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We give a rigorous proof for the linear stability of the Skyrmion. In addition, we provide

new proofs for the existence of the Skyrmion and the GGMT bound.

1 Introduction

In the 1960s and 1970s, there was a lot of interest in classical relativistic nonlinear field
theories as models for the interaction of elementary particles. The idea was to describe
particles by solitons, that is, static solutions of finite energy. Due to the success of
the standard model, where particles are described by linear (but quantized) fields, this
original motivation became somewhat moot. However, classical nonlinear field theories
continue to be an active area of research, albeit for different reasons. They are interesting
as models for Einstein’s equation of general relativity, in the context of nonperturbative
quantum field theory or in the description of ferromagnetism. Furthermore, there is an
ever-growing interest from the pure mathematical perspective.

A rich source for field theories with “natural” nonlinearities are geometric action

principles. One of the most prominent examples of this kind is the SU(2) sigma model
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2498 M. Creek et al.

[11] that arises from the wave maps action

Swm(u) = / " g = / ﬂﬂuauuAaqugAB ou.
]Rl,d erd

Here, the field u is a map from (1 + d)-dimensional Minkowski space (R'¢,7) to a Rie-
mannian manifold (M, g) with metric g. Geometrically, the wave maps Lagrangian is the
trace of the pull-back of the metric g under the map u. A typical choice is M = S? with
g the standard round metric and in the following, we restrict ourselves to this case.
For d = 3, one obtains the classical SU(2) sigma model. In general, the Euler-Lagrange
equation associated to the action Sy is called the wave maps equation. Unfortunately,
the SU(2) sigma model does not admit solitons and it develops singularities in finite time
[3, 7, 26]. One way to recover solitons is to lower the spatial dimension to d = 2, but
this is less interesting from a physical point of view and, even worse, the corresponding
model still develops singularities in finite time [4, 18, 23, 25]. Consequently, Skyrme [27]
proposed to modify the wave maps Lagrangian by adding higher-order terms. This leads

to the (generalized) Skyrme action [21]

1
Sory (W = Swu( + 5 [ [0 @l = w)nwe)].

rLd

Skyrme’s modification breaks the scaling invariance which makes the model more rigid.
Heuristically speaking, rigidity favors the existence of solitons and makes finite-time
blowup less likely. The original Skyrme model arises from the action Sg., in the case
d=3and M = S8

By using standard spherical coordinates (¢,7,6, ¢) on R'?, one may consider so-
called co-rotational maps u : R'"® — S® of the form u(t,r,0,¢) = (¥ (t,1),0,¢). Under this

symmetry reduction the Skyrme model reduces to the scalar quasilinear wave equation

sin®

r2

(W), — (W), + sin(2y) + sin(2y) ( +y - wf) =0 (1.1)
for the function ¢ = ¥ (¢, ), where w = r? + 2sin® . It is well-known that there exists
a static solution F, € C*[0,c0) to Equation (1.1) with the property that F,(0) = 0 and
lim, ., Fo(r) = n. This was proved by variational methods [17] and ODE techniques
[22]. In fact, F, is the unique static solution with these boundary values [22] and called
the Skyrmion. Unfortunately, the Skyrmion is not known in closed form and as a con-
sequence, even the most basic questions concerning its role in the dynamics remain

unanswered to this day.
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Linear Stability of the Skyrmion 2499
1.1 Stability of the Skyrmion

Numerical studies [2] strongly suggest that the Skyrmion is a global attractor for the non-
linear flow. In particular, Fy should be stable under nonlinear perturbations. A first step
in approaching this problem from a rigorous point of view is to consider the linear sta-
bility of Fy. To this end, one inserts the ansatz ¥/ (t,r) = Fy(r) + ¢ (¢, r) into Equation (1.1)

and linearizes in ¢. This leads to the linear wave equation
2
Vit — rr + ﬁ(p + V(r)(p =0

for the auxiliary variable ¢(t, r) = v/r2 4+ 2 sin® Fo(r) ¢ (t, r). The potential V is given by

,1+3a%+ 3a* sin Fy(r)
SO TOY L ) =

V =—-4a
(1 + 2a?)? r

Consequently, the linear stability of the Skyrmion is governed by the £ = 1 Schrédinger

operator
2
Af(r) == —f"(r) + ;f(r) + V(nf(r)

on L?(0, o0). More precisely, the Skyrmion is linearly stable if and only if A has no neg-
ative eigenvalues. Unfortunately, the analysis of A is difficult since the potential V is
negative and not known explicitly. Consequently, the linear stability of F, hinges on
the particular shape of V and this renders the application of general soft arguments

hopeless. Our main result is the following.

Theorem 1.1. The Schrédinger operator A does not have eigenvalues. In particular,

the Skyrmion Fj is linearly stable. O

1.2 Related work

Due to the complexity of the field equation, there are not many rigorous results on
dynamical aspects of the Skyrme model. In [8], small data global well-posedness and
scattering is proved and [20] establishes large-data global well-posedness. There is also
some recent activity on the related but simpler Adkins—Nappi model, see, for example [9,
10, 19]. From a numerical point of view, the linear stability of the Skyrmion is addressed
in [14] and [2] studies the nonlinear stability. As far as the method of proof is concerned,

we note that our approach is in parts inspired by [6].

2Z0gZ aunp |0 uo Jesn Areiqr [evipaly Asupym/Buiysnd ‘Aisieniun ajeA AQ £401.90€/26+2/8/.10Z/9191HE /Uil wod"dno-olwapeo.//:sdjy oy papeojumoq
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1.3 Outline of the proof

According to the GGMT bound, see [12, 13, 24] or Appendix 1, the number of negative

eigenvalues of A is bounded by

L, 3Br® [

v(V):=3 2ir@)y |,

r’ |V (r)|*dr.
Consequently, our aim is to show that v(V) < 1. In fact, by a perturbative argument this
also excludes the eigenvalue 0 and there cannot be threshold resonances at zero energy
since the decay of the recessive solution of Af = 0 is 1/r at infinity. In Appendix 1 we
elaborate on this and give a new proof of the GGMT bound.

In orderto show v(V) < 1, we proceed by an explicit construction of the Skyrmion
Fy. In particular, this yields a new proof for the existence of the Skyrmion. Our approach
is mildly computer-assisted in the sense that one has to perform a large number of
elementary operations involving fractions. It is worth noting that all computations are
done in Q, that is, they are free of rounding or truncation errors. We also emphasize
that the proof does not require a computer algebra system. Consequently, the necessary
computations can easily be carried out using any programming language that supports
fraction arithmetic. A natural choice is Python which is open source and freely available
for all common operating systems.

In the following, we give a brief outline of the main steps in the proof.

*  We consider Equation (1.1) for static solutions ¢ (¢,r) = F(r) and change

variables according to

r—1
F(r)y=2arctan(r(l1+r e .
R )
. . 71 .
The new independent variable x = — allows us to compactify the problem by
considering x € [—1,1]. Furthermore, the arctan removes the trigonometric

functions in Equation (1.1). Consequently, we obtain an equation of the form

R@x) :=g"x) + P(x,9(x),g'(x)) =0

where @ is a (fairly complicated) rational function of 3 variables.
e Wenumerically construct a very precise approximation to the Skyrmion. This
is done by employing a Chebyshev pseudospectral method [5]. The expan-

sion coefficients are rationalized to allow for error-free computations in the
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Linear Stability of the Skyrmion 2501

sequel. This leads to a polynomial gr(x) with rational coefficients and we
rigorously prove that |R(gr)lz=-1,1) < z55- AS a consequence, the construc-
tion of the Skyrmion reduces to finding a (small) correction §(x) such that
R(gr +68) =0.

