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Abstract. For the radial energy-supercritical nonlinear wave equation
Ou = —uy + Au = +u’

on R3*! we prove the existence of a class of global in forward time C*°-smooth
solutions with infinite critical Sobolev norm H”/ 6(]R3) x H1/6(R3). These solutions
admit a precise asymptotic description and are stable under suitably small perturb-
ations. We also show that for the defocussing energy supercritical wave equation,
we can construct such solutions which moreover satisty the size condition

(0, Hlreo(uy=1) > M

for arbitrarily prescribed M > 0. These solutions are stable under suitably small
perturbations and admit a precise asymptotic description. Also, these solutions
experience infinite inflation of the critical H7/5-norm in any forward light cone.
Our method proceeds by regularization of self-similar solutions which are smooth
away from the light-cone but singular on the light-cone. The argument crucially
depends on the supercritical nature of the equation. Our approach should be seen
as part of the program initiated in [10], [11], [4].

1 Introduction

We consider in this paper the energy super-critical defocussing/focussing non-
linear wave equation on R3*1,

(1.1) Outu =u,— Autu’ =0.

The precise power does not play a significant role in the sequel, except for the
fact that the problem is energy super-critical. As far as we know, in spite of cer-
tain evidence from numerical experiments in the defocussing case that solutions
to sufficiently regular but large data appear to stay globally regular, there is no
unconditional result asserting global existence of smooth solutions belonging to
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any class of “large data,” excepting the trivial time periodic solutions in the de-
focussing case that do not depend on the spatial variable'. By large data, we
mean data which are large in the scaling invariant, hence critical Sobolev space
H% x Hs, and which do not possess some “hidden” smallness assumption?, such
as the Besov norm condition on the data u[0] = (u, u,)|,;=0

(1.2) ulO]] 2., <e

B8 @xB8’ @)
with & depending on the size of ||u[0]||z7s«z1/6. More precisely, one might con-
sider data u[0] = (u, u,)|,~o large provided?

(13) MO oy ey > b IO ggomyeiioaesy < 1
or also
(1.4) 1O gy voqes) = 00

We are interested only in C*°-smooth initial data of precisely this type, although
our construction of such data proceeds by regularizing certain self-similar solu-
tions which exhibit a singularity on the light-cone. Thus, if such smooth data
satisfy (1.4), this is due to insufficient decay at infinity, and not to some singular
behavior in finite space-time. We note here that very sharp global existence results
for data satisfying a weak Besov smallness condition such as (1.2) were derived
by FE. Planchon in [14], [15].

Our purpose in this paper is to exhibit a class of C*°-smooth, global in forward
time solutions which obey (1.4) and are thus outside the scope of a standard per-
turbative argument around zero, using the Strichartz framework. Moreover, in the
defocussing case, we show that these solutions can be forced to have arbitrarily
large amplitude* on the set {|x| > 1}. Our argument for the first result hinges cru-
cially on the energy super-critical nature of the equation, and for the second uses
both the defocussing as well as the supercritical character. As a byproduct of our
method, we also obtain the stability of our solutions with respect to suitably mild
perturbations. The main results of this paper are the following theorems.

I These solutions are, however, most likely unstable under generic perturbations.

2Such a smallness assumption can be used to show smallness of suitable critical Strichartz norms
for the free wave propagation of the data, which in turn forces the nonlinear solution essentially to
behave like a free wave.

3More precisely, the first norm ||u[0]|| HT/6(R)x FT1/6(R3) is assumed to be ext.remely large compared
to the Besov norm [|[u[0]|| ;7/6.2, 1,3, _ »1/6.2,3,» and so that the free wave propagation of the data does not
- B2 @)X BY 2 ®3)
have small critical Strichartz norms.

4Observe that any nonzero solution can be forced to have large amplitude near the origin by re-
scaling it. However, large amplitude far away from the origin corresponds (in the radial case) in some
sense to “large solutions”.
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Theorem 1.1. For both the defocussing/focussing supercritical nonlinear
wave equation (1.1) on R3*!, there exist smooth data sets (f,g) € C® x C®
decaying at infinity to zero and satisfying

1Cfs DM aromsysriomsy =00 but [|(f, @) prsmsyx 1w < 00

for any s > 7/6, and such that the corresponding evolution of (1.1) exists glob-
ally in forward time as a C*-smooth solution. These solutions are stable under
a certain class of perturbations and admit a precise asymptotic description. Fur-
thermore, these solutions satisfy

i Y[ = I ~ 1/6
Tim Jlu(t, Moy =00, Nt Mg, ~ et

¢ #0, where K, = {(t,r)|[r < t+C} forany C € R, i.e., both the critical norm and
the energy blow up asymptotically in any forward light cone.

We note that the solutions established by this theorem satisfy

Lf lrgequ=1) < 1

Also, the weak Besov norm ||u|| Bl of these solutions is small, so that they in
principle fall under the abstract Cauchy theory developed in [14],[15] (there, the
data are of finite critical Sobolev norm, but the global existence result asserted in
the preceding theorem follows easily from these works). Nonetheless, the exact
asymptotic description of the solutions possible with our method appears to go
beyond the standard Cauchy theory.

In the following theorem, we find solutions which are “more nonlinear,” as
evidenced by a highly oscillatory character, and which no longer satisfy the type
of smallness conditions required for [14],[15]; in particular, we no longer have
]| B <« 1. This remark will become clearer in Section 5. In this sense, we call
the solutlons constructed here “large solutions.”

Theorem 1.2. Let M > 0 be given arbitrarily. For the defocussing supercrit-
ical nonlinear wave equation (1.1) on R*', there exist smooth data sets
(f, 8) € C*® x C*=° decaying at infinity to zero and satisfying

“(fa g)||1-'17/6(R3)XH1/6(R3) =00 but ||(f, g)||H.y(R3)XHS71(R3) < 0
forall s > 7/6, as well as
(L.5) I f | Loqu=1) > M,

and such that the corresponding evolution of (1.1) exists globally in forward time
as a C*®-smooth solution. These solutions are stable under a certain class of
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perturbations and are not small in the Besov sense (1.2) for large M. They also
admit a precise asymptotic description. Furthermore, they satisfy

: , _ , o A 41/6
Tim gy =00, e, M, ~ ¢t
c #0, where K; ={(t,r)lr <t+C} forany C € R.

Let us also formulate two of the statements that follow from the methods of
this paper for the context of smooth compactly supported data.

Theorem 1.3. Consider the defocussing equation (1.1). For any M > 0,
there exist smooth compactly supported radial data (f, g) with support in B,(0)
that satisfy

(1.6) 1CE @)ooy > M,

so that (1.1) admits a smooth solution u for all times 0 < t < 1, which furthermore
satisfies

(1.7) o, inf | |Vx|a(q)u||L{’Lz([o,1]><R3) > 1,

1_1
pTg=2.0>2

where a(q) = % + %. Moreover, the data can be chosen from an open nonempty set

relative to the norm in (1.6).

The space-time norms in (1.7) are examples of Strichartz norms relevant in
this context. In fact, we may include any other admissible Strichartz norms in the
infimum in (1.7), as well as in the following theorem.

Theorem 1.4. Consider the defocussing equation (1.1) with the +-sign. For
any M, M, > 0, there exist smooth compactly supported radial data (f, g) with
support in some Bk (0), K > 1, such that

(/s g)||H7/6XH|/6(R3) > M,

and the evolution of these data exists on 0 < t < K/2 as a smooth function.
Moreover, with a(q) as in the previous theorem,

Cnf IV Pull o,k ke = 1

1_
1—7+§_7,p>2

and

Il f o=y > Mo>.
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Note that the inequality

o, inf ] |Vx|a(p’(nu||L§’L§?([0,K/2]><]R3) >1

1_1
pta=2.P>2

means that all the scale invariant Strichartz norms of the solution are not small,
precluding a simple perturbative argument around the free wave propagation of
the initial data. Furthermore, the condition on the support precludes a simple con-
struction piecing together small solutions in disjoint light cones. In fact, the philo-
sophy of this work is to use a perturbative approach around suitably constructed
elliptic nonlinear objects, in this case, approximate self-similar solutions. More
precisely, as in the method employed in [4], the idea is to use special singular
solutions, obtained by making a self-similar ansatz, to generate non-trivial global
dynamics via a carefully chosen regularization and solution of a perturbative prob-
lem. In fact, the regularization destroys the scaling invariance, and this turns out
to be important for the ensuing perturbative argument. We observe also that the
method of [4] grew directly out of the methods introduced in [10], [11]. In our
present context, however, we do not rely on the spectral methods and parametrix
constructions used in these references, but rather rely on the standard Strichartz
and energy estimates.

In the following section, we construct smooth self-similar solutions of the form

(1.8) uog(t, r) = t_l/f’Q(;), eitherr <torr>t,

by a reduction to a nonlinear Sturm-Liouville problem; see (2.1). We solve this
ODE by contraction off of the leading linear behavior, assuming smallness in L*.
This smallness also allows us to solve a nonlinear connection problem at an inter-
mediate point such as a :=r/t = 1/2 by the Inverse Function Theorem.

As we shall see, starting with small data at @ = 0, Q(a) exhibits a singularity
of the form |1 — a|?/3 near a = 1, which precisely fails logarithmically to belong
to the scaling critical Sobolev space H/¢(R?), and its time-derivative fails logar-
ithmically to belong to H'!/6(R?). This part of the construction does not depend
on super-criticality in any way. In fact, it can be carried out in other dimensions
and for other powers. In each case, the singularity falls logarithmically outside of
the scaling critical space. For example, in R’ for the H? x H'-critical u° equation,
the singularity is of the form |1 — a|*/?, whereas for the same equation in R? (the
energy critical one), the singularity is |1 — a|'/?.

