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1. Introduction

In the 1950s Phil Anderson studied random operators of the form
H = Azd + )\V

where Ajq is the discrete Laplacian on the d-dimensional lattice and V' : Z¢9 — R a random field with
i.i.d. components, and a real parameter A. His pioneering work suggested by physical arguments that for
large A, with probability 1, a typical realization of the random operator H exhibits exponentially decaying
eigenfunctions which form a basis of £2(Z?). This is referred to as Anderson localization (AL). It is in stark
contrast to periodic V for which the spectrum is absolutely continuous (a.c.) with a distorted Fourier basis of
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Bloch—Floquet waves, see [40,42]. Furthermore, and most importantly, Anderson found a phase transition in
dimensions three and higher, leading to the a.s. presence of a.c. spectrum for small A. This famous eztended
states problem is still not understood.

On the other hand, a large mathematical literature now exists dealing with Anderson localization and its
ramifications (density of states, Poisson behavior of eigenvalues). This introduction is not meant as a broad
introduction to this field, for which we refer the reader to the recent textbook [2], as well as the more classical
treaties [7,14,20] and the forthcoming texts [16,17]. Our focus here is with the body of techniques commonly
referred to as multiscale. They are all based on some form of induction on scales, and are reminiscent of
KAM arguments.

This approach is effective both in random models, as well as those with deterministic potentials, which
refers to V(n) being fixed by a finite number of parameters. For example, Harper’s model on Z is given by
V(n) = cos(2m(nw + z)) with irrational w and « € R/Z. The only stochastic parameter is this choice of z.
The Harper operator, which is also known as almost Mathieu operator, as well as more general quasi-periodic
operators, exhibit a rich and subtle spectral theory, see for example the survey [35].

Bourgain’s book [8] contains a wealth of material on a wide class of stochastic Schrodinger operators with
deterministic potentials. An important basic assumption in that book is the analyticity of the generating
function, i.e., if V(n) = F(T"z) for some ergodic transformation 7 on a torus, then F' is assumed to
be analytic or a trigonometric polynomial. The analyticity allows for the use of subharmonic functions.
These are relevant for large deviation theorems, which in turn hinge on some Cartan type lower bound for
subharmonic functions. This first part of the notes can be seen as a companion to Bourgain’s book [8]
but only up to Chapter 12. The plan for the second part of this introduction is to focus on the matrix-
valued Cartan theorem of [11], and the higher-dimensional theory as in [9], with applications. This will then
hopefully serve to make Chapters 14 through 19 of [8] more accessible.

2. Polynomially bounded Fourier basis

In this section we establish the following widely known fact concerning the Fourier transform associated
with a Schrodinger operator. It is a particular case of a more general theory, see the text [6] and the
survey [44]. Results of this type go by the name of Shnol theorem. We follow the argument in [19].
Throughout, the discrete Laplacian on Z? is defined as the sum over nearest neighbors, i.e.,

(Af)(x) =D flate) Vaez! (2.1)
+

Jj=1

where e; are the standard coordinate vectors. If F : £2(Z%) — L?(T?) denotes the Fourier transform, then

d
(FoAoF ' f)(0) =m(0)f(0) =2 cos(2mb;) f(0) (2.2)
j=1
and the spectrum satisfies spec(A) = [—2d,2d]. The Laplacian (2.1) differs from the more customary

—A = V*V where (Vf)(z) = {f(z + ej) — f(x)}‘;:l, by a diagonal term: —A = —A 4 2d. For the original
reference, see [47].

Theorem 2.1. Consider H = A+V as a bounded operator on (*(Z%), with V € (>*(Z%) real-valued and
acting by multiplication. Fix o > %. Then for almost every E € R with respect to the spectral measure’ of H
there exists 1 : Z% — R not identically vanishing with Hy = Ev and |1(n)| < C(d, o, E){(n)? for alln € Z°.

1 Ie., up to a set of measure 0 relative to the spectral measure of H.
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Proof. Take any z € R\ X, where X is the spectrum of H (we take z € R for simplicity). By the Combes—
Thomas estimate the Green function (H — 2)~!(z,y) has exponential decay: there exist positive constants
C, (B so that

(H = 2)"}(a,y)] < Cexp(—fle —y|)  Va,yeZ’ (2.3)

We follow the convention that an operator 7" has kernel T'(z,y). To see this, let (Mg ;f)(n) = €™ f(n) and
compute

ME’JI-O(H—Z)OMg’j:H—Z—f—Sg’j

with |93 ]l2—2 < C|B| uniformly in |3] < 1. Hence,
Mgio(H—2)""oMg;=(H=2""o(I+Ss;(H—2)"""

where the inverse on the right exists by a Neumann series as long as in the operator norm
1S53 (H —2)~*] < 1

which holds if |3|dist(z, X') < ¢, some small constant. In particular,
(8, (H = 2)7'6,)] = [(H — )™ (@, y)| < CePs=w)

Since the sign of 8 and the choice of j are arbitrary, (2.3) follows. Throughout, (-,-) denotes the complex
inner product which is linear in the second variable.

Let w,(z) == (z)~7 on Z%. Fixing any o > 4 so that (z)~ € (?(Z?), the Combes Thomas bound (2.3)
implies that (H — 2)~!(z,y)w, (y) € £2(Z* x Z¢) whence

(H —2)71: 2z — 224

is a Hilbert-Schmidt operator. Here ¢2(Z%) = w,¢?(Z?). By the spectral theorem there exists a unitary
U : (*(Z2%) — L*(X, p) where p is a o-finite measure, and ¢ € L>°(X) real-valued, with UH f = ¢ U f for all
f € £%(Z%). The p-essential range of ¢ equals X. The composition

T=UH—-2)"1 = (¢p—2)"'U: 22 - L*(X,pn)

is Hilbert-Schmidt, whence by the standard kernel representation of such operators, for every n € Z¢ there
exists K(-,n) € L?(X, p) with

/ S 1K (@) w2 (n) p(dz) < o0
XnEZd
and

Tf(x)= Y K(z,n)f(n) Vfel(Z

nezd

The series converges in L?(X, u1). Define ¥, (n) = (¢(z) — 2) K (z,n). Then for all f € ¢2(Z%), and p — a.e.

z,

(Uf)(x) = ($(x) = 2)(Tf)(x) = Y ($(x) = 2) K (x,n) f(n) = (Wu, f) 2z, (2.4)
3
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By the preceding 1, € (¢2(Z9))* = (2 _(Z?) for p-a.e. x. Next, we claim that a.e. in 2 and in the point-wise
sense on Z<¢

Hipy = ¢(x)1)s (2.5)

as well as ¢, £ 0. Take f on the lattice with finite support. Then H f has finite support and by (2.4)

(Hipa, f) = (Y, Hf) = (UH f)(2) = ¢(x)(Uf) (@) = (d() bz, f)

all scalar products in £2(Z%), and for p-a.e. z. It follows that Hv, = ¢(x), whence (2.5). Now suppose
Y, =0forallz €S C X, u(S) > 0. Then for all f € £2(Z%), this implies that Uf = 0 p-a.e. on S, and

0=(Uf,xs)r2(u) = (/U X8)e2(24)

But this means that U*xs = 0 which contradicts ||U*xs||3 = 1(S) > 0. To summarize, there is A" C X with
w(N) = 0 so that for all E € G := ¢(X \ N) the equation H1y) = E7 has a nonzero solution v € (2 (Z%).
We claim that E(R\ G) = 0 where £ is the spectral resolution of H, i.e., a projection-valued Borel measure
with H = [ A&(d)). But for any Borel set B C R, UE(B)U*g = xy4-1(p)g on all g € L*(X, ). Since
¢~ 1(R\ G) C N is a p-nullset, we conclude that UE(R\ G) U* = 0 whence E(R\ G) = 0. So HY = E has
nonzero solution v € ¢2 _(Z%) spectrally a.e. O

This proof applies much more generally and the discrete Laplacian is used only sparingly. For example,
it can be replaced with a self-adjoint T6plitz operator with exponential off-diagonal decay.

3. The Anderson model and localization

Let
H,=A+YV, (3.1)

on (?(Z%) where V,, is a diagonal operator given by i.i.d. random variables at each lattice site n € Z<.
The single site distribution refers to the law of V,(0) which we assume to be a.s. bounded. Then H,, is
a.s. a bounded operator. The notation is based on an underlying probability space (£2,P), with w € 2. If
d = 1 we may consider a more general model with a potential generated by any ergodic dynamical system.
Thus, let T : X — X be measure preserving, invertible, and ergodic on X relative to the probability
measure v. Then set V,(n) = f(T"z) where f : X — R is measurable and v-essentially bounded, and
define H, := A+ V, in ¢*(Z). The one-dimensional random Anderson model is included in this formalism.
Indeed, let T' be the Bernoulli shift and f the projection on the 0-coordinate with the ergodic measure being
the infinite product measure generated by the single-site distribution. For the general 1-dimensional model
we shall now demonstrate that the spectrum of H, is deterministic by ergodicity.

Proposition 3.1. There exists a compact set ¥ C R so that spec(H,) = X for v-almost every x € X.

Proof. One has the conjugation
HT.’E - Uil o Hm oU (32)

with the right-shift U : ¢2(Z) — ¢*(Z) and so also E7,(B) = U~! 0 £,(B) o U with the spectral resolution
&, of H, and any Borel set B C R. Recall that H, = f A&, (d)N) in a suitable sense.

E(B) :={z € X | rank(&,(B)) > 0}
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is an invariant set, i.e., E(B) = T~}(E(B)) whence v(E(B)) = 0 or v(E(B)) = 1. Define

2 =R\ [J{(a,b) | v(E((a,]))) = 0}
a<b
where the union is over rational a,b. If any interval I C R intersects X, then rank(E,(I)) > 0 for v-a.e.
x € X. Hence also I Nspec(H,) # O for ae. xz. O

A finer description of the set X' can be obtained by a similar argument. The subscripts ac, sc, pp stand
for, respectively, absolutely continuous, singular continuous, and pure point.

Proposition 3.2. There exist compact subsets Xoc, Xse, and Xy, of X such that ¥ = XU X U Xy, (not
necessarily disjoint) such that for any Borel set B with B N X,. # @ the following holds: for a.e. x € X
there exists f € (*(Z) so that u(A) == (E.(AN B)f, f) defined on Borel sets A is an absolutely continuous
probability measure. Analogous statements hold for the singular continuous, and pure point (atomic) parts.

Proof. We define, with the union being over rationals,

Zae =R\ (J{(a,0) |V [ € £(Z), A (E:((a,0) N AL, f)
a<b
v — a.s. has no absolutely continuous component}

where the latter property refers to the Lebesgue decomposition. We adopt the convention that the 0 measure
has no absolutely continuous component (as well as no singular component). By ergodicity and the conjugacy
of H, and Hr,, respectively, by the shift, the set

Y(a,b) ={z € X|3 f € *(Z), A (E:((a,0) NA)f, f)

has an absolutely continuous component}

is T-invariant and thus v(Y (a,b)) =0 or v(Y (a,b)) = 1. Hence

Zae =R\ (J{(a,0) |a,b € Q, v(Y(a,b)) = 0}
a<b
Now suppose B N X,. # @. Without loss of generality, B C X,.. If BN (a,b) # @ with a,b € Q, then
v(Y(a,b)) = 1. Thus v-a.s., A— (E:((a,b) N A)f, f) is absolutely continuous for some f. We used here that
we may pass from the existence of an absolutely continuous component to purely absolutely continuous
by projecting f on the a.c. subspace of H,. The claim of having a probability measure is obtained by
normalization. The proofs for the singular parts is identical. [

These arguments make no use of the Laplacian and therefore apply to the diagonal operator given by
multiplication by the potential V,,. In that case the eigenvalues are {V,(n) = f(T"x)|n € Z} and the
closure of this set is deterministic and equals X,,. Moreover, Yo, = X5, = O.

Propositions 3.1 and 3.2 apply as stated to the random model H,, from above, as the reader is invited
to explore. In fact, on £2(Z%) we may consider d measure preserving, invertible, commuting transformations
T; : X — X with the following ergodicity property: if A C X is invariant under all T}, then v(A4) = 0
or v(A) = 1. Then the previous two propositions apply to the operator H, = Azq + V, with V,(n) =
f(I o Ty? o+ 0 Tydz) for any i = (ni,...,nq) € Z* with essentially the same proofs. See [20,39] for a
systematic development of the spectral theory of ergodic families of operators.

For the random model, which is the original Anderson model, we can now explicitly compute the almost
sure spectrum Y in Proposition 3.1. Recall that we are assuming bounded support of the single site
distribution.



W. Schlag Nonlinear Analysis 220 (2022) 112869

Proposition 3.3. For H,, as defined in (3.1) satisfies
¥ =[-2d,2d) + K

where K is the essential support of the single site distribution V,,(0).

Proof. By definition, K = R\ |J{I | u(I) = 0} where I is an interval with rational endpoints. If
Ao € [~2d,2d], then by (2.2) there exists a € T? with m(a) = Ag. Thus, Ae, = Aoe, Where e, (n) = e2mien
for all n € Z%. The following holds almost surely: given L > 1, ¢ > 0, and A\; € K, there exists a cube
A C Z*% of side length L such that ||V — Ay |0 (4) < €. Then with X = A + Ay,

(H = Nxaea = (V= A1)xaea +9

with ||g]|3 < |04] < L4t Here 0/ is defined as those € A which have a nearest neighbor in Z¢ \ A, and
1
| - | is the cardinality (or volume). Hence, with the normalized function ¢ = yaeq|A|” 2

1
I(H=MNell2 Se+L72
which implies that almost surely,

sup||(H — A — ie) Y| = o0
e>0

and thus A\ € spec(H). This shows that [-2d,2d] + K C X.
Conversely, suppose A € R\ ([-2d,2d] + K). By compactness of the sum set there exists § > 0 so that
almost surely

inf |V,(n) = Al >2d+§

nezd
Thus, a.s. the resolvent

1

(H-N""=I+Vo-N"14) (Vo-N""

exists as a bounded operator on ¢?(Z%). O

For any cube A C Z? we denote by P, the projection onto all states, i.e., f € ¢2(Z%) supported in A.
Thus, Pyf = 14f for any f € (*(Z%). By H, := P4HP, we denote the restriction of H as in (3.1) to the
cube A with Dirichlet boundary conditions. Note that the randomness of H is understood and not indicated
in the notation, say by an index w.

It is natural to ask about the probability that any given number F € R comes close to the spectrum
of H,. In other words, for any p > 0 what is

P({dist(E,spec(Ha)) < p}) = P({|(Ha — E)"'|| > p~'})? (3.3)
The diagonal operator given by the random potential V' alone satisfies
P({dist(E,spec(PAVPy)) < p}) <E#{ne A|V(n) e (E—p,E+p)}

3.4
< |A|lu((E - p, E+p)) S%IMH%HM Y

where (1 is the law of V(0). A classical fact concerning the random Schrédinger operator is that (3.3) permits
essentially the same bound as (3.4). This is known as Wegner’s estimate, see [52].

6
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Proposition 3.4.  Assume the single site distribution of the random operator (3.1) satisfies p/' = ZZ €
L>(R). Then for all E € R,

P({dist(E, spec(H.1)) < p}) < 4p][1 | oc| 4] (3.5)

for all cubes A C Z% and p > 0.

Proof. We will present two proofs. For the first we follow Wegner’s original argument [52]. Denote by N (z)
the integrated density of states for the random operator H,. To wit, if B} < Ei < < ET,m = 4],
denote the eigenvalues of H, with multiplicity, then

Ny(w) = #{1 <j <m| B} <}
Let ¢ > 0 be a smooth bump function on R supported in [—1,1], and set ¢,(z) = p~'¢(x/p). Normalize so
that [ o(2) de = 1. Then with F , = N * ¢, one has
E+2p
NA(E+p) = Na(E — p) S Fpo(E+2p) — Fp,o(E—2p) = / F) ,(x)dx
E—-2p

Since N, is a monotone increasing step-function, we have I , > 0. We may interpret N A(x) = Na(Va, ),
indicating the dependence of N4 on all the potential values in A. Then N4(z + h) = Ns(V4 — h, ) whence

Nie) ==Y G Fayl) == )

ov;
jeA jeA J

as identities between distributional derivatives, respectively smooth functions. Note that 2 A £ < () for each
j. Indeed, N, is decreasing in each v; separately by the min-max characterization of the elgenvalues of a
symmetric matrix. More generally, min—max shows that if A > B for any two symmetric matrices, then the
eigenvalues \; > Ay > ... of A dominate those of B, denoted by p; > po > ... which means that A\ > uy

for all k.
Thus, with [—L, L] containing the support of p,

E+2p
P({dist(E,spec(H4)) < p}) < —/ ZE%(.Z‘) dx

v,
E—-2p J
E+2p A L aF, (3.6)
S/E , ZES/ — avfp(m)u’(vj)dvjda:
~2p jea J-L J

where E; refers to the expectation relative to {vx}rea\(;}- Further, using the positivity of the integrand,

L aF L aF
/ ~ O (4 ;) vy < 1 oo / D@,

—L 8vj 8’[)]
= [l lloe (Fap(vj = =L) = Fa,p(v; = L)) (3.7)

= [I1llo /R(NA(Uj = —L,x) = Na(v; = L,2))p,(x) dz < [|1/]|oo

For the final estimate we use that passing from v; = —L to v; = L in H, constitutes a rank-1 perturbation
which implies by min-max that the eigenvalues of Ha(v; = —L) and H,(v; = L) interlace. This in turn
guarantees that

Np(vj=—L,x) — Na(v; =L,z) <1 VzeR

and thus (3.7). Combining (3.6) with (3.7) implies (3.5).
7
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For the second proof, we follow [45] and estimate

P({dist(E, spec(H)) < p}) < Etracel{p_, pi,(Ha) < 2pE traceIm (Hy — (E +ip)) ™"

<2E Y Im ((Hy — (E+ip))~"0n,00) (38)
neA
where we used that
2% 2p
1 _, < — =1 N
(B—p,E+p] (T) < 02+ (z— E)? mx—(E—i—zp)

Next, we establish a fundamental relation on the resolvents of rank-1 perturbations. Let A be any self-adjoint
operator on a Hilbert space and ¢ a unit vector, A a real scalar. From the resolvent identity, for any complex
z with Imz > 0,
(A+dp@p—2)" = (A=2)" = -XNA-2) " p@p)(A+dp®p—2)"
(A+2p @9 —2)"p,0) = (A= 2) T, 0) = = M(A+ A0 @ 0 = 2) Lo, o) (A~ 2) Lo, )
(A+xp@p—2)"p,0) = A+ {((A-2) o, 0) 7]

Note that Im ((4 — 2) "o, )~ # 0 by Im 2 # 0. Applying this to
Hy=H" +V,(n)6,®6,, neA

where Hﬁln) is the operator with the potential at lattice site n set equal to 0, yields

(Ha = (B +ip) ™60, 00) = [Vo(n) + (HY” = (B +p)) " 60,0,) 7]

Writing
(H = (E+ip)) 16,00 =—t—is, s>0

the random variables ¢, s only depend on the random lattice sites in A\ {n}. Consequently, the inner product
in the final expression of (3.8) is bounded by

SUAT) e

Elm ((Hy — (E +ip)) " 6,,0,) <El, / G_t21s =

which in combination with (3.8) yields
P({dist(E, spec(Ha)) < p}) < 2|l [l
This is slightly worse than the previous proof but the precise constant is irrelevant. [

The assumption of bounded density p’ can be relaxed, but some amount of regularity of the single-site
distribution is needed. Indeed, the mobility of the eigenvalues under the randomness expressed by Wegner’s
estimate is reduced to the mobility of the potential at each site. The heuristic notion of “mobility” refers
to the movement of the eigenvalues as a result of the movement of the potential. Both arguments presented
above hinge on this step. See, however, an alternative approach by Stollmann [49].

