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a b s t r a c t

These lectures present some basic ideas and techniques in the spectral analysis of
lattice Schrödinger operators with disordered potentials. In contrast to the classical
Anderson tight binding model, the randomness is also allowed to possess only
finitely many degrees of freedom. This refers to dynamically defined potentials,
i.e., those given by evaluating a function along an orbit of some ergodic trans-
formation (or of several commuting such transformations on higher-dimensional
lattices). Classical localization theorems by Fröhlich–Spencer for large disorders
are presented, both for random potentials in all dimensions, as well as even quasi-
periodic ones on the line. After providing the needed background on subharmonic
functions, we then discuss the Bourgain–Goldstein theorem on localization for
quasiperiodic Schrödinger cocycles assuming positive Lyapunov exponents.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In the 1950s Phil Anderson studied random operators of the form

H = ∆Zd + λV

where ∆Zd is the discrete Laplacian on the d-dimensional lattice and V : Zd → R a random field with
i.i.d. components, and a real parameter λ. His pioneering work suggested by physical arguments that for
large λ, with probability 1, a typical realization of the random operator H exhibits exponentially decaying
eigenfunctions which form a basis of ℓ2(Zd). This is referred to as Anderson localization (AL). It is in stark
ontrast to periodic V for which the spectrum is absolutely continuous (a.c.) with a distorted Fourier basis of
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loch–Floquet waves, see [40,42]. Furthermore, and most importantly, Anderson found a phase transition in
imensions three and higher, leading to the a.s. presence of a.c. spectrum for small λ. This famous extended

states problem is still not understood.
On the other hand, a large mathematical literature now exists dealing with Anderson localization and its

ramifications (density of states, Poisson behavior of eigenvalues). This introduction is not meant as a broad
introduction to this field, for which we refer the reader to the recent textbook [2], as well as the more classical
treaties [7,14,20] and the forthcoming texts [16,17]. Our focus here is with the body of techniques commonly
referred to as multiscale. They are all based on some form of induction on scales, and are reminiscent of
KAM arguments.

This approach is effective both in random models, as well as those with deterministic potentials, which
efers to V (n) being fixed by a finite number of parameters. For example, Harper’s model on Z is given by
(n) = cos(2π(nω + x)) with irrational ω and x ∈ R/Z. The only stochastic parameter is this choice of x.
he Harper operator, which is also known as almost Mathieu operator, as well as more general quasi-periodic
perators, exhibit a rich and subtle spectral theory, see for example the survey [35].

Bourgain’s book [8] contains a wealth of material on a wide class of stochastic Schrödinger operators with
eterministic potentials. An important basic assumption in that book is the analyticity of the generating
unction, i.e., if V (n) = F (Tnx) for some ergodic transformation T on a torus, then F is assumed to
e analytic or a trigonometric polynomial. The analyticity allows for the use of subharmonic functions.
hese are relevant for large deviation theorems, which in turn hinge on some Cartan type lower bound for

ubharmonic functions. This first part of the notes can be seen as a companion to Bourgain’s book [8]
ut only up to Chapter 12. The plan for the second part of this introduction is to focus on the matrix-
alued Cartan theorem of [11], and the higher-dimensional theory as in [9], with applications. This will then
opefully serve to make Chapters 14 through 19 of [8] more accessible.

. Polynomially bounded Fourier basis

In this section we establish the following widely known fact concerning the Fourier transform associated
ith a Schrödinger operator. It is a particular case of a more general theory, see the text [6] and the

urvey [44]. Results of this type go by the name of Shnol theorem. We follow the argument in [19].
hroughout, the discrete Laplacian on Zd is defined as the sum over nearest neighbors, i.e.,

(∆f)(x) =
∑

±

d∑
j=1

f(x± ej) ∀ x ∈ Zd (2.1)

here ej are the standard coordinate vectors. If F : ℓ2(Zd) → L2(Td) denotes the Fourier transform, then

(F ◦ ∆ ◦ F−1f)(θ) = m(θ)f(θ) = 2
d∑
j=1

cos(2πθj)f(θ) (2.2)

nd the spectrum satisfies spec(∆) = [−2d, 2d]. The Laplacian (2.1) differs from the more customary
∆̃ = ∇∗∇ where (∇f)(x) = {f(x+ ej) − f(x)}dj=1, by a diagonal term: −∆̃ = −∆ + 2d. For the original

eference, see [47].

heorem 2.1. Consider H = ∆ + V as a bounded operator on ℓ2(Zd), with V ∈ ℓ∞(Zd) real-valued and
cting by multiplication. Fix σ > d

2 . Then for almost every E ∈ R with respect to the spectral measure1 of H
there exists ψ : Zd → R not identically vanishing with Hψ = Eψ and |ψ(n)| ≤ C(d, σ,E)⟨n⟩σ for all n ∈ Zd.

1 I.e., up to a set of measure 0 relative to the spectral measure of H.
2
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roof. Take any z ∈ R \Σ , where Σ is the spectrum of H (we take z ∈ R for simplicity). By the Combes–
Thomas estimate the Green function (H − z)−1(x, y) has exponential decay: there exist positive constants
C, β so that

|(H − z)−1(x, y)| ≤ Cexp(−β|x− y|) ∀ x, y ∈ Zd. (2.3)

e follow the convention that an operator T has kernel T (x, y). To see this, let (Mβ,jf)(n) = eβnjf(n) and
compute

M−1
β,j ◦ (H − z) ◦Mβ,j = H − z + Sβ,j

with ∥Sβ,j∥2→2 ≤ C|β| uniformly in |β| ≤ 1. Hence,

M−1
β,j ◦ (H − z)−1 ◦Mβ,j = (H − z)−1 ◦ (I + Sβ,j(H − z)−1)−1

here the inverse on the right exists by a Neumann series as long as in the operator norm

∥Sβ,j(H − z)−1∥ < 1

hich holds if |β|dist(z,Σ ) ≤ c, some small constant. In particular,

|⟨δy, (H − z)−1δx⟩| = |(H − z)−1(x, y)| ≤ Ce−β(xj−yj)

Since the sign of β and the choice of j are arbitrary, (2.3) follows. Throughout, ⟨·, ·⟩ denotes the complex
inner product which is linear in the second variable.

Let wσ(x) := ⟨x⟩−σ on Zd. Fixing any σ > d
2 so that ⟨x⟩−σ ∈ ℓ2(Zd), the Combes–Thomas bound (2.3)

mplies that (H − z)−1(x, y)wσ(y) ∈ ℓ2(Zd × Zd) whence

(H − z)−1 : ℓ2
σ(Zd) → ℓ2(Zd)

s a Hilbert–Schmidt operator. Here ℓ2
σ(Zd) := wσℓ

2(Zd). By the spectral theorem there exists a unitary
: ℓ2(Zd) → L2(X,µ) where µ is a σ-finite measure, and ϕ ∈ L∞(X) real-valued, with UHf = ϕUf for all
∈ ℓ2(Zd). The µ-essential range of ϕ equals Σ . The composition

T := U(H − z)−1 = (ϕ− z)−1U : ℓ2
σ(Zd) → L2(X,µ)

s Hilbert–Schmidt, whence by the standard kernel representation of such operators, for every n ∈ Zd there
xists K(·, n) ∈ L2(X,µ) with

ˆ
X

∑
n∈Zd

|K(x, n)|2 w2
σ(n)µ(dx) < ∞

nd

Tf(x) =
∑
n∈Zd

K(x, n)f(n) ∀ f ∈ ℓ2
σ(Zd)

he series converges in L2(X,µ). Define ψx(n) := (ϕ(x) − z)K(x, n). Then for all f ∈ ℓ2
σ(Zd), and µ − a.e.

,

(Uf)(x) = (ϕ(x) − z)(Tf)(x) =
∑

(ϕ(x) − z)K(x, n)f(n) = ⟨ψx, f⟩ℓ2(Zd) (2.4)

n∈Zd

3
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y the preceding ψx ∈ (ℓ2
σ(Zd))∗ = ℓ2

−σ(Zd) for µ-a.e. x. Next, we claim that a.e. in x and in the point-wise
ense on Zd

Hψx = ϕ(x)ψx (2.5)

s well as ψx ̸≡ 0. Take f on the lattice with finite support. Then Hf has finite support and by (2.4)

⟨Hψx, f⟩ = ⟨ψx, Hf⟩ = (UHf)(x) = ϕ(x)(Uf)(x) = ⟨ϕ(x)ψx, f⟩

ll scalar products in ℓ2(Zd), and for µ-a.e. x. It follows that Hψx = ϕ(x)ψx whence (2.5). Now suppose
x ≡ 0 for all x ∈ S ⊂ X, µ(S) > 0. Then for all f ∈ ℓ2(Zd), this implies that Uf = 0 µ-a.e. on S, and

0 = ⟨Uf, χS⟩L2(µ) = ⟨f, U∗χS⟩ℓ2(Zd)

ut this means that U∗χS = 0 which contradicts ∥U∗χS∥2
2 = µ(S) > 0. To summarize, there is N ⊂ X with

(N ) = 0 so that for all E ∈ G := ϕ(X \ N ) the equation Hψ = Eψ has a nonzero solution ψ ∈ ℓ2
−σ(Zd).

e claim that E(R \ G) = 0 where E is the spectral resolution of H, i.e., a projection-valued Borel measure
ith H =

´
λ E(dλ). But for any Borel set B ⊂ R, UE(B)U∗g = χϕ−1(B)g on all g ∈ L2(X,µ). Since

−1(R \ G) ⊂ N is a µ-nullset, we conclude that UE(R \ G)U∗ = 0 whence E(R \ G) = 0. So Hψ = Eψ has
onzero solution ψ ∈ ℓ2

−σ(Zd) spectrally a.e. □

This proof applies much more generally and the discrete Laplacian is used only sparingly. For example,
t can be replaced with a self-adjoint Töplitz operator with exponential off-diagonal decay.

. The Anderson model and localization

Let

Hω = ∆ + Vω (3.1)

n ℓ2(Zd) where Vω is a diagonal operator given by i.i.d. random variables at each lattice site n ∈ Zd.
he single site distribution refers to the law of Vω(0) which we assume to be a.s. bounded. Then Hω is
.s. a bounded operator. The notation is based on an underlying probability space (Ω ,P), with ω ∈ Ω . If
= 1 we may consider a more general model with a potential generated by any ergodic dynamical system.
hus, let T : X → X be measure preserving, invertible, and ergodic on X relative to the probability
easure ν. Then set Vx(n) := f(Tnx) where f : X → R is measurable and ν-essentially bounded, and
efine Hx := ∆ + Vx in ℓ2(Z). The one-dimensional random Anderson model is included in this formalism.
ndeed, let T be the Bernoulli shift and f the projection on the 0-coordinate with the ergodic measure being
he infinite product measure generated by the single-site distribution. For the general 1-dimensional model
e shall now demonstrate that the spectrum of Hx is deterministic by ergodicity.

roposition 3.1. There exists a compact set Σ ⊂ R so that spec(Hx) = Σ for ν-almost every x ∈ X.

roof. One has the conjugation

HTx = U−1 ◦Hx ◦ U (3.2)

ith the right-shift U : ℓ2(Z) → ℓ2(Z) and so also ETx(B) = U−1 ◦ Ex(B) ◦ U with the spectral resolution
x of Hx and any Borel set B ⊂ R. Recall that Hx =

´
λ Ex(dλ) in a suitable sense.

E(B) := {x ∈ X | rank(E (B)) > 0}
x

4
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s an invariant set, i.e., E(B) = T−1(E(B)) whence ν(E(B)) = 0 or ν(E(B)) = 1. Define

Σ = R \
⋃
a<b

{(a, b) | ν(E((a, b))) = 0}

here the union is over rational a, b. If any interval I ⊂ R intersects Σ , then rank(Ex(I)) > 0 for ν-a.e.
∈ X. Hence also I ∩ spec(Hx) ̸= Ø for a.e. x. □

A finer description of the set Σ can be obtained by a similar argument. The subscripts ac, sc, pp stand
or, respectively, absolutely continuous, singular continuous, and pure point.

roposition 3.2. There exist compact subsets Σac, Σsc, and Σpp of Σ such that Σ = Σac ∪Σsc ∪Σpp (not
ecessarily disjoint) such that for any Borel set B with B ∩ Σac ̸= Ø the following holds: for a.e. x ∈ X

here exists f ∈ ℓ2(Z) so that µ(A) := ⟨Ex(A ∩ B)f, f⟩ defined on Borel sets A is an absolutely continuous
robability measure. Analogous statements hold for the singular continuous, and pure point (atomic) parts.

roof. We define, with the union being over rationals,

Σac = R \
⋃
a<b

{(a, b) | ∀ f ∈ ℓ2(Z), A ↦→ ⟨Ex((a, b) ∩A)f, f⟩

ν − a.s. has no absolutely continuous component}

here the latter property refers to the Lebesgue decomposition. We adopt the convention that the 0 measure
as no absolutely continuous component (as well as no singular component). By ergodicity and the conjugacy
f Hx and HTx, respectively, by the shift, the set

Y (a, b) := {x ∈ X | ∃ f ∈ ℓ2(Z), A ↦→ ⟨Ex((a, b) ∩A)f, f⟩
has an absolutely continuous component}

s T -invariant and thus ν(Y (a, b)) = 0 or ν(Y (a, b)) = 1. Hence

Σac = R \
⋃
a<b

{(a, b) | a, b ∈ Q, ν(Y (a, b)) = 0}

ow suppose B ∩ Σac ̸= Ø. Without loss of generality, B ⊂ Σac. If B ∩ (a, b) ̸= Ø with a, b ∈ Q, then
(Y (a, b)) = 1. Thus ν-a.s., A ↦→ ⟨Ex((a, b) ∩A)f, f⟩ is absolutely continuous for some f . We used here that
e may pass from the existence of an absolutely continuous component to purely absolutely continuous
y projecting f on the a.c. subspace of Hx. The claim of having a probability measure is obtained by
ormalization. The proofs for the singular parts is identical. □

These arguments make no use of the Laplacian and therefore apply to the diagonal operator given by
ultiplication by the potential Vx. In that case the eigenvalues are {Vx(n) = f(Tnx) | n ∈ Z} and the

losure of this set is deterministic and equals Σpp. Moreover, Σac = Σsc = Ø.
Propositions 3.1 and 3.2 apply as stated to the random model Hω from above, as the reader is invited

o explore. In fact, on ℓ2(Zd) we may consider d measure preserving, invertible, commuting transformations
j : X → X with the following ergodicity property: if A ⊂ X is invariant under all Tj , then ν(A) = 0
r ν(A) = 1. Then the previous two propositions apply to the operator Hx := ∆Zd + Vx with Vx(n̄) =
(Tn1

1 ◦ Tn2
2 ◦ · · · ◦ Tnd

d x) for any n̄ = (n1, . . . , nd) ∈ Zd with essentially the same proofs. See [20,39] for a
ystematic development of the spectral theory of ergodic families of operators.

For the random model, which is the original Anderson model, we can now explicitly compute the almost
ure spectrum Σ in Proposition 3.1. Recall that we are assuming bounded support of the single site

istribution.

5



W. Schlag Nonlinear Analysis 220 (2022) 112869

P

w

P
λ

f

|

w

a

a

e

T
c
i

o

T

roposition 3.3. For Hω as defined in (3.1) satisfies

Σ = [−2d, 2d] +K

here K is the essential support of the single site distribution Vω(0).

roof. By definition, K = R \
⋃

{I | µ(I) = 0} where I is an interval with rational endpoints. If
0 ∈ [−2d, 2d], then by (2.2) there exists α ∈ Td with m(α) = λ0. Thus, ∆eα = λ0eα where eα(n) = e2πiα·n

or all n ∈ Zd. The following holds almost surely: given L ≥ 1, ε > 0, and λ1 ∈ K, there exists a cube
Λ ⊂ Zd of side length L such that ∥V − λ1∥ℓ∞(Λ) ≤ ε. Then with λ = λ0 + λ1,

(H − λ)χΛeα = (V − λ1)χΛeα + g

with ∥g∥2
2 ≲ |∂Λ| ≲ Ld−1. Here ∂Λ is defined as those x ∈ Λ which have a nearest neighbor in Zd \ Λ, and

· | is the cardinality (or volume). Hence, with the normalized function φ = χΛeα|Λ|−
1
2

∥(H − λ)φ∥2 ≲ ε+ L− 1
2

hich implies that almost surely,

sup
ε>0

∥(H − λ− iε)−1∥ = ∞

nd thus λ ∈ spec(H). This shows that [−2d, 2d] +K ⊂ Σ .
Conversely, suppose λ ∈ R \ ([−2d, 2d] + K). By compactness of the sum set there exists δ > 0 so that

lmost surely

inf
n∈Zd

|Vω(n) − λ| ≥ 2d+ δ

Thus, a.s. the resolvent

(H − λ)−1 =
(
I + (Vω − λ)−1∆

)−1(Vω − λ)−1

xists as a bounded operator on ℓ2(Zd). □

For any cube Λ ⊂ Zd we denote by PΛ the projection onto all states, i.e., f ∈ ℓ2(Zd) supported in Λ.
hus, PΛf = 1Λf for any f ∈ ℓ2(Zd). By HΛ := PΛHPΛ we denote the restriction of H as in (3.1) to the
ube Λ with Dirichlet boundary conditions. Note that the randomness of H is understood and not indicated
n the notation, say by an index ω.

It is natural to ask about the probability that any given number E ∈ R comes close to the spectrum
f HΛ. In other words, for any ρ > 0 what is

P({dist(E, spec(HΛ)) < ρ}) = P({∥(HΛ − E)−1∥ > ρ−1}) ? (3.3)

he diagonal operator given by the random potential V alone satisfies

P({dist(E, spec(PΛV PΛ)) < ρ}) ≤ E #{n ∈ Λ | V (n) ∈ (E − ρ,E + ρ)}

≤ |Λ|µ((E − ρ,E + ρ)) ≤ 2ρ|Λ|
dµ
dx


∞

(3.4)

where µ is the law of V (0). A classical fact concerning the random Schrödinger operator is that (3.3) permits
essentially the same bound as (3.4). This is known as Wegner’s estimate, see [52].
6
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roposition 3.4. Assume the single site distribution of the random operator (3.1) satisfies µ′ = dµ
dy ∈

∞(R). Then for all E ∈ R,

P({dist(E, spec(HΛ)) < ρ}) ≤ 4ρ
µ′∞|Λ| (3.5)

for all cubes Λ ⊂ Zd and ρ > 0.

Proof. We will present two proofs. For the first we follow Wegner’s original argument [52]. Denote by NΛ(x)
the integrated density of states for the random operator HΛ. To wit, if E1

Λ ≤ E2
Λ ≤ . . . ≤ EmΛ , m = |Λ|,

enote the eigenvalues of HΛ with multiplicity, then

NΛ(x) = # {1 ≤ j ≤ m | EjΛ ≤ x}

et φ ≥ 0 be a smooth bump function on R supported in [−1, 1], and set φρ(x) = ρ−1φ(x/ρ). Normalize so
hat

´
R φ(x) dx = 1. Then with FΛ,ρ = NΛ ∗ φρ one has

NΛ(E + ρ) −NΛ(E − ρ) ≤ FΛ,ρ(E + 2ρ) − FΛ,ρ(E − 2ρ) =
ˆ E+2ρ

E−2ρ
F ′
Λ,ρ(x) dx

ince NΛ is a monotone increasing step-function, we have F ′
Λ,ρ ≥ 0. We may interpret NΛ(x) = NΛ(VΛ, x),

indicating the dependence of NΛ on all the potential values in Λ. Then NΛ(x+ h) = NΛ(VΛ − h, x) whence

N ′
Λ(x) = −

∑
j∈Λ

∂NΛ

∂vj
(x), F ′

Λ,ρ(x) = −
∑
j∈Λ

∂FΛ,ρ

∂vj
(x)

s identities between distributional derivatives, respectively smooth functions. Note that ∂FΛ,ρ

∂vj
≤ 0 for each

. Indeed, NΛ is decreasing in each vj separately by the min–max characterization of the eigenvalues of a
ymmetric matrix. More generally, min–max shows that if A ≥ B for any two symmetric matrices, then the
igenvalues λ1 ≥ λ2 ≥ . . . of A dominate those of B, denoted by µ1 ≥ µ2 ≥ . . . which means that λk ≥ µk
or all k.

Thus, with [−L,L] containing the support of µ,

P({dist(E, spec(HΛ)) < ρ}) ≤ −
ˆ E+2ρ

E−2ρ

∑
j∈Λ

E
∂FΛ,ρ

∂vj
(x) dx

≤
ˆ E+2ρ

E−2ρ

∑
j∈Λ

E′
j

ˆ L

−L
−∂FΛ,ρ

∂vj
(x)µ′(vj) dvj dx

(3.6)

where E′
j refers to the expectation relative to {vk}k∈Λ\{j}. Further, using the positivity of the integrand,

ˆ L

−L
−∂FΛ,ρ

∂vj
(x)µ′(vj) dvj ≤ ∥µ′∥∞

ˆ L

−L
−∂FΛ,ρ

∂vj
(x) dvj

= ∥µ′∥∞
(
FΛ,ρ(vj = −L) − FΛ,ρ(vj = L)

)
= ∥µ′∥∞

ˆ
R
(NΛ(vj = −L, x) −NΛ(vj = L, x))φρ(x) dx ≤ ∥µ′∥∞

(3.7)

or the final estimate we use that passing from vj = −L to vj = L in HΛ constitutes a rank-1 perturbation
hich implies by min–max that the eigenvalues of HΛ(vj = −L) and HΛ(vj = L) interlace. This in turn
uarantees that

NΛ(vj = −L, x) −NΛ(vj = L, x) ≤ 1 ∀ x ∈ R

nd thus (3.7). Combining (3.6) with (3.7) implies (3.5).