In the second part of the construction, we first glue together the two solutions
residing inside and outside the light-cone, respectively, at » = ¢ to form a continu-
ous function u(z, ) which decays as r — oo at the rate r~!/3 (and thus fails to
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173 is generic; we may also achieve r~*/3, but

lie in H7/® at r = 00). The decay r~
then the time-derivative fails to belong to H'/% at r = co.

We then multiply the singular components of uy(z, ) by a smooth cutoff func-
tion equal to 1 away from |r — ¢| < 2C and vanishing on |r — ¢| < C, say. This
smooth function u;(z, r) no longer solves (1.1), but we show that we may add a
smooth correction v (¢, r) to u;(z, ) so that u(z, r) = u(¢, r) + v(z, r) solves (1.1).
This part of the argument depends crucially on the energy supercritical nature of
the problem (although neither the exact power nor the focussing/defocussing char-
acter is relevant). This perturbative argument relies on an interplay between the
scaling critical norm and the standard energy. We remark that the latter restricted
to r < t grows like #'/3 as t — oo due to incoming waves.

In the final part of the paper, we reconsider the self-similar solutions on the
outside of the light cone, but only in the defocussing case. We show that one of
the parameters determining the solution near the singularity ata = 1 can be chosen
arbitrarily large, leading to rapid growth and oscillation of the solution on the set
a > 1 but near a. The defocussing character of the problem permits us to extend
these solutions all the way to a — +00, where they again decay asymptotically like
a~'/3. We show that such a “large self-similar solution” can be glued to a “small
self-similar solution” inside the light cone. Truncating (parts of) this continuous
function to make it C°*°-smooth just as before, we then show that we can construct
an exact C* solution with just the behavior detailed in Theorem 1.2. The key to
obtaining the smallness gain for the nonlinear estimates comes from choosing the
time ¢t > T large enough.

We cannot possibly do justice to the large body of work that has been devoted
to studying the equation

Ou |ulf~'u =uy — Au= [ufP~'u=0

in R**! (or other dimensions) for smooth, compactly supported data over the past
fifty years. In the defocussing case, Jorgens [7] showed global existence forp < 5,
the subcritical regime. Struwe [17] then settled the energy critical case p = 5 ra-
dially, and Grillakis [6] nonradially; see the book by Shatah and Struwe [16] for
an account of these developments. A very general method to attack energy critical
problems and, in particular, recover the result of Struwe and Grillakis was de-
veloped recently by Kenig and Merle in [8]. A much more quantitative approach,
implying scattering and global space-time bounds explicitly in terms of the energy,
but more contingent on the specific structure of the equation, was established in
the work [2] by Bourgain in the context of the energy-critical defocussing radial
nonlinear Schrodinger equation. These methods were then further developed by
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Tao in [20] to treat a “slightly super-critical wave equation” (where the critical
nonlinearity is multiplied by a logarithmic factor). In this context, we also men-
tion Struwe’s recent work on energy super-critical wave equations on R**! with
exponential type nonlinearities, [18], [19]. Observe that all pure power nonlinear
wave equations on R?*! of the form Ou = +|u|’~'u, p > 1, are energy-subcritical.
Lebeau [13, 12] studies instability of solutions to semi-linear equations including
the supercritical equations such as (1.1), again in the defocussing case, relative
to weaker norms than the scaling critical ones. We remark that the self-similar
solutions constructed in the following section belong to all spaces of the form

H 5 (R3) x Hs~*(R%)

with ¢ > 0, provided we restrict them to the interior of the light-cone. It is conceiv-
able that this might allow one to obtain aspects of the supercritical ill-posedness
results as in Lebeau’s work by solving backward from ¢ = 1 to ¢ = O inside of the
cone. However, we do not pursue such matters here.

By Strichartz theory, cf. Lemma 4.2, the equation (1.1) is globally well-posed
for smooth compactly supported data with small critical norm (in both the focus-
sing and defocussing cases). It is also locally well-posed for any data in that norm,
and the solutions preserve regularity and obey the finite propagation speed. Kenig
and Merle [9] proved for (1.1) and the defocussing case that breakdown of smooth
solutions in finite time 7 can only occur provided

sup ||(bl(t), ul(t))||H7/6(R3)XH1/6(R3) = Q.
0<t<T

This work has generated many further developments of a similar character; see,
for example, the recent work [3]. Bizon, Maison, and Wasserman [1] established
an infinite family of smooth solutions for the focussing supercritical equation (1.1)
which are obtained by rescaling of a fixed profile. In essence, these authors ob-
served via an ODE analysis that in addition to the ODE blowup (T —#)~!'/3 present
in the focussing equation (1.1), this equation also allows for infinitely many solu-
tions obtained from this one by multiplication by a time-dependent non-constant
profile of the form U(r/(T — t)). It is shown in [1] that there exists an infinite
sequence of values U(0) and U(1) which give rise to a smooth solution of (1.1).
We also mention here the works by Donninger and Schorkhuber [5] for the fo-
cussing supercritical wave equation, where they establish stability of the explicit
ODE blow up solutions.

However, the investigations of this paper go in a very different direction since
we are mainly concerned with the defocussing equation and global smooth solu-
tions, as opposed to finite time blow up.
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2 Self-similar solutions

2.1 The interior light-cone. We seek a solution of (1.1) of the form
uo(t,r)y = t713Q(r/t) for 0 < r < t. In general, we expect these solutions to
be singular at least on the light-cone, i.e., at ¥/t = a =1, and a precise description
of this failure of regularity plays a key role later on. To begin with, Q satisfies the
ODEon0O<a<1

@1 (a® = 1)Q"(a) + (%a - g)Q/(a) +20(@) % 0@ =0,
a 9

The natural initial conditions at ¢ = O are

2.2) 0(0) =qo >0, Q'(0)=0.

We first solve this initial value problem on the interval 0 < a < 1/2; this leads to a
1-parameter family of solutions. We then solve the nonlinear connection problem
at a = 1/2 with a 2-parameter family of solutions on the interval (1/2, 1). The
two parameters are important, since they allow us to apply the Inverse Function
Theorem.

Lemma 2.1. There exists small ¢ > 0 such that for each 0 < q¢ < ¢, equa-
tion (2.1) with initial conditions (2.2) admits a unique smooth solution on [0, 1/2].
Moreover, with Qg defined below just after (2.8),

0(1/2) = goQo(1/2) + O(qy),

(2.3) / / ’
0(1/2) = qoQo(1/2) + O(g),

and the solution extends as a smooth even function the the interval [—1/2,1/2].
Proof. The associated homogeneous linear equation is

8 2 4
(24) @ = DQ"@+ (50~ 2)0@+ 50 =0

3 a 9
with fundamental system
(2.5) pi@ =a'1—aP?, pa)=a 1 +a).
The Green function for0 < b <a < 1

_ 91(@)pa(D) — p1(b)p2(a)

G(a,b) := )
(2.6) (a.b) W(b)(* — 1)

W(a) := p1(a)p5(a) — ¢ (a)p(a)
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has the property that the inhomogeneous equation

8 2 4
(@ =Dy’ @+ (30 = )g'@+ 5@ = f(@),
#(0) =0, ¢'(0) =0

2.7)

is solved by
pla) = — /0 G(a, b)f(b)db.

We therefore seek a solution of (2.1) with initial conditions (2.2) on 0 < a < 1/2

of the form
3 a 7
(2.8) O(a) = ZCIO(§02(0) - 901(0)):&/0 G(a, b)Q(b)" db.

Note that Qg(a) := %((pz(a) —@1(a)) is even around a¢ = 0 and analytic . Moreover,
00(0) = 1. Assume 0 < gg < ¢ and define the space

Xy = qoQo + {h(@) | h € C*([0,1/2]), llhllc> < g8, |h(@)] < gga’)
We equip the linear space defined by the set on the right-hand side with the norm

-2
Illc> + sup a™ " |h(a)|

O<a<}
Our main claim is as follows.

Claim. There exists ¢ > 0 small such that for each 0 < gg < &, equation (2.8)
has a unique solution in X,.

By explicit calculation,
4
(2.9) W) = —1—a>)"'3
3a?

and (W(D)(? — 1)) is analytic on (—1, 1) with expansion
3

1
_7b2_7b4 b6
1 > +O0(b>)

as b — 0. Second, for0 < b < a,
_ é . § 2 _\2/3 2/3 1 _ 123 2/3
G(a,b) = ) + O(b*) [(1 a)>(1+b) (1 =56)"(1+a) ]
a

whence, in particular, |G(a, b)| < Cb for all 0 < a < 1/2. Moreover, setting
b =ua with O < u < 1 shows that

G(a, u) 1= G(a, au)
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is smooth in |a| < 1 and |u| < 1 and satisfies the bound

max G(a, u) < Clal.

lul<1
Therefore,
a 1
(2.10) / |G(a, b)|db = a/ |G(a, u)| du < Ca®.
0 0
Define

a 1
(TF)@) := qoQola) = /0 Ga, b)f () db = goQo(a) £ a /0 G(a, u)f (au)’ du.

We claim that T is a contraction in X, and therefore has a fixed point f € X,,.

Each f € X, satisfies |f(a)| < Mg forall0 < a < % where M is some absolute

constant. Thus

h(a) := / G(a, b)f(b) db
0
satisfies by (2.10)
lh(@)| < CM"a’q) < qfa’, | (@)| < CMaq) < q5a

as well as
|h'(@)] < CM’q} < 4,

provided g is small. Hence T : X,;, — X,,. For the contraction, we estimate

ITf = Tgllx,, < Clfllso + I18l)1f = glloo < CMOGSILf — gllx, -

q90 —

For small g, this implies that 7 is a contraction, and we are done with our main
claim. We note from the integral equation that f is even on [—1/2, 1/2].

