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Abstract—Internet of Vehicles (IoV) are fast becoming the
norm in our society, but such a trend also comes with its
own set of challenges (e.g., new security and privacy risks due
to the expanded attack vectors). In this work, we propose an
edge computing-based secure, efficient, and intelligent multi-tier
heterogeneous IoV network. We first discuss the functionality
and objectives of such an architecture. Then, we demonstrate
how unsupervised deep learning techniques can facilitate the
identification of suspicious vehicle behavior and ensure the
security of such an architecture. The findings from our evalua-
tions demonstrate the learning spatio-temporal information and
parameter efficiency of the proposed stacked LSTM model over
single LSTMs.

Index Terms—Internet of Vehicles (IoV), Vehicular ad-hoc
networks (VANETs), Edge computing, Unsupervised learning,
Anomaly detection, Security

I. INTRODUCTION

In recent years, there have been rapid advances in vehicular
and other communication technologies that can be used to
support self-organizing vehicular ad-hoc networks (VANETs),
which have partly contributed to the transitioning into next
generation architectures such as the Internet of Vehicles (IoV).
VANETs have dynamic network topology, and the communi-
cation in such networks is guided by the principles of mobile
ad-hoc networks (MANETs) and their extensions. In other
words, VANETs use vehicular wireless technology, which
improves ease of communication between different entities
in the system with the supporting VANET infrastructure and
enables state awareness of the system.

Due to the high mobility, heterogeneity, and unstable con-
nectivity of the nodes in VANETs, the network architecture of
MANETs cannot be adopted to VANETs. There are several
differences between MANETs and VANETs, for example
vehicle motion is less random in VANETs compared to node
movement in MANETs. Unlike smaller mobile nodes, vehicles
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may move at very high speeds (e.g., 70 mph or more) and
consequently, the network topology is extremely dynamic /
fluid. Due to the dynamic nature of the setting, connections
are established for short periods making it difficult to secure
the network. Further, the networks may disconnect due to the
variable density of nodes as there can be extremely high and
low node densities during traffic jams and suburban areas
respectively. Given the time and latency-sensitive nature of
VANETs (e.g., decision making required in nanoseconds or
milliseconds), error tolerance is very low.

Edge-based VANETs are capable of minimizing communi-
cation and computation delays [1], and stabilizing the networks
by facilitating load sharing [2], load balancing and localized
decision making [3, 4]. In such a setting, different types of
devices (e.g., multi-edge computing devices and cloudlets) are
deployed at the edge of the network.

Given the open nature of VANETs, the attack surface is
broad [5, 6]. This reinforces the importance of designing
a secure network architecture for IoV. We also remark that
significant volume of data can be generated in these vehicular
networks such as environmental data (e.g., temperature and
humidity), vehicle kinematics (e.g., velocity and driving pat-
terns), and others (e.g., packet drop rate, packet modification
rate, request to send flooding rate, channel status, packet
interval, and packet size). These generated data can be used to
identify malicious / misbehaving nodes in the network. There
have been attempts to leverage artificial intelligence to defend
the vehicular networks from malicious cyberattacks. Due to
the lack of prior knowledge of the potential attack types and
their nature, deep learning algorithms, in particular, provide
the flexibility to adapt to different situations by recognizing
patterns and extracting features constantly.

In this paper, we propose an edge computing-based se-
cure multi-tier heterogeneous VANET architecture for IoV
networks. We also present deep learning models for detec-
tion of malicious vehicle behavior in this model. The major
contributions of this paper are highlighted below:

i. We propose an edge computing-based multi-tier hetero-
geneous vehicular network for IoV services.

ii. A stacked Long Short-Term Memory (LSTM) based unsu-
pervised vehicle behavior detection algorithm for securing
vehicular communication between participating vehicles
and roadside units (RSUs) is presented.

iii. We evaluate and compare the performance of multiple
LSTM models on a popular misbehavior detection dataset.
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The rest of this paper is organized as follows. Sections
II and III discuss the related works in vehicular networks
and the concepts of multi-tier networking and deep learning,
respectively. The proposed architecture is presented in Section
IV, and the evaluation setup and findings are presented in
Section V. Section VI concludes this paper.