7
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For the second proof, we follow [45] and estimate

P({dist(E, spec(HΛ)) < ρ}) ≤ E trace1[E−ρ,E+ρ](HΛ) ≤ 2ρE trace Im (HΛ − (E + iρ))−1

≤ 2ρE
∑
n∈Λ

Im ⟨(HΛ − (E + iρ))−1δn, δn⟩ (3.8)

where we used that

1[E−ρ,E+ρ](x) ≤ 2ρ2

ρ2 + (x− E)2 = Im 2ρ
x− (E + iρ)

Next, we establish a fundamental relation on the resolvents of rank-1 perturbations. Let A be any self-adjoint
operator on a Hilbert space and φ a unit vector, λ a real scalar. From the resolvent identity, for any complex
z with Im z > 0,

(A+ λφ⊗ φ− z)−1 − (A− z)−1 = −λ(A− z)−1(φ⊗ φ)(A+ λφ⊗ φ− z)−1

⟨(A+ λφ⊗ φ− z)−1φ,φ⟩ − ⟨(A− z)−1φ,φ⟩ = −λ⟨(A+ λφ⊗ φ− z)−1φ,φ⟩⟨(A− z)−1φ,φ⟩

⟨(A+ λφ⊗ φ− z)−1φ,φ⟩ =
[
λ+ ⟨(A− z)−1φ,φ⟩−1]−1

ote that Im ⟨(A− z)−1φ,φ⟩−1 ̸= 0 by Im z ̸= 0. Applying this to

HΛ = H
(n)
Λ + Vω(n)δn ⊗ δn, n ∈ Λ

here H(n)
Λ is the operator with the potential at lattice site n set equal to 0, yields

⟨(HΛ − (E + iρ))−1δn, δn⟩ =
[
Vω(n) + ⟨(H(n)

Λ − (E + iρ))−1δn, δn⟩−1]−1

riting

⟨(H(n)
Λ − (E + iρ))−1δn, δn⟩−1 = −t− is, s > 0

he random variables t, s only depend on the random lattice sites in Λ\{n}. Consequently, the inner product
n the final expression of (3.8) is bounded by

E Im ⟨(HΛ − (E + iρ))−1δn, δn⟩ ≤ E′
n

ˆ
s µ(dx)

(x− t)2 + s2 ≤ π∥µ′∥∞

hich in combination with (3.8) yields

P({dist(E, spec(HΛ)) < ρ}) ≤ 2πρ∥µ′∥∞|Λ|

This is slightly worse than the previous proof but the precise constant is irrelevant. □

The assumption of bounded density µ′ can be relaxed, but some amount of regularity of the single-site
distribution is needed. Indeed, the mobility of the eigenvalues under the randomness expressed by Wegner’s
estimate is reduced to the mobility of the potential at each site. The heuristic notion of “mobility” refers
to the movement of the eigenvalues as a result of the movement of the potential. Both arguments presented
above hinge on this step. See, however, an alternative approach by Stollmann [49].

Anderson localization refers to the following statement.

Theorem 3.5. Let H = ε2∆Zd + Vω where Vω is random i.i.d. potential with single site distribution µ of
compact support and of bounded density with ∥µ′∥∞ ≤ 1. Then there exists ε0 = ε0(d) > 0 so that for all
0 < ε ≤ ε0, almost surely ℓ2(Zd) has an orthonormal basis of exponentially decaying eigenfunctions of the

random operator H. In particular, the spectrum is a.s. pure point and thus Σsc = Σac = Ø.

8
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In stark contrast to this result, periodic potentials exhibit a Fourier basis of Bloch–Floquet solutions with
Σpp = Σsc = Ø. Thus their spectral measures are absolutely continuous. This, as well as Vω = const. shows
that Theorem 3.5 requires the removal of a zero probability event. A wide open problem is to prove Σac ̸= Ø
for large ε in dimensions d ≥ 3. This is known as Anderson’s extended states conjecture.

There are two main techniques known to prove Theorem 3.5: Fröhlich–Spencer [22] multiscale analysis
on the one hand, and the Aizenman–Molchanov [1] fractional moment method on the other hand. We will
sketch the former and refer to [33] for an introduction to the latter. A streamlined rendition of the induction-
on-scales method of [22] can be found in [51], which also does not require the use of the Simon–Wolff
criterion [45], as earlier multi-scale proofs of Theorem 3.5 had done. Germinet and Klein have obtained
significant refinements of the multi-scale argument in a series of papers, see for example [25].

Returning briefly to the Wegner estimate, we remark that the physically important example of Bernoulli
potentials taking discrete values completely falls outside the range of Proposition 3.4. See [18] for a recent
advance on this case in two dimensions and on localization for Anderson Bernoulli. The mobility of the
eigenvalues of HΛ if V = ±1 derives from the interaction between eigenfunctions and is more delicate. On
the other hand, localization in the one-dimensional Bernoulli model is a classical result by Carmona, Klein
and Martinelli [13]. While these authors rely on the original multi-scale methods of Fröhlich and Spencer,
this is avoided in the recent papers [12,30], and [37]. The arguments there use the large deviation theorems
and the methods of Bourgain, Goldstein [10], see the final section of these notes.

Before getting in to the details, some basic ideas and motivation. Suppose H has an ℓ2-complete sequence
of exponentially decaying normalized eigenfunctions {ϕj}j∈Z with eigenvalues Ej , both random. Restrict H
to a large cube Λ and write (heuristically)

(HΛ − (E + iε))−1 ≈
∑
j

ϕj ⊗ ϕj
Ej − (E + iε)

where the sum extends over all eigenfunctions “supported” in the box Λ. It should be intuitively clear what
this means. Then |(ϕj ⊗ ϕj)(x, y)| ≲ exp(−γ|x− y|) with γ > 0 for those j, for which either x or y are
n the support of ϕj . All the others make much smaller contributions which we can essentially ignore. In
onclusion, if

∥(HΛ − (E + i0))−1∥ ≤ K then |(HΛ − (E + i0))−1(x, y)| ≤ Kexp(−γ|x− y|) ∀ x, y ∈ Λ

he condition here is precisely what Wegner’s estimate controls, and a cube which exhibits both the
eparation from the spectrum and the exponential off-diagonal decay will be called regular for energy E. A
ubstantial effort below is to show that cubes are regular for a given energy with high probability. However,
his is insufficient to prove localization and one needs to consider two disjoint cubes and understand the
robability that they are both singular for any energy. The essential feature of this idea is to control the
robability of an event uniformly in all energies, rather than for a fixed energy. The latter can never imply
n a.s. statement about the spectrum since we cannot take the union of a bad event over an uncountable
amily of energies. More importantly, excluding the event that two boxes are in resonance simultaneously
which refers that they are both singular at the same E) will precisely allow us to show that a.s. tunneling
annot occur over long distances leading to exponentially localized eigenfunctions.

We shall now prove Theorem 3.5 by induction on scales. We will need to allow rectangles as regions of
nite volume rather than just cubes. Thus, define a box centered at x of scale L to be any rectangle of the
orm

ΛL(x) =
{
y ∈ Zd | −mj ≤ yj − xj ≤ Mj ∀ 1 ≤ j ≤ d

}
(3.9)

here mj ≥ 0, Mj ≥ 0 and max(mj ,Mj) = L for each j. If mj = Mj = L for each j, then we have standard
cube which we denote by Q (x). These rectangles arise as intersections of cubes Q (x)∩Q (y) if x ∈ Q (y)
L L L̃ L̃

9
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Fig. 1. A box arising as intersection of cubes.

ith L̃ ≥ L, see Fig. 1. Wegner’s estimate applies unchanged to boxes. Note that for a given integer L ≥ 1
nd x ∈ Zd there are B(L) = (2L+ 1)d boxes ΛL(x). The following deterministic lemma allows us to bound
he Green function at an initial scale which will be specified later.

emma 3.6. Suppose 4dε ≤ δ and 0 < ε ≤ 1
2 . Let Λ be any box as in (3.9) and assume

dist(spec(HΛ), E) ≥ δ.

hen

|GΛ(E)(x, y)| ≤ 4δ−1ε|x−y| ∀ x, y ∈ Λ. (3.10)

ere |x| = maxj |xj | and GΛ(E) = (HΛ − E)−1 is the Green function on Λ with energy E.

roof. By min–max, |V (x) − E| ≥ δ − 2dε2 ≥ δ/2 for all x ∈ Λ. Then

GΛ(E)(x, y) = (I + ε2(VΛ − E)−1∆)−1(VΛ − E)−1(x, y)

=
∞∑
ℓ=0

(−1)ℓε2ℓ[(VΛ − E)−1∆]ℓ(x, y)(VΛ − E)−1(x)

ecall that (VΛ − E)−1 is a diagonal operator. Using that ∥(VΛ − E)−1∆∥ ≤ 2δ−1∥∆∥ ≤ 4dδ−1, we
ave |ε2ℓ[(VΛ − E)−1∆]ℓ(x, y)| ≤ (4dε2δ−1)ℓ ≤ εℓ where it suffices to consider ℓ ≥ |x− y|1 ≥ |x− y|
ith |x|1 =

∑d
j=1 |xj | (otherwise this term vanishes). Summing up the geometric series using that ε ≤ 1

2
roves (3.10). □

In terms of random operators one has (3.10) with high probability.

orollary 3.7. Suppose 4dε ≤ δ and 0 < ε ≤ 1
2 . Then (3.10) holds up to probability at most 4δ|Λ|.

Proof. Apply Wegner. □

The following lemma demonstrates how to obtain exponential decay of the Green function at a large scale
box if all boxes contained in it of a much smaller scale have this property, with possibly one exception. The
latter is needed in order to be able to square the probabilities of a having a bad small box inside a bigger one
as we pass to the next scale. We will use a resolvent expansion, obtained by iterating the resolvent identity:
10
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et Λ′ ⊂ Λ be boxes, and let A = HΛ, B = HΛ′ ⊕HΛ\Λ′ viewed as operators on ℓ2(Λ). Then, observing that
A−B = ε2ΓΛ,Λ′ ,

(HΛ − E)−1 = (HΛ′ ⊕HΛ\Λ′ − E)−1 − ε2(HΛ − E)−1ΓΛ,Λ′(HΛ′ ⊕HΛ\Λ′ − E)−1

GΛ(E)(x, y) = GΛ′(E)(x, y)1[y∈Λ′] − ε2
∑

(w′,w)∈∂Λ′

GΛ(E)(w, y)GΛ′(E)(x,w′) (3.11)

or all x ∈ Λ′ and y ∈ Λ. Here ∂Λ′ = {(w′, w) |w′ ∈ Λ′, w ∈ Λ \Λ′, |w − w′| = 1} is the relative boundary of
Λ′ inside of Λ, and ΓΛ,Λ′ = 1∂Λ′ .

Lemma 3.8. Let Λ be a box at scale L1 ≥ 100L0 and assume dist(spec(HΛ), E) ≥ δ1 with 0 < δ1 ≤ 1. Let
Λ′

∗ ⊂ Λ be some box at scale L0 ≥ 1 and assume that all boxes Λ′ ⊂ Λ \ Λ′
∗ at scale L0 satisfy

|GΛ′(E)(x, y)| ≤ 4δ−1
0 εγ0|x−y| ∀ x, y ∈ Λ′, |x− y| ≥ L0/2 (3.12)

uppose

8d(2L0 + 1)d−1ε2+γ0L0 ≤ δ0 ≤ 1 (3.13)

hen

|GΛ(E)(x, y)| ≤ δ−1
1 εγ1|x−y| ∀ x, y ∈ Λ, |x− y| ≥ L1/2 (3.14)

rovided[
γ0 − γ1

(
1 − 1

L0 + 1 − 8L0

L1

)−1
+ 2
L0

]
log1

ε
≥ L−1

0 log(8d(2L0 + 1)d−1δ−1
0 ) (3.15)

roof. Pick x, y ∈ Λ with |x− y| ≥ L1/2 and set Λx = QL0(x)∩Λ. If Λx∩Λ′
∗ ̸= Ø, then we do not expand

round x and instead expand around y since L1 ≥ 100L0 implies that Λy ∩ Λ′
∗ = Ø.

Iterating (3.11) leads to an expression of the form, with w0 = x, w̃0 = y,

GΛ(E)(x, y) = (−ε2)s+t
∑

(w′
1,w1)∈∂Λ′(x)

∑
(w′

2,w2)∈∂Λ′(w1)

...
∑

(w′
s,ws)∈∂Λ′(ws−1)

s∏
j=1

GΛ′(wj−1)(wj−1, w
′
j)

∑
(w̃′

1,w̃1)∈∂Λ′(y)

∑
(w̃′

2,w̃2)∈∂Λ′(w̃1)

...
∑

(w̃′
t,w̃t)∈∂Λ′(w̃t−1)

GΛ(ws, w̃t)
t∏

k=1
G

Λ′(w̃k−1)(w̃k−1, w̃
′
k)

(3.16)

ith all Green function on the right-hand side being at energy E. Here s ≥ 0 and t ≥ 0 are the maximal
umber of steps we can take from x, respectively, y with any boxes of size L0 centered at points distance 1

from the boundary of a previous box, before they might intersect Λ′
∗. All boxes here are of the form

L0(wj) ∩ Λ = Λ′(wj). In particular, if (y′, y) ∈ ∂Λ′(wj), then |y′ − wj | = L0. We claim that s + t ≥ 1
satisfies

|x− y| < (t+ s)(L0 + 1) + 4L0 + 1

Indeed, if |x− y| ≥ (t+ s)(L0 + 1) + 4L0 + 1, then

|x− y| + 1 − [(t+ s)(L0 + 1) + 2L0 + 1] ≥ 2L0 + 1

hich implies that we could go either one more step in the x, resp. y, expansion without intersecting Λ′
∗.

hus,

ξ − 1 < s+ t ≤ ξ, ξ = |x− y| − 3L0 (3.17)

L0 + 1

11
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Fig. 2. One term in the expansion (3.16) with s = 2, t = 4.

o estimate (3.16), use |GΛ(ws, w̃t)| ≤ ∥GΛ∥ ≤ δ−1
1 and |GΛ′(wj−1)(wj−1, w

′
j)| ≤ 4δ−1

0 εγ0L0 and the
ame for all of the Green functions over the smaller boxes. The number of pairs in the boundary satisfy
∂Λ′| ≤ 2d(2L0 + 1)d−1 whence

|GΛ(E)(x, y)| ≤ δ−1
1

(
8dε2(2L0 + 1)d−1δ−1

0 εγ0L0
)s+t

≤ δ−1
1

(
8dε2(2L0 + 1)d−1δ−1

0 εγ0L0
) |x−y|

L0+1 −4
(3.18)

sing that the parenthesis is a number in (0, 1]. Note that |x−y|
L0+1 − 4 ≥ 46L0−4

L0+1 ≥ 21. We need to ensure that
or all x, y ∈ Λ, |x− y| ≥ L1/2 we have(

8dε2(2L0 + 1)d−1δ−1
0 εγ0L0

) |x−y|
L0+1 −4 ≤ εγ1|x−y|

which then implies (3.14) via (3.18). Taking logarithms, this reduces to[
γ0 − γ1

(
1 − 1

L0 + 1 − 4L0

|x− y|

)−1
+ 2
L0

]
log1

ε
≥ L−1

0 log(8d(2L0 + 1)d−1δ−1
0 )

he worst case here is |x− y| = L1/2 which gives (3.15) (see Fig. 2). □

efinition 3.9. Fix any x0 ∈ Zd. Then we define an L-box ΛL(x0) to be (γ,E)-regular if it exhibits

• non-resonance at energy E: dist(spec(HΛL(x0)), E) ≥ δ(L) = exp(−Lβ)
• exponential Green function decay: |GΛL(x0)(E)(x, y)| ≤ 4δ(L)−1εγ|x−y| ∀ x, y ∈ ΛL(x0) with |x− y| ≥
L/2

ere E ∈ R is arbitrary, γ > 0 will be specified below, depending on the scale, and β ∈ (0, 1) will be a fixed
onstant. A box is (γ,E)-singular if it is not (γ,E)-regular.
12
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At the initial scale of the induction, by Corollary 3.7

sup
E∈R

P({∃ ΛL0(x0) which is (1, E)-singular}) ≤ 4B(L0)|QL0(x0)|δ(L0) =: p0 (3.19)

he existence inside the set refers to all possible boxes of the initial scale L0 = L0(d, β) ≥ 100 centered
t x0 of which there are B(L0) = (2(L0 + 1))d, while |QL0(x0)| = (2L0 + 1)d is the volume of the largest
0-box. Thus we have

p0 = 4(2(L0 + 1))d(2L0 + 1)dexp(−Lβ0 )

here β is just chosen here to so that exp(−Lβ0 ) = δ(L0) and will in fact be in (0, 1). Corollary 3.7 requires
hat, where δ0 := δ(L0),

4dε ≤ δ0. (3.20)

et L1 = ⌈Lα0 ⌉ where α > 1 will also be specified later. By Lemma 3.8, whose condition (3.13) we leave to
he reader to verify,⎧⎨⎩

supE∈R P({∃ ΛL1(x0) which is (γ1, E)-singular}) ≤ p1
p1 := 4B(L1)|QL1(x0)|δ1 + |QL1(x0)|2p2

0
γ1 :=

(
1 − 1

L0+1 − 8L0
L1

)
(1 − Lβ−1

0 )
(3.21)

n fact, p1 is the sum of two contributions. On the one hand, Wegner’s estimate gives, with δ1 = exp(−Lβ1 ),

P({∃ ΛL1(x0) with dist(spec(HΛL1 (x0)), E) ≤ δ1}) ≤ 4B(L1)|QL1(x0)|δ1

hich is the first term on the right-hand side of p1. It controls the probability that one of the boxes ΛL1(x0)
s resonant at energy E with resonance width δ1. The other term bounds

P({∃ two disjoint (1, E)-singular L0 boxes in QL1(x0)}) ≤ |QL1(x0)|2p2
0

here the factor |QL1(x0)|2 = (2L1 + 1)2d is a result of selecting the centers of the L0 boxes in QL1(x0).
ssuming Lβ(α−1)

0 ≥ 2, we have δ1 ≤ δ2
0 ≤ p2

0 and thus p1 ≤ 5B(L1)2p2
0. Finally, setting γ0 = 1 and γ1 as

bove in (3.15) yields

(1 + 2L0
−β)log1

ε
≥ 1 + L−β

0 (log(8d) + (d− 1)log(2L0 + 1))

In view of (3.20) this holds for L0(d, β) sufficiently large, proving (3.21).
Inductively, define Lk+1 = ⌈Lαk ⌉ with 1 < α < 2 fixed. In analogy with (3.21) one has with δk = exp(−Lβk),

⎧⎪⎨⎪⎩
supE∈R P({∃ ΛLk

(x0) which is (γk, E)-singular}) ≤ pk
pk := 4B(Lk)|QLk

(x0)|δk + |QLk
(x0)|2p2

k−1
γk := γk−1

(
1 − 1

Lk−1+1 − 8Lk−1
Lk

)
(1 − Lβ−1

k−1)
(3.22)

We leave the condition (3.13) to the reader to verify. Note that

pk ≤ B(Lk)2(4δk + p2
k−1) ≤ (2(Lk + 1))2d(4δk + p2

k−1)

On the one hand, if L0 is large enough, then
∞∏(

1 − 1
L + 1 − 8Lk−1

L

)
(1 − Lβ−1

k−1) ≥
∞∏

(1 − 9L1−α
k−1 )(1 − Lβ−1

k−1) > 0

k=1 k−1 k

k=1
13
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ince Lk ≥ (L0)αk and
∑
j≥0

(
L1−α
j + Lβ−1

j

)
= o(1) as L0 → ∞, whence infk≥1 γk > 0 (approaches 1 for

arge L0). On the other hand, we claim that
∑∞
k=0 pk < ∞. Indeed, from (3.22),

Lmk+1pk ≤ 4Lmk+1 B(Lk)2δk + [(Lαk + 1) m
2 (2Lk + 1)dpk−1]2

≤ 4Lmk+1 (2(Lk + 1))2dδk + (Lmk pk−1)2 (3.23)

here the second line holds provided αm/2 + d < m which requires α < 2, and for L0 large enough. We
onclude from (3.23) that Lmk+1pk ≤ 1 if L0 is large. Moreover, due to∑

k

4Lmk+1 (2(Lk + 1))2dδk < ∞ also
∑
k

Lmk+1pk < ∞

hich is stronger than the claim. From the preceding analysis, the parameters need to be in the ranges
< α < 2 and 0 < β < 1. To summarize, we have obtained this result.

roposition 3.10. Fix 1 < α < 2 and 0 < β < 1. For L0 = L0(d, α, β) large enough, define scales
k+1 = ⌈Lαk ⌉ for k ≥ 0. Then for arbitrary x0 ∈ Zd and E ∈ R,

P({all boxes ΛLk
(x0) are (γk, E)-regular}) ≥ 1 − pk (3.24)

ith 0 < pk ≤ L−m
k+1 ≤ L−mαk+1

0 for all k ≥ 0. Here m > 2d
2−α and L0(d, α, β,m) is sufficiently large. The pk

epend neither on x0 nor on E, and γk ≥ 1
2 for all k.

emark 3.11. We shall use below that (3.24) holds as stated for k ≥ 1 if we weaken the non-resonance
ondition in Definition 3.9 to the following one: dist(spec(HΛLk

(x0)), E) ≥ δ(Lk)/4. This is due to some
room built into Lemma 3.8, cf. the factor 4δ−1

0 in (3.12) which improves to δ−1
1 in (3.14). This allows us to

eplace δ(Lk) in the resonance width with δ(Lk)/4.

