),ℳtL2

(R3
)) is the

same as the pointwise invertibility of the Birman–Schwinger operator Id + V2R−
0 (λ)V1. This equivalence is delicate and requires V ∈ L

3
2 ,1

(R3
)

the Lorentz space, whence V1, V2 ∈ L3,2
(R3

), and also the Keel–Tao Strichartz endpoint.54 For the abstract Wiener theorem in this context,
see Theorem 1.1 of Ref. 4 and Theorem 3 of Ref. 5.

An alternative and very general approach to proving Lp bounds on both wave and Schrödinger evolutions was found by Yajima81,82 who
proved Lp boundedness of the wave operators, with the limit being taken in the strong L2-sense,

W = lim
t→∞

e−itHe−itΔ (16)

for all 1 ≤ p ≤ ∞ and d ≥ 3. The fact that these operators exist and are isometries L2
→ Ran(Pc(H)) is a classical fact (see Ref. 52). They

intertwine the free evolution with that of H in the sense that (with H0 = −Δ)

f (H)Pc(H) = W f (H0)W∗

for any Borel function f on R. In particular, eitHPc(H) = WeitH0 W∗, and (2) therefore implies the bound

∥eitHPc f ∥∞ ≤ Ct− d
2 ∥ f ∥1

whenever W : L∞
→ L∞, W∗ : L1

→ L1. Yajima obtains similar results on Wk,p assuming more regularity on V (the amount of regularity
depends on k). In view of our discussions of the role of zero energy resonances for local decay, it follows that Yajima’s result81 can only hold
under the assumption that zero energy is neither a resonance nor an eigenvalue. In three dimensions,81 the result requires ∣V(x)∣ ≲ ⟨x⟩−σ with
σ > 5 and therefore improves on.51

J. Math. Phys. 62, 061509 (2021); doi: 10.1063/5.0042767 62, 061509-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Yajima derives his Lp bounds by means of a finite Born series expansion with a remainder term involving the perturbed resolvent. In
the case of small potentials, one can sum up the infinite Born expansion, leading to more precise results in terms of conditions on V . In view
of the preceding discussion of Wiener theorems as a means of summing divergent series, it is natural to ask if Yajima’s theorem could be
approached by means of a suitable Wiener algebra. Beceanu and the author6 carried this out and proved that the wave operators given by (16)
in R3 are superpositions of reflections and translations. In fact, assuming that ∣V(x)∣ ≲ C⟨x⟩− 5

2 −ε and that zero energy is neither an eigenvalue
nor a resonance, they showed that there exists g(x, y,ω) ∈ L1

ωℳyL∞
x (withℳy being finite Borel measures in y), i.e.,

∫S2
∥g(x, dy,ω)∥ℳyL∞x dω < ∞,

such that for f ∈ L2
(R3

), one has the representation formula for the wave operator

(W f )(x) = f (x) + ∫S2
∫R3

g(x, dy,ω) f (Sωx − y) dω,

where Sωx = x − 2(x ⋅ ω)ω is a reflection. This, of course, implies that W : X → X is bounded for any function space X on R3 with a norm that
is invariant under translations and reflections. The proof of this representation formula in Ref. 6 is not entirely straightforward. On one hand,
the algebra to which the Wiener theorem is applied is somewhat delicate and requires casting the finite order Born series terms in Yajima’s
work81 (which involve only finitely many potentials and free resolvents) in some iterative algebraic framework. In other words, one needs
to find the correct algebra 𝒜 and composition law ⊛ as well as operator T to write the third Born term, say, in the form T ⊛ T ⊛ T in 𝒜 .
Furthermore, the classical scattering theory based on weighted L2 spaces does not suffice, and it is necessary to invoke the author’s work with
the work of Ionescu,49 which revisits the classical Agmon–Kato–Kuroda theorem in the context of Fourier restriction and the Stein–Tomas
theorem, as well as the Keel–Tao endpoint.54 This, in turn, relies on the Carleman theorems and absence of imbedded eigenvalues obtained in
Ref. 48. It is not known whether a structure theorem holds under a scaling-invariant assumption on V ; see, however,Ref. 7 for such a result,
albeit involving small scaling-invariant potentials.

In higher dimensions, it turns out that one needs to assume some regularity of V in order for the expected L1
(Rd

) → L∞
(Rd

) bounds
to hold. Indeed, Goldberg and Visan42 showed that the dispersive bound can fail in dimensions d > 3 for potentials that belong to the class
C

d−3
2 −

(Rd
). The logic here is that the free resolvent takes the form (in odd dimensions)

(−Δ − λ2
+ i0)−1

(r) =
eiλr

rd−2

d−3
2

∑
j=0

cj (λr)j, (17)

and the highest power λ
d−3

2 here corresponds to a d−3
2 derivative loss on V . In the positive direction, Erdoğan and Green33 proved the dispersive

bound in dimensions d = 5, 7, assuming that V ∈ C
d−3

2 (Rd
) (zero energy resonances cannot arise in dimensions d ≥ 5).

The case of low dimensions d = 1 and d = 2 always requires a separate analysis since the free resolvent in those cases exhibits a zero
energy singularity (more precisely, there is a zero energy resonance given by the constant state f = 1). We refer to the reader to Refs. 23,
41, and 80 for the one-dimensional case and Ref. 73 for dispersive estimates for the two-dimensional case, provided zero energy is regular.
Erdogan and Green38 carried out a more complete analysis of the dispersive decay in R2, allowing for s and p-wave resonances at zero energy.
This classification refers to nonzero solutions ψ of Hψ = 0, which (i) are asymptotic to a nonzero constant at spatial ∞ for s-waves and (ii)
are in Lq

(R2
) for all q > 2 for p-waves. They showed that the s-wave resonance, which arises in the V = 0 case, leads to the same t−1 decay as

in the free evolution, whereas the p-wave destroys this rate of decay. With Goldberg, these authors also obtained such a classification in R4.
Finally, more recently, Erdoğan, Green, and Toprak applied spectral methods to analyze the delicate dispersive decay of the Dirac operator
(see Ref. 35).

2. The wave equation
Starting with Beals and Strauss,2,3 many authors considered the problem of proving the dispersive estimate (4) for equations (◻ + V)u

= 0, (u,∂tu)(0) = ( f , g) (it will suffice to set f = 0). In Refs. 2 and 3, the potential is assumed to be either non-negative or small (which
excludes any spectral problems), as well as rapidly decaying and smooth. The result is of the form (4) but with slightly more derivatives on
the data. Georgiev and Visciglia40 assumed that 0 ≤ V ≤ ⟨x⟩−2−ε in three dimensions and obtained (4) for energies away from zero as well as
Strichartz estimates for all energies. Cuccagna19 proved Strichartz estimates in three dimensions, assuming that ∣∂αV(x)∣ ≲ ⟨x⟩−3−ε for ∣α∣ ≤ 2
and that zero energy is regular. D’Ancona and Pierfelice25 proved global dispersive (4) for d = 3, assuming that ∥min(V , 0)∥K < 2π but with
Ḃ1

1,1 on the right-hand side. Pierfelice68 obtained the same result under the smallness assumption (15) (the arguments in Ref. 58 yield the same
but with ∥∇g∥1 instead of the Besov norm). D’Ancona and Fanelli24 considered the wave and Dirac equations in three dimensions,

utt − (∇ + iA)
2u + Vu = 0,

iUt −𝒟U + MU = 0,
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respectively. Assuming smallness of A, V , M but allowing nearly scaling-invariant singularities of these functions both at zero and infinity
(which are ∣x∣−1, ∣x∣−2, and ∣x∣−

1
2 , respectively), the t−1 global decay is obtained but for data in weighted Soboloev and Besov spaces. By the

aforementioned results of Yajima et al. on the Wk,p-boundedness of the wave operators, one can obtain Lp decay estimates for the wave
equation from the free estimates (4). Note that the Besov spaces are then defined relative to H rather than the free Laplacian, but it is often
possible to pass between the two. For a more recent reference on the integrated decay of waves, which also allows for magnetic perturbations,
see the work of D’Ancona.22

3. The case of singular zero energy
Certain stability problems in physics lead to linear operators with a zero energy eigenvalue or resonance. Examples are the energy critical

wave equation ◻u − u5
= 0 in R1+3, which admits the stationary solutions Wλ(x) ∶= λ(1 + λ2

∣x∣2/3)− 1
2 for λ > 0. Linearizing around Wλ leads

to H = −Δ − 5W4
λ , which has ∂λWλ as a resonant mode of zero energy. Another example is the critical Yang–Mills problem in dimensions

4 + 1. It is therefore necessary to obtain dispersive bounds in this context as well. Note that the local decay of Sec. II A easily allows for this
as the asymptotic expansions in time (as derived in Refs. 50 and 65, for example) isolate the contributions of the threshold singularities and
identify them as being of finite rank. In the case of L1

→ L∞, this required some additional work (see Refs. 36, 37, and 83 for the case of the
Schrödinger evolution). Yajima83 obtained explicit expressions for the term Bt− 1

2 , which needs to be subtracted to obtain the t− 3
2 decay of

the bulk (explicit here means that B can be computed from the zero energy and resonance states). The wave equation in three dimensions is
analyzed in Ref. 58. We recall the main linear result from the latter reference.

Proposition II.2. Assume that V is a real-valued potential such that ∣V(x)∣ ≲ ⟨x⟩−κ, where κ > 3 is fixed but arbitrary. If zero energy is
regular for H, then

∥
sin(t

√
H)

√
H

Pc f ∥
∞

≲ t−1
∥ f ∥W1,1(R3)

for all t > 0. Now assume that zero is a resonance but not an eigenvalue of H = −Δ + V. Let ψ be the unique resonance function normalized so
that ∫ Vψ(x)dx = 1. Then, there exists a constant c0 ≠ 0 such that

∥
sin(t

√
H)

√
H

Pc f − c0(ψ ⊗ ψ) f ∥
∞

≲ t−1
∥ f ∥W1,1(R3) (18)

for all t > 0.