* Next, we obtain bounds on second derivatives of ® by employing rational

interval arithmetic. As a consequence, we obtain the representation
R(gr + 8) = R(gr) + L5 + N (8)

with explicit bounds on the nonlinear remainder A/. The linear operator £ is
also given explicitly in terms of gr and first derivatives of ®.

* Again, by a Chebyshev pseudospectral method, we numerically construct an
approximate fundamental system {u_, u,} for the linear equation Lu = 0.
The functions u. satisfy Lu, = 0 for another linear operator £ that is close
to £ in a suitable sense. Using u. we construct an inverse £~ to £ which

allows us to rewrite the equation R(gr + ) = 0 as a fixed point problem
§=—L"R(gr) — LUL = £)s — LTIN() =: K(5).

From the explicit form of u, we obtain rigorous and explicit bounds on the
operator £!.

e TFinally, we prove that K is a contraction on a small closed ball in W' (-1, 1).
This yields the existence of a small correction §(x) such that gr + & solves the
transformed Skyrmion equation. From the uniqueness of the Skyrmion, we

conclude that

Fo(r) = 2 arctan (r(l +1(gr+9) (:J_r i))

and the desired v(V) < 1 follows by elementary estimates.

1.4 Notation

Throughout the paper we abbreviate L™ := L*(—1, 1) and also W'* := W'*>(-1, 1). For

the norm in W' we use the convention

If llwrco =/ 1F 7o + IF 1 Foc-

The Wronskian W(f, g) of two functions f and g is defined as W(f, g) :=fg' — f'g.
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2 Preliminary Transformations

Static solutions ¢ (t,r) = F(r) of Equation (1.1) satisfy the Skyrmion equation

%[(r2 +2 sinzF(r))F/(r)] — sin(2F(r)) |:F/(r)2 n @ n 1} — 0. (2.1)
The Skyrmion F, is the unique solution of Equation (2.1) satisfying Fy(0) = 0 and
lim,_, ., Fo(r) = m. More precisely, we have Fo(r) = n + O(r~?) as r — oo. Further-
more, it is known that the Skyrmion is monotonically increasing [22]. In order to remove
the trigonometric functions, it is thus natural to define a new dependent variable
f:[0,00) - R by

F(r) =: 2arctan f(r).

Then, we have

217 2f" 4/2
o Lo f2f

T R Y N G DL
as well as
. 4f? : 4f 1 —f?)
SlnzF = W, sin(2F) = W

Consequently, Equation (2.1) is equivalent to

COWEY 2 2f - [ af” af? ] _
I W(f)f T2 WOa+r LA+ ra+ ! =0 (22
where
e 2 8f (r)?
W()(r) =1+ Y TCHG
Equation (2.2) may be slightly simplified to give
" 2rf’ B 2f/2f 2f(1 _f2) |: 4f/2 - 4f2 ~ :| -
I Wh 112 TwEhasm Larer rasr )70 (2.3)

Next, we set

-1
fry=r(1+ng <:+—1) .
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Linear Stability of the Skyrmion 2503

This yields

1+x 1+x
f(l >=2(1 —x29%

’ X\ , 3+x
f (—X> =1+x)gx) + = _Xg(X)
" —1 TX 1 2 1 ’
f ( _X> =31 +x)(1 -x?%g"x) +2(1 — x)g'(x) + 29(x)

for x € [-1,1). We compactify the problem by allowing x € [—1,1]. In these new

variables, Equation (2.2) can be written as
R(@Q(x) :=g"(x) + P(x,9(x),g (x)) =0 (2.4)

where ® : (—1,1) x R? — R is given by

2

> opx, y)Z* (2.5)

k=0

O(x,y,2) =

V(x,y)
with

Oo(x,y) =21 +x)°B+x)y’ —27%1 +x)(1 —x)*(33 — 58x — 16x* + 18x° 4+ 7x*)y°
+2791 —x)7(47 — 51x +33x* + 3x})y® + 27°(1 — )y

O,(x,y) =241 +x)7y" —27°(1 + x)*(1 — x)*(14 — 21x + 4x* + 7x*)y*
+2781 - x)823 - 31x + 13x% + 3x})y? + 2791 — x)*?

Dy(x,y) == —(1—x)[27°A +x°° + 27%(1 + x)*(1 — x)*(7 — 10x + 7x*)y?

-27°1 - x)°%@ - 10x + 3x%)y] (2.6)
and

V(x,y) =1 -x)[2"°A +x°%°+27°(1 +x)*1 — x)*(11 — 10x + 11x*)y*

+27°(1 —x)%(11 — 10x + 11x*)y* + 271 — x)*?]. 2.7)
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Obviously, ¥(—1,y) = ¥(1,y) = 0 for all y and, since
2

D du(—1,y)zF = 4(1 + 8y*)(y + 22)
k=0

2
> (1, y)zF = 4y°(y — 22), (2.8)
k=0

we obtain the regularity conditions

g1 =-1g9(-1), gQ) =391 (2.9)

for solutions of R(g) = 0 (at least if g(1) # 0, which is the case we are interested in).

3 Numerical Approximation of the Skyrmion
3.1 Description of the numerical method

We will require a fairly precise approximation to the Skyrmion. Already from a numerical
point of view this is not entirely trivial since a brute force approach is doomed to fail.
That is why we employ a more sophisticated Chebyshev pseudospectral method. To this

end, we use the basis functions ¢, : [—-1,1] — R, n € Ny, given by
d)n(X) = Tn(X) + an(l +X) + bn(l - X)/ (31)

where T, are the standard Chebyshev polynomials. The constants a,, and b,, are chosen in

such a way that the regularity conditions Equation (2.9) are satisfied, that is, we require

Gp(—1) + 30n(—1) = ¢,(1) — (1) =0 (3.2)
for all n € Ny. This yields ¢y = ¢; = 0 and

an =-T)(-1) = iT,(-1) = (-D)"(n* - 1)

by = Ty(1) = 1To(1) =n? — 1
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Linear Stability of the Skyrmion 2505

for n > 2. Then we numerically solve the (Wy — 1)-dimensional nonlinear root finding

problem

No
R(Zén¢>n> (xx) =0, Xi = cos (fv—”) k=1,2,...,Ny—1
n=2 0

for Ny = 43 with R given in Equation (2.4). The points (Xk)l,ggfl are the standard Gaul3-
Lobatto collocation points for the Chebyshev pseudospectral method [5] with endpoints
removed (we only have Ny — 1 unknown coefficients due to ¢y = ¢; = 0; in the standard
Chebyshev method one has Ny + 1 coefficients to determine). Finally, we rationalize the
numerically obtained coefficients (¢,). The 42 coefficients (c,)%, C Q obtained in this

way are listed in Table 2.1 of Appendix 2.

3.2 Methods for rigorous estimates

In order to obtain good estimates for the complicated rational functions that will show

up in the sequel, the following elementary observation is useful.
Lemma 3.1. Letf < C'([—1,1]) and set

Qvi={-1+%:k=0,1,2,...,N} C[-1,11NQ, N e N.
Then we have the bounds

maxf <maxf + Lllf =
111 ay

. > . _ E 7
[Izll{gf > mﬂllvnf 3 1" oo

Ifllzee < max |f] + 2 Ifllze
Qv
for any N € N. U
Proof. The statements are simple consequences of the mean value theorem. |
Remark 3.2. In a typical application one first obtains a rigorous but crude bound on

f’ by elementary estimates. Then one uses a computer to evaluate f sufficiently many

times in order to obtain a good bound on f. O
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2506 M. Creek et al.

Another powerful method for estimating complicated functions is provided
by interval arithmetic [1, 15]. We use the following elementary rules for operations

involving intervals.

Definition 3.3. Leta,b,c,d € Rwith a < b and ¢ < d. Interval arithmetic is defined by
the following operations.
[a,b]+[c,d]l :==[a+c,b+d]
[a,b]l —[c,d]:=[a—d,b—c]
[a, b] - [c,d] := [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]

{j'g = [a,b] - [%,1] provided 0 ¢ [c, d].