Anderson localization refers to the following statement.

Theorem 3.5. Let H = 2A,q + V,, where V,, is random i.i.d. potential with single site distribution p of
compact support and of bounded density with ||¢'||cc < 1. Then there exists g = €o(d) > 0 so that for all
0 < e < g9, almost surely (*(Z%) has an orthonormal basis of exponentially decaying eigenfunctions of the
random operator H. In particular, the spectrum is a.s. pure point and thus Xs. = Xy = O.

8
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In stark contrast to this result, periodic potentials exhibit a Fourier basis of Bloch—Floquet solutions with
Xpp = Xse = . Thus their spectral measures are absolutely continuous. This, as well as V,, = const. shows
that Theorem 3.5 requires the removal of a zero probability event. A wide open problem is to prove X . # @
for large € in dimensions d > 3. This is known as Anderson’s extended states conjecture.

There are two main techniques known to prove Theorem 3.5: Frohlich-Spencer [22] multiscale analysis
on the one hand, and the Aizenman—Molchanov [1] fractional moment method on the other hand. We will
sketch the former and refer to [33] for an introduction to the latter. A streamlined rendition of the induction-
on-scales method of [22] can be found in [51], which also does not require the use of the Simon-Wolff
criterion [45], as earlier multi-scale proofs of Theorem 3.5 had done. Germinet and Klein have obtained
significant refinements of the multi-scale argument in a series of papers, see for example [25].

Returning briefly to the Wegner estimate, we remark that the physically important example of Bernoulli
potentials taking discrete values completely falls outside the range of Proposition 3.4. See [18] for a recent
advance on this case in two dimensions and on localization for Anderson Bernoulli. The mobility of the
eigenvalues of H, if V' = +1 derives from the interaction between eigenfunctions and is more delicate. On
the other hand, localization in the one-dimensional Bernoulli model is a classical result by Carmona, Klein
and Martinelli [13]. While these authors rely on the original multi-scale methods of Frohlich and Spencer,
this is avoided in the recent papers [12,30], and [37]. The arguments there use the large deviation theorems
and the methods of Bourgain, Goldstein [10], see the final section of these notes.

Before getting in to the details, some basic ideas and motivation. Suppose H has an /2-complete sequence
of exponentially decaying normalized eigenfunctions {¢;};cz with eigenvalues E;, both random. Restrict H
to a large cube A and write (heuristically)

(Hy — (E +ig))~ ZE (bjiquw)

where the sum extends over all eigenfunctions “supported” in the box A. It should be intuitively clear what
this means. Then |(¢; ® ¢;)(z,y)| S exp(—7y|r —y|) with v > 0 for those j, for which either = or y are
in the support of ¢;. All the others make much smaller contributions which we can essentially ignore. In
conclusion, if

I(Ha = (E+i0)7"|| < K then |(Ha — (E +i0))~"(z,y)| < Kexp(=ylo —y|) Va,y€ 4

The condition here is precisely what Wegner’s estimate controls, and a cube which exhibits both the
separation from the spectrum and the exponential off-diagonal decay will be called regular for energy E. A
substantial effort below is to show that cubes are regular for a given energy with high probability. However,
this is insufficient to prove localization and one needs to consider two disjoint cubes and understand the
probability that they are both singular for any energy. The essential feature of this idea is to control the
probability of an event uniformly in all energies, rather than for a fixed energy. The latter can never imply
an a.s. statement about the spectrum since we cannot take the union of a bad event over an uncountable
family of energies. More importantly, excluding the event that two boxes are in resonance simultaneously
(which refers that they are both singular at the same E) will precisely allow us to show that a.s. tunneling
cannot occur over long distances leading to exponentially localized eigenfunctions.

We shall now prove Theorem 3.5 by induction on scales. We will need to allow rectangles as regions of
finite volume rather than just cubes. Thus, define a box centered at x of scale L to be any rectangle of the
form

AL(m)z{yEZd|—mj§yj—xj§Mj V1§j§d} (3.9)

where m; > 0, M; > 0 and max(m;, M;) = L for each j. If m; = M; = L for each j, then we have standard
cube which we denote by Q1 (x). These rectangles arise as intersections of cubes Qr.(z) N Q3 (y) if z € Q3 (y)

9
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0r(y)

AL(x) | 0c(x)
oV

o X

Fig. 1. A box arising as intersection of cubes.

with L > L, see Fig. 1. Wegner’s estimate applies unchanged to boxes. Note that for a given integer L > 1
and z € Z¢ there are B(L) = (2L +1)% boxes Ay (x). The following deterministic lemma allows us to bound
the Green function at an initial scale which will be specified later.

Lemma 3.6. Suppose 4de < and 0 < e < % Let A be any box as in (3.9) and assume
dist(spec(H,), E) > 0.
Then
|GA(E) (2, y)] <46~ tel*=vl vy e A (3.10)

Here || = max; |z;| and G4(E) = (Hy — E)~! is the Green function on A with energy E.

Proof. By min-max, |V(z) — E| > § — 2de? > §/2 for all z € A. Then

GA(B)(2,y) = (I +*(Va—E) 1A) " (Va— E) (z,y)
=D (1) [(Va— E) ' A (z,y)(Va — E) " (2)
=0
Recall that (V4 — E)~! is a diagonal operator. Using that [[(V4 — E)"1A| < 2674l < 4d6~%, we

have [e2[(Vy — E) LAl (z,y)| < (4de?571)¢ < &' where it suffices to consider £ > |z —y|, > |z —y
1

with |z|;, = Z?Zl |z;| (otherwise this term vanishes). Summing up the geometric series using that ¢ < 3

proves (3.10). O

In terms of random operators one has (3.10) with high probability.
Corollary 3.7. Suppose 4de < § and 0 < e < % Then (3.10) holds up to probability at most 40| A|.
Proof. Apply Wegner. [

The following lemma demonstrates how to obtain exponential decay of the Green function at a large scale
box if all boxes contained in it of a much smaller scale have this property, with possibly one exception. The
latter is needed in order to be able to square the probabilities of a having a bad small box inside a bigger one
as we pass to the next scale. We will use a resolvent expansion, obtained by iterating the resolvent identity:

10
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let A" C A be boxes, and let A = Hy, B = Hz @ Hp\ o viewed as operators on (2(A). Then, observing that
A—-B ::52[‘/1’/1/,
(Hy—E)' ' =(Hypy @ Hpy —E) " —e®(Hy— E) "Iy o (Hy ® Hy\p — E)7'

Ga(B)(@,y) = Gu(E) @, y)lyen) — D GalB)(w,y)Gu(E)(w,w) (3.11)
(w’ ,w)eoA’

for all z € A" and y € A. Here 04" = {(w',w) |w' € A', w € A\ A, |lw — w'| = 1} is the relative boundary of
A’ inside of /1, and FA,A’ = ]13/1/.

Lemma 3.8. Let A be a box at scale L1 > 100Ly and assume dist(spec(H4), E) > §1 with 0 < §; < 1. Let
Al C A be some box at scale Ly > 1 and assume that all boxes A" C A\ A’ at scale Ly satisfy

G ar (B, p)] <4050 Vaye A, o —y| > Lo/2 (3.12)
Suppose

8d(2Lo + 1)~ te?t0lo < 5 < 1 (3.13)
Then

GAE)(@,y)| < 67" Wy e A, |z —y| > Li/2 (3.14)
provided

1 8Lg\ 1 2
0) L L

1
—_y (1l == log= > L1 2L + 14151 3.15
o (- g 1)+ Jless > L tlog(8d(2Lo + 1) 5y (3.15)

Proof. Pick z,y € A with |z —y| > L1/2 and set A, = Qr,(z) N A. If A,N A, # O, then we do not expand
around z and instead expand around y since L; > 100L, implies that A, N A}, = .
Iterating (3.11) leads to an expression of the form, with wo = z, wy = y,

GA(E)(xa y) = <_52)3+t Z Z Z H GA'(wj,l)(wj—hw;‘)

(W} w1) €0/ (2) (wh,w3) DA (w1)  (whyws) €D (ws 1) I=1

t
> > > G a(ws, W) HGA,@k_l)(@k—l,ﬁ;g)
k=1

(wh,w1) €D (y) (wh,wa)EDA (w1) (W, wi)EDA (we_1)

(3.16)

with all Green function on the right-hand side being at energy E. Here s > 0 and ¢t > 0 are the maximal
number of steps we can take from x, respectively, y with any boxes of size Ly centered at points distance 1
from the boundary of a previous box, before they might intersect A,. All boxes here are of the form
Qry(wj) N A = A'(w;). In particular, if (y/,y) € 94’ (w,), then |y —w;| = Ly. We claim that s +¢ > 1
satisfies

e —y|l <(@t+s)(Lo+1)+4Lo+1
Indeed, if |x —y| > (t +s)(Lo + 1) + 4Ly + 1, then
|z —yl+1—=[(t+s)(Lo+ 1) +2Lo +1] > 2Lo + 1

which implies that we could go either one more step in the x, resp. y, expansion without intersecting A.
Thus,

_ |z —y[=3Lo

3.17
Toi1 (3.17)

11
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A

W40 v
en 4 —
NG| 4 7,

Nw)| wre

A (1) "2

ANO) | Ve

Fig. 2. One term in the expansion (3.16) with s = 2,¢t = 4.

To estimate (3.16), use |G4(ws, @;)| < [|Gall < 67" and G sy (wj—1, wh)| < 455 tem0lo and the

!/
same for all of the Green functions over the smaller boxes. The number of pairs in the boundary satisfy
|0A"| < 2d(2Lo + 1)?~! whence

1GA(E)(z,y)| < 67 (8de?(2L¢ 4 1)1 6, Ler0k0) ™ H

Et-a (3.18)
< 871 (8de?(2L¢ + 1)4 15y ter0ko) Lo

using that the parenthesis is a number in (0, 1]. Note that

lLIOfl‘ —4> % > 21. We need to ensure that
for all z,y € A, |x — y| > L1/2 we have

lz—y|
(8de?(2L + 1)4-15; Lerobo) Lot 4 < cmle=]

which then implies (3.14) via (3.18). Taking logarithms, this reduces to

{70 —71(1 ! Lo >_1

Lo+l |z -y

27 1
+ —}mgf > Lo 'log(8d(2Lo + 1)41671)
LO 3

The worst case here is |x — y| = L1/2 which gives (3.15) (see Fig. 2). O
Definition 3.9. Fix any zo € Z%. Then we define an L-box Az (z¢) to be (v, E)-regular if it exhibits
« non-resonance at energy E: dist(spec(H, (zy)), E) = 6(L) = exp(—L”)
o exponential Green function decay: |G 4, (o) (E)(z,y)| < 46(L)~1eVl*=vl V 2,y € Ap(z0) with |z —y| >
L/2

Here E € R is arbitrary, v > 0 will be specified below, depending on the scale, and 8 € (0,1) will be a fixed
constant. A box is (v, E)-singular if it is not (v, F)-regular.

12
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At the initial scale of the induction, by Corollary 3.7

zlé%]?({ﬂ Ay (xg) which is (1, E)-singular}) < 4B(Lo)|Qr,(x0)|6(Lo) =: po (3.19)

The existence inside the set refers to all possible boxes of the initial scale Ly = Lg(d,3) > 100 centered
at xo of which there are B(Lg) = (2(Lo + 1))%, while |Qr,(20)| = (2Lo + 1)? is the volume of the largest
Lo-box. Thus we have

po = 4(2(Lo + 1))*(2Lo + 1) exp(~ L{)

where f is just chosen here to so that exp(— LB ) = 0(Lp) and will in fact be in (0, 1). Corollary 3.7 requires
that, where dg := (L),

Ade < 8. (3.20)

Set Ly = [L§] where o > 1 will also be specified later. By Lemma 3.8, whose condition (3.13) we leave to
the reader to verify,

supger P({3 AL, (xo) which is (’yl,E)—Siélgular}) <p
po= 4B(L1)|QL1(§2)I51 + |QL1g$0)| I (3.21)
n o=(1- L01+1 - 70)(1 - Lo )

In fact, py is the sum of two contributions. On the one hand, Wegner’s estimate gives, with d; = exp(—Lf),
P({H AL1 (3}0) with diSt(SpeC(HALl(QJO)), E) < 51}) < 4B(L1)|QL1 ($0)|51

which is the first term on the right-hand side of p;. It controls the probability that one of the boxes Az, (zo)
is resonant at energy F with resonance width d;. The other term bounds

P({3 two disjoint (1, E)-singular Ly boxes in Qr, (x0)}) < \QLl(x0)|2pg

where the factor |Qr, (z0)|> = (2L; 4 1)2% is a result of selecting the centers of the Ly boxes in Qr, (o).
Assuming Lg(afl) > 2, we have §; < 83 < p2 and thus p; < 5B(L1)?p2. Finally, setting 79 = 1 and v; as
above in (3.15) yields

1
(1+ym%n%g21+Lym%@@+wd—nbgﬂm+n)
In view of (3.20) this holds for Ly (d, 8) sufficiently large, proving (3.21).

Inductively, define Ly+q = [L{] with 1 < o < 2 fixed. In analogy with (3.21) one has with 0 = exp(—L’,f),

supper P({3 A, (r0) which is (’yk,E)-siglgular}) < pi
pr = 4B(Ly)|Qr, (z0)|ok 'SF |Qr, (zo)|"Pi_y (3.22)
wo= (-t - ) (- LiDD)

We leave the condition (3.13) to the reader to verify. Note that

pr < B(Li)*(46k + pi_1) < (2(Li + 1)) (46 + pi_1)

On the one hand, if Ly is large enough, then

_ 8Lp—1 o1y - 1
H( Lk1+1 Lk)l—Lkl H1—9L,1€?1—Lfl) >0

13
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since Ly > (Lo)o‘k and > (]'4]14_’JK + Lffl) = o(1) as Ly — oo, whence infy>1y; > 0 (approaches 1 for
large Lo). On the other hand, we claim that .~ pr < oc. Indeed, from (3.22),
Litipr < ALYy B(Le)*0k + (L7 + 1) F 2Lk + 1) "ppa]?
<AL (2(Lk + 1)) + (L' pr-1)?

where the second line holds provided am/2 + d < m which requires o < 2, and for Lj large enough. We
conclude from (3.23) that L} ;pr < 1if Lo is large. Moreover, due to

Z4LZ‘+1 (2(Ly + 1))%46, < 0o also ZLZLHpk < 00
k k

(3.23)

which is stronger than the claim. From the preceding analysis, the parameters need to be in the ranges
1 <a<2and0< B < 1. To summarize, we have obtained this result.

Proposition 3.10. Fizl < a < 2 and 0 < 8 < 1. For Ly = Lo(d,, B) large enough, define scales
Liy1 = [LY] for k > 0. Then for arbitrary xo € Z¢ and E € R,

P({all boxes Ar, (xo) are (i, E)-regular}) > 1 — py (3.24)

with 0 < pp, < L7 < Lamo‘kH for all k > 0. Here m > % and Lo(d, v, B,m) is sufficiently large. The py
depend neither on xg nor on E, and v, > % for all k.

Remark 3.11. We shall use below that (3.24) holds as stated for k > 1 if we weaken the non-resonance
condition in Definition 3.9 to the following one: dist(spec(HALk(wO)),E) > 0(Ly)/4. This is due to some
room built into Lemma 3.8, cf. the factor 45, in (3.12) which improves to 6; ' in (3.14). This allows us to
replace §(Ly) in the resonance width with §(Lg)/4.

