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GLOBAL CENTER STABLE MANIFOLD FOR THE DEFOCUSING
ENERGY CRITICAL WAVE EQUATION WITH POTENTIAL

By HAO J1A, BAOPING L1U, WILHELM SCHLAG, and GUIXIANG XU

Abstract. In this paper we consider the defocusing energy critical wave equation with a trapping
potential in dimension 3. We prove that the set of initial data for which solutions scatter to an unstable
excited state (¢,0) forms a finite co-dimensional path connected C'' manifold in the energy space.
This manifold is a global and unique center-stable manifold associated with (¢,0). It is constructed
in a first step locally around any solution scattering to ¢, which might be very far away from ¢ in the
H' x L?(R3?) norm. In a second crucial step a no-return property is proved for any solution which
starts near, but not on the local manifolds. This ensures that the local manifolds form a global one.
Scattering to an unstable steady state is therefore a non-generic behavior, in a strong topological sense
in the energy space. This extends a previous result of ours to the nonradial case. The new ingredients
here are (i) application of the reversed Strichartz estimate from Beceanu-Goldberg to construct a local
center stable manifold near any solution that scatters to (¢,0). This is needed since the endpoint
of the standard Strichartz estimates fails nonradially. (ii) The nonradial channel of energy estimate
introduced by Duyckaerts-Kenig-Merle, which is used to show that solutions that start off but near
the local manifolds associated with ¢ emit some amount of energy into the far field in excess of the
amount of energy beyond that of the steady state ¢.

1. Introduction. Fix 8 > 2. Define

V=V el(RY): sup (1+|x\)B|V(az)‘ < oo

zcR3

We study solutions to
(1.1) O — Au—Vu+u’ =0,

with initial data #(0) = (ug,u;) € H' x L?(R?). Since for a short time the term Vu
can be considered as a small perturbation, by adaptations of results in [2, 16, 17, 33]
we know for any initial data (ug,u;) € H' x L?(R?), there exists a unique solution

u(t,z) € C([0,), H')NL7L([0,T) x R?)
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for any 7" < oo to equation (1.1). Moreover, the energy

_l’_

|Vu|? n (Opu)? B Vu? u_6
2 2 2 6

E(i(t)) = & (u(t), dru(t)) == /

R3

(z,t)dz

is conserved for all time.

If V' (z) =max (V(x),0) is large enough, then the operator —A —V may have
negative eigenvalues. In this case, the equation admits a unique nontrivial ground
state () > 0 which is the global minimizer of

[ IVeR Ve | ¢
W)-—/R; [T_T+F di.

In addition to the ground states ) and —(), there can be a number of “excited
states” with higher energies (see Appendix A of [20]), which are changing sign
steady states to equation (1.1) and decay like O((1+—1\x\)) Small excited states are
always unstable, but large excited states may be stable. These steady states play a
fundamental role in understanding the long time dynamics for finite energy solu-
tions to equation (1.1) with initial data of arbitrary energy. We say a steady state
(¢,0) is hyperbolic if the linearized operator £y := A —V +5¢* around it has no
zero eigenvalue nor zero resonance. We say a steady state (¢,0) is stable if the
linearized operator L4 has no negative eigenvalue. In the radial case we proved in
[19, 20] that if we consider generic radial potential V' € Y such that the equation
admits only finitely many steady states, which are all hyperbolic, then generic data
will lead to solutions that scatter to one of the stable steady states, while each un-
stable steady state will attract a finite codimensional C' manifold in the energy
space. The result in [19] satisfactorily characterized the global dynamical behavior
of all finite energy solutions to equation (1.1) in the radial case.

The proof in [19, 20] relies crucially on the channel of energy estimate for
the linear wave equation which was first developed by Duyckaerts-Kenig-Merle
[12, 14]. The channel of energy estimate works best for wave equation in dimen-
sion 3 with radial data. In this case for many nonlinear problems, it characterizes
the steady states as the only solutions that do not radiate energy in either time di-
rection. It is an essential ingredient in the work of Duyckaerts, Kenig and Merle
[14] where they established the “soliton resolution” for all type II solutions (i.e.,
solutions that stay bounded in energy norm up to time infinity or finite blow up
time.) for focusing energy critical wave equation with radial data in R>. In the non-
radial case or other dimensions, there are only weaker versions of the channel of
energy estimate available [9, 13, 21], and they have been used to establish similar
resolution results for focusing energy critical wave equations either under size re-
striction for the initial data [13], or along a sequence of times [8, 10, 18, 31]. All
the results mentioned here belong to a larger effort that aims to understand the long
time dynamics for solutions of dispersive equations in the presence of nontrivial
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coherent structures. We recall that as defined in [32], coherent structures are solu-
tions that are localized in space, uniformly in time. Examples are solitons, kinks,
vortices, monopoles, breathers, etc. Due to the limitation of techniques to deal with
problems beyond the perturbative regime, we are still at an early stage of under-
standing of this type of problem. Hence the current interest is to work on carefully
chosen models in order to develop our intuition and technique.

We refer the reader to [5, 6, 7, 18, 22, 23] and references therein for the re-
lated results on equivariant wave maps, and to [34, 35] for results on nonlinear
Schrodinger equations with potential.

In this paper, we consider nonradial solutions to (1.1) and construct the global
center stable manifold for unstable excited states. This gives us a better under-
standing of the non-generic behavior of solutions. More precisely, our result shows
that solutions that scatter to unstable excited states form a finite co-dimentional
manifold in the energy space and hence such solutions are non-generic in a very
precise, topological sense. Although such results are expected, it is often not easy
to rigorously confirm them, in a non-perturbative setting.

More precisely, we say a solution # scatters to steady state (¢,0) as t — +oo if
there exists a finite energy free wave " (solution to the linear wave equation) such
that

() — (,0) = @“(t)|| 1, o —> 0, ast— oo,
We establish the following result.

THEOREM 1.1. Let Q) be an open dense subset of Y such that equation (1.1)
with V' € Q has only finitely many steady states which are all hyperbolic. Let 3
be the set of steady states. Denote @(t) := S(t)(ug,u1) as the solution to equation
(1.1) with initial data (ug,u;) € H' x L*(R3). For each (¢,0) € &, define

(1.2)
Mg = {(uo,w) € H'x I? (]R3) - S(t) (uo,w1) scatters to (¢,0) ast — +oo}.

Denote
(1.3) Ly:=—-A-V+5¢"

as the linearized operator around ¢. If L has no negative eigenvalues, then M is
an open set C H' x L*(R3). If L, has n negative eigenvalues, then M is a path
connected C' manifold C H' x L*(R?) of co-dimension n.

Notice that the existence of the set 2 follows from [20, Theorem 6.1] and
its proof. We note that there is no smallness assumption in the theorem, and the
manifold can extend arbitrarily far away from the unstable steady state relative to
the norm in H' x L*(R3).
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Along the proof of Theorem 1.1, we also obtain completeness of scattering
operator on the center manifold, i.e., for a fixed unstable steady state ¢, given any
linear wave v with finite energy, we can find a solution u to equation (1.1) such
that u scatters to ¢ with the scattering profile u”. See more details in Proposition
2.5.

Theorem 1.1 characterizes all solutions that scatter to a steady state. We ex-
pect that generically all solutions scatter to steady states. In the radial case, it was
proved that for generic potential all finite energy solutions scatter to one of the
steady states, but the proof depends on a particular form of the channel of energy
inequality which is valid only in three dimensions and in the radial case. In the non-
radial case, it remains an open problem how to characterize the generic behavior.
It is perhaps worth pointing out that all nonradial large data results in the study of
dynamics of nonlinear dispersive equations depend crucially on monotonicity for-
mulae which are sensitive to algebraic features of the equation. There are currently
no effective monotonicity formulae known for equation (1.1) in the nonradial case.

Compared with the radial case [19], we have two main difficulties in construct-
ing the manifold:

(i) Consider any solution U that scatters to unstable excited states (¢,0). When
we perturb around U, i.e., we write the solution as U + 1, the resulting nonlinearity
contains quadratic terms like U (¢)7* which have a component that behaves like
¢’n?. Standard Strichartz estimate requires control of the nonlinearity in spaces
such as L} L2, which forces us to estimate 7 in the endpoint Strichartz norm L?LZ.
However, the endpoint Strichartz estimate for free waves was shown to be false
for general data in [24]. To overcome this technical obstacle, we use the reversed
Strichartz estimate due to Beceanu and Goldberg [3]. By reverse Strichartz esti-
mates, we mean estimates in the space | - |[» z¢. That is, we first integrate in time
and then in space, which is the reverse order of integration for the usual Strichartz
estimates. This order of integration arises naturally in the context of KdV and de-
rivative nonlinear Schrodinger equations, where the local smoothing effect needs
to be exploited. For the wave equation the advantages of space-time reversal are
less well known, see however Proposition 3.1 in [25] for an example of an L’ L}
estimate which fails for L] L. In that reference as well as in our case, the main fea-
ture is that the fundamental solution for linear wave equation in three dimensions
is nonnegative and is integrable in time:

=1 1
(1.4) /O z5(\3;|—t) dt = =k

This property can be used to trade decay in space for decay in time. For the ¢°7?
term, which is only quadratic in 7, there is not enough decay in time to use the
standard Strichartz estimates. On the other hand, there is enough decay in space
thanks to the ¢> term. This is exactly the right kind of problem where the reverse
Strichartz estimates are more effective.
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Using the reverse Strichartz estimates, we can follow the same techniques in
[19] to construct a local, finite co-dimensional center stable manifold M near [7(0)
with the property that if a solution w starts on the manifold, i.e., @(0) € M, then
i(t) stays close to U (t) for all ¢ > 0 and scatters to (¢,0) as ¢ — oo; if on the other
hand, @(0) is close to U/ (0) but not on the manifold, then no matter how small
|%(0) — U (0) | 1 72 18, @(t) will deviate from U (t) by a fixed amount at a future
time.

(ii) The local manifold construction ensures that any solution w(t) starting
off the local manifold, i.e., @(0) € B.(U(0 ))\M g, will leave the time dependent
neighborhood B (U (t)) eventually. Up to this point, the argument is still essen-
tially based on perturbative techniques. However, perturbative arguments alone are
not sufficient to determine the dynamics when @(t) and U () separate from each
other. In order to obtain information on the dynamics for all times, we use the chan-
nel of energy inequality introduced by Duyckaerts-Kenig-Merle [15] to show that
the solution u necessarily radiates energy into the far field after it leaves B, (U (t)).
This is the crucial global component in our paper. The channel of energy inequal-
ity we use here works for nonradial solutions and is not sensitive to the dimension.
For another channel of energy inequality which applies in the nonradial case and
in all dimensions, see the one for outgoing waves in [10, 11]. More precisely, since
U scatters to ¢, at large times we know that Ut (t) can essentially be identified as
a free radiation at large distances and (¢,0) in the finite region. If we take initial
data (0) and U (0) close enough so that at a given large time ¢ the solutions are
still sufficiently close, we can conclude that locally () is essentially (¢,0) plus
a small but nontrivial perturbation. We will show that the perturbation contains a
nontrivial unstable mode, which grows exponentially. Hence at a later time, when
the unstable mode dominates all other modes, we use the channel of energy esti-
mate in Lemma 3.6 to conclude that @ will send out a fixed amount of energy into
large distances and hence the energy left in the finite region is strictly less than that
of (¢,0). From this we know that # cannot scatter to (¢,0). It is interesting to note
that our argument shows that a solution, which starts close, but off of the manifold
and far away from the unstable steady state, exhibits two types of radiation: a first
radiation so that locally in space it is close to the unstable steady state at large
times, and a second radiation which eventually pulls it off the steady state forever.