Several results exist on the boundedness of the wave operators on Lp in the case zero energy is singular. However, they are limited to
a smaller range of p (in d = 3, one needs 3

2 < p < 3) and are less useful for nonlinear applications, at least in three dimensions. On the other
hand, in R2, Erdogan, Goldberg, and Green32 showed that the wave operators remain bounded in the full range 1 < p < ∞ if zero energy
exhibits only an s-wave resonance or only a zero energy eigenvalue.

For the Klein–Gordon equation on the line with a non-generic decaying potential (i.e., the associated Schrödinger operator exhibits a
zero energy resonance), an analog of Proposition II.2 was obtained in Ref. 59, albeit for local decay. This is part of a larger body of work aiming
at understanding kink stability.

III. METRIC PERTURBATIONS
If one replaces −Δ by the elliptic operator H ∶= −∑

d
j,k=1∂j(ajk(x)∂k), then one encounters a new obstruction to proving decay estimates

in addition to the zero energy resonance or eigenvalue of Sec. II: the phenomenon of trapping, which is a large energy problem. Trapping refers
to the possibility that the classical Hamiltonian

h(x, ξ) ∶=
1
2

d

∑
j,k=1

ajk(x)ξkξj

exhibits closed trajectories. More precisely, assuming symmetry ajk = akj, one has the Hamiltonian equations

ẋ ∶=
d

∑
j=1

aj⋅(x)ξj, ξ̇ =
1
2

d

∑
j,k=1

∇xajk(x)ξkξj,

which might exhibit time-periodic trajectories. To understand the crucial effect of the existence of closed geodesics, we consider the method
of proving decay estimates using energy estimates,

d
dt

⟨u, A(t)u⟩ = ⟨u, i[H, A(t)]u⟩ + ⟨u,
∂A(t)
∂t

u⟩,
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where u = u(x, t) is the solution of the Schrödinger equation, with Hamiltonian H. A similar identity can be applied for the wave equation
(see Ref. 8). Next, suppose that the expectation of A(t) is bounded from above, uniformly in t, by ∥u∥2 and, moreover, that the commutator
is positive in the sense that

i[H, A(t)] +
∂A(t)
∂t

≥ θB⋆B

for some θ > 0 and some operator B. Upon integration over time, we obtain an integrated decay estimate for B,

∫

∞

0
∥Bu∥2 dt ≤ c∥u(0)∥2

2.

The operator family A(t) is variably called a multiplier, a propagation observable, an escape function, or a conjugate operator.
To illustrate this further, let h(x, ξ) be a classical Hamiltonian on R2d. If [x(t), ξ(t)] is an orbit under the Hamiltonian flow of h, then

d
dt

a(x(t), ξ(t)) = {h, a}(x(t), ξ(t)),

where the right-hand side is the Poisson bracket. For the Euclidean case, i.e., h(x, ξ) = 1
2 ξ

2
+ V(x), one can take a(x, ξ) = x ⋅ ξ = {h, 1

2 ∣x∣
2
},

which gives {h, a} = 2h − 2V − x ⋅ ∇V . Now, suppose that −2V(x) − x ⋅ ∇V(x) ≥ 0 for ∣x∣ ≥ R > 0, say. Since h is conserved, we conclude
that a trajectory with h = α > 0, which remains in ∣x∣ ≥ R, satisfies

d2

dt2
1
2
∣x(t)∣2 ≥ 2α

and therefore ∣x(t)∣ grows linearly in t. This indicates that (x(t), ẋ(t)) undergoes scattering like a free particle. Under a short-range condition
on V(x), i.e., ∣V(x)∣ ≤ C⟨x⟩−1−ε, this is indeed the case; i.e., all trajectories that are not trapped are asymptotically free. See the book by
Derezinski and Gerard26 for a systematic development of these techniques in both classical and quantum mechanics.

Positive commutator methods are also used to prove refined average decay estimates that hold on subsets of the phase space. Such
estimates for the wave and Schrödinger equations were first derived by Morawetz using the radial derivative operator and the generator of the
conformal group as multipliers. These multipliers also work if repulsive interactions are added. However, modifications are needed if trapped
geodesics are present and usually only lead to weaker estimates. A major step in this direction is the use of a sharp localization of the energy
due to Mourre.63 The energy estimate can be obtained by taking the derivative with respect to time of the expectation value of some operator,
also called propagation observable as in Ref. 76. The remarkable paper by Hunziker, Sigal, and Soffer46 presents a time-dependent approach
to Mourre theory based on the commutator expansion lemma of Sigal and Soffer. The latter refers to expressing [ f (A), B] through a series of
Taylor type involving higher-order commutators between A and B.

A parallel development to this approach was based on ΨDO methods. In this approach, one constructs a function on the phase space
that has positive Poisson bracket with the principal symbol of the Hamiltonian. Then, one uses the quantized symbol of this function as a
propagation observable and, by means of ΨDO theory, and in particular, Garding’s inequality, passes to the desired smoothing (or limiting
absorption) bound. Some of the earliest implementations of this approach are Refs. 15 and 27, and since then, a vast literature has developed
in this direction.

The importance of a nontrapping condition is readily understood: it allows for the construction of monotonic propagation observables,
globally in the phase space. In the presence of closed trajectories, this is not possible. However, when the trajectories are closed but (strongly)
unstable, there is now substantial evidence that the decay estimates continue to hold in some sense.

On the level of the resolvents, one considers (H − z)−1 with H being a variable coefficient operator as above, with aij being a short-range
perturbation of a constant elliptic symbol. Furthermore, assume that all classical Hamiltonian orbits of large initial velocity are not trapped.
Then, the limiting absorption principle

sup
Im z>0,Re z≥N

∥⟨⋅⟩
−σ

(H − z)−1χI(H)⟨⋅⟩
−σ

∥2→2 < ∞ (19)

holds with N > 0 and σ > 0 sufficiently large (see Ref. 64). In fact, the nontrapping condition is necessary (see Theorem 2 in Ref. 64), and one
also obtains (19) for derivatives in z of the resolvent. The latter property then clearly implies local decay on the time-evolution restricted to
high energies.

In fact, while Doi27 and Murata65 showed that smoothing estimates and the usual decay estimates do not hold in the presence of trap-
ping, Ikawa47 shows that one still obtains local decay estimates for the Laplacian dynamics on Rn with several convex obstacles removed.
In the meantime, the microlocal analysis on manifolds with unstable closed geodesics, of the resolvent of the Laplacian on one hand and
the Schrödinger evolution on the other hand, has grown into a vast area in and of itself, which is intimately connected to the semiclassical
analysis of scattering resonances. See, for example, the recent research monograph9 on Resonances for homoclinic trapped sets or Dyatlov’s
introduction to the fractal uncertainty principle.31

In general relativity, unstable closed geodesics arise naturally in the study of the linear wave evolution on the background of both
Schwarzschild and Kerr black holes. A substantial amount of work has accumulated around this topic (see, for example, the early works
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by Blue and Soffer; see Ref. 8 as well the very recent study of Price’s law by Hintz44). The latter paper was preceded by the work of Tataru,78 as
well as the results by Donninger, Soffer, and the author30 on the spatially local, but temporally global, decay of linear waves on Schwarzschild.
Metcalfe, Tataru, and Tohaneanu62 subsequently established Price’s law on nonstationary spacetimes with sufficient decay in a suitable sense.
Very recently, Angelopoulos, Aretakis, and Gajic1 presented a “physical space” approach to Price’s law on Kerr spacetimes in contrast to
Hintz’s microlocal technique. We now set out to describe the author’s results in more detail.

A. Asymptotically conical surfaces of revolution
As a model case for the Schwarzschild manifold, Soffer, Staubach, and the author74,75 studied wave evolutions on surfaces of rev-

olution with conic ends. Let Ω ⊂ RN be an embedded compact d-dimensional Riemannian manifold with metric ds2
Ω, and define the

(d + 1)-dimensional manifold

ℳ ∶= {(x, r(x)ω) ∣ x ∈ R, ω ∈ Ω},

ds2
= r2

(x)ds2
Ω + (1 + r′

(x)2
)dx2,

where r ∈ C∞
(R) and infx∈Rr(x) > 0. We say that there is a conical end at the right (or left) if

r(x) = ∣x∣ (1 + h(x)), h(k)
(x) = O(x−2−k

) ∀ k ≥ 0 (20)

as x →∞(x → −∞).
Of course, one can consider cones with arbitrary opening angles, but this adds nothing of substance. Examples of such manifolds are

given by surfaces of revolution with Ω = S1 such as the one-sheeted hyperboloid that satisfies r(x) =
√

1 + x2. They have the property that
the entire Hamiltonian flow onℳ is trapped on the set [x0, r(x0)Ω] when r′

(x0) = 0. From now, we will only consider S1 as cross section Ω
for the sake of simplicity. The only difference from the general case is that instead of {e±iℓθ, ℓ2

}
∞
ℓ=0

, one has a complete system {Yn,μn}
∞
n=0 of

L2-normalized eigenfunctions and eigenvalues, respectively, of ΔΩ. In other words, −ΔΩYn = μ2
nYn, where 0 = μ2

0 < μ2
1 ≤ μ2

2 ≤ . . ..
Note that we do not specify the local geometry ofℳ but only the asymptotic one at the ends. This allows for very different behaviors of

the geodesics. For the case of the one-sheeted hyperboloid, for example, the geodesic flow around the unique periodic geodesic is hyperbolic
in the sense of dynamical systems, whereas if we place a section of S2 in the middle ofℳ , then we encounter a set of positive measures in the
cotangent bundle, leading to stable periodic geodesics. These two scenarios are depicted in Fig. 2. It is natural to ask to what extent this local
geometry affects the dispersion of the flow. The following result summarizes what is proved in Refs. 29 and 30 for the case ofΩ = S1 (see those
references for general compact Ω):

FIG. 2. Unstable vs stable geodesic flow.
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Theorem III.1. Let ℳ be a surface that is asymptotically conical at both ends as defined above. For each ℓ ≥ 0 and all 0 ≤ σ ≤
√

2ℓ, there
exist constants C(ℓ,ℳ , σ) and C1(ℓ,ℳ , σ) such that for all t > 0,

∥wσ eitΔℳ f ∥L∞(ℳ ) ≤
C(ℓ,ℳ , σ)

t1+σ ∥
f

wσ
∥

L1(ℳ )
, (21)

∥wσ eit
√

−Δℳ f ∥L∞(ℳ ) ≤
C1(ℓ,ℳ , σ)

t
1
2 +σ (∥

∂x f
wσ

∥
L1(ℳ )

+ ∥
f

wσ
∥

L1(ℳ )
), (22)

provided f = f (x, θ) = eiℓθ f̃ (x), where f̃ does not depend on θ. Here, wσ(x) ∶= ⟨x⟩−σ are weights onℳ .