As for the higher regularity, this of course follows from standard regularity
results. We proceed by induction on the number of derivatives. Starting from the
integral equation

1
(@) = qoQ(a) £ /0 G(a, w)f (au) du,
we observe that
1
(2.11) f®@) = qo0(a) + Hi(a) £ Ta / G(a, w)f(au)® f® (auyu® du
0

for every integer k > 0, where H}, is smooth; one has Hy = 0 and

1 1
+H(a) :/0 G(a, u)f(au)7 du+a/0 G,(a, u)f(au)7 du,
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and so forth. Clearly, H; only involves k — 1 derivatives of f and is therefore
small in the norm of continuous functions on the interval [0, 1/2] by the inductive
assumption. We can therefore contract (2.11) to produce a continuous small solu-
tion f®(a) on [0, 1/2]. This shows that f possesses any number of derivatives.
0
The solution is in fact analytic. We remark that one can also solve (2.1) near
a = 0 (and thus also on [0, 1/2)) by power series. Writing the usual iteration for
the coefficients shows that they are all positive. This is a reflection of the defocus-
sing nature of (1.1). Thus, the solution, together with all derivatives, is monotone
increasing. We have chosen to use the Green function since the nonlinear recursion
is not entirely elementary.
Next, we solve backwards starting from a = 1.

Lemma 2.2. For qy, q» € (—¢, &), there exists a unique solution Q(a) of (2.1)
on[1/2,1) of the form

(2.12) Q@) = (1 = a)* Qi(a) + Qa2(a) + (1 — @) Q3(a)

with Q1, Qa2, Q3 € C*([1/2, 1]) and

0i1(a) =qi(1 +0( — a)), Ox(a) =q2(1+0(1 —a)),
03(a) = (1" +1g21)H0(),
where the O(-) terms are smooth functions in a € [1/2, 1]. Finally,
(2.13) 0(1/2) = qi91(1/2) + g2 3 92(1/2) + O(lq1|” + |gal "),
0'(1/2) = 19, (1/2) + 42275 05(1/2) + O | + 121",

where @1, @y are the functions from (2.5).

Proof. We convert the ODE (2.1) into the integral equation

1
(2.14) 0(a) = qip1(a) + g2 pa(a) F / G(a, b)Q(b)" ab,

where G is the Green function from (2.6). Since in this case a < b < 1, the
integral comes with a negative sign.

By inspection, we see that (1—a)~*3¢p(a) = 1/a,27*3py(a) = (1+a)/2)*/?/a
are analytic on @ > 0, and equal 1 at a = 1. Furthermore, taking the Wron-
skian (2.9) into account, we find that the Green function (2.6) is of the form

(2.15) G(a, b) = gi(a, b) + (1 — b)**(1 — a)"*gs(a, b),
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where g1, g, are smooth for a, b € [1/2, 1]. If w(b) is smooth on [1/2, 1], then
(2.16) /l G(a, b)w(d)db =01 — a)

is smooth on [1/2, 1], and

(2.17) /1 G(a, b)) (1 —b)**ab = (1 —a)*?0(1 —a), k=1,2,

where O(1 — a) is a smooth function of a € [1/2, 1]. This allows one to convert
(2.14) into a system for Q;, Q,, O3 which we again solve by contraction. To be
specific,

2
(1 —@?301@) + 0x(@) + (1 = ) * Qs (@] = (1 — @) *N;(a, 01, 02, 03).
j=0
Here, each N;(a, Q1, O, 03) is a linear combination of terms of the form
(1 — a)" 0} (@) 05 (@) 05 (@),

where ki + ky + k3 = 7. In particular, if all Q; are smooth, then N; is, too. For
example, N, contains the term ZIQ%(a)Qg(a). We remark that in each N;, the
function Q3 appears with a factor of at least (1 — a). For example, the term

(2.18) 705(a)(1 = a)'*Q3(a) = (1 — a)**7(1 — ) Q3(a)Q3(a)

contributes 7(1 — a)Qg(a)Q3(a) to N>. We now solve for Q; in the following form
1
Oi(@) =qa”' F(1 —a)™?? / G(a, b)(1 — b)**Ny(b, Q1, 02, Q3) db,
1
(2.19) 0x(a) = 227 pa(a) F / G(a, b)No(b, Q1, @2, Q3) db,

1
Q3(a) = (1 — a)_m/ G(a, b)(1 = b)*°Ny(b, 1, 02, Q3) db.

By (2.16), (2.17), the right-hand sides are smooth if the Q; are. We write the
system (2.19) in the fixed-point form Q = T(Q), where T denotes the column
vector of the right-hand sides and Q :=(01, Oz, 03).

We set up a contraction for 7 in the space of continuous functions on the inter-
val [1/2, 1]. For ¢ > 0, we find a unique solution of the form

01(a) =qra™" +(|q1| + |1g21)'(1 — )R, (a),
02(a) = ¢227*Ppa(a) + (Iq1] + 1g2)" (1 — ARy (a),
03(a) = (lq1| + 1g21)"R3(a),
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where R; are continuous and satisfy |R;(a)|] < M on [1/2, 1] for some absolute
constant M.

Inserting these representations into (2.19), we gain at least one degree of reg-
ularity at @ = 1; in other words, one factor of (1 — a). For the terms involving
R|, R,, this is clear, since each application of the integration in (2.19) gains a
factor of (1 — a). On the other hand, for the Q3 term, we need to use the ob-
servation (2.18), i.e., the fact that Q3 carries at least a factor of (1 — a) when
reinserted into the nonlinearity N,. Repeating this procedure produces more and
more smoothness at a = 1. The smoothness for 1/2 < a < 1 is clear. (]

We can now solve (2.1) and thus obtain the special self-similar solutions of (1.1).
The following corollary shows that such solutions (nonzero of course), necessarily
exhibit the (1 — a)? singularity at a = 1.

Corollary 2.3. For each small qo, the ODE (2.1) has a unique C? solution
QO(a) on [0, 1) with Q(0) = go and Q'(0) = 0. This solution is of the form (2.12)
near a = 1. We can have neither q; = 0 nor g, = 0.

Proof. For given small g, let Q be the solution generated by Lemma 2.1. By
the Inverse Function Theorem, we may find g, ¢» small so that (2.13) matches the
values given by (2.3). Application of the inverse function theorem is justified since
the derivative in g1, g» at (g1, ¢2) = 0 of (2.13) is the Wronskian of ¢, ¢,, which
does not vanish. The final claim is seen for the same reason: we cannot achieve
linear dependence of the solutions generated by Lemmas 2.1 and 2.2 when either
g1 =0orgy; =0. O

In particular, these solutions logarithmically fail to belong to H7/¢(R?). In fact,
the function (1 — @)?/3 fails to be in H/°.

2.2 The exterior light-cone. We next carry out a similar construction in
the region r > ¢. Here a = r/t > 1, but the analysis is essentially the same. We
begin of the analogue of Lemma 2.2.

Lemma 2.4. For g, §> € (—¢, ¢€) there exists a unique solution Q(a) of (2.1)
on (1, 2] of the form

(2.20) 0(a) = (a — D**01(a) + 0z2(a) + (a — 1) 0s(a)
Wlth Qla Q~2a Q3 € Coo((la 2]) and

Oi(@ =g1(1+0(a = 1)), 0x(a) =g(1+0(a— 1)),
03(a) = (Iq11" +1g21)H0(D),
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where the O(-) terms are smooth functions in a € [1, 2]. Finally,

0(2) =§191(2) + 27 p2(2) + O(G1 | + 11",

(2.21) / , A § §
0'(2) =41¢,(2) + 327 ph(2) + 0l |” +1g217),
where ¢1(a) = a~'(a — 1)*/3 and ¢, is as in (2.5).

The proof is analogous to that of Lemma 2.2, and we omit it.
Next, we glue this solution together with one on 2 < a < oo.

Lemma 2.5. There exists small ¢ > 0 such that for each |m|, |my| < e,

equation (2.1) admits a unique smooth solution on [2, co) such that as a — oo
(2.22) Q@) = mi(a) + maps(a) + O(a™3)
and

0(2) =mi§1(2) +m2p2(2) + O((Imy| + |m2])),

(223) / / / 7
Q'(2) =m§1(2) + mag3(2) + O((Im1] + [m2|)7).

Here, ¢y, @5 are as in Lemma 2.4.

Proof. We use the Green function (2.6) but defined in terms of @, @;:

Gla. b) := 21@220) — 51 (B)pa(@)

(2.24) W(b)(®* — 1)
W(a) := g1(a)ps(a) — §)(a)pa(a).

The denominator is W (b)(b*> — 1), which decays at the rate 5=2/3 as b — co. The
perturbative ansatz is

(2.25) Q(a) =m1<51(a)+mz(02(a):|:/ G(a, b)Q(b)" db.

This is solved by contraction, and the asymptotics (2.22) follows by inserting
the two types of asymptotic behaviors exhibited by G(a, b), i.e., a=*3b'/3, and
a~'3b~2/3, Integrating these against Q(b)’, which decays at least as fast as b~7/3,
then shows that the integral in (2.25) decays as a~’/3. Moreover, we obtain (2.23)
by setting a = 2. O

Finally, we glue the two solutions together to obtain one on the whole inter-

val a > 1. The following corollary is an immediate application of Lemmas 2.5
and 2.4.
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Corollary 2.6. For each small m, m,, there exists a smooth solution Q(a)
of the ODE (2.1) on 1 < a < oo, with the asymptotics (2.22) as a — 00. As
a — 1, the solution obeys the representation (2.20). The map (m, my) — (G1, §2)
is a diffeomorphism from a small neighborhood of (0, 0) to another. Finally, there
exists a linear map m — (my, my) such that for every small m, the corresponding

—4/3

solution decays as m a as a — oo.

