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Structure formulas for wave operators

under a small scaling invariant condition

Marius Beceanu1 and Wilhelm Schlag2

Abstract. We continue our work on the structure formula for the intertwining wave

operators W˙ associated with H D ��C V in R3, cf. [3]. We consider small potentials

relative to a scaling invariant norm.
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1. Introduction

In a recent paper [3] we obtained a structure formula for the intertwining wave

operators for H D �� C V in three dimensions. We imposed the following

condition on the potential V . Define Bˇ , ˇ � 0, as L2 functions with

kf kBˇ WD k1Œjxj�1�f k2 C

1X

j D0

2jˇ k1Œ2j �jxj�2j C1�f k2 < 1 (1.1)

Then for V real-valued, V 2 Bˇ .R3/, ˇ � 1
2
, the wave operators

W˙ D lim
t!˙1

eitH e�itH0

exist in the strong L2 sense, with H0 D ��. These operators satisfy for contin-

uous, bounded f on the line, f .H/W˙ D W˙f .H0/, and Pc D W˙W
�

˙ , where

Pc is the projection onto the absolutely continuous spectral subspace ofH in L2.

1 M. Beceanu thanks the University of Chicago for its hospitality during the summers of 2015

and 2016.

2 W. Schlag was partially supported by NSF grant DMS-1500696 during the preparation of

this work.
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There is no singular continuous spectrum (asymptotic completeness). Yajima [6]

and [7], established the Lp boundedness of the wave operators assuming that zero

energy is neither an eigenvalue nor a resonance.

In [3] we proved the following theorem. By B1C we mean Bˇ for some ˇ > 1.

By My we mean the Borel measures on Euclidean space.

Theorem 1.1 ([3]). LetV 2 B1C be real-valued and assume thatH D ��CV ad-

mits no eigenfunction or resonance at zero energy. Then there exists g.x; y; !/ 2

L1
!MyL

1
x , i.e.,

Z

S2

kg.x; dy; !/kMyL1
x
d! < 1

such that for any f 2 L2 one has the representation formula

.WCf /.x/ D f .x/C

Z

S2

Z

R3

g.x; dy; !/f .S!x � y/ d!:

where S!x D x � 2.x � !/! is a reflection. A similar result holds for W�.

As an application, supposeX is any Banach space of measurable functions on

R3 which is invariant under translations and reflections, and in which Schwartz

functions are dense. Assume that k1Hf kX � Akf kX for all half spacesH � R3

and f 2 X with some uniform constant A. Then

kWCf kX � AC.V /kf kX for all f 2 X (1.2)

where C.V / is a constant depending on V alone. In particular, this recovers Ya-

jima’s Lp boundedness of the wave operators. Furthermore, [3] obtains quantita-

tive estimates on the norm in (1.2) as well as on C.V /. These bounds blow up as

ˇ ! 1with V 2 Bˇ . Nevertheless, we remark that one can obtain Theorem 1.1, al-

beit without quantitative control, under the condition V 2 B1 although the details

are not worked out in [3].

The goal here is to seek a scaling invariant condition on V under which a

structure formula (1.6) can be obtained. The natural scaling of the Schrödinger

operator H D �� C V is V ! �2V.�x/, � > 0 in any dimension. In the

framework of the B-spaces above (1.1) the critical norm relative to this scaling is
PB

1
2 .R3/ where

kf k PBˇ WD

1X

j D�1

2jˇ k1Œ2j �jxj�2j C1�f k2 (1.3)
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This norm is invariant under the aforementioned scaling provided� is a power of 2.

However, it is currently unclear whether Theorem 1.1 might hold for potentials

V 2 PB
1
2 . It is possible that the threshold ˇ D 1 could be optimal for the Bˇ

spaces. It is natural to investigate the scaling invariant class for several reasons:

(i) it is an optimal scenario, corresponding to the jxj�2 decay rate which balances

the Laplacian (ii) it arises in widely-studied energy critical nonlinear equations

such as the u5 wave equation in R3:

ut t ��u� u5 D 0

which admits explicit the 1-parameter stationary solutions u.t; x/ D �
1
2W.�x/ DW

W�.x/, � > 0, W.x/ D .1 C jxj2=3/�
1
2 . In the radial class, these are the only

stationary nonzero solutions of finite energy. Linearizing about W� yields the

family of Schrödinger operators H� D �� � �2W 4.�x/. It is therefore desirable

to work with a condition on the potential that is uniform in � > 0.

This paper presents such a norm, but currently we only consider small poten-

tials in this norm. To formulate it, we recall some notation.

Definition 1.1. For any Schwartz function V we define jjjV jjj D kLV kL1
t;!

, where

LV .t; !/ D

1Z

0

yV .��!/e
i
2

t� � d�

is as above. For any Schwartz function v in R3

kvkB WD sup
…

1Z

�1

jjjı….t/ v.x/jjj dt (1.4)

where … is a 2-dimensional plane through the origin, and ….t/ D … C t EN , EN

being the unit norm to ….