II. RELATED WORK

Several machine learning and deep learning-based tech-
niques to address different security challenges in vehicular
networks have been proposed in recent years. We discuss
several of these recent approaches in this section. In light of
the flexibility that the learning algorithms offer as compared to
conventional methods, there have also been attempts to utilize
hybrid models such as the Bayesian Neural Networks, com-
bining deep learning with probabilistic modeling for intelligent
decision making. Another work [7] applies convolutional neu-
ral networks (CNNs) to analyze traffic and to detect anomalies
using a threshold-based method. This idea is further improved
in [8] with the use of reinforcement learning to select the
best thresholds. The traditional centralized control plane makes
VANETs vulnerable to attacks. Another work [9] presents
an artificial neural network paradigm (ANN) called a feed-
forward ANN to detect misbehavior. Authors of [10] propose
a Q-learning and blockchain-based method to distribute the
control plane in VANETs. Blockchain has also been found
to be beneficial in several other vehicular network security
applications, in conjunction with artificial intelligence-based
enabling technologies [11, 12].

Intrusion detection systems (IDSs) mitigate threats by de-
tecting malicious nodes in the network. Collaboration between
nodes to share information regarding malicious nodes in
the network may help increase the accuracy of detection.
A distributed machine learning framework for collaborative
detection in VANETs is discussed in [13]. This method also
preserves the privacy of information shared between nodes.
While such a method requires access to private information,
a raw traffic data-based method is proposed in [14] which
uses a deep learning model to detect malware traffic. Location
privacy is far more challenging in vehicular networks than the
Location-based Services (LBSs) of mobile internet. Therefore,
[15] solves this problem by using a prediction based model
called LocJury and intent-based networking. The system learns
and estimates the intent of location access and penalizes
malicious access to a location. LBSs aim to protect the privacy
of users and to prevent the leakage of vehicle movement
trajectories. But there is a trade-off between privacy and
quality of service. Wang et al. [16] present a reinforcement
learning model to optimize user experience while maintaining
the quality of services. The controller area network installed
in vehicles to enable communication between all electronic
control units is not sufficient for protection against suspicious
network connections. In [17], generative adversarial networks
(GANs) are applied to detect intrusions using normal data.

Another issue with VANETs is their inability to prevent
fraudulent messages from legitimate nodes. Thus verifying
the legitimacy of information of verified nodes becomes

important. A reward-based system for drivers for vehicle-to-
vehicle communication is presented in [18] which verifies the
legitimacy of the messages sent from verified identities. To
ensure the integrity of shared messages, the k-nearest vector
(KNN) and support vector machine (SVM) are also feasible
solutions, and a framework using these tools is suggested
in [19]. The authors prove that it is possible to classify
misbehavior once detected. KNN is also used by [20] where
an IDS model is developed to detect Sybil attacks optimizing
the runtime complexity of KNNs. While most models use
general data such as traffic flow and vehicle density, [21] uses
a machine learning approach with specific data like individual
vehicle type and velocity. Such vehicle classification based
on the radio fingerprint is cost-efficient and is independent
of environmental factors. Rahim et al. [22] present a cost-
effective and scalable method of driver authentication using
data of driving patterns from GPS units in vehicles and hand-
held mobile devices.

There have also been attempts to utilize edge computing in
vehicular networks, as observed in the survey of De Souza et
al. [23], as well as integrating both deep learning and edge
computing in vehicular networks [24, 25]. Although several
machine learning and deep learning approaches for securing
VANETs have been proposed, they primarily focus only on the
algorithmic implementations of the learning models ignoring
the details of the network architecture. Hence, in this paper,
we present a deep learning approach for anomaly detection for
vehicular networks, and develop a secure network architecture
customized for IoVs.

III. BACKGROUND

A. Multi-tier Networking

Multi-tier computing networks generally combine cloud
computing, edge computing, and/or IoT devices to support
intelligent user-centric IoT services [26, 27]. This is be-
cause cloud computing alone will be inadequate to support
large-scale applications of the IoT-drive future, like smart
cities, environmental monitoring, etc, for example due to
limited bandwidth, delay constraints, and connectivity issues.
In other words, multi-tier networking addresses these issues
and provides reliable, flexible, and scalable IoT application
deployment.

