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We give a rigorous proof for the linear stability of the Skyrmion. In addition, we provide

new proofs for the existence of the Skyrmion and the GGMT bound.

1 Introduction

In the 1960s and 1970s, there was a lot of interest in classical relativistic nonlinear field

theories as models for the interaction of elementary particles. The idea was to describe

particles by solitons, that is, static solutions of finite energy. Due to the success of

the standard model, where particles are described by linear (but quantized) fields, this

original motivation became somewhat moot. However, classical nonlinear field theories

continue to be anactive area of research, albeit for different reasons. They are interesting

as models for Einstein’s equation of general relativity, in the context of nonperturbative

quantum field theory or in the description of ferromagnetism. Furthermore, there is an

ever-growing interest from the pure mathematical perspective.

A rich source for field theories with “natural” nonlinearities are geometric action

principles. One of the most prominent examples of this kind is the SU(2) sigma model
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2498 M. Creek et al.

[11] that arises from the wave maps action

SWM(u) =
∫

R1,d
ημν(u∗g)μν =

∫
R1,d

ημν∂μu
A∂νu

BgAB ◦ u.

Here, the field u is a map from (1 + d)-dimensional Minkowski space (R1,d, η) to a Rie-

mannian manifold (M ,g)with metric g. Geometrically, the wave maps Lagrangian is the

trace of the pull-back of the metric g under the map u. A typical choice is M = Sd with

g the standard round metric and in the following, we restrict ourselves to this case.

For d = 3, one obtains the classical SU(2) sigma model. In general, the Euler–Lagrange

equation associated to the action SWM is called the wave maps equation. Unfortunately,

the SU(2) sigmamodel does not admit solitons and it develops singularities in finite time

[3, 7, 26]. One way to recover solitons is to lower the spatial dimension to d = 2, but

this is less interesting from a physical point of view and, even worse, the corresponding

model still develops singularities in finite time [4, 18, 23, 25]. Consequently, Skyrme [27]

proposed tomodify the wavemaps Lagrangian by adding higher-order terms. This leads

to the (generalized) Skyrme action [21]

SSky(u) = SWM(u)+ 1

2

∫
R1,d

[
[ημν(u∗g)μν]2 − (u∗g)μν(u∗g)μν

]
.

Skyrme’s modification breaks the scaling invariance which makes the model more rigid.

Heuristically speaking, rigidity favors the existence of solitons and makes finite-time

blowup less likely. The original Skyrme model arises from the action SSky in the case

d = 3 and M = S3.

By using standard spherical coordinates (t, r, θ ,ϕ) on R1,3, one may consider so-

called co-rotational maps u : R1,3 → S3 of the form u(t, r, θ ,ϕ) = (ψ(t, r), θ ,ϕ). Under this

symmetry reduction the Skyrme model reduces to the scalar quasilinear wave equation

(wψt)t − (wψr)r + sin(2ψ)+ sin(2ψ)

(
sin2

ψ

r2
+ ψ2

r − ψ2
t

)
= 0 (1.1)

for the function ψ = ψ(t, r), where w = r2 + 2 sin2
ψ . It is well-known that there exists

a static solution F0 ∈ C∞[0,∞) to Equation (1.1) with the property that F0(0) = 0 and

limr→∞ F0(r) = π . This was proved by variational methods [17] and ODE techniques

[22]. In fact, F0 is the unique static solution with these boundary values [22] and called

the Skyrmion. Unfortunately, the Skyrmion is not known in closed form and as a con-

sequence, even the most basic questions concerning its role in the dynamics remain

unanswered to this day.
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Linear Stability of the Skyrmion 2499

1.1 Stability of the Skyrmion

Numerical studies [2] strongly suggest that the Skyrmion is a global attractor for the non-

linear flow. In particular, F0 should be stable under nonlinear perturbations. A first step

in approaching this problem from a rigorous point of view is to consider the linear sta-

bility of F0. To this end, one inserts the ansatz ψ(t, r) = F0(r)+φ(t, r) into Equation (1.1)

and linearizes in φ. This leads to the linear wave equation

ϕtt − ϕrr + 2

r2
ϕ + V(r)ϕ = 0

for the auxiliary variable ϕ(t, r) =
√
r2 + 2 sin2 F0(r) φ(t, r). The potential V is given by

V = −4a2 1 + 3a2 + 3a4

(1 + 2a2)2
, a(r) = sin F0(r)

r
.

Consequently, the linear stability of the Skyrmion is governed by the 
 = 1 Schrödinger

operator

Af (r) := −f ′′(r)+ 2

r2
f (r)+ V(r)f (r)

on L2(0,∞). More precisely, the Skyrmion is linearly stable if and only if A has no neg-

ative eigenvalues. Unfortunately, the analysis of A is difficult since the potential V is

negative and not known explicitly. Consequently, the linear stability of F0 hinges on

the particular shape of V and this renders the application of general soft arguments

hopeless. Our main result is the following.

Theorem 1.1. The Schrödinger operator A does not have eigenvalues. In particular,

the Skyrmion F0 is linearly stable. �

1.2 Related work

Due to the complexity of the field equation, there are not many rigorous results on

dynamical aspects of the Skyrme model. In [8], small data global well-posedness and

scattering is proved and [20] establishes large-data global well-posedness. There is also

some recent activity on the related but simpler Adkins–Nappi model, see, for example [9,

10, 19]. From a numerical point of view, the linear stability of the Skyrmion is addressed

in [14] and [2] studies the nonlinear stability. As far as the method of proof is concerned,

we note that our approach is in parts inspired by [6].
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2500 M. Creek et al.

1.3 Outline of the proof

According to the GGMT bound, see [12, 13, 24] or Appendix 1, the number of negative

eigenvalues of A is bounded by

ν(V) := 3−7 33�(8)

44�(4)2

∫ ∞

0
r7|V(r)|4dr.

Consequently, our aim is to show that ν(V) < 1. In fact, by a perturbative argument this

also excludes the eigenvalue 0 and there cannot be threshold resonances at zero energy

since the decay of the recessive solution of Af = 0 is 1/r at infinity. In Appendix 1 we

elaborate on this and give a new proof of the GGMT bound.

In order to show ν(V) < 1,we proceed by an explicit construction of the Skyrmion

F0. In particular, this yields a new proof for the existence of the Skyrmion. Our approach

is mildly computer-assisted in the sense that one has to perform a large number of

elementary operations involving fractions. It is worth noting that all computations are

done in Q, that is, they are free of rounding or truncation errors. We also emphasize

that the proof does not require a computer algebra system. Consequently, the necessary

computations can easily be carried out using any programming language that supports

fraction arithmetic. A natural choice is Pythonwhich is open source and freely available

for all common operating systems.

In the following, we give a brief outline of the main steps in the proof.

• We consider Equation (1.1) for static solutions ψ(t, r) = F(r) and change

variables according to

F(r) = 2arctan
(
r(1 + r)g

(
r − 1

r + 1

))
.

The new independent variable x = r−1
r+1 allows us to compactify the problemby

considering x ∈ [−1, 1]. Furthermore, the arctan removes the trigonometric

functions in Equation (1.1). Consequently, we obtain an equation of the form

R(g)(x) := g′′(x)+�(x,g(x),g′(x)) = 0

where � is a (fairly complicated) rational function of 3 variables.

• Wenumerically construct a very precise approximation to the Skyrmion. This

is done by employing a Chebyshev pseudospectral method [5]. The expan-

sion coefficients are rationalized to allow for error-free computations in the
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Linear Stability of the Skyrmion 2501

sequel. This leads to a polynomial gT(x) with rational coefficients and we

rigorously prove that ‖R(gT)‖L∞(−1,1) ≤ 1
500 . As a consequence, the construc-

tion of the Skyrmion reduces to finding a (small) correction δ(x) such that

R(gT + δ) = 0.

• Next, we obtain bounds on second derivatives of � by employing rational

interval arithmetic. As a consequence, we obtain the representation

R(gT + δ) = R(gT)+ Lδ + N (δ)

with explicit bounds on the nonlinear remainder N . The linear operator L is

also given explicitly in terms of gT and first derivatives of �.

• Again, by a Chebyshev pseudospectral method, we numerically construct an

approximate fundamental system {u−,u+} for the linear equation Lu = 0.

The functions u± satisfy L̃u± = 0 for another linear operator L̃ that is close

to L in a suitable sense. Using u± we construct an inverse L̃−1 to L̃ which

allows us to rewrite the equation R(gT + δ) = 0 as a fixed point problem

δ = −L̃−1R(gT)− L̃−1(L − L̃)δ − L̃−1N (δ) =: K(δ).

From the explicit form of u± we obtain rigorous and explicit bounds on the

operator L̃−1.

• Finally, we prove thatK is a contraction on a small closed ball inW1,∞(−1, 1).

This yields the existence of a small correction δ(x) such that gT + δ solves the
transformed Skyrmion equation. From the uniqueness of the Skyrmion, we

conclude that

F0(r) = 2arctan
(
r(1 + r)(gT + δ)

(
r − 1

r + 1

))

and the desired ν(V) < 1 follows by elementary estimates.

1.4 Notation

Throughout the paper we abbreviate L∞ := L∞(−1, 1) and also W1,∞ := W1,∞(−1, 1). For

the norm in W1,∞ we use the convention

‖f ‖W1,∞ :=
√

‖f ′‖2
L∞ + ‖f ‖2

L∞ .