If a,b,c,d € Q, we speak of rational interval arithmetic. Furthermore, standard

(rational) arithmetic is embedded by identifying a € R with [a, a]. O

Lemma3.4. Letx € [a,b]landy € [c,d] and denote by x any of the elementary operations
+,—,+, /. Then we have x x y € [a, b] * [c, d]. O

Proof. The proof is an elementary exercise. |

Remark 3.5. If f is a complicated rational function of several variables (with rational
coefficients), rational interval arithmetic is an effective way to obtain a rigorous and
reasonable bound on f(2), provided 2 is a product of closed intervals with rational
endpoints. The necessary computations can easily be carried out on a computer as they
only involve elementary operations in Q. The quality of the bound, however, depends on
the particular algebraic form that is used to represent f. Furthermore, in typical appli-
cations the bound can be improved considerably by splitting the domain € in smaller
subdomains Q, that is, Q = [ J, Q, and by estimating each () separately by interval

arithmetic. U

3.3 Rigorous bounds on the approximate Skyrmion

Definition 3.6. We set

43

gr(x) =) Catpn(x)

k=2

where (c,)22, C Q are given in Table 2.1 of Appendix 2. O
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Linear Stability of the Skyrmion 2507

Proposition 3.7. The function g satisfies

1 11 21
. < < £ _ 1
10 T 20 = gr(x) = 20 100

for all x € [—1, 1]. Furthermore,

IR(G)llzee < ﬁ-

Proof. From the bound ||T}|;~ < 3n*(n* — 1) we infer

43 43
gl < Y lenll Tyl < § ) n*(n® = Dlcy| < 36
n=2 n=2
and Lemma 3.1 with N = 7200 yields

’ / 2 Z 47 1 1 1
PfﬁgT = maxgy + 519rllze < 766 + 106 = 2 — 106
.y o

2 51 1 1, 1

min g, > mingy — wlgrlie =~ ~ 106 = ~25 T 00-

[-1,1]

In particular, we obtain ||g;[lz~ < 1 and with N = 200 we find

2 /
I[nf‘f](gT = maxgr + 2 9rllze < 106 + 106 = 35 — oo
o1 e

: : 201/ 58 1 11 1
Ellull]g'r = mﬂzlvngT — = lgrlize = 155 — 706 = 20 T Too-

This proves the first part of the Proposition.

Next, we consider

Rational interval arithmetic yields

W ((—1,01, [, 2]) c[107%,13], ¥ ([0,1],[%, Z1) c[107% 2]

207 20
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2508 M. Creek et al.

and thus, ¥ (x, gr(x)) > 0 for all x € [—1, 1]. We set

+
P(x) = # 3 0 G, 200 19 001
k=0
21 + lX — X2)7

Q(x) := %‘I’ x,gr(x)) = (% + 3x —x*)¥(x,gr(x)),

which yields the representation

P(X)

@ (x,gr(x), 9r (%)) = 0w

The prefactor + X — x?)7 is introduced ad hoc. It is empirically found to improve
some of the estlmates that follow. By Equation (2.7), Q is a polynomial with rational
coefficients and by the regularity conditions Equation (3.2) together with Equation (2.8),
the same is true for P. Furthermore, Q(x) > 0 for all x € [—1,1] and from the explicit
expressions for &, and ¥, Equations (2.6) and (2.7), we read off the estimates deg P < 319
and deg Q < 278.

For the following it is advantageous to straighten the denominator. To this end

we obtain a truncated Chebyshev expansion of 1/Q,

14
aw ® ;rnTnoz) =: R(x),

where

(rn) = (ﬁl _zl _454! _%r %r 11_21 _7}%1 _%r ﬁl %r 31_5: _3_15’ _ér #1 % .
The coefficients (r,,) can be obtained numerically by a standard pseudospectral method
as explained in Section 3.1. Thus, we may write

" / P(x)

R(gn)(x) = gr(x) + @ (x, gr(%), gr (X)) = gr(x) + ——

Q(x)

_ R®)Ax)gr(x) + RX)P(x)
R(x)Q(x)

and this modification is expected to improve the situation since the denominator RQ is
now approximately constant. Note further that RP and RQ are polynomials with rational

coefficients and

deg(RP) < 333, deg(RQ) <292, deg(RQg.) < 333.
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Linear Stability of the Skyrmion 2509

For brevity, we set

o>

P := RQg} + RP, := RQ.

We now re-expand P and Q as

333 292

P) =) paTu(x), Q) =) §uTu).
n=0 n=0

The expansion coefficients (p,,), (g,) C Q are obtained by solving the linear equations
(The choice of the evaluation points (x;) is arbitrary but since P has removable sin-
gularities at —1 and 1, we prefer to avoid the endpoints. Furthermore, the equation

for (g,) is overdetermined so that one can re-use the computationally expensive LU

decomposition.)
333 333
D obnTalx) =P(xi), Y @nTo(x) = Qx0), Xk =—}+ 55
n=0 n=0
fork=0,1,...,333. From the bounds ||T, |z~ < 1 and ||T} ||z~ < n? we infer
333 292
1Pl < 1Pnl < 1025, 1Q'lle <> 1?(gnl < 22.
n=0 n=0

Consequently, Lemma 3.1 with N = 500 yields

s A A 204 93 4 _ 4
[7111111]QZm911vna—ﬁ||Q||L00Zm—mig

and, since R(gr) = 13/0, we obtain the estimate

1Pz 5 12 s _ 4 _ 1
R(G)llze = — =~ = 470000 — 2000 = 2000 — 500° u

ming Q

4 Estimates for the Nonlinearity

By employing rational interval arithmetic, we prove bounds on second derivatives of
the function ®. This leads to explicit bounds for the nonlinear operator.
All of the polynomials of two variables x,y that appear in the sequel are

implicitly assumed to be given in the following canonical form

ko
DA+ x)% (1 = 0P (x)y"

k=0

2Z0gZ aunp |0 uo Jesn Areiqr [evipaly Asupym/Buiysnd ‘Aisieniun ajeA AQ £401.90€/26+2/8/.10Z/9191HE /Uil wod"dno-olwapeo.//:sdjy oy papeojumoq



2510 M. Creek et al.

where ko, ax, Bx € Nog and P, are polynomials with rational coefficients and Py (+1) # 0.
This is important since the outcome of interval arithmetic depends on the representation

of the function.

4.1 Pointwise estimates

Lemma 4.1. LetQ =[-1,1] x [%, %] X [—%, %]. Then we have the bounds

||322(D||L°°(9) <70
10203 P |poc () < 22

||8§¢||L°°(Q) <8. O

Proof. We begin with the simplest estimate, that is, the bound on 32®. We set

Dr(x,y) - V(x,y)
_, V(x,y) =
1—x2 x,7) 1 — x2

&Dk(X,y) =

with @, and ¥ from Equations (2.6) and (2.7), respectively. Observe that &, is a

polynomial. From Equation (2.5), we infer

20,(x,y) _ 2%2(x,y)
V(x,y) U(x,y)

2P(x,y,2) =

and from the proof of Proposition 3.7 we recall that ‘il([—l, 1], [%, %]) C [107%,13]. Con-
sequently, 92® is a rational function without poles in . Rational interval arithmetic
then yields (Here and in the following, the domain 2 needs to be divided in sufficiently
small subdomains Q; C Q such that @ = [, Q, see Remark 3.5.) 32 (2) C [—8,8] and
this proves the stated bound for 9Z®.

Next, we consider 9,0;®. We have

d,(x,y) + 20, (x,y)z
V(x,y)
_ Vg dixy) — V& i x, y)
U (x,y)2
zz\if(x,ywy&z(x,y) — 9,V (x,y)®s(x, )
U (x,y)?