Proof. As for the interior light-cone, we solve the connection problem at
a = 2 by means of the Inverse Function Theorem. This is legitimate, again by
smallness as well as the non-vanishing of the Wronskian. In general, we obtain

a 2-parameter family. But we may cancel the leading order a=!/3

as a — oo by
means of a linear relation between m, m;. This is the claim relating to a linear
map m — (m1, my) and produces decay at the rate a~3. Theresultis a 1-parameter

family of solutions. 0

2.3 Matching at the light-cone. Combining Corollaries 2.3, 2.6 leads to
the following conclusion. For the meaning of the parameters ¢, q», m, etc., see
these corollaries.

Corollary 2.7. For each small qo, the ODE (2.1) has a unique C? solution
Q(a) on [0, 1) with Q(0) = g and Q'(0) = 0. There exist infinitely many continu-
ous extensions of Q(a) to a > 1 which solve (2.1) on a > 1 and decay at least at

the rate a='/3

as a — o0. These extensions are given by Corollary 2.6. The global
solutions on a > 0 satisfy g, = o, in the notation of Lemma 2.2. We denote these

functions on a > 0 by Qy(a), and we have the global representation

(2.26) Oo(a) =1 —al*?[01(a) + 11 — al’*Q3(a)] + 02(a)

forall a > 0. Then Qy, Oz, Q3 are smooth away from a = 1, Q, is continuous at
a =1, 0i(a) =03(a) =0 fora > 2, and a'>Q»(a) is bounded as a — .

Proof. For small gy, we solve (2.1) on [0, 1); this gives us ¢q;, g2. We then
select small (m;, m,) such that §» = ¢». In general, we cannot expect this solution

-1/3

to decay faster than a , since we will not hit the linear relation between m; and

m; needed for this to happen. (]

Note that the solutions of Corollary 2.7 are still small, since the contraction ar-
guments by means of which they were constructed require smallness. This is also
reflected in the property that the nonlinearity can be both focussing and defocus-
sing. The smallness is expressed by the estimate |gg| + |G1| < 1, since then also
lg1l+1g2] < 1and |g2| =[q2| < L.



106 JOACHIM KRIEGER AND WILHELM SCHLAG

Later, we modify the construction to allow large (in some sense) solutions out-
side of the light-cone. For this, it is essential that we only match g, = §», since
the parameter §; is taken to be large. This construction is only possible for the
defocussing equation.

3 Removing the singularity on the light-cone

Departing from the singular self-similar solutions constructed above, we now at-
tempt to build global smooth solutions of (1.1) which are large in a suitable sense.
In effect, we expect them to have infinite critical norm. Consider the self-similar
solutions constructed in the preceding section, in particular, Qy from Corollary 2.7
with the asymptotic behavior for a — +o0o specified in Corollary 2.6. Now set
uo(t, r) :=t="3Qq(r/t), which we may assume to be of class C° across the light-
cone a = r/t = 1, but in general no better. By construction, u solves (1.1) away

—1/3 implies that

from ¢ = r. Moreover, |Qo(a)| < a
(3.1 luo(z, | S (g0l + 1G11)r~"  forall r > 0.

In view of (2.26), we have

(3.2) uo(t, r) =721 = al?[Q1(@) + |1 — a3 0s(@)] + 1~ 0s(a),

where the function Q3 is expected to be discontinuous across a = 1 while the
functions Q1 (a), Q»(a) are continuous on a > 0. Writing

(3.3) Os(a) = Ox(1) + Oa(a) — Ox(1),

we have |Q»(a) — O>(1)] = O(]1 — al), and it is natural to incorporate this term
into the term

11— al*?[01(@) + |1 — al*Q3(a)]
in our representation of u(z, r). Thus, with
Os(a) := |1 — a|*’Qs(a) + |1 — a| ' (Qa2(a) — Q2(1)),
we obtain
uo(t, r) =t~'P |11 = al??[Qi(@) + |1 — a|'*Os(a)] + 112 0a(1),

where Q3 is smooth away from a = 1 but possibly discontinuous across it. We
now abuse notation and write Q3 again instead of 0.
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We have now incorporated all the singular behavior of this solution into the
term
11 —al??[01(a) + |1 — al'PQ3(@)] =: 1 —al’’X(a).

In order to excise the singularity, we introduce a smooth cutoff y(z — r), which
localizes the expression smoothly to a fixed distance C from the light-cone, i.e.,
|t — r] = C; the constant C here plays no role. In other words, y(v) = 1 for
o] > 2C and y(v) =0for |o| < C.

We introduce the approximate solution

(3.4) u(t,r) =t Byt — |1 — al*?*X(a) + 73 05(1).

Note that u(z, r) = ug(t, r) for all |t — r] > 2C. By construction, we have the
following smallness property which plays an important role in our argument:

(3-3) el zoqrram, Liseey <1

uniformly in 7 > 1. The norm here is an example of a Strichartz norm; see
Lemma 4.2.

‘We now need to understand the error associated with the ansatz u(z, r) in (3.4),
i.e., we need to estimate —u, + Au T u’. We compute

2\, _
—ug+ AuFu =yt — r)( — P+ + ;a,) (311 = al**X(a) + 12 0x(1))

+ (1 — y(t — r))( — P+ R+ %a,) (20,(1)) + e
F (P — nIl — a?X(@) +17 2 0y(1)]
= (1= x(t=r)(—3) (P 0x(D))
+ [t — (P11 = al3X(@) + 172 0a(1))]
F (7P — Il — a?PX(@) + 172 0(1) ] + €3
=ie+er+es,
where e3 denotes those terms for which at least one derivative falls on y(r —r). By

the definition of y, we may include a cutoff (1 — y(z — r)) in front of e,, where ¥
localizes to |t — r| > 2C, i.e., we can write

ey =3t — N1 = al*X (@) + 20,1
F (TP = alPPX @yt = )+ 171 0x(1)
= (1= 7 — [ £ 2 = (P = a?PX (@) + 172 0,(1)]
F (TP = alPX @y — )+ 17 P 0D) .
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We can also write this as e; = (1 — ¥)[u] — u}], where we have the pointwise

bound

lur (2, 1) + lua(t, )] S 5.

As for ez, we begin by collecting all terms in which X(a) is not differentiated.
Then with (- - - )’ denoting the operator for which at least one derivative falls on y,
we obtain

2 /
(—@+a+2a) (P N —aPya - 1)
r
1 2
=2 —aPPy - -2 gt%sgn(l — @) —al"V Pyt = 3

21 2
+2- g?sgn(l — )|l —a|™ Byt — P =2 B —a?P - ).
r

The preceding sum is seen to simplify to

L1 ysle=rP? _ 2t=nlt=rlPPYa=r)
2(?_;)t pn K= == 2

B

which is one power of ¢ better than expected. For this gain, it is important that
x(t — r) solve the 1-dimensional wave equation.
The terms in e3 where one derivative falls on X (a) contribute

207301 — a**X (a)(—8,a — 8ra) Y (t — r) =2t7"3 |1 — al?X ' (a@)(r — )Y/ (t — 7).
This term is localized to the region |r — #| < 1; and since

1
11 —al**X'(a) = Q}(a) + |1 — alQ4(a) — 3sign(l — 2)0x(@),

-7/3

itis of size ¢ on that region. The remaining errors e; » have the same properties,

i.e., they are also localized to the region |r — ¢| < 1 and are of size t=7/3.

Hence all these errors are seen to belong to L! L2 for ¢ > 1, since
1772 = et = )z S 77 € L(1, 00)
Thus all these errors beat the scaling. This is an essential feature of our construc-

tion.

4 Completing the approximate solution to an exact one
We now attempt to construct an exact solution of the form
t,r):=u(t,ry+o(t,r),

where u is defined in (3.4). The precise theorem is as follows.
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Theorem 4.1. Let ug be sufficiently small in the sense of Corollary 2.7, and
let u(t, r) be as in (3.4). Then for any compactly supported radial initial data

o[1] = (vo,v1) € H'*NH'R}) x H'° N L*RY)
sufficiently small with respect to the natural norm, there exists

v e L°HS®>»NLXS, H ®R)NS

t,loc

with S any of the Strichartz spaces in Lemma 4.2, and

v, € LHYS(R*) N LY, L*(R?)

t,loc
on [1,00) x R3 such that ii(t, r) := u(t, r) + v(t, r) solves (1.1). Moreover, if
. . 7
o[l] € H'(R®) x H*"'(R?), s> &
then
o[t] € H'R?) x H* YR forallt > 1.

The proof of Theorem 4.1 proceeds via a bootstrap argument on the norm
lo]l g76n~g1 - More precisely, assuming the solution to exist on an interval [1, T'] of
regularity H ¢ N H'(R3), we deduce an a priori bound on a slightly time-weighted
version of the preceding norm, where the weight depends on the data but is inde-
pendent of 7. Using a local well-posedness result, one can then let 7 — oo. The
equation for v is simply the linearized one

3
“4.1) —0y + A :F7u6v:F---:|:7uv6:Fv7 =Zej.
j=1

At first sight, the natural space to iterate this in seems to be the Strichatz space
| - |Is at the scaling of H %, which corresponds for example to the space-time norm

I Nlspis-
T X
For the sake of completeness, let us recall a class of Strichartz estimates rele-
vant in this context.

Lemma 4.2. Let u be the free wave propagation of the equation in ]Rtljc3

Uu =h, ul0] =(f,9),

where (f, g) are smooth and compactly supported, and h is smooth with compact
support on fixed-time slices. Then

(4.2)  ullgyrs +sup |(u, u)O | grsmwsyxaiomws + |V|au||LfL;’
1

1/6
S @)oo + 1V10R ]2,
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where 3 <r§ooand%+% :é(suchasr=6ands:l8),and2 <p < oo,

Il)+é = %, a(q) = %+%. By approximation, this extends to solutions in the Duhamel

sense for which the right-hand side is finite.