An essential feature in the derivation of this result is stability in the energy. This means that we can
btain (3.24) uniformly in an energy interval of length half of the resonance width.

orollary 3.12. Under the assumptions of the previous proposition the following holds: for arbitrary
0 ∈ Zd and E∗ ∈ R,

P({all boxes ΛLk
(x0) are (γk, E)-regular for all E ∈ [E∗ − δk/2, E∗ + δk/2]}) ≥ 1 − pk (3.25)

or all k ≥ 1 and the same pk as above.

roof. We leave the base case k = 1 to the reader. The inductive step k − 1 → k with k ≥ 2, consists of
he inequality (dropping x0 for simplicity)

P({∃ΛLk
which is (γk, E)-singular for some E ∈ [E∗ − δk/2, E∗ + δk/2]})

≤ P({∃ΛLk
with dist(HΛLk

, E) ≤ δk/2 for some E ∈ [E∗ − δk/2, E∗ + δk/2]})
+ P({∃ΛLk

with dist(HΛLk
, E) ≥ δk/2 for some E ∈ [E∗ − δk/2, E∗ + δk/2]})

which is (γk, E)-singular for the same E
≤ P({∃ΛLk

with dist(HΛLk
, E∗) ≤ δk})

+ P({∃ΛLk
which contains two disjoint Lk−1-boxes which are both

(γk−1, E)-singular for the same E ∈ [E∗ − δk−1/2, E∗ + δk−1/2]})

The final two lines here follow from Lemma 3.8, see also Remark 3.11. Note how we widened the E-interval
in the last line, which makes it clear how to use the inductive assumption. The proof proceeds exactly as
before. □
14
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This result cannot by itself establish localization, since it only controls the resonance of HΛ with a given
nergy E on a single box Λ. Localization requires excluding simultaneous resonances on several disjoint boxes.

This in turn allows us to eliminate the energy E from these events, and thus estimate them uniformly over
ll energies. It suffices to carry out this process on two disjoint boxes, in other words, to show that double
esonances are highly unlikely. The following natural result contains the elimination of energies and absence
f double resonances in its proof, but not in the statement. Note, however, that the event of low probability
escribed in the following proposition is uniform in all energies.

roposition 3.13. Under the assumptions of the previous proposition, for all k ≥ 1,

P({for some E a box ΛLk
(x0) is nonresonant at E but (γk, E)-singular}) ≤ qk (3.26)

here for any b > 1 and all k, qk ≤ L−b
k+1 provided L0 is large (and thus ε is small) enough. Here nonresonant

s as in Definition 3.9 but with δk/2.

roof. E-nres stands for nonresonant at energy E, E-res for resonant at E, and sing for singular, Let
Λ1 = ΛL1(x0) be E-nres, i.e., dist(spec(HΛ1), E) ≥ δ1/2 but (γ1, E)-sing. By Lemmas 3.8 and 3.6 the event
n (3.26) implies that there must be at least two resonant L0-box inside of ΛL1(x0) (here but only here we
easure resonance with δ0 and not δ0/2). Hence

P({ΛL1(x0) is E-nres but (γ1, E)-sing})
≤ P({ΛL1(x0) contains two disjoint L0-boxes, both E-res})
≤

∑
ΛL1 (x0)

∑
Λ′

L0
⊂ΛL1 (x0)

∑
Λ̃′

L0
⊂ΛL1 (x0)\Λ′

L0

P({dist(spec(H
Λ̃′

L0
), Ej) ≤ 2δ0 for some Ej ∈ spec(HΛ′

L0
)})

≤ 8B(L1)B(L0)2|QL1 |2|QL0 |2δ0 =: q1

n the third line the energy is eliminated by δ0-closeness of E to some eigenvalue Ej of HΛ′
L0

, and the fourth
ine is Wegner’s estimate. The sum over ΛL1(x0) expresses the existence of some L1-box with the stated
roperty. At scale Lk, k ≥ 2, and suppressing x0 for simplicity,

P({for some E a box ΛLk
is E-nres but (γk, E)-sing})

≤ P({for some E a box ΛLk
is E-nres, contains two disjoint Lk−1-boxes, both (γk−1, E)-sing})

≤ P({for some E a box ΛLk
contains two disjoint Lk−1-boxes, one E-res, the other (γk−1, E)-sing})

+ P({for some E a box ΛLk
contains two disjoint Lk−1-boxes, both E-nres, but (γk−1, E)-sing})

n analogy with k = 1 we bound the third line by

≤
∑
ΛLk

∑
Λ′

Lk−1
⊂ΛLk

∑
y0∈ΛLk

P({some box Λ̃′
Lk−1

(y0) ⊂ ΛLk
\ Λ′

Lk−1
is (γk−1, E)-sing

with |E − Ej | ≤ δk−1/2, Ej ∈ spec(HΛ′
Lk−1

)})

≤ B(Lk)B(Lk−1)|QLk
|2|QLk−1 |pk−1

here the final estimate is given by Corollary 3.12 with E∗ = Ej . Note that while Ej is random,
hese variables are independent from H

Λ̃′
Lk−1

(y0). Hence we may first condition on the random variables

n HΛ′
Lk−1

. The fourth line above is bounded by the inductive assumption and independence, and so it is

B(Lk)|QLk
|2q2

k−1. In summary, by Proposition 3.10,

qk ≤ B(Lk)B(Lk−1)|QLk
|2|QLk−1 |pk−1 +B(Lk)|QLk

|2q2
k−1

≤ (2(Lk + 1))5dL−m
k + (2(Lk + 1))3dq2

k−1
(3.27)

−b
nd we conclude as for (3.23) that qk ≤ Lk+1 for all b provided L0 is taken large enough depending on b. □
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P
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E

p

roof of Theorem 3.5. Let Bk(x0) be the event in (3.26). We remove the 0-probability event

B = ∪x0∈Zd lim sup
k→∞

Bk(x0).

onsidering a realization of the random operator H off of this event, for spectrally almost every energy
relative to this operator we can find a nontrivial generalized eigenfunction Hψ = Eψ which is at most

olynomially growing, say |ψ(n)| ≤ C(σ, ψ)|n|σ with σ > d
2 and all n ∈ Zd, n ̸= 0. Let ψ(x0) ̸= 0. Suppose

ΛLk
(x0) is E-nonresonant for infinitely many k. Then by Lemma 3.6, for those k,

max
(y′,y)∈∂ΛLk

(x0)
|GΛLk

(x0)(E)(x0, y
′)| ≤ ε

1
2Lk

Then [(HΛLk
(x0) − E)ψ](y′) = −

∑
(y′,y)∈∂ΛLk

(x0) ψ(y),

|ψ(x0)| ≤
∑

(y′,y)∈∂ΛLk
(x0)

|GΛLk
(x0)(E)(x0, y

′)||ψ(y)| ≤ C(σ, ψ)
∑

(y′,y)∈∂ΛLk
(x0)

ε
1
2LkLσk (3.28)

which is impossible for infinitely many k. Hence for all k ≥ k0(ψ), ΛLk
(x0) is E-resonant. We now remove

another 0-probability event, namely double resonances between disjoint boxes which are not too far from
each other. To be specific, as above we conclude that, a.s. for every x0 and all but finitely many k,

∀E ∈ R if ΛLk
(x0) is E-res then ∀ 2Lk < |y0 − x0| ≤ 100Lk+1, ΛLk

(y0) is (γk, E)-reg (3.29)

Indeed, the resonance condition ensures that E is δk/2-close to one of the (random) eigenvalues of HΛLk
(x0),

and Corollary 3.12 bounds the probability that one of the boxes ΛLk
(y0) is (γk, E)-regular by L−m

k+1 where
m > 2d, say. Hence we can sum this up over all y0 in a 100Lk+1-box and apply Borel–Cantelli as before.
Consequently, all boxes ΛLk

(y0) are regular as stated in (3.29). By a resolvent expansion as in the proof of
Lemma 3.8, the reader will easily verify that all Green functions GΛL(y0)(E)(x, y) have exponential decay if
ΛL(y0) ⊂ Λ100Lk+1(x0) \ Λ2Lk

(x0) where we take Lk+1 ≤ L ≤ 50Lk+1. By an estimate as in (3.28) one now
concludes exponential decay of ψ. □

4. The one-dimensional quasi-periodic model

4.1. The Fröhlich–Spencer–Wittwer theorem: even potentials

In this section we will provide a fairly complete proof sketch of the following result due to Fröhlich,
Spencer, and Wittwer [23]. The dynamics (rotation) Tωθ = θ+ω mod 1 takes place on the torus T = R/Z,
and all “randomness” sits in a single parameter, namely θ ∈ T. The one-dimensional random model is treated
by completely different techniques, starting from Fürstenberg’s classical theorem on positive Lyapunov
exponents for random SL(2,R) cocycles, cf. [50] for a comprehensive exposition of this fundamental result
as well as Lyapunov exponents in general. See the recent papers [12,30], and [37] for streamlined elegant
treatments of the 1-dimensional random Anderson model, including the Bernoulli case. For quasi-periodic
(and other highly correlated) cocycles, Fürstenberg’s global theorem does not apply, and other techniques
must be used. The proof of the following result will in fact be perturbative.

Theorem 4.1. Let v ∈ C2(T) be even, with exactly two nondegenerate critical points. Define

Hε(θ) = ε2∆Z + Vθ, Vθ(n) = V (Tnω θ) ∀ n ∈ Z (4.1)

where ω ∈ T is Diophantine, viz. ∥nω∥ ≥ b0 n
−2 for all n ≥ 1 with some b0 > 0. There exists ε0(b0, V ) such
that for all 0 < ε ≤ ε0 the operators Hθ,ε exhibit Anderson localization for a.e. θ ∈ T.
16
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Fig. 3. The potential and energy strip at the initial step.

The evenness assumption allows for substantial simplifications as we shall see. Note that it entails that V
s symmetric about 1

2 . Theorem 4.1 cannot hold for all θ, see [36]. As in the previous section, we shall drop
he index ε and simply write H(θ) for (4.1), and HΛ(θ) for its finite volume version. It is important to keep

track of θ so we include it in the notation (while in the random case we could drop the ω, the variable in
he probability space). Fix θ∗ ∈ T and E∗ ∈ R. The singular sites relative to θ∗, E∗ are defined as

S0 = S0(θ∗, E∗) := {n ∈ Z | |V (θ∗ + nω) − E∗| ≤ δ0}
= {n ∈ Z | Tnθ∗ ∈ V −1([E∗ − δ0, E∗ + δ0])}

(4.2)

Fig. 3 shows one scenario for which V −1([E∗ − δ0, E∗ + δ0]) = J1 ∪ J2 with disjoint intervals. There
might be just one interval or the set could be empty. By our assumption of V being a Morse function,
maxi=1,2 |Ji| ≤ C0(V ) δ

1
2
0 for all cases. We choose the resonance width δ0 = A0ε with a large constant A0.

e investigate the structure of S0 by means of the example V (θ) = cos(2πθ). If k, ℓ ∈ S0 are distinct, then

|sin(π(k − ℓ)ω)sin(π(2θ∗ + (k + ℓ)ω))| ≤ δ0

hich implies for small δ0 that

m(k, ℓ) := min(∥(k − ℓ)ω∥, ∥2θ∗ + (k + ℓ)ω∥) ≤ 2
√
δ0

The first alternative here, viz. ∥(k−ℓ)ω∥ ≤ 2
√
δ0 occurs precisely if both T kωθ∗ and T ℓωθ∗ fall into J1, or both

all into J2. The second one occurs if they fall into different intervals. The Diophantine assumption implies
hat

b0|k − ℓ|−2 ≤ ∥(k − ℓ)ω∥ ≤ 2
√
δ0, |k − ℓ| ≳ δ

− 1
4

0

enceforth ≳ and ≲ will indicate multiplicative constants depending on b0, V . On the other hand, ∥2θ∗ +
k+ ℓ)ω∥ ≤ 2

√
δ0 might occur for ℓ = k+ 1 which is the case if Tω(J1) ∩J2 ̸= Ø. It is clear that the function

appears not just for cosine, but in fact for any V as in the theorem.

emma 4.2. Any two distinct k, ℓ ∈ S0 satisfy m(k, ℓ)2 ≲ δ0, and any three distinct points k, ℓ, n ∈ S0
satisfy

max(|k − ℓ|, |ℓ− n|) ≳ δ
− 1

4
0

roof. The argument is essentially the same as for cosine, the trigonometric identities being replaced by the
ymmetry of V on T about 1

2 : if θ∗ +kω ∈ J1 and θ∗ + ℓω ∈ J2 = −J1 mod 1, then 2θ∗ + (k+ ℓ)ω ∈ J1 −J1
od 1 whence ∥2θ + (k + ℓ)ω∥2 ≲ δ . □
∗ 0

17



W. Schlag Nonlinear Analysis 220 (2022) 112869

D
s
a
S
o
c
c

a

r
T

r
k
t

n
i

Fig. 4. Simple resonances at level 1.

efinition 4.3. We label S0 = {ci0}∞
i=−∞ in increasing order (assuming S0 ̸= Ø). These are the singular

ites (or singular “intervals”) at level 0. Let s0 := min{ci0 − cj0 | i > j}. If s0 ≥ 4|logε|2, then we speak of
simple resonance, otherwise of a double resonance, both at level 1. In the latter case, we replace S0 with

0̄ = S0 ∪ (S0 + s0), which we again label as {ci0}∞
i=−∞. In the simple resonant case, we let Ii1 be an interval

f length ℓ1 := ⌈log(1/ε)⌉2 centered at ci1 := ci0, in the double resonant case Ii1 has length ℓ1 := ⌈log(1/ε)⌉4,
entered at ci1 := (c2i

0 + c2i+1
0 )/2 ∈ 1

2Z. By construction, all of the Ii1 are pairwise disjoint, and each ci0 is
ontained in a unique interval at level 1. We classify those intervals Ii1 as singular provided

dist(spec(HIi
1
(θ∗)), E∗) ≤ δ1 := εℓ

2/3
1 (4.3)

nd S1 := {ci1 | Ii1 is singular}. All other intervals Ii1 are called regular.

We shall see later, based on Theorem 2.1, that for spectrally a.e. energy E ∈ spec(H(θ)) the set of singular
intervals, which are constructed iteratively at all levels (see below), is not empty. Figs. 4, resp. 5 illustrate
the two cases, with the blue dots being Z \ S0. The terminology simple/double resonance is derived from
the structure of the eigenfunctions at level 1 associated with the operators HIi

1
(θ∗) and the unique (as we

shall see) eigenvalue Ei1(θ∗) satisfying (4.3). In the simple resonance case, the eigenfunction has most (say
99%) of its ℓ2 mass at the center ci0, whereas in the double resonant case it may have significant mass at
both sites c2i

0 and c2i+1
0 .

Fig. 4 depicts only one of four possibilities for the intervals at level 1, they might both be singular, both
egular, or the order could be reversed. The red dot with ⊗ is supposed to indicate a return of the trajectory
j
ωθ∗ to J2, whereas the red dot on the left a return to J1, cf. Fig. 3. While the distance between these two
ed dots is required to be at least 4(log(1/ε))2, the Diophantine condition forces two red dots of the same
ind (associated with J1, resp. J2) to be separated by a distance exceeding δ− 1

4
0 . This is much larger than

he length ℓ1 = ⌈log(1/ε)⌉2 of the intervals Ii1.
The reason for passing form S0 to S̄0 lies with the self-symmetry indicated in Fig. 5 (i.e., c2i+1

0 − c2i
0 does

ot depend on i). To see this, note that by definition of s0 there exist k1, k2 ∈ S0 with θ∗ + kiω ∈ Ji with
= 1, 2 and s0 = |k1 − k2| ≤ 4(log(1/ε))2. We are again using the Diophantine condition here to ensure that

we do not fall into the same interval (as a standing assumption ε needs to be small enough depending on v
and c0 so as to guarantee this). Next, take any k ∈ S0 with θ∗ + kω ∈ J1 (everything modulo integers which
will be henceforth understood tacitly). Then θ∗ + (k + s0)ω ∈ J̃2, where J̃2 has the same center as J2 and
twice the length. On the other hand, it might be that θ∗ + (k + s0)ω ̸∈ J2, but we must still include k + s0
in S0 for the construction to work. In fact, Lemma 4.2 remains valid for S̄0 and the defining inequality (4.2)
is modified only slightly, viz. |V (θ∗ + nω) − E∗| ≲ δ0 for all n ∈ S̄0.

We will establish the following analogue of Lemma 4.2 at level 1. We emphasize again that this statement
only exists for even V .

Lemma 4.4. For all ci , cj ∈ S one has m(ci , cj )2 ≲ δ , with an absolute implied constant.
1 1 1 1 1 1
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Fig. 5. Double resonances at level 1.

The idea is to carry out a similar argument as for Lemma 4.2, with the potential function V replaced
by the parameterizations of the eigenvalues of the operator HIi

1
(θ) localized both near θ∗ and E∗. This

tability hinges crucially on a spectral gap or on the separation of the eigenvalues. The latter can be seen as a
uantitative version of the simplicity of the Dirichlet spectrum of Sturm–Liouville operators, such as HI(θ).

Before discussing the details of Lemma 4.4, we exhibit the entire strategy of the proof of Theorem 4.1.

• In analogy with Definition 4.3 define regular and singular intervals at level n ≥ 2. More specifically, for
n ≥ 1 set

sn := min{|cin − cjn| | cin, cjn ∈ Sn, i ̸= j}

If sn > 4ℓ2
n, then we call this a simple resonance and define cin+1 = cin for all i and ℓn+1 = ℓ2

n, otherwise
for the double resonance we set cin+1 = (c2i

n + c2i+1
n )/2 ∈ 1

2Z, ℓn+1 = ℓ4
n, and also augment Sn to

S̄n by including the mirror image of each Iin if it was not already included in Sn. By mirror image
we mean an interval Ĩin of the same length as Iin, with center c̃in ∈ Z so that |cin − c̃in| = sn and
∥2θ∗ + (cin + c̃in)ω∥ ≤ 12

√
δn. The meaning of mirror image is that

V (θ∗ + (−j + cin)ω) = V (θ∗ + (j + c̃in)ω) +O(
√
δn) ∀ j ∈ Z

The existence of such an interval is left to the reader, see also [23, Lemma 1.3]. By construction, the
Iin+1 are pairwise disjoint and each cin is contained in a unique interval at level n+ 1. An interval Iin+1
centered at cin+1 is called singular if

dist(spec(HIi
n+1

(θ∗)), E∗) ≤ δn+1 = εℓ
2/3
n+1 (4.4)

and regular otherwise. Define Sn+1 to be the centers of the singular intervals. One can arrange for ∂Iin+1
for all singular not to meet any singular interval of level m with m ≤ n.

• An arbitrary interval Λ ⊂ Z is called n-regular provided every point in Λ ∩ S0 is contained in a regular
interval Ijm ⊂ Λ for some m ≤ n, cf. Fig. 6. Note that every singular point at level 0 is either (i)
contained in infinitely many singular intervals Ijnn for each n ≥ 0 or (ii) contained in a finite number
of such intervals at successive levels followed by a regular one. By induction on scales one proves the
following crucial decay and stability property of the Green function associated with n-regular intervals Λ:
|GΛ(θ,E)(x, y)| ≤ ε

1
2 |x−y| for all x, y ∈ Λ, |x− y| ≥ ℓ

5/6
n , |E − E∗| ≲ δn, and |θ − θ∗| ≲ δn.

• One has

m(cin, cjn)2 ≲ |Ein(θ∗) − Ejn(θ∗)| ≲ δn ∀ cin, cjn ∈ Sn (4.5)

for all n ≥ 0. Here Ein(θ∗), are the unique eigenvalues of HIi
n

(θ∗) in the interval [E∗ −cδn, E∗ +cδn] with
c small. This hinges crucially on the separation property of the eigenvalues, see Lemma 4.6. For simple
resonances, we will use mainly first order eigenvalue perturbation theory, and for double resonances,
rely crucially on second order perturbation theory. However, some second order arguments are already

needed for simple resonances.
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Fig. 6. Regular and singular intervals of 4 levels.

• Based on the estimate on m, we prove Theorem 4.1 by double resonance elimination as in the previous
section. In analogy with Theorem 3.5 we start with the polynomially bounded Fourier basis provided
by Theorem 2.1, find an increasing nested family of resonant intervals which are resonant at the given
energy, and thus due to the elimination of double resonances obtain exponential decay at all scale. The
main departure from the proof of Theorem 3.5 lies with the application of Borel–Cantelli to remove a
zero measure set of bad θ ∈ T.

e begin with the Green function decay on regular intervals (this is the analogue of the regular Green
unction from Definition 3.9). We set ℓ0 := ⌈log(1/ε)⌉.

emma 4.5. For all n-regular intervals Λ, n ≥ 0, one has |GΛ(θ,E)(x, y)| ≤ εγn|x−y| for all x, y ∈ Λ,
x− y| ≥ ℓ

5/6
n , |E − E∗| ≲ δn, and |θ − θ∗| ≲ δn. The γn decrease, but γn ≥ 1

2 for all n.