Clearly, jjjvjjj � kvkB. We will show below that kvkB < 1 is finite for

Schwartz functions. We will do this by dominating kvkB by a stronger norm which

is also scaling invariant and more explicit, cf. Lemma 3.1. This more explicit norm

involves half of a derivative on 2-planes. So it is not a pure decay condition on

the potential. The key analytical arguments in this paper are based on the precise

norm as defined in (1.4). The main result of this paper is the following one.
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Theorem 1.2. There exists c0 > 0with the following property: for any real-valued

V with kV kB C kV k
PB

1
2

� c0, there exists g.x; y; !/ 2 L1
!MyL

1
x with

Z

S2

kg.x; dy; !/kMyL1
x
d! . c0 (1.5)

such that for any f 2 L2 one has the representation formula

.WCf /.x/ D f .x/C

Z

S2

Z

R3

g.x; dy; !/f .S!x � y/ d!: (1.6)

where S!x D x � 2.x � !/! is a reflection. A similar result holds for W�.

The spectral properties of H D �� C V are irrelevant under the smallness

assumption. For L1 ! L1 dispersive estimates of the Schrödinger evolution

eitHPc with a scaling-invariant condition on V in R3 without any smallness as-

sumption, see [2]. It is not clear to the authors if there might be other scaling-

invariant norms which are better suited for structure theorems for the wave opera-

tors. This question is particularly relevant with respect to large potentials and the

Wiener formalism that is instrumental for Theorem 1.1.

2. The wave operators and their expansion

We now recall the formalism of the wave operator WC going back to Kato [5].

First, by [3, Lemma 2.2], PB
1
2 ,! L

3
2

;1 (using Lorentz space notation). If

V 2 L
3
2

;1, then the wave operators W˙ exist, and are isometries from L2 onto

the range of Pc , the projection onto the continuous spectrum of H . Moreover,

if V is small in L
3
2

;1, then H has no eigenvalues and no zero energy resonance,

and the spectrum is purely absolutely continuous. In other words, W˙ are unitary

operators. Moreover, for any f 2 L2.R3/ the integral

WCf D f C i

1Z

0

eitHVe�itH0f dt (2.1)

converges in the strong sense. See for example Section 4 of [3] for more details.
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Expanding (2.1) iteratively by means of the Duhamel formula one has

WCf D f CW1Cf C : : :CWnCf C � � � ;

W1Cf D i

Z

t>0

e�it�Veit�f dt;

:::

WnCf D in
Z

t>s1>:::>sn�1>0

e�i.t�s1/�Ve�i.s1�s2/�V : : : e�isn�1�Veit�f dt ds1 : : : dsn�1

(2.2)

for f 2 L2. For small potentials one can actually sum this series, which will

give Theorem 1.2. In addition to the operators WnC, we shall work with their

regularized version,

W "
nCf WD in

Z

0�t1�:::�tn

ei.tn�tn�1/H0�".tn�tn�1/V : : : ei.t2�t1/H0�".t2�t1/

Veit1H0�"t1Ve�itnH0f dt1 : : : dtn;

(2.3)

where " > 0. By [3, Lemma 4.3], W "
nC ! WnC in the strong L2 sense as

" ! 0C. One has the following representation formulas for each n � 1 going

back to Yajima, see [3, Lemma 4.7]:

hW "
nCf; gi D .�1/n

Z

R9

F
�1
x0
T "

nC.0; x; y/f .x � y/g.x/ dy dx
(2.4)

where for any " > 0, T "
1˙.x0; x1; y/ is defined in the sense of distributions as

.F�1
x0

Fx1;yT
"
1˙/.�0; �1; �/ WD

bV .�1 � �0/

j�1 C �j2 � j�j2 ˙ i"
(2.5)

and, more generally, for all n � 1 we have

.F�1
x0

Fxn;yT
"
n˙/.�0; �n; �/ WD

Z

R3.n�1/

nY

`D1

bV .�` � �`�1/ d�1 : : : d�n�1

nY

`D1

.j�` C �j2 � j�j2 ˙ i"/

: (2.6)
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Even though the first variable does not play a role in (2.4), it is essential in order

to express T "
nC in terms of T "

1C by means of a convolution structure. In fact, we

(formally) compose three variable kernels T .x0; x1; y/ on R9 by the rule

.T1 ~ T2/.x0; x2; y/ D

Z

R6

T1.x0; x1; y1/T2.x1; x2; y � y1/ dx1 dy1: (2.7)

Dually (on the Fourier side), ~ is given by

.F�1
x0

Fx2;y.T1 ~ T2//.�0; �2; �/

D

Z

R3

.F�1
x0

Fx1;yT1/.�0; �1; �/.F
�1
x1

Fx2;yT2/.�1; �2; �/ d�1:
(2.8)

So ~ consists of convolution in the y variable (or multiplication in the dual

variable �), and composition of operators relative to the other two variables. In

the dual coordinates �0, �1, and �2, composition of operators is preserved. Note

the order of the variables: x0 is the “input", x2 the “output" variable, whereas y

is the dual energy variable.

Lemma 2.1. Let V be a Schwartz potential. For all " > 0 and any n;m � 1

T "
mC ~ T "

nC D T "
.mCn/C

in the sense of (2.8).

