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Structure formulas for wave operators
under a small scaling invariant condition

Marius Beceanu! and Wilhelm Schlag?

Abstract. We continue our work on the structure formula for the intertwining wave
operators W associated with H = —A + V in R3, cf. [3]. We consider small potentials
relative to a scaling invariant norm.

Mathematics Subject Classification (2010). 35P25, 47A40, 47A10, 81U30.

Keywords. Intertwining wave operators.

1. Introduction

In a recent paper [3] we obtained a structure formula for the intertwining wave
operators for H = —A + V in three dimensions. We imposed the following
condition on the potential V. Define B#, 8 > 0, as L? functions with

o0
1 Igs o= Mgz fll2 + D 2P0  cgeaisy flz <00 (11)
j=0

Then for V real-valued, V € B? (R®), B > %, the wave operators

Wy = lim eitHe—itH()
t—=o0
exist in the strong L? sense, with Hy = —A. These operators satisfy for contin-

uous, bounded f on the line, f(H)Wx = Wi f(Hp), and P. = WLW], where
P. is the projection onto the absolutely continuous spectral subspace of H in L2.
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There is no singular continuous spectrum (asymptotic completeness). Yajima [6]
and [7], established the L? boundedness of the wave operators assuming that zero
energy is neither an eigenvalue nor a resonance.

In [3] we proved the following theorem. By B'* we mean B? for some 8 > 1.
By M, we mean the Borel measures on Euclidean space.

Theorem 1.1 ([3]). Let V € BT be real-valued and assume that H = —A+V ad-
mits no eigenfunction or resonance at zero energy. Then there exists g(x,y,w) €
LIM, L, ie.,

/ ||g(x1dysw)||MyL§° do < 00
52

such that for any f € L? one has the representation formula

We f)(x) = f(x) + / / g(x. dy. ) f(Sux — y) do.
SZ ]R3

where Spx = x —2(x - w)w is a reflection. A similar result holds for W_.

As an application, suppose X is any Banach space of measurable functions on
R3 which is invariant under translations and reflections, and in which Schwartz
functions are dense. Assume that ||1g f|x < A|| f|x for all half spaces H C R3
and f € X with some uniform constant A. Then

Wi flx <ACV)| fllx forall feX (1.2)

where C (V') is a constant depending on V' alone. In particular, this recovers Ya-
jima’s L? boundedness of the wave operators. Furthermore, [3] obtains quantita-
tive estimates on the norm in (1.2) as well as on C(V'). These bounds blow up as
B — 1withV € B# . Nevertheless, we remark that one can obtain Theorem 1.1, al-
beit without quantitative control, under the condition V € B! although the details
are not worked out in [3].

The goal here is to seek a scaling invariant condition on V' under which a
structure formula (1.6) can be obtained. The natural scaling of the Schrodinger
operator H = —A + V is V. — A2V(Ax), A > 0 in any dimension. In the
framework of the B-spaces above (1.1) the critical norm relative to this scaling is
B3 (R3) where

o0
I/ lgs := sz L2 <jxj<2i+17.f 2 (1.3)

Jj=—00
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This norm is invariant under the aforementioned scaling provided A is a power of 2.
However, it is currently unclear whether Theorem 1.1 might hold for potentials
V e B Itis possible that the threshold 8 = 1 could be optimal for the B?
spaces. It is natural to investigate the scaling invariant class for several reasons:
(i) it is an optimal scenario, corresponding to the |x|~2 decay rate which balances
the Laplacian (ii) it arises in widely-studied energy critical nonlinear equations
such as the u® wave equation in R>:

Uy —Au—u’ =0

which admits explicit the 1-parameter stationary solutions u(z, x) = A2 W(Ax) =:
Wy(x), A >0, W(x) = (1 + |x|2/3)_%. In the radial class, these are the only
stationary nonzero solutions of finite energy. Linearizing about W) yields the
family of Schrodinger operators Hy = —A — A2W*(Ax). It is therefore desirable
to work with a condition on the potential that is uniform in A > 0.

This paper presents such a norm, but currently we only consider small poten-
tials in this norm. To formulate it, we recall some notation.

Definition 1.1. For any Schwartz function V' we define ||V|| = || Ly |, 1 where

o0
Ly(t,w) = / V(—tw)es " rdt
0

is as above. For any Schwartz function v in R3
o0
Iolls = sup [ By vl ds (14)
—00

where I1 is a 2-dimensional plane through the origin, and I1(¢) = I1 + tN , N
being the unit norm to IT.