Proof. At n = 0 the interval Λ contains only regular lattice points, i.e., blue dots in the figures above.
Then the Neumann series argument from Lemma 3.6 implies that, for δ0 = A0ε with A0 large enough, and
for all |θ − θ∗| ≪ δ0, |E − E∗| ≪ δ0 (meaning up to a small multiplicative constant),

|GΛ(θ,E)(x, y)| ≤ δ−1
0 (2ε2δ−1

0 )|x−y| ≤ ε|x−y|−1 ∀ x, y ∈ Λ

e are using that |V (θ∗ + kω) − E∗| ≳ δ0 implies that |V (θ + kω) − E| ≳ δ0 in the specified range of
parameters. If Λ is 1-regular, then let {Ii1}i1i=i0 be a complete list of all level 1 intervals, in increasing order,
which cover all points in Λ ∩ S0. By construction, Ii1 ⊂ Λ for all i0 ≤ i ≤ i1. The intervals Ii1 (which are all
regular) do not really come off the axis in Fig. 7, they are only depicted in this way to indicate that they are
level 1 intervals. The line segment is supposed to depict Λ and it consists entirely of regular lattice points
at level 0 apart from the red singular sites. For the double resonance case shown in Fig. 7, one red pair is
separated from another by ≳ δ

− 1
4

0 ≃ ε− 1
4 , which is much larger than the Ii1 which are of length (logε)4. On

he other hand, in the single resonant case recall that the Ii1 are of length ⌈log(1/ε)⌉2, and the separation
between the singular sites in S0 at least 4(logε)2 (but possibly much longer).

These long sections consisting entirely of regular lattice points between singular pairs in the double
resonance case, resp. singular sites in the simple resonance case, allow us to iterate the resolvent identity
similar to Lemma 3.8. For general n, it is essential to use (4.5) up to level n − 1 in order to achieve this
eparation. See Appendix A in [23] for the details. □

roof of Theorem 4.1. For any θ ∈ T, by Theorem 2.1 for spectrally a.e. E ∈ R there is a generalized
igenfunction H(θ)ψ = Eψ with at most linear growth. For any such E,ψ we claim that there exists

= N(θ, ψ) ≥ 1 so that all intervals Λn = [−2ℓn, 2ℓn] are n-singular for (θ,E) provided n ≥ N . If Λn
s n-regular for infinitely many n, then by the Poisson formula (3.28) and by Lemma 4.5 for any j and large
,

|ψ(j)| ≤
∑

|GΛn(E)(j, k′)||ψ(k)| ≤ Cε
1
2 (2ℓn−|j|)ℓn
(k′,k)∈∂Λn
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Taking the limit n → ∞ yields ψ ≡ 0, whence our claim. Next, we claim that

Λn ∩ Iin ̸= Ø for some singular Iin (4.6)

for large n. Since Λn is not n-regular, we can pick some cj0 ∈ S0 ∩ Λn. By the recursive construction of
singular intervals, see (4.4) there is the following dichotomy: either, there exists 1 ≤ m ≤ n with

cj0 ∈ Ij11 ⊂ . . . ⊂ Ijmm

and Ijmm is regular, or m = n with Ijnn singular. The first alternative cannot occur for every cj0 ∈ S0 ∩ Λn
by definition of regularity and so (4.6) holds. If Λ′

n := [−ℓn+1, ℓn+1] contains another singular interval at
evel n, say Ijn, then by (4.5) one has m(cin, cjn)2 ≲ δn. But ∥(cin−cjn)ω∥ ≲ δ

1
2
n is impossible by the Diophantine

ondition whence

∥2θ + (cin + cjn)ω∥ ≲ δ
1
2
n (4.7)

iven that there are at most ≲ ℓ2
n+1 many choices of cin, cjn ∈ Λ′

n, it follows that the measure of θ as in (4.7)
is ≲ ℓ2

n+1δ
1
2
n . This can be summed, whence by Borel–Cantelli there is a set B of measure 0 off of which for

arge n, Λ′
n contains a unique singular interval at level n. Furthermore, this singular interval has distance

< 3ℓn from 0 and thus [3ℓn, ℓn+1] and [−ℓn+1,−3ℓn] are n-regular, for parameters (θ,E) with θ ∈ T \ B.
Lemma 4.5 and (3.28) conclude the proof. It is essential here that B does not depend on E, as evidenced
by (4.7). □

Proof. The remainder of this section is devoted to the proof of Lemma 4.4. We begin with the easier case
of a simple resonance, i.e., s0 ≥ 4(logε)2. Fix any E∗ ∈ R with [E∗ − δ0, E∗ + δ0] ∩ [minV,max V ] ̸= Ø,
and some θ∗ ∈ T. Then S0 = {ci0}∞

i=−∞, and every ci0 is contained in a unique level 1 interval Ii1, with
|Ii1| = ℓ1 = ⌈log(1/ε)⌉2. These are pairwise disjoint by construction, and they may be regular or singular.
We discard the regular ones and only consider those ci1 = ci0 for which Ii1 is singular. By the definitions,

|V (θ∗ + kω) − E∗| > δ0 ∀ k ∈ Ii1 \ {ci0}
|V (θ∗ + ci0ω) − E∗| ≤ δ0

(4.8)

Let {Ei,1j (θ)}ℓ1j=1 be the eigenvalue parameterizations (Rellich functions) of HIi
1
(θ). By min–max, there exists

k(j, θ) ∈ Ii1 so that

|V (θ + k(j, θ)ω) − Ei,1j (θ)| ≤ 2ε2 ∀ 1 ≤ j ≤ ℓ1 (4.9)

Fig. 8 exhibits2 numerically computed Rellich functions for ℓ1 = 7 and the cosine potential. The graphs
do not cross, but some of the gaps are too small to be visible. Subfigures (A) and (B) show how the gaps
become wider with increasing ε. The figure demonstrates how we need to jump between different translates

2 The graphs were produced by Yakir Forman at Yale.
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Fig. 8. Eigenvalue parameterizations for the cosine potential.

V (θ+ kω) to approximate any given Rellich graph, hence k(j, θ), which are not unique near crossing points
of V with its own translates by ω. Since δ1 ≪ ε2 ≪ ε, (4.3) and (4.8), (4.9) imply that for all |θ − θ∗| ≪ δ0

|V (θ + ci0ω) − E∗| ≪ δ0

|V (θ + kω) − E∗| ≳ δ0 ∀ k ∈ Ii1 \ {ci0}
(4.10)

ith implied absolute constants (depending only on v, ω). We now claim that a normalized eigenfunction
ψ(θ) associated with HIi

1
(θ)ψ(θ) = Ei,1j (θ)ψ(θ) and k(j, θ) = ci1 = ci0 satisfies

∥P⊥ψ(θ)∥ℓ2(Ii
1) ≲ ε2δ−1

0 ≪ ε (4.11)

where P⊥ denotes the orthogonal projection onto all vectors perpendicular to δci
0

in ℓ2(Ii1). Then

0 = ψci
0
(θ)P⊥(HIi

1
(θ) − Ei,1j (θ))δci

0
+ P⊥(HIi

1
(θ) − Ei,1j (θ))P⊥ψ(θ)

= ε2ψci
0
(θ)(δci

0−1 + δci
0+1) + P⊥(HIi

1
(θ) − Ei,1j (θ))P⊥ψ(θ)

Here and below we use δ both for the resonance width and in the Dirac sense, without any danger of
confusion. By (4.9) and (4.10),[P⊥(HIi

1
(θ) − Ei,1j (θ))P⊥]−1

ℓ2(Ii
1\{ci

0}) ≲ δ−1
0 (4.12)

hich implies (4.11) and

|Ei,1j (θ) − V (θ + ci0ω)| = |⟨HIi
1
(θ)ψ(θ), ψ(θ)⟩ − V (θ + ci0ω)| ≲ ε2δ−1

0 (4.13)

y first order eigenvalue perturbation (Feynman formula), writing E = Ei,1j and V (θ) for the multiplication
operator by the potential,

|E′(θ) − V ′(θ + ci0ω)| = |⟨V ′(θ)ψ(θ), ψ(θ)⟩ − V ′(θ + ci0ω)| ≲ ε2δ−1
0 (4.14)

nd by the second order perturbation formula, with G⊥ being the resolvent on the left-hand side of (4.12),

|E′′(θ) − V ′′(θ + ci0ω)| = |⟨V ′′(θ)ψ(θ), ψ(θ)⟩ − V ′′(θ + ci0ω) − 2⟨ψ(θ), V ′(θ)G⊥(E(θ))V ′(θ)ψ(θ)⟩|
≲ ε2δ−1

0 + (ε2δ0)2δ−1
0 ≲ ε2δ−1

0 ≪ ε (4.15)
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he estimates (4.13)–(4.15) hold for |θ − θ∗| ≪ δ0. We conclude from (4.14), (4.15) that

min
|θ−θ∗|≪δ0

(
|E′(θ)| + |E′′(θ)|

)
≳ 1 ∀ θ∗ ∈ T, (4.16)

ecall that E(θ) = Ei,1j (θ) depends on θ∗ and E∗, where the latter is chosen so that S0 ̸= Ø. The constant
n (4.16) is uniform in θ∗, E∗. The reader is invited to compare (4.16) to Fig. 8. Now suppose we have two
distinct singular intervals Ii1 and Ij1 relative to (θ∗, E∗). Then the previous analysis applies to both Rellich
functions E(θ), Ẽ(θ) defined for |θ − θ∗| ≪ δ0 characterized by

spec(HIi
1
(θ)) ∩ [E∗ − δ0/2, E∗ − δ0/2] = {E(θ)},

spec(H
I

j
1
(θ)) ∩ [E∗ − δ0/2, E∗ − δ0/2] = {Ẽ(θ)}

(4.17)

y (4.3) we have |E(θ∗) − E∗| ≤ δ1, |Ẽ(θ∗) − E∗| ≤ δ1. By (4.9) we have

|V (θ∗ + ci0ω) − E(θ∗)| ≤ 2ε2, |V (θ∗ + cj0ω) − Ẽ(θ∗)| ≤ 2ε2

hence

|V (θ∗ + ci0ω) − V (θ∗ + cj0ω)| ≤ 4ε2 + 2δ1 ≤ 5ε2

e showed in Lemma 4.2 that this implies

m(ci0, c
j
0) ≲ ε ≪ δ0. (4.18)

ext, we improve this estimate to m(ci0, c
j
0) ≲ δ1. Suppose (4.18) means ∥(ci0 − cj0)ω∥ ≪ δ0. By (3.2) one has

spec(HIi
1
(θ)) = spec(H

I
j
1
(θ + (ci0 − cj0)ω)) (4.19)

hich, combined with (4.17) implies that Ẽ(θ) = E(θ+ (cj0 − ci0)ω) for all |θ − θ∗| ≪ δ0. This finally implies
hat

|E(θ∗) − E(θ∗ + (cj0 − ci0)ω)| ≤ 2δ1

rom (4.16) we obtain ∥(cj0 − ci0)ω∥2 ≲ δ1. On the other hand, if (4.18) means ∥2θ∗ + (ci0 + cj0)ω∥ ≪ δ0, then
e have

Ẽ(θ) = E(2θ∗ − θ − θ∗∗), θ∗∗ := 2θ∗ + (ci0 + cj0)ω (4.20)

or all |θ − θ∗| ≪ δ0. In terms of Fig. 3 this corresponds to E(θ) being approximated by V over J1, whereas˜(θ) is approximated by V over J2. Setting θ = θ∗ in (4.20), we find that

|E(θ∗) − E(θ∗ − θ∗∗)| ≤ 2δ1

hich implies ∥θ∗∗∥2 ≲ δ1. We have thus proved Lemma 4.4 for simple resonances. Figs. 9 and 10 depict
igenfunctions on finite volume 200 computed with Mathematica (the code is included in the appendix
or the reader to experiment for themselves, for example by changing θ or trying rational ω). The choice of
was made as a crossing point of V with one of its translates by a multiple of ω, since double resonances

ccur near those points. The first eigenfunction shown in the upper left of Figs. 9 shows the case of a simple
esonance, whereas the second and third are more complicated — they exhibit a main peak with smaller ones
ue to resonances at later stages of the induction. On the other hand, Fig. 10 exhibits double resonances
23
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Fig. 9. Numerically computed eigenfunctions, ε = 0.3, ω =
√

2, θ = −17ω/2.

Fig. 10. Numerically computed eigenfunctions, ε = 0.3, ω =
√

2, θ = −17ω/2.

quite clearly (with the bottom eigenfunction exhibiting a more complicated structure). The reader should
note the distinct distribution of the ℓ2-mass which is quite apparent on the y-axes of these figures.

We now prove Lemma 4.4 for double resonances. Let Ii1 be singular (as the red interval on the right-hand
ide of Fig. 5), centered at ci1 = 1

2 (c2i
0 + c2i+1

0 ) ∈ 1
2Z. As a side remark, suppose that ci1 ∈ 1

2 + Z. Then all
j
1 ∈ 1

2 +Z due to c2j+1
0 − c2j

0 = const. for all j (since we passed to S̄0). At the next levels n = 2, 3, . . . , N we
ill encounter only simple resonances, and so all ck ∈ 1 + Z for all these n. If we then encounter a double
n 2

24
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esonance at N + 1, it implies that ckN+1 ∈ 1
2Z, and the pattern repeats itself. Continuing with the main

argument, one then has

|V (θ∗ + c2i
0 ω) − E∗| ≲ δ0, |V (θ∗ + c2i+1

0 ω) − E∗| ≲ δ0

|V (θ∗ + kω) − E∗| ≫ δ
1
2
0 ∀ k ∈ Ii1 \ {c2i

0 , c
2i+1
0 }

here the second line follows from the Diophantine condition since Ii1 = ⌈log(1/ε)⌉4 (one can choose a larger
ower bound such as δa0 for any fixed 0 < a ≤ 1

2 at the expense of making ε smaller). By (4.9),

spec(HIi
1
(θ)) ∩ [E∗ − δ

1
2
0 , E∗ + δ

1
2
0 ] = {E(θ), Ẽ(θ)} ∀ |θ − θ∗| ≲ δ

1
2
0 (4.21)

ith E > Ẽ. By the same type of argument as in the simple resonant case, cf. (4.11), (4.12), we see that the
ormalized eigenfunctions of HIi

1
(θ) associated with E, resp. Ẽ, are

ψ = Aδc2i
0

+Bδ
c2i+1

0
+O(ε2δ

− 1
2

0 )

ψ̃ = −Bδc2i
0

+Aδ
c2i+1

0
+O(ε2δ

− 1
2

0 )
(4.22)

niformly on |θ − θ∗| ≤ δ
1
2
0 with A2 +B2 = 1. In place of (4.12) we have[P⊥(HIi

1
(θ) − E∗)P⊥]−1

ℓ2(Ii
1\{c2i

0 ,c
2i+1
0 }) ≲ δ

− 1
2

0 (4.23)

here P⊥ is the orthogonal projection perpendicular to span(δc2i
0
, δ
c2i+1

0
) in ℓ2(Ii1). The eigenvalues at level 0

ssociated with the points c2i
0 , c2i+1

0 are, resp., E2i
0 (θ) := V (θ + c2i

0 ω), E2i+1
0 (θ) := V (θ + c2i+1

0 ω). This
erminology is justified by the relations

⟨H(θ)δc2i
0
, δc2i

0
⟩ = E2i

0 (θ), ⟨H(θ)δ
c2i+1

0
, δ
c2i+1

0
⟩ = E2i+1

0 (θ)

By Lemma 4.2, ∥θ∗∗∥ ≲ δ
1
2
0 with θ∗∗ = 2θ∗ + (c2i

0 + c2i+1
0 )ω = 2(θ∗ + ci1ω). It follows that either

a) ∥θ∗ + ci1ω∥ ≲ δ
1
2
0 or (b) ∥θ∗ + 1

2 + ci1ω∥ ≲ δ
1
2
0 . These relations show that the unique solution of

2i
0 (θ) = E2i+1

0 (θ) on |θ − θ∗| ≲ δ
1
2
0 is either (a) θs = −ci1ω or (b) θs = 1

2 − ci1ω (henceforth, θs will
ean either of these whichever applies). These identities are a restatement of V being symmetric both (a)

round 0 and (b) around 1
2 . Furthermore, one has

E2i
0 (θ + θs) = E2i+1

0 (−θ + θs)

hence ∂θE2i
0 (θs) = −∂θE2i+1

0 (θs). The configuration associated with a double resonance is shown in Fig. 11.
ot only do the segments of the V -graphs (i.e., E2i

0 and E2i+1
0 ) intersect at θs, but E, Ẽ have their critical

oint at θs within the interval |θ − θ∗| ≲ δ
1
2
0 . Indeed,

HIi
1
(θ + θs) = UHIi

1
(−θ + θs)U

here U is the reflection on Z about ci1 ∈ 1
2Z. In particular, the eigenvalues are the same. In fact, using (4.21)

one concludes that

E(θ + θs) = E(−θ + θs), Ẽ(θ + θs) = Ẽ(−θ + θs) ∀ |θ − θ∗| ≲ δ
1
2
0 (4.24)

hence E′(θs) = Ẽ(θs) = 0.
Next, we establish the lower bound

E(θ) − Ẽ(θ) > (cε)5ℓ1/2
1 ≫ δ1 = εℓ

2/3
1 = ε|logε|8/3 (4.25)

hich follows immediately from this separation lemma, see [23, Lemma 4.1]. This spectral gap is much larger

han the resonance width δ1.
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Fig. 11. Crossing graphs and double resonance.

emma 4.6. Let HΛψj = Ejψj, j = 1, 2 with nontrivial ψj and E1 ̸= E2. If ∥ψj∥ℓ2(Λ0) ≥ 1
2 ∥ψj∥ℓ2(Λ) for

= 1, 2 with Λ0 ⊂ Λ and |Λ0| ≥ 2, then

|E1 − E2| ≥ (c1ε)|Λ0|(ε−2 + |Λ0|)−1 (4.26)

ith a constant c1 = c1(V ) > 0.

roof. Let Λ0 = [n0 − ℓ0, n0 + ℓ0] or Λ0 = [n0 − ℓ0, n0 + ℓ0 − 1]. By assumption, ℓ0 ≥ 1. Normalize
j(n0 −1)2 +ψj(n0)2 = 1 for j = 1, 2. Setting ψ̃1(n) = ψ1(n) if n ∈ Λ, n ≥ n0 and ψ̃1(n) = −ψ1(n) if n ∈ Λ,
< n0 one obtains from considering ⟨HΛψ̃1, ψ2⟩ = ⟨ψ̃1, HΛψ2⟩ that

2ε2|v⃗1 ∧ v⃗2| = 2ε2|ψ1(n0)ψ2(n0 − 1) − ψ2(n0)ψ1(n0 − 1)| =

≤ 2|E1 − E2|(∥ψ1∥2∥ψ2∥2) 1
2 (∥ψ1∥ℓ2(Λ0)∥ψ2∥ℓ2(Λ0))

1
2

≤ 2(Cε−2)ℓ0 |E1 − E2|(∥ψ1∥2∥ψ2∥2) 1
2

(4.27)

here v⃗j =
( ψj(n0)
ψj(n0−1)

)
and C = C(V ). The final estimate is obtained from the transfer matrix representation

f the eigenfunctions, viz. for n ≥ n0 + 1(
ψj(n)

ψj(n− 1)

)
=

n−1∏
k=n0

[
ε−2(Vk − Ej) −1

1 0

]
v⃗j

nd for n ≤ n0 − 1(
ψj(n− 1)
ψj(n)

)
=

n∏
k=n0−1

[
ε−2(Vk − Ej) −1

1 0

]−1
v⃗j

ith Vk = V (θ + kω). On the one hand, with B = Cε−2, and using that ∥v⃗1 − v⃗2∥2 = 2|v⃗1 ∧ v⃗2|,

∥ψ1 − ψ2∥ℓ2(Λ0) ≤ 2Bℓ0 |v⃗1 ∧ v⃗2| + ℓ0B
ℓ0 |E1 − E2|

−2 ℓ0
1
2 ℓ0
≤ 2ε B |E1 − E2|(∥ψ1∥2∥ψ2∥2) + ℓ0B |E1 − E2|
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n the other hand, with aj := ∥ψj∥ℓ2(Λ),√
a2

1 + a2
2 ≤ 1

2(a1 + a2) + ∥ψ1 − ψ2∥ℓ2(Λ0)

≤ 1
2(a1 + a2) +Bℓ0(B

√
a1a2 + ℓ0)|E1 − E2|

≤ 1
2(a1 + a2) +Bℓ0(B + ℓ0)|E1 − E2|

√
a1a2

f |E1 − E2| < 1
4B

−ℓ0(B + ℓ0)−1, then
√
a2

1 + a2
2 <

5
8 (a1 + a2) which is impossible. Adjusting the constants

ne obtains (4.26). □

The critical points of V are θ = 0 and θ = 1
2 . We claim that min(∥θ∗∥, ∥θ∗ − 1

2 ∥) ≥ Kδ
1
2
0 where K

s any large constant, to be fixed below (as always, provided ε is small enough). This is immediate from
he Diophantine condition due to s0 ≤ 4(logε)2, cf. Fig. 3. In particular, |V ′(θ)| ≫ δ

1
2
0 on the interval

|θ − θ∗| ≲ δ
1
2
0 . By first order eigenvalue perturbation and (4.22), uniformly on this interval

∂θE(θ) = ⟨ψ(θ), V ′(θ)ψ(θ)⟩ = A2(θ)∂θE2i
0 (θ) +B2(θ)∂θE2i+1

0 (θ) +O(ε2δ
− 1

2
0 )

here by the preceding |∂θE2i
0 (θ)| ≫ δ

1
2
0 and |∂θE2i+1

0 (θ)| ≫ δ
1
2
0 . Setting θ = θs it follows that

2(θs) −B2(θs) = O(ε2δ−1
0 ) = O(ε). Due to A2 +B2 = 1, |A(θs)|2 = 1/2 −O(ε) and |B(θs)|2 = 1/2 −O(ε).

n fact, the same argument shows that |A(θ)| ≃ |B(θ)| ≃ 1 for all |θ − θ∗| ≲ δ
1
2
0 with |∂θE(θ)| ≲ δ

1
2
0 .