An essential feature in the derivation of this result is stability in the energy. This means that we can
obtain (3.24) uniformly in an energy interval of length half of the resonance width.

Corollary 3.12.  Under the assumptions of the previous proposition the following holds: for arbitrary
Tg € 7% and E, € R,

P({all boxzes Ar, (xo) are (i, E)-regular for all E € [E, — 6x/2, Ex + 61 /2]}) > 1 — pi, (3.25)

for all k > 1 and the same pi as above.

Proof. We leave the base case k = 1 to the reader. The inductive step k — 1 — k with & > 2, consists of
the inequality (dropping x( for simplicity)
P({3 A, which is (yx, E)-singular for some E € [E, — 6,/2, E, + 6,/2]})
< P({3 A4, with dist(HALk,E) < 4i,/2 for some E € [E, — 6x/2, E\ + 6;/2]})
+P({3 4z, with dist(Hy,, , E) > 6x/2 for some E € [Ex —6k/2, By + 61/2]})
which is (v, E)-singular for the same E
< P({3 4, with diSt(HALk ,Ey) < 0r})
+P({3 4z, which contains two disjoint Ly _1-boxes which are both
(Vk—1, E)-singular for the same E € [E, — 0;-1/2, E« + 01-1/2]})

The final two lines here follow from Lemma 3.8, see also Remark 3.11. Note how we widened the F-interval
in the last line, which makes it clear how to use the inductive assumption. The proof proceeds exactly as
before. O

14
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This result cannot by itself establish localization, since it only controls the resonance of H, with a given
energy E on a single box A. Localization requires excluding simultaneous resonances on several disjoint boxes.
This in turn allows us to eliminate the energy E from these events, and thus estimate them uniformly over
all energies. It suffices to carry out this process on two disjoint boxes, in other words, to show that double
resonances are highly unlikely. The following natural result contains the elimination of energies and absence
of double resonances in its proof, but not in the statement. Note, however, that the event of low probability
described in the following proposition is uniform in all energies.

Proposition 3.13. Under the assumptions of the previous proposition, for all k > 1,
P({for some E a box A, (x0) is nonresonant at E but (i, E)-singular}) < qi (3.26)

where for any b > 1 and all k, q, < L,;il provided Ly is large (and thus € is small) enough. Here nonresonant
is as in Definition 3.9 but with 0y /2.

Proof. FE-nres stands for nonresonant at energy E, E-res for resonant at E, and sing for singular, Let
Ay = Ap, (zo) be E-nres, i.e., dist(spec(Hy, ), E) > 61/2 but (y1, E)-sing. By Lemmas 3.8 and 3.6 the event
in (3.26) implies that there must be at least two resonant Lo-box inside of Ay, (z¢) (here but only here we
measure resonance with dy and not dy/2). Hence

P({Ar, (zo) is E-nres but (1, E)-sing})
< P({Ag, (xo) contains two disjoint Lg-boxes, both E-res})
< Z Z Z IP’({dist(spec(HZ,L ), E;) < 2§ for some Ej € spec(HAxLo)})
ALy(20) Ay CAry(@0) Ty CAp, (ro)\Ap, ’
< 8B(L1)B(Lo)?|Qu1, [*|QLo*00 = @1
In the third line the energy is eliminated by do-closeness of E to some eigenvalue E; of H A and the fourth

line is Wegner’s estimate. The sum over A Ll(ﬂﬂo) expresses the existence of some Li-box with the stated
property. At scale Ly, k > 2, and suppressing x( for simplicity,

P({for some E a box Ar, is E-nres but (v, E)-sing})
< P({for some E a box Ar, is E-nres, contains two disjoint Lj_;-boxes, both (y4—1, E)-sing})
< P({for some E a box A, contains two disjoint Ly_1-boxes, one E-res, the other (v;_1, E)-sing})
+ P({for some F a box Ar, contains two disjoint Lj_;-boxes, both E-nres, but (yi—1, F)-sing})
In analogy with £ = 1 we bound the third line by
< Z Z Z ({some box ALk (yo) C Ar, \ A7, is (ye—1, E)-sing
Ar, AL]% CAp, Yo€AL,

with|E — Ej| < 0,-1/2,E; € spec(HA/L )

k—1
< B(Li) B(Li-1)|Q, [*| Qe IPr—1

where the final estimate is given by Corollary 3.12 with E, = FE;. Note that while E; is random,

these variables are independent from H~, o)’

in H s - . The fourth line above is bounded by the inductive assumption and independence, and so it is

< B(Lk)|QLk|2q,§_1. In summary, by Proposition 3.10,

@ < B(Li) B(Li-1)|Qu, |Quy i [px—1 + B(Le)|Qu, iy
< 2Lk + )L™ + (AL + 1)>3dq2_1
and we conclude as for (3.23) that ¢, < L,

Hence we may first condition on the random variables

(3.27)

P +1 for all b provided Ly is taken large enough depending on b. [
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Proof of Theorem 3.5. Let By (zo) be the event in (3.26). We remove the 0-probability event
B = U, ez limsup By, (o).
k—o00

Considering a realization of the random operator H off of this event, for spectrally almost every energy
F relative to this operator we can find a nontrivial generalized eigenfunction Hv = F which is at most
polynomially growing, say [1(n)| < C(o,v)|n|” with o > % and all n € Z%, n # 0. Let 1(z) # 0. Suppose
Ag, (x9) is E-nonresonant for infinitely many k. Then by Lemma 3.6, for those £,

max G o (B)(z0, SE%L’C
(y’,y)eaALk(IO)I AL, ( o) (E)(z0,y")]

Then [(HALk (o) — EVVI(Y') = — Z(y/,y)gaALk(xO) Y(y),

W< Y Cay e BEa)bw) < Cew) Y g 5.28)

(v ,y)€0A, (o) (v',y)€0AL, (o)

which is impossible for infinitely many k. Hence for all & > ko(v), Ar, (7o) is E-resonant. We now remove
another O-probability event, namely double resonances between disjoint boxes which are not too far from
each other. To be specific, as above we conclude that, a.s. for every xy and all but finitely many k,

VE e Rif Ay, (x0) is E-res then V 2L, < |yo — x| < 100Lsy1, Ar, (yo) is (yx, E)-reg (3.29)

Indeed, the resonance condition ensures that E is &y /2-close to one of the (random) eigenvalues of H 4 L, (@0)>
and Corollary 3.12 bounds the probability that one of the boxes Ar, (yo) is (&, E)-regular by L, "} where
m > 2d, say. Hence we can sum this up over all yo in a 100Lx41-box and apply Borel-Cantelli as before.
Consequently, all bowes Ar, (yo) are regular as stated in (3.29). By a resolvent expansion as in the proof of
Lemma 3.8, the reader will easily verify that all Green functions G 4, (y,)(£)(7,y) have exponential decay if
Ar(yo) C A100Lk+1($0) \ Aap, (79) where we take Ly < L < 50Lg11. By an estimate as in (3.28) one now
concludes exponential decay of . O

4. The one-dimensional quasi-periodic model
4.1. The Frohlich—Spencer—Wittwer theorem: even potentials

In this section we will provide a fairly complete proof sketch of the following result due to Frohlich,
Spencer, and Wittwer [23]. The dynamics (rotation) T,,6 = 6 +w mod 1 takes place on the torus T = R/Z,
and all “randomness” sits in a single parameter, namely 6 € T. The one-dimensional random model is treated
by completely different techniques, starting from Firstenberg’s classical theorem on positive Lyapunov
exponents for random SL(2,R) cocycles, cf. [50] for a comprehensive exposition of this fundamental result
as well as Lyapunov exponents in general. See the recent papers [12,30], and [37] for streamlined elegant
treatments of the 1-dimensional random Anderson model, including the Bernoulli case. For quasi-periodic
(and other highly correlated) cocycles, Firstenberg’s global theorem does not apply, and other techniques
must be used. The proof of the following result will in fact be perturbative.

Theorem 4.1. Let v € C?(T) be even, with exactly two nondegenerate critical points. Define
H.(0) =*Az +Vp, Vo(n)=V(T"0) VnecZ (4.1)

where w € T 4s Diophantine, viz. ||nw|| > bon=2 for all n > 1 with some by > 0. There exists eo(bg, V) such
that for all 0 < e < g the operators Hg . exhibit Anderson localization for a.e. § € T.
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V()

JEx + 6o
E —50

Fig. 3. The potential and energy strip at the initial step.

The evenness assumption allows for substantial simplifications as we shall see. Note that it entails that V'
is symmetric about % Theorem 4.1 cannot hold for all 8, see [36]. As in the previous section, we shall drop
the index e and simply write H () for (4.1), and H.(0) for its finite volume version. It is important to keep
track of 6 so we include it in the notation (while in the random case we could drop the w, the variable in
the probability space). Fix 0, € T and E, € R. The singular sites relative to 6., F, are defined as

So = So(0s, Ev) = {n € Z| V(0 +nw) — E.| <}
={ne€Z|T"0, € VY [E. — 6o, E. + o))}

Fig. 3 shows one scenario for which V=Y([E. — 8o, E. + do]) = J1 U Jo with disjoint intervals. There
might be just one interval or the set could be empty. By our assumption of V' being a Morse function,

(4.2)

1
max;=12 |Ji| < Co(V) 4§ for all cases. We choose the resonance width o = Ape with a large constant Ay.
We investigate the structure of Sp by means of the example V(6) = cos(270). If k, ¢ € Sy are distinct, then

|sin(7r(k — £)w)sin(m (20, + (k + O)w))| < do
which implies for small dg that
m(k, €) = min(||(k — O], 120 + (k + Ow])) < 29/5,

The first alternative here, viz. ||(k—£)w|| < 24/3g occurs precisely if both %0, and T/ 6, fall into J;, or both
fall into J. The second one occurs if they fall into different intervals. The Diophantine assumption implies
that

_1
bolk — €] < ||(k — Owl| < 2¢/60, k=125, *

Henceforth 2 and < will indicate multiplicative constants depending on by, V. On the other hand, |26, +
(k+ O)w|| < 24/ might occur for £ = k+ 1 which is the case if T,,(J1) N J2 # @. It is clear that the function
m appears not just for cosine, but in fact for any V as in the theorem.

Lemma 4.2. Any two distinct k,{ € Sy satisfy m(k,0)* < 8o, and any three distinct points k,¢,n € Sy
satisfy

max(|k — £, [¢ = n[) Z b

s

Proof. The argument is essentially the same as for cosine, the trigonometric identities being replaced by the
symmetry of V on T about %: if 0, +kw e Jy and 0, + 4w € Jo = —J; mod 1, then 20, + (k+{)w € J1 —J1
mod 1 whence [|20, + (k + £)w|]®> < dp. O
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singular sites at level O

Fig. 4. Simple resonances at level 1.

Definition 4.3. We label Sy = {c},}3°__ in increasing order (assuming Sy # @). These are the singular
sites (or singular “intervals”) at level 0. Let so := min{c — ¢} | i > j}. If so > 4|loge|?, then we speak of
a simple resonance, otherwise of a double resonance, both at level 1. In the latter case, we replace Sy with
So = So U (So + 80), which we again label as {c}22___. In the simple resonant case, we let I} be an interval
of length ¢, = [log(1/€)]? centered at ¢} := ¢, in the double resonant case I! has length ¢ = [log(1/e)]*,
centered at ¢} = (c3¢ + cg”l) /2 € %Z. By construction, all of the I} are pairwise disjoint, and each ¢ is

contained in a unique interval at level 1. We classify those intervals I} as singular provided

2/3

dist(spec(Hy; (1)), E.) < 61 := el (4.3)
and Sy == {c} | I{ is singular}. All other intervals I? are called regular.

We shall see later, based on Theorem 2.1, that for spectrally a.e. energy E € spec(H (6)) the set of singular
intervals, which are constructed iteratively at all levels (see below), is not empty. Figs. 4, resp. 5 illustrate
the two cases, with the blue dots being Z \ Sp. The terminology simple/double resonance is derived from
the structure of the eigenfunctions at level 1 associated with the operators H i(9*) and the unique (as we
shall see) eigenvalue E!(f,) satisfying (4.3). In the simple resonance case, the eigenfunction has most (say
99%) of its £* mass at the center ¢}, whereas in the double resonant case it may have significant mass at
both sites ¢ and gt

Fig. 4 depicts only one of four possibilities for the intervals at level 1, they might both be singular, both
regular, or the order could be reversed. The red dot with ® is supposed to indicate a return of the trajectory
T?0. to Ja, whereas the red dot on the left a return to Jy, cf. Fig. 3. While the distance between these two
red dots is required to be at least 4(log(1/¢))?, the Diophantine condition forc?s two red dots of the same

kind (associated with Ji, resp. Jo) to be separated by a distance exceeding 8, *. This is much larger than
the length ¢; = [log(1/¢)]? of the intervals I%.

The reason for passing form Sy to Sp lies with the self-symmetry indicated in Fig. 5 (i.e., CgH_l — 3! does
not depend on ). To see this, note that by definition of s there exist ki, ks € Sy with 6. + kjw € J; with
i=1,2and so = |k1 — ka| < 4(log(1/¢))?. We are again using the Diophantine condition here to ensure that
we do not fall into the same interval (as a standing assumption ¢ needs to be small enough depending on v
and ¢y so as to guarantee this). Next, take any k € Sy with 0, + kw € J; (everything modulo integers which
will be henceforth understood tacitly). Then 6, + (k + sp)w € Jo, where Jo has the same center as Jo and
twice the length. On the other hand, it might be that 6, + (k + so)w & J2, but we must still include k + s
in Sy for the construction to work. In fact, Lemma 4.2 remains valid for Sy and the defining inequality (4.2)
is modified only slightly, viz. |V (6. + nw) — E.| < & for all n € Sp.

We will establish the following analogue of Lemma 4.2 at level 1. We emphasize again that this statement
only exists for even V.

Lemma 4.4. For all é,¢c) € S one has m(c,cl)? < 61, with an absolute implied constant.
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intervals of level 1

regular singular
2,2::‘+1\\ ) //'//,72,+2 2i+3
¢ <o singular sites at level 0 &% <o

Fig. 5. Double resonances at level 1.

The idea is to carry out a similar argument as for Lemma 4.2, with the potential function V replaced
by the parameterizations of the eigenvalues of the operator H i(9) localized both mear 6, and FE,. This
stability hinges crucially on a spectral gap or on the separation of the eigenvalues. The latter can be seen as a
quantitative version of the simplicity of the Dirichlet spectrum of Sturm-Liouville operators, such as Hy(6).
Before discussing the details of Lemma 4.4, we exhibit the entire strategy of the proof of Theorem 4.1.

e In analogy with Definition 4.3 define regular and singular intervals at level n > 2. More specifically, for
n > 1 set

sn = min{le;, — e[| ¢}, ], € Sn, i # j}

If s, > 4¢2, then we call this a simple resonance and define ¢}, |, = ¢/, for all i and ¢,,11 = (2, otherwise

for the double resonance we set ¢, ; = (c2 + c2*1)/2 € 17, 0,1 = 2

©, and also augment S,, to

S, by including the mirror image of each I’ if it was not already included in S,. By mirror image

with center ¢, € Z so that |¢f{, —¢'| = s, and

we mean an interval I} of the same length as I’ .

na

120, + (¢, + ¢,)wl|| < 124/3,,. The meaning of mirror image is that
V(0. + (—j+¢)w) = V(0 + (j +C)w) + O(Vbn) V jEZ

The existence of such an interval is left to the reader, see also [23, Lemma 1.3]. By construction, the
I 41 are pairwise disjoint and each ¢! is contained in a unique interval at level n + 1. An interval I’ 11
centered at ¢!, is called singular if

2/3

dist(spec(HﬂH(H*)),E*) < Gpy1 = ettt (4.4)

and regular otherwise. Define S, 1 to be the centers of the singular intervals. One can arrange for 91 11
for all singular not to meet any singular interval of level m with m < n.

e An arbitrary interval A C Z is called n-regular provided every point in A NSy is contained in a regular
interval IJ, C A for some m < n, cf. Fig. 6. Note that every singular point at level 0 is either (i)
contained in infinitely many singular intervals Ii» for each n > 0 or (ii) contained in a finite number
of such intervals at successive levels followed by a regular one. By induction on scales one proves the
following crucial decay and stability property of the Green function associated with n-regular intervals A:
G A0, B)(x,y)| < e2l==¥ for all m,y € A, |z —y| > 6/°, |E — .| S 6, and [0 — 6,] < 6,..

e One has

men,ch)? SIEL(0.) — BL(0:) S0 V¢l €Sn (4.5)

n»-n

for all n > 0. Here E¢ (0,), are the unique eigenvalues of Hypi (0.) in the interval [Ey — by, B +cdy,] with
c small. This hinges crucially on the separation property of the eigenvalues, see Lemma 4.6. For simple
resonances, we will use mainly first order eigenvalue perturbation theory, and for double resonances,
rely crucially on second order perturbation theory. However, some second order arguments are already
needed for simple resonances.
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Fig. 6. Regular and singular intervals of 4 levels.

e Based on the estimate on m, we prove Theorem 4.1 by double resonance elimination as in the previous
section. In analogy with Theorem 3.5 we start with the polynomially bounded Fourier basis provided
by Theorem 2.1, find an increasing nested family of resonant intervals which are resonant at the given
energy, and thus due to the elimination of double resonances obtain exponential decay at all scale. The
main departure from the proof of Theorem 3.5 lies with the application of Borel-Cantelli to remove a
zero measure set of bad 6 € T.