Clearly, ||v]l < |lvlls- We will show below that |[v|p < oo is finite for
Schwartz functions. We will do this by dominating ||v|| g by a stronger norm which
is also scaling invariant and more explicit, cf. Lemma 3.1. This more explicit norm
involves half of a derivative on 2-planes. So it is not a pure decay condition on
the potential. The key analytical arguments in this paper are based on the precise
norm as defined in (1.4). The main result of this paper is the following one.
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Theorem 1.2. There exists co > 0 with the following property: for any real-valued
V with |V + ”V”B% < co, there exists g(x, y,w) € LLM, L with

[ gt dy. @l 230 do 5 (15)
g2

such that for any f € L? one has the representation formula

W)@ = )+ [ [etedrafSux=ndo. (g
$2 R3

where Spx = x —2(x - w)w is a reflection. A similar result holds for W_.

The spectral properties of H = —A + V are irrelevant under the smallness
assumption. For L! — L dispersive estimates of the Schrddinger evolution
e p. with a scaling-invariant condition on ¥ in R?® without any smallness as-
sumption, see [2]. It is not clear to the authors if there might be other scaling-
invariant norms which are better suited for structure theorems for the wave opera-
tors. This question is particularly relevant with respect to large potentials and the
Wiener formalism that is instrumental for Theorem 1.1.

2. The wave operators and their expansion

We now recall the formalism of the wave operator W, going back to Kato [5].
First, by [3, Lemma 2.2], B? — L3 (using Lorentz space notation). If
V e L%’l, then the wave operators Wy exist, and are isometries from L? onto
the range of P., the projection onto the continuous spectrum of H. Moreover,
if IV is small in L%’l, then H has no eigenvalues and no zero energy resonance,
and the spectrum is purely absolutely continuous. In other words, W are unitary
operators. Moreover, for any f € L?(R?) the integral

oo

Wif=f+i /e”HVe—”HOf dt 2.1)
0

converges in the strong sense. See for example Section 4 of [3] for more details.
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Expanding (2.1) iteratively by means of the Duhamel formula one has

Wef=f+Wirf+.. .+ Warf+--,

Wiy f =i / e HAYIA £ dy

>0

Wos f =i" / e U=sDAypmil1=s)Ay i1 AY it £ dgy | ds,_y
t>51>...>5;,-1>0

(2.2)

for £ € L2. For small potentials one can actually sum this series, which will
give Theorem 1.2. In addition to the operators W, we shall work with their
regularized version,

Wn8+f L / eltn—tn—1D)Ho—eltn—tn—1)y,  ,ilta—t1)Ho—e(t2~11)
0<t1 <...<ty VelttHo—etvyo=itnHo £ gy -y,
(2.3)
where ¢ > 0. By [3, Lemma 4.3], W,f+ — W, 4+ in the strong L? sense as
¢ — 0+. One has the following representation formulas for each n > 1 going
back to Yajima, see [3, Lemma 4.7]:

005, f8) = (1" [ ST 0%, 30 - g0 dy d 2.4)
R

where for any ¢ > 0, T}, (xo, X1, y) is defined in the sense of distributions as

1 P . V(& — &)
(T Ty Tip) (o, §1.1) := & o =2 £ e (2.5)

and, more generally, for all # > 1 we have

[V &) dE ... déy

(G F ey TEL) (Eor . 1) 1= / =1 26

w300 (& + P = n* £ ie)
=1
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Even though the first variable does not play a role in (2.4), it is essential in order
to express T,;, in terms of 77, by means of a convolution structure. In fact, we
(formally) compose three variable kernels T'(xg, x1, y) on R by the rule

(Th ® T2)(x0, x2,y) = / T1(x0, x1, y1)Ta(x1, X2,y — y1) dx1 dy;. 2.7)
]R6

Dually (on the Fourier side), ® is given by

(T Frzoy (T1 ® T2)) (0. £2. 1)
=[G TG b @ Ty T E B ds, Y
R3
So ® consists of convolution in the y variable (or multiplication in the dual
variable 1), and composition of operators relative to the other two variables. In
the dual coordinates &, &, and &, composition of operators is preserved. Note

the order of the variables: xg is the “input”, x, the “output" variable, whereas y
is the dual energy variable.