Using this property we can now establish closeness of all eigenvalues. In fact, HΛ(θ)ψ(θ) = E(θ)ψ(θ) and
HΛ(θ)ψ̃(θ) = Ẽ(θ)ψ̃(θ) in combination with (4.22) imply that

E2i
0 (θ) − E(θ) = O(ε2δ

− 1
2

0 ), E2i+1
0 (θ) − E(θ) = O(ε2δ

− 1
2

0 ) (4.28)

nd the same for Ẽ. In particular,

|E(θ) − Ẽ(θ)| ≲ ε2δ
− 1

2
0 (4.29)

or all |θ − θ∗| ≲ δ
1
2
0 with |∂θE(θ)| ≲ δ

1
2
0 . The final step in our analysis is to establish a lower bound on

∂2
θE(θ)| and |∂2

θ Ẽ(θ)| for those θ. This hinges on the second order perturbation formulas (suppressing θ as
rgument)

∂2
θE = ⟨ψ, V ′′ψ⟩ − 2⟨V ′ψ,G(E)⊥V ′ψ⟩
∂2
θ Ẽ = ⟨ψ̃, V ′′ψ̃⟩ − 2⟨V ′ψ̃, G(Ẽ)⊥V ′ψ̃⟩

on ℓ2(Ii1) with G(E)⊥ = [P⊥
ψ (HIi

1
−E)P⊥

ψ ]−1 in P⊥
ψ ℓ

2(Ii1) and P⊥
ψ being the orthogonal projection onto the

omplement of ψ in ℓ2(Ii1). Analogous comments apply G(Ẽ)⊥ which is the resolvent orthogonal to ψ̃. We
ow write

⟨V ′ψ,G(E)⊥V ′ψ⟩ = ⟨ψ, V ′ψ̃⟩2

Ẽ − E
+ ⟨V ′ψ,G(E)⊥⊥V ′ψ⟩

where G(E)⊥⊥ = P⊥
ψ̃

[P⊥
ψ (HIi

1
− E)P⊥

ψ ]−1P⊥
ψ̃

. By (4.21), ∥G(E)⊥⊥∥ ≲ δ
− 1

2
0 . On the other hand, by (4.22)

⟨ψ, V ′ψ̃⟩ = −2AB∂θE2i
0 (θs) +O(δ

1
2
0 )

hence from |AB| ≃ 1,

|⟨ψ, V ′ψ̃⟩| ≫ δ
1
2

0
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ombining this with (4.29) we obtain

|⟨V ′ψ,G(E)⊥V ′ψ⟩| ≫ ε−2δ
3
2
0 −O(δ− 1

2
0 ) ≫ ε−2δ

3
2
0 ≫ 1

Since |⟨ψ, V ′′ψ⟩| ≲ 1, it follows that

|∂2
θE(θ)| ≫ ε−2δ

3
2
0 , |∂2

θ Ẽ(θ)| ≫ ε−2δ
3
2
0 (4.30)

or all |θ − θ∗| ≲ δ
1
2
0 with |∂θE(θ)| ≲ δ

1
2
0 . The exact same analysis applies to Ẽ. To summarize, these are the

ain points concerning double resonances at level 1.

• s0 ≤ (logε)2 and the level-0 singular sites are S0 = {cj0}∞
j=−∞ with c2i+1

0 − c2i
0 = s0 for all i. We have

|V (θ + kω) − E∗| ≲ δ
1
2
0 for k ∈ {c2i

0 , c
2i+1
0 }, |V (θ + kω) − E∗| ≫ δ

1
2
0 for all k ∈ Ii1\{c2i

0 , c
2i+1
0 }, both for all

|θ − θ∗| ≲ δ
1
2
0 . Here Ii1 ⊂ Z, |Ii1| ≃ (logε)4, centered at ci1 ∈ 1

2Z and dist(spec(HIi
1
(θ∗)), E∗) ≲ δ1 = εℓ

2/3
1 .

• spec(HIi
1
(θ)) ∩ [E∗ − δ

1
2
0 , E∗ + δ

1
2
0 ] = {E(θ), Ẽ(θ)} (with E > Ẽ) for these θ, with all other eigenvalues

being separated from E∗ by ≫ δ
1
2
0 . From the level-0 estimate m(c2i

0 , c
2i+1
0 ) ≲ δ0, either θs = −ci1ω or

θs = 1
2 − ci1ω satisfy ∥θs − θ∗∥ ≲ δ

1
2
0 and the unique critical points of E, Ẽ in this interval are at θs.

There is a spectral gap of size E(θ) − Ẽ(θ) > ε5ℓ
1
2
1 .

• For every |θ − θ∗| ≲ δ
1
2
0 one has either both |∂θE(θ)| ≫ δ

1
2
0 and |∂θẼ(θ)| ≫ δ

1
2
0 (large slopes), or both

|∂θE(θ)| ≲ δ
1
2
0 and |∂θẼ(θ)| ≲ δ

1
2
0 (small slopes). This follows from |∂θE2i

0 (θs)| ≫ δ
1
2
0 , and the first order

eigenvalue perturbation formulas

∂E(θ) = (A2(θ) −B2(θ))∂θE2i
0 (θs) +O(δ

1
2
0 )

∂Ẽ(θ) = (−A2(θ) +B2(θ))∂θE2i
0 (θs) +O(δ

1
2
0 )

for all |θ − θ∗| ≲ δ
1
2
0 , cf. (4.22).

• If the small slope alternative occurs, then |A(θ)| ≃ |B(θ)| ≃ 1 and (4.28) holds for both E and Ẽ.
In particular, the spectral gap is small as in (4.29), and the second derivatives are large and ≫ δ

− 1
2

0 ,
see (4.30). This means that the intervals of small slopes around the critical points at θs are of size ≪ δ0.

• Fig. 11 depicts the situation for a double resonance: E reaches its minimum, resp. Ẽ its maximum, at θs.
The spectral gap is the smallest at this point and the quantitative estimates above hold. In particular,
this gap is much larger than δ1, whence exactly one of E or Ẽ achieve the resonance condition (4.3)
at θ∗.

To conclude the proof of Lemma 4.4 we apply this description to two such level 1 intervals, say Ii1 and Ij1 .
Because of the double resonance assumption, we have

∥1/2 + ci1ω∥ + ∥1/2 + cj1ω∥ ≲ δ
1
2
0

hich implies that m(ci1, c
j
1) = ∥(ci1 − cj1)ω∥ ≲ δ

1
2
0 . As in the single resonance case, cf. (4.19), for all

θ − θ∗| ≲ δ
1
2
0

HIi
1
(θ) = H

I
j
1
(θ + (ci1 − cj1)ω) and Ei1(θ) = Ej1(θ + (ci1 − cj1)ω), Ẽi1(θ) = Ẽj1(θ + (ci1 − cj1)ω)

Finally, by (4.3), either

j j i j ˜j ˜j i j
|E1(θ∗) − E1(θ∗ + (c1 − c1)ω)| ≲ δ1 or |E1(θ∗) − E1(θ∗ + (c1 − c1)ω)| ≲ δ1
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y the bounds derived above on the first and second derivatives on Ei1 etc. and elementary calculus, we
nally conclude that m(ci1, c

j
1) ≲ δ

1
2
1 . Indeed, in the large slopes case, m(ci1, c

j
1) = ∥(ci1 − cj1)ω∥ ≲ δ

− 1
2

0 δ1,
hereas in the small slopes case, m(ci1, c

j
1) ≲ δ

1
4
0 δ

1
2
1 . This is slightly better than what Lemma 4.4 claims, and

e are done. □

The full induction needed to establish (4.5) follows these exact same lines with no essentially new ideas
eeded. The reader can either convince themselves of this fact, or consult [23]. Note, however, that Lemma 5.2
n loc. cit. erroneously sets θs = −cimα forgetting the case (b) above in which 1/2 has to be added. This is
systematic oversight in Section 5 in that paper which is rooted in a false identity at the conclusion of the
roof of Lemma 5.3: 2∥θ∥ = ∥2θ∥ for the metric on T.

It seems very difficult to approach quasi-periodic localization in more general settings by relying on
igenvalue parameterization, as we did in this section.

.2. The work of forman and VandenBoom: dropping evenness of V

We will now discuss the highly challenging task of implementing some version of the Fröhlich–Spencer–
ittwer proof strategy without the symmetry assumption on the potential. This has recently been accom-

lished by Forman and VandenBoom, see [21]. For the relation of this section with Sinai’s classical work [46]
e refer the reader to the introduction of [21]. We present a sketch3 of the proof of their result.

heorem 4.7. Let V ∈ C2(T) have exactly two nondegenerate critical points. Define

Hε(θ) = ε2∆Z + Vθ, Vθ(n) = V (Tnω θ) ∀n ∈ Z (4.31)

here ω ∈ T is Diophantine, viz. ∥nω∥ ≥ b0n
−2 for all n ≥ 1 with some b0 > 0. There exists ε0(b0, V ) such

hat for all 0 < ε ≤ ε0 the operators Hθ,ε exhibit Anderson localization for a.e. θ ∈ T.

This is precisely the result of Fröhlich, Spencer, and Wittwer without the evenness assumption, and we
will make frequent references to the proof of that result. See the previous section.

As in the symmetric case, we can define singular sites S0 relative to θ∗, E∗. However, the m(k, ℓ) function
s no longer useful, as ∥2θ∗ + (k + ℓ)ω∥ is no longer small if T kωθ∗ and T ℓωθ∗ fall into different connected
components of V −1([E∗ − δ0, E∗ + δ0]). Without symmetry, no such function m can be defined to be
independent of E∗.

Instead, we divide the energy axis into several overlapping intervals, and we construct a collection E1 of
well-separated Rellich functions of certain Dirichlet restrictions of H whose domains cover the circle T with
the same structural properties as E0, cf. Fig. 12. We choose an initial interval length ℓ(1)

1 and consider energy
regions of size O((ℓ(1)

1 )−16). Each energy region can be characterized as double-resonant, if it contains some
En which satisfies En = V (θn) = V (θn+nω) for some θ ∈ T and |n| ≤ ℓ

(1)
1 , or simple-resonant if it does not.

Each function E1 ∈ E1 is a Rellich function of HΛ1 , where Λ1 ⊂ Z is an interval of length ℓ
(1)
1 if the energy

region is simple-resonant, or ℓ(2)
1 ≈

(
ℓ

(1)
1

)2
if the energy region is double-resonant. The singular intervals

are then characterized by

S1 = {Λ1 +m | m ∈ Z, |E1(θ∗ +mω) − E∗| < δ1}

where E1 ∈ E1 is the Rellich function defined in the energy region containing E∗, and δ1 is defined as Fröhlich,
Spencer, and Wittwer define it.

3 The remainder of this subsection was written by Forman and VandenBoom.
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Fig. 12. A cartoon output of the first inductive step: a collection E1 of Rellich functions of various Dirichlet restrictions of H, whose
domains (and their relevant translates) cover the circle T. The curves in black come from double resonances, and the curves in gray
are simple resonant.

Assuming the constructed Rellich functions satisfy a Morse condition, maintain two monotonicity
intervals, and are well-separated from other Rellich functions on the same domain (i.e., we have an upper
bound on ∥[P⊥(HΛ1 − E1)P⊥]−1∥, as considered above), we can iterate this procedure inductively and
conclude the proof as Fröhlich, Spencer, and Wittwer do. While we cannot control the bad set of θ ∈ T by
the m function as they do, we can bound it by controlling the number of Rellich functions we construct in
En at each scale. Since the energy regions at scale s are of size at least O(δ3

s−2), each energy region at scale
s− 1 gives rise to at most O(δ−3

s−2) Rellich functions at scale s; thus, we inductively bound |En| ≤ O(δ−4
n−2).

he bad set of θ at scale n for a specific En ∈ En is bounded in measure by ℓ2
n+1δ

1/4
n−1 by a calculus argument.

ince δ−4
n−2ℓ

2
n+1δ

1/4
n−1 is still summable, we can apply Borel–Cantelli.

It remains to show that the Rellich functions in En+1 inherit the structural properties of those in En;
amely, a Morse condition and a uniform separation estimate. By construction, simple resonant Rellich
unctions are well-separated from others, so they satisfy ∥En+1 − En∥C2 ≪ δn by the same arguments
sed above. In the double-resonant case, the Morse lower bound on the second derivative follows by a slight
odification of the above argument to allow for V ’s asymmetry. A new argument is required to separate the
air of double-resonant Rellich functions uniformly by a stable, quantifiable gap. We thus show

emma 4.8. In our setting, double resonances of a Rellich function En of HΛn resolve as a pair of uniformly
ocally separated Morse Rellich functions En+1,∨ > En+1,∧ of HΛn+1 with at most one critical point, cf.
ig. 13. The size of the gap is larger than the next resonance scale:

inf En+1,∨ − sup En+1,∧ ≫ δn+1

This gap ensures that any Rellich function En can resonate only with itself at future scales, which
ltimately enables our induction.

To prove Lemma 4.8, we interlace two auxiliary curves between the double-resonant Rellich pair. Specifi-
ally, let En(θ), Ẽn(θ) be the two resonant Rellich functions with corresponding eigenvectors ψ(θ), ψ̃(θ). By
he Min–Max Principle, there must be an eigenvalue λ̃ of P⊥

ψ HΛn+1P
⊥
ψ satisfying

˜
En+1,∧(θ) ≤ λ(θ) ≤ En+1,∨(θ)
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Fig. 13. The resolution of a double resonance of E0 = V into a pair of uniformly locally well-separated Rellich curves of a Dirichlet
estriction HΛ1 of H. The curves E0(θ) and E0(θ + nα) need not interlace the Rellich curves E1, but the auxiliary curves λ, λ̃ (not

pictured) must.

Moreover, since we have projected away from one resonance, the arguments from the simple-resonance case
can be used to show that ∥λ̃ − Ẽn∥C1 ≪ δn. As a consequence of the Morse condition, |∂θẼn| ≫ δn, so
∂θλ̃| is similarly bounded below. By repeating this process to construct an eigenvalue λ of P⊥

ψ̃
HΛn+1P

⊥
ψ̃

ith ∥λ− En∥C1 ≪ δn, we construct two curves, with large opposite-signed first derivatives, which separate
n+1,∨ and En+1,∧. Combining this with the pointwise separation bound gives a uniform separation bound,
roving Lemma 4.8 and allowing the inductive argument to proceed.

No version of this proof currently exists for more than two critical points. In higher dimensions, which
an mean both a higher-dimensional lattice Laplacian, as well as potentials defined on Td with d ≥ 2, it is
ven more daunting to implement this perturbative proof strategy. This is why we will impose a much more
igid assumption on the potential function, namely analyticity, for the remainder of these lectures. Smooth
otentials are a largely uncharted territory, especially in higher dimensions.

. Subharmonic functions in the plane

This section4 establishes some standard facts about harmonic and subharmonic functions in the plane.
n the subsequent development of the theory of quasi-periodic localization for analytic potentials, we will
ake heavy use of such results as Riesz’ representation of subharmonic functions, and the Cartan estimate.
reader familiar with this material can move on to the following section.

.1. Motivation and definition

Let Ω ⊂ C be a domain (open and connected). Let H(Ω) denote the holomorphic functions on Ω . What
ort of function is log|f(z)| for f ∈ H(Ω) with f ̸≡ 0? Recall that for f ∈ H(Ω) if f ̸= 0 in Ω simply
onnected then there exists g ∈ H(Ω), unique up to an additive constant in 2πiZ, such that f = eg. Indeed,
f f = eg then f ′ = g′ef so that g′ = f ′

f . Then for any z0 ∈ Ω , set g(z) = g(z0) +
´ z
z0

f ′(w)
f(w) dw, where this

ntegral is well-defined because the integrand is holomorphic and Ω is simply connected. The upshot of this

4 Based on notes written and typed by Adam Black during a graduate class by the author at Yale.
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s that for non-vanishing f , log|f | = logeRe g = Re g so that log|f | is harmonic. Notice that this is still true
if Ω is not simply connected because being harmonic is a local property and we can always find the existence
of such a g in a disk around any point. Now, if f(z0) = 0, then we may write f(z) = (z − z0)nf̃(z) where

(̃z) does not vanish in some neighborhood of z0. In this neighborhood, we have

log|f(z)| = nlog|z − z0| + log
⏐⏐⏐f̃(z)

⏐⏐⏐
hich we can make sense of in the entire neighborhood by declaring log|z − z0| = −∞ at z = z0. Indeed,

his function is continuous as map into R ∪ {−∞} relative to the natural topology. More generally, if
⊂⊂ Ω (that is, compactly contained) then we let {ζj}Nj=1 be the zeros of f in K counted with multiplicity

o that f(z) =
∏N
j=1(z − ζj)F (z) where F is holomorphic on some Ω ′ ⊃ K and F ̸= 0 in Ω ′. Then

og|f(z)| =
∑N
j=1 log|z − ζj | + log|F (z)|. From this we infer what type of function log|f | is, namely it is

armonic away from the zeros of f , and −∞ there, so the value of the function should be lower than its
average on a small disk. This motivates the following definition, which applies to all dimensions. However,
throughout we limit ourselves to the plane.

Definition 5.1. A function u is subharmonic on Ω ⊂ R2, denoted u ∈ SH(Ω), if

• u : Ω → [−∞,∞) is upper semi-continuous (usc)
• u satisfies the subharmonic mean value property (smvp):

u(x0) ≤
 
∂D(x0,r)

u(y)σ(dy)

for any disk D(z0, r) such that D(z0, r) ⊂ Ω .

One should think of subharmonic functions as lying below harmonic ones, see Corollary 5.9. Hence, in
one dimension, subharmonic functions are convex as they lie below lines, which are the one-dimensional
harmonic functions. The integral in the above definition is well defined (although it may be −∞) because
of the following lemma.

Lemma 5.2. Let f : K → [−∞,∞) be usc with K compact. Then f attains its maximum.

Proof. Let M := supx∈K f(x). Let f(xi) → M as i → ∞. By compactness, pass to a subsequence if
ecessary so that xi → x. Then M = lim supi→∞ f(xi) ≤ f(x) ≤ M . □

.2. Basic properties

In this section we prove some basic properties of subharmonic functions. Readers familiar with the
roperties of harmonic functions may find these proofs rather familiar.

roposition 5.3. If u ∈ SH(Ω) then u(z0) ≤
ffl
D(z0,r) u(z)m(dz) for all D(z0, r) ⊂ Ω where m is Lebesgue

easure in the plane.

roof. For all 0 < s ≤ r we have that

u(z0) |∂D(z0, s)| ≤
ˆ
∂D(z0,s)

u(z)σ(dz)

so that the result follows immediately by integrating both sides from 0 to r with respect to s. □
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orollary 5.4. Let u, v ∈ SH(Ω) such that u(z) = v(z) for almost every z. Then u ≡ v.

Proof. By the smvp and the fact that u and v are equal almost everywhere, we see that for every z0 for
any r > 0 such that D(z0, r) ⊂ Ω

u(z0) ≤
 
D(z0,r)

v(z)m(dz)

et ri → 0 and let v(z) attain its maximum on D(z0, ri) at zi so that zi → z0. Thus for all i

u(z0) ≤
 
D(z0,ri)

v(z)m(dz) ≤ v(zi)

o taking limsups we see that

u(z0) ≤ v(z0)

by usc. By symmetry, we have also that v(z0) ≤ u(z0), so we are done. □

Lemma 5.5. Suppose u ∈ C2(Ω). Then u ∈ SH iff ∆u(z) ≥ 0 for all z ∈ Ω .

Proof. Define

(Mu)x0(r) :=
 
∂D(x0,r)

u(y)σ(dy) =
 

|w|=1
u(x0 + rw)σ(dw)

here σ is the surface measure on the circle. We compute

∂r(Mu)x0(r) =
 

|w|=1
∇u(x0 + rw) · w σ(dw) = 1

|∂D(0, 1)|r

ˆ
∂D(x0,r)

∇u(y) · n⃗ σ(dw)

which by the divergence theorem is equal to

1
|∂D(0, 1)|r

ˆ
D(x0,r)

∆u(y)m(dy)

Thus, we see that if ∆u ≥ 0 then (Mu)x0(r) is non-decreasing with r, and as its limit as r → 0 is u(x0), one
irection follows. For the other direction, note that if ∆u(x0) < 0 then there exists some disk D(x0, r) on
hich ∆u(x) < 0. The above computation then shows that (Mu)x0 is decreasing for small enough r, which

contradicts the smvp. □

Proposition 5.6. The function f(z) = log|z| is subharmonic on R2.