In effect, this second step is in the nature of a one-pass theorem, see [27, 28,
29]. While a virial identity is the key for the one-pass theorem in those references,
here it is an exterior energy estimate.

Our paper is organized as follows. In Section 2, we construct the local center
stable manifold for each solution that scatters to ¢. In Section 3 we recall the per-
turbation lemma, prove the channel of energy estimate and also prove a result on
the growth of the unstable modes. Lastly, in Section 4 we prove our main result
Theorem 1.1.
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2. Construction of the local center-stable manifold. We begin with some
notation. We use ¢,C' > 0 to denote positive constants that may be different from
line to line. For nonnegative quantities X and Y, we write X <Y when X <CY
for some non-essential C' > 0. When a given operator L has negative eigenvalues,
we denote these as —k? with k > 0. Since we work with fixed potentials, we allow
all constants to depend on the potential.

Let us first recall the definition of Lorentz spaces L5/(R?) for 0 < p < o and
0<g<ee

”f”Lg’q(M) 3=péH>\M{|f| > )\}%HLq(R+,%)-

Here y is the standard Lebesgue measure on R?. Clearly LP? = LP for any 0 <
p < co. We adopt the usual convention that L** = L*. Notice that LP?9 C LP"
whenever g < r. The Holder inequality still holds for Lorentz spaces [30], viz.

: 1 I 1 I 1 _1
(21) HngLr,s < TIHfHLpl,ql ||gHLp2,q2 prov1ded —t—=-< 1, —t— 2> -
pr p2 T a q s
and the endpoint
2 £l < I lrn ol 4 > 1
. 1 Psq lgy — T — = 1.
gt = Weraliglpt e g0,
Young’s inequalities read as follows:
(2.3)
. 1 1 1 1 _1
| f*gllLrs < 37| fl|rrera || gl pp2.a provided —+ — =—4+1>1, —+— > —
pr p2 T a 49 S
and the endpoint
1
(2.4) 1 *gll= < fllzeallgll pprayy  —+—2=1.
a @

3
Since Y C L%’I(R3), Theorem 3, Theorem 1 and Corollary 2 of [3] imply the
following reversed Strichartz estimate for wave equations with a potential V' € Y
in R3.

LEMMA 2.1. Take V' €Y such that the operator —/A —V has no zero eigenval-
ues or zero resonance. Denote by P~ the projection operator onto the continuous
spectrum of —A —V. Let

(2.5) wi=/PL(=A—=V).
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Let I be a time interval with toy € 1. Then for any (f,g) € H' x L>(R3) and F €
Lg/s’sz N L;/271L%(R3 x I), the solution 7(t) = (y(t),0:y(t)) to the equation

(2.6) Ouy+w?y=PLF, (t,x)elxR?,
with Y(ty) = P*(f,g) satisfies

07 (v 70) HGQ(HIXU) + “7|’L2’2L‘;"OL;L§(R3XI)
<C (H(f’g)HHlez + HF||L§/5’2L;"QL§/2’IL%(R3xl)) :

The appearance of Lorentz spaces here is both natural and essential. Indeed,
|z|~! € L?>*(R?), and by (2.2) or (2.4),

-1
—y[ Az <C|f|l 3L
;;gSAS\f(w)\Iw yl - dz <O 0 s,

cf. (1.4). Our main goal in this section is to prove the following result on the local
center stable manifold.

THEOREM 2.2. Let ) be a dense open subset of Y such that equation (1.1)
has only finitely many steady states, all of which are hyperbolic. Let V € Q C Y.
Suppose that U (t) is a finite energy solution to equation (1.1) which scatters to an
unstable steady state (¢,0). Let

(2.8) k<K< <k <0

be the negative eigenvalues of Ly = —A -V + 5¢* (counted with multiplicity)
with orthonormal eigenfunctions pi,p2,...,pn, respectively. We denote by P; the
projection operator onto the i-th eigenfunction and by P~ the projection operator
onto the continuous spectrum, i.e.,

n
Pi=pi@p, P =I-> pi@p.
=1
Decompose
(2.9) H' x I*(RY) = X5 © X,
where
(2.10) Xeo={(uo,w) € H'x L*(R?): (kjuo+uy,p;),»=0, forall 1<j<n},
and

2.11) Xy =span{(pj,kjp;), 1 <j<n}.
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Then there exist ¢g > 0, T sufficiently large, a ball B.,((0,0)) C H' x L*(R?), and
a smooth mapping

(2.12) U U(T) + (B ((0,0)) N Xps) — H' x L2,

— —

satisfying (U (T')) = U(T), with the following property. Let M be the graph of U
and set M = S (—T)/./\Z, where S(t) denotes the solution map for equation (1.1).
Then any solution to equation (1.1) with initial data (ug,u,) € M scatters to (¢,0).
Moreover; there is an € with 0 < €] < €y, such that if a solution u(t) with initial
data (ug,uy) € Be, (U(0)) € H' x L2(R?) satisfies

(2.13) |@(t) —U()|| g1, » < €1 forallt >0,
then (ug,u;) € M.

Remark. € as in the theorem exists, see [19]. The proof of Theorem 2.2 closely
follows the argument for the local manifold in the radial case in [19]. However,
there is an important additional technical difficulty: in order to control the quadratic
nonlinear term ¢37? in 7, we need to use reversed Strichartz estimates instead of
the endpoint version of the standard Strichartz estimates—which do not hold in the
nonradial case. We note that if ¢; satisfies the theorem, then any smaller €; will
also suffice.

Proof. By the assumption that U scatters to ¢, there exists a free radiation
Ul e H' x L*(R3), such that
(2.14) lim || U (t) — (¢,0) — U= (8)|| y1, » = 0.

oo

We now divide the construction of the center-stable manifold into the following
four steps as those in [19].

Step 1: L® decay for free waves. We observe that for any finite energy free
radiation UL, we have

(2.15) |UF®#)]| e — 0 ast— e

This is a simple consequence of the dispersive estimate for smooth free waves, and
an approximation argument.

Step 2: Reversed space-time estimates for the radiation term U — ¢. Denote
h(t,x) =U(t,z) — ¢(x), then the radiation term h satisfies

(2.16) hit — Ah —V (2)h +5¢*h+ N(¢,h) =0,
where

N(p,h) = (¢p+h)’ — ¢ —5¢*h = 100> h*> + 104> h> + 5¢h* + h°.
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In what follows, we will show that

12l pe2 gz ra s xirem)) <>

for sufficiently large 7. From Agmon’s estimate in [1], the eigenfunctions {p;};
decay exponentially. Decomposing

h=X(t)p1+ -+ () pn +7,

withy L p; fori =1,...,n, and plugging this into equation (2.16), we obtain

n

2.17) > () —kXi(0)) pi +4 + Loy = N (6, h),

i=1
where L4 = —A —V + 5¢*. By orthogonality between (¢) and p;, i = 1,...,n,
we derive the following equations for \;(¢) and (¢, x):

o) Ni(t) —k2Ni(t) = PN(¢,h) == N,,, i=1,....,n
' 54wy = PLN(¢,h) == N,, wi= /Pl

By the decay of the potential V' and the steady state ¢, we know that —V +5¢*

in the linearized operator L4 decays like O(W), which is better than the

critical rate O(#) as |x| — eo. Hence we can apply the result of Proposition 6 in
[3] and conclude that the reversed Strichartz estimates as in Lemma 2.1 hold for
solutions to the equation

(2.19) Vit +w?y = F,

where F satisfies the compatibility condition P+ F = F.
From (2.14) and (2.15), we know that

lim ||(t,x

T—oo0

M iz g (e = O
Also by the exponential decay of p;, we have

()] = ot < [loil], It 2)]| g ey — 0 st —>en

Let I'(¢) be the solution operator for the equation v +w?y = 0, i.e.,

L (t—to) (v(to),7(to)) = cos (w(t —to))v(to) +$sin (w(t—1t0))7(to)-
We claim:
Claim 2.2.1.

(2.20) Tlinjoo Tt —T)(v(T),%(T))] =0.

L2 LeNLE LA (R3X[T,))
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We postpone the proof of Claim 2.2.1 to the end of this section.
Hence given a small positive number € < 1, which will be chosen later, we can
pick a large time 7' = T'(¢,U ), such that

2.21) 17l Ly L8 (1o w3y < €
(2.22) (RN Fr———
(2.23) [Tt =T)Y (VT || o2 s 2 x 1y < €

From (2.23) and (2.22), by the reverse Strichartz estimates in Lemma 2.1, it follows
that the linear solution h” to

Ouh” — ARE +5¢*hE —VRE =0,

with initial data hZ(T") = h(T) satisfies that

K

L
(2.24) Hh ‘ L2 LeNLe LA (R3X[T,T)) < 767

if T'is sufficiently close to T". We can then use standard perturbation arguments to
show that h € L$? L N L2 L2(R3 x [T, T)) with

Hh||Lg=2L;°mL;L%(R3X[Tf)) < Ke,

as long as we choose € to be sufficiently small. Here we take K large enough so
that it dominates any constants appearing in the reverse Strichartz estimates. By a
continuity argument, we shall prove that

(2.25) < Ke,

| h||L§=2L;°mL;L%(R3X )

for all T, not just for T that are close to 7. Suppose that (2.25) holds for T, we
shall show that for a small § > 0, (2.25) holds for T + 4.

Claim 2.2.2. Let h be a solution to the equation (2.16) with

[ < Ke

LyNLs L2 (R3x(T,T))

and

121l 1o (3 1,7y < €

Suppose that K > 10. If € is sufficiently small, then for § > O sufficiently small, we
have

Hh”ngL;mL;Lg(RSX[T,T+5)) < CKe,

where C'| is a constant that only depends on V.
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The claim will be proved at the end of the theorem. We note that due to the use
of Lg’zL;"’ type spaces, the continuity in time is not obvious. From the equation for
A;(t) in (2.18) and the uniform bound (2.22) on \;, we conclude that for t > T’

A(t) = cosh (ki(t — T))A(T) + ki sinh (k;(t — T)) A (T)
—/ sinh (k;(t — s))Np, (s)ds

262 [Ai(T) ; k/ (=), )d}

+ e kilt=T) [)\Z(T) + % / 9N, (s)ds}

1 - —ki|t—s
_2_]%‘/T6 ilt |Npi(s)ds,

where the last line remains bounded(in fact decays to 0 as ¢ — +<o) for bounded
N,,(s). By (2.22) and the above formula, we obtain the following stability condi-
tion

(2.26) N(T) = —k\(T) — /T ) FiT=9IN, (s)ds.

Under this condition we can rewrite equation (2.18) as the following integral equa-
tion
Ai(t) = e T N (T) + — / TN, (s)ds}
L T
s

—kilt—s
“ 3 )y ekilt |Npi(s)ds,

| [T+9
_ kit )\i(T)JF_/ HT-IN (5)ds

(2.27) 2k; pi

2k T+6
() = cos (w(t — T))A(T) +$sin (w(t—T))3(T)
. /t sin (w(t — S)) N, (s)ds.