Lemma 2.1. Let V be a Schwartz potential. For all ¢ > 0 and any n,m > 1
Tt ® T = Tinqmyt
in the sense of (2.8).

Proof. By inspection

. V(g — &) V(£ — &)
3:/ I?X Ta ’ ’ = . . . d
xo ¥ X2,y 2+(§0 £.1m) 3 |Ez+77|2—|71|2+18 B +7I|2—|71|2+l8 &1
R
= ?;Olgxz,y(Tli ® T18+)(§0’ €2,1)
(2.9)

both in the pointwise sense, as well as in the space of distributions. The general
case follows by induction. O

In order to prove Theorem 1.2, we will show that there exists an algebra under ®
with the norms of Definition 1.1. In [3, Section 5] it was shown that

We £ = [ K xS () d.
]R3

A . (2.10)
ix-€ iz 2
Ve o2k dé&dn.

K¢ (x,z) = — lim -
B N [T
R
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Furthermore, the kernels K7, (x, z) are of the form,
K, (x,z) =const- Ly(|z| —2x - Z,2)

where

o0
L.(r,w) = / V(—sw)e! T10le=55 5 ds. (2.11)
0

In the previous line w need not be a unit vector. Sending ¢ — 0, one has
K{, (x,z) = const- |z| 2L(|z| — 2x - 2, 2) (2.12)

where for any w € $2, and r € R,
o0
L(r,w)=Ly(r,w) = / ﬁ(—sw)ei% sds.
0

Here V is any Schwartz function. The following corollary from [3] shows how the
structure function for Wiy arises easily from this formalism. It also explains how
the norm || - || arises in Definition 1.1.

Corollary 2.2. Let V be a Schwartz function. Define S, := x — 2(w - x)w to be
the reflection about the plane w*. Then for all Schwartz functions f

Wiy )(x) = //gl(x,dy,w)f(wa —y)o(dw). (2.13)
§2 R3

For fixed x € R3, w € $? the function g (x,-, ) is a measure satisfying
[1ady. ol oz do < [ [ILveolardo =11 (5 1
g2 §2 R

with || - || being the total variation norm for Borel measures.

Proof. From eq. (2.10) and (2.12),

W+ Hx) = //L(r —2w-x,0)f(x —rw)drdw
0 g2 (2.15)
= //]l[,>_2w.x]L(r, w)f(x —2(w- x)o —rw)drdw.

$2 R
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Define

g1(x,dy, ®) := 1120 0>0 L(y - @, 0) 3} _(dy). (2.16)

Here ¢, := {rw | r € R} is the line along w, and g'%, is the 1-dimensional
Hausdorff measure on the line ¢,. Then (2.13) holds and

Ig1(x. dy, )|z = [L(y - @, )| Hy (dy) (2.17)
which implies (2.14). O

This result does not explain the origin of the other norm, || V|| g in Definition 1.1.
That norm is needed to bound the higher order structure functions g,, n > 2.
The remainder of this paper will be devoted to working out the details of this
construction. To end this section, we recall how [3] fails to reach the scaling-
invariant space B~ and we explain how ||V || is designed to circumvent the exact
difficulty responsible for the loss of % power in Theorem 1.1.

First, we point out the connection between || - || and || - |
Proposition 6.1].

|B y as given by [3,

Proposition 2.3. Let L = Ly be as above, and V a Schwartz function. Then,
withr € Rand w € $2,

ILG.o)ll2, <1V 2 (2.18)
and
k/2
IL(r. o)y, < 122 P21k 2y (IF DL, )z, IV - (2.19)
€
Moreover, forany 0 < a < 1,

> 2% gk iy (DL @) 2, S 1V e (2.20)
keZ

The aforementioned loss of a % power occurred in the following estimate (6.9)
from [3]:

1.
2

€ <
PO,y S Bl VI,

yDx
In view of (2.12) this is the same as (in the limit ¢ — 0)

1
2

o0
[ [t =2x-0.0),y dtdo < 1ln v,
S2 0

We now show how to avoid this loss by means of the norm (1.4).
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Lemma 2.4. For Schwartz functions v,V one has

/ / oLyt - 2x - 0. 0)| ditdo < [o]|5IV]. 221)
$2 0

Proof. Writing o> (s) = ot + s, we compute

/ / lv(x)Ly(t —2x -0, )| dtdw

S22 0
5///|||5wl(s)v(x)LV(t—2x-a),a))|||dtdsda)
S§2—00 0
e o0 (2.22)
5///|LV(t—2s,a))||||8wL(s)v(x)|||dtdsda)
§2 —00 —00
< / / Ly (o) dido sup [ 16,10l ds
2~ a)ESz_oo
= IVIllvls
which is (2.21). O

Before continuing with the main argument, the following section exhibits
norms that dominate those in Definition 1.1, but which are more explicit. We also
check that || - || g is scaling invariant.