Proof. Let fn = 1
2 log(|z|2+1/n). Then it is easy to compute in polar coordinates that ∆fn = 2(1/n)

(r2+1/n)2 ≥ 0
so that because fn is C2(R2), it is subharmonic. On ∂D(z0, r), the sequence {fn} is bounded above by some

so that M − fn is a positive monotone sequence of integrable functions. By applying the monotone
onvergence theorem to this sequence we see that

lim
n→∞

 
∂D(z0,r)

fn(z)σ(dz) =
 
∂D(z0,r)

f(z)σ(dz)

from which the result follows. □

Lemma 5.7. The maximum or sum of finitely many subharmonic functions is subharmonic.
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roof. Follows directly from the definition. □

emma 5.8 (Maximum principle). Let u ∈ SH(Ω) with Ω connected and suppose there exists z0 ∈ Ω such
hat u(z) ≤ M := u(z0) for all z ∈ Ω . Then u is constant.

roof. Consider S = {z ∈ Ω | u(z) = M}. This set is closed because u is usc. Furthermore it is open
ecause if f(z) = M , then f(z) ≤

ffl
∂D(z,r) f(w)σ(dw) implies that f(w) = M for all w ∈ ∂D(z, r). □

The following result explains the terminology subharmonic.

orollary 5.9. Let u ∈ SH(Ω). If v is harmonic on Ω ′ ⊂ Ω for Ω ′ bounded and v ≥ u on ∂Ω ′ then v ≥ u

n Ω ′.

roof. The function u− v is subharmonic so that if u− v > 0 in Ω ′ then it would have a maximum in this
egion, violating the above. □

.3. Review of harmonic functions

In the next section we will need some basic facts about harmonic functions, which we now briefly recall.
hey can be found in many places, such as [38]. For Ω ⊂ R2 a bounded region with smooth boundary, say,
e would like to solve the boundary value problem{

∆u(z) = f z ∈ Ω

u(z) = g z ∈ ∂Ω

ecall Green’s identity for u, v ∈ C2(Ω):ˆ
Ω

u(ζ)∆v(ζ)m(dζ) =
ˆ
Ω

∆u(ζ)v(ζ)m(dζ) +
ˆ
∂Ω

(
u
∂v

∂n
− ∂u

∂n
v
)
dσ (5.1)

If v = G(z, ζ) is such that (in the sense of distributions) ∆zG(z, ζ) = δζ(z) and G(z, ζ) = 0 for z ∈ ∂Ω then

u(z) =
ˆ
Ω

G(z, ζ)f(ζ)m(dζ) +
ˆ
∂Ω

∂G

∂n
(z, ζ)g(ζ)σ(dζ) (5.2)

ith m Lebesgue measure in the plane and σ surface measure on the boundary. Such a Green function G(z, ζ)
xists for any bounded domain Ω for which ∂Ω satisfies an exterior cone condition. This is a standard
pplication of Perron’s method, see [38] (this method applies to any dimension). For the case of a disk
(0, R) ⊂ C, there is the explicit formula given by the logarithm of the absolute value of the conformal
utomorphism of the disk:

G(z, ζ) = 1
2π log|z − ζ| + 1

2π log
⏐⏐⏐⏐ R

R2 − zζ

⏐⏐⏐⏐ (5.3)

In particular, by (5.1) a harmonic function on Ω which is C2(Ω̄) with boundary values g is given by

u(z) =
ˆ
∂Ω

∂G

∂n
(z, ζ)g(ζ)σ(dζ) (5.4)

his is Poisson’s formula and Pζ(z) = ∂G
∂n (z, ζ) is the Poisson kernel of Ω . If g ∈ C(∂Ω), then (5.4) defines

harmonic function in Ω which is the unique solution of the boundary value problem (uniqueness by the
aximum principle). For the disk of radius r in the plane we have

Pζ(z) = 1 r2 − |z|2
2
2π r|z − ζ|
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nd there is an analogous expression in higher dimensions. This implies Harnack’s inequality, which controls
he value of a positive harmonic function on a disk by its value at the center.

roposition 5.10. Let u be positive harmonic function on the disk D(z0, R) ⊂ C. Then for |z − z0| < r one
has

R− r

R+ r
u(z0) ≤ u(z) ≤ R+ r

R− r
u(z0).

roof. Simply bound the Poisson kernel and then apply the mean value property. □

Finally, we recall the following compactness property of families of harmonic functions (the analogue of
ormal families in complex analysis). It is valid in all dimensions but we state it only in the plane.

heorem 5.11. A sequence of harmonic functions on Ω ⊂ C that is uniformly bounded on each compact
ubset of Ω has a subsequence which converges to some harmonic u uniformly on each compact subset.

roof. If u(z) is harmonic on D(a, r) then taking derivatives of (5.4) shows that |Dαu(a)| ≤ Cα||u||L∞
rα

or some universal constant Cα. Thus, any uniformly bounded sequence of harmonic functions is in fact
quicontinuous. We can then take a convergent subsequence on any compact subset by Arzela–Ascoli at
hich point a diagonal argument with increasing compact sets finds the desired u. By the mean value
roperty u is harmonic. □

.4. Riesz representation of subharmonic functions in C

As noted earlier, any subharmonic function of the form log|f | for f ∈ H(Ω) admits the representation for
ny Ω ′ ⋐ Ω (compact containment):

log|f | =
N∑
j=1

log|z − ζj | + h(z)

with h harmonic in Ω ′ and ζj ∈ Ω ′. We can think of this expression as
´
Ω

log|z − ζ|µ(dζ) + h(z) where
=

∑N
j=1 δζj

. Note that h is bounded on any Ω ′′ ⋐ Ω ′ but not necessarily on Ω ′. This section develops an
analogous representation for all subharmonic functions, known as Riesz representation. The difference is that
we can allow any positive finite measure µ. We begin with some basic properties of logarithmic potentials
of such measures.

Proposition 5.12. Let Ω be a bounded domain and µ ∈ M+(Ω), that is, a positive finite Borel measure on
. Then with u(z) :=

´
Ω

log|z − ζ|µ(dζ)

• u ∈ SH(Ω)
• u > −∞ (Lebesgue) almost everywhere
• u is bounded above.

Proof. Note that for z, ζ ∈ Ω , log|z − ζ| ≤ log(diamΩ) so that u(z) ≤ log(diamΩ)µ(Ω), which shows that
is bounded above.
Consider D ⋐ Ω a disk of radius R. Then with m the Lebesgue measure in R2,

ˆ
u(z)m(dz) =

ˆ ˆ
log|z − ζ|m(dz)µ(dζ)
D Ω D
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y Fubini–Tonelli for positive measurable functions because the integrands are bounded from above. In fact,
og|z − ζ| is Lebesgue integrable on D:

ˆ
D

log|z − ζ|m(dz) ≥
ˆ
D(0,1)

log|z|m(dz) = 2π
ˆ 1

0
rlogr · dr > −∞

hich also shows that the total integral is > −∞. Since this holds for any disk, we have shown that u > −∞
.e. in Ω . To see that u is usc, observe that if zj → z then by (the reverse) Fatou’s lemma

lim sup
j→∞

u(zj) = lim sup
j→∞

ˆ
Ω

log|zj − ζ|µ(dζ) ≤
ˆ
Ω

lim sup
j→∞

log|zj − ζ|µ(dζ) = u(z)

here the use of Fatou’s lemma is justified due to the uniform upper bound on log|z − ζj |. Finally, note that
or D a disk centered at z0 

∂D
u(z) dz =

ˆ
Ω

 
∂D

log|z − ζ| dz µ(dζ) ≥
ˆ
Ω

log|z0 − ζ| dµ(ζ) = u(z0)

hich shows that u(z) satisfies the smvp because log|z| does. □

emark 5.13. We cannot hope for any better than usc from this construction. For instance, consider
=

∑∞
n=1 2−nδ2−n so that u(z) =

∑∞
n=1 2−nlog|z − 2−n|. Then u(0) = −2log2 but u(2−n) = −∞ for all n.

We will also require the following smooth approximation result.

Lemma 5.14. Let u ∈ SH(Ω) where Ω is a bounded domain. Then there exists a sequence un ∈
SH(Ω1/n)∩C∞(Ω1/n) where Ω1/n := {z ∈ Ω | dist(z, ∂Ω) > 1/n} such that un → u pointwise and monotone
decreasing (in Ω1/n0 for n > n0).

Proof. We accomplish this via mollification, so let φ ∈ C∞(R2) be a radial function satisfying φ(x) ≥ 0,
φ(x) = 0 for |x| ≥ 1 and

´
R2 φ(x)m(dx) = 1. Define also φn = n2φ(nx). We claim that un(z) = (u ∗ φn)(z)

satisfies the desired properties. It is clearly smooth and well-defined on Ω1/n. The smvp for un follows from
Fubini’s theorem and φn ≥ 0. To see that un is decreasing, write

un(z) = n2
ˆ
R2
u(z − w)φ(nw) dw = 2π

ˆ ∞

0

ˆ 1

0
u(z − r

n
e(θ)) dθ rφ(r) dr ≥ u(z)

with e(θ) = e2πiθ, the final inequality implied by the smvp. First, v(ζ) :=
´ 1

0 u(z − ζe(θ)) dθ is subharmonic
since it is easily seen to be usc, and the smvp follows by Fubini (note that u remains subharmonic after a
rotation and translation). Second, it is radial and thus an increasing (but not necessarily in the strict sense)
function of |ζ| by the maximum principle. Finally, un(z) ≤ max|z−w|≤1/n u(w) for z ∈ Ω1/n so that by usc
un(z) → u(z) as n → ∞. □

We are now ready to prove Riesz’s representation theorem for subharmonic functions.

Theorem 5.15. Let u ∈ SH(Ω) where Ω is some neighborhood of D(0, 4). Suppose that u ≤ M on D(0, 4)
nd u(0) ≥ m > −∞. Then there exists µ ∈ M+(D(0, 3)) and h harmonic in D(0, 3) such that for all
z ∈ D(0, 3)

u(z) =
ˆ
D(0,3)

log|z − ζ|µ(dζ) + h(z)

Furthermore, there exists C0 > 0 universal such that ∥h − M∥L∞(D(0,2)) ≤ C0(M − m) and µ(D(0, 3)) ≤
C (M −m). In fact, for any δ ∈ (0, 1) there exists C (δ) so that ∥h−M∥ ∞ ≤ C (δ)(M −m).
0 0 L (D(0,3−δ)) 0
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roof. We first reduce to the smooth case. To this end, suppose that the claim holds for all v ∈
H(D(0, 4)) ∩ C∞(D(0, 4)). Choose any u ∈ SH(D(0, 4)) and let un → u in D(0, 4) be as in Lemma 5.14.
e then have with some decreasing Mn → M

un ≤ Mn on D(0, 4), un(0) ≥ m

y validity of the theorem in the smooth case we may write

un(z) =
ˆ
D(0,3)

log|z − ζ|µn(dζ) + hn(z) (5.5)

nd because un is monotone decreasing and uniformly bounded above on any compact set, for any φ ∈
C(D(0, 3)) we have that

⟨un, φ⟩ → ⟨u, φ⟩ =
ˆ
D(0,3)

u(x+ iy)φ(x+ iy) dxdy

y the monotone convergence theorem. By assumption, the above measures are uniformly bounded, so by
anach–Alaoglu we may take a weak-* limit in C(D(0, 3))∗, thus µn → µ in the weak-* sense where µ is a
nite Borel measure on D(0, 3) which satisfies

µ(D(0, 3)) ≤ C0(M −m)

ince, with m(dz) being Lebesgue measure in the plane,

ψ(ζ) :=
ˆ
D(0,3)

log|z − ζ|φ(z)m(dz)

s a continuous function of ζ ∈ R2, we conclude that

lim
n→∞

ˆ
D(0,3)

ψ(ζ)µn(dζ) =
ˆ
D(0,3)

ψ(ζ)µ(dζ)

hich implies that⟨ˆ
D(0,3)

log|z − ζ|µn(dζ), φ
⟩

→

⟨ˆ
D(0,3)

log|z − ζ|µ(dζ), φ
⟩
. (5.6)

By the theorem in the smooth case,

lim sup
n→∞

||hn −M ||L∞(D(0,3−δ)) ≤ C0(δ)(M −m)

so by Theorem 5.11 there exists some h harmonic in D(0, 3) such that a subsequence of {hn} converges
to h uniformly on all compact subsets of D(0, 3). Thus, for any φ ∈ C(D(0, 3)) of compact support,
⟨hn, φ⟩ → ⟨h, φ⟩ along this sequence. In combination with (5.5), (5.6) we conclude that

⟨u, φ⟩ =
⟨ˆ

D(0,3)
log|z − ζ|µ(dζ) + h(z), φ

⟩
hus

u(z) =
ˆ
D(0,3)

log|z − ζ|µ(dζ) + h(z) almost everywhere in D(0, 3),

hich in turn implies equality everywhere by Corollary 5.4. Finally, to obtain the desired form we writeˆ
log|z − ζ|µ(dζ) =

ˆ
log|z − ζ|µ(dζ) +

ˆ
log|z − ζ|µ(dζ)
D(0,3) ∂D(0,3) D(0,3)
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nd notice that
´
∂D(0,3) log|z − ζ|µ(dζ) is harmonic in D(0, 3). Thus,

u(z) =
ˆ
D(0,3)

log|z − ζ|µ(dζ) + h0(z)

here h0(z) =
´
∂D(0,3) log|z − ζ|µ(dζ) + h(z) is harmonic in D(0, 3). This harmonic function h0 satisfies

imilar L∞ bounds as before, albeit with different constants.
It remains to prove the theorem for smooth subharmonic functions on D(0, 4). In view of (5.2)

u(z) =
ˆ
D(0,4)

G(z, ζ)∆u(ζ)m(dζ) +
ˆ
∂D(0,4)

∂G

∂n
(z, ζ)u(ζ)σ(dζ) (5.7)

o that by using the particular form G(z, ζ) in (5.3), and defining µ(dz) := 1
2π∆u(z) dz we rewrite the above

as

u(z) =
ˆ
D(0,3)

log|z − ζ|µ(dζ) +
ˆ
D(0,3)

log 4⏐⏐16 − zζ
⏐⏐ µ(dζ) +

ˆ
D(0,4)\D(0,3)

G(z, ζ)∆u(ζ) dζ + h0(z)

where h0(z) :=
´
∂D(0,4)

∂G
∂n (z, ζ)u(ζ)σ(dζ) is the harmonic extension of u to D(0, 4), see (5.4). The second

erm is harmonic for z ∈ D(0, 3) because 16 − zζ ̸= 0 and the third term because ζ ∈ D(0, 4) \ D(0, 3) and
hus

h(z) =
ˆ
D(0,3)

log 4⏐⏐16 − zζ
⏐⏐ µ(dζ) +

ˆ
D(0,4)\D(0,3)

G(z, ζ)∆u(ζ) dζ + h0(z) (5.8)

is harmonic in D(0, 3). We have therefore obtained the desired form for u, we only have left to show the
stated bounds. To bound µ(D(0, 3)), use (5.7) to see that

u(0) =
ˆ
D(0,4)

G(0, ζ)µ(dζ) + h0(0) =
ˆ
D(0,4)

log |ζ|
4 µ(dζ) + h0(0)

log4
r
µ(D(0, r)) ≤

ˆ
D(0,r)

log 4
|ζ|

µ(dζ) = h0(0) − u(0) ≤ M −m

here we have used that u(0) = m and the fact that u ≤ M on ∂D(0, 4) implies that h0 ≤ M . Setting
r = 3, we see that µ(D(0, 3)) ≤ C(M − m) as desired. For z ∈ D(0, 3), the first term in (5.8) is negative
y inspection, the second negative since G < 0, and the third is bounded above by M as before. Therefore,
(z) ≤ M . For the reverse bound, Harnack’s inequality on |z| ≤ 3 − δ yields

M − h(z) ≤ 3 + r

3 − r
(M − h(0)) ≤ 6 − δ

δ
(M − h(0))

and

h(0) = u(0) −
ˆ
D(0,3)

log|ζ|µ(dζ) ≥ m−
ˆ
D(0,3)\D(0,1)

log|ζ|µ(dζ) ≥ m− C(M −m)

so putting these together implies that

M − Cδ(M −m) ≤ h(z)

for all |z| ≤ 3 − δ. □

In fact, by essentially the same proof one can obtain the following more general Riesz representation.
Note that one can move the point z0 to 0 by an automorphism of the disk, which retains the property of
being subharmonic.
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heorem 5.16. Let u ∈ SH(D(0, R1)) and suppose that u ≤ M on D(0, R1) and u(z0) ≥ m > −∞ where
|z0| < R1. Let R1 > R2 > R3 > 0. There exists µ ∈ M+(D(0, R2)) and h harmonic in D(0, R2) such that for
all z ∈ D(0, R2)

u(z) =
ˆ
D(0,R2)

log|z − ζ|µ(dζ) + h(z)

Furthermore, there exist C0 = C0(z0, R1, R2) > 0 and C1 = C1(z0, R1, R2, R3) > 0 universal such that
µ(D(0, R2)) ≤ C0(M −m) and ∥h−M∥L∞(D(0,R3)) ≤ C1(M −m).

See Theorem 2.2 in [31] for explicit constants.

5.5. Cartan’s lower bound

Next, we prove Cartan’s theorem which controls large negative values of logarithmic potentials. Levin’s
book [41] has much more on this topic, see page 76.

Theorem 5.17. Let µ be a finite positive measure in C and consider the logarithmic potential

u(z) =
ˆ
R2

log|z − ζ|µ(dζ)

For any H ∈ (0, 1) there exist disks {D(zj , rj)}Jj=1, for 1 ≤ J ≤ ∞ with
∑J
j=1 rj ≤ 5H and

u(z) ≥ −∥µ∥log(e/H) ∀ z ∈ C \
J⋃
j=1

D(zj , rr) (5.9)

Proof. Let z ∈ C be a good point if n(z, r) := µ(D(z, r)) ≤ pr for all r > 0. Here p depends on H and will
be determined. For every bad z there exists r(z) > 0 with n(z, r(z)) > r(z)p. Note that r(z) ≤ ∥µ∥/p. By
Vitali’s covering lemma there exist bad points zj so that {D(zj , r(zj))}j are pairwise disjoint and

B := {z ∈ C | z is a bad point } ⊂
⋃

D(zj , rj) with rj := 5r(zj).

In particular,
∑
j rj ≤ 5∥µ∥/p whence we need to set p = ∥µ∥/H. If z ∈ C \

⋃
D(zj , rj), then z is good and

we obtain by integrating by parts

u(z) ≥
ˆ 1

0
logr d(n(z, r)) = −

ˆ 1

0

n(z, r)
r

dr ≥ −
ˆ H

0
p dr + ∥µ∥logH

= −pH + ∥µ∥logH = ∥µ∥log(H/e)

s claimed. □

We call ∥µ∥ the Riesz mass of u. We leave it to the reader to check that Theorem 5.17 with the same
roof generalizes as follows.

heorem 5.18. Under the same assumptions as in the previous theorem, suppose 0 < δ ≤ 1. Then for any
∈ (0, 1) there exist disks {D(zj , rj)}Jj=1, for 1 ≤ J ≤ ∞ with

∑J
j=1 r

δ
j ≤ 5δH and

u(z) ≥ −1
δ

∥µ∥log(e/H) ∀ z ∈ C \
J⋃

D(zj , rr) (5.10)

j=1
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We chose 0 < δ ≤ 1 here instead of 0 < δ ≤ 2 since the range 1 < δ ≤ 2 is weaker than Theorem 5.17. As
an immediate corollary we conclude that dim({z ∈ C |u(z) = −∞}) = 0 in the sense of Hausdorff dimension,
for any logarithmic potential of a finite positive measure. By Theorem 5.15, this same property therefore
holds locally on Ω for any subharmonic function on Ω which is not constant −∞. For our applications,
Cartan’s theorem, i.e., Theorem 5.17, will suffice. The following serves to illustrate this result.

• Consider the logarithm of a polynomial of degree N with roots ζj ∈ C. Thus, P (z) =
∏N
j=1(z − ζj) and

u(z) = log
⏐⏐ N∏
j=1

(z − ζj)
⏐⏐ =

ˆ
log|z − ζ|µ(dζ), µ =

N∑
j=1

δζj

Given 0 < H < 1, there exist disks D(zj , rj), 1 ≤ j ≤ J , with
∑
j rj ≤ 5H and |P (z)| ≥ (H/e)N for

all z ∈ C \
⋃
D(zj , rj). By the maximum principle, each disk contains a zero of P (otherwise it can be

removed without changing the conclusion). Thus, J ≤ N . The bound on the Riesz mass in Theorem 5.15
is nothing other than Jensen’s formula counting the roots of analytic functions, see [41, page 10].

• If ζj = 0 for all j, then |P (z)| = |z|N ≥ HN if |z| ≥ H. This shows that Cartan’s theorem is optimal up
to multiplicative constants on H.