The cloud is the top level. It has the highest processing
power and data storage in this hierarchy. It is used for
making global level decisions and data warehousing. These
decisions generally include cross-region data analysis and
tracing hidden problems. Hence it is the best option for
performing computationally intensive tasks in the application.
Edge is closer to the end-user. Thus it offers low latency
communication and timely data processing. This makes it ideal
for handling delay-sensitive tasks [28, 29]. Edge has lesser
processing and data storage capabilities than the cloud. It is
ideal for making more localized decisions. Communication
infrastructure like RSUs and cellular base stations are the
next layer. They connect the edge to the IoT endpoints and
function as data forwarding devices. Finally, the IoT endpoints
like smartphones, PC, etc. allow users to interact with the
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Fig. 1: Single cell of the LSTM variant used in this paper.

application. Each level in this multi-tier network fulfills a
purpose and adds to the functionality of the application. Due
to the different computational capabilities of each level, it is
often called a multi-tier heterogeneous network.

Multi-tier networking when united with artificial intelli-
gence (AI) and big data technologies can be used to build
dynamic IoT applications. Such applications can automatically
adapt to user preferences with large-scale deployment. Hence
providing unparalleled services in various use-cases. In the
back-end, multi-tier architecture combines the computing and
storage resources at different levels through active commu-
nication between all the nodes in the IoT network. Not all
the processes in an application require high resources. The
network thus distributes processes to different levels based
on their requirements. Hence significantly improving user
experience while saving time, cost, and resources. This enables
the network to optimally use the hardware and software ca-
pabilities at different locations and levels, to provide efficient,
intelligent, and prompt services to the users.

B. Deep learning

Deep learning is the paradigm of machine learning which
uses multi-layered (deep) neural networks to capture abstract
non-linear features in the data [30]. Here we discuss Long
Short Term Memory (LSTM) networks and intuition behind
Stacked LSTMs which are used in this work.

1) Long Short Term Memory: Long Short Term Memory
(LSTM) networks are a variant of Recurrent Neural Networks
(RNNs). RNNs are used for sequential inputs where the order
of the input sequence is important. Artificial Neural Network
(ANNs) on the other hand cannot capture sequential informa-
tion. This is because ANNs input the entire sequence at once,
hence it loses any information about the order of the sequence.
RNNs are required to keep the sequential information intact. It
takes input one-by-one, in order. RNNs use ANNs as memory
cells inside them. The learnable parameters of ANNs help
RNNs to store information of data points from all of the
previous steps in a sequence. This allows the output of the
current step to be dependent on not only the current input but
also on all the previous ones in the sequence. Thus RNNs
perform drastically better than ANNs for sequential input.
However, in practice RNNs suffer from vanishing gradient

Fig. 2: Unrolled representation of Stacked LSTM with n layers
and t time steps.

issues while training on long sequences. Hence it is not able to
learn long-term information from the sequence. It is only able
to preserve information from the previous few steps instead
of the entire sequence. LSTMs, proposed by Hochreiter et.
al. [31], have been shown to overcome the vanishing gradient
problem and preserve information for a much longer term.

LSTMs use a gated structure of neural networks with a
cell state and hidden state memory to allow the network to
learn long-term dependencies. The cell state (c) in the LSTM
is designed to preserve information across time steps without
many changes. This acts as long-term memory. LSTM also has
a working memory or a hidden state (h), which is relatively
short-term and is updated more often. ct and ht are the cell
state and the hidden state of the LSTM cell at time-step t
respectively. ht is also the output of this LSTM cell. Several
gates control how the cell state and the hidden state change
with each input – see Eq. 4 to Eq. 6. These gates are sigmoid
neural networks. Their outputs decide which information from
the cell state and hidden state is to be kept for the next time
step and which information is irrelevant and deleted. Thus,
through these gates, the network learns long-term temporal
features in sequential data. The LSTM has the following three
gates:

1) Save gate: Controls what information to add to the cell
state from the current input (see Eq. 1).

2) Forget gate: Controls what information to forget from
the cell state (see Eq. 2).

3) Output gate: Controls what information in the cell state
to focus on (copy to the hidden state; see Eq. 3).