Proof. By inspection

F
�1
x0

Fx2;yT
"
2C.�0; �2; �/ D

Z

R3

bV .�2 � �1/

j�2 C �j2 � j�j2 C i"
�

bV .�1 � �0/

j�1 C �j2 � j�j2 C i"
d�1

D F
�1
x0

Fx2;y.T
"
1C ~ T "

1C/.�0; �2; �/

(2.9)

both in the pointwise sense, as well as in the space of distributions. The general

case follows by induction. �

In order to prove Theorem 1.2, we will show that there exists an algebra under ~

with the norms of Definition 1.1. In [3, Section 5] it was shown that

W "
1Cf .x/ D

Z

R3

K"
1C.x; x � y/f .y/ dy;

K"
1C.x; z/ D � lim

R!1

Z

R6

eix�� yV .�/ eiz��

j� C �j2 � j�j2 C i"
e

� j�j2

2R2 d�d�:

(2.10)
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Furthermore, the kernels K"
1C.x; z/ are of the form,

K"
1C.x; z/ D const � L".jzj � 2x � Oz; z/

where

L".r; !/ WD

1Z

0

yV .�s!/ei rs
2

j!je� "
2s s ds: (2.11)

In the previous line ! need not be a unit vector. Sending " ! 0, one has

K0
1C.x; z/ D const � jzj�2L.jzj � 2x � Oz; Oz/ (2.12)

where for any ! 2 S2, and r 2 R,

L.r; !/ D LV .r; !/ WD

1Z

0

yV .�s!/ei rs
2 s ds:

Here V is any Schwartz function. The following corollary from [3] shows how the

structure function for W1C arises easily from this formalism. It also explains how

the norm jjj � jjj arises in Definition 1.1.

Corollary 2.2. Let V be a Schwartz function. Define S! WD x � 2.! � x/! to be

the reflection about the plane !?. Then for all Schwartz functions f

.W1Cf /.x/ D

Z

S2

Z

R3

g1.x; dy; !/f .S!x � y/ �.d!/:
(2.13)

For fixed x 2 R3, ! 2 S2 the function g1.x; �; !/ is a measure satisfying
Z

S2

kg1.x; dy; !/kMyL1
x
d! �

Z

S2

Z

R

jLV .r; !/j drd! D jjjV jjj
(2.14)

with k � kM being the total variation norm for Borel measures.

Proof. From eq. (2.10) and (2.12),

.W1Cf /.x/ D

1Z

0

Z

S2

L.r � 2! � x; !/f .x � r!/ drd!

D

Z

S2

Z

R

1Œr>�2!�x�L.r; !/f .x � 2.! � x/! � r!/ drd!:

(2.15)
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Define

g1.x; dy; !/ WD 1Œ.yC2x/�!>0�L.y � !; !/H1
`!
.dy/: (2.16)

Here `! WD ¹r! j r 2 Rº is the line along !, and H
1
`!

is the 1–dimensional

Hausdorff measure on the line `! . Then (2.13) holds and

kg1.x; dy; !/kL1
x

D jL.y � !; !/jH1
`!
.dy/ (2.17)

which implies (2.14). �

This result does not explain the origin of the other norm, kV kB in Definition 1.1.

That norm is needed to bound the higher order structure functions gn, n � 2.

The remainder of this paper will be devoted to working out the details of this

construction. To end this section, we recall how [3] fails to reach the scaling-

invariant space PB
1
2 and we explain how kV kB is designed to circumvent the exact

difficulty responsible for the loss of 1
2

power in Theorem 1.1.

First, we point out the connection between jjj � jjj and k � k
PB

1
2

as given by [3,

Proposition 6.1].

Proposition 2.3. Let L D LV be as above, and V a Schwartz function. Then,

with r 2 R and ! 2 S2,

kL.r; !/kL2
r;!

. kV kL2 (2.18)

and

kL.r; !/kL1
r;!

.
X

k2Z

2k=2k1Œ2k ;2kC1�.jr j/L.r; !/kL2
r;!

. kV k
PB

1
2
: (2.19)

Moreover, for any 0 < ˛ < 1,
X

k2Z

2˛kk1Œ2k ;2kC1�.jr j/L.r; !/kL2
r;!

. kV k PB˛ : (2.20)

The aforementioned loss of a 1
2

power occurred in the following estimate (6.9)

from [3]:

kv.x/K"
1C.x; y/k

L1
yB

1
2

x

. kvkB1kV k
B

1
2
:

In view of (2.12) this is the same as (in the limit " ! 0)

Z

S2

1Z

0

kv.x/LV .t � 2x � !; !/k
B

1
2
dtd! . kvkB1kV k

B
1
2
:

We now show how to avoid this loss by means of the norm (1.4).
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Lemma 2.4. For Schwartz functions v; V one has

Z

S2

1Z

0

jjjv.x/LV .t � 2x � !; !/jjj dtd! . kvkBjjjV jjj: (2.21)

Proof. Writing !?.s/ D !? C s!, we compute

Z

S2

1Z

0

jjjv.x/LV .t � 2x � !; !/jjj dtd!

�

Z

S2

1Z

�1

1Z

0

jjjı!?.s/v.x/LV .t � 2x � !; !/jjj dtdsd!

�

Z

S2

1Z

�1

1Z

�1

jLV .t � 2s; !/j jjjı!?.s/v.x/jjj dtdsd!

�

Z

S2

1Z

�1

jLV .t; !/j dtd! sup
!2S2

1Z

�1

jjjı!?.s/v.x/jjj ds

D jjjV jjjkvkB

(2.22)

which is (2.21). �

Before continuing with the main argument, the following section exhibits

norms that dominate those in Definition 1.1, but which are more explicit. We also

check that k � kB is scaling invariant.

3. A closer look at the norms of Definition 1.1

The following lemma bounds the rather implicit k � kB-norm by a more explicit

Sobolev-type norm. It appears that this cannot be improved significantly.