3. A closer look at the norms of Definition 1.1

The following lemma bounds the rather implicit || - || p-norm by a more explicit
Sobolev-type norm. It appears that this cannot be improved significantly.

Lemma 3.1. The norm || - || g is scaling invariant in the sense that with v)(x) :=
A72v(x/A), A > 0, one has ||v||p = ||va|B. Furthermore,

o0

k _ *
Iola <€ sup [ 328w a0 by, ds =i Dol G

a)ESz_OO kez
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where x' € ot and Y1, v(27*x') = 1 for x' € w* \ {0} is a Littlewood-
Paley partition of unity. The norm ||v|} is finite on Schwartz functions, and
ol = lallj for A =27 e e 2

Proof. One has Ly (t,w) = A™'Ly, (tA~', ) whence ||V, || = ||[V]|l. With y a
standard bump function on the line,
o
IVallg = sup lim [ 157" y((x -0 —1)/OA2V(x/A) || dt
wes2 5—)0_
= Sunglgl ATHIG/ AT (/) -0 = 1/2) [ (8/ANAT2V(x/A) | di
w€eS AN
o
= sup lim | |5~ (/) -0 =) /§AT2V(x/A) | dt
we$?
= sup lim [ [~ x((x @ —0)/85)V(x)|Ldr = ||V|p
we$2 0
—00

which is the scaling invariance of the B-norm.

To prove (3.1) we fix the plane IT to be x; = 0, or equivalently we set
w = (1,0,0). One has, with vy = §m)v,

Ly, (1, @) =/?x2,x3v(s,—w2r, —w3T)el 22500 £ g ¢

so that

o0

Iolls = / H Fay g0, —wr7, 30 vdr|  ds

Ll

t.w
o] T 27

o Ju] ]

-0 0

oo
‘ / T xp,x3V(s, —T sin O sin @,
0

—7sinfcos¢)e' 2! Tdt| sinh dpdo

o0 o0 T o0
=7 /ds /dt/‘/EFxZ,x3v(s,—rsinq&,—rcosd))e’%’rdr d
—00 —00 0 0
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oo T
&
<CZ/ 2(//1[|t|:2k]
—00 0

k€eZ "~
o0

‘/?xe3v(s —tsing,

—zcosp)e’E rdr

1
2 2

d¢dz) ds.

For a Schwartz function w in R? define the sublinear operator A;w as

oo
Akw = (/ /]l |¢|~2k]
—00 0

Then, on the one hand,

o0

/ﬁ)(r sing, Tcosg)e’ 2 tdr

2 1
d¢dt) (32

T

o0
2
> (Aew)? 5//‘/ (tsing, tcosd)e' 2! tdt| dedt
keZ 00 0 0
> (3.3)
< [ [lsing. ceospPle dvdp = w2,
2
0 0

and, on the other hand,

oo T o0 . 2
> 2K (Aw)® 5 / /‘t/lf)(rsin¢,rcos¢)e’§’rdr dedt
0

kezZ 00 0
5//|3t(ru3(rsin¢,rcos¢))|2drd¢
0 0
S//[ 1|1I)(rsin¢,tcos¢)|2+|(8rﬁ))(tsin¢,rcos¢)|2r]rdtd¢
0 0
< @2, + g1Z8, B3 (3.4)
H?2

The first term in the last line is obtained by Hardy’s inequality in the & variable,
and we bound it further by applying Hardy’s inequality in the x variable:

(e

1 1
= 2 = -2 <
g3 = HxPwlz = lx72 [xfwllz < [x[w] 1 (3.5)



978 M. Beceanu and W. Schlag

For second term in (3.4) we first rewrite d,w as

3, W(E) = ivg / e Ew(x) dx

et
a . (3.6)
= /e—ix'fa(x,g)|x|w(x) dx, a(x,§) = T =% &
X
R2
Therefore,
1. R
HENZ0rwll2 < [ X[x[w] - (3.7)
By Lemma 3.2 below one has ||fc|x|w||H% < | |x|w||H%. Combining this bound

with (3.5) we conclude that

2k 2 < 2
> 2wy S llxfwll (3.8)
keZ
By interpolation
k
Y 22 Aw 5 lwll (3.9)
keZ

where in the notation of the real interpolation method

lwllse = Awll 1 Hxtwll 1) - (3.10)

2

By Lemma 3.2 the right-hand side is bounded by |w/||%; and (3.1) is proved. The
other stated properties of || - || are immediate. O

The previous proof required two technical properties which we now establish.
They are special cases of more general statements, but we limit ourselves to what
is needed here.