The Wronskian W(f ,g) of two functions f and g is defined as W(f ,g) := fg′ − f ′g.
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2502 M. Creek et al.

2 Preliminary Transformations

Static solutions ψ(t, r) = F(r) of Equation (1.1) satisfy the Skyrmion equation

d

dr

[(
r2 + 2 sin2 F(r)

)
F ′(r)

]
− sin(2F(r))

[
F ′(r)2 + sin2 F(r)

r2
+ 1

]
= 0. (2.1)

The Skyrmion F0 is the unique solution of Equation (2.1) satisfying F0(0) = 0 and

limr→∞ F0(r) = π . More precisely, we have F0(r) = π + O(r−2) as r → ∞. Further-

more, it is known that the Skyrmion is monotonically increasing [22]. In order to remove

the trigonometric functions, it is thus natural to define a new dependent variable

f : [0,∞) → R by

F(r) =: 2 arctan f (r).

Then, we have

F ′ = 2f ′

1 + f 2
, F ′′ = 2f ′′

1 + f 2
− 4f ′2f
(1 + f 2)2

as well as

sin2 F = 4f 2

(1 + f 2)2
, sin(2F) = 4f (1 − f 2)

(1 + f 2)2
.

Consequently, Equation (2.1) is equivalent to

f ′′ + W(f )′

W(f )
f ′ − 2f ′2f

1 + f 2
− 2f (1 − f 2)

W(f )(1 + f 2)

[
4f ′2

(1 + f 2)2
+ 4f 2

r2(1 + f 2)2
+ 1

]
= 0 (2.2)

where

W(f )(r) := r2 + 8f (r)2

[1 + f (r)2]2 .

Equation (2.2) may be slightly simplified to give

f ′′ + 2rf ′

W(f )
− 2f ′2f

1 + f 2
+ 2f (1 − f 2)

W(f )(1 + f 2)

[
4f ′2

(1 + f 2)2
− 4f 2

r2(1 + f 2)2
− 1

]
= 0 (2.3)

Next, we set

f (r) =: r(1 + r)g
(
r − 1

r + 1

)
.
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Linear Stability of the Skyrmion 2503

This yields

f
(
1 + x

1 − x

)
= 2

1 + x

(1 − x)2
g(x)

f ′
(
1 + x

1 − x

)
= (1 + x)g′(x)+ 3 + x

1 − x
g(x)

f ′′
(
1 + x

1 − x

)
= 1

2 (1 + x)(1 − x)2g′′(x)+ 2(1 − x)g′(x)+ 2g(x)

for x ∈ [−1, 1). We compactify the problem by allowing x ∈ [−1, 1]. In these new

variables, Equation (2.2) can be written as

R(g)(x) := g′′(x)+�
(
x,g(x),g′(x)

) = 0 (2.4)

where � : (−1, 1)× R2 → R is given by

�(x,y, z) := 1

�(x,y)

2∑
k=0

�k(x,y)z
k (2.5)

with

�0(x,y) := 2−5(1 + x)5(3 + x)y7 − 2−6(1 + x)(1 − x)3(33 − 58x − 16x2 + 18x3 + 7x4)y5

+ 2−9(1 − x)7(47 − 51x + 33x2 + 3x3)y3 + 2−9(1 − x)11y

�1(x,y) := −2−4(1 + x)7y6 − 2−5(1 + x)2(1 − x)4(14 − 21x + 4x2 + 7x3)y4

+ 2−8(1 − x)8(23 − 31x + 13x2 + 3x3)y2 + 2−9(1 − x)12

�2(x,y) := −(1 − x2)
[
2−5(1 + x)6y5 + 2−6(1 + x)2(1 − x)4(7 − 10x + 7x2)y3

− 2−9(1 − x)8(3 − 10x + 3x2)y
]

(2.6)

and

�(x,y) :=(1 − x2)
[
2−6(1 + x)6y6 + 2−8(1 + x)2(1 − x)4(11 − 10x + 11x2)y4

+ 2−10(1 − x)8(11 − 10x + 11x2)y2 + 2−12(1 − x)12
]
. (2.7)
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2504 M. Creek et al.

Obviously, �(−1,y) = �(1,y) = 0 for all y and, since

2∑
k=0

�k(−1,y)zk = 4(1 + 8y2)(y + 2z)

2∑
k=0

�k(1,y)z
k = 4y6(y − 2z), (2.8)

we obtain the regularity conditions

g′(−1) = − 1
2g(−1), g′(1) = 1

2g(1) (2.9)

for solutions of R(g) = 0 (at least if g(1) 
= 0, which is the case we are interested in).

3 Numerical Approximation of the Skyrmion

3.1 Description of the numerical method

Wewill require a fairly precise approximation to the Skyrmion. Already fromanumerical

point of view this is not entirely trivial since a brute force approach is doomed to fail.

That is why we employ a more sophisticated Chebyshev pseudospectral method. To this

end, we use the basis functions φn : [−1, 1] → R, n ∈ N0, given by

φn(x) := Tn(x)+ an(1 + x)+ bn(1 − x), (3.1)

where Tn are the standard Chebyshev polynomials. The constants an and bn are chosen in

such a way that the regularity conditions Equation (2.9) are satisfied, that is, we require

φ′
n(−1)+ 1

2φn(−1) = φ′
n(1)− 1

2φn(1) = 0 (3.2)

for all n ∈ N0. This yields φ0 = φ1 = 0 and

an = −T ′
n(−1)− 1

2Tn(−1) = (−1)n(n2 − 1
2 )

bn = T ′
n(1)− 1

2Tn(1) = n2 − 1
2
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Linear Stability of the Skyrmion 2505

for n ≥ 2. Then we numerically solve the (N0 − 1)-dimensional nonlinear root finding

problem

R
(

N0∑
n=2

c̃nφn

)
(xk) = 0, xk = cos

(
kπ

N0

)
, k = 1, 2, . . . ,N0 − 1

for N0 = 43 with R given in Equation (2.4). The points (xk)
N0−1
k=1 are the standard Gauß-

Lobatto collocation points for the Chebyshev pseudospectral method [5] with endpoints

removed (we only have N0 − 1 unknown coefficients due to φ0 = φ1 = 0; in the standard

Chebyshev method one has N0 + 1 coefficients to determine). Finally, we rationalize the

numerically obtained coefficients (c̃n). The 42 coefficients (cn)43n=2 ⊂ Q obtained in this

way are listed in Table 2.1 of Appendix 2.

3.2 Methods for rigorous estimates

In order to obtain good estimates for the complicated rational functions that will show

up in the sequel, the following elementary observation is useful.

Lemma 3.1. Let f ∈ C1([−1, 1]) and set

�N := {−1 + 2k
N : k = 0, 1, 2, . . . ,N} ⊂ [−1, 1] ∩ Q, N ∈ N.

Then we have the bounds

max
[−1,1]

f ≤ max
�N

f + 2
N ‖f ′‖L∞

min
[−1,1]

f ≥ min
�N

f − 2
N ‖f ′‖L∞

‖f ‖L∞ ≤ max
�N

|f | + 2
N ‖f ′‖L∞

for any N ∈ N. �

Proof. The statements are simple consequences of the mean value theorem. �

Remark 3.2. In a typical application one first obtains a rigorous but crude bound on

f ′ by elementary estimates. Then one uses a computer to evaluate f sufficiently many

times in order to obtain a good bound on f . �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/8/2497/3061043 by Yale U
niversity, C

ushing/W
hitney M

edical Library user on 01 June 2022



2506 M. Creek et al.

Another powerful method for estimating complicated functions is provided

by interval arithmetic [1, 15]. We use the following elementary rules for operations

involving intervals.

Definition 3.3. Let a,b, c,d ∈ R with a ≤ b and c ≤ d. Interval arithmetic is defined by

the following operations.

[a,b] + [c,d] := [a+ c,b+ d]
[a,b] − [c,d] := [a− d,b− c]
[a,b] · [c,d] := [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]

[a,b]
[c,d] := [a,b] · [ 1d , 1

c ] provided 0 /∈ [c,d].

If a,b, c,d ∈ Q, we speak of rational interval arithmetic. Furthermore, standard

(rational) arithmetic is embedded by identifying a ∈ R with [a,a]. �

Lemma3.4. Let x ∈ [a,b] and y ∈ [c,d] anddenote by ∗ anyof the elementary operations

+,−, ·, /. Then we have x ∗ y ∈ [a,b] ∗ [c,d]. �

Proof. The proof is an elementary exercise. �

Remark 3.5. If f is a complicated rational function of several variables (with rational

coefficients), rational interval arithmetic is an effective way to obtain a rigorous and

reasonable bound on f (�), provided � is a product of closed intervals with rational

endpoints. The necessary computations can easily be carried out on a computer as they

only involve elementary operations in Q. The quality of the bound, however, depends on

the particular algebraic form that is used to represent f . Furthermore, in typical appli-

cations the bound can be improved considerably by splitting the domain � in smaller

subdomains �k, that is, � = ⋃
k �k, and by estimating each f (�k) separately by interval

arithmetic. �

3.3 Rigorous bounds on the approximate Skyrmion

Definition 3.6. We set

gT(x) :=
43∑
k=2

cnφn(x)

where (cn)43n=2 ⊂ Q are given in Table 2.1 of Appendix 2. �
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Linear Stability of the Skyrmion 2507

Proposition 3.7. The function gT satisfies

1
100 + 11

20 ≤ gT(x) ≤ 21
20 − 1

100

1
100 − 11

20 ≤ g′
T(x) ≤ 1

2 − 1
100

for all x ∈ [−1, 1]. Furthermore,

‖R(gT)‖L∞ ≤ 1
500 . �

Proof. From the bound ‖T ′′
n‖L∞ ≤ 1

3n
2(n2 − 1) we infer

‖g′′
T‖L∞ ≤

43∑
n=2

|cn|‖T ′′
n‖L∞ ≤ 1

3

43∑
n=2

n2(n2 − 1)|cn| ≤ 36

and Lemma 3.1 with N = 7200 yields

max
[−1,1]

g′
T ≤ max

�N
g′
T + 2

N ‖g′′
T‖L∞ ≤ 47

100 + 1
100 ≤ 1

2 − 1
100

min
[−1,1]

g′
T ≥ min

�N
g′
T − 2

N ‖g′′
T‖L∞ ≥ − 51

100 − 1
100 ≥ − 11

20 + 1
100 .