In (22), one can obtain somewhat finer results by distinguishing between cos(t
√

−Δℳ ) and sin(
√

−Δℳ )√
−Δℳ

(see Ref. 29 for statements of that

kind). Needless to say, σ = 0 is the analog of the usual dispersive decay estimate for the Schrödinger and wave evolutions on R2. We remark
that as in the case of the plane R2, the free Laplacian Δℳ exhibits a zero energy resonance, which is, however, only visible at ℓ = 0 (this case
is treated separately in Ref. 74, whereas Ref. 75 studies ℓ > 0).

Clearly, the local decay given by σ > 0 has no analog in the Euclidean setting, and it also has no meaning for ℓ = 0. The restriction
√

2ℓ is
optimal in Theorem III.1, at least for the Schrödinger equation, and no faster decay can be obtained than the one stated in (21). The

√
2-factor

comes from the opening angle of π
4 and changing that angle leads to different constants, namely, 1

cos(θ) , where θ is the opening angle of the
asymptotic cone.

A heuristic explanation for the existence of this accelerated local decay is given by the geodesic flow combined with the natural dispersion
present in these equations. Indeed, the former will push any nontrapped geodesics into the ends (with ℓ playing the role of the velocity of the
geodesics), whereas the latter will spread any data that are initially highly localized around a periodic geodesic away from it, thus making it
susceptible to the mechanism we just described.

What is not clear from this heuristic is whether or not the localized decay law should depend on the local geometry (by which we mean
the geometry that is not described by the asymptotic cones). Theorem III.1 shows that this is not so, since the local decay is fixed and given
by a specific power. Therefore, one sees that the local geometry manifests itself exclusively through the constants C(ℓ,ℳ , σ). This is natural,
as one would expect a much longer waiting time before the large t behavior of the theorem sets in ifℳ exhibits stable geodesics. In fact, the
constant C(ℓ) grows exponentially in that case as can be seen by solutions that are highly localized (microlocally) around a periodic geodesic
(see Refs. 72 and 77).

In contrast, the methods of Ref. 30 show that this constant grows like ℓC if the manifold ℳ has a unique periodic geodesic and is
uniformly convex near it. This then allows one to sum up the estimates for each angular momentum as described by the following theorem:

Theorem III.2. Let ℳ be asymptotically conical at both ends as above, and suppose that ℳ has a unique periodic geodesic and is
uniformly convex near it. Then, for all t > 0 and any ε > 0 and with𝒟 ∶= 1 − ∂2

θ ,

∥w1+εeitΔℳ w1+ε f ∥L2(ℳ ) ≤
C(ℳ , ε)

⟨t⟩
∥𝒟 f ∥L2(ℳ ), (23)

∥w1eitΔℳ w1 f ∥L∞(ℳ ) ≤
C(ℳ , ε)

t
∥𝒟 2+ε f ∥L1(ℳ ), (24)

provided f = f (x, θ) is Schwartz onℳ , say. For the wave equation, one has

∥w 1
2 +εe

±it
√

−Δℳ w 1
2 +ε f ∥L2(ℳ )

≤
C1(ℳ , ε)

⟨t⟩
1
2

(∥𝒟
5
4 f ′

∥L2(ℳ ) + ∥𝒟
5
4 f ∥L2(ℳ )), (25)

∥w 1
2 +εe

±it
√

−Δℳ w 1
2 +ε f ∥L∞(ℳ )

≤
C1(ℳ , ε)

t
1
2

(∥𝒟
9
4 +ε ∂x f ∥L1(ℳ ) + ∥𝒟

9
4 +ε f ∥L1(ℳ )). (26)

The weights w1 and w 1
2 +ε appearing in (24) and (26), respectively, are a by-product of our proof and can most likely be removed. The

origin of the weights in our method will be explained in Sec. III B. One also obtains the accelerated decay rates that are better by t−σ as in
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FIG. 3. Two planes joined by a neck.

Theorem III.1, provided one puts in the weights as before, makes the number of derivatives required on the right-hand side depend on σ,
and provided the data are perpendicular to eiℓθ for σ >

√
2ℓ ≥ 0. We remark that one can think of the surfaces in Theorem III.1 as two planes

joined by a neck (see Fig. 3). On the other hand, the methods that are currently used to prove Theorems III.1 and III.2 do not extend to the
case of more necks, as then there is no clear way of separating variables.

There is no reason to expect that the number of derivatives required on the data in Theorem III.2 is optimal, in fact, it most certainly is
not. Heuristically speaking, these derivatives measure the spreading or non-concentration of solutions near hyperbolic orbits in dependence
on the angular momentum, which is a quantum effect. See, for example, the work of Christianson14 on this topic.

Doi27 proved that the presence of trapping destroys the so-called local smoothing estimate for the Schrödinger evolution. More precisely,
he showed that one loses (even locally in time) the 1

2 -derivative gain present in eitΔ. Note that this does not constitute a contradiction to
Theorem III.2 as the latter does not claim any gain of regularity (on the contrary, we lose angular derivatives). In a similar vein, Burq,
Guillarmou, and Hassell12 proved that Strichartz estimates may remain valid on metrics with trapping.

We now describe the method of proof leading to Theorem III.1. Later, we will discuss how to obtain Theorem III.2, which requires
considerably more work. We will then also describe the result30 for linear waves on Schwarzschild, which is very close to Theorem III.2.

To begin with, let ξ be the arclength along a generator ofℳ . Then, the Laplacian takes the form

Δℳ =
1

r(ξ)
∂ξ(r(ξ)∂ξ) +

1
r2(ξ)

ΔS2 .

Now,

e−iℓθr
1
2 (ξ)Δℳ (r− 1

2 (ξ)eiℓθ f (ξ))=ℋℓ f ,

with

ℋℓ = −∂2
ξ + Vℓ, Vℓ(ξ) =

2ℓ2
− 1

4
⟨ξ⟩2 + O(⟨ξ⟩−3

), (27)

where each ξ-derivative of the O(⋅)-term gives one extra power of ξ as decay. We remark that the leading ⟨ξ⟩−2 decay is critical for several
reasons. For us, most relevant is the behavior of the Jost solutions as the energy λ2 tends to zero; in fact, these Jost solutions are continuous
in λ around λ = 0, provided the decay of the potential is at least ⟨ξ⟩−2−ε for some ε > 0. At ε = 0, this property is lost—which is precisely what
allows for the accelerated decay of Theorem III.1. To be more specific, one first reduces Theorem III.1 [at least the Schrödinger bound (21),
the wave equation being similar] via the spectral theorem to the point-wise bound

sup
∞>ξ≥ξ′>−∞

(⟨ξ⟩⟨ξ′
⟩)

− 1
2 ∣∫

∞

0
eitλ2

Im[
f+,ℓ(ξ, λ) f−,ℓ(ξ′, λ)

Wℓ(λ)
]

λ dλ∣ ≤ Cℓ t−1−σ , (28)

where Cℓ is a uniform constant and σ =
√

2ℓ. Here, f±,ℓ are the (outgoing) Jost solutions, which satisfy ℋℓ f±,ℓ = λ2 f±,ℓ and f±,ℓ ∼ e±iλξ as
ξ → ±∞. Moreover, Wℓ(λ) is the Wronskian of f+, f−. We remark that the quantity inside the absolute values in (28) is exactly

∫

∞

0
eitλ2

E(dλ2
)(ξ, ξ′

),
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where E(dλ2
)(⋅, ⋅) is the kernel of the spectral resolution ofℋℓ. As usual,

f+(ξ, λ) = eiξλ
+ ∫

∞

ξ

sin(λ(ξ′
− ξ))

λ
V(ξ′

) f+(ξ′, λ) dξ′.

From this formula, one immediately sees the aforementioned discontinuity at λ = 0 since ξV(ξ) ∉ L1
(0, ∞). Setting ξ = ξ′

= 0, (21) of
Theorem III.1 reduces to the standard stationary phase type bound (with ν ∶=

√
2 ℓ)

∣∫

∞

0
eitλ2

λ1+2νχ(λ) dλ∣ ≤ Ct−1−ν,

where χ is a smooth cutoff function to the interval [0, 1], say. To see why the spectral measure should be as flat as λ1+2νdλ, let us first give an
informal proof of the fact that

Wℓ(λ) = cλ1−2ν
(1 + o(1)) λ→ 0, (29)

where c ≠ 0. Since this Wronskian appears in the denominator of the resolvent, it at least serves as an indication that the spectral measure
might be this small for small λ [one has to be very careful here, since the numerator is of the same size—however, the imaginary part of the
resolvent has the desired size O(λ2ν

)]. To begin with, recall from basic scattering theory that the Wronskian is given by

W(λ) =
−2iλ
T(λ)

, (30)

where T(λ) is the transmission coefficient (see Fig. 4) (in that figure, the dashed line is supposed to indicate an energy level k2, and the turning
points are defined as the projections of the intersection of the graph with that line). By the so-called WKB approximation, one has to leading
order that T(λ) = e−S(λ) with the action S given by

S(λ) = ∫
x1

x0

√
ν2⟨y⟩−2 − λ2 dy

= h̵−1
∫

x1

x0

√
2⟨y⟩−2 − h̵2λ2 dy,

with x0 < 0 < x1 being the turning points that are defined as V(x0) = V(x1) = λ2. Note that we modified the potential by removing the cubic
corrections as well as the − 1

4 ⟨ξ⟩
−2 part of the potential (the latter obviously requiring some justification). Furthermore, we used that ν =

√
2ℓ

and assumed ℓ > 0. As a result,
S(λ) = 2ν∣ log λ∣(1 + o(1)) λ→ 0,

which then gives (29) to leading order. To justify the removal of the 1
4 ⟨ξ⟩

−2-part of the potential Vℓ, we simply note that the usual WKB ansatz
for the zero energy solutions ofℋℓ, viz.,ℋℓ f = 0 is the approximate equality

f (ξ) ≃ V
− 1

4
ℓ (ξ)e±∫ ξ

1

√
Vℓ(η) dη.