These neural network gates are defined as below:

it = σ(Wi[ht−1, Xt] + bi) (1)

ft = σ(Wf [ht−1, Xt] + bf ) (2)

ot = σ(Wo[ht−1, Xt] + bo) (3)

In the above equations, ft is the forget gate, st is the save
gate, and ot is the output gate. Xt is the cell input. Both W
and b are learnable neural network parameters. The memory
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Fig. 3: Multi-tier network architecture proposed.

states are updated as:

c̃t = ϕ(Wc[ht−1, Xt] + bc) (4)

ct = ft · ct−1 + it · c̃t (5)

ht = ot · ϕ(ct) (6)

In the above equations, · and + are element-wise multiplication
and addition, respectively. c̃t is the intermittent cell state
for time step t and ϕ represents activation function. LSTMs
traditionally use tanh activation function for updating the
states but we empirically found ReLU function to perform
better in the model presented in this paper. The variant of
the LSTM cell used in this paper is shown in Fig. 1. In this
figure, the circular shapes represent neural network layers and
the boxes represent element-wise operations. The gates are
color-coded and labeled.

Stacked LSTMs are multiple layers of LSTM one above
the other, as shown in Fig. 2. In the figure, X is the input
sequence, y is the output sequence, hn,t represents the hidden
state of the cell t of LSTM n. Every LSTM cell in a stacked
LSTM not only transfers its hidden state to the next cell in
the same LSTM but also the cell corresponding to the same
time step in the LSTM layer above it. In an ANN, the hidden
layers recombine the learned features from prior layers and
create new features at higher levels of abstraction. Similarly,
in a stacked LSTM, the additional layers or depth adds levels
of abstraction to input observations over time. Essentially, it
chunks observations over time to extract features of different
time scales. The time-distributed dense layer is used after
the LSTM stack to make the output dimensions equal to the
desired value. The time-distributed dense layer is essentially
the same dense layer applied to all the time steps one by one.

IV. PROPOSED ARCHITECTURE

Here, we propose a multi-tier heterogeneous vehicular net-
work for IoVs. We use autonomous cabs as a case study to
demonstrate how the proposed approach can be used to provide
intelligent, secure, and efficient cab services to end-users. As

shown in Fig. 3, this heterogeneous vehicular network consists
of the following layers:

i. A cloud server at the top.
ii. Regional edge servers.

iii. RSU grid which interacts with the autonomous cabs and
regional edge servers. The cellular base station connects
a user with the regional edge server.

iv. Autonomous Cabs and IoT end-points.
The orange dashed lines in the figure depicts each level in the
network.

The mobile application users interact with the edge servers
using cellular data services and together they form the user
side of the network. The autonomous cabs, RSUs, and edge
servers form the vehicular side of the network. RSUs com-
municate with both the autonomous cabs (V2I) and the edge
server (I2I). The edge server which is common to both the
user-side and the vehicle-side has the software and hardware
capabilities to function as a regional decision-maker. The cloud
server acts as a global decision-maker and is connected to
regional edge servers.

Fig. 4 is a representation of network deployment. The RSUs
communicate with the autonomous cabs using Dedicated Short
Range Communication (DSRC) protocol. RSU forwards cab
states to the nearest edge server via wired internet. No com-
putation takes place at RSUs, they function only as data for-
warding devices. Along with receiving cab states from RSUs
at regular intervals, the edge servers also receive user requests
through the cellular network. It is assumed that the edge
server is in the vicinity of the cellular base station. The user
requests are filtered through IDS at the edge server for security
against cyber attacks. Based on the cab allocation algorithm
the user requests can be batched together or catered one by
one. The edge server takes regional level decisions like cab
allocation and flagging anomalous cabs. The cloud monitors
logs and data sent by regional edge servers via the internet
and takes global level decisions like demand prediction and
reporting node failures to the authorities. textcolourblueCloud
will routinely retrain the anomaly detection model and update
it to all the edge servers. Table I gives a detailed overview of
processes at each level of the network. These processes are
key to the functioning of the network.

A. Objectives

The main objectives of the proposed approach are described
next.