Lemma 3.2. The following two properties hold.:

e For any Schwartz function f in R? one has ||fcf||H% < ”f”H% where
X =x/|x|.
o With || - |5 defined as, cf. (3.1)

Y 25y @ Fxyw))|

keZ

—- *
by = 1015

one has

< k
(Ul - xlwl ) S ol
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Proof. The first property cannot simply be obtained by interpolating between the
obvious L2 property and the corresponding H! inequality. Indeed, the latter
would require Hardy’s inequality in R? with an r~! weight, which fails. So we
proceed differently. Using polar coordinates and complex notation we expand f
into a Fourier series:

1
f(reie) — Zan (r)eZJ'[inG’ an(r) — /f(reZNiG)e—Zn'ina do.
0

nez

By Plancherel
o
£ 113 :const-Z/|an(r)|2rdr (3.11)
nezy,
and

1A 150 = 1915 + 1Ir " 9e £ 113

T 2 3.12
= const - Z /(|a;(r)|2 + ’:—zlan(r)|2)r dr. G-12)

nez 0

By interpolation,

o0
1 n
112, =X [aedianr+ aopra. e
neZO
Since X = 27 =: ¢(#) we conclude that
i n + 1]
1 n+
le@f12y = Y [ ane)P + sy dr
nEZO
. (3.14)
2
i, + [
H2 r
0
Since

1
ao(r) = / F(re(9)) b,
0
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the final term in (3.14) is

00 oo 1
/|ao(rr)|2r e[| SO, o
0 0 0

_1 2
Sz £z

2
S WA et
2

(3.15)

by Hardy, and the first claim is proved.

To prove the second claim we first dominate the weighted norm via a smooth
Littlewood—Paley partition of unity, viz.

S WweEokwl g $ Y X ul . e

keZ keZ

Ixlwll 4

For the final inequality it suffices to verify the case k = 0 by scaling. Then, by the
fractional Leibnitz rule and with {1 = ¥ another Littlewood—Paley function,

Iy lxlwl g < 11X @) ool Dw]l + IV T @) Y (ow]l s

SyEwl .

1 1
2 2

(3.17)

where the final step is obtained by Sobolev embedding. Clearly,

<) lve owl . (3.18)

keZ

il ,y

By the real interpolation property, see [3, Section 2], [4]

Ul il D S (X Ive ™ awl . Y 2 jwe owl )

keZ keZ

~ Y 2%y Foul

keZ

.1
= |wlz

1
2

(3.19)

and we are done. O
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4. The convolution algebra and the proof of Theorem 1.2

We now present the algebra formalism in the scaling invariant setting.
Definition 4.1. The Banach space Z of tempered distributions is defined as

Z :={T(x0,x1,y) € 8'(R’) | FT(x0.x1.7) € Ly’LE LY} (4.1)
with norm

||T||Z = nseulé)s ||5FyT(X0,X1, 77)||L§§<1’L)1(0 (42)

sup being the essential supremum. We add the identity / to Z, which corresponds
to the kernel T = §¢(y)do(x1 — x0). The convolution ® on Ty, T, € Z is defined
by

(T1 ® To)(x0. X2, y) = F; " [/ FyT1(xo, x1, M) TFyT2(x1, x2, 1) dx1j|(y)- (4.3)
R3

Lemma 4.1. Let Z is a Banach algebra under ® with identity element 1. If
V € L3%! then T{, defined by (2.5) belongs to Z and F, T{, is given by

FyTi (x0,x1,1) = e Ro(In|? — ig)(xo, x1) V(xo) e'*07. 4.4)
Moreover,
£ < <
SWp Iy llz S IVilzazn S VI, (4.5)
If, in addition, ||V ||p3/2.1 is sufficiently small, then T3 also belongs to Z and
I+Tiped -TH=0-THe( +Ti) =1 (4.6)