FIG. 4. Reflection and transmission coefficients.
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In view of (27), one obtains the asymptotic behavior ξ
1
2 ±

√
ν2− 1

4 as ξ →∞. On the other hand, the exact solutions of

− f ′′
(ξ) +

ν2
− 1

4
ξ2 f (ξ) = 0

are of the form ξ
1
2 ±ν. The WKB approximation can therefore only be correct, provided the − 1

4 ξ
−2 term is removed from the potential Vℓ

[for a precise rendition—with control of error terms—of this heuristic discussion (see Sec. II of Ref. 75)]. Another important comment
concerning Vℓ is that (30), while true to leading order semi-classically as h = ℓ−1

→ 0, provided the energy λ > λ0 > 0 (where the latter is
fixed), does not necessarily hold as λ→ 0. The key property here is that ℋℓ does not have a zero energy resonance, which means that there
is no globally subordinate (or recessive) solution. This refers to solutions of the slowest allowed growth at both ends. For example, consider
the operator H = − d2

dx2 + V , where V = V̄ satisfies (1 + ∣x∣)V(x) ∈ L1
(R). Then, by the usual Jost/Volterra perturbation analysis, there is a

fundamental system of solutions to Hf = 0 consisting of f 1(x) ∼ x, respectively, f 2(x) ∼ 1 as x →∞. Thus, f 2 is the unique (up to nonzero
factors) subordinate solution at +∞. A resonance at zero energy therefore occurs if Hf = 0 admits a solution f ≠ 0, which is asymptotic to
a constant for both x → ±∞. Since the only other option would be some linear growth at either end, this is equivalent to f ∈ L∞

(R). This
is a universal characterization of 0 energy resonances through solutions of Hf = 0 even if V violates (1 + ∣x∣)V(x) ∈ L1

(R) as in Bessel-type
potentials arising in most problems discussed in this note, or for that matter, for V that are strongly singular. The latter means that V is locally
bounded (for simplicity) but ∫

∞
−∞∣V(x)∣ dx = ∞, and we assume that H is limit point at both ends. Depending on the specific choice of V , one

needs to find a fundamental system of Hf = 0 at both ±∞ and then select the subordinate solution. A resonance is characterized by a solution,
which is globally subordinate.

While our discussion has been largely heuristic, we emphasize that (29) is proved in Ref. 75 by means of an asymptotic description of the
Jost solutions as λ→ 0. Moreover, it is shown there that the constant c in (29) vanishes in the case of a zero energy resonance, which indicates
that the WKB approximation fails in that case as λ→ 0. Finally, we emphasize that the only natural small parameter in Ref. 75 for fixed ℓ ≥ 1 is
the energy λ. This is in contrast to the summation problem in ℓ, where h ∶= ℓ−1 represents another (and most important) small parameter. In
fact, for large ℓ, the errors in the WKB approximations are controlled in terms of this small parameter rather than in terms of the small energy
(we will return to this matter below). In order to be able to distinguish the two potentials in Fig. 5 or manifolds with distinct local geometries
in Fig. 2, we therefore need to obtain precise asymptotics for the Jost solutions and the spectral measure for both small energies 0 < λ < λ0 and
all large ∣ℓ∣, simultaneously. This sets these problems apart from most of the semi-classical literature in several ways: (i) it is not enough to
compute the limit h → 0. In fact, we need a precise asymptotic representation of the Jost solutions uniformly in small h and all energies. This
will be explained in more detail in Sec. III B. (ii) The need for uniform control for all small energies is also in stark contrast to the literature,
which typically restricts any semi-classical analysis to positive or large energies.

The rigorous proof of (29) proceeds by means of a classical matching method. To be more specific, consider the Schrödinger operator on
the line (for notational convenience, we write x instead of ξ)

ℋν = −∂2
x + (ν2

−
1
4
)⟨x⟩−2

− Uν(x),

dkUν(x)
dxk = O(x−3−k

)

FIG. 5. Potentials corresponding to the surfaces in Fig. 2.
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for all k ≥ 0 as x → ±∞ and with ν > 0 fixed. To describe the Jost solution f+,ν(x) on the interval x ≥ 1, we start from the zero energy solutions

u+
0,ν(x) = x

1
2 +ν

(1 + O(x−α
)),

u+
1,ν(x) = x

1
2 −ν

(1 + O(x−1
)) as x →∞,

which form a fundamental system of ℋν f = 0 [and with α ∶= min(1, 2ν)]. Next, one perturbs these solutions with respect to the energy λ.
More specifically, one shows via Volterra iteration that there is a basis {u+

0,ν(x, λ), u+
1,ν(x, λ)} of solutions to the equation ℋν f = λ2 f , which

satisfy (at least for ν > 1)
u+

j,ν(x, λ) = u+
j,ν(x)(1 + O(λ2x2

)) (31)

on the interval 1 ≤ x ≪ λ−1 (we are only considering small λ for now). Clearly, one has

f+,ν(x, λ) = a+,ν(λ)u+
0,ν(x, λ) + b+,ν(λ)u+

1,ν(x, λ),

where the coefficients are given by
a±,ν(λ) = −W( f±,ν(⋅, λ), u±

1,ν(⋅, λ)),

b±,ν(λ) = W( f±,ν(⋅, λ), u±
0,ν(⋅, λ)).

(32)

The aforementioned matching means nothing else than computing these Wronskians. The point where they are computed is chosen to be
λ−1+ε with ε > 0 small and fixed. On one hand, this choice guarantees that the errors in (31) are O(λ2ε

), which is admissible. On the other
hand, it requires that we obtain a sufficiently accurate description of the Jost solutions on [λ−1+ε, ∞). The latter is accomplished by comparing
the outgoing Jost solution of the operatorℋν to that ofℋ0,ν given by

ℋ0,ν ∶= −∂2
x + (ν2

−
1
4
)x−2.

The outgoing Jost solution of this operator on ξ ≥ 1 equals
√π

2
ei(2ν+1)π/4

√
ξλH(+)

ν (ξλ),

which is asymptotic to eiξλ as ξ →∞. Here, H(+)
ν (z) = Jν(z) + iYν(z) is the usual Hankel function. Carrying out the perturbative analysis

with ℋ0,ν as giving the leading order allows one to approximate f+(ξ, λ) with small errors on the interval (λ−1+ε, ∞). With this asymptotic
representation in hand, one now has the following result (see Proposition 3.12 in Ref. 75):

Proposition III.3. Let βν ∶=
√ π

2 ei(2ν+1)π/4. With nonzero real constants α+
0,ν,β

+
0,ν and some sufficiently small ε > 0,

a+,ν(λ) = λ
1
2 +νβν(α+

0,ν + O(λε) + iO(λ(1−2ν)ε
)),

b+,ν(λ) = iλ
1
2 −νβν(β+

0,ν + O(λε) + iO(λ(1+2ν)ε
))

(33)

as λ→ 0+ with real-valued O(⋅) that behave like symbols under differentiation in λ. The asymptotics as λ→ 0− follows from that as λ→ 0+ via
the relations a+,ν(−λ) = a+,ν(λ), b+,ν(−λ) = b+,ν(λ).

Analogous expressions hold for a−,ν and b−,ν, which, of course, refers to the solutions on x ≤ −1. From these expansions, one then
concludes the following statement for the Wronskian between f+(⋅, λ) and f−(⋅, λ):

Wν(λ) = ieiνπ λ1−2ν
(W0,ν + OC(λε)) as λ→ 0 +.

Here, W0,ν is a real constant and OC(λε) is complex valued and of symbol type (meaning that each derivative loses one power). Most impor-
tantly, W0,ν = 0 if and only if zero is a resonance ofℋν. For the case of surfaces of revolutions, it is easy to exclude zero energy resonances of
the associated Schrödinger operator, at least for ℓ ≥ 1. In fact, withℋℓ denoting the operator obtained for fixed angular momentum ℓ ≥ 1,

ℋℓ(r
1
2 e±ℓy

) = 0, y(ξ) = ∫
ξ

0

dη
r(η)

.

Because y is odd, the smaller branch at ξ = ∞ has to be the larger one at ξ = −∞, which places us in the nonresonant case. It is perhaps worth
mentioning that the potentials arising from surfaces of revolution do not need to be non-negative (for positive potentials, it is evident that
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zero is not a resonance). In fact, if ℳ has very large curvature, then the potential can be negative. We remark that for ℓ = 0, it is proved in
Ref. 74 that

W0(λ) = 2λ(1 + ic3 + i
2
π

log λ) + O(λ
3
2 −ε

) as λ→ 0 +.

On a technical level, the logarithmic term in λ makes the ℓ = 0 case somewhat harder to analyze than the cases ℓ ≥ 1. Not surprisingly, in
proving dispersive estimates for −ΔR2 + V , one encounters similar logarithmic issues (see Ref. 73).