However, we observe that  is not bounded in LSL!® due to a logarithmic di-
vergence in infinite time. Thus a simple minded procedure using Strichartz and
Holder does not apply, and we are required to exploit the fine structure of the func-
tion u. In fact, this function lives at lower and lower frequencies as t — co0. One
may then hope to exploit some additional low-frequency control on v coming from
energy conservation to gain better control. The above theorem is a consequence of
combining the following Proposition 4.3 on local existence with Proposition 4.4,
which establishes a priori control of any local solution to (4.1) via a bootstrap
argument.

Proposition 4.3. Let T > 1. Assume that o[T] is compactly supported with
1o [T 1l g7/ < iR K 1.

Then there exists a solution v(t) of (4.1) on the time-interval [T, T + 1] with the
property that

v e L°H"S([T, T +1] x R®), v, € L°HYS([T, T + 1] x R?)

with compact support on every time slice t x R*, t € [T,T + 1]. Also, if
v[T] € H*(R?) x H"'(R?), then v[t] € H*(R?) x H"Y(R?) for all s > 7/6.

The proof proceeds by a standard iteration; see Section 7. With Proposition 4.3
taken for granted, the main work is then encapsulated in the following result.

Proposition 4.4. Let ug be sufficiently small in the sense of Corollary 2.7,
and let u(t, r) be as in (3.4). To be specific, in the notation of Corollary 2.7, we
require that |qo| + |§1] < 5; < 01 be small. Let (v, v;) be radial. Assume that

v e L*H"°NLS, H'RY, v e LHYNLY, L*R?)

t,loc t,loc
solves (4.1) on [1, T] x R? (in the Duhamel sense). Assume further that
”v[l]”H7/6ﬁH1(R3)xH1/5ﬂL2(R3) <kl

is sufficiently small. Then for any C > 1 sufficiently large (in an absolute sense,
independently of T) with Co; < 1, as well as ¢ = &(d,) <K 1 such that

||U||L§>L¢8([1,T]><R3) + sup ”D[t]||H7/6ﬁt’~'H1(R3)xH‘/"ﬂt”L2(R3) < Coy,
’ te[1,T]
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we have

”v”Lf’Lig([l,T]xH@) + sup ”v[t]”H7/5ﬁz€H1(R3)xH1/6ﬁt€L2(]R3) < 551
’ te[1,T]

The proof of Proposition 4.4 is accomplished in the following two subsections.
We henceforth assume that v(z, -) satisfies the assumptions of the proposition.

4.1 Energy control. We note that

4 L2 2 702 7.1 %
dl/Rz {2(01+|V0|):|:2Ml) R o /1) :lzsv}dx

3
=—/]R3 {Zejv,$21u,usv2:|:~~:|:u,v7 dx
j=1

Integrating from time 1 to time ¢, we obtain

[ 2 7 62 7.1 3
/R3 [E(v,+|V0|):|:§uv +.-.-+uo :lzgv }(t,-)dx

1.5 N 62 7.1 3
4.3) /R3 {2(UI+IVDI):|:2MU +.tu iSU}(l")dX

/ 3
:// [ —ejo £ 20upto? & - £ 7| dxar
1 JR3

j=1

Our goal is to deduce the bound

sup 1|V 0@l < Co
te[1,T]

From the estimate sup,., u(z, r)| < 85 r='/3 (cf. (3.1)), we conclude that
/ ubv? dx < 5218/ r 0% dx <638 ||D||?_-11.
R3 R3

Since d, < 1, this term is absorbed by the principal term [, %(012 +|Vo |2) dx. In
the defocussing case, this term can be removed by positivity. Further, observe that
for j € [1, 5], the pointwise bound sup,. , |u(t, r)| < 65t~/ implies

i 8—i 1 j—1 8—j
(4.4) w0 NI S St Null 0l
g 5 x

where
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This implies that

81 189

Recall the embeddings H'(R?) ¢ LO(R?), H"/°(R3) c L°(R?). With0 < a < 1

determined by
1 a 1—a

=—+
p 6 9 ~°
Sobolev’s embedding and Hélder’s inequality applied to (4.4) yield

8- -1 B[ | -0,
[kl Pt 9||MIIL9+“||U||a ollys 7

which we rewrite in the form

e NP a(8—j) 1—a)(8—
lu/ 0¥, .)||L}§§2tw( » 9([ o, )”Hl) lo(z, ')”;17/3)( .

If we now choose ¢ so small that ea(8 — j) — % < 0, we conclude that

T —e a(8—j) 1 8—
sup w0377 (2, Iy S 0 sup o, M) o, 1G5
te[1,T] te[1,T]

<6 (Co1)*
We also note that

103, Mz < o, M3 ( sup oG, ) S lot, NZ(CS,

te[1,T]

where we have again used Holder’s inequality as well as the Sobolev embedding;
so this term can again be absorbed by the principal term [, %(012 +|Vo |2) dx

It remains to control the source terms on the right of (4.3). We start by estima-
ting the contributions of the terms involving the errors e;. First, we have

t t
/ / e v; dxdt =/ / (1-— j{)[uz — uZ]vt dxdt.
1 JR3 1 JR3

Recall that 1 — ¥ localizes to the strip |t — r| < 2C. Thus since u] , = O(~"/%),
we infer ||(1 — p)[u] — W31, ‘)HU < 6] 143, and so

]//ewmﬂ<@/Szﬁ(mnﬁmamw<@aﬂ
R3 te[1,T]

The contributions of the terms involving e, 3 are handled identically.
Next, consider the contributions of the terms

4.5) wv?, uo’,
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the intermediate terms in the space-time integral in (4.3) being handled similarly.
The first of these terms is estimated as follows. Considering the region |t — r| <
t/2, from the formula for u(z, r), we obtain

(4.6)
w = [ = 3 = Dl = aP X (@) = 1P 47 =l - al X @
2
+ 5=l =™
=.A1 +A2 +A3 +A4

sign(t — NX (@) — Py — r|l —al?? t%X’(a)

We note (always restricting to |r — ¢| < ¢/2) that |A | + |A4] < /3, and so
/ [AL] + |Ag|ld v dx < 651 -‘/ r 20t dy SOS| V|,
lr—r|<% R3 *

For the contribution of the term A3, we use the fact that by radiality of v, |o(z, r)| <
r~2||lv || 1, which then gives

oo

|As|lu’v? dx < 6% lv ||%11l_1 / r3 B3 =) 3 2ar

<4 lt—rl<5

6 2 —1 -2/3 —1/3 6 2 -1
<58 0 ]20 / P20 =y Br < 88 o3
|t—r|<

L
2

Finally, for the contribution of the term A,, we have

o

where we have used Holder’s inequality and Sobolev’s embedding to bound
/ o?dx S5 o3
[t—r|<C

5. 2 6,1y, 112
/ tlutuv ldx S o3t lollg:-
[t—r|<5

Az’ v? dx < 69 t_8/3/ vidx S5 o7,

<t le—r|<C

It follows that

On the other hand, for the region |t — r| > /2 (assuming ¢ > 1, as we may), we
have |u,| < 6, t~'r~1/3; and so we conclude that

-2.2 6 ,—1 2
W= 1/2) S 52 /Mr 07 dx Syt ||Vx1)||L§,

where we have used Hardy’s inequality in dimension n = 3. It follows that

t t
/1 /RS |u,u5|02dxdt§526(/1 szg_lds)( sup 1NV, wll2) S 2eT169(Co))’

te[1,T]
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For the second term in (4.5) above, we have in the region |t — r| > #/2

— 3
Juo” <o P IVwILIVI o,

Li(|t—r|>1/2) ~

which gives

t t
/ / |u,v7|dxds§52(C51)3</ s4€_3ds> (‘sup eIV z)
1 Jls=r|>3 0 :

te[1,T]
< 6:(Coy) .
For the region |t — r| < t/2, we invoke (4.6) as well as the inequality

—1/2
lo@, I < r ol

to obtain
lup’| 32 ol Jt—r] <

B

N~

whence

t t
/ / |u,v7|dxds§52/ s 257 ds ( sup ¢ o(t, M) < 6:,(C81)°.
1 Js—r|<s/2 1 te(1,T]

Combining the preceding bounds used to estimate the right hand side of (4.3) and
choosing d, < o; sufficiently small (which can be done independently of &), we
get

sup 17|V, 0l < Cd,
te[1,T]

as required.

4.2 Critical norm control. Here, we return to (4.1), but this time to con-
trol the scaling invariant norm

. 7/6 1/6
olls == lollsrsqrrixes + sup 1Y%l + sup | V]98],
- te[1,T] te[1,T]

From Duhamel’s principle, we have

lolls S V10 @) gz + -+ V1Y @00 [y + IV (07) sz

“4.7) 3
2NV + 0T s,
j=1

By the explicit form of the errors e; derived in Section 3,

3

Z | |v|1/6ejHL}L§ <93
j=1
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and by assumption, ||o[1]||g76xg1e < J1. We now consider the more subtle terms
(4.8) V1 @) yzs V1 (0% [ 25

the remaining intermediate power interactions being handled similarly (the term
v’ will be dealt with at the end). The ideas involved in estimating these products
are as follows.
e The main contribution is expected to come from the diagonal interactions,
i.e., the situation in which the frequencies of all factors are about the same.
e The factors u live essentially at low frequency.
e Due to energy control, the extra derivative |V|% should help us gain from low
frequencies.
We denote the “projection” onto frequencies || < p by P.,. As usual, this is
not a true projection but rather effected by summing the Littlewood-Paley smooth
frequency localizers up to that scale. In particular, P<, f = f % ¢,, where g is a
Schwartz function with [ ¢ =1 and ¢,(x) = p>p(px). At the expense of allowing
for rapidly decaying tails in the frequency localization (which is harmless), we
may also assume that ¢ is compactly supported. Thus,

P u) = | ) = e = o)