T w
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By (2.27) and the reversed Strichartz estimates in Lemma 2.1, we get that
(2.28)

12O sy < € (D] +1No 3 (Trsm)
and
||7||L§‘2L;°OL‘;°L%(R3><[T,’f+6))
(2.29) <C (HF(t —T)(v(T),%(T)) HL%ZL‘;’QL;L%(R»*X (T,7+6))

+ ||NC||L§/572L;°0Li/2"L§(R3x[T,T+6)))'

Here the constant C' depends on the L' and L? integrals of e~*#* and on the con-
stants in the reversed Strichartz estimates. Notice that instead of estimating the
energy norm H' x L*(R3) of (y(T),%(T)) in (2.29), which may not be small, we
estimate its free evolution in LY L N L= L2(R? x [T, T + 6)). Consequently, we
can obtain smallness thanks to (2.23).

On the one hand, by the fact that

Np, = (piIN(6,h)), No= Nppi, Ne=N-N,

and the exponential decay of p;, we have

(0

il LY LynLY ! L (R X[T,T+5
230, (IT, N T (R3X([T,T+9))
< C|N( ¢v HLg/s’zL‘:ﬂLi/z’lL%(]l@x[T,f+6))'

By the Holder inequality in Lorentz spaces, noting that ¢ does not depend on time,
we have

[t LY LynLy/ > LR X ([T,T+6))
< H¢HL6 (HhHLﬁsz RIx([T,7+6)) +HhHLg@L;(R»*x[T,ﬂa))Hh|’L:L%(R3X[T7T+5))>’
H¢ o HL6/5’2L°°0L3/2"L2(R3X[T,CF+5))
S llele <Hh”L“L°° RIx[T,T+6)) +|’h”iger(R3x[T,T+é))Hh”Lé"L%(R”X[Tf“)))’
as well as
lph?| LY DLy L2(R3x [T, T+5))

3
S Il (HhHL“L”" R3x[T,T+6)) + HhHLZ’zL‘;"(R»*x[T,TJrJ))||h||L‘;°L%(R3X[T7T+6)))’
11> s

S nl

LynLY > L2 (R3x [T, T+6))

LS L7 (R3x[T,T+5)) +||h||L“L°° R3x [T,TM))||h||L;"L%(R3X[T7T+5))'
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Consequently
[P HL%([T,TM)) + HNCHLg/S’zL‘;"ﬂLi/Z’IL%(W><[T,T+6))
(2.31) S
j
< CZ; Hh”LizzL;mL;Lg(RSx[T,T+5))‘
]:

On the other hand, by (2.21) and the exponential decay of p;, we have

1N

Lo ([Ttde0)) = Clloil 1o oy ||V (6 h)HLng%([f+6,oo)><]R3)

(2.32) 5 . ' )
SCZquHLEZZHh‘HZ ?Lg([f+5,°°)><R3) SCE .
=2

The bounds on \; and ~ imply an estimate on A via
h = Z Aipi+7.
i

In fact, combining estimates (2.28), (2.29), (2.30)—(2.32), with (2.22), (2.23) and
Claim 2.2.2, one concludes that

5

K J 2
1Bl o2 pope 2o sy < 5 €HC 4 Do (AC1Ke+e) +€ 5,
j=2

here C' only depends on the constants in the reversed Strichartz inequalities and
|¢[lLs and [|pil| ;w62 If we choose € < 1, which can be achieved by taking T
sufficiently large, such that

e+ Y (AOK+1) 7 <1,

<.
I D
S}

say, then it follows that

(2.33) HhHLg’zL;"ﬂL‘;L%(R&[T7T+6)) < Ke.

Hence, by a standard continuity argument, we conclude that (2.25) holds for all
T > T and

he LS2LT NLTLE (R x [T,0)).

Step 3: Construction of the center-stable manifold near a solution U. Given a
finite energy solution U to (1.1) satisfying (2.14), we consider another finite energy
solution u, with [|U(T") — @(T)|| g1 g3y small for a fixed large time 7', taken
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from Step 2. We write u = U + 1, then 7 satisfies
e — A=V (@)n+(U+n)’ =U>=0, (t,x) € (T,).
With U = ¢ + h, we can rewrite the equation as
(2.34) N+ Lon+N(,h,n) =0, (t,z) € (T ),
with
N(¢.h,m) = (¢+h+1)> = (¢+h)° = 5¢™n.

Note that N contains terms which are linear in 1. However, a further inspection
shows that the coefficients of the linear terms in 7 contains the factor i and hence
decay in both space and time, and can be made small if we choose 7" sufficiently
large. First decompose 7 as

(2.35) n=ME)pi+-+MOpnt+3, T Lp

for ¢ = 1,...,n. We shall use similar arguments as in step 2 to obtain a solution 7
which stays small for all large, positive times, with given (X (T),..., \,(T)) and
(%,%)(T). Note that in order to determine the solution 7, we still have to determine
A(T"). We can obtain equations for \;,7 similar to (2.18). Since we seek a forward
solution which grows at most polynomially, we obtain a similar necessary and
sufficient stability condition as (2.26)

(2.36) N(T) = — ki \i(T) — /T ) FiT=9 N, (s)ds.

Using equations (2.34) and (2.36) we arrive at the system of equations for \; and
s

Ni(t) = e kilt=T) [x (T)+% / FilT=5)N, (s)ds

1 —kit—s|
2k/ N, (s)ds

(2.37) ]
F(t) = cos(w(t —T))A(T) + - sin (w(t —T))3(T)
| +£/T sin (w(t — s)) Ne(s) ds.
Define

(2.38) H(j‘h” ) HX ZH)‘ HmeL2 ([T +H7”L“L°°mL°°L2(R* X[Tye))"
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Estimating system (2.37), we obtain that

O erz ey < P

039 TNL;([T,))
SIN(T |+ HN|’L6/5’2L°°0L3/2"L2(R3X[T°°))’
x t x t ’
and
(2.40) 9 82 L ons 3 ey S | GOAD) 1112
HINN o752 o 3720 2 o )

Note that

4 o .
(2.41) NS [t hinl+ Y |o'nift|.

=1 k>2,i+j+k=5

For the linear term in 7, by the Holder inequalities in Lorentz spaces (2.1), we get
that

10° 0l o522 oo

§||¢|| 6||h||L62L"° RO [T ||77||L272L‘;°QL‘;‘.’L%(R3X[va)y
16° 10l /52 o pavo g iy

< N101Zg 1l 02 o o) 171 282 L 30 e
It nll /s ponrn 2o

S 1905 1Pl g2 ooy 1022 s 30 o

W0 /52 e o oo

< Wl oo 17 282 iz e ey
By (2.33), we have
4
(2.42) Z ¢ hin < Celnll 52 ponre 2o (1,0))-
LY 2 LN LY/ L2 (R3x [T o))

The higher order terms in 7) are easier to estimate. Similar to the above, we can
always estimate A in Lg’zL;"’, hence

(2.43)

Z gbihjnk <CZ||77HL°2L°°QL"°L2 R3x[T00))

k>2,i+j+k=5 LY LY LRI [T0))
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By definition of X, ||77||Lg,sz <My, M%) |l x - We can

TNL3L;(R3x([Te))
combine (2.39), (2.40) and (2.42), (2.43) to get

(2.44)

(e HX<L(Z|A N+ 16 a<T>>anxLz)

R[N TIED ol [T ¥

where L > 1 is a constant only depending on the constants in the reversed Strichartz
estimates, [|@|| zs(r3) and || ;|| L=nps2 (for convenience of later use, we will also
assume L > n). This inequality implies that if we take ¢ = ¢y sufficiently small
(which can be achieved by choosing 7' suitably large), with

(2.45) Z\A )|+ | (@)A1, 12 < €05

such that L3¢y < 3—12, then the map defined by the right-hand side of system (2.37)
takes a ball Byr,(0) C X into itself. Moreover, we can check by the same argu-
ment that this map is in fact a contraction on By, (0) C X. Thus for any given
small (A (T), ..., \.(T),5(T)) satisfying (2.45), we obtain a unique fixed point of
(2.37). It follows that

k
(2.46) u(t,x) :==U(t,z) +25\i(t)pi +5(t,x)
i=1
solves (1.1) on R3 x [T, ), satisfying
(2.47) Hﬁ—ﬁ”L:([T JH'x L2) Z D+ GO AT 12

with Lipschitz dependence on the data \;(T") and (5(T"),5(T)). By the smoothness
of the nonlinearity IV, the integral terms in (2.37) depend on \;, ¥ smoothly. Hence
Xi(t),7(t,x) and the solution u(t, ) actually have smooth dependence on the data.

Step 4: Proof of scattering. In this step, we prove that the solution 4 con-
structed in step 3 scatters to the same steady state (¢,0) as U.

For each solution @ with the decomposition (2.46) and any time 7" > T, we
denote

(2.48)

H(S‘lﬂ’ Ansy HX[T’ ZH)‘ HL°°mL2 T'oo)+|”~VHL%2L;°mL;L%(R3x[T',m))'
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Here X [T',0) is the space X from step 3, and from the construction we know that

- 1
H()\l,.. , )HX <2L€0<E

We will show that [|(Af, ... ,S\H,'?)|]X[T/7oo) —0as T — oo,
We shall need the following property of the linear evolution, which will be
proved towards the end of this section:

Claim 2.2.3. For (fy, f1) € PX(H" x L?), denote

1
[(t,x) = cos(wt) fo + — sin(wt) f1,
w
then we have

(2.49) lim

Th—roo

=0.

PLENLE L2 (R X [Tp,00))
And there exists a free wave fZ(t,2) with data f=(0) € H' x L2, such that
(2.50) Jim || £(t,2) — fEt )| i, o =0

Using (2.49) in Claim 2.2.3, for the ¢y chosen in step 3, we can take 77 > T'
large enough such that

—ki(t=T) 3. 2

2.51) He )\Z(T)‘ sty <

(2.52) ||cos (w(t—T))’y(T)—l—l sin (w(t—1))5(T) <€
w L2 LeNLs LA (R3X[T) )

We control the system (2.37) on the interval [T},e0) in the following fashion: we
estimate the linear part on the interval [77},e0) using (2.51)(2.52), and then estimate
the nonlinear (integral) term over the larger interval [T',00). This yields

X, .
asy POl g

(=T
<H A HL“’QLZ([TI, +‘ LY LNy > LRI [T)e0))
||7||L‘;’2L;°OL:L%<R3X[Tpo))
- 1. -
@54 S|cos (Wt=T))F(T)+=sin (w(E=T)AT)| i
LS LyNLe L2 (R3X[T )

+ ”NHLg/szL?mLi/z‘lL%(ﬂ@><[T,"")).
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Combing these estimates with (2.41), (2.42), (2.43), we infer that (notice we as-
sumed L > n)

1 Ans W) | 1 )
5

< (n+ 0§+ Leol| (M- 2009 Lz + LI N Gt X )
k=2

5
<L +2LG+ LY (2Ley)" <2L(2Ley).
k=2

Next, fix our choice of 7T and rewrite system (2.37) by breaking the integral into
finer pieces,

2.55
(2.55) e
2k; J1,

4(t) = cos (w(t —T))5(T) + 5 sin (w(t—T))4(T)

T t
+l/ sin (w(t—s))]vc(s)ds—l—é/ sin (w(t — s)) Ne(s) ds.

wJr

We can pick T» > T large enough such that the first line in the expression of \;
is small in Ly N L7([Th,)), also the first line in the expression of 4 is small in
LS L2 N L2 L2(R3 x [Ty, 00)). We can require that they are bounded by e5. Note
that we used Claim 2.2.3 for the term %fgl sin(w(t — s))N.(s)ds, which can be
viewed as a superposition of linear evolutions.