0,0,P(x,y,2) =0,

+

and, since &, is a polynomial, the last term is a rational function without poles in .

Note further that the numerator of the second to last term appears to be singular at
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Linear Stability of the Skyrmion 2511

x € {—1, 1}, but in fact there is a cancellation so that

U (x, )9, 91 (x,7) — 8, ¥ (x, )P (x,y)
=211 4+x)71 —x)°(17 — 43x + 7x* + 3x%)y°
— 2711 4+ x0)°%(1 — x)7(17 — 15x 4 7x% + 7x°)y”
— 271 +x)(1 — x)" (285 — 637x + 794x* — 386x> + 41x* + 95x°)y°
— 271 4+ x)(1 —x)'%(25 — 31x + 156x% + 7x°)y®

+271%1 — )91 — 12x + 3x?)y.

We conclude that 3,9;® is a rational function without poles in Q2 and rational interval
arithmetic yields 9,0;®(Q2) C [—22, 22].

Finally, we turn to 32®. We have

22: U (x, y)aydAJk(X,y)zk — ay\il(x,y)cﬁk(x, y)zk

0, P(x,y,2) = \f/(x e

k=0
1

T Zwk(x y)z*

where ¥y := U9,®, — 3, d,. From above we recall that ¥, and ¥, are polynomials. We

obtain

Z W (x,y)20, Uy (x, y)2* — 20 (x, )9, ¥ (x, y) ¥y (x, y)z

2D (x,y,2) =
P (X,y,2) )t

k=0

Again, the apparently singular term
U (x,y)%0, Wo(x,y) — 20 (x, )0, ¥ (x, y) Vo (x, )

is in fact a polynomial since it exhibits a special cancellation. Consequently, 32® is a
rational function without poles in @ and rational interval arithmetic yields the desired
bound. [

4.2 The nonlinear operator

In this section, we employ Einstein’s summation convention, that is, we sum over

repeated indices (the range follows from the context).
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2512 M. Creek et al.

Lemma 4.2. Let U C R? be open and convex and f € C?(U) N W**(U). Set

1/2

d
M =1 DD 100 oo

j=1 k=1

Then we have
F(xo +x) = f(x0) + ¥/ 0;f (x0) + N (x0, X)
where N satisfies the bound
[N (x0,%X) — N(x0,y)| < M(|x| + |yDIx — y|
for all xy, x,y € R? such that xo,xy + x,x0 +y € U.
Proof. From the fundamental theorem of calculus, we infer
N(x9,%) — N(x0,y) = f (X0 + %) — f (X0 + y) — (' — y))d;f (x0)
1
= / 3f (%0 +y + tx —y))dt — (x — y)d;f (x0)
0
1
=& —y) / [9:f (x0 + ¥ + t(x — y)) — 8;f (x0)]dt
0
. . 1 1
=(x - yf)/ / 359;f (%o + sy + st(x — y))dsdt
0 0
. ) 1 1
— o =) [y e =y [0 (o sy + st(x - y)dsde
0 0

and Cauchy-Schwarz yields

A

1
IN(x0,%) — N (X0, y)| < |x' — x|[18;0f Il oo ) / [tIx*|+ 1 —)|y¥|]de
0

= 11x/ — y/1(1x* + 1y DII;0S Nl v
1/2

d
Hx = ylA=* + 175D [ D 1950kf 1

J=1

IA

= Mx —y|lx| + M|x — y|ly|.
Proposition 4.3. We have

R(gr + ) = R(gr) + L& + N (5)
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Linear Stability of the Skyrmion 2513

where
Lu(x) = u'(x) 4+ 93P (x, gr(x), gr(x)) U/ (x) + 9P (x, gr(x), gp(x)) u(x)
and N satisfies the bounds

IN @]z < 39 lully

Wl,oo

IN (@) = NIz <39 (lullwre + IVIiwieo) lu — viigre

for all u, v € C'[—1, 1] with [[ullyre, [VIIgre < 15 O

Proof. LetQ=[-1,1]x[5, 2] x [-1,1]. Lemma 4.2 implies

q)(XIYO +YIZO +Z) = (D(XIYOrZO) + 32®(X:Y0,ZO)Y + a3®(le0IZO)Z +N(XIYOIZOIYIZ)

where N satisfies the bound

|N(le0rZOIYIZ) _N(XIYOIZOI)}fEN SM\/(Y_)NI)Z +(Z_2)2 (\/Y2+Zz+\/)~’2+22>

with

M = 1 10302 g + 200:05® 2 o + 13 2 -

From Lemma 4.1, we infer M < 39 and thus, the claim follows from Proposition 3.7 by

setting

N (W) (%) = N(x, gr(x), gr(x), u(x), u'(x)). [ |

5 Analysis of the Linear Operator

In this section, we construct a linear operator £ with an explicit fundamental system
such that £ — £ is small in L*>*(—1,1). Then, we invert £ and prove an explicit bound on

the inverse.
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2514 M. Creek et al.
5.1 Asymptotics

First, we study the asymptotic behavior of 9,® and 3;®.

Lemma 5.1. We have

’ 2 0
9P (x, gr(x), gp(x)) = T+x + O0(x")

’ 4 0
P (x, gr(x), gr(x)) = T+x + 0(x")

for x € (—1,0], as well as

/ 2 0
32®(X,9T(X),9T(X)) =1_x +0x")

/ 4 0
3P (x,gr(x), gp(x)) = T 0"
for x € [0, 1). O

Proof. As before, we set

with ¥ from Equation (2.7). Then, we have

1

2
-~ ¢ ’ k
1 —x)¥(x,y) 2 txp)z

k=0

Px,y,2z)=

with &, given in Equation (2.6). Recall that U is a polynomial with no zeros in [—1, 1] x

(i 2L

50+ 30, see the proof of Proposition 3.7. From Equations (2.6) and (2.7) we obtain

®o(—1,y) = 4y + 32y° ®o(1,y) =4y’
®,(—1,y) = 8 + 64y” ®,(1,y) = —8y°
®,(-1,y) =0 P,(1,y) =0
U(-1,y) =1+ 8y v(1,y) ="
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Linear Stability of the Skyrmion 2515

Consequently,
P, (-1,
lim [(1+x)8,0(x,y,2)] = SC=Ly
x>l 2¥(-1,y)
D, (1,
lim [(1 - 08,0(x,7,2)] = 2P __
X1 2¥(1,y)
The other assertions are proved similarly. |

In order to isolate the singular behavior, it is natural to write

Lu=Lou+pu +qu

where
rou = w oo+ (2 - Vw4 (2 2
e = <1+—X 1—x)u(x) <1+x 1—x>u(x)
:u(X)—l_qu(x)+l_X2u(X)
PO = 800, gr(0,9:0) = T+ T
= 8,® i 2 2
960 = (%, gr(x), go(X)) = o = T

Lemma 5.1 implies that p and g are rational functions with no poles in [—1, 1].

Lemma 5.2. The equation Lu = 0 has fundamental systems {u_,v_} and {u,,v,} on
(—1,1) which satisfy

u_(x) =140 +x)
u_(x) =—-3+001+x)

v_(x) =0((1+x)7°)
for x € (—1,0], as well as

u (x)=140(1 —-x)
U, (x) = % +0(1 —x)

vi(x) =0(1-x7%
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2516 M. Creek et al.

for x € [0,1). Furthermore, u_,v_,u,, v, € C®(-1,1) and u_. € C*([-1,1)), u, €
C®((-1,1)). O

Proof. The coefficients of the equation Lu = 0 are rational functions and the only
poles in [—1,1] are at x = —1 and x = 1. These poles are regular singular points of
the equation with Frobenius indices {—3,0}. Consequently, the statements follow by

Frobenius’ method. [ |

5.2 Numerical construction of an approximate fundamental system

We obtain an approximate fundamental system {u_,u,}, where u, is smooth at +1,
by a Chebyshev pseudospectral method. As always, special care has to be taken near
the singular endpoints £1. Solutions u of Lu = 0 that are regular at —1 must satisfy
u’(—1)+%u(—1) = 0. Similarly, regularity at 1 requires u/(l)—%u(l) = 0, cf. Equation (2.9).