We begin with the Green function decay on regular intervals (this is the analogue of the regular Green
function from Definition 3.9). We set £y := [log(1/e)].

Lemma 4.5. For all n-regular intervals A, n > 0, one has |G (0, E)(z,y)| < e1*=¥ for all z,y € A,
|z —y| > 82/6, |E — Ey| < 0p, and |0 — 0.] < 0,. The 7y, decrease, but ~y, > % for alln.

Proof. At n = 0 the interval A contains only regular lattice points, i.e., blue dots in the figures above.
Then the Neumann series argument from Lemma 3.6 implies that, for 69 = Age with Ay large enough, and
for all |0 — .| < dg, |E — E.| < §p (meaning up to a small multiplicative constant),

|G (0, E)(x,y)| < 661(252661)|x_y‘ < gle=yl=1 Vae,ye A

We are using that |V(0. + kw) — Ei| 2 do implies that [V/(0 + kw) — E| Z do in the specified range of
parameters. If A is 1-regular, then let {I% }i:io be a complete list of all level 1 intervals, in increasing order,
which cover all points in A N Sy. By construction, I7 C A for all 49 < ¢ <. The intervals I} (which are all
regular) do not really come off the axis in Fig. 7, they are only depicted in this way to indicate that they are
level 1 intervals. The line segment is supposed to depict A and it consists entirely of regular lattice points
at level 0 apart from the red smgular 51tes For the double resonance case shown in Fig. 7, one red pair is
separated from another by 2 §, * ~ e~ 4 which is much larger than the I{ which are of length (loge)*. On
the other hand, in the single resonant case recall that the I} are of length [log(1/€)]?, and the separation
between the singular sites in Sy at least 4(loge)? (but possibly much longer).

These long sections consisting entirely of regular lattice points between singular pairs in the double
resonance case, resp. singular sites in the simple resonance case, allow us to iterate the resolvent identity
similar to Lemma 3.8. For general n, it is essential to use (4.5) up to level n — 1 in order to achieve this
separation. See Appendix A in [23] for the details. O

Proof of Theorem 4.1. For any § € T, by Theorem 2.1 for spectrally a.e. E € R there is a generalized
eigenfunction H(0)y = Ev with at most linear growth. For any such F,¢ we claim that there exists
N = N(0,¢) > 1 so that all intervals A,, = [—2¢,,2¢,] are n-singular for (f, F) provided n > N. If A,
is n-regular for infinitely many n, then by the Poisson formula (3.28) and by Lemma 4.5 for any j and large
n’

W< D G (B)G K [e(k)] < Ce3@nlily,
(k',k)EOAR
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Fig. 7. A 1l-regular interval A.

Taking the limit n — oo yields ¢ = 0, whence our claim. Next, we claim that
A, N IE # @ for some singular I, (4.6)

for large n. Since A, is not n-regular, we can pick some cé € Sy N A,. By the recursive construction of
singular intervals, see (4.4) there is the following dichotomy: either, there exists 1 < m < n with

cerc...crr
and I[Jm is regular, or m = n with I7» singular. The first alternative cannot occur for every ¢ € Sy N 4,
by definition of regularity and so (4.6) holds. If A, := [—£,+1, ¢n+1] contains another singular interval at
, o S 1
level n, say I7, then by (4.5) one has m(ct,, ¢)? < §,,. But ||(c, — ¢l )w|| < 67 is impossible by the Diophantine

condition whence

. ) 1
126 + (e, + )l S 0 (4.7)

Given that there are at most < ¢2 | many choices of ¢, ¢, € A7, it follows that the measure of § as in (4.7)

is <02 H&% . This can be summed, whence by Borel-Cantelli there is a set B of measure 0 off of which for
large n, A/, contains a unique singular interval at level n. Furthermore, this singular interval has distance
< 3¢, from 0 and thus [3¢,, ¢, 1] and [—€,,41,—3¢,] are n-regular, for parameters (0, F) with § € T \ B.
Lemma 4.5 and (3.28) conclude the proof. It is essential here that B does not depend on E, as evidenced
by (4.7). O

Proof. The remainder of this section is devoted to the proof of Lemma 4.4. We begin with the easier case
of a simple resonance, i.e., so > 4(loge)?. Fix any E, € R with [E, — &y, Ex + 6] N [min V, max V] # @,
and some 6, € T. Then Sy = {c}}3°__, and every c} is contained in a unique level 1 interval I{, with
|Ii| = ¢1 = [log(1/)]%. These are pairwise disjoint by construction, and they may be regular or singular.
We discard the regular ones and only consider those ¢} = ¢ for which I? is singular. By the definitions,

V(0. +kw) — Eo| >0V keI \{ch}

. 4.8
V(0. + cyw) — Ey| < do (48)

Let {E’;1 (6’)}?1:1 be the eigenvalue parameterizations (Rellich functions) of H I (0). By min—max, there exists
k(j4,0) € Ii so that
V(0 +k(j,0)w) — By (0)] <25 V1<j< (4.9)

Fig. 8 exhibits® numerically computed Rellich functions for /1 = 7 and the cosine potential. The graphs
do not cross, but some of the gaps are too small to be visible. Subfigures (A) and (B) show how the gaps
become wider with increasing €. The figure demonstrates how we need to jump between different translates

2 The graphs were produced by Yakir Forman at Yale.
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Fig. 8. Eigenvalue parameterizations for the cosine potential.

V(0 + kw) to approximate any given Rellich graph, hence k(4, #), which are not unique near crossing points
of V with its own translates by w. Since §; < €2 < ¢, (4.3) and (4.8), (4.9) imply that for all |0 — 6.| < &

[V (0 + chw) — E.| < & (4.10)
V(0 +kw) — B 200 Vkeli\{c} |

with implied absolute constants (depending only on v,w). We now claim that a normalized eigenfunction

¥(6) associated with Hyi (6)y(0) = E;1(0)¢(0) and k(j,0) = ¢i = cj satisfies

P60 o ) < 205" < 2 (4.11)
where Pt denotes the orthogonal projection onto all vectors perpendicular to (56(,-) in ¢2(I%). Then
0 = s ()P (Hys(6) — B (0))5, + P*(Hyi (6) — EE(9))P05(6)
= g (005 4 + 0 ) + P(HL (0) — B (0) PLo(0)

Here and below we use § both for the resonance width and in the Dirac sense, without any danger of
confusion. By (4.9) and (4.10),

1P (H,5(0) = B2 O) P 2oy S 05 (4.12)

j
which implies (4.11) and

B2 (0) = V(0 + chw)| = |(H s (0)6(0),(0)) — V(0 + chw)| S 255" (4.13)

i
1

By first order eigenvalue perturbation (Feynman formula), writing F = E;1 and V(6) for the multiplication
operator by the potential,

[E'(0) = V(0 + cow)| = (V' (0)(6), 9:(6)) = V' (0 + cpw)| S e85 (4.14)
and by the second order perturbation formula, with G being the resolvent on the left-hand side of (4.12),

[B"(0) = V"(0 + cgw)| = (V" (0)w(6), % (8)) — V"(0 + chw) — 2(w(0), V' ()G (E(9))V"(0)1(0))]
<25yt (6%00)%0, Sty x e (4.15)
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The estimates (4.13)—(4.15) hold for |6 — 0.| < 9. We conclude from (4.14), (4.15) that

i E'(0 E"0)]) =21 Vo, eT,
w_gillr%%(l O+ E"©O)) 2 (4.16)
Recall that E(f) = EJ“(G) depends on 6, and E,, where the latter is chosen so that Sg # 0. The constant
in (4.16) is uniform in ,, E,. The reader is invited to compare (4.16) to Fig. 8. Now suppose we have two

distinct singular intervals I? and If relative to (0, E,). Then the previous analysis applies to both Rellich
functions E(0), E(6) defined for |§ — 0.| < §y characterized by

spec(H i (0)) N [Ex — d0/2, Ex — d0/2] = {€(9)}, (@1m
spec(HI{- 0)N[E. —00/2,Ex —60/2] = {E(0)}
By (4.3) we have |E(6,) — E,| < 61, |E(8,) — E,| < 6. By (4.9) we have
V(0. + chw) — B(6,)| < 262, V(0. + dw) — E(6.)| < 2¢*
whence
[V (0, + chw) — V(0. + cw)| < 4e® + 26, < 5e?
We showed in Lemma 4.2 that this implies
m(ch, c)) S e < d. (4.18)

Next, we improve this estimate to m(cj, ¢}) < 1. Suppose (4.18) means ||(c) — ¢ )w|| < do. By (3.2) one has

spec(H,

0
1

(8)) = spec(H (6 + (cp — )w)) (4.19)

which, combined with (4.17) implies that E(0) = E(0+ (¢} — ¢i)w) for all [§ — 0,| < 8. This finally implies
that

|B(0.) — B(0. +(c) — ch)w)| < 26,

From (4.16) we obtain ||(c}, — ¢ )w||? < 1. On the other hand, if (4.18) means ||26. + (¢} + ¢} )w|| < o, then
we have

E@®) = E(20, —0 —0,.), 0., =20, + (¢} + c))w (4.20)

for all |0 — 0| < dp. In terms of Fig. 3 this corresponds to F(f) being approximated by V over Ji, whereas
E(6) is approximated by V over J,. Setting 6 = 0, in (4.20), we find that

\E(6,) — E(6, — 0.,.)| < 26,

which implies [|0..]|?> < §1. We have thus proved Lemma 4.4 for simple resonances. Figs. 9 and 10 depict
eigenfunctions on finite volume 200 computed with MATHEMATICA (the code is included in the appendix
for the reader to experiment for themselves, for example by changing € or trying rational w). The choice of
f was made as a crossing point of V' with one of its translates by a multiple of w, since double resonances
occur near those points. The first eigenfunction shown in the upper left of Figs. 9 shows the case of a simple
resonance, whereas the second and third are more complicated — they exhibit a main peak with smaller ones
due to resonances at later stages of the induction. On the other hand, Fig. 10 exhibits double resonances
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Fig. 9. Numerically computed eigenfunctions, e = 0.3, w = /2, § = —17w/2.
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Fig. 10. Numerically computed eigenfunctions, € = 0.3, w = V2, § = —17w/2.

quite clearly (with the bottom eigenfunction exhibiting a more complicated structure). The reader should
note the distinct distribution of the ¢?-mass which is quite apparent on the y-axes of these figures.
We now prove Lemma 4.4 for double resonances. Let I be singular (as the red interval on the right-hand

side of Fig. 5), centered at ¢ = 3(c2" + cg'*') € 3Z. As a side remark, suppose that ¢i € 3 + Z. Then all
e % +Z due to CSJH — cgj = const. for all j (since we passed to Sp). At the next levels n = 2,3,..., N we

will encounter only simple resonances, and so all c& € % + Z for all these n. If we then encounter a double
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resonance at N + 1, it implies that c’fv 11 € %Z, and the pattern repeats itself. Continuing with the main
argument, one then has

V(0. + c3iw) — Eo| S0, |V(0s+ g w) — Eu| < 6o
1 . . .
V(0. +kw) — B > 6 VEkeIi\{c

where the second line follows from the Diophantine condition since I{ = [log(1/e)]* (one can choose a larger
lower bound such as J§§ for any fixed 0 < a < % at the expense of making e smaller). By (4.9),

1 1 ~ 1
spec(H i (0)) N [E. = 03, Eu + 03] = {E(0), E©O)} V10— 0.] S 63 (4.21)

with E > E. By the same type of argument as in the simple resonant case, cf. (4.11), (4.12), we see that the
normalized eigenfunctions of H i(9) associated with F, resp. E, are

1
P = Adcgi + B(SCQi-Q—l + 0(6250 2)
0

_ » (4.22)
W = —B(scgi + A5Cg¢+1 + 0(6250 %)
1
uniformly on |0 — 0,| < §¢ with A% + B2 = 1. In place of (4.12) we have
_1
H[PL(HI{ (€> - E*)PL]_lH@2(li‘\{cgi’c(2)i+l}) 5 60 2 (423)

where P is the orthogonal projection perpendicular to span(écgi, 502i+1) in £2(I%). The eigenvalues at level 0
. _ 0. . ,
associated with the points ¢2’, ca't! are, resp., E2(0) = V(0 + c'w), Eg"71(0) == V(0 + g 'w). This

terminology is justified by the relations

(H(0)3,20,0,2:) = E3(0),  (H(8)3,2011,0,2001) = BZ'(6)
0 0

1 . . .
By Lemma 4.2, HG**“ < 62 with 6. = 20, + (2" + 2w = 2(0. + ciw). Tt follows that either
. 1 . 1
(a) |6« + clw| < 62 or (b) [|6« + 3 + clw| < 6¢. These relations show that the unique solution of
. . 1 . .

E2(0) = B3 (0) on |0 — 0. < 6 is either (a) 6, = —ciw or (b) O, = % — ciw (henceforth, 6, will
mean either of these whichever applies). These identities are a restatement of V' being symmetric both (a)
around 0 and (b) around 1. Furthermore, one has

E2(0+0,) = E57H(—0 + 6y)

whence dp E2*(0,) = —9p E2""(0,). The configuration associated with a double resonance is shown in Fig. 11.
Not only do the segments of the V-graphs (i.e., E3 and Ej*™') intersect at 65, but E, E have their critical
1

point at #, within the interval |§ — 6,] < §F. Indeed,
Hli(ﬁ +93) = UHI{(_Q +93)U

where U is the reflection on Z about ¢} € $Z. In particular, the eigenvalues are the same. In fact, using (4.21)
one concludes that

~ ~ 1

E(0+0,)=E(—0+06,), E@+6,)=E-0+6,) Y|0—0. <62 (4.24)
whence E'(6,) = E(6,) = 0.

Next, we establish the lower bound
~ 1/2 2/3

E0) — B(0) > (ce)® > 8, =&t = glloe="”? (4.25)
which follows immediately from this separation lemma, see [23, Lemma 4.1]. This spectral gap is much larger
than the resonance width 6.
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Fig. 11. Crossing graphs and double resonance.

Lemma 4.6. Let Hp; = Ejiy, j = 1,2 with nontrivial 1; and Ey # Ey. If [ [l2(a0) = 51¢5lle2cay for
j=1,2 with Ag C A and |Ag| > 2, then

|Ey — Ea| > (c1e)0l(e7 + |Ao]) ™ (4.26)
with a constant ¢y = ¢1(V') > 0.
Proof. Let Ay = [ng — Lo,ng + £o] or Ag = [no — Lo, mo + £o — 1]. By assumption, {o > 1. Normalize

Pi(no—1)2+1;(ng)? =1for j =1,2. Setting U (n) =1i(n)ifn € 4, n > ng and ¢1(n) = —i1(n) if n € 4,
n < ng one obtains from considering (H 1, v2) = (Y1, Hatpo) that

26%|T) A | = 2621 (no )2 (no — 1) — Pa(ng)h1 (ng — 1)| =

1 1
< 2[Ey — Eo|([[¢ll2ll¥2l2) 2 (1412 a0y 1921l 2 40)) 2 (4.27)
1
<2(Ce™?)"0 |Ey — Ba|([[¢n ||2llv2]l2) 2
pj(nog)

where 7; = ( )) and C' = C(V). The final estimate is obtained from the transfer matrix representation

| $i(no—1))
of the eigenfunctions, viz. for n > ng + 1

n—1
¥;(n) _ H e 2(Vi, — E;) -1 5
bitn-1)) =, 1 0%
=ng
and for n <ng —1
(mn - 1>> 1 {e-m - ) —1} T
¥;(n) el 1 0 !
with Vi = V(0 + kw). On the one hand, with B = Ce~2, and using that ||} — ||z = 2|71 A T2,
91 = all2(ay) < 2B%|0) A D] + LB |Ey — By
(4o)

_ 1
< 2e7?B% |Ey — Ey|(|[¢nll2]lv2)l2) 2 + €oB|Ey — Es|
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On the other hand, with a; == [l ,2(4)»

1
Vai+a3 < a1 +az) +[[Ur = ¥all24)

1

§ 5(&1 + G,Q) -+ BZO(B,/alag + Eo)|E1 - EQ‘
1

S 5(&1 + ag) + BZO (B + EO)|E1 — E2| v/ a1a9

If |By — Ba| < 1B~%0(B + £y) 7%, then \/a? + a3 < (a1 + a2) which is impossible. Adjusting the constants
one obtains (4.26). O

The critical points of V are § = 0 and § = 1. We claim that min(||6.],]|6. — 3[|) > K(SO% where K
is any large constant, to be fixed below (as always, provided e is small enough). This is1 immediate from
the Diophantine condition due to so < 4(loge)?, cf. Fig. 3. In particular, |[V/(0)| > 6¢ on the interval
|0 — 6. < 50% . By first order eigenvalue perturbation and (4.22), uniformly on this interval

Q0E(6) = ((0), V' (O)6(6)) = A*(@)0 R (0) + B*(0)0EZH(0) + 06, )
where by the preceding |9y E3'(0)| > 50% and |9y E3H(0) > 50%. Setting 6§ = 0, it follows that
A2(0,) — B2(0,) = O(20; 1) = O(e). Due to A2+ B2 =1, |A(0,)|* = 1/2—O(§) and |B(6,)|° = 1/12 —0(e).
In fact, the same argument shows that |A(6)| ~ |B(6)| ~ 1 for all |0 — 0.| < 6§ with |0gE(0)| < 6F-

Using this property we can now establish closeness of all eigenvalues. In fact, H4(0)y(0) = E(6)y(6) and
Hp(0)y(6) = E(0)¥(0) in combination with (4.22) imply that

1

E2(0) — E(9) = 0(c26, %),  E2F1(0) — E(9) = 0(c26; ) (4.28)

and the same for E. In particular,

-

|E(9) — E(0)] < %, ° (4.29)

1 1
for all |6 — 6. < 63 with |0pE(0)| < 5. The final step in our analysis is to establish a lower bound on
|02 E(0)| and |95 E(6)| for those 6. This hinges on the second order perturbation formulas (suppressing 6 as
argument)

= (0, V"p) — 2(V'p, G(E) V')
= (0, V"9) — 2(V'9, G(E) V')
onfz(I{) with G(E)+*

complement of 9 in ¢(

= [P, (H ; — E)ij]_l in Pj‘@ (I1) and Pj- being the orthogonal projection onto the
). Analogous comments apply G(E)L which is the resolvent orthogonal to 1; We
now write

+ (V'9p, G(E) V')

e

1
where G(E)*+ = Pf[Pwl(Hq- - E)Pl] 1P~ By (4.21), |G(E)**|| £, 2. On the other hand, by (4.22)

- , 1
(1, V') = —2ABO E§' (65) + O(97)
whence from |AB| ~ 1,

(@, V') > 52
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Combining this with (4.29) we obtain

3 _1 3
V', GE)Y V') > 7268 — 08, 2) > 7268 > 1

Since [{(, V"9)| < 1, it follows that
3 ~ 3
|2E(0)] > 202, |0FE(0)] > e 262 (4.30)

1 1 ~
for all |0 — 0. < 05 with |0pE(0)| < 05 - The exact same analysis applies to E. To summarize, these are the
main points concerning double resonances at level 1.