• On the other hand, suppose ζj = e(j/N) for 1 ≤ j ≤ N where e(θ) = e2πiθ. Then P (z) = zN − 1 and
we can take the Cartan disks centered at ζj of radius ρ = 1/N . Then for any z with z = ζj + ρe(θ) we
have

|P (z)| = |zN − 1| = |(ζj + ρe(θ))N − 1| ≥ ρN −
N∑
ℓ=2

(
N

ℓ

)
ρℓ ≥ 1 −

N∑
ℓ=2

(Nρ)ℓ

ℓ! = 3 − e (5.11)

It follows from the maximum (minimum) principle for analytic functions that |P (z)| ≥ 3 − e for all
z ∈ C \

⋃N
j=1 D(ζj , 1/N). Therefore Cartan’s estimate is woefully imprecise in this example. Indeed, for

the polynomial P with roots at the Nth roots of unity, u(z) = log|P (z)| behaves in Theorem 5.17 like a
subharmonic function with Riesz mass 1, at least for H = 1/N .

In applications of Cartan’s theorem to quasi-periodic localization, the distribution of the zeros plays a
ecisive role and it is therefore essential to improve on the Cartan bound. In other words, we are in a situation
uch closer to the roots-of-unity example where Cartan falls far short from the true estimate. Nevertheless,

ombining Cartan’s bound with the dynamics, one can still obtain a nontrivial statement as we shall see in
he following section.

To conclude this section, we prove Riesz’s representation theorem on general domains from the one for
isks which we proved above. We will do this by connection points by chains of disks, which uses Cartan.

orollary 5.19. Let Ω ⊂ C be a bounded domain, u subharmonic on Ω with supΩ u ≤ M . Suppose
(z0) ≥ m > −∞ for some z0 ∈ Ω . For any Ω2 ⋐ Ω1 ⋐ Ω , there exist a positive measure µ on Ω1 and a
armonic function h on Ω1 such that

u(z) =
ˆ
Ω1

log|z − ζ|µ(dζ) + h(z) ∀ z ∈ Ω1

µ(Ω1) ≤ C1(Ω , z0,Ω1)(M −m)
∥h−M∥L∞(Ω2) ≤ C2(Ω , z0,Ω1,Ω2)(M −m)

(5.12)

roof. By Lemma 5.14 we can assume that u is smooth, although this is strictly speaking not necessary.
he measure µ(dz) = 1

2π∆u dxdy is unique and therefore h harmonic on Ω1 if it satisfies (5.12). Let
upK u = u(z0), z0 ∈ K. By compactness, there exists δ > 0 and N finite so that for any z ∈ Ω1 we
an find disks D(z , δ) ⊂ Ω , 0 ≤ j ≤ N , with z = z, and z ∈ D(z , δ/2) for all j ≥ 1. Moreover, we
j N j j−1
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ay assume that Ω2 ⊂
⋃
z∈Ω1

D(z, δ/2) and by compactness this can be chosen as a finite union. By Riesz’s
representation as in Theorem 5.16 we have

u(z) =
ˆ
D(z0,δ/2)

log|z − ζ|µ(dζ) + h0(z) ∀ z ∈ D(z0, δ/2)

µ(D(z0, δ/2)) ≤ C0(δ)(M −m), ∥h0 −M∥L∞(D(z0,δ/4)) ≤ C0(δ)(M −m)
(5.13)

ext, apply Theorem 5.17 to the logarithmic potential in (5.13) with H = δ/100. Hence, there exists
w1 ∈ D(z0, δ/4) ⊂ D(z1, 3δ/4) with

u(w1) ≥ m− C1(δ)(M −m) (5.14)

hile u ≤ M on D(z1, δ). We now apply Riesz’s representation as in Theorem 5.16 on this disk, followed by
artan to find a good point w2 ∈ D(z2, 3δ/4) for which and analogue of (5.14) holds. We may repeat this
rocedure to finitely many times to cover all of Ω1 by such disks leading to the stated upper bound on the
easure µ(Ω1). For the estimate on the harmonic function h defined by (5.12), pick any z∗ ∈ Ω2. Then with

0 := dist(∂Ω1,Ω2) we have D(z∗, ε0) ⊂ Ω1. On the one hand, for all z ∈ Ω1,

h(z) ≥ u(z) − log(diam(Ω1))µ(Ω1) ≥ u(z) − C(M −m)

ith the same type of constant as before. By the previous Cartan estimate and chaining argument, we can
nd z∗∗ ∈ D(z∗, ε0/4) which satisfies a bound (5.14) with a purely geometric constant. Hence

h(z∗∗) ≥ m− C(M −m) (5.15)

n the other hand, again by Theorem 5.17 we may find ε1 ∈ (3ε0/4, ε0) so that for all |z − z∗| = ε1 one hasˆ
Ω1

log|z − ζ|µ(dζ) ≥ −C(M −m)

hence

h(z) ≤ M + C(M −m) ∀ |z − z∗| = ε1 (5.16)

y Harnack’s inequality, (5.15) and (5.16) imply that h satisfies the desired bound on D(z∗, ε0/2) and hence
verywhere on Ω2. □

Alternatively, one can rely on the proof strategy of Theorem 5.15, and use the Green function on general
ubdomains of Ω with sufficiently regular boundary. But this seems technically more involved, at least to
he author.

. The Bourgain–Goldstein theorem

In this section we will sketch a proof of the main theorem in [10]. Similar to Theorem 4.1 it addresses
nderson localization for the operators

(Hx,ωψ)n = ψn−1 + ψn+1 + V (Tnω x)ψn (6.1)

n ℓ2(Z), where Tω : T → T is the rotation x ↦→ x+ ω mod 1 and V : T → R is analytic.

heorem 6.1. Suppose the Lyapunov exponents L(E,ω) associated with (6.1) satisfy

inf
E,ω

L(E,ω) > 0.

hen for almost every ω ∈ T, the operator H0,ω exhibits pure point spectrum with exponentially decaying
igenfunctions. Moreover, for almost every ω ∈ T, the operator Hx,ω exhibits Anderson localization for almost
very x ∈ T.
41
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The final statement of the theorem follows simply by Fubini and the fact that one may replace 0 in H0,ω
with any other x ∈ T. See [8,10] for versions of this theorem with V analytic on higher-dimensional tori.
This section is only meant to serve as a motivation for higher-dimensional techniques involving ∆Zd with
d ≥ 2, and less as a review of [10] itself. We will often drop ω from the notation and write Hx or H(x).

No explicit Diophantine condition arises here in contrast to Theorem 4.1. In fact, it is not known if
Theorem 6.1 holds for all Diophantine ω. For V (x) = cos(2πx), Jitomirskaya proved [34] that this is indeed
the case. Although Diophantine conditions play a decisive role in the proof of Theorem 6.1, one does remove
a measure 0 set of “bad” ω in addition to a measure 0 set of non-Diophantine ω. The smallness condition on
ε in Section 4 is replaced by positive Lyapunov exponents, a non-perturbative condition. No assumption on
the number of monotonicity intervals of V is made, nor do we impose an explicit nondegeneracy condition.
Note, however, that the most degenerate case V = const cannot arise by positive Lyapunov exponents. By
analyticity, V therefore cannot be infinitely degenerate anywhere. No analogue of Theorem 6.1 is known if
V is merely smooth, nor is it clear what the results might be for smooth V .

We quickly review some elementary background on Lyapunov exponents. Consider (6.1) with the rotation
Tω replaced by an ergodic transformation T : X → X on a probability space (X, ν), and V is a real-valued
measurable function. Define

L(E) = lim
n→∞

1
n

ˆ
X

log∥Mn(x,E)∥ ν(dx) = inf
n≥1

1
n

ˆ
X

log∥Mn(x,E)∥ ν(dx) (6.2)

here Mn are the transfer matrices

Mn(x,E) =
1∏

k=n

[
E − V (T kx) −1

1 0

]
(6.3)

f (6.1), i.e., the column vectors of Mn are a fundamental system of the equation Hxψ = Eψ. The limit
in (6.2) exists as stated due to fact that an :=

´
X

log∥Mn(x,E)∥ ν(dx) is a subadditive sequence, and it is
nown that limn→∞

1
nan = infn≥1

1
nan exists for such sequences. Since Mn ∈ SL(2,R) we have ∥Mn∥ ≥ 1

and thus L(E) ≥ 0. It is an important and often difficult question to decide whether L(E) > 0 for (6.1),
ee [31,32] for an example of this. But this circle of problems will not concern us here. It was shown by
ürstenberg and Kesten [24], later generalized in Kingman’s subadditive ergodic theorem, that

lim
n→∞

1
n

log∥Mn(x,E)∥ = L(E) (6.4)

or a.e. x ∈ X. This does use ergodicity of T , whereas (6.2) does not. See Viana’s book [50] for all this.
The Thouless formula, see [15],

L(E) =
ˆ
R

log|E − E′|N(dE′) ∀ E ∈ C (6.5)

elates the Lyapunov exponent to the density of states. Here N is the integrated density of states (IDS),
i.e., the limiting distribution of the eigenvalues of (6.1) restricted to intervals Λ = [−N,N ] in the limit

→ ∞. In other words, there exists a deterministic nondecreasing function N so that for a.e. x ∈ X one
as

|Λ|−1|{j ∈ [1, |Λ|] | E(Λ)
j (x) < t}| → N(t),

here E(Λ)
j (x) are the eigenvalues of HΛ

x , the restriction of (6.1) to Λ with Dirichlet boundary conditions.
he existence of this limit holds in great generality, see [20]. The Lyapunov exponent is a subharmonic

unction on C, and harmonic on C \ R. The Thouless formula identifies the IDS N as the Riesz measure of
(E), and also shows that L and dN

dE are related to each other by the Hilbert transform. For far-reaching
considerations involving these concepts see for example Avila’s global work on phase transitions [3].
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.1. Large deviation theorems

We now present a key ingredient in the proof of Theorem 6.1, namely the large deviation estimates (LDTs),
ee also [26] where they are essential in the study of the regularity of the IDS. For the operators (6.1) defined
n terms of rotations of T, define

Ln(E) = 1
n

ˆ
T

log∥Mn(x,E)∥ dx.

he following LDT can be viewed as a quantitative form of (6.4).

efinition 6.2. By Diophantine, we will now mean any irrational ω so that ∥nω∥ ≥ b n−a for all n ≥ 1.

It is easy to see that for every a > 1 a.e. ω satisfies such a condition for some b = b(ω).

Proposition 6.3. For Diophantine ω there exist 0 < σ, τ < 1 depending on V, a so that for all
E ∈ [−E0, E0],

|{x ∈ T | |log∥Mn(x,E)∥ − nLn(E)| > n1−σ}| ≤ exp(−nτ ). (6.6)

for all sufficiently large n ≥ n0(V, a, b, E0).

To motivate (6.6), consider the following scalar, or commutative, model:

u(x) =
q∑

k=1
log|e(x) − e(kω)| (6.7)

where ω = p
q and e(x) = e2πix. Then u(x) = log|e(xq) − 1| and

´
T u(x) dx = 0 so that for λ < 0

|{x ∈ T : u(e(x)) < λ}| = |{x ∈ T : |e(x) − 1| < eλ}| (6.8)

which is of size eλ. In this model case, u(x + 1/q) = u(x). Returning to u(x) = log∥Mn(x,E)∥, this exact
invariance needs to be replaced by the almost invariance

sup
x∈T

|u(x) − u(x+ kω)| ≤ Ck for any k ≥ 1. (6.9)

The logarithm in our model case (6.7) is a reasonable choice because of Riesz’s representation theorem
for subharmonic functions applied to the function u(z) = log∥Mn(z, E)∥ which is subharmonic on a
neighborhood of [0, 1] in C by analyticity of V . The subharmonicity can be seen by writing

u(z) = sup
∥v⃗∥=∥w⃗∥=1

log|⟨Mn(z, E)v⃗, w⃗⟩|

First, log|⟨Mn(z, E)v⃗, w⃗⟩| is subharmonic by analyticity of ⟨Mn(z, E)v⃗, w⃗⟩. Second, the sub-mean value
property (smvp) survives under suprema, and so u satisfies the smvp. Finally, the function u(z) is clearly
continuous.

Proof (Proof of Proposition 6.3 by Riesz and Cartan). Fix a rectangle R which compactly contains [0, 1].
By Riesz representation as stated in Theorem 5.15, there exists a positive measure µ on R and a harmonic
function on R such that

u(z) = log∥Mn(z, E)∥ =
ˆ

log|z − ζ|µ(dζ) + h(z) (6.10)

R
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ince ∥Mn(z)∥ ≤ eCn, 0 ≤ u(z) ≲ n on R (with a constant that depends on V , R and E0) and thus ∥µ∥ ≲ n

s well as ∥h∥L∞(R′) ≲ n, where [0, 1] ⋐ R′ ⋐ R is a slightly smaller rectangle. Fix a small δ > 0 and take
large. Then there is a disk D0 = D(x0, n

−2δ), x0 ∈ [0, 1] with the property that µ(D0) ≲ n1−2δ. Writeˆ
R

log|z − ζ|µ(dζ) = u1(z) + u2(z) =
ˆ
D0

log|z − ζ|µ(dζ) +
ˆ
C\D0

log|z − ζ|µ(dζ)

et D1 = D(x0, n
−3δ). Then

|u2(z) − u2(z′)| ≲ n1−δ ∀z, z′ ∈ D1

ince

|u2(z) − u2(z′)| =

⏐⏐⏐⏐⏐
ˆ
C\D0

log
⏐⏐⏐1 + z′ − z

z − ζ

⏐⏐⏐µ(dζ)

⏐⏐⏐⏐⏐ ≲ n−3δ

n−2δ µ(C) ≲ n1−δ

artan’s theorem applied to u1(z) yields disks {D(zj , rj)}j so that
∑
j rj ≲ exp(−2nδ) and with the property

hat

u1(z) ≳ −n1−δ ∀z ∈ C \
⋃
j

D(zj , rj)

From u1 ≤ 0 on D1 and |h(z) − h(z′)| ≲ n|z − z′| on R′, it follows that

|u(z) − u(z′)| ≲ n1−δ ∀z, z′ ∈ D1 \
⋃
j

D(zj , rj) (6.11)

rom the Diophantine property with 1 < a < 4
3 , say, for any x, x′ ∈ T there are positive integers k, k′ ≲ n4δ

such that

x+ kω, x′ + k′ω ∈ D1 mod Z

An elementary way of seeing this is to use Dirichlet’s approximation principle, viz. for any Q > 1 there
exists a reduced fraction p

q so that |ω − p/q| ≤ (qQ)−1 and 1 ≤ q < Q. Then use the Diophantine property
to bound q from below in terms of Q. In order to avoid the Cartan disks

⋃
j D(zj , rj) we need to remove

a set B ⊂ T of measure ≲ exp(−nδ). For this step is important that Cartan controls the sum of the radii,
i.e.,

∑
j rj ≲ exp(−2nδ) since then the disks remove at most measure ≲ exp(−2nδ) from the real line. Then

from the almost invariance (6.9), for any x, x′ ∈ T \ B,

|u(x) − u(x′)| ≲ n4δ + n1−δ ≲ n1−δ

This implies (6.6) with σ = τ = δ. □

This proof generalizes to other types of dynamics such as higher-dimensional shifts Tx = x+ω mod Zd,
on Td with d ≥ 2.

Definition 6.4. Let 0 < H < 1. For any subset B ⊂ C we define B ∈ Car1(H) if B ⊂
⋃
j D(zj , rj) with∑

j

rj ≤ C0 H. (6.12)

If d is a positive integer greater than one and B ⊂ Cd, then we define recursively B ∈ Card(H) if there exists
B0 ∈ Card−1(H) so that

B = {(z1, z2, . . . , zd) | (z2, . . . , zd) ∈ B0 or z1 ∈ B(z2, . . . , zd) with B(z2, . . . , zd) ∈ Car1(H)}.
We refer to the sets in Card(H) for any d and H summarily as Cartan sets (see Fig. 14).
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Fig. 14. Cartan-2 sets in C2.

The following theorem from [26] furnishes the key property allowing one to extend the previous proof
of (6.6) to higher-dimensional shifts. We state the case d = 2, with d > 2 being similar (see also [43]).

heorem 6.5. Suppose u is continuous on D(0, 2) × D(0, 2) ⊂ C2 with |u| ≤ 1. Assume further that{
z1 ↦→ u(z1, z2) is subharmonic for each z2 ∈ D(0, 2)
z2 ↦→ u(z1, z2) is subharmonic for each z1 ∈ D(0, 2).

Fix some γ ∈ (0, 1/2). Given r ∈ (0, 1) there exists a polydisk Π = D(x1, r
1−γ) ×D(x2, r) ⊂ D(0, 1) ×D(0, 1)

with x1, x2 ∈ [−1, 1] and a set B ∈ Car2(H) so that

|u(z1, z2) − u(z′
1, z

′
2)| < Cγ r

1−2γ log1
r

for all (z1, z2), (z′
1, z

′
2) ∈ Π \ B.

H = exp
(

−r−γ
)
.

(6.13)

This theorem replaces (6.11) in the previous proof. For the sake of completeness, we now also sketch a
proof by Fourier series as in [8,10].

Proof (Proof of Proposition 6.3 by Fourier series). For this technique, it is more convenient to view u(z)
as a subharmonic function on an annulus around |z| = 1. This is based on viewing the periodic analytic
potential V (x) as an analytic function of z = e(x) = e2πix instead and then extending analytically to the
annulus A := {z ∈ C | 1 − δ < |z| < 1 + δ} for some 0 < δ < 1. Thus, write V (x) = W (e(x)) with W analytic
on that annulus. Accordingly, u(x) = w(e(x)), and the Riesz representation takes the form

w(z) =
ˆ

A
log|z − ζ|µ(dζ) + h(z) ∀ z ∈ A (6.14)

with µ a positive measure on A with µ(A) ≲ n and ∥h∥L∞(A′) ≲ n for a slightly thinner annulus A′. Note
hat u ≥ 0 on |z| = 1. In particular,

u(x) =
ˆ

log|e(x) − ζ|µ(dζ) + h(e(x)) ∀ x ∈ T

A
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ext, we claim that

fζ(x) := log|e(x) − ζ| satisfies sup
ζ∈C

|f̂ζ(k)| ≤ C|k|−1 ∀ k ̸= 0 (6.15)

with an absolute constant. First, it suffices to prove this for |ζ| ≤ 1 by pulling out log|ζ| otherwise. By
translation in x we may further assume that 0 ≤ ζ ≤ 1. One checks that

∂xf1(x) = ∂xlog|e(x) − 1| = πcot(πx),

∂xfr(x) = ∂xlog|e(x) − r| = π
2rsin(2πx)

1 + r2 − 2rcos(2πx)

the latter for 0 ≤ r < 1. These are, respectively, the kernel of the Hilbert transform on T and the conjugate
oisson kernel. Both have uniformly bounded Fourier coefficients, uniformly in 0 ≤ r ≤ 1, whence our
laim (6.15). Indeed,

f̂r(k) = (2πik)−1∂̂xfr(k) = O(k−1)

e conclude that |û(k)| ≤ Cn|k|−1 for all k ̸= 0 by integrating over the Riesz mass. For the harmonic
unction we simply use that |∂xh(e(x))| ≲ n and the decay of the Fourier coefficients follows. By the almost
nvariance property (6.9),

u(x) − ⟨u⟩ = 1
k

k∑
j=1

u(x+ jω) − ⟨u⟩ +O(k) =
∑
ν ̸=0

û(ν)e(xν) 1
k

k∑
j=1

e(jνω) +O(k)

hen one has that⏐⏐⏐ 1
k

k∑
j=1

e(jνω)
⏐⏐⏐ ≲ min(1, k−1∥νω∥−1)

or all ν ≥ 1. Also, it follows from (6.10) that |û(ν)| ≲ n|ν|−1 which in turn implies that

|u(x) − ⟨u⟩| ≲ 1
k

k∑
j=1

⏐⏐⏐ ∑
|ν|>K

û(ν)e(ν(x+ kω))
⏐⏐⏐ +

∑
0<|ν|≤K

n|ν|−1 min(1, k−1∥νω∥−1)

On the one hand, by Plancherel and the decay of the Fourier coefficients, 1
k

k∑
j=1

⏐⏐⏐ ∑
|ν|>K

û(ν)e(ν(x+ jω))
⏐⏐⏐ 

L2
x

≤
 ∑

|ν|>K

û(ν)e(νx)


2
≲ nK−1/2

n the other hand, setting K = en
τ it follows from the Diophantine condition (with a = 2 for simplicity)

hat ∑
0<|ν|≤K

n|ν|−1 min(1, k−1∥νω∥−1) ≲ nk− 1
2 logK ≲ n1+τk− 1

2 (6.16)

hoosing τ > 0 small and k = n
1
2 , say, yields (6.6). To prove (6.16), partition 0 < |ν| ≤ K into sets

orresponding to the size of ∥νω∥. First ∥νω∥ ≤ k−1 and then ∥νω∥ ∈ k−1(2j−1, 2j ] for j ≥ 1 and k−12j < 1.
he Diophantine condition implies that the recurrences into these sets cannot be more frequent than specific
rithmetic conditions, which the reader can easily check. The logK term results from summing the harmonic
eries over a finite arithmetic progression. □

emark 6.6. Write the Diophantine condition in the form ∥kω∥ ≥ h(k) for all k ≥ 1. Later we will need
o exploit the fact that the previous proofs require this condition only in the range 1 ≤ k ≤ n.
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For applications related to the study of fine properties of the IDS it turns out to be important to
obtain sharp versions of (6.6). The commutative model example suggests that the optimal relation is
0 ≤ 1 − σ = τ ≤ 1. Here σ = 1 − τ = 0 corresponds to the largest possible deviations and smallest
measures. The previous two proofs do not easily yield such a statement, but it was proved in [26] by a more
involved argument. The book [8] contains an elegant Fourier series proof, see Theorem 5.1 on page 25. Both
these references require stronger Diophantine conditions.