If one sets

W (X)

us(x) = m,

the regularity conditions u/ (+1) = :l:%ui(:lzl) translate into wl (£1) = £2w,(£1).

Consequently, we use the basis functions ¢, , : [-1,1] - R, n € N, given by
Vin(X) i= Tr(x) £ [T, (£1) F 2T (£D](1 F Xx) (5.1)

which have the necessary regularity conditions automatically builtin, thatis, ¥} ,(£1) =
+2¢, ,(£1) foralln € N. Observe that w.. is expected tobe bounded on[—1, 1], see Lemma

5.2. For brevity, we also set

Pont) = 2@

e (5.2)

We enforce the normalization

N+

Y i) =1,
n=1

which is used to fix the coefficients c.;. The remaining coefficients are obtained

numerically by solving the root finding problem

N4
N kn
L (Zci,nw:t,n> (xx) =0, x=cos (E) , k=1,2,..., N, -1

n=1
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Linear Stability of the Skyrmion 2517

with N, = 30. Finally, we rationalize the floating-point coefficients. The resulting

coefficients are listed in Tables 2.2 and 2.3 of Appendix 2.

5.3 Rigorous bounds on the approximate fundamental system
The numerical approximation leads to the following definition.
Definition 5.3. We set

(1+x)% " (1+x)3

Uy (x) =

30
> Contin(®)
n=1

where the coefficients (c.,)3%, C Q are given in Tables 2.2 and 2.3 of Appendix 2,

respectively. The coefficients c. ; are determined by the requirement u.(£1) = 1. O
Next, we analyze the approximate fundamental system {u_, u,}.

Proposition 5.4. We have W(u_, uy)(x) = (1 — x?)"*Wy(x), where W, is a polynomial

with no zeros in [—1, 1]. Furthermore, the functions u. satisfy
[Zui =0,
where Lu := Lou + pu’ + Gu, and
B—Dl <2, 13— qle < . O
Proof. We temporarily set p.(x) := (1 & x)~3. Then we have
Wu-,uy) =Wp-w_,piwy) =W(p-,p)w-wy +p_p, W(w_, wy,)
and, since W(p_, p.)(x) = —6(1 — x?)~*, we infer W(u_, uy)(x) = (1 — x2)*Wy(x) with
Wo(x) = —6w_(xX)wo(x) + (1 — xHW(W_, w,)(X).

Obviously, W, is a polynomial with deg W, < 61, see Definition 5.3. We re-expand W, in
Chebyshev polynomials,

61
Wo(x) =Y WonTn(x),
n=0
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2518 M. Creek et al.

by solving the (possibly overdetermined) system

61
ZWO,nTn(Xk):WO(Xk)r Xk:_%‘f‘eﬁl, k=0,1,2,...,61

n=0

for the coefficients (wy,)8L, C Q. From the re-expansion we obtain the estimate

61 61
2
IWollze <Y IWonll Tyl < D nP|won| < 400
n=0 n=0

and Lemma 3.1 with N = 2000 yields

2 / 94 400 1
max Wo = max Wo + y [|Wollz> = =155 + 1000 = ~2-

This shows that W, has no zeros in [—1, 1].
We set

_ u Lou_ —u_Louy . u’ Louy — U, Lou_
T W(u_,u,) ' - W(u_,u,)

By construction, we have Lu. = Louy + pu/. + quy = 0. In order to estimate p — p, we
first note that

Uy (%) Lot (%) — u_(x) Loty (x) = O((1 — x*)™*)
since the most singular terms cancel. Consequently,
Pi(x) = (1 = x*)*[us () Lou_(x) — u_(x)LoUy (x)]

is a polynomial of degree at most 66. Furthermore, recall that

_ 21(x,g1(®)) + 295X, gr(x))gr (%) 8x

, 8x
P(Xx) = 35®(x, gr(x), 9r(X)) + T3 Txy) + T
D%, gr(x)) 1 ®,(x,97(x)) + 8x ¥ (x, gr(x))
= 20, (%) — - . ,
U(x,gr(x)) 1-x ¥ (x, gr(x))

where we use the notation

V(x,y)

1—x2'

q)k(X,Y)

V(x,y) = bexy) = T

From Equations (2.6), (2.7) it follows that & and &, are polynomials. Moreover, we have

D (x,y) + 8X\il(X,y) =0
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Linear Stability of the Skyrmion 2519

for x € {—1, 1} and this shows that p is of the form p(x) = % where

@, (x, gr(x)) + 8x V¥ (x, gr(x))
1 —x?

Py(x) = 295 (x) D,y (x, g1 (%)) +

is a polynomial of degree at most 263 and P;(x) := U(x, gr(x)). Recall that P; has no zeros
on [—1,1] and deg P; < 264. Consequently, we obtain
P, P, P,W,— PP

PoP=r " w T Raw

In order to estimate this expression, we proceed as in the proof of Proposition 3.7. First,
we straighten the denominator, that is, we try to find an approximation to m as a trun-
cated Chebyshev expansion. To improve the numerical convergence, it is advantageous
to multiply the numerator and denominator by the polynomial % — x2)® (this factor is

found empirically). Consequently, we write p — p = i,’—‘; where
Py(x) = (35 — x*)°[P2(x) Wy (X) — P (x)P3(x)], Ps(x) = (15 — x°)°P3(x) Wy (x).

Note that P, and Ps are polynomials with rational coefficients and deg P, < 346, deg Ps <

341. Next, we obtain an approximation to 1/Ps of the form

30

~ ) mTa®) = R(X)
n=0

P5(x)

where the coefficients (r,,)32, C Q, obtained by a pseudospectral method, are given in

Table 2.4 of Appendix 2 and r, = —%5. We write p—p = 2—};‘; and note that deg(RP,) < 376,

deg(RPs) < 371. We re-expand RP, and RPs as

376 376
RP, =Y panTn, RPs=) psaTn
n=0 n=0
by solving the linear equations
376 376
Y PanTa(x) = RPs(x), Y PsaTn(Xx) = RP5(x)
n=0 n=0

for x, = —3 + % and k =0, 1,...,376. This yields the bound

376 376

I(RPs) [l < D IPsalllTpllze <Y nPlpsal < 17

n=0 n=0
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2520 M. Creek et al.

and from Lemma 3.1 with N = 1000 we infer

: : 2 98 34 9%
[Inlllll]RP5 = mglnRPS - IVH(RPS)/”LOC 2 700 ~ 1000 = 100°
-1 "

Consequently, we find

376
Ip =Bl = || 75| . < 52 D IPanl < 135-
n=0
The bound for g — g is proved analogously. |

Proposition 5.5. The approximate fundamental system {u_, u,} satisfies the bounds

Y ug ()l “lu_(y)l 7
_ d d =
lu (X)IfX W)l Y+ [u (%) W) V<15
Hug(p)l *u_(y)l .
’ d / ES
'u*(X)'fX W Y TS g Y=
forall x € (—1,1), where W(y) := W(u_, u,)(y). [l

Proof. As before, we write u.(x) = (1£x)*w.(x) and recall that w.. are polynomials of
degree 30, see Definition 5.3. First, we obtain an approximation to 1/W,, where W (x) =
(1 —x?)~*Wy(x), see Proposition 5.4. By employing the usual pseudospectral method, we
find