¢ 5o < (loge)? and the level 0 singular sites are Sy = {c} 12 W1th gt — ¢t = 54 for all i. We have

V(0 + kw) — E,| < 52 for k € {cZ!, 2}, V(0 + kw) — E.| > 52 for all k € Ti\{cZ’, 2"}, both for all
1 2/3
|0 — 0.| < 63 Here It C Z, |I}| ~ (loge)*, centered at ¢} € 17 and dlst(spec(Hq- 0,)),E.) <6 =¢h

1 1 ~ ~
. spec(Hﬂ @) N[E.—65,Ex + 52] ={E(0),E(0)} (with E > E) for these 0, with all other eigenvalues

being separated from E, by > 62 From the level-0 estimate m(c2?, c2'™') < &, either §, = —ciw or

1 ~
0s = 3 — ciw satisfy |6, — 6.| < 63 and the urilque critical points of E, F in this interval are at 6.

There is a spectral gap of size E(0) — B(0) > 7 . 1 1
o For every |0 0. < (52 one hab either both |9pE(0)] > 62 and |8 E(0)| > 62 (large slopes), or both
1

|0 E(0)| < 62 and |9 E(9)| < 62 (small slopes). This follows from |[0p EZ*(65)| > 63, and the first order
eigenvalue perturbation formulas

DE(8) = (A2(6) — B*(6))9pE2(6,) + O(52)

OE(0) = (—A%(0) + B2(0))0s EZ'(0,) + O(33)

for all [0 — 0,] < 62, cf. (4.22).

o If the small slope alternative occurs, then |A(f)| ~ |B(f)] ~ 1 and (4.28) holds for both E and 1177
In particular, the spectral gap is small as in (4.29), and the second derivatives are large and > ¢, 2,
see (4.30). This means that the intervals of small slopes around the critical points at 65 are of size < do.

e Fig. 11 depicts the situation for a double resonance: E reaches its minimum, resp. E its maximum, at 6.
The spectral gap is the smallest at this point and the quantitative estimates above hold. In particular,
this gap is much larger than §;, whence exactly one of E or E achieve the resonance condition (4.3)
at 0,.

To conclude the proof of Lemma 4.4 we apply this description to two such level 1 intervals, say I and I f .
Because of the double resonance assumption, we have

. . 1
1172 + ciwll + 11/2 + qw|| < 65

-

which 1mphes that m(ci,cd) = ||(¢i — é)w|| < 62. As in the single resonance case, cf. (4.19), for all
16— 0. S (502

Hii (6) = Hy (6 + (i — c})w) and E{(0) = E{(0 + (¢i — ¢])w), E{(0) = E{(0 + (¢} — ¢ )w)
Finally, by (4.3), either

B (6.) = B (6. + (¢ — c))w)| S 61 or [E(6:) — B{ (6 + (¢} — e )w)|
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By the bounds derived above on the first and second derivatives on Ei etc. and elementary calculus we

1
finally conclude that m(ci,c}) < 6Z. Indeed, m the large slopes case, m(ct,cl) = ||(¢t — w| < 6y (51,
whereas in the small slopes case, m(ci, ¢]) < 64 of 2 . This is slightly better than what Lemma 4.4 claims, and

we are done. [

The full induction needed to establish (4.5) follows these exact same lines with no essentially new ideas
needed. The reader can either convince themselves of this fact, or consult [23]. Note, however, that Lemma 5.2
in loc. cit. erroneously sets 5 = —c!, o forgetting the case (b) above in which 1/2 has to be added. This is
a systematic oversight in Section 5 in that paper which is rooted in a false identity at the conclusion of the
proof of Lemma 5.3: 2||0|| = ||20|| for the metric on T.

It seems very difficult to approach quasi-periodic localization in more general settings by relying on
eigenvalue parameterization, as we did in this section.

4.2. The work of forman and VandenBoom: dropping evenness of V'

We will now discuss the highly challenging task of implementing some version of the Frohlich—Spencer—
Wittwer proof strategy without the symmetry assumption on the potential. This has recently been accom-
plished by Forman and VandenBoom, see [21]. For the relation of this section with Sinai’s classical work [46]
we refer the reader to the introduction of [21]. We present a sketch® of the proof of their result.

Theorem 4.7. Let V € C%(T) have exactly two nondegenerate critical points. Define
H.(0) =e*Az +Vy, Vo(n) =V (T20)¥neZ (4.31)

where w € T is Diophantine, viz. |[nw|| > bon=2 for all n > 1 with some by > 0. There exists eq(bg, V') such
that for all 0 < e < gg the operators Hy . exhibit Anderson localization for a.e. 8 € T.

This is precisely the result of Frohlich, Spencer, and Wittwer without the evenness assumption, and we
will make frequent references to the proof of that result. See the previous section.

As in the symmetric case, we can define singular sites Sy relative to 0., E.. However, the m(k, ¢) function
is no longer useful, as ||26, + (k + £)w|| is no longer small if 7%, and T°6, fall into different connected
components of V~Y([E, — &, E. + do]). Without symmetry, no such function m can be defined to be
independent of F,.

Instead, we divide the energy axis into several overlapping intervals, and we construct a collection &; of
well-separated Rellich functions of certain Dirichlet restrictions of H whose domains cover the circle T with
the same structural properties as Eg, cf. Fig. 12. We choose an initial interval length 651) and consider energy
regions of size (9((6(11))_16). Each energy region can be characterized as double-resonant, if it contains some
E,, which satisfies E,, = V(0,,) = V(0,, +nw) for some 6 € T and |n| < eﬁ”, or simple-resonant if it does not.
Each function E; € &; is a Rellich function of H,,, where A; C Z is an interval of length E(ll) if the energy

2
region is simple-resonant, or 42) ~ (41)) if the energy region is double-resonant. The singular intervals
are then characterized by

Sy :{/11 +m|m€Z, \El(G* +mw)—E*| <(51}

where E; € & is the Rellich function defined in the energy region containing F,, and §; is defined as Frohlich,
Spencer, and Wittwer define it.

3 The remainder of this subsection was written by Forman and VandenBoom.

29



W. Schlag Nonlinear Analysis 220 (2022) 112869
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Fig. 12. A cartoon output of the first inductive step: a collection £; of Rellich functions of various Dirichlet restrictions of H, whose
domains (and their relevant translates) cover the circle T. The curves in black come from double resonances, and the curves in gray
are simple resonant.

Assuming the constructed Rellich functions satisfy a Morse condition, maintain two monotonicity
intervals, and are well-separated from other Rellich functions on the same domain (i.e., we have an upper
bound on |[[P+(Ha, — E1)P+]71|, as considered above), we can iterate this procedure inductively and
conclude the proof as Frohlich, Spencer, and Wittwer do. While we cannot control the bad set of § € T by
the m function as they do, we can bound it by controlling the number of Rellich functions we construct in
&, at each scale. Since the energy regions at scale s are of size at least O(63_,), each energy region at scale
s — 1 gives rise to at most O(9,>,) Rellich functions at scale s; thus, we inductively bound |E,| < O(3,%,).
The bad set of 0 at scale n for a specific E,, € &, is bounded in measure by ¢2 +15,1L/_4 1 by a calculus argument.
Since 6, 4,02 +16711/_4 1 is still summable, we can apply Borel-Cantelli.

It remains to show that the Rellich functions in &,11 inherit the structural properties of those in &,;
namely, a Morse condition and a uniform separation estimate. By construction, simple resonant Rellich
functions are well-separated from others, so they satisfy |E,+1 — En|lc2 < 6, by the same arguments
used above. In the double-resonant case, the Morse lower bound on the second derivative follows by a slight
modification of the above argument to allow for V’s asymmetry. A new argument is required to separate the
pair of double-resonant Rellich functions uniformly by a stable, quantifiable gap. We thus show

Lemma 4.8. In our setting, double resonances of a Rellich function E,, of H,,, resolve as a pair of uniformly

locally separated Morse Rellich functions Epy1v > Eni1.4 of Ha with at most one critical point, cf.

n+1
Fig. 13. The size of the gap is larger than the next resonance scale:

inf En—&-l,v — Sup En—l—l,/\ > 6n+1

This gap ensures that any Rellich function E, can resonate only with itself at future scales, which
ultimately enables our induction.
To prove Lemma 4.8, we interlace two auxiliary curves between the double-resonant Rellich pair. Specifi-

cally, let E,,(0), E,,(6) be the two resonant Rellich functions with corresponding eigenvectors 1(6), ¢ (). By
the Min—-Max Principle, there must be an eigenvalue A of Ple A +1P$ satisfying

En-i-l,/\(e) < X(‘9) < En-i-l,\/(e)
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Einv(0)
} - gl
E,(v)
Ej 5, (0)
Eo(0 + na) Eo(6)
L ]
, 1
Iop -
Fig. 13. The resolution of a double resonance of Ey = V into a pair of uniformly locally well-separated Rellich curves of a Dirichlet

restriction H,y, of H. The curves E((0) and Eq(0 4+ na) need not interlace the Rellich curves E;, but the auxiliary curves X\, A (not
pictured) must.

Moreover, since we have projected away from one resonance, the arguments from the simple-resonance case
can be used to show that |A — E,||c1 < d,. As a consequence of the Morse condition, |OgE,| > d,, so

pL
n+1 1/’

with [|A —E,||c1 < dn, we construct two curves, with large opposite-signed first derivatives, which separate

|89X| is similarly bounded below. By repeating this process to construct an eigenvalue A\ of P<H,

E,+1,v and E,; o. Combining this with the pointwise separation bound gives a uniform separation bound,
proving Lemma 4.8 and allowing the inductive argument to proceed.

No version of this proof currently exists for more than two critical points. In higher dimensions, which
can mean both a higher-dimensional lattice Laplacian, as well as potentials defined on T?¢ with d > 2, it is
even more daunting to implement this perturbative proof strategy. This is why we will impose a much more
rigid assumption on the potential function, namely analyticity, for the remainder of these lectures. Smooth
potentials are a largely uncharted territory, especially in higher dimensions.

5. Subharmonic functions in the plane

This section® establishes some standard facts about harmonic and subharmonic functions in the plane.
In the subsequent development of the theory of quasi-periodic localization for analytic potentials, we will
make heavy use of such results as Riesz’ representation of subharmonic functions, and the Cartan estimate.
A reader familiar with this material can move on to the following section.

5.1. Motivation and definition

Let 2 C C be a domain (open and connected). Let H({2) denote the holomorphic functions on 2. What
sort of function is log|f(z)| for f € H(§2) with f # 0?7 Recall that for f € H(2) if f # 0 in 2 simply
connected then there exists g € H(2), unique up to an additive constant in 27iZ, such that f = 9. Indeed,
if f =e9 then f' = ¢g’ef so that ¢’ = fTI Then for any 29 € £2, set g(z) = g(20) + f;o %dw, where this
integral is well-defined because the integrand is holomorphic and 2 is simply connected. The upshot of this

4 Based on notes written and typed by Adam Black during a graduate class by the author at Yale.
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is that for non-vanishing f, log|f| = loge ®¢9 = Re g so that log|f| is harmonic. Notice that this is still true
if {2 is not simply connected because being harmonic is a local property and we can always find the existence
of such a g in a disk around any point. Now, if f(zp) = 0, then we may write f(z) = (z — 20)" f(z) where
]?(Z) does not vanish in some neighborhood of zy. In this neighborhood, we have

log| f(2)| = nlog|z — zo| + log‘f(z)‘

which we can make sense of in the entire neighborhood by declaring log|z — 29| = —c0 at z = zp. Indeed,
this function is continuous as map into R U {—oo} relative to the natural topology. More generally, if
K ccC {2 (that is, compactly contained) then we let {; }é\le be the zeros of f in K counted with multiplicity
so that f(z) = H;V:1(Z — (;)F(z) where F is holomorphic on some ' D K and F # 0 in {2’. Then
log] ()| =

harmonic away from the zeros of f, and —oo there, so the value of the function should be lower than its

Z;V:1 log|z — (| + log|F'(#)|. From this we infer what type of function log|f| is, namely it is

average on a small disk. This motivates the following definition, which applies to all dimensions. However,
throughout we limit ourselves to the plane.

Definition 5.1. A function u is subharmonic on 2 C R?, denoted u € SH(£2), if

o u: ) — [—00,00) is upper semi-continuous (usc)
« u satisfies the subharmonic mean value property (smvp):

ul(o) < ]é() u(y) o (dy)

for any disk D(zg,r) such that D(zq,r) C 2.

One should think of subharmonic functions as lying below harmonic ones, see Corollary 5.9. Hence, in
one dimension, subharmonic functions are convex as they lie below lines, which are the one-dimensional
harmonic functions. The integral in the above definition is well defined (although it may be —o0) because
of the following lemma.

Lemma 5.2. Let f: K — [—00,00) be usc with K compact. Then f attains its mazimum.

Proof. Let M := sup,cg f(z). Let f(z;) - M as i — oo. By compactness, pass to a subsequence if
necessary so that z; — x. Then M = limsup,_, . f(z;) < f(z) <M. O

5.2. Basic properties

In this section we prove some basic properties of subharmonic functions. Readers familiar with the
properties of harmonic functions may find these proofs rather familiar.

Proposition 5.3. If u € SH(2) then u(zp) < fD(zg ” w(z) m(dz) for all D(zg,r) C §2 where m is Lebesgue
measure in the plane.

Proof. For all 0 < s < r we have that
u(zo) |0D(z0, 5)| < / u(z) o(dz)
6]])(2078)

so that the result follows immediately by integrating both sides from 0 to r with respect to s. [
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Corollary 5.4. Let u,v € SH(R2) such that u(z) = v(z) for almost every z. Then u = v.

Proof. By the smvp and the fact that u and v are equal almost everywhere, we see that for every zy for

any r > 0 such that D(zo,r) C 2
u(zg) < ][ v(z)m(dz)
D(ZO,T)
Let r; — 0 and let v(z) attain its maximum on D(zg,7;) at z; so that z; — 2. Thus for all ¢
wGo) S F oz mldz) < ofa)
D(zq,7;)

so taking limsups we see that

u(z0) < v(20)

by usc. By symmetry, we have also that v(zg) < u(2g), so we are done. [
Lemma 5.5. Suppose u € C%(£2). Then u € SH iff Au(z) >0 for all z € £2.

Proof. Define

(M () =

oty = f u(zo + rw) o (duw)

[w|=1
where o is the surface measure on the circle. We compute

1

Op(Mu)g,(r) = ][w|=1 Vu(zg + rw) - wo(dw) = D0, D /BD(aco,r) Vu(y) - i o(dw)

which by the divergence theorem is equal to

1
[9B(0, 1)]r /D@O,r) Auly) midy)

Thus, we see that if Au > 0 then (Mu).,(r) is non-decreasing with r, and as its limit as » — 0 is u(z), one
direction follows. For the other direction, note that if Au(zg) < 0 then there exists some disk D(zg, ) on
which Au(z) < 0. The above computation then shows that (Mu),, is decreasing for small enough r, which
contradicts the smvp. 0O

0

Proposition 5.6. The function f(z) = log|z| is subharmonic on R2.

Proof. Let f, = %10g(\z|2+1/n). Then it is easy to compute in polar coordinates that Af,, = % >0
so that because f,, is C%(R?), it is subharmonic. On dD(zg, ), the sequence {f,} is bounded above by some
M so that M — f, is a positive monotone sequence of integrable functions. By applying the monotone

convergence theorem to this sequence we see that

lim ful2) o(d2) = ]{m( G)ota)

90 Jod(zg,r)

from which the result follows. O

Lemma 5.7. The maximum or sum of finitely many subharmonic functions is subharmonic.
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Proof. Follows directly from the definition. O

Lemma 5.8 (Mazimum principle). Let uw € SH({2) with 2 connected and suppose there exists zg € {2 such
that u(z) < M = u(zo) for all z € £2. Then u is constant.

Proof. Consider S = {z € 2 | u(z) = M}. This set is closed because u is usc. Furthermore it is open
because if f(z) = M, then f(z) < faD(Z_T) f(w) o(dw) implies that f(w) = M for all w € dD(z,r). O

The following result explains the terminology subharmonic.