Then estimating the second line of )\; and 4 over the larger interval [T}, ), we
obtain

1 A ) | x5 )
5

N T~ S L
S(n+1)€(3)+L<EOH()\17---7)\7177)HX[T“°°)+ZH()\lw-w n,fy)HX[Tl,w)>,
k=2

>

<2L(2Ley)’.
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It is clear that this process can be repeated indefinitely: once we fix T);, we can
rewrite the system (2.37) as in (2.55), and find 71 > T such that the first line is
bounded by eé“, which implies the estimate

>

<2L(2Le)’ .

H (Xh-- ) n7’7) HX[TJ‘HP") -

In view of (2.35), (2.41), (2.42), (2.43) we conclude that

N (LTI T
A 10l 62 fe e 2 x 17 ) = O
Am IV 52 e e =

These asymptotics allow us to write the asymptotic profile of 4 in the form

5 (t) = cos (wl(t - T))5(T) + 5 sin (w(t — T))3(T)

(2.56) o
! /T sin (w(t — s)) Ne(s) ds,

+

w
with the property that

= = . /
HV_%HL;c'HxLz[T’m) S HNHLg/S’zL;"ﬂLi/z"L%(R3><[T’,oo)) — 0 as T — oo,

e (t) can be further replaced with a free wave by (2.50) in Claim 2.2.3. Combining

the preceding with the fact ||\ ()]| LonL3([1,e)) — 0 as T" — oo, we conclude that

U scatters to the same steady state (¢,0) as U. We can now define
(2.57) U U(T) + (B, ((0,0)) N Xe) — H' x L2,
as follows: for any (59,71) € P-(H" x L*>(R?)) and ); € R such that

—

~ = Xilpi—kipi) + (50,7) + U(T) € U(T) + (B, ((0,0)) N Xes) ,
i=1

set

Ni(T)=X;, fori=1,....nand ((T),%(T)) = (50,%)-
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Then with S\Z(T) given by (2.36), we define

= <Z Xi(T)pi + Ao, Zj\i(T)PH'%) +U(T).
i1 i=1

If €9 is chosen sufficiently small, then )\ is uniquely determined by contraction
mapping in the above. We define M as the graph of ¥ and let M be S(—T')(M).
We can then check that ¥, M, M verify the requirements of the theorem. Since
S(T) is a diffeomorphism, M is a C'' manifold.

Step 5: Unconditional uniqueness. Now suppose that a solution v to equation
(1.1) satisfies

@ — UHL‘*’ w):f1x12) < €1 K €.

We need to show that @(7T') € M. We denote
n(t,x) =u(t,x) — Z)\ (t)pi +4(t,x),

then 77 € L([0,00); H' x L?) with norm smaller than ¢;. Using similar arguments
as in Step 2, we can conclude that for sufficiently large 7" and 7" which is bigger
than but close to 7,

Hj‘i(t)HLr([T + |tz HL“’ i) < O
(2.58) [RYG < Ce,
< Cey.

H L2([T,T))

I3 82 =iz 2@y

Notice the L= bound on )\; implies that the stability condition (2.36) must hold
true, we are again reduced to (2.37). Now we wish to show that

(2.59) Ni(t) € L2([T,)), #(t,x) € LY Ly N Ly L (R x [T, e0)),

with a small norm, which together with the fixed point theorem imply %(7") € M.
Pulling back from 7" to 0, we can obtain the desired result. To show (2.59), we
follow similar arguments as in step 2. Define the norm

H(S‘lw Ans HX[TT ZH)‘ )HL%([T,T))—’_”:YHLZ’ZL‘;"OL;‘!L%(WX[Tj‘))'
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Similar to (2.28), (2.29), (2.42) and (2.43), we get

Z Hs‘i(t) HLZ([TT)) + ||7||L§'2L;°mL;L§(R3X[T,T))

(Z!A |+ G A e

+ ||N||Lg/5’2L;°ﬁLi/2’lL%(R3><[ + ||N|| LE([T,oo)))
5

<Cel+C60”77HL62L°°QL°°L2(R% x[T,1)) +CZHT7HL 2LenLe L2 (R3X[T,T))
k=2
, . &
O D Mg I gy I 1 7.
itj+k=5,k>1
5

<CEI+C60”7]HL62L"°QL°°L2(R3 [TT +CZHTIHL meLmL2(R3X[T7T))7
k=2

where the constant C' may change from line to line. Hence by (2.58), we have

<C€1+C€OH()\17 7)‘"7:}/)HX([T,T))

I A3 e

+LZH(5\1,---,5‘m'~7)H§([T7T)'

k=2

By a continuity argument similar to the one used in Step 2, we can conclude that
< limian (5\1,...,5\”,’7) HX([T,T)) < Ce < €,

H (5\1,-- -75\717,7) HX([TP")) T T e
O

We omit the routine details.

Now we give the proof for Claim 2.2.1. Claim 2.2.1 will be proved as a conse-

quence of the following lemma.
LEMMA 2.3. Let U" be a finite energy free radiation and (¢,0) be a steady

state to equation (1.1). Recall that

w=/PL-A -V +56%).

Let 7y be the solution to

F(T) = PH(UX(T)).

Oy +w?y =0, in[T,0) xR,
(2.60) { it [T',e0)
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For any € > 0, if we take T =T (e, UL ) > O sufficiently large, then
(2.61)

||’7||Lgv2L;°mL;°L%(R3X[T,w)) <&

Proof. For a given € > 0, fix 0 < § < e to be determined below. We can take a
=L
smooth compactly supported (in space) free radiation U such that

— =L
(2.62) [TE0) = U (0)]] 1 sy < -
=L

Let us assume that supp(U (0)) € Br(0) for some R > 0. Hence by the strong
Huygens’ principle, for large time ¢ we have

~ C
|UL(t,.T)| S ?X[tnglwlgﬂkR]J fort > R.

Now for T'> R, by direct computation we get that

- 1
NUE (o)) 62 s i S |15 Xl R<|a|<t4 B
L LT MRS R o )
1
< mxuszm 162
1 1
< |— S —=
~ | [ Xl2> 3] 102~ NVT
Similarly,
H(}L(t,x)‘ S HlX[tR<m<t+R]
LeL2(R3 x[T)) t T L3 L;(R3x[T )
1/2
1 1
S (Wx[lwaR]'R) SR T
L3
Hence
2.63) Him (10| o2 oz r2 o)) = O

T—e0
=L
Since U is a free radiation, we see that
(2.64) OuUL — AU" —VUY +5¢*U" = —VU" +5¢*U", in (0,00) x R3.
By the decay property of V, 5¢* and (2.63), simple calculations show that

i [7L 477L
,}}B}o |- VU"+5¢"U HL?D/S’zL;"ﬁLi/Z’IL%(R»*x[T,oo)) =0.
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Choose T sufficiently large, such that

(2.65) |T*]

L8P LeLs LR X [T oe)) = 9,
7L ATTL
(2.66) [ = VU +56 0| js/52 o320 2o iy < O

=L
Note that 7:= 4 — P*U solves

v+ w?v = —PL(—V[?L—FSQS“(?L), (t,x) € [T,00) x R?,

=L
with initial data #(T") = P+ (UX(T) — P*U (T)). We note that by definition, it

. . % B | .
is easy to see that P is bounded in L3 "Ly N L2 L?. It is clear from the bounds
(2.62) and energy conservation for the free radiation that

[T |12 < CO.
By (2.66) and reversed Strichartz estimates from Lemma 2.1, we can conclude that

(2.67) < 6.

||U||Lg=2L;°mL‘;L§(R3X [T')0))

Combining bounds (2.67) and (2.65), and fixing § small, the lemma is proved. [J
Now the proof of Claim 2.2.1 is easy. Note that due to the fact that

fim [|T(T) = (6,0) = UX(T)| 1 2 sy = O

T—oo0

we see that the initial data for y satisfies

lim [|[(T) = PAUH(T)| 1, 12

Jim ®RY) = 0.

Hence Claim 2.2.1 follows from the above lemma and reversed Strichartz esti-
mates.

Proof of Claim 2.2.2. From the bound

Al 182 Loz 2 g0 w17 < K€
we check as in the proof of Theorem 2.2 that
2.68 <K€,
(2.68) ||f||L§’2L;°mL§"L§(R3x[T,f)) S

where f = N(¢,h). h satisfies

Ouh— Ah—Vh+5¢*h+ f =0,
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and thus A := PLh satisfies
Oth— Ah—Vh+5¢*h+ P f=0.

By reverse Strichartz estimates and the estimates (2.68) on f, we conclude that the
solution A% to

ouhl — ARY — VRV +54* R =0

with T;L(Tv) = PL(h(T)) satisfies that

HEL - EHngL;"mL;Lg(Mx[T,T)) < OK’¢,

and hence

7L 52
|7 HL%ZL;"QL;’L%(R3X[T7T)) < Coe+ K7€
Using approximation by smooth and compactly supported data, it is easy to show
that there exists sufficiently small § > O such that

| A" < CoKe+20K7€.

LS2LeNLg LA (R3X[T,T+6))

Hence, by taking ¢ smaller if necessary so that the growth of the unstable modes
can be controlled, we can conclude that the solution h% to

Ouh? — ARE — VAl +54*ht =0

-~

with = (T) = h(T) satisfies that

[|h*| < CoKe+e+4CK €.

LS LynLz L2 (R3x[T,T+6))
Then by a standard perturbation argument, we see that if € is sufficiently small,
then

Hh”[};jz )) SCOK€+€+SCK5€2.

LeNLg L2 (R3x[T,T+6
Combining the above with estimates of i on the interval [T, T) and choosing C >
Co, the claim is proved. 0

Proof of Claim 2.2.3. From the proof of Lemma 2.3, we know that for free
wave U with smooth compactly supported data, we have

(2.69) lim ||U*| =0.

Toh—reo

L2 LeNLg LA (R3%[Tp,))

Then by approximation, (2.69) holds true for any free wave with finite energy.
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Now let f(¢,x) be a solution to the equation (recall w? = P+ (—A —V +5¢*))

9 2f=0, in|0,)xR?,
(2'70) { ttf—Hu f 1n[ )><

@(0) = (fo. i) € P* (1 x L),

For any given € > 0, we first take smooth and compactly supported data ( fy, f1)
such that

[(fo, f1) = (Fos )| 12 S €

which further implies

1o 11) = P (Fos i) < Wl (s f1) = (o Pl ez S e

We take g(t,x) to be the solution to the equation

Oug+w?g=0, in]0,e0) xR,
2.1 {ttg g [ )

§(0) = (g0, 91) :== P (fo. J1)-

From Strichartz estimates, we have g € LS L:° N L2 L2 (R3 x [0, 00)).

Let us recall an estimate from the proof of [3, Corollary 2] (page 27 in the
journal version) which is slightly stronger than the estimate stated in the main
result [3, Corollary 2]. Notice that it in fact follows from interpolation between the
bounds in [3, Theorem 1]. For 0 < 6,0, <1and 6; +6, <1,

sintw
ot (o 82,

(2.72) S Agollco, + VLo

|(’C62)’;Lt

It is not necessary for us to give the detailed definition of K% and (K?)*, as we only
need the embedding property

3
Lyl ck?, (K% c 1%,
Hence we can take 6, = % and 6; = 0, and obtain the estimate we need, viz.

2.73) sintw

1
STy (A9l + 1Vl )

cos(tw)go + g1

L™ L7 [To,)
Notice that eigenfunctions p; to Ly = —A -V + 5¢* decay exponentially and
pi € WP 1 < p < eo. Together with the fact (fy, fi) is smooth and compactly
supported and (g0, g1) = P*(fo, f1), we have Ago, Vgi € L.