Lemma 3.1. The norm k � kB is scaling invariant in the sense that with v�.x/ WD

��2v.x=�/, � > 0, one has kvkB D kv�kB . Furthermore,

kvkB � C sup
!2S2

1Z

�1

X

k2Z

2
k
2 k .2�kx0/v.x0 C s!/k

PH
1
2 .!?/

ds DW kvk�
B (3.1)



976 M. Beceanu and W. Schlag

where x0 2 !? and
P

k2Z  .2
�kx0/ D 1 for x0 2 !? n ¹0º is a Littlewood–

Paley partition of unity. The norm kvk�
B is finite on Schwartz functions, and

kvk�
B D kv�k�

B for � D 2�`, ` 2 Z.

Proof. One has LV .t; !/ D ��1LV�
.t��1; !/ whence jjjV�jjj D jjjV jjj. With � a

standard bump function on the line,

kV�kB D sup
!2S2

lim
ı!0

1Z

�1

kı�1�..x � ! � t /=ı/��2V.x=�/kL dt

D sup
!2S2

lim
ı!0

1Z

�1

��1k.ı=�/�1�...x=�/ � ! � t=�/=.ı=�//��2V.x=�/kL dt

D sup
!2S2

lim
ı!0

1Z

�1

kı�1�...x=�/ � ! � t /=ı/��2V.x=�/kL dt

D sup
!2S2

lim
ı!0

1Z

�1

kı�1�..x � ! � t /=ı/V .x/kL dt D kV kB

which is the scaling invariance of the B-norm.

To prove (3.1) we fix the plane … to be x1 D 0, or equivalently we set

! D .1; 0; 0/. One has, with vs D ı….s/v,

Lvs
.t; !/ D

1Z

0

Fx2;x3
v.s;�!2�;�!3�/e

i �
2

.t�2s!1/ � d�

so that

kvkB D

1Z

�1







1Z

0

Fx2;x3
v.s;�!2�;�!3�/e

i �
2 t � d�






L1

t;!

ds

D

1Z

�1

ds

1Z

�1

dt

�Z

0

2�Z

0

ˇ̌
ˇ̌

1Z

0

Fx2;x3
v.s;�� sin � sin �;

� � sin � cos�/ei �
2

t � d�

ˇ̌
ˇ̌ sin � d�d�

D �

1Z

�1

ds

1Z

�1

dt

�Z

0

ˇ̌
ˇ̌

1Z

0

Fx2;x3
v.s;�� sin �;�� cos�/ei �

2
t � d�

ˇ̌
ˇ̌ d�
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� C
X

k2Z

1Z

�1

2
k
2

� 1Z

�1

�Z

0

1Œjt j'2k�

ˇ̌
ˇ̌

1Z

0

Fx2;x3
v.s;�� sin�;

� � cos�/ei �
2

t � d�

ˇ̌
ˇ̌
2

d�dt

� 1
2

ds:

For a Schwartz function w in R2 define the sublinear operator Akw as

Akw D
� 1Z

�1

�Z

0

1Œjt j'2k�

ˇ̌
ˇ̌

1Z

0

Ow.� sin�; � cos�/ei �
2

t � d�

ˇ̌
ˇ̌
2

d�dt
� 1

2

: (3.2)

Then, on the one hand,

X

k2Z

.Akw/
2 .

1Z

�1

�Z

0

ˇ̌
ˇ̌

1Z

0

Ow.� sin�; � cos�/ei �
2

t � d�

ˇ̌
ˇ̌
2

d�dt

.

�Z

0

1Z

0

j Ow.� sin�; � cos�/j2j� j2 d�d� D kwk2

PH
1
2

(3.3)

and, on the other hand,

X

k2Z

22k.Akw/
2

.

1Z

�1

�Z

0

ˇ̌
ˇ̌t

1Z

0

Ow.� sin�; � cos�/ei �
2

t � d�

ˇ̌
ˇ̌
2

d�dt

.

�Z

0

1Z

0

j@� .� Ow.� sin�; � cos�//j2 d�d�

.

�Z

0

1Z

0

Œ��1j Ow.� sin �; � cos�/j2 C j.@r Ow/.� sin�; � cos�/j2��� d�d�

. k Owk2

PH
1
2

C kj�j
1
2 @r Owk2

2: (3.4)

The first term in the last line is obtained by Hardy’s inequality in the � variable,

and we bound it further by applying Hardy’s inequality in the x variable:

k Owk
PH

1
2

D kjxj
1
2wk2 D kjxj�

1
2 jxjwk2 . kjxjwk

PH
1
2
: (3.5)
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For second term in (3.4) we first rewrite @r Ow as

@r Ow.�/ D
�

j�j
r�

Z

R2

e�ix��w.x/ dx

D

Z

R2

e�ix��a.x; �/jxjw.x/ dx; a.x; �/ D
x

jxj
�
�

j�j
DW Ox � O�:

(3.6)

Therefore,

kj�j
1
2 @r Owk2 � k Oxjxjwk

PH
1
2
: (3.7)

By Lemma 3.2 below one has k Oxjxjwk
PH

1
2

. kjxjwk
PH

1
2
. Combining this bound

with (3.5) we conclude that

X

k2Z

22k.Akw/
2 . kjxjwk2

PH
1
2

: (3.8)

By interpolation

X

k2Z

2
k
2Akw . kwk� (3.9)

where in the notation of the real interpolation method

kwk� D .kwk
PH

1
2
; kjxjwk

PH
1
2
/. 1

2
;1/: (3.10)

By Lemma 3.2 the right-hand side is bounded by kwk�
B and (3.1) is proved. The

other stated properties of k � k�
B are immediate. �

The previous proof required two technical properties which we now establish.