Corollary 5.9. Letu € SH(2). If v is harmonic on 2/ C 2 for ' bounded and v > u on 82’ then v > u
in §2.

Proof. The function u — v is subharmonic so that if u —v > 0 in £’ then it would have a maximum in this
region, violating the above. [J

5.3. Review of harmonic functions

In the next section we will need some basic facts about harmonic functions, which we now briefly recall.
They can be found in many places, such as [38]. For 2 C R? a bounded region with smooth boundary, say,
we would like to solve the boundary value problem

Au(z)=f ze€ 2
u(z) =g z €01

Recall Green’s identity for u,v € C%(£2):

ov  Ou
[ w©20Om@) = [ au@uymiac)+ [ (u3h - Tty do (5.1)

If v = G(2, () is such that (in the sense of distributions) A,G(z,() = d¢(z) and G(z,¢) = 0 for z € 942 then

oG
Qan

u(z) = /Q Gz O F(C) m(dC) + /8 (2, )g(C) o (d0) (5.2)

with m Lebesgue measure in the plane and o surface measure on the boundary. Such a Green function G(z, ()
exists for any bounded domain 2 for which 0f2 satisfies an exterior cone condition. This is a standard
application of Perron’s method, see [38] (this method applies to any dimension). For the case of a disk
D(0, R) C C, there is the explicit formula given by the logarithm of the absolute value of the conformal
automorphism of the disk:

1 1 R
G(2,¢) = 5 loglz — | + 2Wlog‘ — z<’ (5.3)
In particular, by (5.1) a harmonic function on 2 which is C?(£2) with boundary values g is given by
oG
u@) = [ 9 0g0) olc) (54)
an on

This is Poisson’s formula and P (z) = %(z, () is the Poisson kernel of 2. If g € C(942), then (5.4) defines
a harmonic function in {2 which is the unique solution of the boundary value problem (uniqueness by the
maximum principle). For the disk of radius r in the plane we have

1 7”2—|z|2
P(z) = — 1L
) = P
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and there is an analogous expression in higher dimensions. This implies Harnack’s inequality, which controls
the value of a positive harmonic function on a disk by its value at the center.

Proposition 5.10. Let u be positive harmonic function on the disk D(z9, R) C C. Then for |z — zo| < r one
has

R—r R+r
< <
R su@) s p

u(zo).
Proof. Simply bound the Poisson kernel and then apply the mean value property. [

Finally, we recall the following compactness property of families of harmonic functions (the analogue of
normal families in complex analysis). It is valid in all dimensions but we state it only in the plane.

Theorem 5.11. A sequence of harmonic functions on {2 C C that is uniformly bounded on each compact
subset of £2 has a subsequence which converges to some harmonic u uniformly on each compact subset.

Proof. If u(z) is harmonic on D(a,r) then taking derivatives of (5.4) shows that |D%u(a)| < CO‘”:#
for some universal constant C,. Thus, any uniformly bounded sequence of harmonic functions is in fact
equicontinuous. We can then take a convergent subsequence on any compact subset by Arzela—Ascoli at
which point a diagonal argument with increasing compact sets finds the desired u. By the mean value
property u is harmonic. [

5.4. Riesz representation of subharmonic functions in C

As noted earlier, any subharmonic function of the form log| f| for f € H({2) admits the representation for
any {2/ € 2 (compact containment):

N
log|f| =) _loglz — | + h(2)

j=1
with h}\lflarmonic in 2" and (; € 2. We can think of this expression as [, log|z — | u(d¢) + h(z) where
p=73j—1 0¢;- Note that h is bounded on any £ € £ but not necessarily on 2. This section develops an
analogous representation for all subharmonic functions, known as Riesz representation. The difference is that
we can allow any positive finite measure . We begin with some basic properties of logarithmic potentials
of such measures.

Proposition 5.12. Let {2 be a bounded domain and yu € M*(12), that is, a positive finite Borel measure on
2. Then with u(z) = [, log|z — ¢| u(dC)

o u€ SH(N)
e u > —00 (Lebesgue) almost everywhere
e u is bounded above.

Proof. Note that for z,¢ € 2, log|z — (] < log(diam{?) so that u(z) < log(diam2)u(f2), which shows that
u is bounded above.
Consider D € 2 a disk of radius R. Then with m the Lebesgue measure in R?,

[ty m(az) = [ [ toglz = Clm(az) uta
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by Fubini—Tonelli for positive measurable functions because the integrands are bounded from above. In fact,
log|z — (| is Lebesgue integrable on D:

1
/log|z —¢lm(dz) > / log|z| m(dz) = 277/ rlogr - dr > —oo
D D(0,1) 0

which also shows that the total integral is > —oo. Since this holds for any disk, we have shown that u > —oo
a.e. in 2. To see that u is usc, observe that if z; — z then by (the reverse) Fatou’s lemma

limsupu(z;) = hmsup/ log|z; — ¢| u(d¢) < / lim suplog|z; — ¢| u(d¢) = u(z)
j—oo J—00 N Jj—00

where the use of Fatou’s lemma is justified due to the uniform upper bound on log|z — (;|. Finally, note that
for D a disk centered at zg

Fouraz = [ | togls = clazp(ac) > [ 1onlz0 — 1 du(O) = utz)

which shows that u(z) satisfies the smvp because log|z| does. O

Remark 5.13. We cannot hope for any better than usc from this construction. For instance, consider
p= 0" 27" 8y—n so that u(z) =Y .2 27 "log|z — 27"|. Then u(0) = —2log2 but u(2~") = —oco for all n.

We will also require the following smooth approximation result.

Lemma 5.14. Let u € SH() where 2 is a bounded domain. Then there exists a sequence u, €
SH( /n)NC®(821),) where (21 )y, = {2z € 2| dist(z,00) > 1/n} such that u,, — u pointwise and monotone
decreasing (in $2y /,, for n >mng).

Proof. We accomplish this via mollification, so let ¢ € C°°(R?) be a radial function satisfying ¢(x) > 0,
@(x) =0 for || > 1 and [o p(x) m(dz) = 1. Define also ¢, = n®p(nz). We claim that u,(z) = (u*¢,)(2)
satisfies the desired properties. It is clearly smooth and well-defined on §2, /,,. The smvp for u,, follows from
Fubini’s theorem and ¢,, > 0. To see that w,, is decreasing, write

un(2) = n? /RQ u(z — w)p(nw) dw = 27 /OOO /01 u(z — “e(0)) drolr) dr > u(2)

with e(f) = €27 the final inequality implied by the smvp. First, v(¢) :== fol u(z — Ce(0)) db is subharmonic
since it is easily seen to be usc, and the smvp follows by Fubini (note that u remains subharmonic after a
rotation and translation). Second, it is radial and thus an increasing (but not necessarily in the strict sense)
function of || by the maximum principle. Finally, u,(z) < max|,_,|<1/» u(w) for z € £2,/, so that by usc
Un(z) = u(z) asn — oco. O

We are now ready to prove Riesz’s representation theorem for subharmonic functions.

Theorem 5.15. Let u € SH({2) where 2 is some neighborhood of D(0,4). Suppose that u < M on D(0,4)
and u(0) > m > —oo. Then there exists p € M (D(0,3)) and h harmonic in D(0,3) such that for all
z € D(0,3)

u(z) = / Lol =10+ A2

Furthermore, there exists Cy > 0 universal such that [[h — M| oo (0,2)) < Co(M —m) and pu(D(0,3)) <
Co(M —m). In fact, for any 6 € (0,1) there exists Co(d) so that ||h — M||peomn(0,3—5)) < Co(0)(M —m).
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Proof. We first reduce to the smooth case. To this end, suppose that the claim holds for all v €
SH(D(0,4)) N C*°(D(0,4)). Choose any u € SH(ID(0,4)) and let u, — w in D(0,4) be as in Lemma 5.14.
We then have with some decreasing M,, — M

un < My onD(0,4), u,(0) >m

By validity of the theorem in the smooth case we may write
un@) = [ logle = ¢ln(de) + ha2) (5.5)
D(0,3)

and because u, is monotone decreasing and uniformly bounded above on any compact set, for any ¢ €

C(D(0,3)) we have that

(ns i = (s = [

D(0,3)

u(z + iy)p(x + iy) dedy

by the monotone convergence theorem. By assumption, the above measures are uniformly bounded, so by

Banach-Alaoglu we may take a weak-* limit in C'(D(0, 3))*, thus p, — p in the weak-* sense where p is a

finite Borel measure on (0, 3) which satisfies

1(D(0,3)) < Co(M —m)

Since, with m(dz) being Lebesgue measure in the plane,

0O = [ togls = Clp(z)mld2)
D(0,3)
is a continuous function of ¢ € R?, we conclude that

lim [ () pnldC) = /

n=20 JD(0,3) D(0,3)

Y(¢) p(d¢)

which implies that

< /7log|z ¢ un<dc>,so> R < /7log\z ¢l u(dé),<ﬂ> | (5.6)
D(0,3) D(0,3)

By the theorem in the smooth case,

limsup ||~y — M||Loen(0,3-5)) < Co(0)(M —m)

n— 00

so by Theorem 5.11 there exists some h harmonic in D(0,3) such that a subsequence of {h,} converges
to h uniformly on all compact subsets of I(0,3). Thus, for any ¢ € C(ID(0,3)) of compact support,
(hn, ) — (h,p) along this sequence. In combination with (5.5), (5.6) we conclude that

() = < /ilogw — ¢l u(d) + h(z)7<P>

D(0,3)

u(z) = / log|z — ¢| w(d¢) + h(z) almost everywhere in D(0, 3),
D(0,3)

which in turn implies equality everywhere by Corollary 5.4. Finally, to obtain the desired form we write

[ togle—clutac) = |
D(0,3) oD(0,3)

)

log|= — ¢| u(d¢) + / RIS
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and notice that fa]])(o 3) log|z — ¢| 1(d¢) is harmonic in D(0, 3). Thus,

u(z) = /D o 02 = 1O+ ol

where ho(z fa]D) 0,3) log|z — ¢| 1(d¢) + h(z) is harmonic in (0, 3). This harmonic function hg satisfies
similar L*° bounds as before, albeit with different constants.
It remains to prove the theorem for smooth subharmonic functions on I(0,4). In view of (5.2)

oG
ue) = [ GEoauOm@) + [ S u o) 5.1
D(0,4) oD(0,4) ON
so that by using the particular form G(z,¢) in (5.3), and defining p(dz) = 5= Au(z) dz we rewrite the above
as
4
u(z) = / loglz — Clu(e) + [ logr—u(d0) + [ Gz, €) Au(C) dC + hol2)
D(0,3) D(0,3) |16 — z(]| D(0,4)\D(0,3)
where ho(z faD 0.4) an z,¢)u(¢) o(d¢) is the harmonic extension of u to I(0,4), see (5.4). The second

term is harmomc for 2 € D(0,3) because 16 — z{ # 0 and the third term because ¢ € D(0,4) \ D(0,3) and
thus

4
) /D(o,:a) 6= <] pler ~/JD>(0,4)\D(0,3) () 4u(0) dC + olz) (5.8)

is harmonic in D(0,3). We have therefore obtained the desired form for u, we only have left to show the
stated bounds. To bound p(D(0, 3)), use (5.7) to see that

w0) = [ 60,00 +ho0) = [ 108l @) + o0
D(0,4) D(074)
4
log , n(D(0.1) < [ log uldd) = ha(0) ~ u(0) £ M~ m
r D(0,r) 1q
where we have used that «(0) = m and the fact that v« < M on 9D(0,4) implies that hy < M. Setting
r = 3, we see that u(ID(0,3)) < C(M — m) as desired. For z € D(0,3), the first term in (5.8) is negative

by inspection, the second negative since G < 0, and the third is bounded above by M as before. Therefore,
h(z) < M. For the reverse bound, Harnack’s inequality on |z| < 3 — § yields

M —n() < 25— (o) < S22 (0 - o))
and
h(0) = u(0) / log]¢] j(d¢) = m — log¢] j(d¢) > m — C(M — m)
]D)(O,S) D(O,S)\D(O,l)

so putting these together implies that
M —Cs(M —m) < h(z)
forall |2/ <3—0. O

In fact, by essentially the same proof one can obtain the following more general Riesz representation.
Note that one can move the point zg to 0 by an automorphism of the disk, which retains the property of
being subharmonic.
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Theorem 5.16. Let u € SH(D(0, Ry)) and suppose that u < M on (0, Ry) and u(zg) > m > —oo where
|z0| < Ry. Let Ry > Ry > R3 > 0. There exists up € M (D(0, R2)) and h harmonic in D(0, Ry) such that for
all z € D(0, Ry)

u(z) = / o sl =LA+ A2

Furthermore, there exist Co = Co(20, R1, R2) > 0 and C; = Ci(z0, R1, Re, R3) > 0 universal such that
p(D(O, B2)) < Co(M —m) and [l — M| o= oo,y < Ca(M —m).

See Theorem 2.2 in [31] for explicit constants.

5.5. Cartan’s lower bound

Next, we prove Cartan’s theorem which controls large negative values of logarithmic potentials. Levin’s
book [41] has much more on this topic, see page 76.

Theorem 5.17. Let p be a finite positive measure in C and consider the logarithmic potential
u(z) = [ togle — ¢l uldc)
R2

For any H € (0,1) there exist disks {D(z;,7;)}{_,, for 1 < J < oo with ijl r; <5H and

J
u(z) > —|lullog(e/H)  VzeC\ |JD(z,m) (5.9)
j=1

Proof. Let z € C be a good point if n(z,7) := u(D(z,r)) < pr for all r > 0. Here p depends on H and will
be determined. For every bad z there exists 7(z) > 0 with n(z,7(2)) > r(z)p. Note that r(z) < ||u|/p- By
Vitali’s covering lemma there exist bad points z; so that {ID(z;,7(z;))}; are pairwise disjoint and

B:={z¢€C|z isabad point } C U]D)(zj,rj) with 7; == 5r(z;).
In particular, 3, r; < 5[[u||/p whence we need to set p = ||ul|/H. If = € C\UD(z;,7;), then z is good and
we obtain by integrating by parts
1 1 H
u(z) > / logrd(n(z,r)) = —/ @dr > —/ pdr + ||u||logH
0 0 0
= —pH + |[pllogH = |[pl[log(H/e)

as claimed. O

We call ||p]| the Riesz mass of u. We leave it to the reader to check that Theorem 5.17 with the same
proof generalizes as follows.

Theorem 5.18. Under the same assumptions as in the previous theorem, suppose 0 < § < 1. Then for any
H € (0,1) there exist disks {D(z;,7;)}]=y, for 1 < J < oo with ijl r? < 5°H and

J
u(z) > —%Hu”log(e/H) vzeC\ DG (5.10)
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We chose 0 < § <1 here instead of 0 < ¢ < 2 since the range 1 < § < 2 is weaker than Theorem 5.17. As
an immediate corollary we conclude that dim({z € C|u(z) = —oc0}) = 0 in the sense of Hausdorff dimension,
for any logarithmic potential of a finite positive measure. By Theorem 5.15, this same property therefore
holds locally on 2 for any subharmonic function on {2 which is not constant —oco. For our applications,
Cartan’s theorem, i.e., Theorem 5.17, will suffice. The following serves to illustrate this result.

o Consider the logarithm of a polynomial of degree N with roots (; € C. Thus, P(z) = Hévzl(z —¢;) and

N N
u(z) =log] [[: = )] = [toglz = Clutdc),  w=>"4,
j=1 j=1

all z € C\ UD(z;,7;). By the maximum principle, each disk contains a zero of P (otherwise it can be
removed without changing the conclusion). Thus, J < N. The bound on the Riesz mass in Theorem 5.15

Given 0 < H < 1, there exist disks D(z;,7;), 1 < j < J, with 37, r; < 5H and |[P(2)[ > (H/e)N for

is nothing other than Jensen’s formula counting the roots of analytic functions, see [41, page 10].

o If (; =0 for all j, then |P(z)| = 12|Y > HY if |2| > H. This shows that Cartan’s theorem is optimal up
to multiplicative constants on H.

o On the other hand, suppose (; = e(j/N) for 1 < j < N where e() = ¢?™. Then P(z) = z¥ — 1 and
we can take the Cartan disks centered at (; of radius p = 1/N. Then for any z with z = (; + pe() we
have

(N - (Np)!
_|,N — N _ _ ¢ _ _a_
POI= 1 =1l =1 +pel@)™ <1128 =3 ()21 - X Fh=3-c 51
=2 =2
It follows from the maximum (minimum) principle for analytic functions that |P(z)| > 3 — e for all
z€C\ Ujv:1 D(¢;,1/N). Therefore Cartan’s estimate is woefully imprecise in this example. Indeed, for
the polynomial P with roots at the Nth roots of unity, u(z) = log|P(z)| behaves in Theorem 5.17 like a
subharmonic function with Riesz mass 1, at least for H = 1/N.

In applications of Cartan’s theorem to quasi-periodic localization, the distribution of the zeros plays a
decisive role and it is therefore essential to improve on the Cartan bound. In other words, we are in a situation
much closer to the roots-of-unity example where Cartan falls far short from the true estimate. Nevertheless,
combining Cartan’s bound with the dynamics, one can still obtain a nontrivial statement as we shall see in
the following section.

To conclude this section, we prove Riesz’s representation theorem on general domains from the one for
disks which we proved above. We will do this by connection points by chains of disks, which uses Cartan.