Define the matrix operator

cos (V) |V|~!sin (¢[V])

(0= —|V[sin (HV])  cos (¢V])

)
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and consider the free wave g”(¢,2) with the initial data
0

g" ()| _ [0 " s .
279 L%(O)] AR RS <V—5¢4>g<s>]d‘

We wish to compare ¢ and g”. By the decay property of V, 5¢* and the Strichartz
estimate (2.7), we know the integral term in (2.74) converges in H' x L?.
Then we have

Gl ==

In particular

0 ds
(V—=5¢)g(s)|

(2.75) g(t) = g"(t) - /t w W((V —5¢*)g(s))ds.

Since g € L3 L?(R? x [0,0)), by continuity of the norm in the time variable, we
have [|g| £z £2(r3 x [13,)) — O @s To — e=. Together with the fact V' — 5¢*€ L>! and
from Holder, we obtain

4
H (V —5¢ )gHLi/z’lL%(R3><[T07oo)) — 0 asTp—>oo.
From (2.73), we also have
4
H (V-5¢ )gHLZ/S*ZLj(R&[Tmm))
4
S HV—S(f) HLéyzHg”LgmL?[me) — 0, Ty — +oo.

Now we can apply the Strichartz estimate (2.7) to (2.75) which implies

HQ”LQJZL;mL;‘:Lﬁ(W x[To,>))
L
S lg*l

IOV =560l sy pamosmy e — 0 25 To— Foo.

LS LyNLg L3 (R3 % [Th,))

Hence we can pick 7' large enough such that ||| ;. < e for

LeNLy L (R3%[Tp,00))
Ty > T.,.. Combining this with the difference estimate

Hf(t7x) —g(t,IL’)|

we get

L2 LENLE R X [Ty o)) [(fo: f1) = (90:91) | 71,12 S €

||f||Lg,2L?mL:L%(R3X[me)) <e€, forTy>1T,.

We have proved (2.49).
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In a similar fashion, we consider the free wave f(¢,2) with the initial data

on (o] Lo

We know the integral term here converges in H' x L? and

0 ds
(V=5¢"f(s)|

em  fo=ro- [ W«v 564 f(s)) ds.

t

Now that we have already proved || || 6.2, . — 0 as Ty — +oo, we
z Ly

can apply Strichartz to obtain

NLg L2 (R3x [Tp,e))

17t 2) = 75 2) | e
< (V_5¢4)f(8’$)HLZ/S’zL;f’mLi/Z’ILﬁ(Wx[t,w))

SV =56 5.ll/(s2)]

L LI Roxfte)) 70 88T Fee

This establishes (2.50). ]

Remark 2.4. Due to the near optimal decay assumption on our potential V', we
can not apply the structure formula from [4] to obtain scattering for solutions to the
wave equation with potential. The proof above seems to provide a new perspective:
scattering to a free wave occurs because the potential term becomes negligible for
large times. This insight requires the use of reverse Strichartz estimates.

Before we end this section, let us prove the completeness of scattering operator.

PROPOSITION 2.5. Let ¢ be a given unstable steady state as in Theorem 2.2.

Then for any free wave u” with finite energy, we can find a solution u to equation
(1.1) such that

|i@(t) = (¢,0) — @ (t)|| g1, ;o — 0, ast —> +oo.

3
Proof. Notice the fact V —5¢* € L%’l and

. L =
fim ™ g2 rnrz g ey = 0

Hence for a given € > 0 to be chosen later, we find a large time 7" > 0 such that

(2.78)

L 4, L
[[u HLZ%;"mL;Lg(RSX[T,m)) +[(V =5¢")u ”Lg./S’ZL‘;"mLi/Z"L%(MX[T,oc)) Se
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Now we seek a solution of equation (1.1) with the form u = ¢+ u” + 7. This
means 7 satisfies the equation

ntt+ (_A_ V+5¢4)7] :N(¢7UL777)
with

N (¢, ul,n) = (V= 56" ul +10¢ (u® + 1) + 106 (u® + 1)’
+5¢ (u” —1—77)4 + (u” +77)5,
hence we have
> k
NSV = 56l | + 3 |6 ).
k=2
As before, we write n = > \i(t)pi + (¢, z) with y(t,z) L p; for 1 <i <mn,

and plug into the equation, we also apply stability condition as (2.26) and get the
system

A(t) = e M) | () 4 / kil TSN, (s)ds
2k; Jr '

1 - —k;lt—s
“2% ) e RSN, (5)ds

Lol e fn] e o)

with the notation w = /P (—A — V 4 5¢*) and

(2.79)

. (tUJ) w ! in(tw)
J(t) = [—Z?:in(tw) co:(tw) } ‘

We seek a solution of the system (2.79) such that y(¢,z) scatters to 0, i.e.,

100 |~ o

which gives the relation between initial condition and solution

(250 Dgﬂ = [ ar =y |
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Hence we use (2.80) and rewrite the system as

7

2k
2.81) ! / “kilt=sInz (5)ds

) - /J 9 aggo) %

Once we solve to system (2.81) to get \;(¢),v(¢,x), we can use (2.80) to prescribe
the initial data of ~y at time 7'.
Again we define the norm

Ai(t) = e Rit=T) [)\ (T) + L eki<T*S>Npi(s)ds

(2.82) H()‘lv' Any Y HX ZHA HL“’QLZ[T +||7||L“L°°QL°°L2(R3[ o))’

Estimating system (2.81), we obtain that

HAi(t)HL""ﬂLz([TM)) S D)+ [N

083 LeNLi([T )

S [N+ ||N||Li/ssziji/z"L%(WX[T,wﬂ
and
(2.84) M 282 pene s wir e S WV o5 pan 32 2 w1,y

And the estimate for nonlinearity is almost identical to (2.42) and (2.43), just with
extra forcing term controlled by (2.78)

HN”L(;/S’ZL;"ﬂLi/Z’]L%(R3><[T,oc))
< [[(V =568l sy
5
_ k
+ kzzz H¢5 k (uL + 7]) HLg./S’zL;"mLi/z"L%(R»*x[T,oo))
5

k
Set) (et ||77||L§‘2L;°QL;°L%(R3><[T,oo))) :
k=2

3/2,1

LyNLy 7 L2(R3%[T',))

By definition of X, HnHLg,zL?mL;L%(R}X[T’m))

[y A S L (iw(m) +Le+ LY (e[| (Moo A || )

S CH()\177)‘717,7)”X We get

with constant L > 1 is a constant only depending on the constants in the reversed

Strichartz estimates, ||¢|| s (r3), HVH 1) and [|p; || =62 (r3)- If we take € small
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enough such that (3L + 1)%e < % (this is achieved by taking 7' large enough), and
n

(2.85) (D) <
i=1

then the map defined by the right-hand side of (2.81) takes a ball B37.(0) C X into
itself. Moreover, by the same argument, we can check this is contraction mapping.
This means that given small data \;(7") satisfies (2.85) we have a unique solution.
Our estimate on nonlinearity guarantees the integral in (2.80) converges in
H'x L?, hence by taking initial data using (2.80), we also get a solution to system
(2.79). Notice the size of initial data is O(e).
Now we are left to check u scatters to ¢ with linear wave exactly u”. The proof
is identical to step 4 of the proof for Theorem 2.2. By showing
lim

=0,
T'—+

- HWHLZ’ZL‘;"QL;L%(R»*><[T',oc)) T ”NHL‘;/5=2L;°0L1/2"L§(R3x[T’,oc))

we obtain the asymptotic profile of
L. .
Yeot) = cos (w(t —T))¥(T) + —sin (w(t—T))%(T)

1=
+— / sin (w(t —s)) Ne(s)ds.
w.Jr

Together with our initial condition (2.80), we proved that v..(t) = 0, which means
~y scatters to 0. Combining with the fact || \;(¢)]] 2Ly e) — 0 as T — 400, we

L

conclude that u scatters to ¢ with a scattering profile v, i.e.,

|@(t) = (¢,0) = @"(t)|| 1, ;o — 0, ast —> +eo. O

3. Channel of energy inequality. In this section, we first prove the channel
of energy estimate for solutions to the linear wave equation with potential if the
initial data has a dominating discrete mode. Then we show this estimate also holds
for equation (1.1) as long as the initial data is small enough. Finally, for data which
has a nontrivial but not dominant discrete mode, we prove a growth lemma which
ensures that once we require the initial data to be sufficiently small, we can find
a large time at which the solution is still small and the discrete mode becomes
dominant.

For the following basic perturbation result, we refer the reader to [20, Lemma
2.1] for proof.

LEMMA 3.1. Let 0 € I C R be an interval of time. Suppose t(t,z) €
Cy(I,H' (R?)) with ”ﬂ”LgL;DO(IxW) S M <o ’a“L§/4L§E/2(1XR3) < B <o and
e(t,z), f(t,x) € L} L2 (I x R?), satisfy

(3.1) Ot — Ali+a(t,z)i+a° = e,
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with initial data @(0) = (i, @) € H' x L?. Suppose for some sufficiently small
positive € < g = eo(M, 3),

(3.2) el +1F 1112 22 (rere) + [ (w0, ur) = (G0, @)l i 2 <€

Then there is a unique solution v € C(I, H") with Hu”LiLlp(IxRa) < oo, satisfying
the equation

(3.3) O — Au+a(t,z)u+u’ = f,
with initial data ©(0) = (ug,u). Moreover, we have the following estimate

(3.4) sup () = @) 1o+l — | gspo(rumsy < C(M, B)e.
€

We also need the following result on the precise asymptotics of eigenfunctions
corresponding to negative eigenvalues of the Schrodinger operator —A — V', which
is a consequence of Theorem 4.2 in Meshkov [26].

LEMMA 3.2. Let V satisfy sup,cgs(1 + |z]|)?|V (z)| < o for some 3 > 2, and
suppose that p # 0 is an eigenfunction corresponding to the eigenvalue —k* of
—A —V. Then there exists f € L*(S?) which does not vanish identically, such that

(3.5) p(x) = | ™! <f <|i—‘> +w<x>> :

where w(x) satisfies

(3.6) /Sz |w(R9)|2da(9) =0(R2), asR— +oo.

An important observation in [15] is that the above precise asymptotics implies
the following channel of energy inequality for the associated linear wave equation.

LEMMA 3.3. Let V satisfy sup,cgs(1 + |z])?|V (z)| < o for some 3 > 2, and
suppose that p % 0 is an eigenfunction corresponding to the eigenvalue —k* of the
operator —A — V. Suppose that u solves the equation

U — Au—Vu=0

with @(0) = ut(p, kp), then for any R > 0 the following channel of energy estimate
holds for some constant c(p,V,R) >0

(3.7) / |8tu|2(t,ac)da: Zc(p,V,R)‘,qu‘z, fort > 0.
|z[>t+R
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Similarly, if W(0) = pu~ (p,—kp), then

(3.8) / ‘&u‘z(t,x)dxzc(p,V,R)Luﬂz, fort <O0.
[z[>[¢[+R

Proof. We first prove the lemma for initial data %(0) = ™ (p, kp). In this case
the solution u has the explicit form

u(t,z) = ptetp.
From (3.6), we can take r( large enough such that when r > ry, we have
2 1 2
(3.9) lw(rd)| do(0) < — [ |f(6)]"do ().
2 10 Jo

By the asymptotics of p in (3.5), we get that

/||>t+R|8tu|2(t,z)dx 2/ ‘M+k|2672k(r7t) (f(e)—’_w(m))zda(ﬁ)dr

r>t+R+rg J S?
Z/ ‘,quk‘fe*sz‘f(H)|2d0(9)dr.
R+ro JS?