They are special cases of more general statements, but we limit ourselves to what

is needed here.

Lemma 3.2. The following two properties hold:

� For any Schwartz function f in R2 one has k Oxf k
PH

1
2

. kf k
PH

1
2

where

Ox D x=jxj.

� With k � k�
B defined as, cf. (3.1)

X

k2Z

2
k
2 k .2�kx/w.x/k

PH
1
2 .R2/

DW kwk�
B

one has

.kwk
PH

1
2
; kjxjwk

PH
1
2
/. 1

2
;1/ . kwk�

B :
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Proof. The first property cannot simply be obtained by interpolating between the

obvious L2 property and the corresponding PH 1 inequality. Indeed, the latter

would require Hardy’s inequality in R2 with an r�1 weight, which fails. So we

proceed differently. Using polar coordinates and complex notation we expand f

into a Fourier series:

f .rei�/ D
X

n2Z

an.r/e
2�in� ; an.r/ D

1Z

0

f .re2�i�/e�2�in� d�:

By Plancherel

kf k2
2 D const �

X

n2Z

1Z

0

jan.r/j
2r dr (3.11)

and

kf k2
PH 1

D k@rf k2
2 C kr�1@�f k2

2

D const �
X

n2Z

1Z

0

.ja0
n.r/j

2 C
n2

r2
jan.r/j

2/r dr:
(3.12)

By interpolation,

kf k2

PH
1
2

'
X

n2Z

1Z

0

.j.�@2
r /

1
4 an.r/j

2 C
jnj

r
jan.r/j

2/r dr: (3.13)

Since Ox D e2�i� DW e.�/ we conclude that

ke.�/f k2

PH
1
2

.
X

n2Z

1Z

0

.j.�@2
r /

1
4an.r/j

2 C
jnC 1j

r
jan.r/j

2/r dr

. kf k2

PH
1
2

C

1Z

0

ja0.r/j
2

r
r dr:

(3.14)

Since

a0.r/ D

1Z

0

f .re.�// d�;
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the final term in (3.14) is

1Z

0

ja0.r/j
2

r
r dr �

1Z

0

1Z

0

jf .re.�//j2

r
r d�dr

. kr� 1
2f k2

2

. kf k2

PH
1
2

(3.15)

by Hardy, and the first claim is proved.

To prove the second claim we first dominate the weighted norm via a smooth

Littlewood–Paley partition of unity, viz.

kjxjwk
PH

1
2

.
X

k2Z

k .2�kx/jxjwk
PH

1
2

.
X

k2Z

2kk .2�kx/wk
PH

1
2
: (3.16)

For the final inequality it suffices to verify the case k D 0 by scaling. Then, by the

fractional Leibnitz rule and with z  D  another Littlewood–Paley function,

k .x/jxjwk
PH

1
2

. kjxj z .x/k1k .x/wk
PH

1
2

C kjrj
1
2 jxj z .x/kL4k .x/wkL4

. k .x/wk
PH

1
2
;

(3.17)

where the final step is obtained by Sobolev embedding. Clearly,

kwk
PH

1
2

.
X

k2Z

k .2�kx/wk
PH

1
2
: (3.18)

By the real interpolation property, see [3, Section 2], [4]

.kwk
PH

1
2
; kjxjwk

PH
1
2
/. 1

2
;1/ .

� X

k2Z

k .2�kx/wk
PH

1
2
;
X

k2Z

2kk .2�kx/wk
PH

1
2

�
. 1

2
;1/

'
X

k2Z

2
k
2 k .2�kx/wk

PH
1
2

D kwk�
B

(3.19)

and we are done. �
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4. The convolution algebra and the proof of Theorem 1.2

We now present the algebra formalism in the scaling invariant setting.

Definition 4.1. The Banach space Z of tempered distributions is defined as

Z WD ¹T .x0; x1; y/ 2 S
0.R9/ j FyT .x0; x1; �/ 2 L1

� L
1
x1
L1

x0
º (4.1)

with norm

kT kZ WD sup
�2R3

kFyT .x0; x1; �/kL1
x1

L1
x0 (4.2)

sup being the essential supremum. We add the identity I toZ, which corresponds

to the kernel T D ı0.y/ı0.x1 � x0/. The convolution ~ on T1; T2 2 Z is defined

by

.T1 ~ T2/.x0; x2; y/ D F
�1
�

� Z

R3

FyT1.x0; x1; �/FyT2.x1; x2; �/ dx1

�
.y/: (4.3)

Lemma 4.1. Let Z is a Banach algebra under ~ with identity element I . If

V 2 L3=2;1 then T "
1C defined by (2.5) belongs to Z and FyT

"
1C is given by

FyT
"
1C.x0; x1; �/ D e�ix1� R0.j�j

2 � i"/.x0; x1/V .x0/ e
ix0�: (4.4)

Moreover,

sup
">0

kT "
1CkZ . kV kL3=2;1 . kV k

PB
1
2
: (4.5)

If, in addition, kV kL3=2;1 is sufficiently small, then T "
C also belongs to Z and

.I C T "
1C/~ .I � T "

C/ D .I � T "
C/~ .I C T "

1C/ D I: (4.6)

Proof. Z is a Banach space. The expressions in (4.3) appearing in brackets

satisfies

sup
�2R3






Z

R3

FyT1.x0; x1; �/FyT2.x1; x2; �/ dx1






L1

x2
L1

x0

� kFyT1kL1
� L1

x1
L1

x0

kFyT2kL1
� L1

x2
L1

x1

D kT1kZkT2kZ

(4.7)

and so it is a tempered distribution in R9. Therefore, the composition (4.3) is

well-defined in Z and

kT1 ~ T2kZ � kT1kZkT2kZ

whence Z is a Banach algebra under k � kZ .
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Formula (4.4) follows from (2.5) by taking Fourier transforms.