Corollary 5.19. Let 2 C C be a bounded domain, u subharmonic on §2 with suppu < M. Suppose
u(z0) > m > —oo for some zg € 2. For any {)» € () € (2, there exist a positive measure i on 1 and a
harmonic function h on {1 such that

u(z)z/ﬂ log|z — ¢| (dC) + h(z) V=€

p(f1) < C1(£2, 20, (1) (M — m)
[h — M||poo () < C2(£2, 20, $21, (o) (M —m)

(5.12)

Proof. By Lemma 5.14 we can assume that u is smooth, although this is strictly speaking not necessary.
The measure pu(dz) = 3-Audzdy is unique and therefore h harmonic on (2 if it satisfies (5.12). Let
supgr u = u(z0), 20 € K. By compactness, there exists 6 > 0 and N finite so that for any z € (4 we
can find disks D(z;,0) C 2,0 < j < N, with 2y = z, and z; € D(2;_1,0/2) for all j > 1. Moreover, we

40



W. Schlag Nonlinear Analysis 220 (2022) 112869

may assume that (25 C Uzeﬂl D(z,4/2) and by compactness this can be chosen as a finite union. By Riesz’s
representation as in Theorem 5.16 we have

u(z) = / loglz — ¢l u(dC) + ho(z) ¥ = € D(z0,6/2)
D(20,6/2)

p(D(z0,0/2)) < Co(8)(M —m),  [[ho = M||Lo0((z9,5/4)) < Co(8)(M —m)

Next, apply Theorem 5.17 to the logarithmic potential in (5.13) with H = 6/100. Hence, there exists
wy € D(z0,6/4) C D(z1,35/4) with

u(wy) > m — C1(8)(M —m) (5.14)

(5.13)

while u < M on D(z1,4). We now apply Riesz’s representation as in Theorem 5.16 on this disk, followed by
Cartan to find a good point wy € D(22,306/4) for which and analogue of (5.14) holds. We may repeat this
procedure to finitely many times to cover all of {2; by such disks leading to the stated upper bound on the
measure ({2;). For the estimate on the harmonic function h defined by (5.12), pick any z, € 2. Then with
go = dist(042y, £22) we have D(z,,e9) C 1. On the one hand, for all z € {2,

h(z) > u(z) — log(diam(£21)) (1) > u(z) — C(M —m)

with the same type of constant as before. By the previous Cartan estimate and chaining argument, we can
find z.. € D(z«,e0/4) which satisfies a bound (5.14) with a purely geometric constant. Hence

h(zex) > m — C(M —m) (5.15)
On the other hand, again by Theorem 5.17 we may find €1 € (3e9/4,¢0) so that for all |z — z.| = €1 one has

| 1oz~ ¢l utdc) = ~C(0 — m)

h
whence
hz) <M+ C(M—m) Viz— 2z =61 (5.16)

By Harnack’s inequality, (5.15) and (5.16) imply that h satisfies the desired bound on D(z,,e0/2) and hence
everywhere on (. O

Alternatively, one can rely on the proof strategy of Theorem 5.15, and use the Green function on general
subdomains of {2 with sufficiently regular boundary. But this seems technically more involved, at least to
the author.

6. The Bourgain—Goldstein theorem

In this section we will sketch a proof of the main theorem in [10]. Similar to Theorem 4.1 it addresses
Anderson localization for the operators

(Hx,ww)n = ¢n—1 + ¢n+1 + V(T£$)’(/)n (61)

on ¢?*(Z), where T, : T — T is the rotation z + 2 +w mod 1 and V : T — R is analytic.

Theorem 6.1. Suppose the Lyapunov exponents L(E,w) associated with (6.1) satisfy
inf L(E,w) > 0.

E,w
Then for almost every w € T, the operator Hy,, exhibits pure point spectrum with exponentially decaying
eigenfunctions. Moreover, for almost everyw € T, the operator Hy, ,, exhibits Anderson localization for almost

every x € T.
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The final statement of the theorem follows simply by Fubini and the fact that one may replace 0 in Hy
with any other z € T. See [8,10] for versions of this theorem with V analytic on higher-dimensional tori.
This section is only meant to serve as a motivation for higher-dimensional techniques involving A, with
d > 2, and less as a review of [10] itself. We will often drop w from the notation and write H, or H(z).

No explicit Diophantine condition arises here in contrast to Theorem 4.1. In fact, it is not known if
Theorem 6.1 holds for all Diophantine w. For V(x) = cos(2nx), Jitomirskaya proved [34] that this is indeed
the case. Although Diophantine conditions play a decisive role in the proof of Theorem 6.1, one does remove
a measure 0 set of “bad” w in addition to a measure 0 set of non-Diophantine w. The smallness condition on
€ in Section 4 is replaced by positive Lyapunov exponents, a non-perturbative condition. No assumption on
the number of monotonicity intervals of V' is made, nor do we impose an explicit nondegeneracy condition.
Note, however, that the most degenerate case V' = const cannot arise by positive Lyapunov exponents. By
analyticity, V therefore cannot be infinitely degenerate anywhere. No analogue of Theorem 6.1 is known if
V' is merely smooth, nor is it clear what the results might be for smooth V.

We quickly review some elementary background on Lyapunov exponents. Consider (6.1) with the rotation
T, replaced by an ergodic transformation 7" : X — X on a probability space (X,v), and V is a real-valued
measurable function. Define

L(E) = lim l/ log|| My, (z, E)|| v(dz) = inf l/ log|| M, (z, E)| v(dzx) (6.2)
b's nzln Jx

n—o00 N

where M, are the transfer matrices

M, (x,E) =[] ) 0 (6.3)

- F—V@%)—q
k=n

of (6.1), i.e., the column vectors of M,, are a fundamental system of the equation H, ¢ = Et. The limit
in (6.2) exists as stated due to fact that a, = [y log| M, (z, E)| v(dz) is a subadditive sequence, and it is
known that lim,, e %Lan = inf,>q %an exists for such sequences. Since M,, € SL(2,R) we have ||[M,] > 1
and thus L(E) > 0. It is an important and often difficult question to decide whether L(E) > 0 for (6.1),
see [31,32] for an example of this. But this circle of problems will not concern us here. It was shown by

Fiirstenberg and Kesten [24], later generalized in Kingman’s subadditive ergodic theorem, that
1
lim —log||M,(z, E)|| = L(E) (6.4)
n—oo N

for a.e. € X. This does use ergodicity of T', whereas (6.2) does not. See Viana’s book [50] for all this.
The Thouless formula, see [15],

L(E) = /Rlog|E _F|N@E) VEecC (6.5)

relates the Lyapunov exponent to the density of states. Here N is the integrated density of states (IDS),
i.e., the limiting distribution of the eigenvalues of (6.1) restricted to intervals A = [—N, N] in the limit
N — oo. In other words, there exists a deterministic nondecreasing function N so that for a.e. x € X one
has

147G € 1L 1A | BV (2) < £} — N(t),

where Ej(-A)(l‘) are the eigenvalues of H/, the restriction of (6.1) to A with Dirichlet boundary conditions.
The existence of this limit holds in great generality, see [20]. The Lyapunov exponent is a subharmonic
function on C, and harmonic on C\ R. The Thouless formula identifies the IDS N as the Riesz measure of
L(E), and also shows that L and % are related to each other by the Hilbert transform. For far-reaching
considerations involving these concepts see for example Avila’s global work on phase transitions [3].
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6.1. Large deviation theorems

We now present a key ingredient in the proof of Theorem 6.1, namely the large deviation estimates (LDTs),
see also [26] where they are essential in the study of the regularity of the IDS. For the operators (6.1) defined
in terms of rotations of T, define

1
L,(E)= ﬁ/quogHMn(x,E)de.

The following LDT can be viewed as a quantitative form of (6.4).

Definition 6.2. By Diophantine, we will now mean any irrational w so that |nw|| > bn~* for all n > 1.

It is easy to see that for every a > 1 a.e. w satisfies such a condition for some b = b(w).

Proposition 6.3.  For Diophantine w there exist 0 < o,7 < 1 depending on V,a so that for all
E e [7E05E0L
{z € T | [log|| My (2, E)[| = nLn(E)| > n'~7}| < exp(—n"). (6.6)

for all sufficiently large n > ng(V, a, b, Ey).

To motivate (6.6), consider the following scalar, or commutative, model:
q
u(@) = logle(z) — e(kw)| (6.7)
k=1

where w = £ and e(z) = ¢*™*. Then u(z) = logle(zq) — 1| and [, u(z)dx = 0 so that for X <0
Hz €T : ule(z)) <A} =z €T : |e(z) — 1| < e} (6.8)

which is of size e*. In this model case, u(z + 1/q) = u(z). Returning to u(z) = log|| M, (x, E)||, this exact
invariance needs to be replaced by the almost invariance

sup |u(x) —u(r + kw)| < Ck for any k > 1. (6.9)
zeT

The logarithm in our model case (6.7) is a reasonable choice because of Riesz’s representation theorem
for subharmonic functions applied to the function u(z) = log||M,(z, E)| which is subharmonic on a
neighborhood of [0,1] in C by analyticity of V. The subharmonicity can be seen by writing

u(z) = sup  log|(M,(z, E)¥, )]

I9]]=Ilw|=1

First, log|(M,(z, E)V,w)| is subharmonic by analyticity of (M, (z, E)¥,w). Second, the sub-mean value
property (smvp) survives under suprema, and so u satisfies the smvp. Finally, the function u(z) is clearly
continuous.

Proof (Proof of Proposition 6.3 by Riesz and Cartan). Fix a rectangle R which compactly contains [0, 1].
By Riesz representation as stated in Theorem 5.15, there exists a positive measure g on R and a harmonic
function on R such that

u(z) = 108104, (2. D) = | Toglz ¢l ud) + (2 (6.10)
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Since || M, (2)|| < €™, 0 < u(z) <non R (with a constant that depends on V', R and FEy) and thus [|u]| <n
as well as ||A]| oo(rry S, where [0,1] € R’ € R is a slightly smaller rectangle. Fix a small 6 > 0 and take
n large. Then there is a disk Dy = D(x,n~2%), 7 € [0, 1] with the property that u(Dg) < n'=2°. Write

/R log]z — ¢[ j(dC) = s (2) + us(2) = / togls —lu(d0) + / log|z — ¢| u(d¢)

C\Dg

Set Dy = D(xg,n~3%). Then
lug(2) — ug(2')| <m0 Vz,2 €Dy

since

/ —30

—z

[, e S o

Cartan’s theorem applied to w1 (2) yields disks {D(z;,7;)}; so that 3. r; < exp(—2n°) and with the property
that

S n

s u(C) St

lug(2) — uz(2')| =

ui(z) = —n'™? Vz e C\ UD(zj,rj)
J

From u; <0 on Dy and |h(z) — h(2')| S n|z — 2'| on R, it follows that
lu(z) —u(z)| Snt™0 Vz,2/ €D\ UD<Zj’ ) (6.11)
J
From the Diophantine property with 1 < a < %, say, for any z, 2’ € T there are positive integers k, k' < n*
such that
x+ kw2’ +kweb mod Z

An elementary way of seeing this is to use Dirichlet’s approximation principle, viz. for any @ > 1 there
exists a reduced fraction % so that |w — p/q| < (¢Q)~ ! and 1 < ¢ < Q. Then use the Diophantine property
to bound ¢ from below in terms of Q. In order to avoid the Cartan disks (J; D(z;,7;) we need to remove
a set B C T of measure < exp(—n%). For this step is important that Cartan controls the sum of the radii,
Le,> ;1 S exp(—2n°) since then the disks remove at most measure < exp(—2n?) from the real line. Then
from the almost invariance (6.9), for any =, 2’ € T \ B,

u(z) = u(@)] ' +n'70 <nl™
This implies (6.6) with c =7=4. O

This proof generalizes to other types of dynamics such as higher-dimensional shifts To = x +w mod Z<,
on T? with d > 2.

Definition 6.4. Let 0 < H < 1. For any subset B C C we define B € Cari(H) if B C J; D(2;,7;) with
> < CoH. (6.12)
J
If d is a positive integer greater than one and B C C?, then we define recursively B € Cary(H) if there exists
By € Carg_1(H) so that

B={(z1,22,---,24) | (22,...,24) € By or z1 € B(za,...,24) with B(za,...,zq) € Car1(H)}.

We refer to the sets in Carg(H) for any d and H summarily as Cartan sets (see Fig. 14).
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if z; is good, then we remove z,-disks over that fiber at z;

remove disks in z;

Fig. 14. Cartan-2 sets in C2.

The following theorem from [26] furnishes the key property allowing one to extend the previous proof
of (6.6) to higher-dimensional shifts. We state the case d = 2, with d > 2 being similar (see also [43]).
Theorem 6.5. Suppose u is continuous on D(0,2) x D(0,2) C C? with |u| < 1. Assume further that

z1 = u(z1,22) is subharmonic for each z9 € D(0,2)
zo = u(z1,22) is subharmonic for each 2z € D(0,2).

Fiz some v € (0,1/2). Givenr € (0,1) there exists a polydisk IT = D(xq1,7177) x D(z2,7) C D(0,1) x D(0, 1)
with x1,x9 € [—1,1] and a set B € Cara(H) so that
1
lu(z1, 22) — u(zy, 25)| < Cy 7'172710g; for all (z1,22),(21,2%) € I \ B.

H= exp(—r‘"*). (619

This theorem replaces (6.11) in the previous proof. For the sake of completeness, we now also sketch a
proof by Fourier series as in [8,10].

Proof (Proof of Proposition 6.3 by Fourier series). For this technique, it is more convenient to view u(z)
as a subharmonic function on an annulus around |z| = 1. This is based on viewing the periodic analytic
potential V(z) as an analytic function of z = e(z) = ¢*™® instead and then extending analytically to the
annulus A:={z € C|1-§ < |z| < 146} for some 0 < § < 1. Thus, write V(z) = W(e(z)) with W analytic
on that annulus. Accordingly, u(z) = w(e(z)), and the Riesz representation takes the form

w(z) = /Alog|z L udO) +h(z) VzeA (6.14)

with p a positive measure on A with u(A) < n and ||k eo(ary S n for a slightly thinner annulus A’. Note
that 4 > 0 on |z| = 1. In particular,

u(z) = /A logle(x) — | u(dC) + h(e(x)) Yz eT
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Next, we claim that
fela) =logle(w) ~ | satisies sup|fe(k)| < O™ ¥k #0 (6.15)
€

with an absolute constant. First, it suffices to prove this for |(| < 1 by pulling out log|¢| otherwise. By
translation in x we may further assume that 0 < ¢ < 1. One checks that

0y f1(z) = Ozlogle(z) — 1| = weot(nz),

B B 2rsin(2mx)
O fr(z) = Ozlogle(w) —r| = 7T1 + 72 — 2rcos(2mx)

the latter for 0 < r < 1. These are, respectively, the kernel of the Hilbert transform on T and the conjugate
Poisson kernel. Both have uniformly bounded Fourier coefficients, uniformly in 0 < r < 1, whence our
claim (6.15). Indeed,

(k) = @2mik) 18, f, (k) = O(k™Y)

We conclude that |4(k)| < Cn|k:|71 for all k # 0 by integrating over the Riesz mass. For the harmonic
function we simply use that |0;h(e(z))| < n and the decay of the Fourier coefficients follows. By the almost
invariance property (6.9),

k k
u(x) %Z u(z + jw) — )—i—O(kz):Z Zeyuw )+ O(k)

v#0 j=1

??'M—‘

Then one has that

—

k
’EZe(juw)‘ < min(1, k= jpw| Y
j=1
for all v > 1. Also, it follows from (6.10) that |a(v)| < n|v|”" which in turn implies that

k
|u( %Z‘ Z ($+k£d))‘ Z n|y‘_1 miﬂ(l,k*lHVwH*l)

=1 |v|>K 0<|v|<K

On the one hand, by Plancherel and the decay of the Fourier coefficients,

Hkg‘ Z v(z + jw) H 2_H Z (vz) H <KV

On the other hand, setting K = e" it follows from the Diophantine condition (with a = 2 for simplicity)
that

S al| ™ min(L k] 7Y S nkT2logK S n'tTETS

(6.16)
0<|v|<K

Choosing 7 > 0 small and k = n%7 say, yields (6.6). To prove (6.16), partition 0 < |v| < K into sets
corresponding to the size of ||vw||. First ||vw|| < k=1 and then ||vw]|| € k~1(2771,2/] for j > 1 and k127 < 1.
The Diophantine condition implies that the recurrences into these sets cannot be more frequent than specific
arithmetic conditions, which the reader can easily check. The logK term results from summing the harmonic
series over a finite arithmetic progression. [

Remark 6.6. Write the Diophantine condition in the form ||kw| > h(k) for all £ > 1. Later we will need
to exploit the fact that the previous proofs require this condition only in the range 1 < k < n.
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For applications related to the study of fine properties of the IDS it turns out to be important to
obtain sharp versions of (6.6). The commutative model example suggests that the optimal relation is
0<1—0=7<1 Here 0 = 1—7 = 0 corresponds to the largest possible deviations and smallest
measures. The previous two proofs do not easily yield such a statement, but it was proved in [26] by a more
involved argument. The book [8] contains an elegant Fourier series proof, see Theorem 5.1 on page 25. Both
these references require stronger Diophantine conditions.

There is a close connection between the Wegner estimate in Section 3 and the LDT from above. We
refer to reader to [27, Lemma 5.5] for the precise formulation of a Wegner estimate derived via LDT for the
quasi-periodic model (6.1).