22

&Y r T = R()
n=0

Wy (x)

with the coefficients (r,)?2, C Q given in Table 2.5 of Appendix 2. Next, we note that
W L@ <T@+ Ty (=D 4 2|To(—1)| < 2n° +2

for all x € [-1, 1], see Equation (5.1), and thus,
30 30
Iw e < leoall¥! ,lle <2 (0% + D)lc_ | < 60.
n=1 n=1

Consequently, Lemma 3.1 with N = 600 yields

: : 2 / 7 1 _1
minw_ > minw. — Wil > 5 —5=3
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Linear Stability of the Skyrmion 2521

and in particular, w_ > 0. Analogously, we see that w, > 0 on [—1, 1]. Furthermore,

from the proof of Proposition 5.4 we recall that W, < 0 on [—1, 1]. Consequently, we find

V(@) =l
AX) = |u_ d 4
() = Ju (X)'/ W) Y+l w

( Aty )R(Y)WO(Y) Y
Wi (%) (X) / 8 R(y)w_(y)

. P W-Y) 4
C (1+x)8 A +y)( )R(y)Wo(Y)

Note that RW, is a polynomial of degree at most 22461 = 83, see the proof of Proposition
5.4. We re-expand RW, by solving the linear system

83

Y anTu(x) = REOWo(xi), X =-%+4%, k=0,1,...,83

n=0
over Q, which yields the estimate

83
IRWo) e < Y n*lan| < 3.

n=0

Thus, from Lemma 3.1 with N = 600, we infer
rn1nRW0 > mlnRWO — 2|RWo) [z = 5 — 105 = 1p

- = 100 ~ 100 — 100

and this yields

10 wox) w (%)
Ax) < |:(1_X)3I+(X)+ 1+ )31 (x )i|

where
Lx) = / 1+ p)*(1 = PI—Rp)Iw_(7)dy
-1
1
L) = / (1 - P*(A + =BG ¢)dy. (5.3)

The integrands of I. are polynomials and hence, I. can be computed explicitly. More

precisely, we write

P.(y) =1 F*A+p)[-Ry)Iws(y)
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and note that deg P, < 57. Consequently, we may re-expand P, as P.(y) = Zf’;e DPny"
by solving the linear systems

57

D pinxp =Pi(xi), xm=-3+%, k=0,1,2,...,57

n=0

over Q. From this, we obtain the explicit expressions

57 57
P-n _nn1 P-n n+1
I_(x)= X — —1
@) n+1 Z n+1 =D
= n=0
57 57
I (x) = DPin DPin K+

n:0n+1 n:On+1

Furthermore, directly from Equation (5.3) we see that I.(x) = O((1 +x)%). Consequently,

_w® w (x)
P(x) := a _X)3[+(X) + a +X)SI_(X)

is a polynomial of degree at most 85. Thus, another re-expansion yields the Chebyshev
representation P(x) = Ziszo PnTn(x) and we obtain the bound
85
1Pl < Y nPlpal < 3.

n=0

Consequently, Lemma 3.1 with N = 1000 yields

100 100 2 / 100 ( 591 6 7
AX) = g5 IPlle < 55 (H}ng Pl + wIIP IILoo) = %% (550 + 1o0) =< 16-

To prove the second bound, we set Q. (x) := u/.(x)I=(x) and note that

W (X) w4 (X)
Q+tx3?  “(1xx)*

Ul (x) =

Consequently, Q; are polynomials with degQ, < 84 and a Chebyshev re-expansion

yields

Qg + Q] llzee =< 20.
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Linear Stability of the Skyrmion 2523

Thus, from Lemma 3.1 with N = 800 we infer (Strictly speaking, a slight variant of

Lemma 3.1 is necessary here since the function |Q_| + |Q. | is only piecewise C'.)

max (|Q-| +1Q.]) = I%%X(IOJ +1Q:D) + 2 (10" Iz + 1Q), 1)

41 5 46
< = =2 = =
— 100 + 100 100

which implies

, ! us ()] / " lu-@) : '
|u_(X)|/X Wi 01 | ey < B (W GOL 0ol + [ GOL ()
=2 (a-®)|+ QX))
100 46 - 1
— 98 100 — 2
forall x € (—1,1). .

5.4 Construction of the Green function
Based on Proposition 5.4, we can now invert the operator £. A solution of the equation

Lu=f e L®(—1,1) is given by

1
u(x) = / G, If (1)dy,
-1
with the Green function

1 u_Xu,(y) x<y

Gx,y)=
EV) = s wo U U (y) x>y

In fact, this is the unique solution that belongs to L*(—1, 1). Consequently, we have

1

Ffx) = / Gx, y)f (P)dy.
1

The bounds from Proposition 5.5 immediately imply the following estimate.
Corollary 5.6. We have the bound
1L fllwroe < I 1z

for all f € L*(—1,1). a
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Proof. By definition, we have

L7f(x) =u_(x) / 1 ’;;T(;’))f(y)dy + Uy (x) ’;VT(’;))f(mdy
and thus,
Y (%) = U (x) / Wy wo [P gy,
. W(y) L W(y)

where W(y) = W(u_, u,)(y). Consequently, from Proposition 5.5, we infer

~ ~ ~ 1/2
1 e = (I Y B + 17 F 1) = D2+ G2 Wl < Iflae.

6 Linear Stability of the Skyrmion
Now we are ready to conclude the proof of Theorem 1.1.
6.1 The main contraction argument
Recall that we aim for solving the equation R(gr + §) = 0, that is,
Ls = —R(gr) — N (),
see Proposition 4.3. We rewrite this equation as
L8 = —R(gr) + (L — L)5 — N(8)
and apply £, which yields
8§ =—L'R(Gr) + LNL — £)8 — LTIN (@) =: K(5)

Thus, our goal is to prove that K has a fixed point.

Lemma 6.1. Let X := {u € C'[-1,1] : [ullyio < 155

in X. O

}. Then K has a unique fixed point

Proof. From Propositions 3.7, 4.3, 5.4, and Corollary 5.6, we obtain the estimate

A

1K@ llwree < IR@D e + 1£u = LUz + |N W)z

< 505 + Ip = Dllz I llz + 1l — @llze< ullzee + 391wl 00
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IA

1 3 1 11 1 \2
500 + 100 150 + 20 150 + 39(150)

L
150

IA

Consequently, K£(u) € X for all u € X. Furthermore,

1K) = KW llwiee < 1L = L)(w =)z + [N @) = N ()l

2

< |llp = Plize v’ = v'llzee +11g — Gllze |t — Vllze + 39555 lu — Vg1,
(4 5+ =) lu— v
=2u - viwe

for all u,v € X. Thus, the claim follows from the contraction mapping principle. |

Finally, we obtain the desired approximation to the Skyrmion.

Corollary 6.2. There exists a § € C'[—1, 1] with ||§]| 1.0 < ﬁ such that the Skyrmion is

r—1 r—1
Fy(r) = 2 arctan (r(l +7) (gT <r+1> e (7‘+ 1))) -

Proof. By construction, Lemma 6.1, and standard ODE regularity theory, there exists

given by

a § with the stated properties such that F; is a smooth solution to the original Skyrmion
equation (2.1). Obviously, we have Fy(0) = 0 and from gr(x) € [}, 3] forall x € [-1, 1], see
Proposition 3.7, we infer lim,_, ., Fo(r) = 7. Since the Skyrmion is the unique solution of

Equation (2.1) with these boundary values [22], the claim follows. [

6.2 Spectral stability

Recall that the linear stability of the Skyrmion is governed by the Schrédinger operator

2
Af(r) = —f"(r) + ﬁf(r) +V(f )

on L?(0, o), where the potential is given by

V— _ag? 1+ 3a?+ 3a* ar) = sin Fo(r)

(1 + 2a?)? r
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2526 M. Creek et al.