In particular, we obtain ‖g′
T‖L∞ ≤ 1 and with N = 200 we find

max
[−1,1]

gT ≤ max
�N

gT + 2
N ‖g′

T‖L∞ ≤ 101
100 + 1

100 ≤ 21
20 − 1

100

min
[−1,1]

gT ≥ min
�N

gT − 2
N ‖g′

T‖L∞ ≥ 58
100 − 1

100 ≥ 11
20 + 1

100 .

This proves the first part of the Proposition.

Next, we consider

�̂(x,y) := �(x,y)

1 − x2
.

Rational interval arithmetic yields

�̂
([−1, 0], [ 1120 , 21

20 ]
) ⊂ [

10−3, 13
]
, �̂

([0, 1], [ 1120 , 21
20 ]

) ⊂ [
10−4, 2

]
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2508 M. Creek et al.

and thus, �̂(x,gT(x)) > 0 for all x ∈ [−1, 1]. We set

P(x) := ( 2110 + 1
3x − x2)7

1 − x2

2∑
k=0

�k (x,gT(x)) [g′
T(x)]k

Q(x) := ( 2110 + 1
3x − x2)7

1 − x2
� (x,gT(x)) = ( 2110 + 1

3x − x2)7�̂(x,gT(x)),

which yields the representation

�
(
x,gT(x),g

′
T(x)

) = P(x)

Q(x)
.

The prefactor ( 2110 + 1
3x − x2)7 is introduced ad hoc. It is empirically found to improve

some of the estimates that follow. By Equation (2.7), Q is a polynomial with rational

coefficients and by the regularity conditions Equation (3.2) together with Equation (2.8),

the same is true for P. Furthermore, Q(x) > 0 for all x ∈ [−1, 1] and from the explicit

expressions for�k and�, Equations (2.6) and (2.7), we read off the estimates deg P ≤ 319

and degQ ≤ 278.

For the following it is advantageous to straighten the denominator. To this end

we obtain a truncated Chebyshev expansion of 1/Q,

1

Q(x)
≈

14∑
n=0

rnTn(x) =: R(x),

where

(rn) = ( 1137 ,− 1
23 ,− 5

44 ,− 3
13 ,

9
44 ,

1
12 ,− 1

766 ,− 3
25 ,

1
101 ,

1
23 ,

1
35 ,− 1

36 ,− 1
66 ,

1
307 ,

1
125 ).

The coefficients (rn) can be obtained numerically by a standard pseudospectral method

as explained in Section 3.1. Thus, we may write

R(gT)(x) = g′′
T(x)+�

(
x,gT(x),g

′
T(x)

) = g′′
T(x)+ P(x)

Q(x)

= R(x)Q(x)g′′
T(x)+ R(x)P(x)

R(x)Q(x)

and this modification is expected to improve the situation since the denominator RQ is

now approximately constant. Note further thatRP andRQ are polynomials with rational

coefficients and

deg(RP) ≤ 333, deg(RQ) ≤ 292, deg(RQg′′
T) ≤ 333.
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Linear Stability of the Skyrmion 2509

For brevity, we set

P̂ := RQg′′
T + RP, Q̂ := RQ.

We now re-expand P̂ and Q̂ as

P̂(x) =
333∑
n=0

p̂nTn(x), Q̂(x) =
292∑
n=0

q̂nTn(x).

The expansion coefficients (p̂n), (q̂n) ⊂ Q are obtained by solving the linear equations

(The choice of the evaluation points (xk) is arbitrary but since P̂ has removable sin-

gularities at −1 and 1, we prefer to avoid the endpoints. Furthermore, the equation

for (q̂n) is overdetermined so that one can re-use the computationally expensive LU

decomposition.)

333∑
n=0

p̂nTn(xk) = P̂(xk),
333∑
n=0

q̂nTn(xk) = Q̂(xk), xk = − 1
2 + k

333

for k = 0, 1, . . . , 333. From the bounds ‖Tn‖L∞ ≤ 1 and ‖T ′
n‖L∞ ≤ n2, we infer

‖P̂‖L∞ ≤
333∑
n=0

|p̂n| ≤ 12
10000 , ‖Q̂′‖L∞ ≤

292∑
n=0

n2|q̂n| ≤ 22.

Consequently, Lemma 3.1 with N = 500 yields

min
[−1,1]

Q̂ ≥ min
�N

Q̂− 2
N ‖Q̂′‖L∞ ≥ 93

100 − 44
500 ≥ 4

5

and, since R(gT) = P̂/Q̂, we obtain the estimate

‖R(gT)‖L∞ ≤ ‖P̂‖L∞

min[−1,1] Q̂
≤ 5

4
12

10000 = 3
2000 ≤ 4

2000 = 1
500 . �

4 Estimates for the Nonlinearity

By employing rational interval arithmetic, we prove bounds on second derivatives of

the function �. This leads to explicit bounds for the nonlinear operator.

All of the polynomials of two variables x,y that appear in the sequel are

implicitly assumed to be given in the following canonical form

k0∑
k=0

(1 + x)αk (1 − x)βkPk(x)y
k
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2510 M. Creek et al.

where k0,αk,βk ∈ N0 and Pk are polynomials with rational coefficients and Pk(±1) 
= 0.

This is important since the outcome of interval arithmetic depends on the representation

of the function.

4.1 Pointwise estimates

Lemma 4.1. Let � = [−1, 1] × [ 1120 , 21
20 ] × [− 11

20 ,
1
2 ]. Then we have the bounds

‖∂22�‖L∞(�) ≤ 70

‖∂2∂3�‖L∞(�) ≤ 22

‖∂23�‖L∞(�) ≤ 8. �

Proof. We begin with the simplest estimate, that is, the bound on ∂23�. We set

�̂k(x,y) := �k(x,y)

1 − x2
, �̂(x,y) := �(x,y)

1 − x2

with �k and � from Equations (2.6) and (2.7), respectively. Observe that �̂2 is a

polynomial. From Equation (2.5), we infer

∂2z�(x,y, z) = 2�2(x,y)

�(x,y)
= 2�̂2(x,y)

�̂(x,y)

and from the proof of Proposition 3.7 we recall that �̂([−1, 1], [ 1120 , 21
20 ]) ⊂ [10−4, 13]. Con-

sequently, ∂23� is a rational function without poles in �. Rational interval arithmetic

then yields (Here and in the following, the domain � needs to be divided in sufficiently

small subdomains �k ⊂ � such that � = ⋃
k �k, see Remark 3.5.) ∂23�(�) ⊂ [−8, 8] and

this proves the stated bound for ∂23�.

Next, we consider ∂2∂3�. We have

∂y∂z�(x,y, z) = ∂y
�̂1(x,y)+ 2�̂2(x,y)z

�̂(x,y)

= �̂(x,y)∂y�̂1(x,y)− ∂y�̂(x,y)�̂1(x,y)

�̂(x,y)2

+ 2z
�̂(x,y)∂y�̂2(x,y)− ∂y�̂(x,y)�̂2(x,y)

�̂(x,y)2

and, since �̂2 is a polynomial, the last term is a rational function without poles in �.

Note further that the numerator of the second to last term appears to be singular at

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/8/2497/3061043 by Yale U
niversity, C

ushing/W
hitney M

edical Library user on 01 June 2022



Linear Stability of the Skyrmion 2511

x ∈ {−1, 1}, but in fact there is a cancellation so that

�̂(x,y)∂y�̂1(x,y)− ∂y�̂(x,y)�̂1(x,y)

= 2−11(1 + x)7(1 − x)3(17 − 43x + 7x2 + 3x3)y9

− 2−11(1 + x)5(1 − x)7(17 − 15x + 7x2 + 7x3)y7

− 2−14(1 + x)(1 − x)11(285 − 637x + 794x2 − 386x3 + 41x4 + 95x5)y5

− 2−15(1 + x)(1 − x)15(25 − 31x + 15x2 + 7x3)y3

+ 2−19(1 − x)19(1 − 12x + 3x2)y.