Proof. Z is a Banach space. The expressions in (4.3) appearing in brackets
satisfies

sup
neR3

/ FyTi(x0, x1, MITyTa(x1, X2, m) dx;
3 L;.'FZ)L/]\'O

R 4.7)
= 19T ”L‘,;"L%;L;O ||3'~yT2||L;;OLC;EL;1

= [|T1lzI T2l z

and so it is a tempered distribution in R®. Therefore, the composition (4.3) is
well-defined in Z and

I1T1 ® T2z < |ThlzII T2z

whence Z is a Banach algebra under || - || z.
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Formula (4.4) follows from (2.5) by taking Fourier transforms.
By the resolvent identity

(I +Ro(2)V)™' =1 -Ry(2)V, Ry(z) =+ Ro(2)V)'Ro(z) (4.8)

for Imz > 0. Here Ry (z) = (H — z)~! which exists for Imz > 0 since H is
self-adjoint. For V small in L3-! it follows that

1
sup [|Ro()VAI = CIIVI 3401/ Nloo = S 11 lleo-

Imz>0

Hence (I + Ry (z)V)~! exists as a bounded operator on L* uniformly in Im z > 0,
and we may also take the limit Im z > 0. In particular,

Ry (2): L3 (R?) — L®(R?)
From (4.8),
Ro(In]> —ie)V — Ry (In]> —ie)V + Ro(In]> —ie)VRy (> —ie)V =0 (4.9)
whence, with e?*7 f(x) =: (M, F)(x),

M Ro(|n]? —ie)(xo. x1)V(x0) My — My Ry (Inf* —ie)(xo, x1)V (x0) My
+ M, Ro(Inl? —ie)(x2. x1)V(x2) My o My Ry (|nf? — i) (xo, x2)V(x0) My
=0
(4.10)

where o signifies integration. In view of (4.4) this is tantamount to
0=T, -T{ +T;, . ®TS (4.11)

or (I +Tf,)® (I —Tf) = I. The second identity in (4.6) is valid since the
resolvent identity also implies (4.9) with Ry and Ry reversed:

Ro(Inl* —ie)V = Ry (In]> —=ie)V + Ry (In]> —ie)VRo(In|*> —ie)V =0 (4.12)
and so that same argument as before concludes the proof. O

The following spaces play a key role in the proof of Theorem 1.2. The Y -space
in particular allows us to inductively bound the structure function of each W7, .

Definition 4.2. Let B be the closure of the Schwartz functions in R? under the
norm || - ||. Fix any measurable function v : R®> — R which does not vanish a.e.,
and so that ||v] g < oo. We introduce the following structures depending on v.
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e The seminormed space
v 1B = { f measurable | v(x) f(x) € B}
with the seminorm || f||,—15 := [[vf]l.

e Let X the space of two-variable kernels

X = {ae e BL®. L) | @/)() = /%(x,y)f(x _yydy. felL®

R3
G o) < 000 12050 gyorm, < 09,
(4.13)
with norm (the first v factor is only for homogeneity)
1%lx 1= [v]5 1%l Loy + / lo)XCe s, dy. 41

R3
e Let Y be the space of three-variable kernels

Y .= {T(xo,xl,y) € Z |forall feL®nv !B

(fT)(x.y) = / F(x0)T (xo. x1.y) dxo € xxl,y},
]R3

(4.15)
with norm
ITly =Tz + 1Tl se-15, %0, ) (4.16)
We adjoin an identity element to Y, in the form of
I(x0,x1,y) = 8xo(x1)80(y) = 8x,(x0)S0(¥). 4.17)

Notice that in (4.14) we use the stronger norm |[v| g rather than ||v||. The
presence of ||T|z in (4.16) will require us to ensure that ||V ||p < oo as well as
<1
V e B2.
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Lemma 4.2. Let V be a Schwartz function, and let K5 be defined in terms of V.
Then uniformly in ¢ > 0,

1K5 9l eers S VI (4.18)
()KL e s, < IlBIVIL (4.19)
for any v € B'. With f a Schwartz function, define a kernel
flzh(x, y) = / S (x0)Tiy(x0,x,y)dxo (4.20)
Rr3

with the integral being understood as distributional duality pairing. Then uni-
formly in ¢ > 0,

1K e )l pgery S WAV (4.21)

@)K 4 2 1w, S I0IBIAVIL (4.22)

forany v € B'.