There is a close connection between the Wegner estimate in Section 3 and the LDT from above. We
refer to reader to [27, Lemma 5.5] for the precise formulation of a Wegner estimate derived via LDT for the
quasi-periodic model (6.1).

6.2. LDT and regular Green functions

As in Sections 3 and 4 the key to proving localization in Theorem 6.1 is to exclude arbitrarily long chains
of resonances (absence of infinite tunneling). In fact, one shows that one cannot have double resonances on
sufficiently long scales, in exact analogy with the localization results we proved above. The LDT theorems
from above enter into this analysis through the Green function associated with (6.1) on finite intervals. In
fact, from Cramer’s rule for any Λ = [a, b] ∈ Z, and a ≤ j ≤ k ≤ b,

(HΛ(x) − E)−1(j, k) =
det(H[a,j−1](x) − E)det(H[k,b](x) − E)

det(HΛ(x) − E)
(6.17)

for fixed x, ω, the latter Diophantine. We denote fn(x,E) = det(H[1,n](x) −E). In explicit form, the matrix
s

H[1,n](x) − E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(x) − E 1 0 0 . . . . 0
1 v2(x) − E 1 0 0 . . . 0
0 1 v3(x) − E 1 0 0 . . 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . 1
0 0 . . . . . 1 vn(x) − E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.18)

with vj(x) = V (T jx) and T = Tω. Thus, (6.17) implies that

G[1,n](x,E)(j, k) = (H[1,n](x) − E)−1(j, k) = fj−1(x,E)fn−k(T kx,E)
fn(x,E) , 1 ≤ j ≤ k ≤ n (6.19)

ith the convention f0 = 1. The transfer matrices defined in (6.3) satisfy for all n ≥ 1

Mn(x,E) =
[

(−1)nfn(x,E) (−1)nfn−1(Tx,E)
(−1)n−1fn−1(x,E) (−1)n−1fn−2(Tx,E)

]
(6.20)

where we set f−1 = 0. The following uniform upper bound from [28, Proposition 4.3] improves on the
LDT. As expected, as a subharmonic function log∥Mn(x,E)∥ can only have large deviations towards values
which are much smaller than nLn(E) but cannot exhibit deviations in the opposite direction. The following
inequality requires positive Lyapunov exponents and relies on some machinery which we have not discussed
here, such as the avalanche principle from [26]. Moreover, [28] imposes a Diophantine condition of the form

∥nω∥ ≥ b

n(logn)2 , n ≥ 2

hich holds for some b > 0 for a.e. ω. Of course one needs V analytic since the following lemma heavily
elies on subharmonic functions and the LDT from above.
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emma 6.7. Assume L(E) ≥ γ > 0 for all E ∈ I, some interval. For all n ≥ 1 one has

sup
x∈T

log∥Mn(x,E)∥ ≤ nLn(E) + C(logn)B ,

for some absolute constant B and C = C(V, γ, b, I).

In view of (6.20) and the Thouless formula (6.5) it is natural to ask if each entry of Mn, i.e., the
determinants fn satisfy an LDT individually. This was proven to hold in [28, Section2].

Proposition 6.8. There exists σ > 0 so that for large n

|{x ∈ T | log|fn(x,E)| < nLn(E) − nσ}| ≤ e−nσ

A stronger statement is possible if we assume positive Lyapunov exponents. See [27, Lemma 5.1]. Below
MO refers to bounded mean oscillation, see e.g. [48].

roposition 6.9. Assume L(E) ≥ γ > 0 for all E ∈ I. For some constants A and C depending on ω, V ,
nd γ, every n ≥ 1 satisfies⏐⏐⏐ˆ 1

0
log|det(H[1,n](x) − E)| dx− nLn(E)

⏐⏐⏐ ≤ C

∥log|det(H[1,n](x) − E)| ∥BMO ≤ C(logn)A.
(6.21)

hus,

|{x ∈ T | |log|det(H[1,n](x) − E)| − nLn(E)| > H}| ≤ Cexp
(

− H

(logn)A
)

(6.22)

or any H > (logn)A. If V is a trigonometric polynomial, then the set on the left-hand side is covered by
deg(V )n many intervals each not exceeding in length the measure bound of (6.22).

The final statement follows from the fact that zdndet(H[1,n](x) − E) with z = e(x), is a polynomial
of degree 2dn. The estimate (6.22) follows from the BMO bound (6.21) by means of the classical John–
Nirenberg inequality. The large deviation estimate for the determinants fn(x,E) do not appear in the original
proof of Theorem 6.1, and they were established later in [28]. However, they help to streamline some of the
technical aspects of [10]. For example, in view of (6.19), (6.20) and Lemma 6.7, the Green function satisfies
for large n (and of course for positive Lyapunov exponents)

|G[1,n](x,E)(j, k)| ≤ exp
(
(j − 1)Lj−1(E) + (n− k)Ln−k(E) − nLn(E) + (logn)2A)

provided
|fn(x,E)| ≥ nLn(E) − (logn)2A (6.23)

hich therefore holds up to a set of measure ≲ exp(−(logn)A) (assuming A ≥ B). It was proved in [26] that
n(E) − L(E) ≤ Cn−1 whence it follows from (6.23) that

|G[1,n](x,E)(j, k)| ≤ exp
(
−|j − k|L(E) + (logn)2A)

(6.24)

p to a set of measure ≲ exp(−(logn)A). By the preceding this set can be made ≲ exp(−nσ) with 0 < σ < 1
f we settle for the weaker Green function bound

|G[1,n](x,E)(j, k)| ≤ exp
(
−|j − k|L(E) + nσ(logn)A

)
∀ j, k ∈ [1, n] (6.25)

nd large n. This is precisely the notion of regular Green functions from Section 3. Since

dist(spec(H (x)), E) = ∥G (x,E)∥−1

[1,n] [1,n]
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he connection with a Wegner-type estimate is also immediately apparent. For example, from (6.25) one
oncludes the following statement. We assume throughout that

|E| ≤ 2 + ∥V ∥∞ (6.26)

since this range contains spec(Hx).

Corollary 6.10. Under the same assumptions as Proposition 6.9 one has

|{x ∈ T | dist(spec(H[1,n](x)), E) < exp
(
−n1/3)

}| ≤ e−n
1
4 (6.27)

or large n. In addition, the set on the left-hand side is contained in O(n) many intervals assuming V is a
rigonometric polynomial.

.3. Eliminating double resonances

We will assume for convenience that V is a trigonometric polynomial. As in the proof of localization in
Sections 3 and 4 we begin from a generalized (nonzero) eigenfunction H(x) = Eψ(x) which by Theorem 2.1
rows at most linearly: |ψ(n)| ≤ C(1 + |n|). We claim that for any n sufficiently large there exists a window
0 = [−m,m] with n ≤ m ≤ n3 such that HΛ0(0) is resonant with E. Quantitatively, we claim

dist(spec(H[−m,m](0)), E) ≤ e−m1/4 (6.28)

ndeed, denote the set in Proposition 6.8 by Bn. It consists of O(n) intervals of length e−nσ . Therefore, by
the Diophantine condition the set

{n ≤ m ≤ n2 |mω ∈ Bn(E) ∪ (−Bn(E))}

has cardinality O(n). Pick an m ∈ [n, n2] which is not in this set. Then by (6.25)

|G[m−n,m+n](0, E)(m+ 1,m± n)| + |G[−m−n,−m+n](0, E)(−m− 1,−m± n)| ≤ exp(−γn/2),

hence by (3.28) for large n√
ψ(m+ 1)2 + ψ(−m− 1)2 ≤ 2Cexp(−γn/2)(1 + n2) ≤ exp(−γn/3)

ombined with ((H[−m,m](0)) − E)ψ = ψ(m+ 1)δm+1 + ψ(−m− 1)δ−(m+1) this estimate implies that

∥(H[−m,m](0) − E)ψ∥ ≤ exp(−γn/3) ≤ e−m1/4

which is what we claimed in (6.28). Let us denote by Diophn(b) the Diophantine condition

∥kω∥ ≥ b

k(1 + logk)2 ∀ 1 ≤ k ≤ n (6.29)

nd Dioph(b) =
⋂∞
n=1 Diophn(b). Then under this condition we have the following stronger LDT for the

determinants, see [29, Corollary 2.15]:

Lemma 6.11. Assume ω ∈ Diophn(b) and positive Lyapunov exponents as above. For any E0 in the
range (6.26),

|{x ∈ T | log|fn(x, ω,E)| < nLn(E,ω) − n
1
2 for some |E − E0| ≤ e−n}| ≤ e−n

1
3 (6.30)

f n ≥ n (V, b, γ) is large.
0
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Fig. 15. The lemma on steep lines.

roof. For fixed E0 we already stated this LDT for the determinant in Proposition 6.9. The stability in
over the exponentially small interval [E0 − e−n, E0 + e−n] is precisely what [29, Corollary 2.15] provides.

he statement in loc. cit. is slightly weaker, but replacing the upper bound of [29, Corollary 2.14] with the
tronger one of Lemma 6.7 implies (6.30). □

In view of this lemma, and (6.28) we now introduce the following set which will allow us to eliminate
double resonances: for any b > 0

Sn(b) :=
{

(ω, x) ∈ Diophn(b) × T | ∃E ∈ R with dist(spec(H[−n,n](0, ω)), E) ≤ e−n1/4
, and

log|fm(x, ω,E)| ≤ mLm(E,ω) −m1/2 for some m ∈ [n1/4/2, n1/4]
} (6.31)

f dist(spec(H[−n,n](0, ω)), E) ≤ e−n1/4 , then |E − Ej,n(ω)| ≤ e−n1/4 for some eigenvalue Ej,n(ω) of
[−n,n](0, ω). Applying Lemma 6.11 with E0 = Ej,n(ω) and summing over 1 ≤ j ≤ 2n+ 1 one concludes by
ubini that

|Sn(b)| ≤ 3n 5
4 e−n1/12

. (6.32)

The set of bad ω, which we will need to exclude in order to prevent double resonances, is

Bn(b) := {ω ∈ T | (ω, ℓω) ∈ Sn(b) for some ± ℓ ∈ [n2s, 2n2s]} (6.33)

Here s ≥ 2 is an absolute constant, which we will specify later. The following lemma on steep lines from [10]
guarantees that Bn(b) has very small measure. This hinges not only on the small measure estimate of (6.32),
which by itself is insufficient, but also on the structure of the set Sn(b). Specifically, the fact that the
horizontal slices

(Sn(b))x := {ω ∈ T | (ω, x) ∈ Sn(b)} (6.34)

re contained in no more than O(ns) many intervals of very small measure (see Fig. 15).
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emma 6.12. Suppose the Borel set S ⊂ T2 has the property that for every x ∈ T the horizontal slice Sx,
iewed as a subset of [0, 1], consists of no more than M intervals. Then

|{ω ∈ T | (ω, ℓω) ∈ S mod Z2 for some ℓ ∈ [N, 2N ]}| ≤ M

N
+ 8N 5

2 |S|
1
2 (6.35)

roof. By Fubini, for each γ > 0,

|{x ∈ T | |Sx| > γ}| ≤ |S|γ−1

e define the set of good x ∈ T as

G := {x ∈ T | |Sx| ≤ γ and for all j ∈ [1, N ] one has ∥xj∥ > 4N2γ} (6.36)

ith ∥ · ∥ the norm of T. Then

|T \ G| ≤ |S|γ−1 + 4N3γ

e optimize here by setting γ = (4N3)− 1
2 |S|

1
2 whence

|T \ G| ≤ 4N 3
2 |S|

1
2 (6.37)

orrespondingly,

S = S∗ ∪ S∗∗ := (S ∩ G) ∪ (S ∩ (T \ G))

e eliminate S∗∗ as follows:
|{ω ∈ T | (ω, ℓω) ∈ S∗∗ mod Z2 for some ℓ ∈ [N, 2N ]}|

≤
2N∑
ℓ=N

|{ω ∈ T | ℓω ∈ T \ G}| ≤ (N + 1)|T \ G| ≤ 8N 5
2 |S|

1
2

(6.38)

n the other hand, where {x} = x− ⌊x⌋ for x > 0 denotes the fractional part,

|{ω ∈ T | (ω, ℓω) ∈ S∗ mod Z2 for some ℓ ∈ [N, 2N ]}|

≤
2N∑
ℓ=N

ˆ 1

0
1S∗(ω, {ℓω}) dω =

2N∑
ℓ=N

1
ℓ

ℓ−1∑
k=0

ˆ 1

0
1S∗((x+ k)/ℓ, x) dx

≤
M∑
α=1

1
N

ˆ
G

2N∑
ℓ=N

ℓ−1∑
k=0

1Iα(x)((x+ k)/ℓ) dx

(6.39)

Here, for x ∈ G, (S∗)x = Sx =
⋃M
α=1 Iα(x) with Iα(x) intervals of length |Iα(x)| ≤ γ, possibly empty. We

claim that for all x ∈ G one has
2N∑
ℓ=N

ℓ−1∑
k=0

1Iα(x)((x+ k)/ℓ) ≤ 1 (6.40)

Indeed, suppose ℓ ̸= ℓ′ both in [N, 2N ] and x+k
ℓ , x+k′

ℓ′ ∈ Iα(x). Then⏐⏐⏐x+ k

ℓ
− x+ k′

ℓ′

⏐⏐⏐ ≤ |Iα(x)|

hence |x(ℓ− ℓ′) + kℓ′ − k′ℓ| ≤ ℓℓ′|Iα(x)| and thus ∥jx∥ ≤ 4N2γ for some 1 ≤ j ≤ N . But this is excluded
y x being in the good set. So it follows that ℓ = ℓ′, which implies that for k ̸= k′

γ ≥ |Iα(x)| ≥
⏐⏐⏐x+ k

ℓ
− x+ k′

ℓ

⏐⏐⏐ ≥ 1
ℓ

≥ 1
N

which contradicts that N2γ2 = (4N)−1|S| < 1. So Claim (6.40) is correct, and the entire contribution
to (6.39) is at most M/N . □
51



W. Schlag Nonlinear Analysis 220 (2022) 112869

b

w
o

t

To obtain the complexity bound of O(ns) on the set (6.34), we use semi-algebraic methods. A closed set
S ⊂ RN is called semi-algebraic if there are polynomials Pj ∈ R[X1, . . . , XN ], 1 ≤ j ≤ s of degrees bounded
y d so that

S =
⋃
k

⋂
j∈Fk

{Pj σkj 0}

ith σkj ∈ {≤,≥,=} and Fk ⊂ {1, 2, . . . , s}. The degree of S is bounded by sd and is in fact the infimum
f sd over all such representations.

One might expect to get away with more elementary arguments based on zero counts alone. Note, however,
hat E is projected out of in the set Sn(b) which makes it necessary to perform quantifier elimination. In

fact, we will need to use a quantitative Seidenberg–Tarski theorem to control the complexity parameter M
in Lemma 6.12. This fundamental result states that any projection of S onto a subspace of RN is again
semi-algebraic and the degree can only grow at a power rate (depending on N). See [4,5].

These semi-algebraic techniques are available here since V is a trigonometric polynomial although by
approximation and truncation, V analytic can also be handled in [10]. Heuristically speaking, the semi-
algebraic quantitative complexity bounds replace the explicitly imposed complexity in Theorem 4.1 where
exactly two monotonicity intervals of V are assumed.

We claim that Sn(b) is contained in

S̃n(b) := ΠR2
{

(ω, x,E) ∈ Diophn(b) × T × R | log|f2n+1(nω, ω,E)| ≤ (2n+ 1)L2n+1(E,ω) − n1/4/2,
and log|fm(x, ω,E)| ≤ mLm(E,ω) −m1/2 for some m ∈ [n1/4/2, n1/4]

}
(6.41)

where ΠR2 projects on to (ω, x) and moreover, that S̃n(b) has essentially the same measure bound as Sn(b).
And conversely,

S̃n(b) ⊂
{

(ω, x) ∈ Diophn(b) × T | ∃E ∈ R with dist(spec(H[−n,n](0, ω)), E) ≤ e−n1/4/4, and
log|fm(x, ω,E)| ≤ mLm(E,ω) −m1/2 for some m ∈ [n1/4/2, n1/4]

}
These relations follow from noting that

dist(spec(H[−n,n](0, ω)), E) = ∥((H[−n,n](0, ω)) − E)−1∥ and ∥A∥ ≤ ∥A∥HS ≤
√
d ∥A∥

for any d×d matrix A, and using the relation (6.25). In particular, we obtain essentially the same estimates
on their two-dimensional measure. The sets S̃n(b) := ΠR2Dn(b) with

Dn(b) = {(ω, x,E) ∈ Diophn(b) × T × R | |f2n+1(nω, ω,E)| ≤ exp
(
(2n+ 1)L2n+1(E,ω) − n1/4/2

)
}

∩
⋃

m∈[n1/4/2,n1/4]

{
(ω, x,E) ∈ Diophn(b) × T × R | |fm(x, ω,E)| ≤ exp

(
mLm(E,ω) −m1/2)}

(6.42)

are already quite close to our sought after polynomial description. However, a polynomial expression for
the Lyapunov exponents in finite volume needs to be found. Note that while we may pass to their infinite
volume versions due to the [26] rate of convergence estimate Lm(E,ω) − L(E,ω) ≤ Cm−1, it would be
counter productive to do so at this point. Rather, we will use that uniformly in x,

nLn(E,ω) = 1
n2

n2∑
log∥Mn(x+ jω, ω,E)∥ +O((logn)A)
j=1
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Fig. 16. Absence of double resonances.

his follows from ∥Mn∥ ≥ 1, (6.20), and the same arguments which we used in the proof of (6.28). Therefore,
we can replace

|fm(x, ω,E)| ≤ exp(mLm(E,ω) −m1/2)

ith

|fm(x, ω,E)|2m
2

≤ e−m
5
2
m2∏
j=1

∥Mm(jω, ω,E)∥2
HS

his is a polynomial inequality in all variables of degree O(m4) = O(n). The set on the first line of Dn

is described by a polynomial inequality of degree O(n4). Since there are ≲ n
1
4 polynomials involved in the

escription of the semi-algebraic set Dn(b) above, it is of degree ≲ n5. Projecting out E, we conclude that
ñ(b) has degree O(ns) for some finite s as claimed. Finally, each horizontal slice consists of at most O(ns)
any connected components, i.e., intervals.

roof of Theorem 6.1. The set of admissible ω for the theorem is

Ω := Dioph \
∞⋃
j=1

lim sup
n→∞

Bn(1/j), Dioph :=
∞⋃
j=1

Dioph(1/j)

where Bn(b) is defined in (6.33). By Lemma 6.12,

|Bn(1/j)| ≤ C(j)(n−s + nCe−n1/12
),

∞∑
n=1

|Bn(1/j)| < ∞

whence by Borel–Cantelli | lim supn→∞ Bn(1/j)| = 0. Since Dioph has full measure in T, so does Ω . Now
freeze some ω ∈ Ω . Note in particular that ω ∈ Dioph(b) for some b > 0 whence the LDT results all hold.
Given a generalized eigenfunction H(x)ψ = Eψ by Theorem 2.1, we showed that for all sufficiently large n,
(6.28) holds for some n ≤ m ≤ n3. By definition of Bn(b), see Fig. 16, we conclude that all Green functions
GΛ(0, ω, E) with Λ ⊂ [ms, 2ms] and |Λ| ≃ m

1
4 satisfy

∥GΛ(0, ω, E)∥ ≤ e|Λ|
1
2 , |GΛ(0, ω, E)(x, y)| ≤ e−γ|x−y|+|Λ|

1
2 ∀ x, y ∈ Λ

sing the resolvent identity iteratively as in Lemma 3.8, albeit with all subintervals being regular for E, we
onclude that the Green function on the large window is also regular for E:

∥G±[ms,2ms](0, ω, E)∥ ≤ em
1
8 , |G±[ms,2ms](0, ω, E)(x, y)| ≤ e−γ|x−y|+m

1
8 ∀ x, y ∈ ±[ms, 2ms]

rom which the exponential decay of ψ immediately follows. □
53
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Fig. 17. Mathematica code for Figs. 9 and 10.

eferences

[1] M. Aizenman, S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Commun.
Math. Phys. 157 (2) (1993) 245–278.

[2] M. Aizenman, S. Warzel, Random Operators. Disorder Effects on Quantum Spectra and Dynamics, in: Graduate Studies
in Mathematics, vol. 168, American Mathematical Society, Providence, RI, 2015.

[3] A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math. 215 (1) (2015) 1–54.
[4] S. Basu, R. Pollack, M. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM 43 (6)

(1996) 1002–1045.
[5] S. Basu, R. Pollack, M. Roy, Algorithms in Real Algebraic Geometry, Springer-Verlag, Berlin, 2003.
[6] J. Berezanskii, Expansions in eigenfunctions of selfadjoint operators, in: Translations of Mathematical Monographs, Vol.

17, Amer. Math. Soc. Providence, R.I, 1968.
[7] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, in: Progress in

Probability and Statistics, Vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985.
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[23] J. Fröhlich, T. Spencer, P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators,

Commun. Math. Phys. 132 (1) (1990) 5–25.
[24] H. Fürstenberg, H. Kesten, Products of random matrices, Ann. Math. Stat. 31 (1960) 457–469.
[25] F. Germinet, A. Klein, Bootstrap multiscale analysis and localization in random media, Commun. Math. Phys. 222 (2)

(2001) 415–448.
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