Pore )] = [ Juto = utx = yllp)l dy

IA

1
ta/o /Rs IVux — i)l Iylle()| dy dh,

~

which in particular implies || P> u(z, -)|| s S #°16,u(t, -)l| 5. Since

ut,r) ==y (t — 31— a)**X(a) — %x(r -ttt —r)X(a)

+ =31 = )X (a),

it follows that ||P~,— u(t, -)| ;s < 95 #°+5~3, which, for o > 0 sufficiently small, is
of course better than L.
Returning to (4.8), we now split

(4.9) VIV () = VIV ((Par )) + [V (u0)’,

where the second term on the right-hand side is defined via this relation. We claim
that this term can then be bounded in L} L2. In fact, by the fractional Leibnitz rule,
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we can schematically estimate it at a fixed time by

V1Y (Parmerno) 1 )| 2 < (191 P ottt ] s, 2o
(4.10) o [|Pore e, s [T, | s, s 0
[P utt, | st D6 19102, )|

s
To estimate the L!-norm of the right hand sides, we use the energy bound derived
previously:
1917ttt g e, e [
S O3l g Nt 9 ey ™0 )

< 038¢Co,

L9

|z, r1xe)

which is <« Cd;. The remaining terms in (4.10) above are handled similarly, and
so we have reduced the problem to that of estimating the first term in (4.9):

| IV16((P == )®0) (2, )

LIL2([1,T]1xR3)
Using the fractional Leibnitz rule, we bound this by
@A) [V (P oo 00) 0, ) 21 ey

S [ENVIOP o e, M 1P <ot s | ol N |

[P oo, Sy V102, g |-
To estimate the first term on the right, we use the fact that
IV IYOP o, s S 17O ue, s,
and obtain

11916 e 1t s 1P <imo ety M| 17 N0 g |

S (1575 e, Hgas 7o 5 Mo Mg || e S 935Con

For the second term on the right in (4.11), the idea is that we can place |V|'/®»
into L5~ while paying a small power of ¢, while placing the low frequency factors
into L!¥*, gaining a bitin #~!. Specifically, from Sobolev’s embedding H/%(R?)
L2(R?), we infer that

11910, )| o2 < (1 V()22
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while Bernstein’s inequality implies that
1P <o e, [ prows S 17 luat, s

Since ¢ can be made small independently of ¢ above, and in particular we may
assume ¢ < g/6, we then get

(P e 1)® [V7]/6 1£7°P <pme | g oo [[172 IV 100 o 2

D”L}Lﬁ(u,ﬂxR% S
18 - 18
< 6,0 sup (178 Voo(, ')||L§) < Co10,°.

t

The second term in (4.8) is handled similarly: we split

“412) | V)6 (uv6)||L;L3([1,T]XR3) < VIV (P51 M)U6)||L;L§([1,T]xR3)
: 1/6 6
+ VIO (P <= w0O) 21,7150

The first term on the right-hand side is estimated by

1/6 6
V1Y ((Pime )0°) 22201 71083
<

1/6 5 —
EIVIOP- o wll s llo W iy SUP N0 g
: ? te[1,T]

sup || IVI0(t, )l

5
+ H ”[)ZZ_‘TMHLi8 ”D”LISHLI([I a)
’ TR Y re1,T]

3 1_1 5 —
SOy [T ||L§)([1,T])||U||Lngs sup 1~ “|Jo(t, )l g
*orell

>

3 1 5
+05 |17 ||L?([1,T])||U ”L?LIS sup [lo(z, )llgre,
x rel

>

and so we can bound the last two terms by < 5§(C51)6. To handle the second term
on the right-hand side of (4.12), we observe that

1/6 6
V] / ((P<t’” u)o )||L;Lg([1,T]><R3)

1/6 5 —
<l vlY P oo ullpspsqr ey 10 s s, 71xwe) S[‘IJPT]f Noe, Mg
k tell,

5 - 1/6
+ ||t€P<t*" u”Lf’Lf_c([l,T]x]R3)||D”L?L)ICS([],T]XH@)ts[lill;] t g” |V| / l)([, ')”Lﬁ/z'
€Ll

The first product on the right-hand side can be estimated by
S BNEE g, (CO)° S 33(C01)°

For the second term above, we infer from Bernstein’s inequality that

3 6—2-1 3
1P <o ull Lo oo, Tixrsy S 02 167707 ® Mo 7y S 025
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and so we obtain

5 - 1 3 6
NP <= Ursrzsqn e 0z xee) SUP 1 VIS0 @, e < 65(C)°.
€1,
This concludes the estimate for the second term in (4.8).
To complete the bootstrap for the critical Strichartz norm, we also need to
bound the contribution of the pure power term v’ in (4.7). This we do by using

1/6,,.7 6 7
” |V| / (U )||L,1L%([1,TJXR3) S ”U||L,(’L}8([1,T]><R3)”U||L,°°H7/(’([1sT]X]R3) S (Cél)

All of the preceding bounds are < CJ;, provided we pick §; > J; sufficiently
small. This completes the bootstrap and hence the proof of the proposition.

4.3 The proofs of Theorems 4.1, 1.1, and 1.3. Theorem 4.1 follows
from Proposition 4.4 by the standard bootstrap argument; indeed, we may ini-
tially take the constant C as large as we like, depending on the solution itself,
the finiteness of the constant being guaranteed by the local well-posedness as in
Proposition 4.3. Then the constant can be lowered until it reaches some large but
absolute size independent of the time of existence.

Theorem 1.1 follows by taking the solution u# + v to (1.1) constructed in Theo-
rem 4.1. The data (f, g) are equal to ((u + v)(1, -), (u + v),(1,-)). The infinite
critical norm is a consequence of the fact that (v, v;) has finite critical norm, but
(u, uy) is given by (3.4). The finiteness of H® x H*~! for s > 7/6 is a result of
the asymptotic decay of |u(z, 7)] ~ r~'/3 (or |u(t, )] ~ r~*3 non-generically)
and |u,(t, r)| ~ r=*/3
perturbation v does so by construction. Also, the facts that

as r — 0o, respectively. So u lies in these spaces, and the

. 1/6
Tim [+ 030 oy = 00, 10+ 0)t, My ~ e/, ¢ #0,

follow from the corresponding asymptotics of # combined with the bounds on v.

The stability claimed by the theorem is a result of the fact that the perturbation
v belongs to an open set in the norms of Theorem 4.1.

Theorem 1.3 follows from Theorem 4.1 by truncation. Indeed, given M as
in (1.6), we choose R so large that the data (f, g) as in Theorem 1.1 when restricted
to {|x] < R} have critical norm exceeding M or any other large constant. The
theorem then follows by finite propagation speed, rescaling, and the fact that we
may make the Strichartz norms of u large provided we integrate over a sufficiently
large time-interval. For this theorem, it is essential to note that blowup for (1.1)
can only occur at the origin, since we are dealing with the radial problem and there
is a pointwise a priori bound for » > O for all times # > 0O in the defocussing case
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as a result of the Strauss estimate and the positive definite conserved energy for the
defocussing equation (1.1). This is the reason that we restrict to the defocussing
equation here.

S Larger global solutions in the defocussing case

In this section, we revisit the ODE theory from Section 2 in the defocussing case.
More precisely, we wish to exploit the flexibility of Corollary 2.7 with regard to
the choice of the parameter §;. While we match the outside solution with the
inside one through the connection condition §, = g,, which ensures continuity,
the choice of g, is arbitrary. In Corollary 2.7, we still require §; to be small, since
at that point we had only constructed solutions in ¢ > 1 assuming both §; and g,
to be small.

We now proceed to show that solutions of the ODE (2.1) exist in a > 1 for
small g,, but large §,. We start by proving an analogue of Lemma 2.4 near a = 1.
We then extend the solution to all of @ > 1, which depends crucially on the de-
focussing character of the equation. For technical reasons, the expression in (5.1)
differs from the one in Lemma 2.4. To be specific, instead of the power (a — 1)7/3,
we use (a — 1)*/3, absorbing the factor (¢ — 1) into Q5.

Lemma 5.1. There exists ¢ > 0 small such that given g, € (—¢&,0) U (0, &)
and §, > 1, for some absolute sufficiently small constant ¢ > 0, there exists a
unique solution Q(a) of 2.1)on [1,1+ €] for € = c|q~2|q~l_4/3 of the form

(5.1 0(a) = (a — 1)30y(a) + 0x(a) + (a — 1)*>0s(a)
with Oy, 0s, 03 € C®([1, 1 + £]) and

Oi@) =qi(1+0(a—1)), O0xa) =g(1+0(a— 1)),

(5.2) ~
QO3(a) = q:10(1),

where the O(-) terms are C* functions in a € [1, 1 + £]. Also,
a1
2 2
uniformly in a € [1, 1 +€] and with some absolute constant C. Finally, there exists
a, € (1,1 +{] such that

(5.3) 101(a)| > 102(@)] < Clgal, 103 < Cd,

(5.4) 10(a)| = 12173,

In particular, this can be made arbitrarily large by making g, sufficiently large.
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Proof. We refer to the proof of Lemma 2.2. We start from the representation

0@ = (a— D301@+0x@) + (@ — 1)*>05(a),
where we furthermore assume the structure

01(a) =Gi1(1+0(a — 1)),
(5.5) 02(a) = G2(1+0(a — 1)),
0s(a) = §10(1).

We then obtain O 1.2.3(a) as fixed points of the following system (see (2.19)):
Oi(a) = gra" +(@— 1)~ /la G(a, b)(b — 1)**Ni(b, 01, 02, 03) db,
(5.6)  02(a) = 3227 pa(a) + /1 " G(a, No(b, 1. 0. B db,
03(a) =(a—17° /1 " G(a, )b = DIN:b, 01, 0z, Gs) db.
The Green function is the one from (2.15), viz,
G(a,b) = gi(a, b) + (b — 1)i(a — 1) gx(a, b),

and the source functions Ni(b, O1, 0>, 03), k =0, 1, 2, can be written schematic-
ally as

N, 01,0500 = S Copans (b= 157 01 BIOR (B)OT (),

2mi+4m3=2(3)

Nobh, 01,020 = S Conpmm (b= 1) G ()35 (0) 05 (B,

2m1+4m3=0(3)

Nab, 01,0200 = S Gy (0= 157 G (0) B3> (0) 03 (b).