We conclude that ∂2∂3� is a rational function without poles in � and rational interval

arithmetic yields ∂2∂3�(�) ⊂ [−22, 22].
Finally, we turn to ∂22�. We have

∂y�(x,y, z) =
2∑

k=0

�̂(x,y)∂y�̂k(x,y)zk − ∂y�̂(x,y)�̂k(x,y)zk

�̂(x,y)2

= 1

�̂(x,y)2

2∑
k=0

�̂k(x,y)z
k

where �̂k := �̂∂2�̂k − ∂2�̂�̂k. From above we recall that �̂1 and �̂2 are polynomials. We

obtain

∂2y�(x,y, z) =
2∑

k=0

�̂(x,y)2∂y�̂k(x,y)zk − 2�̂(x,y)∂y�̂(x,y)�̂k(x,y)zk

�̂(x,y)4
.

Again, the apparently singular term

�̂(x,y)2∂y�̂0(x,y)− 2�̂(x,y)∂y�̂(x,y)�̂0(x,y)

is in fact a polynomial since it exhibits a special cancellation. Consequently, ∂22� is a

rational function without poles in � and rational interval arithmetic yields the desired

bound. �

4.2 The nonlinear operator

In this section, we employ Einstein’s summation convention, that is, we sum over

repeated indices (the range follows from the context).
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2512 M. Creek et al.

Lemma 4.2. Let U ⊂ Rd be open and convex and f ∈ C2(U) ∩W2,∞(U). Set

M := 1
2

⎛
⎝ d∑

j=1

d∑
k=1

‖∂j∂kf ‖2
L∞(U)

⎞
⎠

1/2

.

Then we have

f (x0 + x) = f (x0)+ xj∂jf (x0)+ N(x0,x)

where N satisfies the bound

|N(x0,x)− N(x0,y)| ≤ M(|x| + |y|)|x − y|

for all x0,x,y ∈ Rd such that x0,x0 + x,x0 + y ∈ U . �

Proof. From the fundamental theorem of calculus, we infer

N(x0,x)− N(x0,y) = f (x0 + x)− f (x0 + y)− (xj − yj)∂jf (x0)

=
∫ 1

0
∂tf

(
x0 + y + t(x − y)

)
dt − (xj − yj)∂jf (x0)

= (xj − yj)
∫ 1

0

[
∂jf

(
x0 + y + t(x − y)

) − ∂jf (x0)
]
dt

= (xj − yj)
∫ 1

0

∫ 1

0
∂s∂jf

(
x0 + sy + st(x − y)

)
dsdt

= (xj − yj)
∫ 1

0
[yk + t(xk − yk)]

∫ 1

0
∂k∂jf

(
x0 + sy + st(x − y)

)
dsdt

and Cauchy–Schwarz yields

|N(x0,x)− N(x0,y)| ≤ |xj − xj|‖∂j∂kf ‖L∞(U)

∫ 1

0

[
t|xk| + (1 − t)|yk|]dt

= 1
2 |xj − yj|(|xk| + |yk|)‖∂j∂kf ‖L∞(U)

≤ 1
2 |x − y|(|xk| + |yk|)

⎛
⎝ d∑

j=1

‖∂j∂kf ‖2
L∞(U)

⎞
⎠

1/2

≤ M |x − y||x| +M |x − y||y|. �

Proposition 4.3. We have

R(gT + δ) = R(gT)+ Lδ + N (δ)
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Linear Stability of the Skyrmion 2513

where

Lu(x) := u′′(x)+ ∂3�
(
x,gT(x),g

′
T(x)

)
u′(x)+ ∂2�

(
x,gT(x),g

′
T(x)

)
u(x)

and N satisfies the bounds

‖N (u)‖L∞ ≤ 39 ‖u‖2
W1,∞

‖N (u)− N (v)‖L∞ ≤ 39 (‖u‖W1,∞ + ‖v‖W1,∞) ‖u− v‖W1,∞

for all u,v ∈ C1[−1, 1] with ‖u‖W1,∞ , ‖v‖W1,∞ ≤ 1
100 . �

Proof. Let � = [−1, 1] × [ 1120 , 21
20 ] × [− 11

20 ,
1
2 ]. Lemma 4.2 implies

�(x,y0 + y, z0 + z) = �(x,y0, z0)+ ∂2�(x,y0, z0)y + ∂3�(x,y0, z0)z + N(x,y0, z0,y, z)

where N satisfies the bound

|N(x,y0, z0,y, z)− N(x,y0, z0, ỹ, z̃)| ≤ M
√
(y − ỹ)2 + (z − z̃)2

(√
y2 + z2 + √

ỹ2 + z̃2
)

with

M = 1
2

√
‖∂22�‖2

L∞(�) + 2‖∂2∂3�‖2
L∞(�) + ‖∂23�‖2

L∞(�).

From Lemma 4.1, we infer M ≤ 39 and thus, the claim follows from Proposition 3.7 by

setting

N (u)(x) := N
(
x,gT(x),g

′
T(x),u(x),u

′(x)
)
. �

5 Analysis of the Linear Operator

In this section, we construct a linear operator L̃ with an explicit fundamental system

such that L − L̃ is small in L∞(−1, 1). Then, we invert L̃ and prove an explicit bound on

the inverse.
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2514 M. Creek et al.

5.1 Asymptotics

First, we study the asymptotic behavior of ∂2� and ∂3�.

Lemma 5.1. We have

∂2�
(
x,gT(x),g

′
T(x)

) = 2

1 + x
+ O(x0)

∂3�
(
x,gT(x),g

′
T(x)

) = 4

1 + x
+ O(x0)

for x ∈ (−1, 0], as well as

∂2�
(
x,gT(x),g

′
T(x)

) = 2

1 − x
+ O(x0)

∂3�
(
x,gT(x),g

′
T(x)

) = − 4

1 − x
+ O(x0)

for x ∈ [0, 1). �

Proof. As before, we set

�̂(x,y) := �(x,y)

1 − x2

with � from Equation (2.7). Then, we have

�(x,y, z) = 1

(1 − x2)�̂(x,y)

2∑
k=0

�k(x,y)z
k

with �k given in Equation (2.6). Recall that �̂ is a polynomial with no zeros in [−1, 1] ×
[ 1120 , 21

20 ], see the proof of Proposition 3.7. From Equations (2.6) and (2.7) we obtain

�0(−1,y) = 4y + 32y3 �0(1,y) = 4y7

�1(−1,y) = 8 + 64y2 �1(1,y) = −8y6

�2(−1,y) = 0 �2(1,y) = 0

�̂(−1,y) = 1 + 8y2 �̂(1,y) = y6.
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Linear Stability of the Skyrmion 2515

Consequently,

lim
x→−1

[
(1 + x)∂z�(x,y, z)

] = �1(−1,y)

2�̂(−1,y)
= 4

lim
x→1

[
(1 − x)∂z�(x,y, z)

] = �1(1,y)

2�̂(1,y)
= −4.

The other assertions are proved similarly. �

In order to isolate the singular behavior, it is natural to write

Lu = L0u+ pu′ + qu

where

L0u(x) = u′′(x)+
(

4

1 + x
− 4

1 − x

)
u′(x)+

(
2

1 + x
+ 2

1 − x

)
u(x)

= u′′(x)− 8x

1 − x2
u′(x)+ 4

1 − x2
u(x)

p(x) = ∂3�
(
x,gT(x),g

′
T(x)

) − 4

1 + x
+ 4

1 − x

q(x) = ∂2�
(
x,gT(x),g

′
T(x)

) − 2

1 + x
− 2

1 − x
.

Lemma 5.1 implies that p and q are rational functions with no poles in [−1, 1].

Lemma 5.2. The equation Lu = 0 has fundamental systems {u−,v−} and {u+,v+} on

(−1, 1) which satisfy

u−(x) = 1 + O(1 + x)

u′
−(x) = − 1

2 + O(1 + x)

v−(x) = O((1 + x)−3)

for x ∈ (−1, 0], as well as

u+(x) = 1 + O(1 − x)

u′
+(x) = 1

2 + O(1 − x)

v+(x) = O((1 − x)−3)
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2516 M. Creek et al.

for x ∈ [0, 1). Furthermore, u−,v−,u+,v+ ∈ C∞(−1, 1) and u− ∈ C∞([−1, 1)), u+ ∈
C∞((−1, 1]). �

Proof. The coefficients of the equation Lu = 0 are rational functions and the only

poles in [−1, 1] are at x = −1 and x = 1. These poles are regular singular points of

the equation with Frobenius indices {−3, 0}. Consequently, the statements follow by

Frobenius’ method. �

5.2 Numerical construction of an approximate fundamental system

We obtain an approximate fundamental system {u−,u+}, where u± is smooth at ±1,

by a Chebyshev pseudospectral method. As always, special care has to be taken near

the singular endpoints ±1. Solutions u of Lu = 0 that are regular at −1 must satisfy

u′(−1)+ 1
2u(−1) = 0. Similarly, regularity at 1 requiresu′(1)− 1

2u(1) = 0, cf. Equation (2.9).

If one sets

u±(x) = w±(x)
(1 ± x)3

,

the regularity conditions u′
±(±1) = ± 1

2u±(±1) translate into w ′
±(±1) = ±2w±(±1).