By the resolvent identity

.I CR0.z/V /
�1 D I �RV .z/V; RV .z/ D .I CR0.z/V /

�1R0.z/ (4.8)

for Im z > 0. Here RV .z/ D .H � z/�1 which exists for Im z > 0 since H is

self-adjoint. For V small in L
3
2

;1 it follows that

sup
Im z>0

kR0.z/Vf k � CkV k
L

3
2

;1
kf k1 �

1

2
kf k1:

Hence .ICR0.z/V /
�1 exists as a bounded operator onL1 uniformly in Im z > 0,

and we may also take the limit Im z � 0. In particular,

RV .z/WL
3
2

;1.R3/ �! L1.R3/

From (4.8),

R0.j�j
2 � i"/V �RV .j�j

2 � i"/V CR0.j�j
2 � i"/VRV .j�j

2 � i"/V D 0 (4.9)

whence, with eix�f .x/ DW .M�f /.x/,

M�1
� R0.j�j

2 � i"/.x0; x1/V .x0/M� �M�1
� RV .j�j

2 � i"/.x0; x1/V .x0/M�

CM�1
� R0.j�j

2 � i"/.x2; x1/V .x2/M� ıM�1
� RV .j�j

2 � i"/.x0; x2/V .x0/M�

D 0

(4.10)

where ı signifies integration. In view of (4.4) this is tantamount to

0 D T "
1C � T "

C C T "
1C ~ T "

C (4.11)

or .I C T "
1C/ ~ .I � T "

C/ D I . The second identity in (4.6) is valid since the

resolvent identity also implies (4.9) with R0 and RV reversed:

R0.j�j
2 � i"/V �RV .j�j

2 � i"/V CRV .j�j
2 � i"/VR0.j�j

2 � i"/V D 0 (4.12)

and so that same argument as before concludes the proof. �

The following spaces play a key role in the proof of Theorem 1.2. The Y -space

in particular allows us to inductively bound the structure function of each W "
nC.

Definition 4.2. Let B be the closure of the Schwartz functions in R3 under the

norm jjj � jjj. Fix any measurable function v W R3 ! R which does not vanish a.e.,

and so that kvkB < 1. We introduce the following structures depending on v.
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� The seminormed space

v�1
B D ¹f measurable j v.x/f .x/ 2 Bº

with the seminorm kf kv�1B WD jjjvf jjj.

� Let X the space of two-variable kernels

X WD

²
X 2 B.L1; L1/

ˇ̌
ˇ .Xf /.x/ D

Z

R3

X.x; y/f .x � y/ dy; f 2 L1

kX.x; y/kL1
x L1

y
< 1; kX.x; y/kL1

yv�1Bx
< 1

³
;

(4.13)

with norm (the first v factor is only for homogeneity)

kXkX WD kvkBkXkL1
x L1

y
C

Z

R3

kv.x/X.x; y/kBx
dy: (4.14)

� Let Y be the space of three-variable kernels

Y WD

²
T .x0; x1; y/ 2 Z

ˇ̌
ˇ̌ for all f 2 L1 \ v�1

B

.f T /.x; y/ WD

Z

R3

f .x0/T .x0; x1; y/ dx0 2 Xx1;y

³
;

(4.15)

with norm

kT kY WD kT kZ C kT kB.v�1Bx0
;Xx1;y/ (4.16)

We adjoin an identity element to Y , in the form of

I.x0; x1; y/ D ıx0
.x1/ı0.y/ D ıx1

.x0/ı0.y/: (4.17)

Notice that in (4.14) we use the stronger norm kvkB rather than jjjvjjj. The

presence of kT kZ in (4.16) will require us to ensure that kV kB < 1 as well as

V 2 PB
1
2 .
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Lemma 4.2. Let V be a Schwartz function, and letK"
1C be defined in terms of V .

Then uniformly in " > 0,

kK"
1C.x; y/kL1

x L1
y

. jjjV jjj; (4.18)

kv.x/K"
1C.x; y/kL1

yBx
. kvkBjjjV jjj; (4.19)

for any v 2 B1. With f a Schwartz function, define a kernel

eK"
1C.x; y/ D

Z

R3

f .x0/T
"
1C.x0; x; y/ dx0 (4.20)

with the integral being understood as distributional duality pairing. Then uni-

formly in " > 0,

keK"
1C.x; y/kL1

x L1
y

. jjjf V jjj; (4.21)

kv.x/eK"
1C.x; y/kL1

yBx
. kvkB jjjf V jjj; (4.22)

for any v 2 B1.