2m+4m3=1(3)

In these sums, m, m,, m3 are nonnegative integers such that m; +my+m3 =7. In
the first sum, we require a further restriction in the form m; + m3 > 1; in the third
sum, m; > 2ormsz > 1.

To obtain the desired fixed point for (5.6), we show that the bounds

(5.7 101(@)] +103(a)| < Cg1,  102(a)] < Clal

improve upon themselves on the interval a € [1, 1 + €] with £, as in the statement
of the lemma, once they are inserted into the system (5.6). To be precise, we prove
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that (5.7) implies the same bounds with C/2 instead of C, provided that constant
is larger than some absolute one.

To accomplish this, we rely on the choice of € = c|qz|q1‘4/ 3. In the 0, integral,
we estimate

gy '|(a - 1)_2/3/l G(a, b)(b — 1)*°Ni(b, Q1, 02, 03) db|

S ) CeT gml R g

2mi+4m3=2(3)

Recall that m; + m3 > 1 in this case. First note that £#"/3g]"* < 1 for all m3 > 0.
If m; > 1, we may estimate

MBI <01 008 < 1

for all m; =1,2,...,7. On the other hand, if m; = 0, then either m3z = 2 or
m3 =5, whence

2(m l 1)

e < 0q+ g < 1

As for the source term involving Ny, we get
a ~ ~ ~ 2my+4m
[ @b, 01.0 Ooab| 5 S e g,
! 2m 1 +4m=0(3)

where the sum runs over all integers 0 < m, m3 < 7. Note that here, we have
my < 6. The general term of this finite sum is decreasing in m3, irrespective of m;
so it suffices to set m3 = 0 and to evaluate at the endpoints m; = 0 and m; = 6,
respectively. In summary, this yields the bound ¢ + (£°/°G,)® < |g,|. Finally, for
the contribution of N3, we get in case m3 > 1

gy '|(a— 1)_4/3/ G(a, b)(b — 1)’ Ny(b, O, 02, 03) db|
1
5 Z €€2ml+4§m3—l)q’i’“+m3_l
2m+4m3=1(3)

Once again, the general term is decreasing in m3, so it suffices to consider the pairs
(my, m3) from the list

0, 1), (1,2), (2,0), 3, D), 4,2), (5,0), (6, D),

in which mj is always the smallest possible member, given the value of m,. Hence
the upper bound is of the form

S A +6G1) +£G1 [1+(£g1)* + (Lg)*] + 11 + (€G1)?]
Se+tg +0q] < 1,
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where we have used the fact that £g, = c|g2|ql‘”3 < 1.

The existence of the desired fixed point on [1, 1 + £] now follows from this
in standard fashion. Also, O;(a) > g1/2, provided we pick the constant ¢ small
enough. To be specific, we define the space

X :={(01, 02, 03) € (C°([1, 1+ £1))* | (5.7) holds},

where the constant in (5.7) is absolute. By the preceding analysis, we see that
the complete metric space X is mapped onto itself by (5.6). Moreover, taking
differences shows that the system is a contraction in X. It is a standard calculus
exercise to verify that the integrals in (5.6) are C!([1, 1 + £]), and iterating this
property shows that the left-hand side of (5.6) is in fact C*°([1, 1+£]). In particular,
we obtain (5.2) and (5.3), the latter being implied by the integral estimates from
above.

Finally, picking a, =1+ %, we obtain

_42 . .
Q(a.) = (clg2ldy ') ar = 162173,

which gives (5.4). (Il

Having solved the ODE (2.1) near the singularity, we now show that the solu-
tion may be extended to the region a > 1 + £. For this we need the equation to be
defocussing.

Lemma 5.2. The solutions of (2.1) on (1, 1 + £] constructed in Lemma 5.1
can be extended to (1, 00) as smooth globally bounded functions Q(a). For large
values,

Q@) $a™'?, 10" (@)| S a7,
as a — oo with nonvanishing constants cy, c;.

Proof. We construct an integrating factor to remove the first order derivative
in (2.1). Thus introduce the auxiliary function

8 ~ 2
13a—3
2a—1°

as well as the new dependent variable

aell+¢,00)

fla =

X(a) := Q(@w(a), w(a):=elie/@da

Then the original ODE is equivalent to the following ODE for X:
e—6 i f(@da

(5.8) X"(a) + g(@)X + ( S

)X7 -0,
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where g(a) := 5/9(a®> — 1)?. To obtain global regularity, it suffices to exhibit an a
priori L*°-bound for X on any finite interval [1 + £, L].

In order to obtain such a bound, we multiply the equation by X’ and integrate.
This yields the “energy estimate”

1., 1, 1 e bl f@day
SXP(@) + 3X @@ + 5 (5 )X @
—— ¢ g 5 L _61‘1(1;[]'(“1)11&1 8 7~
= /1+€ (4f(a) + M@ = 1)2)6 X(a)®da
/[ sz(d)dfw l()(/)2(1+£)+1X2(1+{3) (1+90)
e 9@ — 1) 2 2 &
8
+ 78(82 " 2€)X (1+90)
1 \2 l 2 I 4
< 2(X) 1+6)+ 2X 1+OHg(1+0)+ 8({’2+2€)X 1+90).

Here, we have used the fact that f(a) > O for all @ > 1. Thus, one has an a priori

bound
(e—é [ f@da

e )Xg(a) < CW), aell+t,o0).

Since

a 4
f@da~ =loga, w(a)~ a*?
1+€ 3

as a — 00, we obtain
e 0 i f@da

a?—1

~a,

and hence
IX(@)| < D@O)a®*, aell+¢,00).

We now return to the original dependent variable. This last bound implies the
decay
10@@)] = X(a)le™ i/ @90 < E(£)a™"/1

as a — oo, whence Q(a) — 0 as a — oo. From the energy estimate, we further-
more infer that [ X'(a)| < C(¢) for all @ > 1 + £, whence

10" (@)w(a) + Q(a)w'(a)| < C(£)
10'(@)] < COW™ (@) +QW@Iw' (@|w (@) S a™'¥1?

But this implies that for each ¢ > 0, there exists a, sufficiently large such that
|Q(a,)| +|0’(a.)| < €. This means that on the interval [a,, 00), we are in the small
data case, and we may solve (2.1) by perturbing around the corresponding solution
of the linear part.
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To be specific, we are precisely in the regime of Lemma 2.5. For the reader’s
convenience, we sketch the details. With the linear fundamental system

1@ =a'(a— 1D, ¢i@@) =a ' +a)*’

we define the Green function

. §1(@)pa(b) = ¢1(D)pa(a)
R T

W(a) := gi(a)gy(a) — §1(@)pa(a)

The denominator is W (b)(b*> — 1), which decays at the rate 5=2/3 as b — co. The
perturbative approach is to seek a nonlinear solution in the form

(5.9) 0(a) = mi§1(a) + maga(a) +/ G(a, b)O(b)’ db

for all a > a, where m, m, are small. As in Section 2, one shows that (5.9) admits
a unique solution for any such choice of m;, m, and that the map (m, m;) —
(O(a,), O'(a,)) is a diffeomorphism from one small neighborhood of the origin to
another. So, in particular, we find (m, m;) in (5.9) such that

(0(a.), 0'(a.)) = (Q(ar), Q'(a.)),

and we see that O(a) = Q(a) for all @ > a,. This means that generically, using the
asymptotics of the fundamental system @;(a), p>(a), we have

10(a)| ~ a= '3, 10/ (a)| ~ a™*3

as a — oo, But it is possible that we satisfy the linear relation between m, m;
which cancels the leading order a~'/3, leading to the faster decay a=*/3. O

Because of the energy estimate, which played a pivotal role in the proof, the
previous lemma essentially depends on the defocussing character of the problem.
We remark that in contrast to the small solutions constructed in Section 2, the large
solutions constructed in this section may oscillate wildly in the interval (1, a.)
because equation (5.8) is a nonlinear oscillator equation.

6 Gluing the self-similar solutions, excision and com-
pletion to a global smooth solution

In this section, we follow the scheme that we deployed above in the small solution
case to excise the singularity from the light-cone so as the obtain global smooth
solution of the defocussing equation (1.1). Combining Corollary 2.7 with the re-
sults of the previous section, we arrive at the following conclusion.



LARGE GLOBAL SOLUTIONS FOR NONLINEAR WAVE EQUATIONS 125

Proposition 6.1. Given gy small enough as well as §, arbitrary, there exists
a continuous function Q(a) which is smooth away from a = 1, solves (2.1) on
[0, 1) U (1, o0), and satisfies

0(0) =q0, 0Q'(0) =0,

as well as a representation (5.1) (where |G| < 1 depends on qq). We have the
asymptotic behavior
Q@] Sa™'?,  a— oo

This function has the representation (2.12) for a € [1/2, 1), as well as the repre-
sentation (5.1) fora € (1, 1 + ] with £ = {£(G,, §2).

Proceeding in exact analogy to Section 3, we introduce the modified approx-
imate solution

(6.1) u(t,r) =173yt — |1 — al**X (@) + 1713 0,(1).

We attempt to turn this into an actual solution of (1.1) (in the defocussing case) by
adding a correction term v (¢, r). Here v solves (4.1). In analogy with Section 4, we
state two main propositions, the first one being local existence for the linearized
equation about u(z, r).

Proposition 6.2. Let u be as in (6.1) above, and assume that v[T] is com-
pactly supported with

lo[T] ||H7/6(R3)XH1/6(R3) < 1.