Consequently, we use the basis functions ψ±,n : [−1, 1] → R, n ∈ N, given by

ψ±,n(x) := Tn(x)± [T ′
n(±1)∓ 2Tn(±1)](1 ∓ x) (5.1)

which have the necessary regularity conditions automatically built in, that is,ψ ′
±,n(±1) =

±2ψ±,n(±1) for alln ∈ N. Observe thatw± is expected to beboundedon [−1, 1], see Lemma

5.2. For brevity, we also set

ψ̂±,n(x) := ψ±,n(x)

(1 ± x)3
. (5.2)

We enforce the normalization

N±∑
n=1

c±,nψ̂(±1) = 1,

which is used to fix the coefficients c±,1. The remaining coefficients are obtained

numerically by solving the root finding problem

L
(

N±∑
n=1

c±,nψ̂±,n

)
(xk) = 0, xk = cos

(
kπ

N±

)
, k = 1, 2, . . . ,N± − 1
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Linear Stability of the Skyrmion 2517

with N± = 30. Finally, we rationalize the floating-point coefficients. The resulting

coefficients are listed in Tables 2.2 and 2.3 of Appendix 2.

5.3 Rigorous bounds on the approximate fundamental system

The numerical approximation leads to the following definition.

Definition 5.3. We set

u±(x) := w±(x)
(1 ± x)3

:= 1

(1 ± x)3

30∑
n=1

c±,nψ±,n(x)

where the coefficients (c±,n)
30
n=2 ⊂ Q are given in Tables 2.2 and 2.3 of Appendix 2,

respectively. The coefficients c±,1 are determined by the requirement u±(±1) = 1. �

Next, we analyze the approximate fundamental system {u−,u+}.

Proposition 5.4. We have W(u−,u+)(x) = (1 − x2)−4W0(x), where W0 is a polynomial

with no zeros in [−1, 1]. Furthermore, the functions u± satisfy

L̃u± = 0,

where L̃u := L0u+ p̃u′ + q̃u, and

‖p̃− p‖L∞ ≤ 3
100 , ‖q̃− q‖L∞ ≤ 1

20 . �

Proof. We temporarily set p±(x) := (1 ± x)−3. Then we have

W(u−,u+) = W(p−w−,p+w+) = W(p−,p+)w−w+ + p−p+W(w−,w+)

and, since W(p−,p+)(x) = −6(1 − x2)−4, we infer W(u−,u+)(x) = (1 − x2)−4W0(x) with

W0(x) = −6w−(x)w+(x)+ (1 − x2)W(w−,w+)(x).

Obviously,W0 is a polynomial with degW0 ≤ 61, see Definition 5.3. We re-expandW0 in

Chebyshev polynomials,

W0(x) =
61∑
n=0

w0,nTn(x),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/8/2497/3061043 by Yale U
niversity, C

ushing/W
hitney M

edical Library user on 01 June 2022



2518 M. Creek et al.

by solving the (possibly overdetermined) system

61∑
n=0

w0,nTn(xk) = W0(xk), xk = − 1
2 + k

61 , k = 0, 1, 2, . . . , 61

for the coefficients (w0,n)
61
n=0 ⊂ Q. From the re-expansion we obtain the estimate

‖W ′
0‖L∞ ≤

61∑
n=0

|w0,n|‖T ′
n‖L∞ ≤

61∑
n=0

n2|w0,n| ≤ 400

and Lemma 3.1 with N = 2000 yields

max
[−1,1]

W0 ≤ max
�N

W0 + 2
N ‖W ′

0‖L∞ ≤ − 94
100 + 400

1000 ≤ − 1
2 .

This shows that W0 has no zeros in [−1, 1].
We set

p̃ := u+L0u− − u−L0u+
W(u−,u+)

, q̃ := u′
−L0u+ − u′

+L0u−
W(u−,u+)

.

By construction, we have L̃u± = L0u± + p̃u′
± + q̃u± = 0. In order to estimate p − p̃, we

first note that

u+(x)L0u−(x)− u−(x)L0u+(x) = O((1 − x2)−4)

since the most singular terms cancel. Consequently,

P1(x) := (1 − x2)4[u+(x)L0u−(x)− u−(x)L0u+(x)]

is a polynomial of degree at most 66. Furthermore, recall that

p(x) = ∂3�
(
x,gT(x),g

′
T(x)

) + 8x

1 − x2
= �1(x,gT(x))+ 2�2(x,gT(x))g′

T(x)

�(x,y)
+ 8x

1 − x2

= 2g′
T(x)

�̂2(x,gT(x))

�̂(x,gT(x))
+ 1

1 − x2

�1(x,gT(x))+ 8x�̂(x,gT(x))

�̂(x,gT(x))
,

where we use the notation

�̂(x,y) = �(x,y)

1 − x2
, �̂k(x,y) = �k(x,y)

1 − x2
.

From Equations (2.6), (2.7) it follows that �̂ and �̂2 are polynomials. Moreover, we have

�1(x,y)+ 8x�̂(x,y) = 0
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Linear Stability of the Skyrmion 2519

for x ∈ {−1, 1} and this shows that p is of the form p(x) = P2(x)
P3(x)

where

P2(x) := 2g′
T(x)�̂2(x,gT(x))+ �1(x,gT(x))+ 8x�̂(x,gT(x))

1 − x2

is a polynomial of degree at most 263 and P3(x) := �̂(x,gT(x)). Recall that P3 has no zeros

on [−1, 1] and deg P3 ≤ 264. Consequently, we obtain

p− p̃ = P2

P3
− P1

W0
= P2W0 − P1P3

P3W0
.

In order to estimate this expression, we proceed as in the proof of Proposition 3.7. First,

we straighten the denominator, that is, we try to find an approximation to 1
W0P3

as a trun-

cated Chebyshev expansion. To improve the numerical convergence, it is advantageous

to multiply the numerator and denominator by the polynomial ( 1310 − x2)8 (this factor is

found empirically). Consequently, we write p− p̃ = P4
P5

where

P4(x) = ( 1310 − x2)8[P2(x)W0(x)− P1(x)P3(x)], P5(x) = ( 1310 − x2)8P3(x)W0(x).

Note that P4 and P5 are polynomials with rational coefficients and deg P4 ≤ 346, deg P5 ≤
341. Next, we obtain an approximation to 1/P5 of the form

1

P5(x)
≈

30∑
n=0

rnTn(x) =: R(x)

where the coefficients (rn)30n=1 ⊂ Q, obtained by a pseudospectral method, are given in

Table 2.4 of Appendix 2 and r0 = − 623
23 . Wewrite p−p̃ = RP4

RP5
and note that deg(RP4) ≤ 376,

deg(RP5) ≤ 371. We re-expand RP4 and RP5 as

RP4 =
376∑
n=0

p4,nTn, RP5 =
376∑
n=0

p5,nTn

by solving the linear equations

376∑
n=0

p4,nTn(xk) = RP4(xk),
376∑
n=0

p5,nTn(xk) = RP5(xk)

for xk = − 1
2 + k

376 and k = 0, 1, . . . , 376. This yields the bound

‖(RP5)
′‖L∞ ≤

376∑
n=0

|p5,n|‖T ′
n‖L∞ ≤

376∑
n=0

n2|p5,n| ≤ 17
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2520 M. Creek et al.

and from Lemma 3.1 with N = 1000 we infer

min
[−1,1]

RP5 ≥ min
�N

RP5 − 2
N ‖(RP5)

′‖L∞ ≥ 98
100 − 34

1000 ≥ 94
100 .

Consequently, we find

‖p− p̃‖L∞ =
∥∥∥RP4
RP5

∥∥∥
L∞ ≤ 100

94

376∑
n=0

|p4,n| ≤ 3
100 .

The bound for q− q̃ is proved analogously. �

Proposition 5.5. The approximate fundamental system {u−,u+} satisfies the bounds

|u−(x)|
∫ 1

x

|u+(y)|
|W(y)| dy + |u+(x)|

∫ x

−1

|u−(y)|
|W(y)| dy ≤ 7

10

|u′
−(x)|

∫ 1

x

|u+(y)|
|W(y)| dy + |u′

+(x)|
∫ x

−1

|u−(y)|
|W(y)| dy ≤ 1

2

for all x ∈ (−1, 1), where W(y) := W(u−,u+)(y). �

Proof. As before, we write u±(x) = (1±x)−3w±(x) and recall thatw± are polynomials of

degree 30, see Definition 5.3. First, we obtain an approximation to 1/W0, where W(x) =
(1−x2)−4W0(x), see Proposition 5.4. By employing the usual pseudospectral method, we

find

1

W0(x)
≈

22∑
n=0

rnTn(x) =: R(x)

with the coefficients (rn)22n=0 ⊂ Q given in Table 2.5 of Appendix 2. Next, we note that

|ψ ′
−,n(x)| ≤ |T ′

n(x)| + |T ′
n(−1)| + 2|Tn(−1)| ≤ 2n2 + 2

for all x ∈ [−1, 1], see Equation (5.1), and thus,

‖w ′
−‖L∞ ≤

30∑
n=1

|c−,n|‖ψ ′
−,n‖L∞ ≤ 2

30∑
n=1

(n2 + 1)|c−,n| ≤ 60.

Consequently, Lemma 3.1 with N = 600 yields

min
[−1,1]

w− ≥ min
�N

w− − 2
N ‖w ′

−‖L∞ ≥ 7
10 − 1

5 = 1
2
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Linear Stability of the Skyrmion 2521

and in particular, w− > 0. Analogously, we see that w+ > 0 on [−1, 1]. Furthermore,

from the proof of Proposition 5.4 we recall thatW0 < 0 on [−1, 1]. Consequently, we find

A(x) : = |u−(x)|
∫ 1

x

|u+(y)|
|W(y)| dy + |u+(x)|

∫ x

−1

|u−(y)|
|W(y)| dy

= − w−(x)
(1 − x)3

∫ 1

x
(1 − y)4(1 + y)

R(y)w+(y)
R(y)W0(y)

dy

− w+(x)
(1 + x)3

∫ x

−1
(1 + y)4(1 − y)

R(y)w−(y)
R(y)W0(y)

dy.