Then (3.7) follows.
The case when @(0) = p~ (p, —kp) is similar, and we omit the detail. O

Lemma 3.3 can be generalized to the case when the initial data has finitely
many discrete modes.

LEMMA 3.4. Let V satisfy sup, g3 (1 + |z|)?|V ()| < o for some 3 > 2, and
suppose that — A — 'V has negative eigenvalues —k‘% < —k% << —k2 <0 with

corresponding orthonormal eigenmodes py,pa,...,pn. Suppose that u solves the
equation
(3.10) uy —Au—Vu=0

with initial data @(0) = >""" | ! (pi, kip;), then for any R > 0, there exists a con-
stant ¢(R) > 0 such that we have the following channel of energy estimate forward
in time

n
(3.11) / |Opul*(t,2)dz > c(R) S |uf |7, fort>o0.
|z|>t+R el
Similarly, if we consider data of the form w(0) = 7" | u: (pi, —kipi), the channel
of energy estimate holds backward in time.

Proof. 1t suffices to prove the lemma for sufficiently large R > 0. By normal-
izing the coefficients, we will prove (3.11) when .7 | |* = 1. We divide the
proof into several steps.
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Step 0: Computing the asymptotics. First notice that the solution has an ex-
plicit formula

U—Zlﬁ k:t

From Lemma 3.2, we know that each p; has the following asymptotic

et (o(3) )

with f; € L?(S?) which does not vanishing identically, and w; satisfies (3.6).
Now given any R > 0, using Lemma 3.2 we have

. 2
lim owu| (t,x)dx
A f Ol )

2
:tETN/>t+R/6€S [Zlﬁk o fl( )+M(T€))] o

2
dé dr

:t1~i>1:I|»loc/>R/0682 [Z,Udjk e i7" 9)‘1‘&)2((’['—1—*[:)9))
2
—k;r
/T>R/6e82 [Z'Lﬁk e fi )] do(0)dr.

Here we used the decay condition (3.6) for w;.

Step 1: Lower bound for the asymptotics. We claim that for any R > 0 fixed,
there exists constant ¢(R) > 0 such that for any g satisfying >0, | > = 1, we
have

2
ey [ [Z/ﬁke“fz )] do(6)dr > o(R).

Suppose (3.12) is not true, then for any N > 0, we find ,uz.* (N) satisfying
S (N)> = 1 such that

2
(3.13) />R/0682[ N)kie ™" £,(0 )] da(@)dr<%.

Using that ] (N) are bounded, we can extract a convergent subsequence.
Hence we can assume that ] (N) — a; as N — e, and > 1" = 1. By the

zlz
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dominated convergence theorem, we pass to the limit in (3.13) and get

n 2
/>R/9 s2 [Zaikiekirfi(e)] dO’(@) dr=0
r e —

which implies that
n
(3.14) > aikie MTf(0)=0 forr>R, 0 €S,
=1

Now we consider the problem in several cases:

Case 1. if k; are different, then in (3.14) we first multiply with e=*»" and let
r — oo, we conclude a,, f,, = 0, and similarly we conclude

a; fi(0) =0, forl1<i<mnandfcS>.
Since || fill 12(s2) # 0, we conclude that a; = 0, which is a contradiction to ) a7 = 1.

Case 2. If one of the eigenvalues has multiplicity more than 1, say, k;, with
multiplicity m, i.e., kiy = kig+1 = kig+m—1 # kj for any j € {1,...,n}\{io,io +
1,...,i0+m — 1}. All other eigenvalue still have multiplicity 1. Then (3.14) now
reads as

ig+m—1
arkie M1 (0) + -+ e Rk, Z aifi(0) | + -+ ankne " £,(0) =0

1=1g

forr > R, 6 € S°.

Applying the same method as in Case 1, we conclude that

i0+m—1

arfi(6)=0,..., Y aifi(6)=0,....anfn(6) =0, forfeS?

=1

which implies a; = 0, forany i € {1,...,n}\{io,io+ 1,... 90 +m — 1}.
Now we consider the part sz;:lfl a; f;(6) = 0 and prove that all a; = 0. De-

note L =—A—V.By Lyp; = —k:izopz-, 10 <1 <ig+m— 1, we see that

to+m—1 i9+m—1
2
L E a;p; | = —kj, E aip;
i=io i—io

Assuming towards a contradiction that not all a; = 0, we conclude that

iog+m—1 . . . . . 2
Zi:io a;p; is an eigenfunction for L with eigenvalue —Fk; .
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On the other hand,

io+m—1 io+m—1
Z a;p;=e km\r\ ] Z a;w;(x)

=1 =1

This contradicts Lemma 3.2, in particular (3.5). Hence we conclude that a; = 0,
1 <17 <n, which is a contradiction to Zaf =1.

Case 3. In general, we could have several eigenvalues that have multiplicity
more than 1. In that case we repeat the argument in Case 2 as needed.

Hence we conclude that our claim (3.12) is true.

Step 2: Refining the lower bound for asymptotics. Next we refine (3.12) by
obtaining a better lower bound. Let a;; = ke %" f;(0), 1 <i<nforr>0,0¢cS?
and

<Oé7;,aj> = / / Qg dO’(Q)dT’, Aan = [<aiaaj>]1§i,j§n-
>0.J0eS?

Then (3.12) with R = 0 implies that A4 is a positive definite matrix. And for any
7€ R", ||7]| = 1, one has t* AT > ¢(0) > 0.
Now for any R > 0, we change variables r = s+ R in (3.12) to wit

n 2
/ » /0 . [Zujkieki’”fi(e)] do(0) dr
T S i=1

2
(3.15) />O/€eg2 [Z’ﬁke e kini(H)] do(0)ds
=Lt e MM ae)

O)Z\u?e hift
i=1

Step 3: Channel of energy estimate. Now we prove (3.11). The computation
from Step 0 implies that

/ ‘@u‘z(t,x)d:r
|z|>t+R
2

+ e ir w , ; -
S R SR O RETE

(3.16)
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Expanding the square, this further equals

/>R\/€ SZNZ N+k k e —(k z+k])rfz(9)f](9)do_(0)dr
r S

zyl

/ / i i Fikee itk
(3.17) ij=1/T>RJ0ES

[fi( Jw; ((r+1)8) + f;(0)w;((r+1¢)0)]do dr
/ R/H i Rikje” T (- 0)8)w; (+0)9) do (8)dr.
ij=177> €s?

Using the decay estimate of w; in (3.6) and Cauchy-Schwarz inequality, we infer
that

/>R/¢9€§2'ul iy kikje SR £(0)w; ((r+1)0) do(9) dr

2,7=1

: Z </>R/€ SZ‘Njk |2 72]67“ ]

£ Pdo@)ydr)’
i,j=1 ‘ >

.2672kj7“ wil((r 2 o .
g </T>R/eesz|“? k| e wj ((r+)0) ["do(6)d

S P

N~—
19—

Similarly, we have

/ >R/a g ke B i (r4-6)0)ws (r+6)9) dor(6) dr
r S

n
SRS |uf et
i-1

Together with (3.15) we obtain

/ |8tu‘2(t,m) dx
|z|>t+R

Z|uj|e2m C(Ri+R? Z‘“ﬂe kiR

=1
(0) <"
>3 2 luie

where R is sufficiently large. The lemma is proved. O

i,j=1

@BZMR’
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Next we consider the case when there are several negative eigenvalues and
prove that if one of the discrete modes is dominant, then we still have the channel
of energy estimate.

COROLLARY 3.5. Let V satisfy sup, g3 (1 + |z])?|V ()| < o for some 3> 2,
and suppose that —/A —V has no zero eigenvalue or zero resonance, and that it has
negative eigenvalues —k:f < —k% <. < —k2 <0 with corresponding orthonormal
eigenmodes p1,p2,...,Pn-

Let u(t) be a solution to (3.10) with initial data

@(0) = (y0,71) + Y 15 (pir kipi) + 115 (pi —kipi)]
i=1

satisfying the orthogonality conditions [ piyodz = [ piyide=0,1<i<n.
(1) For any R > 0, if we have

(3.18) i | > Ko [H(vom)HHw+i|M

i=1

for sufficiently large constant Ky := Ky(R) > O, then there exists a constant
¢(R) > 0 such that

> forallt>0.

(3.19) / |8tu|2(t,m)dm > c(R)|uZ-+O
|z[>t+R

(2) For any R > 0, if we have

il > Ko [H<m>uw+iw

i=1

for sufficiently large fixed constant Ky := Ko(R) > 0, then there exists a constant
¢(R) > 0 such that

> forallt <O0.

2 _
(3.20) / |Opu|”(t,2) dz > c(R)|,uZ.0
|z|>|t|+R
Proof. To prove (1), first note that the solution is of the form
n
u=Y_ i pit ;e M i+ (t,a)
i=1

with the continuous part ~y solving the equation

Vet +PL(—A ~V)y=0.
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Hence from Lemma 3.4 and the Strichartz estimate for v (2.7), we get for t > 0

/ ‘@u(t,:r)‘zda:
|z|>t+R
/ Zlu:rk ekt
lz[>t+R |
—2/ |8t’y| dx
|z[>t+R
R N =0 i [P =l (o) e
i=1 i=1
R
i

if Ky in (3.18) is sufficiently large.
Case (2) follows from (1) by time reversal. O

2
—k;t dr

Pi

dx — 22/:0

\>t+R

Next we shall see that the channel of energy estimate is stable with respect to
nonlinear perturbations. In particular, the following lemma shows that if the initial
data is very close to a steady state, and one discrete eigenmode of the initial data is
dominant, then the solution will radiate energy outside the light cone either forward
or backward in time.

LEMMA 3.6. Fix any R > 0. Consider a finite energy solution u to the nonlin-
ear equation (1.1) with initial data (ug,u;) € H' x L2. Given a stationary solution
¢and Lo =—A—V + 5¢* with orthonormal eigenmodes py,pa,...,pn corre-
sponding to negative eigenvalues —k% < —k% << —E2<0.

(1) Let (ug,uy) be of the form i(0) = (4,0) + (ho, hy) with

(ho,h1) = (0,m) +Z (1 (piskipi) + 1y (pis —kipi) ]
-1

and [ pivodx = [ piyide =0 for all 1 <i < n. Assume that
"um‘ —max{‘,uz ‘ i=1. }

and that

(3.21) | > K H(’Vom)HHleﬁZ!m =
=1
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as well as

1 Cros i) [ g1 < s
Jor some sufficiently large constants K > 1 and sufficiently small e, > 0 that only

depend on the potential V' and R. Then the solution satisfies the channel of energy
estimate

(3.22) / |8tu|2(t,a:) dr > C(R)Lumz, fort>0
|z[>t+R

for some constant c¢(R) > 0.
(2) Assume that (ug,u) has the decomposition 1i(0) = (¢,0) + (ho, hy) with

(ho,h1) = ZN? (piskipi) + (Ro,R1).
=1

Furthermore, suppose that for |,u;| :=max{|p] |, i=1,...,n}, we have
(3.23) || > K[ (Ros Ra) [ 1,12
and ||(ho, 1) g1y g2 < €, for sufficiently large K > 1 and sufficiently small €, >

0 that depend only on V, R. Then the solution u satisfies the channel of energy
estimate

(3.24) / |8tu|2(t,a:) dr > C(R)Lumz, fort>0
|z[>t+R

for some constant ¢(R) > 0.

(3) Similar results hold when we switch y; with ,ui+ in (1), (2) and consider
t<O0.