In conclusion, we would like to stress that the estimates in Ref. 75 produce constants that grow very rapidly in ℓ, somewhat faster than
eℓ

2
, to be precise. This is due to a number of sources. First, for the small energy analysis we just described to work, one needs to choose the

energy cutoff λ0 = λ0(ℓ) to depend on ℓ, which already introduces large constants into the proof. Second, for energies λ > λ0(ℓ) > 0, one uses
a very crude method, namely, term-wise estimation of a Born series that cannot distinguish the sign of the potential. Even replacing the crude
Born series by something more elaborate would not make much of a difference. Indeed, by the preceding discussion, the two manifolds in
Fig. 2 behave very differently as far as the dependence of the constant on ℓ is concerned.

Since the small energy matching method outlined above cannot easily distinguish between these manifolds, we shall now discuss an
approach that is capable of differentiating between them, albeit only for large ℓ. For this reason, the finite ℓ analysis of Refs. 74 and 75 is
needed in the Proof of Theorem III.2.

B. Summation over all angular momenta
We shall now prove Theorem III.2. We will follow Ref. 30 and sketch how to obtain (23) and (24), with the case of the wave equation

being similar. With Vℓ as in (27), we claim the following bound:

∫

∞

−∞
⟨ξ⟩−2

∣eitℋℓu(ξ)∣2 dξ ≲ ⟨t⟩−2ℓ4
∫

∞

−∞
⟨ξ⟩2

∣u(ξ)∣2 dξ. (34)

The proof of (34) will be discussed below. Taking it for granted, suppose that f is a Schwartz function onℳ and write

f (ξ, θ) =
∞
∑

ℓ=−∞
eiℓθ f ℓ(ξ) =

∞
∑

ℓ=−∞
eiℓθr− 1

2 (ξ)uℓ(ξ).

Then,

eitΔℳ f =
∞
∑

ℓ=−∞
eitΔℳ [eiℓθr− 1

2 (ξ)uℓ(ξ)]

=
∞
∑

ℓ=−∞
eiℓθr− 1

2 (ξ)[eitℋℓuℓ](ξ),

whence

∥w1eitΔℳ f ∥2
L2(ℳ )

=
1

2π∫
∞

−∞
∫

2π

0
w2

1(ξ)∣
∞
∑

ℓ=−∞
eiℓθr− 1

2 (ξ)[eitℋℓuℓ](ξ)∣
2

r(ξ) dξdθ

≲
∞
∑

ℓ=−∞
∫

∞

−∞
⟨ξ⟩−2

∣eitℋℓuℓ(ξ)∣2 dξ

≲
∞
∑

ℓ=−∞
⟨t⟩−2

⟨ℓ⟩4
∫

∞

−∞
⟨ξ⟩2

∣ f ℓ(ξ)∣2r(ξ) dξ

≲ ⟨t⟩−2
∞
∑

ℓ=−∞
∫

∞

−∞
⟨ℓ⟩4w−1(ξ)2

∣∫

2π

0
f (ξ, θ)e−iℓθ dθ∣2r(ξ) dξ

≲ ⟨t⟩−2
∥w−1(1 − ∂2

θ) f ∥2
L2(ℳ ),

which is (23). To prove (34), it is clear from Theorem III.1 that it suffices to consider ℓ large, say, ∣ℓ∣ ≥ ℓ0 ≫ 1. Fixing such an ℓ, one switches
to a semi-classical representation via the identity

eitℋℓ = ei t
h̵2ℋ (h̵), ℋ (h̵) ∶= −h̵2∂2

ξ + h̵2Vℓ,

where Vℓ is as in (27) and with h ∶= ℓ−1. By construction, V(ξ, h) ∶= h2Vℓ(ξ) has the property that its maximal height is now essentially fixed
at Vmax(h) = Vmax(0) + O(h2

) with Vmax(0) ≃ 1. The essential property of the potential is that it has a unique nondegenerate maximum, i.e.,
it looks like the one on top in Fig. 4.
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For the remainder of this section, h will be small. From the spectral representation, one has

ei t
h̵2ℋ (h̵)

=
2
π

h̵−2
∫

∞

0
ei t

h̵2 E2

Im[
f+(x, E; h̵) f−(x′, E; h̵)

W( f+(⋅, E; h̵), f−(⋅, E; h̵))
] E dE, (35)

with f± being the outgoing Jost solutions for the semi-classical operatorℋ (h̵), which means that

(−h̵2∂2
x + V(x; h̵)) f±(x, E; h̵) = E2 f±(x, E; h̵)

f±(x, E; h̵) ∼ e± i
h̵ Ex x → ±∞.

With ε > 0 fixed and small (independently of h), one now considers energies 0 < E < ε (low), ε < E < 100 (intermediate), and E > 100 (large)
separately. The middle interval is further split into energies ε < E < Vmax(0) − ε, Vmax(0) − ε < E < 100, respectively. The latter interval is to
some extent the most important of all as it contains the nondegenerate maximum of the potential V(h). We shall see that it is precisely this
maximum that determines the number of derivatives lost in the process of summing over ℓ.

The easiest region is E > 100. Indeed, for these energies, the potential is essentially negligible and a classical WKB approximation reduces
matters to the free case. This means (again heuristically) that (23) is a consequence of the L1

→ L∞
(R2

) bound on eitΔR2 , which explains the
weights w1+ε.

1. WKB in the doubly asymptotic limit h → 0 and E → 0
The low-lying energies 0 < E < ε are also treated by means of WKB, but there one faces the difficulty that the WKB approximation

of the generalized eigenfunctions needs to be accurate in the entire range 0 < E < ε and 0 < h < h0. There exists an extensive literature
on the validity of the WKB approximation, provided the energy stays away from zero, i.e., E > E0 > 0 uniformly in h (see, for example,
Refs. 67 or 69. However, the issue of controlling all errors in the WKB method uniformly in small h and small E does not seem to have been
considered before. For the problem of sending E → 0, it is, of course, most relevant that the potential has the (critical) inverse square decay,
as was already apparent in the discussion of the matching method in Sec. III A.

This lead Costin, Schlag, Staubach, and Tanveer16 to carry out a systematic analysis of this two-parameter WKB problem for inverse
square potentials. More specifically, they considered the scattering matrix

Σ(E; h̵) = [
t(E; h̵) r−(E; h̵)

r+(E; h̵) t(E; h̵) ] = [
Σ11(E; h̵) Σ12(E; h̵)
Σ21(E; h̵) Σ22(E; h̵)]

for the semiclassical operator

P(x, h̵D) ∶= −h̵2 d2

dx2 + V(x)

with inverse square V (asymptotically, as ∣x∣ → ∞) and obtained the following result:

Theorem III.4. Let V ∈ C∞
(R) with V > 0 and V(x) = μ2

±x−2
+ O(x−3

) as x → ±∞, where μ+ ≠ 0, μ− ≠ 0, and ∂k
x O(x−3

) = O(x−3−k
)

for all k ≥ 0. Denote

V0(x; h̵) ∶= V(x) +
h̵2

4
⟨x⟩−2, (36)

and let E0 > 0 be such that for all 0 < E < E0 and 0 < h < 1, V0(x; h) = E has a unique pair of solutions, which we denote by x2(E; h) < 0
< x1(E; h). Define

S(E; h̵) ∶= ∫

x1(E;h̵)

x2(E;h̵)

√
V0(y; h̵) − E dy,

T+(E; h̵) ∶= x1(E; h̵)
√

E − ∫

∞

x1(E;h̵)
(
√

E − V0(y; h̵) −
√

E) dy,

T−(E; h̵) ∶= −x2(E; h̵)
√

E − ∫

x2(E;h̵)

−∞
(
√

E − V0(y; h̵) −
√

E) dy,

(37)

as well as T(E; h) ∶= T+(E; h) + T−(E; h). Then, for all 0 < h < h0, where h0 = h0(V) > 0 is small and 0 < E < E0,

Σ11(E; h̵) = e− 1
h̵ (S(E;h̵)+iT(E;h̵))

(1 + h̵ σ11(E; h̵)),

Σ12(E; h̵) = −ie− 2i
h̵ T+(E;h̵)

(1 + h̵ σ12(E; h̵))
(38)
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where the correction terms satisfy the bounds

∣∂k
E σ11(E; h̵)∣ + ∣∂k

E σ12(E; h̵)∣ ≤ Ck E−k
∀ k ≥ 0, (39)

with a constant Ck that only depends on k and V. The same conclusion holds if instead of (36) we were to define V0 as V0 ∶= V + h2V1 with
V1 ∈ C∞

(R), V1(x; h̵) = 1
4 ⟨x⟩−2

+ O(x−3
) as x → ±∞ with ∂k

x O(x−3
) = O(x−3−k

) for all k ≥ 0 and uniformly in 0 < h ≪ 1.

Note the correction of the original potential by h̵2

4 ⟨x⟩−2 in (36). Without this correction, the errors σ11, etc., diverge as E → 0. The
proof of this result, of course, requires a careful analysis of the Jost solutions, which is then needed in the analysis of the stationary phase
analysis of (35).

The analysis of the Jost solutions is based on the Liouville–Green transform, which we now recall (see Ref. 67). Given any second order
equation f ′′

(x) = Q(x) f (x) on some interval I and any diffeomorphism w : I → J onto some interval J, define g(w) ∶= (w′
(x))

1
2 f (x), where

w = w(x). Then, by the chain rule, f ′′
= Qf is the same as g′′

(w) = Q̃(w)g(w), where

Q̃(w) ∶=
Q(x)

(w′(x))2 − (w′
(x))− 3

2 ∂2
x(w′

(x))− 1
2

=
Q(x)

(w′(x))2 −
3
4
(w′′

(x))2

(w′(x))4 +
1
2

w′′′
(x)

(w′(x))2 .