• Secure Network
It is assumed that the network is secure from internal
threats and any risk to the network is posed by external
devices like autonomous cabs and user devices.
– User side: IDS secures edge servers from cyber attacks

like DDoS, DoS, Botnet, and Brute-Force attacks.
– Vehicle side: We have leveraged Deep learning (DL)

techniques to make the vehicle side of the network
more secure and reliable. DL based anomaly detector in
Section V finds malicious and faulty autonomous cabs
and flags them. The flagged cabs are monitored by the
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Fig. 4: Deployment of the proposed network. Table I gives a detailed overview of network functioning at each level.

Tier Processes

Users Sends request for cab to the Edge server: User requests are sent to the nearest Edge server via cellular data
services.

Cabs Broadcasts cab state to nearest RSU: Autonomous cabs broadcasts its state including cab ID, position, speed,
sensor data, status(occupied/vacant) and charge level to the nearest RSU through DSRC.

BS Facilitates communication between end users and Edge server: User requests are forwarded to Edge servers
via 5G cellular network.

RSU Facilitates communication between autonomous cabs and Edge server: Receives cab states and data through
DSRC and forwards it to the nearest edge server via wired connection.

Edge User-triggered processes
• Receives user requests: User requests are received by the nearest Edge server via cellular data services. The
requests are filtered through intrusion detection system (IDS) to detect cyber attacks.
• Runs cab allocation procedure: Edge server runs cab allocation algorithm to assign cabs to the users.
• Notifies the allocated cab and user: Edge server notifies users via cellular and cabs via RSUs. Moreover,
the cab’s state is updated.
Continuous processes (Performed at regular intervals)
• Gets cab states: Edge server collects cab states for all the cabs in its region via RSUs.
• Updates cab states: Based on some decisions from cloud processes, the cab states will be updated through
the edge server via RSUs.
• Flags malicious and faulty cabs: Edge server runs deep learning based anomaly detection to find abnormal
behaviour in cabs. Anomalous cabs are flagged.
• Streams logs and data to the cloud.

Cloud Cloud processes uses the logs and data received from edge servers in different regions.
• Notifying faults in the network: Notifies authorities of any faults in the network. For eg. faulty edge servers
or autonomous cabs.
• Big data storage: Cloud stores relevant data and logs for further analysis in future.
• Updating model weights: Cloud routinely re-trains the model and updates the model weights at the edge.
Data from misbehaving vehicles (identified either by the model itself or from user feedback) is not used for
re-training.

TABLE I: Network processes for each tier in the multi-tier network.
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cloud and are reported to the authorities on continuous
misbehavior.

Further details about the DL based anomaly detection are
covered in Section V.

• Efficient Network
This proposed network not only uses hardware resources
efficiently at each level but is also scalable and allows
infrastructure sharing to increase return on investment.
– Scalability: Multi-tier network segregates the area into

smaller regions leading to faster data processing and
low latency. This makes it easier to scale the network
city-wide without much computational overhead, even
with highly sophisticated allocation algorithms. This
also allows other region-based smart algorithms like
demand-prediction to run at a large scale.

– Infrastructure sharing: No V2V communication is
required in the vehicle side of our network. This allows
cabs from different companies to be on the same
network. Moreover, the same infrastructure can be used
for other services in autonomous cabs like infotainment
systems. Infrastructure sharing increases the return on
investment for hardware and makes the network more
cost-effective.

• Intelligent Network
The proposed network is automated and state-aware.
– Automation: The network functions in an automated

way to receive user requests and to allocate cabs
without any human intervention.

– State Awareness: Data is gathered at the edge servers
constantly, where such data defines the state of the
network. Also, any changes in the network can be
reported to the relevant authorities.

V. EVALUATION SETUP AND FINDINGS

As described above, the proposed approach comprises a
user-side network and a vehicle-side network. Both networks
face security threats from malicious users and misbehaving
cabs respectively. In the user-side network, malicious users
can launch cyberattacks to compromise the edge servers. An
intrusion detection system (IDS) is hence a necessity for
securing the edge servers.

On the vehicle-side of things, autonomous cabs can mis-
behave due to faults in the on-board sensors or due to
getting hacked. In either scenario, it is important to flag such
vehicles as anomalous and subsequently, remove them from
the network if such behavior continues. An anomaly detection
algorithm would be most suitable for such a scenario as
abnormalities can occur due to a wide variety of reasons.