Proof. (1) Write uw = ¢+ h. Then h solves the equation
hu+ (= A=V +5¢*)h=N(h,9)

with N'(h,¢) = —(¢+h)> + ¢ + 5¢*h.
Let h” be the solution to the linear equation

(3.25) hii+ (= A=V +5¢*)h" =0.

Define

- V(x) if x| > |¢],
(3.26) V(t,z):=
0 if |z] < |t
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and

~ ¢(z) if [z > [t],
3.27 £ =
G2 ) {o if |2] < [t

respectively. Let A% and / be the solution to the linear and nonlinear wave equation
with truncated potential, viz.

(3.28) hE4+ (= A-V+50*)RE =0,
(3.29) hie+ (= A=V 456" h = N(h, ).

It is easy to check that

We take the initial data

R(0) = RE(0) = BE(0) = R(0) = (vo.m1) + 3 [ (o ko) + 11y (pis—Fipi)]
i=1

which satisfy the condition (3.21) With a large constant K to be chosen later. By

finite speed of propagation, t € R, h = h AL = R for |z| > |t|. In view of Lemma
3.1,

(3.30) sup Hh | 715z + 1Bl 13 £10((0,00) 8y S SO 1o S ||

te[0,00
and

sup Hh A (t)H

+H7L_71LHL5L10
te[0,00 e

+
H!'xI? ([0,00) xIR3) S Wio‘ )

if €, is chosen sufficiently small depending on V.
Take K > Ky(R) where K((R) is the constant from part (1) of Corollary 3.5,
then we get that the linear solution h” satisfies the channel estimate,

/ |8thL(t,x)‘2da:>c ‘,u | for t > 0.
|z|[>t+R
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Hence, forall ¢t >0

/ |8th|2(t,m)dm:/ 0| (¢, 2) da
|z[>t+R |z|>t+R

2/ 0L Pt ) de — Ot |
|z|>t+R

_ / . Ok (¢, 2) da — C |yt |

R
Rt - clut| = Bt

The last line holds provided e, = €.(R) 2 || is small enough.
(2) Consider two solutions to equation (1.1) u and v, with data

i(0) = (¢,0) +ZM? (pi,kipi) + (Ro, Ry),
-1

5(0) = (6,0)+ > _ 1 (pikipi),
i1

respectively. If we set u = ¢+ h and v = ¢ + £, then h, ¢ satisfy

hu+ (= A=V +5¢")h =N (h,¢)
ly+ (= A=V +5¢") = N((,0)

with initial data

n
=Y "1 (pikipi) + (Ro,Ra), Zuz (piskipi).-
=1

1537

As in the proof for (1), we define 1% <;~5 and consider truncated versions h, ¢ that
satisfy the equation (3.29), with data h(O) 1(0), 7(0) = £(0). Then from finite
speed of propagation we infer i = h =17 for |z| > |t|. The perturbation Lemma

3.1 and (3.23) yield the bound

peg

sup ||R(t) ()

—

< C||h(0) - 70

| < Ol g1z < el

Note that

(GO 7oA
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From part (1) we know that there exists €,(R) > 0 small enough, such that if

—

[[£(0)|| < €, then £(t, x) satisfy the channel of energy inequality

/||>t R|8t€‘2(t,m)dmzc(R)|um2 fort > 0.
o[>t+

Hence we get for ¢t > 0,

2 o 712 ) dx
/|z|>t+R|ath| (t,a:)da:—/ 07| (t,2)d

|z|>t+R

_ C?. s
> 80 (t, 1) dr — — | ut
_/:z:>zt+R| ' | (t,z)dz KZ‘M“"

2 C2 ,

02

) 2 R 2
> C(R)|#z'0 - ﬁ‘#z‘o > ) | io
The last line holds if we pick K := K (R) large enough.
(3) The proof is similar to (1) and (2) and we omit the details here. O

Initially, the discrete spectral component may not be large enough as required
by (3.23). But since any eigenmode grows exponentially either forward or back-
ward in time, we might expect that it will take over the dispersive term for large
times as long as it is not too small initially. The following lemma makes this logic
precise.

LEMMA 3.7. Given a steady state solution ¢ to the nonlinear equation (1.1),
suppose that Ly = —A -V + 5¢* has orthonormal eigenmodes pi,pa, ..., pn COT-
responding to eigenvalues —k:f < —k% <. < —k2 <0. Suppose that i is a solu-
tion to equation (1.1) with initial data

@(0) = (6,0)+ Y _ [ (piskips) + pi (pin—Kip:)] + (0,71)

i=1

obeying the orthogonality conditions f piYodx = f piv1dx =0, forall 1 <1 <n.
Write the solution as

i(t) = (6,0)+ h(t).
(1) Suppose

ci=1n} > w[[R0)|| 4

| 1= max{ |
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for some constant k > 0. Then for any €, >0, K > 1, there exist T'(k, K) > 0 suffi-
ciently large and £(k, €., K,T) > O sufficiently small, such that if || h(0)| g1, ;2 <€
then

ZekT + pZ7 Zpi)+(R07R1)7

with
T
and
|(Ro Rl sz < e iz ot Kot 1o
(2) Suppose
iy | o= max { wi= 1,0} 2> K[RO) g,

for some constant k> 0. Then for any €, >0, K > 1, there exist T'(k, K) > 0 suffi-
ciently large and ek, €., K,T) > 0 sufficiently small, such that if ||h(0)|| g1, ;2 <&
then

h(—T) = ZekiTﬂf (pi,—kips) + (Ro,R1),

with

AT g2 < e

and

U gy -
1(Ros R) |12 < gz€™0 [mig || (pios =Riopio) [ 11 12

Proof. The proof of (2) is again the time reversal of (1), so it suffices to con-
sider the latter.

Step 1: Bound on h. Writing u = ¢+ h, we see that h solves the equation (with
N as above)

hit+ (= A=V +5¢") h = N'(h, ¢).
Let h' be the solution to the linear equation

(3.31) hi+ (- A=V +5¢"rl =0
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with data A% (0) = 1(0). We denote by S(t)g the solution to the linear equation
(3.31) with data (0,g) for any g € L. By decomposing the data into continuous
and discrete modes, the Strichartz estimates (2.7) for the continuous modes, and the
explicit formula for the evolution of discrete modes, we can find absolute constants
C, A > 1 such that

(3:32)  sup [[S(r)gll grpe+ 1S(T)g]] L3 100,y xm) < CeMlgll 2

T€[0,¢
7L L( A M| RL (0
(3.33) iUp) [R5 () g2+ 15 (7 HL5L'0 (0,)xR) = Hh 122
T b
Denote € := ||2(0)|| 1, ;> < €. Now on an interval [0,T) with e317¢ sufficiently

small, we will use a continuity argument to show that for ¢ € [0,7")

G634 s (1A cpe + 1P sy < AR O) o

T€|0,

In fact, assuming that the bound (3.34) holds for 0 <t < ¢y with some 0 <ty < T,
we will show that we actually have

o P TP

(3.35)

A
< e k.tHh forall 0 <t <.

HH1><L2’

Then a simple continuity argument finishes the proof of proof of (3.34). From
Duhamel’s formula

(r) =) + | " S(r— )N (h,6)(5) ds
0
Denote F(r,2) = [y S N (h,¢)(s)ds, then from (3.32) we get

thz%)<uF<f>uH.+uaF )

O Tekl(r—s)HN(h,Qs)(s)Hdes

(3.36) T€[0,t) 0
< sup Cek‘TH/\/’(h,¢)(3) ([0,r)xR3)
T€[0,t) o

< Cek‘tH/\/’(h,qﬁ)(s)

LLZ([0,6)xR?)
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and
1E N s oo, <2

< ‘ /0 No—ss0y||S(r — SN (1 B)(s)

(3.37) t
< [ 18— 100508

t
< [ HDNNG )05 < O N )5
0

lds

L3[0,t)

2([0t)xR3)”

Note that |N'(h,¢)(s)| < 23:2 |p>~7|h|7. Assuming the bound (3.34) on [0,%),
for any ¢ € [0,%) we pick an integer Jy > 0 such that Jy < ¢t < Jy+ 1. This leads
to

16° A2 (| 11 12 (0,6) xR Z”¢3h L1 22 (g 1)xe) T [| 6727

2 ([Jo,t) xR?)
q=0
Jo
2 2
< D _MAIZs £ gy + 1RIZs o0y cm)
q=0

0
< Z (Aekl(q+1)e)2 + (Aeklt 6)2 < A2t
We can control the other terms in A/ (h, ¢) in an analogous fashion, whence

[N (R, ¢)(5)

5
2 ([0,0)xR3) S Z Aeek‘t for 0 <t < ty.
7=2

Using (3.33), we therefore obtain
Sl[lp Hh HHI w2t Hh”LgL}CO([O,t)xR3)
T€(0

< sup HHL(T)HHlez—i_HhLHLiL'l.O([O,t)XW)

T€[0,

+ Cek'tHN(h7¢)(5)HLIL2 ([0,¢)xR3)

5
A A
< gek‘te—l—C’eklt ng Aeklt Eek‘te,

provided e3*17'e < 1 is sufficiently small. Hence (3.34) holds on [0,7") as long as
T e satisfy the relation e3k1Te < ¢, with a small fixed constant €.
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Step 2: Decide the constants. Now we consider the linear solution h” with
data

n

RE0) = [id (piskipi) + 115 (pis—kips) ] + (0, m1).
=1

then we have the explicit formula for the linear solution

ZMJr kt pu zpl +ZN2 p“ Zpi)—i_ﬁ;(t)'

For any given x, K, we can choose a large constant 7'(x, K) such that

Zuz (i, —kips) +7(T)

(3.38) H'xL?

W "“ ‘e TH(pimkiopZ'O)HHlez'

_ZK

Next from Duhamel’s formula and the estimate of A/ in Step 1, we have

T —s)N(h,9)(s)ds

h(T) — EL(T)‘

H'xL? ‘ H'x 12

5
1
<ceMT g Aeek‘T < —‘,u:r
— 0 )
= 2K

if e3%17¢ is sufficiently small.

Hence we have h(T) = 21" i €T (pg, kipi) + (Ro, R1) with

(Ro,R1) Zuz (pi,—kipi) +7(t) + h(T) — K™ (T)
and

1
1(Ros R .12 < g2 1™ ([ (i Kigpia) l 1.