Proof. From (2.12) one has for all " > 0,

kK"
1C.x; y/kL1

x L1
y

� const �

1Z

�1

Z

S2

jL.t; !/j dtd! D const � jjjV jjj (4.23)

which is (4.18). For the second estimate (4.19) we invoke Lemma 2.4, viz.

kv.x/K"
1C.x; y/kL1

yBx
D const �

Z

R3

jjjv.x/juj�2L.juj � 2 Ou � x; Ou/jjj du

D const �

Z

S2

1Z

0

jjjv.x/L.t � 2! � x; !/jjj dtd! (4.24)

. kvkB jjjV jjj (4.25)

as claimed.

Next,

Fx;y
eK"

1C.�1; �/ D

Z

R3

Of .�0/F
�1
x0

Fx;yT
"
1C.�0; �1; �/ d�0

D

Z

R3

Of .�0/ yV .�1 � �0/

j�1 C �j2 � j�j2 C i"
d�0 D

bf V .�1/

j�1 C �j2 � j�j2 C i"
:

(4.26)

In view of (2.5), this leads to the kernelK"
1C associated with the potential f V . �
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Next, we define the operation of contraction:

Lemma 4.3. For X 2 X , the contraction of T 2 Y by X is

.XT /.x; y/ WD

Z

R6

X.x0; y0/T .x0; x; y � y0/ dx0 dy0: (4.27)

Then XT 2 Xx;y and kXT kX � kT kY kXkX . We interpret the right-hand side

of (4.27) relative to the Fourier variable:

F
�1
�

� Z

R3

Fy0
X.x0; �/Fy0

T .x0; x; �/ dx0

�
.y/: (4.28)

The integral is absolutely convergent and the inverse Fourier transform relative

to � is a tempered distribution.

Proof. We have Fy0
X.x0; �/ 2 L1

x0;� and Fy0
T .x0; x; �/ 2 L1

x L
1
x0

, whence the

claim about the integral in brackets. The estimate kXT kX � kT kY kXkX follows

from the definition of the space Y :






Z

R6

X.x0; y0/T .x0; x; y � y0/ dx0 dy0






Xx;y

�

Z

R3

k.X.�; y0/T /.x; y � y0/kXx;y
dy0

D

Z

R3

k.X.�; y0/T /.x; y/kXx;y
dy0

. kT kY

Z

R3

kX.�; y0/kV �1Bx
dy0 � kT kY kXkX

and we are done. �

The previous lemma allows us to prove that Y is a Banach algebra under the

composition ~. This will allow us to prove the key property that T "
nC 2 Y starting

from the case T1C 2 Y , which we now state.

Lemma 4.4. Y defined by (4.15) is a Banach algebra with the operation ~ defined

in the ambient algebra Z.
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Proof. The fact that ~ is associative (and non-commutative) is clear inZ, and the

unit element is given by (4.17). Since Y � Z, the same is true in Y .

The definitions of X and Y imply that each contraction XT (see (4.27)) is in

X and kXT kX . kXkX kT kY . We have
Z

R3

f .x0/T3.x0; x2; y/ dx0

D

Z

R9

f .x0/T1.x0; x1; y1/T2.x1; x2; y � y1/ dx1 dy1 dx0:

(4.29)

As in the case of (4.27), the y-integral is to be understood in the distributional

Fourier sense. Integrating in x0, we obtain an expression of the form XT2 for

X 2 X with kXkX . kf kV �1BkT1kY . Then XT2 belongs to X as stated above

and has a norm at most . kf kV �1BkT1kY kT2kY . Thus, T3 D T1 ~ T2 2 Y and

kT1 ~ T2kY � CkT1kY kT2kY

with some absolute constant C . Multiplying the norm by C removes this constant

from the previous inequality, and so Y is an algebra under this new norm. �

Corollary 4.5. Let V be Schwartz and apply Definition 4.2 with v D V , the

potential. Then for every " > 0 we have T "
1C 2 Y and

sup
">0

kT "
1CkY . kV kB C kV k

PB
1
2
: (4.30)

Proof. By (4.5) we have

sup
">0

kT "
1CkZ . kV k

PB
1
2
:

It remains to show that

sup
">0






Z

R3

f .x0/T
"
1C.x0; x; y/ dx0






Xx;y

. kV kB jjjf V jjj: (4.31)

In view of (4.14) this is implied by Lemma 4.2. �

We are now in a position to obtain the key representation result concerning the

partial wave operators WnC, see (2.2). In what follows, we let B� be the space

obtained as the closure of the Schwartz functions under the norm

k � kB� WD k � kB C k � k
PB

1
2
;

see (3.1). We defineB� as the space obtained as the closure of Schwartz functions

under the norm k � kB� .
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Proposition 4.6. Let V be a Schwartz potential. Then T "
nC 2 Y for any n � 1 and

" > 0 and

sup
">0

kT "
nCkY � C nkV kn

B� (4.32)

with some absolute constant C . Moreover, for all Schwartz functions f one has

.W "
nCf /.x/ D

Z

S2

Z

R3

g"
n.x; dy; !/f .S!x � y/ �.d!/

(4.33)

where for fixed x 2 R3, ! 2 S2 the expression g"
n.x; �; !/ is a measure satisfying

sup
">0

Z

S2

kg"
n.x; dy; !/kMyL1

x
d! � C nkV kn

B� (4.34)

where k � kM refers to the total variation norm of Borel measures. The same

conclusion also holds if V 2 B�.