Note thatRW0 is a polynomial of degree atmost 22+61 = 83, see the proof of Proposition

5.4. We re-expand RW0 by solving the linear system

83∑
n=0

anTn(xk) = R(xk)W0(xk), xk = − 1
2 + k

83 , k = 0, 1, . . . , 83

over Q, which yields the estimate

‖(RW0)
′‖L∞ ≤

83∑
n=0

n2|an| ≤ 3.

Thus, from Lemma 3.1 with N = 600, we infer

min
[−1,1]

RW0 ≥ min
�N

RW0 − 2
N ‖(RW0)

′‖L∞ ≥ 99
100 − 1

100 = 98
100

and this yields

A(x) ≤ 100
98

[
w−(x)
(1 − x)3

I+(x)+ w+(x)
(1 + x)3

I−(x)
]
,

where

I−(x) :=
∫ x

−1
(1 + y)4(1 − y)[−R(y)]w−(y)dy

I+(x) :=
∫ 1

x
(1 − y)4(1 + y)[−R(y)]w+(y)dy. (5.3)

The integrands of I± are polynomials and hence, I± can be computed explicitly. More

precisely, we write

P±(y) := (1 ∓ y)4(1 ± y)[−R(y)]w±(y)
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2522 M. Creek et al.

and note that deg P± ≤ 57. Consequently, we may re-expand P± as P±(y) = ∑57
n=0 p±,nyn

by solving the linear systems

57∑
n=0

p±,nx
n
k = P±(xk), xk = − 1

2 + k
57 , k = 0, 1, 2, . . . , 57

over Q. From this, we obtain the explicit expressions

I−(x) =
57∑
n=0

p−,n

n+ 1
xn+1 −

57∑
n=0

p−,n

n+ 1
(−1)n+1

I+(x) =
57∑
n=0

p+,n

n+ 1
−

57∑
n=0

p+,n

n+ 1
xn+1.

Furthermore, directly from Equation (5.3) we see that I±(x) = O((1∓ x)5). Consequently,

P(x) := w−(x)
(1 − x)3

I+(x)+ w+(x)
(1 + x)3

I−(x)

is a polynomial of degree at most 85. Thus, another re-expansion yields the Chebyshev

representation P(x) = ∑85
n=0 pnTn(x) and we obtain the bound

‖P ′‖L∞ ≤
85∑
n=0

n2|pn| ≤ 3.

Consequently, Lemma 3.1 with N = 1000 yields

A(x) ≤ 100
98 ‖P‖L∞ ≤ 100

98

(
max
�N

|P| + 2
N ‖P ′‖L∞

)
≤ 100

98

(
591
1000 + 6

1000

) ≤ 7
10 .

To prove the second bound, we set Q±(x) := u′
±(x)I∓(x) and note that

u′
±(x) = w ′

±(x)
(1 ± x)3

∓ 3
w±(x)
(1 ± x)4

.

Consequently, Q± are polynomials with degQ± ≤ 84 and a Chebyshev re-expansion

yields

‖Q′
−‖L∞ + ‖Q′

+‖L∞ ≤ 20.
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Linear Stability of the Skyrmion 2523

Thus, from Lemma 3.1 with N = 800 we infer (Strictly speaking, a slight variant of

Lemma 3.1 is necessary here since the function |Q−| + |Q+| is only piecewise C1.)

max
[−1,1]

(|Q−| + |Q+|) ≤ max
�N

(|Q−| + |Q+|)+ 2
N

(‖Q′
−‖L∞ + ‖Q′

+‖L∞
)

≤ 41
100 + 5

100 = 46
100

which implies

|u′
−(x)|

∫ 1

x

|u+(y)|
|W(y)| dy + |u′

+(x)|
∫ x

−1

|u−(y)|
|W(y)| dy ≤ 100

98

(|u′
−(x)I+(x)| + |u′

+(x)I−(x)|
)

= 100
98 (|Q−(x)| + |Q+(x)|)

≤ 100
98

46
100 ≤ 1

2

for all x ∈ (−1, 1). �

5.4 Construction of the Green function

Based on Proposition 5.4, we can now invert the operator L̃. A solution of the equation

L̃u = f ∈ L∞(−1, 1) is given by

u(x) =
∫ 1

−1
G(x,y)f (y)dy,

with the Green function

G(x,y) = 1

W(u−,u+)(y)

⎧⎨
⎩ u−(x)u+(y) x ≤ y

u+(x)u−(y) x ≥ y
.

In fact, this is the unique solution that belongs to L∞(−1, 1). Consequently, we have

L̃−1f (x) =
∫ 1

−1
G(x,y)f (y)dy.

The bounds from Proposition 5.5 immediately imply the following estimate.

Corollary 5.6. We have the bound

‖L̃−1f ‖W1,∞ ≤ ‖f ‖L∞

for all f ∈ L∞(−1, 1). �
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2524 M. Creek et al.

Proof. By definition, we have

L̃−1f (x) = u−(x)
∫ 1

x

u+(y)
W(y)

f (y)dy + u+(x)
∫ x

−1

u−(y)
W(y)

f (y)dy

and thus,

(L̃−1f )′(x) = u′
−(x)

∫ 1

x

u+(y)
W(y)

f (y)dy + u′
+(x)

∫ x

−1

u−(y)
W(y)

f (y)dy,

where W(y) = W(u−,u+)(y). Consequently, from Proposition 5.5, we infer

‖L̃−1f ‖W1,∞ =
(
‖(L̃−1f )′‖2

L∞ + ‖L̃−1f ‖2
L∞

)1/2 ≤
√
( 12 )

2 + ( 7
10 )

2 ‖f ‖L∞ ≤ ‖f ‖L∞ . �

6 Linear Stability of the Skyrmion

Now we are ready to conclude the proof of Theorem 1.1.

6.1 The main contraction argument

Recall that we aim for solving the equation R(gT + δ) = 0, that is,

Lδ = −R(gT)− N (δ),

see Proposition 4.3. We rewrite this equation as

L̃δ = −R(gT)+ (L̃ − L)δ − N (δ)

and apply L̃−1, which yields

δ = −L̃−1R(gT)+ L̃−1(L̃ − L)δ − L̃−1N (δ) =: K(δ)

Thus, our goal is to prove that K has a fixed point.

Lemma 6.1. Let X := {u ∈ C1[−1, 1] : ‖u‖W1,∞ ≤ 1
150 }. Then K has a unique fixed point

in X . �

Proof. From Propositions 3.7, 4.3, 5.4, and Corollary 5.6, we obtain the estimate

‖K(u)‖W1,∞ ≤ ‖R(gT)‖L∞ + ‖Lu− L̃u‖L∞ + ‖N (u)‖L∞

≤ 1
500 + ‖p− p̃‖L∞‖u′‖L∞ + ‖q− q̃‖L∞‖u‖L∞ + 39‖u‖2

W1,∞
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Linear Stability of the Skyrmion 2525

≤ 1
500 + 3

100
1

150 + 1
20

1
150 + 39( 1

150 )
2

≤ 1
150 .

Consequently, K(u) ∈ X for all u ∈ X . Furthermore,

‖K(u)− K(v)‖W1,∞ ≤ ‖(L − L̃)(u− v)‖L∞ + ‖N (u)− N (v)‖L∞

≤ ‖p− p̃‖L∞‖u′ − v ′‖L∞ + ‖q− q̃‖L∞‖u− v‖L∞ + 39 2
150‖u− v‖W1,∞

≤ (
3

100 + 1
20 + 78

150

) ‖u− v‖W1,∞

= 3
5‖u− v‖W1,∞

for all u,v ∈ X . Thus, the claim follows from the contraction mapping principle. �

Finally, we obtain the desired approximation to the Skyrmion.

Corollary 6.2. There exists a δ ∈ C1[−1, 1] with ‖δ‖W1,∞ ≤ 1
150 such that the Skyrmion is

given by

F0(r) = 2arctan
(
r(1 + r)

(
gT

(
r − 1

r + 1

)
+ δ

(
r − 1

r + 1

)))
. �

Proof. By construction, Lemma 6.1, and standard ODE regularity theory, there exists

a δ with the stated properties such that F0 is a smooth solution to the original Skyrmion

equation (2.1). Obviously, we have F0(0) = 0 and from gT(x) ∈ [ 12 , 3
2 ] for all x ∈ [−1, 1], see

Proposition 3.7, we infer limr→∞ F0(r) = π . Since the Skyrmion is the unique solution of

Equation (2.1) with these boundary values [22], the claim follows. �

6.2 Spectral stability

Recall that the linear stability of the Skyrmion is governed by the Schrödinger operator

Af (r) = −f ′′(r)+ 2

r2
f (r)+ V(r)f (r)

on L2(0,∞), where the potential is given by

V = −4a2 1 + 3a2 + 3a4

(1 + 2a2)2
, a(r) = sin F0(r)

r
.
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2526 M. Creek et al.