Proof. From (2.12) one has for all ¢ > 0,

o0

| K54 (x. p)llgery < comst- / / |L(t.w)|dtdw = const- |V]  (4.23)

—00 g2

which is (4.18). For the second estimate (4.19) we invoke Lemma 2.4, viz.

(KT (. )1, = Const-/|||v(X)|u|_2L(|u| —2i - x, )| du
Rr3

=const-//|||v(x)L(t—2a)-x,a))||| dtdo  (4.24)
52 0

A

vlisllV Il (4.25)

as claimed.
Next,

ey Ko, (Erm) = / PE)T Ty TE, (Go. 1. 1) dEo
- (4.26)

_ fV&)
&+l —nl* +ie

_ [ SV E &)
J TP —Inl + i

d&o

In view of (2.5), this leads to the kernel K{ associated with the potential f V. O
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Next, we define the operation of contraction:

Lemma 4.3. For X € X, the contraction of T € Y by X is

(XT)(x,y) := /%(xo, v0)T (x0,x,y — yo) dxo dyo. 4.27)
]R6

Then XT € Xy, and | XT|x < |T|y||X|x. We interpret the right-hand side
of (4.27) relative to the Fourier variable:

ﬁl[/?y()%(xo, MFy, T (x0, X, 1) de}(y)- (4.28)
R3

The integral is absolutely convergent and the inverse Fourier transform relative
to n is a tempered distribution.

Proof. We have J,,X(xo,n) € LS5, , and F,,,T(xo,x,7) € L;OL}CO, whence the
claim about the integral in brackets. The estimate | XT'||x < ||T|y|X|x follows
from the definition of the space Y':

H / X(x0,y0)T (x0,x,y — yo) dxo dyo
RS Xx.y

< / 1EC Y0 T)Cx ¥ — o) lxe , dyo
]R3

- / 1) T ) ey dyo
]R3

< ||Tllyf 1ZC. o) lly—15, dyo < I Tlly | Xllx
R3

and we are done. O
The previous lemma allows us to prove that Y is a Banach algebra under the

composition ®. This will allow us to prove the key property that 7,7, € Y starting
from the case 774+ € Y, which we now state.

Lemma 4.4. Y defined by (4.15) is a Banach algebra with the operation ® defined
in the ambient algebra Z.
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Proof. The fact that ® is associative (and non-commutative) is clear in Z, and the
unit element is given by (4.17). Since Y C Z, the same is true in Y.

The definitions of X and Y imply that each contraction X7 (see (4.27)) is in
X and [XT|x < [IX]x[IT[ly. We have

/ S (x0)T3(x0, x2,y) dxo
R3

(4.29)
:/f(xo)Tl(xO,xl,y1)Tz(xl,X2,y — y1)dxy dyy dxo.
RO
As in the case of (4.27), the y-integral is to be understood in the distributional

Fourier sense. Integrating in x(, we obtain an expression of the form X7, for
X € X with ||[X|x S | fly-18IIT1lly- Then X7, belongs to X as stated above

~

and has a norm at most < || f|ly-1 g T1 /¥ | T2]ly . Thus, T3 = Ty ® T € Y and
1Ty ® T2|ly < ClIThllyIT2]ly

with some absolute constant C. Multiplying the norm by C removes this constant
from the previous inequality, and so Y is an algebra under this new norm. |

Corollary 4.5. Let V be Schwartz and apply Definition 4.2 with v = V, the
potential. Then for every ¢ > 0 we have T{, € Y and

sup |74 lly S Ve + 1V - (4.30)

e>0

Proof. By (4.5) we have
sup ||7 ENz VI -1
o || 1+|| || || B%

It remains to show that

sup | [ oo T oxdxe| S IVIVE )
>0 Xx,y
R3
In view of (4.14) this is implied by Lemma 4.2. |

We are now in a position to obtain the key representation result concerning the
partial wave operators W, 4, see (2.2). In what follows, we let B, be the space
obtained as the closure of the Schwartz functions under the norm

F-lpc= 1l + -l

see (3.1). We define B, as the space obtained as the closure of Schwartz functions
under the norm || - | g,

%7
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Proposition 4.6. Let V be a Schwartz potential. Then T,;, € Y foranyn > 1 and
e > 0and

sup |77, ly < C"[|[VI’, (4.32)

e>0

with some absolute constant C. Moreover, for all Schwartz functions f one has

Wi W = [ [garofGa-nado) g
§2 R3

where for fixed x € R3, w € $? the expression g&(x, -, ®) is a measure satisfying

SUP/ lgn(x, dy, 0)lln, L3 do < C"||[V]|p, (4.34)
s>0Sz
where || - || refers to the total variation norm of Borel measures. The same

conclusion also holds if V € Bux.