Then there exist some time Ty > T and a solution
v e LPH"°(T, T\] x R%), o, € LPH°(IT, T,] x RY),

of (4.1) with compact support on every time slice t x R, t € [T, T]. Also, if
v[T] € HR?) x H* Y(R?), then v[t] € H(R?) x H*~'(R?) for all s > 7/6.

This is proved in essentially the same fashion as Proposition 4.3; see the final
section.

Proposition 6.3. Let C > 1 and §, as in the preceding proposition be fixed,
T > 1 sufficiently large, and qq (as in the preceding proposition) sufficiently small.
For a sufficiently small 6,, suppose that v[T] with supportonr € [T —C, T + C],
satisfies

lo[T 1 grsnm @syxavsnzgs) < 01 <K 1.
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Then there exist C; > 1 with C10; < 1 and ¢ = &(qo) > O such that for any
T1 > T,

lollspsqrrxrsy + sup Mot gresne—rym @)xasne—ryrzes) < Cion

te[T,T1]
implies
C
||U||Lijg([71T1]x]R3) + sup ||v[t]”H7/6ﬂ(t—T)€H1(]R3)le/bﬁ([—T)ng(R3) < 751

te[T.T1]

We may also include any other Strichartz norm on the left-hand side; see

Lemma 4.2.

To prove this proposition, we proceed in close analogy to the proof of Propo-
sition 4.4, considering first the energy and then the scaling invariant norm. Notice
carefully that the errors ¢; are not small in a pointwise sense. However, due to the
support condition on v and by taking the initial time 7 sufficiently large, we will
see that the influence of the errors e; on the solution can be made as small as we
wish.

6.1 Energy control. Observe that for¢ € [T, Ty],

/RS [1 (03 + |Vv|2> A SR 108] (t, ) dx

1 2 2 7 6.2 7 1 8
(6.2) /R} b(vt +|Vv|>+§uv +oo U +§v](T,-)dx
t 3
=/ / {Z—ejl)t+21u,u51)2+...+MIU7} dxdt.
T JR L
Note that

T+C
/ WS(T, (T, Y dx < ol / PR dr ST o3 < 62,
T—-C

provided we choose T large enough (depending on §;, which now influences the
size of u). Exactly as in Subsection 4.1, we obtain for j € [1, 5] the bounds

g i
sup |[u/ v (2, )l
te[T,T1]

ca(8—)—1 —e (8—) 1—a)8—j
ST (Csup (T =D Mo, )™ o e 7,
te[T,T]
where here and in the sequel, the implicit constant depends on g ; and, by choosing
T sufficiently large, we can make this < . Moreover, the contribution of the
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8

pure power term v° is estimated as before by

15T, )llzy < Nl DIz ( sup llo@ )% ) < o 3 (Ca)° < o7

te[l1,T]

It remains to control the terms on the right hand side of (6.2). The contribution
of the terms involving the ¢; is again straightforward. In fact, just as in Subsec-
tion 4.1, we get

t t
| [epmasar| < ([ 875 ds)(sup (7 =07 e, i) < 3.
T T te[T,T)]

provided we choose T sufficiently large. As to the remaining source terms
21u’v,, ..., up’, only the first one is delicate, as the others all result in gains
in T, whence the required smallness gain. To handle the delicate term, we write
(on a fixed time slice)

/utusvzdx =/ uv? dx+/ uwv? dx.
r<t t<r<t+C

Here we have exploited the fact that by Huygens’ principle, the perturbation v is
supported in the neighborhood r < ¢ + C of the forward light cone. Since the
approximately self-similar u(z, r) is given by the small-data ansatz in the interior
of the light cone, we can repeat verbatim the estimates following (4.5) to conclude

that ’
1
/ / ‘u,uslﬂ‘ dxdt < 512,
T r<t

provided gg is chosen sufficiently small. Thus, consider now the term

/ w2 dx.
t<r<t+C

Using the bound |u,| < t~! (see (4.6)), we can bound this by

’/ u,usvzdx‘ < ||v||§-{1t_8/3/ r~ Y2 dr
t<r<t+C t<r<t+C

De—3 — 2
S5 (sup (T =07, Hlig) s
te[T,T]

and so we infer

T] T] 5
/ / yu,u502|dxdz,§/ 23 dr( sup (T — 1) llot, lg)’
T t<r<t+C T

te[T,T,]

< 0%,

provided T is sufficiently large.
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The expression [;. [ u0” dxdt, as well as all the “intermediate source terms” in
(6.2), are again all estimated just as in Subsection 4.1, resulting in gains of a factor
T~', which furnishes the required smallness. This completes the bootstrap for the
energy norm

sup (T =)~ *|lo(, g + sup (T =)~ oz, )l
rel 1] el T, 7]

6.2 Critical norm control. We repeat the estimates from Subsection 4.2,
which are all seen to result in a gain of a factor T~! (for the nonlinear source
terms), and so the bootstrap is immediate by choosing T large enough. This com-
pletes the proof of Proposition 6.3.

6.3 Proofs of Theorems 1.2 and 1.4. Invoking Propositions 6.2 and 6.3,
we have shown that the approximate solution u(z, r) can be completed to an exact
global-in-forward time solution

iu(t,r)y =u(t,ry+o(,r).

Moreover, this solution preserves any additional regularity of the data v[7] above
H7/5(R?) x H'/S(R?).

Translating the time ¢ = T to time ¢ = 0, picking §; > M° (see Lemma 5.1),
and re-scaling (¢, r) —> T%ﬂ(Tt, Tr), we have now shown Theorem 1.2. The
largeness condition (1.5) is an immediate consequence of the estimate (5.4) and
the fact that we may choose the initial data so as not to destroy this pointwise
property. Moreover, the largeness of the weak Besov norm follows from the fact
that for radial functions on R3,

1 =1y S 1,52

The remaining assertions of Theorem 1.2 are proved just as for Theorem 1.1.
Theorem 1.4 is proved by truncation, analogously to the way in which we ob-
tained Theorem 1.3. Once again, finite time blowup can only occur at the origin
due to the pointwise a priori bound for all » > 0 (fixed) uniformly in time as a
result of the conserved positive definite energy.

7 Local solvability of the perturbative equation

Here, we prove Proposition 4.3. Let o[T] be as in that proposition. We immedi-
ately observe from their definition that the errors e; have compact support on fixed
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time slices; hence the compact (spatial) support of v[7'] implies that of v [#] for any
t. We construct v as a limit of the iterative process

3
_Dt(tj) + AD(j) == 7M6D(j—l) F-oo-F 7M(U(j—1))6 - (U(j_l))7 _ Zei, ] > 1,
o) =SOIT),
where S(-) denotes the standard free wave propagator. We assume that
NolT 1 grexrrvomsy < 6,

where ¢ is some small but absolute constant, and then show that the sequence v/
converges in LSLIB(R3) N L H7/%(R?) on the time slice [T, T + 1] x R>. We may
assume that

3

||M||L,6L”<([TT+1]><1R3 < Ci4, Z ||€z||L VHVS([T, T+1]1xRR3) < 4,
i=1

for some constants Cj », uniformly in 7 > 1; see Corollary 2.7. We conclude from
Strichartz’ inequality (see Lemma 4.2) that

”D(]) IIL,GLj.gﬂL?CH7/6(R3) + ||azl)(1) ||L§’°H1/6(R3)

6 3
16, k¢, (j—DyT—k ,
< G [ Y IV @Y™V O pqnrenxe + Y leillpmses)
k=0 i=1
We have
i—1)\7 i—1)7 )
(7.1) IY~D) Lt eqrrenxrey < Cyllo¥ )||(L,6L;8mL;>°H7/6)([T,T+1]x]R3)’

indeed, by the fractional Leibnitz rule,

7 6 6
ILf sy S I, 12 sy S W Namss) L 17 s s

59(R3)

and integrating this in time over [7, T + 1] yields (7.1). By the same type of
reasoning, fork =1,2,...,6, we have

ko G—DyT—k 1/6 k=1
llu* (Y =D) I avsqrrnxry < Csll V] / ullzsroqrrarxrn 1@l zspis iy xme)

-1 i—1
x JloY )||L6L18([TT+1]><R*)”U(1 )||L?°H7/6([T,T+l]xR3)

(-1

1/6, (j—1
+C6””||L6L18([TT+1]><R3)”U ||L"L‘8(TT+1]><]R3)” VI )||L?°H‘([T,T+1]><R3)ﬂ

where we have also used the Sobolev embedding (in the context of functions van-
ishing at infinity on R3) H'(R*) c L°(R?). Note that |V|"0u(z,-) € L? due to
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symbolic behavior with respect to r for r >> t. It then follows that provided we
make the inductive assumption

i—1
oY )||L;”L;.8mL,°°H7/6([T,T+1]xR3) <Ko
for some sufficiently large constant K (independent of J), we obtain
j 757
10N spss ez oqr iy < C1 K767 + Cy 6,

where we have exploited the fact that Z?:l lleillz e < Cg 0 as well as

Nl zssnrs jvi-vorsqrr+nxesy < Co 0

from our choice of 4. Choosing 6 > 0 small enough in relation to C; and K large
enough in relation to Cg, we obtain

HD(J)||Lf’L}(8rTL§’°H7/6([T,T+l]xR3) < Ko,

and thus we get the desired a priori bound. Passing to the difference equation
yields the convergence of the v/). The higher derivative bounds follow in stan-
dard fashion by differentiating the equation for o/). This completes the proof of
Proposition 4.3.

As for Proposition 6.2, the main difference lies with the fact that the function u
is no longer small. Thus in order to ensure convergence of the iteration, one needs
to replace the interval [7, T + 1] by one of the form [7, T + k], where x = x(u)
depends on

sup || 1V1"/%ull 5 + sup flull .
t t

Otherwise, the argument is identical to the preceding one.
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