From Corollary 6.2 and the identity sin(2arctan y) = 2y
1+y2 , we obtain

a(r) = 2(1 + r)
[
gT

(
r−1
r+1

) + δ
(
r−1
r+1

)]
1 + r2(1 + r)2

[
gT

(
r−1
r+1

) + δ
(
r−1
r+1

)]2 .
Furthermore, from ‖δ‖L∞ ≤ 1

150 and gT(x) ∈ [ 12 , 3
2 ] for all x ∈ [−1, 1], see Proposition 3.7,

we infer the bounds

|a(r)| ≤ 2(1 + r)
[
gT

(
r−1
r+1

) + 1
150

]
1 + r2(1 + r)2

[
gT

(
r−1
r+1

) − 1
150

]2 =: A(r)

|a(r)| ≥ 2(1 + r)
[
gT

(
r−1
r+1

) − 1
150

]
1 + r2(1 + r)2

[
gT

(
r−1
r+1

) + 1
150

]2 =: B(r)

Consequently, we obtain the estimate

|V | ≤ 4A2 1 + 3A2 + 3A4

(1 + 2B2)2
.

Lemma 6.3. We have the bound

∫ ∞

0
r7|V(r)|4dr ≤ 130. �

Proof. By employing the techniques introduced before, it is straightforward to obtain

the stated estimate. More precisely, we introduce the new integration variable x ∈
[−1, 1], given by r = 1+x

1−x , and write

∫ ∞

0
r7|V(r)|4dr ≤

∫ ∞

0
r7

[
4A(r)2

1 + 3A(r)2 + 3A(r)4

(1 + 2B(r)2)2

]4

dr =
∫ 1

−1

P(x)

Q(x)
dx,

where P and Q are polynomials with rational coefficients. As before, by a pseudospec-

tral method, we construct a truncated Chebyshev expansion R(x) of 1/Q(x). Next, by a

Chebyshev re-expansion we obtain an estimate for ‖(RQ)′‖L∞ and Lemma 3.1 yields a

lower bound on min[−1,1] RQ which is close to 1. From this, we find

∫ 1

−1

P(x)

Q(x)
dx =

∫ 1

−1

R(x)P(x)

R(x)Q(x)
dx ≤ 1

min[−1,1] RQ

∫ 1

−1
R(x)P(x)dx

and the last integral can be evaluated explicitly since the integrand is a polynomial. �

We can now conclude the main result.
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Linear Stability of the Skyrmion 2527

Proof of Theorem 1.1. From Lemma 6.3, we obtain

3−7 33�(8)

44�(4)2

∫ ∞

0
r7|V(r)|4dr ≤ 2275

2592
< 1.

Consequently, the GGMT bound, see Appendix 1, implies that A has no eigenvalues. �
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Appendix 1. The GGMT Bound

Consider H = −�+V in R3 where V ∈ L1 ∩L∞(R3) (say) and radial. The GGMT bound [13]

is as follows (see also [12]). We restrict ourselves to a smaller range of p than necessary

since it is technically easier and sufficient.

Theorem A.1. Write V = V+ − V− where V± ≥ 0. For any 3
2 ≤ p < ∞, if

(p− 1)p−1�(2p)

pp�2(p)

∫ ∞

0
r2p−1Vp

−(r)dr < 1 (A.1)

then H has no negative eigenvalues. Furthermore, zero energy is neither an eigenvalue

nor a resonance. �

Proof. Suppose H has negative spectrum. Then there exists a ground state, Hψ = Eψ

with ψ ∈ H2(R3), ‖ψ‖2 = 1, and radial, E < 0. So

〈Hψ ,ψ〉 < 0 (A.2)

which implies in particular that for any α ∈ R,∫
R3

|∇ψ(x)|2 dx <
∫

R3
V−(x)|ψ(x)|2 dx

≤ ‖rαV−‖p‖r− α
2ψ‖2

2q

(A.3)
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2528 M. Creek et al.

by Hölder, 1
p + 1

q = 1 (which is only meaningful if the right-hand side is finite). We set

p(2 − α) = 3, q(1 + α) = 3, which requires that −1 ≤ α ≤ 2. In fact, ∞ ≥ p ≥ 3
2 means

precisely that 2 ≥ α ≥ 0, and 1 ≤ q ≤ 3. Set

μq := inf
ψ∈H1

rad\{0}

‖∇ψ‖2
2

‖r q−3
2q ψ‖2

2q

(A.4)

Note that the denominator here is always a positive finite number. Indeed, it suffices to

check this for q = 1 and q = 3, respectively. This amounts to

‖r−1ψ‖2 + ‖ψ‖6 ≤ C‖∇ψ‖2 ∀ ψ ∈ H1(R3)

which is true by the Hardy and Sobolev inequalities. By Lemma A.2, μq > 0 and its value

can be explicitly computed. Thus, by (A.3),

‖∇ψ‖2
2 ≤ μ−1

q ‖rαV−‖p‖∇ψ‖2
2

which is a contradiction of μ−1
q ‖rαV−‖p < 1, the latter being precisely condition (A.1).

It remains to discuss the case where H has no negative spectrum but a zero

eigenvalue or a zero resonance. If 0 is an eigenvalue, then we have a solution ψ ∈ H2 of

−�ψ = Vψ

which means that

ψ(x) = − 1

4π

∫
R3

V(y)ψ(y)

|x − y| dy

If
∫
Vψ 
= 0, thenψ(x) � |x|−1 for large x, which is not L2. So

∫
Vψ = 0 andψ(x) = O(|x|−2)

as x → ∞. One has 〈Hψ ,ψ〉 = 0 instead of (A.2). Replacing H with Hε = H − εe−|x|2 for

small ε > 0 we conclude that

〈Hεψ ,ψ〉 < 0

andHε therefore has negative spectrum,while (A.1) still holds for small ε. By the previous

case, this gives a contradiction.

If 0 is a resonance, this means that there is a solution ψ ∈ H2
loc(R

3) with ψ(x) �
|x|−1 as x → ∞ (and by the reasoning above this holds if and only if

∫
Vψ 
= 0). In

particular, since ∇ψ ∈ L2 and since
∫
Vψ2 is absolutely convergent, we still arrive at the
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Linear Stability of the Skyrmion 2529

conclusion that 〈Hψ ,ψ〉 = 0. Substituting Hε for H as above again gives a contradiction.

To be precise, we evaluate the quadratic form of Hε on the functions

ψR(x) := χ(x/R)ψ(x)

where χ is a standard bump function of compact support and equal to 1 on the unit ball.

Sending R → ∞ then shows that Hε has negative spectrum. �

The following lemma establishes the constant μq in the previous proof. The

variational problem (A.4) is invariant under a two-dimensional group of symmetries:

Sξ ,η(ψ)(x) = eξψ(eηx), ξ , η ∈ R. The scaling of the independent variable leads to a loss

of compactness. To make it easier to apply the standard methods of concentration-

compactness, we employ the same change of variables as in [13].

Lemma A.2. For 1 < q ≤ 3 we have

μq = p

p− 1

[
4π
(p− 1)�2(p)

�(2p)

] 1
p
,

with p the dual exponent to q. Equality in (A.4) is attained by the radial functions

ψq(x) = a(
1 + br

1
p−1

)p−1

where a,b > 0 are arbitrary. �

Proof. We begin with the following claim

μq = inf
ϕ∈H1(R),ϕ 
=0

(4π)
1
p

∫ ∞
−∞

(
ϕ′2 + 1

4ϕ
2)(x)dx( ∫ ∞

−∞ ϕ
2q(x)dx

) 1
q (A.5)

To prove it, first note that we may take the infimum in (A.4) over radial functions ψ ∈
C1(R3) of compact support. For this, we use that 1 ≤ q ≤ 3 to control the denominator

by the Ḣ1(R3) norm. Then, set ϕ(x) = √
rψ(r), r = ex and calculate

‖∇ψ‖2
2 = 4π

∫ ∞

−∞

(
ϕ′2 + 1

4
ϕ2)(x)dx

‖r q−3
2q ψ‖2

2q = (4π)
1
q

( ∫ ∞

−∞
ϕ2q(x)dx

) 1
q
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2530 M. Creek et al.

Note that ϕ(x) → 0 as x → ±∞ (exponentially as x → −∞, and identically vanishing for

large x > 0). This gives (A.5) by density.