Proof. First, T;, =T{, ® T(Sn “1)+ Corollary 4.5 and the algebra property of Y

imply (4.32) by induction. Second, we have
Wn8+ == (_l)n]l]R?) Trf+ = (—1)n]l]R3 (T(il—l)‘l' ® T18+)
= —((=1)"Mga T T+ = Wen: Tiy
The notation in the second line contraction of a kernel in Y by an element of X;
this follows again by induction starting from Wy, = 1lgs via (4.27). By the

boundedness of 7,7, in Y it follows that the right-hand side of (4.35) is well-
defined in Y. Thus, by the first equality sign in (4.35),

(4.35)

1
sup [Wy lx < Igslly—15sup 17,4 Iy < C"FHIVIIVIE,
e>0 >0

(4.36)
< Cn+1 ” V”%_H
We denote the kernel of W, by X7,, where V' is the potential. Thus,
) == [ T o) dio = (g T () € X
R3
By (4.35),
Wip(x, ) = —/ W & T (' x, y =y dx'dy’
ke 4.37)
= /X;;/V(x, y—=y)Hdy'
R3

Here we wrote fyg,(x/) = W(i—1)+(x/’ y") and we used (4.26).
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We now invoke the representation from Corollary 2.2. Specifically, by (2.13)
there exists g5 1o (x,dy, w) so that for every ¢ € S one has
£ y/

@y 010 = [ [ 2 (v.dr.09(S0x = 1) a(do)

$2 R3

where for fixed x € R?, w € $? the expression g© e (X, w) is a measure
) y/

satisfying

SUP/ [F:5 15, (X dy. @)llne, 130 do = Clfivi
= ClIWg—py+ Y )llv-13 -

Therefore, with ¢,/(-) := ¢ (- — ),

(W, ) (x) = / WE, (v ) (x — ) dy

— [ %oyt =000 - ) dvay’
RO
RO
— [yt dy
R3
N / / / 81, 7e, (¥, dy. )¢ (Sox —y = y') 0(dw) dy’

R3 $2 R3

[/ [ / gi,f;,(x,d(y—y’),w)dy’]mswx—y)o(dw>.

§2 R3 R3

(4.38)

The expressions in brackets is the structure function

anlx.dy.o)i= [ g o (rd0 =)0 (439)
R3

In fact, it is a measure in the y-coordinate and

W) = [ [ el dvop(Sox oo 4

§2 R3
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Moreover, we have the bounds, uniformly in ¢ > 0

/ 165 Cx. dy. ) llag, 25° doo
SZ

— [ [ 18515 5 d 3 = 3. 0l 50 '

$2 R3
= g3 fe (x. dy. @), Lo dy'dw
’ y/
SZ ]R3
<c / IWE 1y () -1, dY'
]R3

= ClIWen+ &'l yv-1s,
< CIWG 1+ llx
< C"IVI3,

by (4.36). This concludes the argument under the assumption that fys, (x') is a
Schwartz function. To remove this assumption, we can make

IWE 1y ('Y = £ () I

arbitrarily small with a Schwartz function f;f/(x/) in R®. Then the previous
calculation shows that

/ 165Cx. dy. ) — 85(x. dy. ) llag, 100 do
SZ

can be made as small as we wish where g; (x, dy, ®) is the function generated by
f;f, (x). Passing to the limit concludes the proof.

To remove the assumption that V' be a Schwartz function, we approximate
V € By by Schwartz functions in the norm || - | g,. We achieve convergence of of
the functions g, by means of (4.34) an(L of the kernels W, themselves by means
of (4.36). To be specific, denoting by W and g, the quantities corresponding
to the potential V, taking differences yields

1o, — W2y + / 165 (x. dy. ) — §5.(x. dy. )|, 150 do
SZ
<C"V =V VIE +I1VIED

uniformly in & > 0. O
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To prove Theorem 1.2 we now simply sum the series Y ., g» Which can be

done in view of the previous proposition, provided ¢y is sufficiently small.
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