From Corollary 6.2 and the identity sin(2 arctany) = we obtain

+2’

201 +7) [gr (52) + 8 (52)]
1+ 72(1+1)2 [gr (52) +8 (23]

a(r) =

1

Furthermore, from 8[|z~ < 15

and gr(x) € [ ] for all x € [—1, 1], see Proposition 3.7,

we infer the bounds

2(1+r) [QT( +
L+ (o (5 —ﬁ]z
2(1+7) [gr (53
1+72(1+7)?[gr (53

la(r)| = PA(T)

la(r)| =

=: B(r)

/—\+

Consequently, we obtain the estimate

1+ 3A4% + 3A*

V| < 4A?
V= (1 + 2B?)2

Lemma 6.3. We have the bound
/ r’|V(r)|*dr < 130. O
0

Proof. By employing the techniques introduced before, it is straightforward to obtain

the stated estimate. More precisely, we introduce the new integration variable x €

1+X

[—1,1], given by r = , and write

o0 Jos ) amt .
/ r7|v(r)|4dr S / r7 [414(7')2 1 + SA(r) + SA(r) } dT' _ / P(X) dX,
0 0 (1 + 2B(r)?)? L, Q(x)

where P and Q are polynomials with rational coefficients. As before, by a pseudospec-
tral method, we construct a truncated Chebyshev expansion R(x) of 1/Q(x). Next, by a
Chebyshev re-expansion we obtain an estimate for ||[(RQ)|.~ and Lemma 3.1 yields a

lower bound on min;_; ;; RQ which is close to 1. From this, we find

1 1 1
/ @dx = / R)PX) dx < — ! f R(x)P(x)dx
_1 O(X) —1 R(X)O(X) mln[_llu RO -1

and the last integral can be evaluated explicitly since the integrand is a polynomial. W

We can now conclude the main result.
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Linear Stability of the Skyrmion 2527

Proof of Theorem 1.1. From Lemma 6.3, we obtain

3°I'(8 o 2275
-7 ®) r\Vn)tdr < —— < 1
44T (4)2 ), 2592

Consequently, the GGMT bound, see Appendix 1, implies that .4 has no eigenvalues. W
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Appendix 1. The GGMT Bound

Consider H = —A+V in R® where V € L' N"L*(R?) (say) and radial. The GGMT bound [13]
is as follows (see also [12]). We restrict ourselves to a smaller range of p than necessary

since it is technically easier and sufficient.

Theorem A.1. Write V =V, — V_ where V; > 0. For any 2 < p < oo, if

(p— 1P 'T(2p) [
pPI%(p) 0

then H has no negative eigenvalues. Furthermore, zero energy is neither an eigenvalue

rP P (rydr < 1 (A.1)

nor a resonance. O

Proof. Suppose H has negative spectrum. Then there exists a ground state, Hy = Ey
with ¢ € H2(R®), |¥ |, = 1, and radial, E < 0. So

(Hy,¢) <0 (A.2)
which implies in particular that for any « € R,

/|w(x)|2dx</ V-l () dx
Rr3 R3 (A.3)

_e 9
= I V_llplir=2 ¢z,
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2528 M. Creek et al.

by Hélder, zlv + (11 = 1 (which is only meaningful if the right-hand side is finite). We set
p(2 —«a) = 3, q(1 + @) = 3, which requires that —1 < o < 2. In fact, c0o > p > % means
precisely that 2 >« > 0,and 1 < g < 3. Set

\v4 2
P\ 41

verl Ao %0 112 (A.4)
rad O ||[r°22 |13,

Note that the denominator here is always a positive finite number. Indeed, it suffices to

check this for g = 1 and g = 3, respectively. This amounts to

IF 'Yl +¥le < CIVYI. Yy e H'(RY)

which is true by the Hardy and Sobolev inequalities. By Lemma A.2, u, > 0 and its value

can be explicitly computed. Thus, by (A.3),

IVY 5 < n Ir Vol IVY I

which is a contradiction of /,L;l [r*V_]l, < 1, the latter being precisely condition (A.1).
It remains to discuss the case where H has no negative spectrum but a zero

eigenvalue or a zero resonance. If 0 is an eigenvalue, then we have a solution v € H? of

~AY = VY

which means that

1 14
I/’(X)Z_Zf Wy ) dy
T Jps X —Yl

If [ Vi # 0, then ¥ (x) >~ |x|~! forlarge x, whichis not L?. So [ V¢ = 0 and ¢ (x) = O(|x|™%)
as x — oo. One has (Hy, %) = 0 instead of (A.2). Replacing H with H, = H — ee~*? for

small ¢ > 0 we conclude that

(Hey,¢) <0

and H, therefore has negative spectrum, while (A.1) still holds for small ¢. By the previous
case, this gives a contradiction.

If 0 is a resonance, this means that there is a solution ¥ € HZ (R?®) with ¢ (x) ~
|x|”! as x — oo (and by the reasoning above this holds if and only if [Vy # 0). In

particular, since Vi € L? and since [ Vy? is absolutely convergent, we still arrive at the
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Linear Stability of the Skyrmion 2529

conclusion that (Hy, y) = 0. Substituting H, for H as above again gives a contradiction.

To be precise, we evaluate the quadratic form of H, on the functions

Yr(x) == x X/R)Y (X)

where y is a standard bump function of compact support and equal to 1 on the unit ball.

Sending R — oo then shows that H, has negative spectrum. |

The following lemma establishes the constant 4 in the previous proof. The
variational problem (A.4) is invariant under a two-dimensional group of symmetries:
Se,(¥)(x) = ey (e"x), &, € R. The scaling of the independent variable leads to a loss
of compactness. To make it easier to apply the standard methods of concentration-

compactness, we employ the same change of variables as in [13].

Lemma A.2. For1l < g < 3 we have

__bp [ (p—DI*p)1p
[,Lq = 4:7T ] ’
p—1 I'(2p)

with p the dual exponent to g. Equality in (A.4) is attained by the radial functions

a

Vo) = —————
T (L)

where a, b > 0 are arbitrary. O

Proof. We begin with the following claim

b= it @mp e (PO dX
.=

1 , 0 1
peH (R),p# (f_ozo 0% (x) dX>q

(A.5)

To prove it, first note that we may take the infimum in (A.4) over radial functions ¢ €
C!(R®) of compact support. For this, we use that 1 < g < 3 to control the denominator
by the H'(R?) norm. Then, set ¢(x) = /7¥(r), r = e* and calculate

oo

1
VY12 = an / (67 + 397 00) dx

—00

I % 12, = (4n>%(foo 9*(x) dx)

—00
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Note that ¢(x) — 0 as x — +oo (exponentially as x — —o0, and identically vanishing for
large x > 0). This gives (A.5) by density.

Let ¢, € H'(R) be a minimizing sequence for (A.5) with |¢,|l2q = 1. Clearly, ¢, is
bounded in H'(R) and by Sobolev embedding, it follows that uq > 0. By the concentration
compactness method, see Proposition 3.1 in [16], there exist V; € H'(R) forallj > 1, and

Xj» € R such that (everything up to passing to subsequences)

|Xjn — Xkn| > 00 forallj#kas n— oo

¢
¥n = Z Vi(- —Xjn) + gne forall £>1
j=1

where

lim sup [|gnll, — O

n—oo
as £ — oo for any 2 < p < co. Moreover,

12

lepll3 =Y VI3 + 1Igh,II3 + o(1)

=1
]l (A.6)
lenlz =D IViI3 + lIgn.ell3 + 0(1)
j=1
as n — oo, and
4
1= llgnlizg = Y IV;l58 + o(1)
j=1
as n,¢ — oo. To be precise, for any ¢ > 0 we may find ¢ such that
14
1= <
j=1
We have
1 1 ¢
lgnlly + Zllenlly = @) 7P g ( Y I1V;lZ, + Igneli3g) — (1)
=1
' (&.7)

4
_1 1
> (47) P pg( Y IVjl58 + Igneliza) ® — o(1)

j=1
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If there were two nonzero profiles V;, or if

lim sup [|gn¢ll2g 7~ O

n—oo

as £ — oo, then there exists § > 0 (since g > 1) so that

) 1 -1
lgn I3 + lewnllﬁ > (47) P uq(l+38) —o(1)

as n — oo, contradicting that ¢, is a minimizing sequence. So up to a translation, we may
assume that ¢, is compact in L?(R) and in fact that ¢, — ¢, in L% (R). In particular,
¢xollzg = 1. Furthermore, we have the weak convergence ¢, — ¢., ¢ — ¢ in L*(R),

which implies that
. 2 i iz L 2 -1
l9sollz + 7 9ol = lim inf (lenll3 + Z”‘pn”z) = (41) P g

In conclusion, ¢, — ¢, strongly in H', and ¢, € H*(R)\ {0} is a minimizer for u,. Passing
absolute values onto ¢, we may assume that ¢, > 0.