A good amount of work exists for IDS [32–34] and authen-
tication at edge servers [35–37], but very few for anomalous
cab detection in vehicular networks. We have hence used deep
learning to create an anomaly detector for the vehicle-side of
the network.

A. Dataset

We have used the VeReMi dataset [38] for misbehaviour
detection. The dataset is simulated within the LuST scenario

Vehicle Description

Type 0 Broadcasts correct location.

Type 1 Always broadcasts same location.

Type 2 Broadcasts location differing by a
constant offset from real location.

Type 4 Broadcasts random location.

Type 8 Broadcasts location differing by a
random offset from real location.

Type 16 Broadcasts normally for sometime
and then broadcasts same location.

TABLE II: VeReMi dataset description.

using the VEINS simulator, with a varying vehicle and attacker
densities. The data contains five types of position-forging
anomalous vehicles as shown in Table II. Fig. 5 visualizes
the broadcasted positions in the dataset. We have shown the
X, Y position coordinates as per the simulations in VeReMi.
The first plot shows the true positions of vehicles in the
simulations. The second plot shows the broadcasted locations
by different types of vehicles.

We have pre-processed the VeReMi data to produce se-
quences of broadcasted positions, actual positions, and speed
for each vehicle. The pre-processing of the dataset is described
in detail below. The model will learn to reconstruct the posi-
tions from the input sequence. Only sequences corresponding
to the normal behavior (type 0) are used for training. We ran-
domly sampled 28000 sequences from the normal sequences
to be used as training data. Test data of 4096 sequences were
sampled randomly from the rest of the data. Refer Table III
for number of sequences of each type. The sampling was done
in such a way that the ratio of each type in the test set is the
same as the ratio of each type in the entire dataset. Type 0
sequences from the test data were not used for training.

1) Pre-processing: We used packet types 3 and 4 from
all the simulations in the VeReMi dataset, irrespective of
vehicle and attacker densities in the simulation. These packets
have information regarding the actual position, broadcasted
position, time, speed, and attacker type of the vehicle. Each
simulation data contains multiple such packets from different
vehicles. For each vehicle in the simulation, we identify its
corresponding packets and generate sequences of position and
speed, sorted by time. We use the sliding window approach to
generate these sequences for each vehicle in every simulation.
The sequence length or the window size is taken as 24, while
the slide length is 12. Sequences with a length less than 10 are
ignored. This means if a vehicle broadcasts its position from
0 to 60 seconds in a simulation, we get 4 sequences from this
vehicle, corresponding to 0-24 seconds, 12-36 seconds, 36-48
seconds, and 48-60 seconds. The sequence type is correspond-
ing to the attacker type of the vehicle which broadcasted the
sequence, i.e. a type 2 sequence will be from a vehicle that is
attacker type 2. The total number of sequences for each type
is shown in Table III.
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Seq. Type Total Seq. Train Seq. Test Seq.

Type 0 30947 28000 2410

Type 1 2712 - 210

Type 2 2746 - 213

Type 4 5644 - 438

Type 8 5664 - 440

Type 16 4951 - 385

TABLE III: Number of total, training and testing sequences,
generated from VeReMi dataset.

Fig. 5: VeReMi dataset visualisation.

The sliding window approach is used to increase the training
data. The sequence length of 24 is used as it is long enough
to capture important temporal features and short enough for
LSTMs to learn easily. In choosing the sliding length there
is a trade-off between quantity and repetition of training data.
A shorter sliding length will result in more data but more
repetitions, whereas a longer sliding length will result in lesser
repetition but lesser data too. We want less repetition as useful
information per sequence decreases with more repetitions.
Hence sliding length of 12 was chosen as there is not much
repetition in the training data but with an increase in the
number of training samples.

The input sequences contain X, Y positions, and X, Y
velocities corresponding to each time step. Sequences with
a length less than 24 are padded with zeroes to make length
equal to 24. The dimensions of an input sequence are thus
24× 4. The positions are scaled down by a factor of 1000 for
better optimization of the model while learning. The output
sequences contain only X, Y positions. Similar to the input
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Fig. 6: Learning curve.

sequences, zero padding is used in the output sequences. The
dimensions of output sequences are thus 24× 2.