Proof. First, T "
nC D T "

1C ~ T "
.n�1/C

. Corollary 4.5 and the algebra property of Y

imply (4.32) by induction. Second, we have

W "
nC D .�1/n1R3T "

nC D .�1/n1R3.T "
.n�1/C ~ T "

1C/

D �..�1/n�1
1R3T "

.n�1/C/T
"
1C D �W "

.n�1/CT
"
1C:

(4.35)

The notation in the second line contraction of a kernel in Y by an element of X ;

this follows again by induction starting from W "
0C D 1R3 via (4.27). By the

boundedness of T "
nC in Y it follows that the right-hand side of (4.35) is well-

defined in Y . Thus, by the first equality sign in (4.35),

sup
">0

kW "
nCkX � k1R3kV �1B sup

">0

kT "
nCkY � C nC1jjjV jjjkV kn

B�

� C nC1kV knC1
B�

:
(4.36)

We denote the kernel of W "
1C by X

"
V , where V is the potential. Thus,

X
"
V .x; y/ D �

Z

R3

T "
1C.x0; x; y/ dx0 D �.1R3T "

1C/.x; y/ 2 X:

By (4.35),

W "
nC.x; y/ D �

Z

R6

W "
.n�1/C.x

0; y0/T "
1C.x

0; x; y � y0/ dx0dy0

D

Z

R3

X
"
f "

y0 V
.x; y � y0/ dy0:

(4.37)

Here we wrote f "
y0.x

0/ D W "
.n�1/C

.x0; y0/ and we used (4.26).
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We now invoke the representation from Corollary 2.2. Specifically, by (2.13)

there exists g"
1;f "

y0
.x; dy; !/ so that for every � 2 S one has

.X"
f "

y0 V
�/.x/ D

Z

S2

Z

R3

g"
1;f "

y0
.x; dy; !/�.S!x � y/ �.d!/

where for fixed x 2 R3, ! 2 S2 the expression g"
1;f "

y0
.x; �; !/ is a measure

satisfying

sup
">0

Z

S2

kg"
1;f "

y0
.x; dy; !/kMyL1

x
d! � C jjjf "

y0V jjj

D CkW "
.n�1/C.x

0; y0/kV �1Bx0 :

Therefore, with �y0.�/ WD �.� � y0/,

.W "
nC�/.x/ D

Z

R3

W "
nC.x; y/�.x � y/ dy

D

Z

R6

X
"
f "

y0 V .x; y � y0/�.x � y/ dydy0

D

Z

R6

X
"
f "

y0 V
.x; y/�y0.x � y/ dydy0

D

Z

R3

.X"
f "

y0 V �y0/.x/ dy0

D

Z

R3

Z

S2

Z

R3

g"
1;f "

y0
.x; dy; !/�.S!x � y � y0/ �.d!/ dy0

D

Z

S2

Z

R3

� Z

R3

g"
1;f "

y0
.x; d.y � y0/; !/ dy0

�
�.S!x � y/ �.d!/:

(4.38)

The expressions in brackets is the structure function

gn.x; dy; !/ WD

Z

R3

g"
1;f "

y0
.x; d.y � y0/; !/ dy0:

(4.39)

In fact, it is a measure in the y-coordinate and

.W "
nC�/.x/ D

Z

S2

Z

R3

gn.x; dy; !/�.S!x � y/ �.d!/:
(4.40)
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Moreover, we have the bounds, uniformly in " > 0
Z

S2

kg"
n.x; dy; !/kMyL1

x
d!

D

Z

S2

Z

R3

kg"
1;f "

y0
.x; d.y � y0/; !/kMyL1

x
dy0d!

D

Z

S2

Z

R3

kg"
1;f "

y0
.x; dy; !/kMyL1

x
dy0d!

� C

Z

R3

kW "
.n�1/C.x

0; y0/kV �1Bx0 dy
0

D CkW "
.n�1/C.x

0; y0/kL1
y0 V �1Bx0

� CkW "
.n�1/CkX

� C nkV kn
B�

by (4.36). This concludes the argument under the assumption that f "
y0.x

0/ is a

Schwartz function. To remove this assumption, we can make

kW "
.n�1/C.x

0; y0/ � Qf "
y0.x

0/kX

arbitrarily small with a Schwartz function Qf "
y0.x

0/ in R6. Then the previous

calculation shows that
Z

S2

kg"
n.x; dy; !/� Qg"

n.x; dy; !/kMyL1
x
d!

can be made as small as we wish where Qg"
n.x; dy; !/ is the function generated by

Qf "
y0.x

0/. Passing to the limit concludes the proof.

To remove the assumption that V be a Schwartz function, we approximate

V 2 B� by Schwartz functions in the norm k � kB� . We achieve convergence of of

the functions gn by means of (4.34) and of the kernelsW "
nC themselves by means

of (4.36). To be specific, denoting by eW "
nC and Qgn the quantities corresponding

to the potential QV , taking differences yields

k eW "
nC �W "

nCkX C

Z

S2

kg"
n.x; dy; !/ � Qg"

n.x; dy; !/kMyL1
x
d!

� C nkV � QV kB�.kV kn�1
B�

C k QV kn�1
B�

/

uniformly in " > 0. �
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To prove Theorem 1.2 we now simply sum the series
P1

nD1 gn which can be

done in view of the previous proposition, provided c0 is sufficiently small.
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