To apply this transformation, one chooses w so that
Q(x)

(w′(x))2 = Q0(w), (40)

where Q0 is some normal form. Then, the problem becomes

g′′
(w) = Q0(w)g(w) − V(w)g(w),

V(w) ∶=
3
4
(w′′

(x))2

(w′(x))4 −
1
2

w′′′
(x)

(w′(x))2 ,
(41)

where V is treated as a perturbation. This is only admissible if Q0 is in some suitable sense close to Q. The determination of Q0 is done on a
case by case basis. For example, if Q does not vanish on I, then one can take Q0 = sign(Q), which leads to the classical WKB ansatz, i.e.,

Q− 1
4 (x)e±∫ x

x0

√
Q(y) dy or ∣Q∣

− 1
4 (x)e±i∫ x

x0

√
∣Q∣(y) dy,

depending on whether Q > 0 or Q < 0, respectively. If Q does vanish at x0 ∈ I with Q′
(x0) ≠ 0, then one maps x0 to w = 0 and chooses

Q0(w) = w. In other words, the comparison equation is the Airy equation. The equation for w in that case is w(x)w′
(x)2

= Q(x), which
yields

w(x) = sign(x − x0)∣
3
2∫

x

x0

√
∣Q(y)∣ dy∣

2
3 , (42)

which is known as the Langer transform.67 It is easy to check that w is (locally around x0) smooth (or analytic), provided Q is smooth (or
analytic). It is precisely this Langer transform that is used in Ref. 16, where it is written as follows for x ≥ 0:

ζ = ζ(x, E; h̵)

∶= sign(x − x1(E; h̵))∣
3
2∫

x

x1(E;h̵)

√
∣V0(x; h̵) − E∣ dη∣

2
3 ,

with x1(E; h) > 0 being the unique turning point (for E small). The equation transforms as follows:

Lemma III.5. There exists E0 = E0(V) > 0 so that for all 0 < E < E0, one has the following properties: the equation V0(x; h) − E = 0 has a
unique (simple) solution on x > 0, which we denote by x1 = x1(E; h). With Q0 ∶= V0 − E,

ζ = ζ(x, E; h̵) (43)

∶= sign(x − x1(E; h̵))∣
3
2∫

x

x1(E;h̵)

√
∣Q0(u, E; h̵)∣ du∣

2
3

defines a smooth change of variables x ↦ ζ for all x ≥ 0. Let q ∶= − Q0
ζ . Then, q > 0, dζ

dx = ζ
′
=

√q, and

−h̵2 f′′ + (V − E) f = 0
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transforms into
− h̵2ẅ(ζ) = (ζ + h̵2Ṽ(ζ, E; h̵))w(ζ) (44)

under w =
√
ζ′ f = q

1
4 f . Here, ˙ = d

dζ and

Ṽ ∶=
1
4

q−1
⟨x⟩−2

− q− 1
4

d2q
1
4

dζ2 .

The asymptotic description of the Jost solutions is found by matching the Airy approximations at the turning point w = 0. A fundamental
solution of the transformed equation (i.e., in the ζ variable) to the left of the turning point is described in terms of the Airy function Ai, Bi by
the following result from Ref. 16:

Proposition III.6. Let h0 > 0 be small. A fundamental system of solutions to (44) in the range ζ ≤ 0 is given by

ϕ1(ζ, E, h̵) = Ai(τ)[1 + h̵a1(ζ, E, h̵)],
ϕ2(ζ, E, h̵) = Bi(τ)[1 + h̵a2(ζ, E, h̵)]

with τ ∶= −h̵− 2
3 ζ. Here, a1, a2 are smooth, real-valued, and satisfy the bounds for all k ≥ 0 and j = 1, 2 and with ζ0 ∶= ζ(0, E),

∣∂k
Eaj(ζ, E, h̵)∣ ≲ E−k min[h̵

1
3 ⟨h̵− 2

3 ζ⟩
1
2 , 1] (45)

∣∂k
E∂ζaj(ζ, E, h̵)∣ ≲ E−k

[h̵− 1
3 ⟨h̵− 2

3 ζ⟩− 1
2 χ[−1≤ζ≤0] + ∣ζ∣

1
2 χ[ζ0≤ζ≤−1]]

uniformly in the parameters 0 < h < h0, 0 < E < E0.

Note that from the standard asymptotic behavior of the Airy functions, viz.,

Bi(x) = π− 1
2 x− 1

4 e
2
3 x

3
2
[1 + O(x− 3

2 )] as x →∞,

Bi(x) ≥ Bi(0) > 0 ∀ x ≥ 0,

Ai(x) =
1
2
π− 1

2 x− 1
4 e− 2

3 x
3
2
[1 + O(x− 3

2 )] as x →∞,

Ai(x) > 0 ∀ x ≥ 0,

the action integral appears naturally in this context [cf. (43)]. To the right of the turning point, one has the following oscillatory basis.

Proposition III.7. Let h0 > 0 be small. In the range ζ ≥ 0, a basis of solutions to (44) is given by

ψ1(ζ, E; h̵) = (Ai(τ) + iBi(τ))[1 + h̵b1(ζ, E; h̵)],
ψ2(ζ, E; h̵) = (Ai(τ) − iBi(τ))[1 + h̵b2(ζ, E; h̵)]

with τ ∶= −h̵− 2
3 ζ and where b1, b2 are smooth, complex-valued, and satisfy the bounds for all k ≥ 0 and j = 1, 2,

∣∂k
E bj(ζ, E; h̵)∣ ≤ Ck E−k

⟨ζ⟩− 3
2 ,

∣∂ζ∂
k
Ebj(ζ, E)∣ ≤ Ck E−kh̵− 1

3 ⟨h̵− 2
3 ζ⟩− 1

2 ⟨ζ⟩−2
(46)

uniformly in the parameters 0 < h < h0, 0 < E < E0, ζ ≥ 0.

We remark that the Langer transform is not the only possibility here. In fact, in Ref. 17, an alternative approach is used, which reduces
the potential to a Bessel normal form. This is again done by means of a suitable stretching, i.e., a Liouville–Green transform.

2. Intermediate energies and the top of the barrier
Intermediate energies, including the maximum energy of the potential, can be treated by means of an approximation of the generalized

eigenfunctions. This was carried out in detail by Costin, Park, and the author by means of a Liouville–Green transformation that reduces the
potential near the maximum to a purely quadratic normal form (see Ref. 18, Proposition 2). In this way, one arrives at a perturbed Weber
equation instead of the Airy equation as above.

However, Ref. 30 follows a different route: a Mourre estimate followed by a semi-classical version of the propagation bounds in Ref. 46.
Mourre63 introduced the powerful idea that the quantum analog, i.e.,

χI(H)i[H, A]χI(H) ≥ θχI(H) > 0,
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where H = −Δ + V , A = px + xp, p = −i∇, and χI(H) localizes H to some compact interval I of positive energies, entails a limiting absorption
bound on the resolvent localized to I (which is some form of scattering). Hunziker, Sigal, and Soffer46 developed a time-dependent and
abstract approach to Mourre theory by means of propagation estimates in the spirit of Sigal and Soffer.76 The main result of Ref. 46 is the
following theorem:

Theorem III.8. Let A, H be self adjoint operators on some Hilbert space, and assume the Mourre estimate

EI i[H, A]EI ≥ θEI , (47)

where θ > 0, I ⊂ R is some compact interval, and EI is the spectral projector onto I relative to H. Assume, furthermore, that all iterated
commutators of f (H) with A are bounded where f ∈ C∞

0 (R). Let χ± be the indicator functions of R±, respectively. Then, for any m ≥ 1,

∥χ−
(A − a − θ′t)eiHtg(H)χ+

(A − a)∥ ≤ C(m, θ, θ′
) t−m

for any g ∈ C∞
0 (I) and any 0 < θ′

< θ uniformly in a ∈ R.

As simple consequence of this result is the following propagation estimate, which is clearly most important in the context of
Theorem III.2:

∥⟨A⟩
−αeiHtg(H)⟨A⟩

−α
∥ ≤ C(α) ⟨t⟩−α (48)

for any α > 0. In application, one typically takes A = 1
2(px + xp), the generator of dilations, or some variant thereof. Taking α = 1 shows that

one needs at least w1 in the Schrödinger case of Theorem III.2.
One needs to resolve the following two issues before applying this theory to Theorem III.2:

● We require a semi-classical version of Ref. 46.
● The top of the barrier energy is trapping in the classical sense.

While the first issue is a routine variant of Ref. 46, the second is not. In the nontrapping case, Graf43 and Hislop and Nakamura45 showed
that the classical nontrapping condition {a, h} > α > 0 on the entire energy level {h = E0 > 0} implies the Mourre estimate (47) for I some
small interval around E0 (in the semi-classical case with h sufficiently small). In the case of surfaces of revolution as in Theorem III.2, this fact,
together with Theorem III.8, implies that one can handle energies in the range ε < E < Vmax(0) − ε since they verify a classical nontrapping
condition. On the other hand, for energies near Vmax(0), this fails since the top energy is classically trapping. Nevertheless, the Heisenberg
uncertainty principle (or the semiclassical harmonic oscillator) guarantees (47).

Indeed, with V(x) = 1 − 1
2 ⟨Qx, x⟩ + O(∣x∣3) with Q positive definite,

{h, a} = ξ2
− x ⋅ ∇V = ξ2

+ ⟨Qx, x⟩ + O(∣x∣3) ≥ θ(ξ2
+ x2

)

for small x. However, p2
+ q2

≥ c > 0 by the uncertainty principle, which indicates that one should expect that (47) continues to hold at a
non-degenerate maximum. For a rigorous rendition of this argument, see Refs. 11, 30, and 66.

Generally speaking, the problem of obtaining a representation of the resolvent and the spectral measure and of proving a limiting absorp-
tion principle for energies near a potential barrier has received much attention (see the monograph by Bony et al.9 and the earlier literature
cited there, such as the classical work by Helffer and Sjöstrand in the 1980s).