B. Deep Learning Model

Stacked LSTM and normal LSTM models are trained to
learn reconstruction of the normal cab movement from the
VeReMi dataset. After proper training on the normal data,
the neural network should ideally be able to reconstruct the
normal cab behavior but will not be able to reconstruct the
anomalous behavior. This is a type of unsupervised learning.
Reconstruction error is used to quantify reconstruction by
the model. A reconstruction error threshold is finally used to
classify normal and anomalous cab movement. As only normal
data is used for training, this model should also be able to
identify anomalies other than the ones present in the VeReMi
dataset. All the codes are written in Python 3. We use Keras,
an open-source neural network library, to build and train all the
neural networks in our evaluations. Pandas library is used for
data processing. The neural networks are trained on a Google
Colaboratory environment with NVIDIA Tesla K80 GPU (16
GB GPU RAM) and 12 GB CPU RAM. Our best performing
model is Stacked LSTM with 4 layers and 256 units in each
layer. This model takes around 4.5 seconds to predict labels for
4096 sequences in our environment. The actual prediction time
will vary depending on the edge hardware used and the number
of sequences per server considered, which will be much less
than 4096.

C. Training

Mean absolute error (MAE) is used as the train-
ing/reconstruction loss, refer to Eq. 7 where ŷ represents
predicted values.

MAE =
1

n

n∑
i=1

|y − ŷ| (7)

The models are trained with batches of data using Adam
optimizer in two stages. First, we use a learning rate of 0.001
for faster convergence, then finally learning rate of 0.0003 is
used to reach the global minimum smoothly. A batch size of
2048 is used. Early stopping is used for each of these stages to
prevent overfitting, with patience of 2000 epochs. Best weights
are restored after each stage. ReLU activation is used for
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Model No. of No. of Parameters Recall Accuracy
layers units Type 0 Type 1 Type 2 Type 4 Type 8 Type 16

KNN[19] - - - - .751 .771 .992 .772 .220 .879

GRU 1 256 202K .968 .514 .343 1.0 1.0 .569 .882

LSTM 1 256 268K .964 .967 .610 1.0 1.0 .748 .933

LSTM 1 512 1M .978 .995 .648 1.0 1.0 .844 .953

LSTM 1 1024 4.2M .982 .971 .807 1.0 1.0 .883 .967

Stacked LSTM 2 256 793K .986 .829 .859 1.0 1.0 .795 .956

Stacked LSTM 3 256 1.3M .994 1.0 .995 1.0 1.0 .930 .989

Stacked LSTM 4 256 1.8M .994 1.0 1.0 1.0 1.0 .966 .993

Stacked LSTM 5 256 2.3M .995 1.0 .995 1.0 1.0 .938 .991

TABLE IV: Results

256 512 1024
No. of Units

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 [B
ar

]

Single LSTM

1 2 3 4 5
No. of Layers

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 [B
ar

]

Stacked LSTM

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Pa

ra
m

et
er

s (
in

 m
illi

on
) [

Lin
e]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Pa
ra

m
et

er
s (

in
 m

illi
on

) [
Lin

e]

Fig. 7: Accuracy and number of parameters for different models.

LSTM. Unroll parameter was set to True for LSTMs as it
tends to speed-up training. ReLU activation is also used for
the time-distributed dense layer. The 4-layer Stacked LSTM
model takes about 13 hours to train in our environment. The
learning curve for the model is shown in Fig. 6

D. Comparison and Analysis

In Table IV we have compared our anomaly detection results
of Stacked LSTMs with various depths and normal LSTMs
with various widths. Classification with KNN as described in
[19] is used as the baseline to compare the results with our
unsupervised approach. As can be seen in the table, the per-
formance of a single layer LSTM is shown to outperform that
of a single layer Gated Recurrent Unit (GRU) on our dataset.
Thus, we decided to use LSTMs in all further experiments. No.
of units column depicts the number of units in each layer of
the model considered. The performance is measured for a test-
set of 4096 sequences. The threshold with the best accuracy is
chosen for each model. Accuracy and recall is defined in Eq.8
and Eq. 9 respectively. In these equations, T means True; F
means False; P means Positive; and N means Negative.