6.2. LDT and regular Green functions

As in Sections 3 and 4 the key to proving localization in Theorem 6.1 is to exclude arbitrarily long chains
of resonances (absence of infinite tunneling). In fact, one shows that one cannot have double resonances on
sufficiently long scales, in exact analogy with the localization results we proved above. The LDT theorems
from above enter into this analysis through the Green function associated with (6.1) on finite intervals. In
fact, from Cramer’s rule for any A = [a,b] € Z,and a < j < k < b,

(Hp(z) — E)~'(j, k) = det(H{a,j—1§Zﬂ)(l—{ﬁ£ej(ggk,b] (z) — E)

for fixed z,w, the latter Diophantine. We denote f,(z, E) = det(H[; »)(x) — E). In explicit form, the matrix
is

(6.17)

vi(z) — F 1 0 0 . 0
1 va(x) — F 1 0 0 0
0 1 vs(x) —E 1 0 0
H[l,n] (l‘) —FE= (6.18)
. . . 1
L 0 0 1 w(z) - E |
with vj(z) = V(TVz) and T = T,,,. Thus, (6.17) implies that
. 1. 1(z, E) foep(T*z, E )
Grn(z, E)(j, k) = (Hjyp(x) — E) 1(], k) = fia( )k ), 1<j<k<n (6.19)
fn(z, E)
with the convention fy = 1. The transfer matrices defined in (6.3) satisfy for all n > 1
(=1)"fn(z, E) (=1)"fn1(Tz, E)
M, (z,E) = ol ) 6.20
@B = | om0 B) (<) o, E) (6:20)
where we set f_; = 0. The following uniform upper bound from [28, Proposition 4.3] improves on the

LDT. As expected, as a subharmonic function log|| M, (z, F)|| can only have large deviations towards values
which are much smaller than nL,, (E) but cannot exhibit deviations in the opposite direction. The following
inequality requires positive Lyapunov exponents and relies on some machinery which we have not discussed
here, such as the avalanche principle from [26]. Moreover, [28] imposes a Diophantine condition of the form

b

_— >2
n(logn)?’ "

[[nwl| >

which holds for some b > 0 for a.e. w. Of course one needs V analytic since the following lemma heavily
relies on subharmonic functions and the LDT from above.
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Lemma 6.7. Assume L(E) >~ >0 for all E € I, some interval. For alln > 1 one has

suplog|| M, (z, E)| < nL,(E) 4+ C(logn)?,
z€eT

for some absolute constant B and C = C(V,~,b,1).

In view of (6.20) and the Thouless formula (6.5) it is natural to ask if each entry of M, i.e., the
determinants f,, satisfy an LDT individually. This was proven to hold in [28, Section2].

Proposition 6.8. There exists o > 0 so that for large n
{z € T|log|fn(z, E)| < nL,(E) —n’} <e™

A stronger statement is possible if we assume positive Lyapunov exponents. See [27, Lemma 5.1]. Below
BMO refers to bounded mean oscillation, see e.g. [48].

Proposition 6.9. Assume L(E) >~ > 0 for all E € I. For some constants A and C depending on w, V,
and vy, every n > 1 satisfies

’ /O log|det(Hyy n)(z) — E)|dz —n L, (E)| < C (6.21)

llog|det(Hiy () — B)| [[Bvo < C(logn)™.
Thus,

[{ € T | [log|det(H[y )(2) — B)| — n Ln(E)| > H}| < cexp(—@) (6.22)

for any H > (logn)?. If V is a trigonometric polynomial, then the set on the left-hand side is covered by
2deg(V)n many intervals each not exceeding in length the measure bound of (6.22).

The final statement follows from the fact that z?"det(H; ,)(z) — E) with z = e(z), is a polynomial
of degree 2dn. The estimate (6.22) follows from the BMO bound (6.21) by means of the classical John—
Nirenberg inequality. The large deviation estimate for the determinants f,,(x, F') do not appear in the original
proof of Theorem 6.1, and they were established later in [28]. However, they help to streamline some of the
technical aspects of [10]. For example, in view of (6.19), (6.20) and Lemma 6.7, the Green function satisfies
for large n (and of course for positive Lyapunov exponents)

|G (2, E)(J, k)| < exp((j —1)L;_1(E)+ (n—k)L—k(E) —nL,(E) + (logn)2A) provided

6.23
|fu(z, B)| > nL,(E) — (logn)** (6.23)

which therefore holds up to a set of measure < exp(—(logn)4) (assuming A > B). It was proved in [26] that
L,(E) — L(E) < Cn~! whence it follows from (6.23) that
|Gy (2, B)(j, k)| < exp(=j — KIL(E) + (logn)**) (6.24)

up to a set of measure < exp(—(logn)?). By the preceding this set can be made < exp(—n?) with 0 < o < 1
if we settle for the weaker Green function bound

|G,y (2, B)(j, k)| < exp(=j — KIL(E) +n7 (logn)*) ¥ j,k € [1,n] (6.25)
and large n. This is precisely the notion of regular Green functions from Section 3. Since

dist(spec(H1,n)(2)), E) = ||G1,m) (a:,E)H_1

48



W. Schlag Nonlinear Analysis 220 (2022) 112869

the connection with a Wegner-type estimate is also immediately apparent. For example, from (6.25) one
concludes the following statement. We assume throughout that

|E] <24 [V]|e (6.26)

since this range contains spec(H,).

Corollary 6.10. Under the same assumptions as Proposition 6.9 one has

IS

{z € T | dist(spec(Hpy n)(2)), E) < exp(—n1/3)}| <e™ (6.27)

for large n. In addition, the set on the left-hand side is contained in O(n) many intervals assuming V is a
trigonometric polynomial.

6.3. Eliminating double resonances

We will assume for convenience that V is a trigonometric polynomial. As in the proof of localization in
Sections 3 and 4 we begin from a generalized (nonzero) eigenfunction H(x) = Et(x) which by Theorem 2.1
grows at most linearly: |i)(n)| < C(1+ |n|). We claim that for any n sufficiently large there exists a window
Ao = [=m,m] with n < m < n? such that Hy,(0) is resonant with E. Quantitatively, we claim

1/4

dist(spec(H|_pm,m)(0)), E) <e ™ (6.28)

Indeed, denote the set in Proposition 6.8 by B,,. It consists of O(n) intervals of length e~ . Therefore, by
the Diophantine condition the set

{n <m<n?|mw e B, (F)U(-B.(E))}
has cardinality O(n). Pick an m € [n,n?] which is not in this set. Then by (6.25)
|G[mfn7m+n] (Oa E)(m +1,m= ’/l)| + |G[fmfn7fm+n] (Ov E)(_m -1,-m= n)| < exp(—vn/?),

whence by (3.28) for large n

Vim + 12 §(—m — 1) < 2Cexp(—n/2)(1 + n?) < exp(—yn/3)

Combined with ((H{_p m,(0)) — E)Y = (m + 1)d,m41 +9(=m — 1)0_(;,41) this estimate implies that

1/4

| (H—m,m](0) — E)¢|| < exp(—yn/3) <e ™

which is what we claimed in (6.28). Let us denote by Dioph,, (b) the Diophantine condition

b
kw||> ———— VI1I<ELZ 2
kel = Fiogry Y1k =n (6.29)
and Dioph(b) = (-, Dioph,, (b). Then under this condition we have the following stronger LDT for the

determinants, see [29, Corollary 2.15]:

Lemma 6.11. Assume w € Dioph,,(b) and positive Lyapunov exponents as above. For any Ey in the
range (6.26),

=

[{z € T |log| fn(z,w, E)| < nL,(E,w) — n? for some |E — Ep| <e "} <e™" (6.30)

if n > no(V,b,y) is large.
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il

(w, tw)

Fig. 15. The lemma on steep lines.

Proof. For fixed Ey we already stated this LDT for the determinant in Proposition 6.9. The stability in
E over the exponentially small interval [Ey — e™™, Eg + e~ "] is precisely what [29, Corollary 2.15] provides.
The statement in loc. cit. is slightly weaker, but replacing the upper bound of [29, Corollary 2.14] with the
stronger one of Lemma 6.7 implies (6.30). O

In view of this lemma, and (6.28) we now introduce the following set which will allow us to eliminate
double resonances: for any b > 0

1/4

8, (b) :=={ (w,z) € Dioph,,(b) x T | 3E € R with dist(spec(H[_, »(0,w)), E) < e~ "
108| fn (2, w, B)| < mLp(E,w) —m'? for some m € [n*/*/2,n'/4] }

cand

If dist(spec(H[—y,n(0,w)), ) < e‘”1/4, then |E — E;,(w)] < =" for some eigenvalue Ej; ,(w) of
Hi_;, »(0,w). Applying Lemma 6.11 with Ey = E; ,(w) and summing over 1 < j < 2n+ 1 one concludes by
Fubini that

1S, (b)] < 3nie ", (6.32)
The set of bad w, which we will need to exclude in order to prevent double resonances, is
B (b) = {w € T | (w, fw) € S,,(b) for some =+ ¢ € [n?,2n*]} (6.33)

Here s > 2 is an absolute constant, which we will specify later. The following lemma on steep lines from [10]
guarantees that B, (b) has very small measure. This hinges not only on the small measure estimate of (6.32),
which by itself is insufficient, but also on the structure of the set S, (b). Specifically, the fact that the
horizontal slices

(Sn(0))e = {w e T|(w,z) € Sn(b)} (6.34)

are contained in no more than O(n®*) many intervals of very small measure (see Fig. 15).
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Lemma 6.12. Suppose the Borel set S C T? has the property that for every x € T the horizontal slice S,
viewed as a subset of [0,1], consists of no more than M intervals. Then

Hw € T | (w,fw) €S mod Z?* for some £ € [N,2N]}| < % +8N3(S|? (6.35)

Proof. By Fubini, for each v > 0,

{a € T|IS:| >} < ISy~
We define the set of good x € T as

G = {z €T|[S;| <~ and for all j € [1,N] one has ||lzj| > 4N>~} (6.36)
with || - || the norm of T. Then

IT\G| < ISy~ + 4Ny
We optimize here by setting v = (4N3)’% \S|% whence

T\ G| < 4n3|5]} (6.37)
Correspondingly,

S=8. U8 =(SNGU(SN(T\G))

We eliminate S, as follows:

Hw € T| (w, fw) € Ssx mod Z? for some £ € [N,2N]}|

2N s 1 (6.38)
<Y HweT|lweT\G}H < (N+1)[T\G| <8N2|S|?
=N

On the other hand, where {z} = 2 — |z] for > 0 denotes the fractional part,
Hw € T | (w,fw) €S, mod Z? for some £ € [N, 2N]}|

2N
<Z/ 1s, (w, {fw}) dwfz Z/ 1s,((z+ k)/4,x) dx
2N (-1

<ZN/ SO S oy (@ + B)/0) da

9 ¢=N k=0

Here, for € G, (Si)y = Sz = Ule I, (x) with I,(x) intervals of length |I,(x)| < +, possibly empty. We
claim that for all x € G one has

(6.39)

N £—1
S @@+ k)/0) < (6.40)
(=N k=0
Indeed, suppose £ # ¢’ both in [N, 2N] and w'”“, 2k ¢ I,(x). Then
x+k x+k
— <|I,
| - < @)

whence |z(¢ — ') + k' — K'¢| < 00'|1,(x)| and thus ||jx| < 4N?y for some 1 < j < N. But this is excluded
by x being in the good set. So it follows that £ = ¢', which implies that for k # k'’

!
r+k x—i-k >1>1
/ /

which contradicts that N24% = (4N)~!|S| < 1. So Claim (6.40) is correct, and the entire contribution
to (6.39) is at most M/N. O

72 L) = |5
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To obtain the complexity bound of O(n®) on the set (6.34), we use semi-algebraic methods. A closed set
S C RY is called semi-algebraic if there are polynomials P; e R[Xq,...,Xn], 1 <j <s of degrees bounded
by d so that

S=]J ) {Pjor; 0}

k jEFk

with op; € {<,>,=} and Fi, C {1,2,...,s}. The degree of S is bounded by sd and is in fact the infimum
of sd over all such representations.

One might expect to get away with more elementary arguments based on zero counts alone. Note, however,
that F is projected out of in the set S, (b) which makes it necessary to perform quantifier elimination. In
fact, we will need to use a quantitative Seidenberg—Tarski theorem to control the complexity parameter M
in Lemma 6.12. This fundamental result states that any projection of S onto a subspace of RY is again
semi-algebraic and the degree can only grow at a power rate (depending on N). See [4,5].

These semi-algebraic techniques are available here since V is a trigonometric polynomial although by
approximation and truncation, V analytic can also be handled in [10]. Heuristically speaking, the semi-
algebraic quantitative complexity bounds replace the explicitly imposed complexity in Theorem 4.1 where
exactly two monotonicity intervals of V' are assumed.

We claim that S,,(b) is contained in

S (b) = IIgo { (w,z, E) € Dioph,,(b) x T x R |log| font1(nw,w, E)| < (2n + 1) Lap11(E,w) — nt/*/2,
and log|fyn(z,w, E)| < mLy,(E,w) —m!? for some m € [n/*/2,n/4] } (6.41)

where II2 projects on to (w,z) and moreover, that S, (b) has essentially the same measure bound as S, (b).
And conversely,

S, (b) { (w,z) € Dioph,,(b) x T | 3E € R with dist(spec(H[_,, ,(0,w)), E) < e_"1/4/4, and
log| fyn(2,w, E)| < mLy,(E,w) —m'/? for some m € [n*/*/2,n'/*] }

These relations follow from noting that
dist(spec(H{—p,n)(0,w)), E) = [|((H—pn(0,w)) = E)~'|| and [|A]| < [[A]lms < Vd|[|A]l

for any d x d matrix A, and using the relation (6.25). In particular, we obtain essentially the same estimates
on their two-dimensional measure. The sets S,,(b) := IIp2D,,(b) with

Dy(b) = {(w,z, E) € Dioph,,(b) x T X R| |font1(nw,w, E)| < exp((2n + 1) Lopi1(E,w) — n1/4/2)}
N U {(w,z,E) € Dioph,,(b) x T x R| |fm(z,w, E)| < exp(mLy,(E,w) — m1/2)}

me[nt/4/2,nl/4)

(6.42)

are already quite close to our sought after polynomial description. However, a polynomial expression for
the Lyapunov exponents in finite volume needs to be found. Note that while we may pass to their infinite
volume versions due to the [26] rate of convergence estimate L., (E,w) — L(E,w) < Cm™!, it would be
counter productive to do so at this point. Rather, we will use that uniformly in x,

n2

1 .

nL,(F,w) = 3 ZlogHMn(x + jw,w, B)|| + O((logn)™)
=1
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. . 1
Ao all intervals of size ~ m3 are regular for E
0 m mx ) \_Y_J sz

~ ml/4 ~ ml/4

Fig. 16. Absence of double resonances.

This follows from ||M,|| > 1, (6.20), and the same arguments which we used in the proof of (6.28). Therefore,
we can replace

| fn (2, w, E)| < exp(mLy,(E,w) — m1/2)

with

Njot

m2
2m>2 —m .
|fm(x,w7E)| <e H”Mm(](‘devE)”%{S
j=1

This is a polynomial inequality in all variables of degree O(m*) = O(n). The set on the first line of D,
is described by a polynomial inequality of degree O(n*). Since there are < n polynomials involved in the
description of the semi-algebraic set D,,(b) above, it is of degree < n®. Projecting out E, we conclude that

Sn(b) has degree O(n®) for some finite s as claimed. Finally, each horizontal slice consists of at most O(n?)
many connected components, i.e., intervals.

Proof of Theorem 6.1. The set of admissible w for the theorem is

oo e}
2 := Dioph \ U limsup B,,(1/5), Dioph := U Dioph(1/5)

where B,,(b) is defined in (6.33). By Lemma 6.12,

Jj=1

_pl/12

B.(1/7)] < C(j)(n~* +ne ), D IBa(1/5) < o0

n=1
whence by Borel-Cantelli | limsup,,_, ., Bn(1/7)| = 0. Since Dioph has full measure in T, so does 2. Now
freeze some w € 2. Note in particular that w € Dioph(b) for some b > 0 whence the LDT results all hold.
Given a generalized eigenfunction H(x)y = Ev by Theorem 2.1, we showed that for all sufficiently large n,
(6.28) holds for some n < m < n?. By definition of B,,(b), see Fig. 16, we conclude that all Green functions
GA(0,w, E) with A C [m®,2m?®] and |A] ~ m1 satisfy

1 1
1GA0,w, E)|| < e? |G 40,0, E)(z,y)| < e = vIHAIZ g ye s

Using the resolvent identity iteratively as in Lemma 3.8, albeit with all subintervals being regular for E, we
conclude that the Green function on the large window is also regular for E:

ool

1
||Gi[ms’2ms](0,w,E)” <e™ 3 IG:I:[mS,2mS](07w7E)(xay)| < e—’y\m—yH—mS v T,y € i[msazms]

from which the exponential decay of v immediately follows. [J
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n404- N = 2003 epsilon = 0.3; omega = Sqrt[2]; theta=-17+* omega/z;

05~ Laplace = epsilon+ Total[
{DiagonalMatrix[Array[-1 &, n-1], 1], DiagonalMatrix[Array[-1 &, n-1], -1]}];

naosi- F= Cos[2» Pix (theta+#« omega) ] &;
n4o7= V = DiagonalMatrix[Array[f, n]];
naoer= H = Laplace + V3

n40o= With[{eigs = Eigenvectors[H]},
Manipulate[ListLinePlot[eigs[[k]], ImageSize » 4+ 72, PlotRange » {-1, 1}],
{{k, 1}, 1, Length[eigs], 1}]]

(4]
k .D [+]
10
05
t409)=
50 100 150 200
-05}
-1.0t
Fig. 17. MATHEMATICA code for Figs. 9 and 10.
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