The associated Euler-Lagrange equation is

1
=200+ 59 = kg

first in the weak sense, but then in the classical one by basic regularity. Furthermore,
¢ >0, 9o € C*°(R), and k > 0. Since g > 1 we may absorb the constant which leads to an

exponentially decaying, positive smooth solution to the equation
1" 1 2g—1
=)+ Zf(X) =f )

By the phase portrait, such an f is unique up to translation in x. It is given by the
homoclinic orbit emanating from the origin and encircling the positive equilibrium.
This homoclinic orbit (and its reflection together with the origin) make up the algebraic

12 1 2 1 2q

The explicit form of the solution is obtained by integrating up the first-order ODE (A.8)
which leads to

fx—x0) = (%)m(cosh((q ~1)x/2)) 71 (A.9)
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where x, € R. Finally,
uh = an / F* dx

with f as on the right-hand side of (A.9). Thus,

_q_ o 2,
nh = 4n(%) ot / (cosh((g — 1))(/2))7‘1qu dx (A.10)

To proceed, we recall that for any b > 0

o 00 b
/ (coshx)?dx = 2b/ u! du — VrT'(b/2)
- o (I+u?P r'((b+1)/2)

Inserting this into (A.10) yields

qu a D

» 4n(q>P 2 1"(p)1
4/ q—-1T'(p+3)

Using ['(p)T'(p + 3) = 2'7%./7 I'(2p) this turns into

p—1

P '(p)2 p I'(p)?

w2 = ax 2 12 =4ﬂ< p ) p—1)_P)
q—1T(2p) I'(2p)

which is what the lemma set out to prove. The minimizers are obtained by transforming

(A.9) back to the original coordinates. |

Theorem A.1 is insufficient for linearized Skyrme. The reason being that the

Helmholtz equation associated with the latter is of the form
" 2 2
-y + (; + V()Y =k*y

which has extra repulsivity coming from the %2 potential. On the level of the Schrodinger
equation in R® this precisely amounts to restricting to angular momentum ¢ = 1. So we
expect that a weaker condition on V than the one stated in Theorem A.1 will suffice. This
is essential for our applications to linearized Skyrme stability.

In fact, as already noted in [13], for general angular momentum ¢ > 0 we are
faced with the minimization problem which is obtained from (A.5) by replacing ;¢? with

1(2¢ +1)%¢*. However, the scaling

(%) = 1((2£ + 1)x)
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takes us back to the minimization problem (A.5) with an extra factor of (2¢ + 1)”%.
Recall that Theorem A.1 is nothing other than w P|r*V_|} < 1. Therefore, to exclude
eigenfunctions and threshold resonances of angular momentum ¢ condition (A.1) needs

to be multiplied on the left by a factor of
(2¢ + 1)*P(1+é) = (20 + 1)7(21771)

In the summary, the sufficient GGMT criterion for absence of bound states and threshold

resonances in angular momentum ¢ reads

(p-DP'I'2p) [
(20 + 1)*~'prT2(p) Jo

rP P (rydr < 1 (A.11)

for any 2 < p < oo. For linear Skyrme stability, we use this criterion with ¢ = 1 and

p=4.

Appendix 2. Tables of Expansion Coefficients

Table 2.1. Expansion coefficients for approximate Skyrmion

n 2 3 4 5 6 7 8
c 13039 2909 _ 11670 _ 301 621 871 _ 42
n 72146 229801 500821 39257 122813 221909 55481
n 9 10 11 12 13 14 15
c __64 __18 94 13 _ 31 __9 2
n 36275 77071 139483 20736 158602 12953 100443
n 16 17 18 19 20 21 22
c 11 _2 __5 __5 1 2 1
n 105144 76485 121747 186976 92977 118683 1805239
n 23 24 25 26 27 28 29
c 1 __1 1 1 _ 1 __1 1
n 122146 317774 332077 377050 1689008 640158 3975308
n 30 31 32 33 34 35 36
c 1 1 1 1 1 1 1
n 1402566 2606123 1324868 3550160 54392687 6563655 21696717
n 37 38 39 40 41 42 43
c 1 1 1 1 1 _ 1 _ 1
n 16289508 21329884 86396283 36311458 128282128 128832209 196527234
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Table 2.2. Expansion coefficients for u_

n 1 2 3 4 5 6
c c 5384 71 417 18 2
-n =1 2621 1909 3424 1817 3169
n 7 8 9 10 11 12
c _ 23 _ 22 _4 _7_ _2_ __8
-n 3399 4655 2097 2589 3607 6937
n 13 14 15 16 17 18
c __3 1 2 . 1 I
-n 4310 2886 2135 90728 3865 11699
n 19 20 21 22 23 24
c _1 _1 __1 __1 __1 _1
-n 9323 11955 36563 18412 192414 37653
n 25 26 27 28 29 30
c _1 __1 __1 __1 1 1
-n 79523 119499 105631 1857125 285782 619658
Table 2.3. Expansion coefficients for u,
n 1 2 3 4 5 6
c c 1371 1734 230 _ 167 33
+n +1 769 3319 3431 6071 5231
n 7 8 9 10 11 12
c 59 19 19 1 11 4
+n 3580 7202 2849 13495 3203 4737
n 13 14 15 16 17 18
c __7_ __2_ 1 1 1 1
+n 2481 2217 1808 1529 11699 2637
n 19 20 21 22 23 24
c __1 _1 _1 __1 __1 _1
+mn 12409 5625 9479 16801 12593 300485
n 25 26 27 28 29 30
c _1 _1 __1 __1 _1 _1
+m 21636 56764 51904 51451 307476 121058
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Table 2.4. Expansion coefficients for approximation to
1/Ps (Proposition 5.4)

n 1 2 3 4 5 6
r _ 437 _s8u _229 _ 2391 _397 _178
n 24 20 17 61 30 7
n 7 8 9 10 11 12
r _lea _518 _%8 _ 1345 _86 _ 284
n 27 27 15 114 31 39
n 13 14 15 16 17 18
r _59 _ 156 _107 _86 _23 _23
n 24 35 106 37 31 16
n 19 20 21 22 23 24
9 73 5 13 1 2
Tn 2% 10 T2 32 9 i
n 25 26 27 28 29 30
1 3 1 2 1 1
T'n ~u 29 ~2 ~33 ~62 Y

Table 2.5. Expansion coefficients for approximation to 1/W;, (Proposition 5.5)

n 0 1 2 3 4 5 6 7
r _19 a1 37 _1a _ 23 7 9 _3
n 69 106 103 107 128 81 109 67
n 8 9 10 11 12 13 14 15
r _ 3 2 2 1 1 1 1 1
n 79 99 111 124 114 376 233 1792
n 16 17 18 19 20 21 22 23
r _1 1 1 1 1 1 1 0
n 481 8890 1025 4569 2336 6718 5790
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