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Recall =
TP

TP + FN
(9)

We can see from the recalls in Table IV that all the LSTM
models can detect anomalies of type 4, type 8, and type 1
very well, beating the baseline. This can be because these
anomalies have very different temporal behavior than normal
type 0 sequences. Single LSTM models struggle with detecting
type 2 sequences that have similar temporal behavior as type 0.
Relatively worse performance on type 16 for all the models can
be because type 16 sequences follow normal behavior until the
broadcasted positions get stuck to one coordinate. Therefore
these sequences should have lower reconstruction error when
compared to other anomalies. However, deeper stacked LSTM
models are still able to detect these very well.

In Fig. 7 accuracy is depicted as bar plots and the number of
parameters as line plots. In the first plot, it is seen that accuracy
scales very poorly with several parameters in single LSTM
models. The second plot shows better accuracy for Stacked
LSTM models. We can also see that accuracy scales better
with the number of parameters when compared with single
LSTM models. This shows that the higher accuracy in Stacked
LSTM models is not because of more number of parameters
but due to better model architecture. Therefore the Stacked
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Fig. 8: Reconstruction of test sequences using the 4-layer Stacked LSTM model and 1024 units single LSTM.

Fig. 9: Accuracy for different MAE thresholds.

LSTMs not only perform better than single LSTMs but also
with much better parameter efficiency.

Fig. 8 shows the reconstruction of test sequences by the
4-layer Stacked LSTM model and 1024 units single LSTM.
X and Y here are scaled X and Y coordinates from VeReMi
simulations. It can be seen that both the models can reconstruct
normal (type 0) sequences very well. The stacked LSTM
model however is unable to reconstruct other sequence types.
This is desirable as other types will thus have higher recon-
struction loss and therefore easier to classify. It is to be noted
that the stacked model is not even able to reconstruct type 2
sequences that follow similar temporal behavior as type 0 but
differs in position coordinates by a constant offset. Also, it is
observed that when trying to reconstruct anomalous sequences,
the stacked model mostly gives out coordinates corresponding
to type 0 sequences. This shows that the stacked model has
also learned spatial information from normal behavior along
with the expected temporal information. These spatio-temporal
features are not observed in the reconstructions by normal
LSTM model with 1024 units even with more than double the
number of parameters.

Fig. 10: Reconstruction loss distribution for test samples.
True label

Normal Anomaly

Predicted Normal 2393 13
Anomaly 17 1673

TABLE V: Confusion Matrix

We discuss the results of the 4-layer Stacked LSTM, which
is the best performing model. The threshold for anomaly detec-
tion is determined from the distribution of reconstruction loss
for test sequences. The best performance of 99.3% accuracy is
observed for a threshold of 0.013 MAE as seen in Fig. 9. Fig.
10 shows reconstruction loss distribution for test samples of
each type. The type 0 samples with reconstruction loss more
than the threshold of 0.013 MAE are False Negatives (FN)
and the other type (anomalous) samples with reconstruction
loss lesser than the threshold are False Positives (FP). It
is seen that anomalies of all types except type 16 have
reconstruction errors more than the threshold. Also, very few
FNs are observed. type 4 and type 8 samples have very high
reconstruction loss and hence are not visible in the plot. The
confusion matrix is shown in Table V.
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VI. CONCLUSION

In this paper, we presented a secure, efficient, and intel-
ligent multi-tier network architecture for the IoV networks.
The Vehicle-side of this network is made secure using deep
learning. Regional decisions are made by the edge servers,
which communicate both with users and vehicles using user-
side and vehicle-side networks respectively. It continuously
receives user requests and vehicle traffic information. We
trained a stacked LSTM model with unsupervised learning
on a popular vehicular simulation dataset to demonstrate how
it detects anomalous vehicle behavior in the network. We
then summarized the performance and parameter efficiency for
different LSTM models trained. The findings show that unlike
normal LSTM models, the proposed stacked LSTM model can
learn spatio-temporal information even with fewer parameters
and hence perform better.
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