This concludes our informal sketch of the proof of (23). As for (24), one proceeds analogously by dividing energies into three
regions, low, intermediate, and high. In the low and high cases, one obtains pointwise bounds without weights from the WKB arguments
outlined above, followed by oscillatory integral estimates as in Ref. 75. For the intermediate regime, one uses the L2 bound (from the
Mourre–Hunziker–Sigal–Soffer estimates), which requires a weight w1 followed by the Sobolev embedding theorem. Note that the latter
costs one power of ℓ, whereas summation over ℓ requires another weight of the form ℓ1+ε, which explains the loss of (1 − ∂2

θ)
1+ε on the

right-hand side of (24) as compared to (23).
As a final remark, we would like to emphasize that the sketch of Proof of Theorem III.2, which we just concluded, is an adaptation of the

argument, which was developed for the Schwarzschild case in Ref. 30.

C. The Schwarzschild case
The results on surfaces of revolution are relevant to another problem, namely, the decay of linear waves on a Schwarzschild black

hole background. To be more specific, choose coordinates such that the exterior region of the black hole can be written as (t, r, (θ,ϕ)) ∈ R
× (2M, ∞) × S2 with the metric

g = −F(r)dt2
+ F(r)−1dr2

+ r2
(dθ2

+ sin2 θdϕ2
),
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where F(r) = 1 − 2M
r and, as usual, M > 0 denotes the mass. We now introduce the well-known Regge–Wheeler tortoise coordinate r∗,

which (up to an additive constant) is defined by the relation

F =
dr

dr∗
.

In this new coordinate system, the outer region is described by (t, r∗, (θ,ϕ)) ∈ R × R × S2,

g = −F(r)dt2
+ F(r)dr2

∗ + r2
(dθ2

+ sin2 θdϕ2
), (49)

with F as above and r is now interpreted as a function of r∗. Explicitly, r∗ is computed as

r∗ = r + 2M log(
r

2M
− 1).

Generally, the Laplace–Beltrami operator on a manifold with metric g is given by

◻g =
1

√
∣det(gμν)∣

∂μ(
√

∣det(gμν)∣gμν∂ν),

and thus, for the metric g in (49), we obtain

◻g = F−1
(−∂2

t +
1
r2 ∂r∗(r2∂r∗)) +

1
r2ΔS2 .

By setting ψ(t, r∗, θ,ϕ) = r(r∗)ψ̃(t, r∗, θ,ϕ) and writing x = r∗, the wave equation ◻g ψ̃ = 0 is equivalent to

− ∂2
t ψ + ∂2

xψ −
F
r

dF
dr
ψ +

F
r2ΔS2ψ = 0. (50)

The mathematically rigorous analysis of this equation goes back to Wald79 and Kay,53 who established uniform boundedness of solutions.
In the spirit of the positive commutator methods outlined above, Dafermos and Rodniansk21 found a robust approach based on carefully
chosen vector fields and multipliers. See the work of Luk60,61 that is in a similar spirit. As already noted, Blue and Soffer8 proved local decay
estimates using Morawetz estimates. Dafermos and Rodnianski20 proved Price’s t−3 decay law for a nonlinear problem but assuming spherical
symmetry.

The purpose of this section is to discuss recent work of Donninger and the authors on pointwise decay for solutions to Eq. (50). Different
types of decay estimates have been proved before. Our results differ from the above in certain respects: the methods we use are based on
constructing the Green’s function and deriving the needed estimates on it. Previous works in this direction include mainly the series of papers
by Finster, Kamran, Smoller, and Yau (see, for example, Ref. 39, where the first pointwise decay result for Kerr black holes was proved).

As in the case for surfaces of revolution, we freeze the angular momentum ℓ or, in other words, we project onto a spherical harmonic.
More precisely, let Yℓ,m be a spherical harmonic [that is, an eigenfunction of the Laplacian on S2 with eigenvalue −ℓ(ℓ + 1)], and insert the
ansatz ψ(t, x, θ,ϕ) = ψℓ,m(t, x)Yℓ,m(θ,ϕ) in Eq. (50). This yields the Regge–Wheeler equation

∂2
t ψℓ,m − ∂2

xψℓ,m + Vℓ,σ(x)ψℓ,m = 0

with σ = 1, where

Vℓ,σ(x) = (1 −
2M
r(x)

)(
ℓ(ℓ + 1)

r2(x)
+

2Mσ
r3(x)

)

is known as the Regge–Wheeler potential. The other physically relevant values of the parameter σ are σ = −3, 0. For more background, we refer
the reader to the introduction of Refs. 20 or 29.

We immediately note some crucial features of Vℓ,σ : it decays exponentially as x → −∞, it decays according to an inverse square law as
x → +∞, provided ℓ > 0, and like an inverse cube if ℓ = 0. Moreover, it has a unique nondegenerate maximum that is located at the photon
sphere. It consists of closed light rays and replaces the unique periodic geodesic, which we encountered in Theorem III.2.

Hence, we expect that at least some of the machinery that we described above in the surface case applies here as well. However, the
Regge–Wheeller potential is considerably more difficult to deal with.
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The main result of Ref. 29 is the following pointwise decay, which captures the so-called Price law for fixed angular momentum. Strictly
speaking, it is still off by one power of t from the sharpest form of Price’s law, which is t−2ℓ−3, whereas the following result proves t−2ℓ−2 (we
shall comment on that issue below). Note how the accelerated decay for higher values of ℓ mirrors what we saw for the surfaces of revolution
in Theorem III.1. Hintz44 recently closed the gap of the missing power of t and thus finished the proof of Price’s law.

Theorem III.9. Let (ℓ, σ) ∉ {(0, 0), (0, −3), (1, −3)}, α ∈ N and 1 ≤ α ≤ 2ℓ + 3. Then, the solution operators for the Regge–Wheeler
equation satisfy the estimates

∥wα cos(t
√
ℋℓ,σ) f ∥L∞(R) ≤ Cℓ,α⟨t⟩−α⎛

⎝
∥

f′

wα
∥

L1(R)
+ ∥

f
wα

∥
L1(R)

⎞

⎠

and

∥wα
sin(t

√
ℋℓ,σ)

√
ℋℓ,σ

f ∥
L∞(R)

≤ Cℓ,α⟨t⟩−α+1
∥

f
wα

∥
L1(R)

for all t ≥ 0, where wα(x) ∶= ⟨x⟩−α.

The values of (σ, ℓ) that we exclude here are precisely those where the Regge–Wheeler potential gives rise to zero energy resonances.
Physically speaking, they correspond to a gauge invariance, such as changing the mass, and are therefore irrelevant.

The Proof of Theorem III.9 is based on representing the solution as an oscillatory integral in the energy variable λ; schematically, one
may write

ψ(t, x) = ∫ U(t, λ)Im[Gℓ,σ(x, x′, λ)] f (x′
) dx′dλ,

where U(t, λ) is a combination of cos(tλ) and sin(tλ) terms and Gℓ,σ(x, x′, λ) is the kernel (Green’s function) of the resolvent of the operator
ℋℓ,σ . In analogy with Theorem III.1, Gℓ,σ(x, x′, λ) is constructed in terms of the Jost solutions, and we obtain these functions in various
domains of the (x, λ) plane by perturbative arguments: for ∣xλ∣ small, we perturb in λ around λ = 0, whereas for ∣xλ∣ large, we perturb off
of Hankel functions. This is done in such a way that there remains a small window where the two different perturbative solutions can be
glued together. One of the main technical difficulties of the proof lies with the fact that we need good estimates for arbitrary derivatives
of the perturbative solutions. This is necessary in order to control the oscillatory integrals. The most important contributions come from
λ ∼ 0, and we therefore need to derive the exact asymptotics of the Green’s function and its derivatives in the limit λ→ 0. For instance,
we prove that

Im [Gℓ,σ(0, 0, λ)] = λPℓ(λ2
) + O(λ2ℓ+1

)

as λ→ 0+, where Pℓ is a polynomial of degree ℓ − 1 (we set P0 ≡ 0) and the O-term satisfies O(k)
(λ2ℓ+1

) = O(λ2ℓ+1−k
) for all k ∈ N0.

As already noted before, for ℓ = 0, the Regge–Wheeler potential decays like an inverse cube as x →∞. This case is covered by the
following result of Donninger and the author:28

Theorem III.10. Let V ∈ C[α]+1
(R) with V(x) = ∣x∣−α[c± + O(∣x∣−β)] as x → ±∞, where 2 < α ≤ 4, β = 1

2(α − 2)2, c± ∈ R, and
∣O(k)

(∣x∣−β)∣ ≲ ∣x∣−β−k for k = 1, 2, . . . , [α] + 1. Denote by A the self-adjoint Schrödinger operator Af ∶= − f ′′
+ Vf in L2

(R), and assume that
A has no bound states and no resonance at zero energy. Then, the following decay bounds hold:

∥⟨⋅⟩
−α−1 cos(t

√
A) f ∥L∞(R) ≲ ⟨t⟩−α

(∥⟨⋅⟩
α+1 f′∥L1(R) + ∥⟨⋅⟩

α+1 f ∥L1(R))

and

∥⟨⋅⟩
−α−1 sin(t

√
A)

√
A

f ∥
L∞(R)

≲ ⟨t⟩−α
∥⟨⋅⟩

α+1 f ∥L1(R)

for all t ≥ 0.
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In particular, this gives t−3 for α = 3, which is the sharp form of Price’s law for ℓ = 0. It is important to realize that the decay of the waves
in Theorems III.9 and III.10 is really a manifestation of transport rather than of dispersion. Indeed, D’Alembert’s formula shows that any
solution of

∂ttu − ∂xxu = 0, u(0) = f , ∂tu(0) = g

with Schwartz data (say) and ∫ g(x)dx = 0 satisfies
∥⟨x⟩−αu(t)∥∞ ≤ C(α) t−α

for any α ≥ 0. This vanishing mean condition can be attributed to the zero energy resonance for the free Laplacian in one dimension. Needless
to say, the one-dimensional problem does not exhibit any sort of dispersion but is governed by linear transport that leads to this arbitrary local
decay of the waves. It is very interesting to note (but perhaps not immediately clear) that the sharp Huyghens principle in three dimensions
is still visible in the local decay law of Theorem III.9. In fact, we claim that the sharp t−2ℓ−3 Price law (at least for ℓ ≥ 1) is a result of the
correction term of the form log x

x3 in the Regge–Wheeler potential rather than the leading inverse square decay as x → +∞.
To clarify this point, we now present a simple model case from Ref. 17. With a > 0,

ℋ ∶= −∂2
x + V , V(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if x ≤ −1
a2

− 1
4

x2 if x ≥ 1.