Let ϕn ∈ H1(R) be a minimizing sequence for (A.5) with ‖ϕn‖2q = 1. Clearly, ϕn is

bounded inH1(R) and by Sobolev embedding, it follows thatμq > 0. By the concentration

compactness method, see Proposition 3.1 in [16], there exist Vj ∈ H1(R) for all j ≥ 1, and

xj,n ∈ R such that (everything up to passing to subsequences)

|xj,n − xk,n| → ∞ for all j 
= k as n → ∞

ϕn =

∑

j=1

Vj(· − xj,n)+ gn,
 for all 
 ≥ 1

where

lim sup
n→∞

‖gn,
‖p → 0

as 
 → ∞ for any 2 < p < ∞. Moreover,

‖ϕ′
n‖2

2 =

∑

j=1

‖V ′
j‖2

2 + ‖g′
n,
‖2

2 + o(1)

‖ϕn‖2
2 =


∑
j=1

‖Vj‖2
2 + ‖gn,
‖2

2 + o(1)

(A.6)

as n → ∞, and

1 = ‖ϕn‖2q
2q =


∑
j=1

‖Vj‖2q
2q + o(1)

as n, 
 → ∞. To be precise, for any ε > 0 we may find 
 such that

∣∣∣1 −

∑

j=1

‖Vj‖2q
2q

∣∣∣ < ε

We have

‖ϕ′
n‖2

2 + 1

4
‖ϕn‖2

2 ≥ (4π)−
1
pμq

( 
∑
j=1

‖Vj‖2
2q + ‖gn,
‖2

2q

) − o(1)

≥ (4π)−
1
pμq

( 
∑
j=1

‖Vj‖2q
2q + ‖gn,
‖2q

2q

) 1
q − o(1)

(A.7)
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If there were two nonzero profiles Vj, or if

lim sup
n→∞

‖gn,
‖2q 
→ 0

as 
 → ∞, then there exists δ > 0 (since q > 1) so that

‖ϕ′
n‖2

2 + 1

4
‖ϕn‖2

2 ≥ (4π)−
1
pμq(1 + δ)− o(1)

asn → ∞, contradicting that ϕn is aminimizing sequence. So up to a translation, wemay

assume that ϕn is compact in L2q(R) and in fact that ϕn → ϕ∞ in L2q(R). In particular,

‖ϕ∞‖2q = 1. Furthermore, we have the weak convergence ϕ′
n ⇀ ϕ′

∞, ϕn ⇀ ϕ∞ in L2(R),

which implies that

‖ϕ′
∞‖2

2 + 1

4
‖ϕ∞‖2

2 ≤ lim inf
n→∞

(‖ϕ′
n‖2

2 + 1

4
‖ϕn‖2

2

) = (4π)−
1
pμq

In conclusion, ϕn → ϕ∞ strongly inH1, and ϕ∞ ∈ H1(R)\{0} is a minimizer for μq. Passing

absolute values onto ϕn we may assume that ϕ∞ ≥ 0.

The associated Euler–Lagrange equation is

−2ϕ′′
∞ + 1

2
ϕ∞ = kϕ2q−1

∞

first in the weak sense, but then in the classical one by basic regularity. Furthermore,

ϕ > 0, ϕ∞ ∈ C∞(R), and k > 0. Since q > 1 we may absorb the constant which leads to an

exponentially decaying, positive smooth solution to the equation

−f ′′(x)+ 1

4
f (x) = f 2q−1(x)

By the phase portrait, such an f is unique up to translation in x. It is given by the

homoclinic orbit emanating from the origin and encircling the positive equilibrium.

This homoclinic orbit (and its reflection together with the origin) make up the algebraic

curve

−f ′2 + 1

4
f 2 = 1

q
f 2q (A.8)

The explicit form of the solution is obtained by integrating up the first-order ODE (A.8)

which leads to

f (x − x0) =
(q
4

) 1
2(q−1) (

cosh((q− 1)x/2)
)− 1

q−1 (A.9)
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where x0 ∈ R. Finally,

μp
q = 4π

∫ ∞

−∞
f (x)2q dx

with f as on the right-hand side of (A.9). Thus,

μp
q = 4π

(q
4

) q
q−1

∫ ∞

−∞

(
cosh((q− 1)x/2)

)− 2q
q−1 dx (A.10)

To proceed, we recall that for any b > 0

∫ ∞

−∞
(cosh x)−b dx = 2b

∫ ∞

0

ub−1

(1 + u2)b
du =

√
π �(b/2)

�((b+ 1)/2)

Inserting this into (A.10) yields

μp
q = 4π

(q
4

)p 2

q− 1

�(p)

�(p+ 1
2 )

Using �(p)�(p+ 1
2 ) = 21−2p√π �(2p) this turns into

μp
q = 4π

qp

q− 1

�(p)2

�(2p)
= 4π

( p

p− 1

)p
(p− 1)

�(p)2

�(2p)

which is what the lemma set out to prove. The minimizers are obtained by transforming

(A.9) back to the original coordinates. �

Theorem A.1 is insufficient for linearized Skyrme. The reason being that the

Helmholtz equation associated with the latter is of the form

−ψ ′′ + ( 2
r2

+ V(r))ψ = k2ψ

which has extra repulsivity coming from the 2
r2

potential. On the level of the Schrödinger

equation in R3 this precisely amounts to restricting to angular momentum 
 = 1. So we

expect that a weaker condition on V than the one stated in Theorem A.1 will suffice. This

is essential for our applications to linearized Skyrme stability.

In fact, as already noted in [13], for general angular momentum 
 > 0 we are

faced with the minimization problemwhich is obtained from (A.5) by replacing 1
4ϕ

2 with
1
4 (2
+ 1)2ϕ2. However, the scaling

ϕ(x) = ϕ1((2
+ 1)x)
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Linear Stability of the Skyrmion 2533

takes us back to the minimization problem (A.5) with an extra factor of (2
 + 1)1+ 1
q .

Recall that Theorem A.1 is nothing other than μ−p
q ‖rαV−‖pp < 1. Therefore, to exclude

eigenfunctions and threshold resonances of angular momentum 
 condition (A.1) needs

to be multiplied on the left by a factor of

(2
+ 1)−p(1+ 1
q ) = (2
+ 1)−(2p−1)

In the summary, the sufficient GGMT criterion for absence of bound states and threshold

resonances in angular momentum 
 reads

(p− 1)p−1�(2p)

(2
+ 1)2p−1pp�2(p)

∫ ∞

0
r2p−1Vp

−(r)dr < 1 (A.11)

for any 3
2 ≤ p < ∞. For linear Skyrme stability, we use this criterion with 
 = 1 and

p = 4.

Appendix 2. Tables of Expansion Coefficients

Table 2.1. Expansion coefficients for approximate Skyrmion

n 2 3 4 5 6 7 8

cn 13039
72146

2909
229801 − 11670

500821 − 301
39257

621
122813

871
221909 − 42

55481

n 9 10 11 12 13 14 15

cn − 64
36275 − 18

77071
94

139483
13

40736 − 31
158602 − 9

42953
2

100443

n 16 17 18 19 20 21 22

cn 11
105144

2
76485 − 5

121747 − 5
186976

1
92977

2
118683

1
1805239

n 23 24 25 26 27 28 29

cn − 1
122146 − 1

317774
1

332077
1

377050 − 1
1689008 − 1

640158 − 1
3975308

n 30 31 32 33 34 35 36

cn 1
1402566

1
2606123 − 1

4324868 − 1
3550160

1
54392687

1
6563655

1
21696717

n 37 38 39 40 41 42 43

cn − 1
16289508 − 1

21329884
1

86396283
1

36311458
1

128282128 − 1
128832209 − 1

196527234
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Table 2.2. Expansion coefficients for u−

n 1 2 3 4 5 6

c−,n c−,1
5384
2621 − 711

1909
417
3424

18
1817

2
3169

n 7 8 9 10 11 12

c−,n − 23
3399 − 22

4655
4

4097
7

2589
2

3607 − 8
6937

n 13 14 15 16 17 18

c−,n − 3
4310

1
2886

2
4135 − 1

90728 − 1
3865 − 1

11699

n 19 20 21 22 23 24

c−,n
1

9323
1

11955 − 1
36563 − 1

18412 − 1
192414

1
37653

n 25 26 27 28 29 30

c−,n
1

79523 − 1
119499 − 1

105631 − 1
1857125

1
285782

1
619658

Table 2.3. Expansion coefficients for u+

n 1 2 3 4 5 6

c+,n c+,1
1371
769

1734
3319

230
3431 − 167

6071
33

5231

n 7 8 9 10 11 12

c+,n
59

4580 − 19
7202 − 19

2849
1

13495
11

3203
4

4737

n 13 14 15 16 17 18

c+,n − 7
4481 − 2

2217
1

1808
1

1529 − 1
11699 − 1

2637

n 19 20 21 22 23 24

c+,n − 1
12409

1
5625

1
9479 − 1

16801 − 1
12593

1
300485

n 25 26 27 28 29 30

c+,n
1

21636
1

56764 − 1
51904 − 1

51451
1

307476
1

121058
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Linear Stability of the Skyrmion 2535

Table 2.4. Expansion coefficients for approximation to

1/P5 (Proposition 5.4)

n 1 2 3 4 5 6

rn − 437
24 − 811

20 − 229
17 − 2391

61 − 397
30 − 178

7

n 7 8 9 10 11 12

rn − 184
27 − 518

27 − 98
15 − 1345

114 − 86
31 − 284

39

n 13 14 15 16 17 18

rn − 59
24 − 156

35 − 107
106 − 86

37 − 23
31 − 23

16

n 19 20 21 22 23 24

rn − 9
26 − 73

110 − 5
27 − 13

32 − 1
9 − 2

11

n 25 26 27 28 29 30

rn − 1
24 − 3

29 − 1
29 − 2

33 − 1
62 − 1

47

Table 2.5. Expansion coefficients for approximation to 1/W0 (Proposition 5.5)

n 0 1 2 3 4 5 6 7

rn − 19
69

11
106

37
103 − 14

107 − 23
128

7
81

9
109 − 3

67

n 8 9 10 11 12 13 14 15

rn − 3
79

2
99

2
111 − 1

124 − 1
114

1
376

1
233 − 1

1792

n 16 17 18 19 20 21 22 23

rn − 1
481 − 1

8890
1

1025
1

4569 − 1
2336 − 1

6718
1

5790 0
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