Moreover, V ∈ C∞
(R) is such thatℋ has no zero energy resonance, which means that there does not exist a globally subordinate (or recessive)

solution ℋ f = 0 other than f ≡ 0. Recall that this refers to solutions of the slowest allowed growth at both ends, which means here that
f (x) = O(1) as x → −∞ and f (x) = O(x

1
2 −a

) as x → +∞. Then, one has the following local decay estimates for the wave equation with
potential V :

Proposition III.11. Under the above assumptions onℋ ,

∥⟨x⟩−σ sin(t
√
ℋ )

√
ℋ

P(0,∞)(ℋ )g∥∞ ≤ C⟨t⟩−2a−1
∥⟨x⟩σg∥1,

∥⟨x⟩−σ cos(t
√
ℋ )P(0,∞)(ℋ ) f ∥∞ ≤ C⟨t⟩−2a−2

(∥⟨x⟩σ f ∥1 + ∥⟨x⟩σ f′∥1),

where σ > 0 is sufficiently large depending on a. These decay rates are optimal, provided a ∉ Z+
0 + 1

2 . In the latter case, one obtains decay t−N for
any N (provided σ is taken sufficiently large depending on N).

Proof. We prove the first bound, the second one being very similar. Thus, let ψ(t, x) be a solution of the problem

∂2
t ψ − ∂2

xψ + Vψ = 0, ψ(0, x) = 0, ∂tψ(0, x) = g,

where g is Schwartz, say, and set for Re(p) > 0,

ψ̂(p, x) ∶= ∫

∞

0
e−tpψ(t, x) dt.

Then,
(ℋ + p2

)ψ̂(p, ⋅) = g,

which has a unique bounded solution

ψ̂(p, x) = ∫
∞

−∞
G(p; x, y) g(y) dy

= ∫

x

−∞

f+(x, p) f−(y, p)
W(p)

g(y) dy

− ∫

∞

x

f+(y, p) f−(x, p)
W(p)

g(y) dy

with constant Wronskian W(p) ∶= f+(x, p) f′−(x, p) − f′+(x, p) f−(x, p). Here, f±(x, p) are the Jost solutions

(ℋ + p2
) f±(⋅, p) = 0, f±(x, p) ∼ e∓xp as x → ±∞.
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The goal is now to obtain the expansion of f±(x, p) in small p, as this then yields the large time asymptotics of, with arbitrary p0 > 0,

ψ(t, x) =
1

2πi∫
∞

−∞
∫

p0+i∞

p0−i∞
etp G(p; x, y) dp g(y) dy (51)

via contour deformation and Watson’s lemma. By the choice of potential V ,

f−(x, p) = epx for x ≤ −1,

f+(x, p) =
πi
2

eaπi/2H(1)
a (ipx)(

2px
π

)

1
2

for x ≥ 1.

One can continue f−(x, p) to the right of x = −1, which yields an entire function in p for each fixed x. The nonresonance condition for p = 0
means that f−(⋅, 0) and x

1
2 −a are linearly independent at x = 1. Since H(1)

a = Ja + iYa and, up to constant factors,

Ja(u) ∼ ua
(1 + O(u2

)), Ya(u) ∼ u−a
(1 + O(u2

))

as u→ 0 with analytic O(u2
) (at least provided a is not an integer), we conclude that

W(p) = c(V) p
1
2 −a

[1 + O(p2
) + c̃(V) p2a

(1 + O(p2
))] as p→ 0,

with O(p2
) analytic in a neighborhood of p = 0 and with c(V) ≠ 0. This is obtained by computing W(p) at x = 1, say, and by noting that

the most singular contribution to W(p) around p = 0 is c(V) p
1
2 −a. By inspection, c(V) = 0 is the same as a zero energy resonance, which is

excluded. If a is a positive integer, then as p→ 0,

W(p) = c(V) p
1
2 −a

[1 + O(p2
) + c̃(V) p2a log(p)(1 + O(p2

))].

For simplicity, let us first freeze x, y, say, x = y = 1. Then, one concludes from the preceding that

G(p; 1, 1) = C(V) p2a
[1 + O(p2

) + c̃(V) p2a
(1 + O(p2

))] (52)

for small p ∈ C/(−∞, 0] and analytic O(p2
) around p = 0, whereas for the case of a ∈ Z,

G(p; 1, 1) = C(V) p2a log(p)[1 + O(p2
)

+ c̃(V) p2a log(p)(1 + O(p2
))].

The stated decay law now follows via Watson’s lemma in a standard fashion. Note the special role of integer but odd 2a (which is the excep-
tional case in the statement of the proposition): in that case, (52) is analytic in small p, whence one can push the contour in (51) through p = 0,
leading to exponential decay (at least as far as the contribution of small p is concerned).

We now discuss the Watson lemma in more detail. First, we move the contour in (51) onto the imaginary axis,

ψ(t, 1) =
1

2πi∫
i∞

−i∞
etp G(p; 1, 1) dp.

The contribution due to 1 − χ(p) is shown via integration by parts to decay faster than any power of t [use that G(iE; x, y) = O(E−1
) for large

E, uniformly in x, y]. On the other hand, for the contribution of χ, we retain only finitely many terms from G(p; 1, 1) with a remainder that is
smooth enough around p = 0 so as to yield the desired decay again by integration by parts. Finally, the first remaining term is of the form [up
to a constant factor C(V)]

∫

iε

−iε
etp p2aχ(p) dp.

We also have a log p factor if a ∈ Z. One now extends this to

∫
γ
etp p2a dp, (53)
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where γ is a curve that contains [−iε, iε] and is asymptotic to [0, eiθ
∞] and [−eiθ

∞, 0], respectively, and the ends. Note that the
integrals we inserted here decrease like t−N for any N by integration by parts. By Cauchy’s theorem, this is the same as

2 sin(2aπ)∫
∞

0
e−tp p2a dp = 2 sin(2aπ)t−2a−1Γ(2a + 1),

which is the decay rate stated in the proposition. Note that if a = ℓ + 1
2 , then this term vanishes, leading to the exceptional behavior stated

above. On the other hand, if a ∈ Z, then this contribution does not vanish due to the log(p) factor. Finally, we need to remove the restriction
x = y = 1. However, we have set up our argument in such a way that this modification is easy. First, the contribution of ∣p∣ > ε is again shown
to decay at an arbitrary rate via integration by parts. Now, this procedure brings down as many powers of x, y as given by the desired power
of t−1. Next, the contribution of the finitely many terms involving p2a, etc., is similar to before, and each one of these terms comes with a
corresponding weight in x and y. Finally, the remainder in G(p; x, y) after subtracting that initial segment is again sufficiently smooth in p,
and therefore, integration by parts yields the desired decay leading to another instance of requiring large σ. ◻

The significance of this proposition lies with proximity of V to the Regge–Wheeler potential. Indeed, we replaced the exponential tails
on the left by zero and retained the inverse square tails on the right (ignoring the higher-order corrections). In the case of the Regge–Wheeler
potential, one has a2

− 1
4 = ℓ(ℓ + 1), which implies that a = ℓ + 1

2 , which is the exceptional case of Proposition III.11. Formally speaking,
2a + 1 = 2ℓ + 2 corresponds exactly to the decay rate of Theorem III.9, whereas the Price law t−2ℓ−3 is therefore seen to be a result of the
log x

x3 correction to the far field in Vℓ,σ . In fact, it is shown in Ref. 17 that the Price law is due to the nonanalytic term p2a+1 log p instead of
p2a in (53). To accomplish this, one derives an expansion of f+(x, p) in small p, taking into account as many terms from Vℓ,σ as required for
obtaining Price’s law and the next few corrections to it. The route taken in Ref. 17 consists of a reduction of the Regge–Wheeler potential to a
normal form by means of a Liouville–Green transform. The normal form here consists of the potential without any corrections to the leading
ℓ(ℓ+1)

x2 decay. The branching around p = 0 then results from the change of independent variable. Arguing as in the previous proof then yields
the sharp t−2ℓ−3 Price law.

To conclude this survey, let us state the main local decay result from Ref. 30.

Theorem III.12. The following decay estimates hold for solutions ψ of (50) with data ψ[0] = (ψ0,ψ1):

∥⟨x⟩− 9
2 −ψ(t)∥L2 ≲ ⟨t⟩−3

∥⟨x⟩
9
2 +

(/∇
5∂xψ0, /∇5ψ0, /∇4ψ1)∥L2 , (54)

∥⟨x⟩−4ψ(t)∥L∞ ≲ ⟨t⟩−3
∥⟨x⟩4

(/∇
10∂xψ0, /∇10ψ0, /∇9ψ1)∥L1 , (55)

where /∇ stands for the angular derivatives. The notation a± stands for a ± ε where ε > 0 is arbitrary (the choice determines the constants
involved). In addition, instead of (/∇

10, /∇9
) in (55), one needs less, namely, (/∇σ+1, /∇σ

), where σ > 8 is arbitrary. Here, L2
∶= L2

x(R; L2
(S2

)),
L1

∶= L1
x(R; L1

(S2
)), and L∞

∶= L∞
x (R; L∞

(S2
)).

It is obtained by summation in ℓ following the same line of reasoning that lead to Theorem III.2 above. The most significant complication
is due to the asymmetry of the Regge–Wheeler potential: while the inverse square potential for x →∞ is covered by Ref. 16 as before, the
exponentially decaying part on the left requires another WKB analysis. We refer the reader to Ref. 30 for the details.
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