We also have

H HH‘><L2 <Ze

by choosing ¢ sufficiently small. U

|+H R()’RI)HHI ng T € < €y,
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Remark 3.8. While part (1) of Lemma 3.7 guarantees that at time 7' the unsta-
ble mode

T, +

eFio Fig (pio s Kig pio)

dominates the continuous part and the stable mode, we cannot be sure of its size
compared to the other unstable modes, which might grow faster. However, we can
easily conclude that the largest mode at time 7, say ekﬂ'T,u;r(pj, kjpj), satisfies

1 -
Hekﬁfﬂf(ﬂﬁkaﬂj)uﬂquzEigi;THh(TUHH»er

4. Global center stable manifold of unstable excited states. In this sec-
tion we prove our main result. Before giving the detailed proof, let us briefly sum-
marize the main ideas in physical terms. The crucial fact that we establish can be
explained roughly as follows. Take any solution U (¢) which scatters to an unstable
steady state ¢. We have shown in Section 2 that in a small neighborhood of (7(0)
in the energy space H' x L?, there exists a local, finite co-dimensional manifold
M such that if @(t) starts on the manifold, i.e., if #(0) € M, then w(¢) stays close
to U (t) for all positive times and scatters to (¢,0). On the other hand, if @(t) starts
in a small neighborhood of U (0) but off the manifold, then

*t—ﬁt”, > e >0,
|7 -0, .2

no matter how small Hﬁ(O) —U(0) HHI .12 is. Suppose that Hﬁ(O) - lj(O)HHl <2
is sufficiently small, then dynamically (t) will stay close to U (t) for a long time,
say for 0 <t <Ty. Since U (t) scatters to (¢,0), we can write (in the energy space)

U(t)~ (6,0)+ U (1)
for large times. Hence for large ¢t < Tp,
() ~ (¢,0)+ U (1)

in the energy space. After time Tp, @(t) starts to deviate from U (t) as @(0) & M.
By an expansion of the energy functional near the steady state, we shall show that
the deviation is due to growth in the unstable mode. Then it is not hard to conclude
that at a large time T} > Tp, @(t) — (¢,0) — U (t) concentrates most of its energy
in the discrete mode and has energy = ;. These arguments finally set the stage for
us to apply the channel of energy inequalities proved in the previous section. We
will show that besides the radiated energy that UL carries to spatial infinity, #(t)
emits a second radiation. The total radiated energy for #(t) will therefore exceed
the radiated energy for U (t) by a fixed amount. Now note that @(t) has almost the
same amount of energy as (7(25), a comparison argument of the energy in the local
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region then implies that (t), having strictly less energy than (¢,0) in the local
region, can no longer scatter to (¢,0). Hence, locally the set M of all initial data
for which the solution scatters to (¢,0) coincide with M. Thus the set M, has
a manifold structure. This is the key property showing that scattering to unstable
steady states is non-generic.

Now we turn to the main argument. Let us first compute the expansion of
energy around any steady state (¢,0).

LEMMA 4.1. Let (ug,u;) = (¢,0) + (Ao, A1), where (Mg, A1) € H' x L. As-
sume that

[Aoll Loy < B <1,

then we have
1 1
4.1) E((ug,wr)) = E(¢,0) + 3 (LyAo,Ao) + 3 (A1,A1) +0(8?),

where Ly = —A — V +5¢%,
Suppose Ly has orthonormal eigenmodes py,pa,...,p, corresponding to
eigenvalues —k% < —k‘% <o < —k2 < 0. If we further decompose

(4.2) (Mo, Av) = (X0, X1) + (wo,wr),
(4.3) (wo,wr) = Z (1 (piskipi) + 7 (pis—kipi) | + (0,m),

i=1

with (Xo,X1) € H' x L? and the orthogonality condition [ pi~odz = [ pjyide =
0, for all 1 < j < n. Then we have

1
E((ug,u1)) =E(¢,0)+ 3 [(L4X0,X0) + (X1,X1)]
1 n
(4.4) +5[(£670:70) + (v1,m)] —;2@#@'/@2
+ (£¢X0,ZU0) + (Xl,wl) —|—O(ﬁ3)
Proof. The proof is by direct computation

&((uo,u1)) = E((#,0)+ (Ao, A1)
:/ |V¢+2VAO|2 . |A1|2 V(A . (¢+AO)6 N

2 2 6
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1 » 1o s 1 5
= [ 5(IVoI =3Ve +9 ) do (—Ap—Vo+¢)Aoda
+ / :
2

= £(6.0)+ 5 (Loho,Ao) + 3 (A, A1) +O(5).

1 5 1 1 ; .
VAo =S VAG+ 36 AG+5 [M [+ 2 D Cle* 7| do

Jj=3

This finishes the proof of (4.1).
Next we further expand the energy functional using (4.2)

£ ((uo.m))

:5((;570)4- (Eqb(XO“‘wO),XO ‘|‘w0) +%(X1 +ZU1,X1 +w1) —I—O(ﬁ3)

—_ N =

=E(¢,0)+ 5 [(Lpwo,wo) + (wi,wi)] + % [(£4X0, Xo0) + (X1, X1)]
+ (L4 Xo,w0) + (X1, w1) +O(8).

Since Lyp; = —k7p;, we get

(Lgwo,wo) = —Z (i +M;)2k¢2 +(£47%,7%),
i—1

(wy,wy) = Z(Mf—ﬂf)zkiz*‘ (v1,m)-

i=1

Combining the calculations above, we get (4.4). (]

Now we are ready to present the main idea of our paper, which is crucial to
conclude that the set of initial data for which the solution scatters to an unstable
steady state (¢,0) has a manifold structure, and hence is a “thin set”.

THEOREM 4.2. Let V €Y be a potential such that equation (1.1) has only
finitely many steady states, all of which are hyperbolic. Suppose that the finite
energy solution U (t) to equation (1.1) scatters to an unstable excited state (¢,0).
Let M be the local center-stable manifold around U (0) and let €, €, be as defined
in Theorem 2.2. Then there exist € with 0 < € < €] < €y and §(€1) > €, such that
for any solution u with finite energy initial data (ug,u;) ¢ M with

H (wo,ur) — ﬁ(o)Hglez <e,
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we can find A > 0 such that for all t > A

4.5) /
x| >t—A

As a consequence, U(t) will not scatter to (¢,0).

Va2 | (9u)’
2 t 2

] (t,z)dz > E(U(t)) —E((¢,0)) +4.

We remark that by a simple adaptation of the result in [19], we know that the
collection of potential V' which satisfies the condition in Theorem 4.2 are dense in
Y.

Proof. We divide our proof into several steps.

Step 1: Set up the parameters. By the local center-stable manifold theorem
of Section 3, the locally defined finite co-dimensional manifold M satisfies the
property that any solution to equation (1.1) with initial data on M scatters to (¢,0).
Moreover, if a solution @(¢) with initial data (ug,u;) € Be, (Up) satisfies

(4.6) @) = T®)|| 1, p <€ forallt>0,

then (ug,u;) € M. Take € < ¢€; sufficiently small to be chosen below. Since the
solution U (t) scatters to (¢,0) as t — oo, denoting by U” the scattered linear wave,
we have the property that

(4.7) lim || U (t) — UL (t) = (,0)|| y1,. > = 0.

t—roo

This implies that

. | T
(4.8) E0) =£(6,0)+ 5 U512
By (4.7), the fact that ¢ € H'(R3) and U” € L} L10([0,0) x R?), for any small
61 > 0, we can first fix some large L and then choose 77 > L sufficiently large,

such that for all t > T,
e (Free wave small in L% norm)

(4.9) [T ®)] oy < 01
e (Closeness of U to UL + (¢,0) and choice of the bounded region)

1T®) = TE0) = (8.0 g2 T O 1, 2z 1) + 1 11 a2y < 015

e (Most energy of the free radiation is exterior)

(4.11) / ‘Vx7tUL‘2(t,x)da:2/ |Vt7xUL|2(t,m)dm—52;
|z|>t—T+L R3
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e (Control on the Strichartz norm of the radiation) Let
D:={(t,x): || <T1+L—t,0<t<T}.
Then we have
L
(4.12) U HLZL;UO((O,oo)xR»*\D) <01

We remark that (4.11) is a consequence of the strong Huygens principle and
approximation by free waves with compactly supported initial data. (4.11) ensures
that U” can essentially be taken as zero for our purposes inside the region |z| <
t—T)+ L for t > T}, which will be important to keep in mind later, in order to
distinguish the second piece of radiation. By the continuous dependence of the
solution to equation (1.1) on the initial data in FH' x L?(R?) and by finite speed of
propagation, if we take e sufficiently small and initial data (ug,u;) € H' x L*\ M
with

(.13) (0 1) =T O 112 <

then

(4.14) () =T (T0) 712

can be made sufficiently small. Hence, noting that || V|| L3 (2 ) is finite, we

can apply Lemma 3.1 to conclude that

(4.15) i) =T g1 p2(afemy) < G1 forall £ =Ty

(4.15) means that we can effectively identify « with U in the exterior region
|z >t=T, t>T.
Hence by (4.10), we see that

(4.16) Hﬁ(t) - ﬁL(t)HHl < L2(ja|2t- T +L) = 301,

that is, we can also identify 4 with UL in the exterior region |x| >t —T) + L,
t>Ty.

In order to avoid any possibility of confusion due to the many parameters, we
remark that §; and e can be made as small as we wish, and will be chosen later.
Ty, L depend on 4; and U only. € is a small free parameter below some threshold
determined by ;. The key point for us is that €; > 0 is fixed no matter how small
€ is chosen, see (4.6).
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Since (ug,u1) & M, there exists an exit time 75 > 0 from the ¢; ball, i.e., such
that

4.17) [i(T2) = U(T2) || 1 poesy = €1

Note that the choices of 77 and L do not depend on €. Therefore, by the continuous
dependence of the solution on its initial data in H' x L?, if we choose ¢ sufficiently
small, we can assume 75 > 2(L+ T} +1).

Step 2: Analyze the size of discrete mode at time T,. Let us analyze u(75) in
more detail. By the estimates (4.10) and (4.17) we can write

(4.18) @(T2) = (6,0) + U (T») + (wo,wy),
where @ = (wp,w;) € H' x L? satisfies

4.19) 2e1 > €1 +01 > HZUHH. >e1—01>€/2,

x L2(R3)

if &1 is chosen smaller than %‘ We now list several facts:
(1) From (4.13), we infer that

(4.20) |£(@) - E0)| Le

(ii) Rewrite the decompostion (4.18) in the form

(4.21) i(T2) = (6,0) + (Ao, A1),
(4.22) (A(),Al) = ij (Tz) + (wo,wl),
(4.23) (wo,wi) =Y (1 (pikip) + 115 (pis —kipi) ] + (0,71).

i=1

with orthogonality conditions [ poy;dz = [ p1y;dz =0, forall 1 < j <n. (4.19)
implies that

(4.24) & <o) e+ [kf(uj — )+ ()

i=1

(iii) Expand the energy functional at T5. Since Ag = U (T») 4wy, from (4.9),
(4.19) and our a priori choice d; < g€1, we have [|Ag|zs < €1. We now apply
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Lemma 4.1 and obtain

(u(T2)) =5(¢,0)+l[(ﬁasUL(Tz),UL(Tz)) + (U (12), U (1))
(4.25) —22/% 1 k ﬁqwo,'m) + (v1,7m)]
(ﬁqu (T2), o) (U (T2),w1) +O(&).

Note that using the L estimate of UL in (4.9), we further have

% [(%UL (12),UH(D12)) + (UH (D) . UF (T2))

(4.26) - %HU’L(TZ) o+ (= V456 UE (1), U (1))
1

Ty, e+ O().

In view of (4.18), (4.16) together with (4.10) implies that

HUMHHsz%fﬂ+LY+deh%mz%fﬂ+L)§4&'

Thus (wo,w) is small inside the region {|x| > T5 — T + L}, while (4.11) implies
that U” is small inside the region {|x| < T — T} + L}:

HUL (Tz) HH‘xLz(\m\<T2*T|+L) <.

Hence we get that

4.27)
(UF (D), w1)| = ‘ /{ UL (2. T3) wn () da

|$|2T27T1+L}U{|$|<T27T|+L}

NEIE

~

and that

|(LoU*(T2),w0)]
— ‘/(—A—V+5¢4)UL(33,T2) wo(x) dx

4.28
(4.28) = ‘/ VUL(TZ) -Vwodx
{|lz|>T~Ti+L}U{|z|<T>~T1+L}

+/(—V—|—5¢4)UL(T2)wod:r < 4.
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Now let us combine estimates (4.26), (4.27), (4.28) with (4.25), noting (4.8), we
deduce

k
- 1
(4.29) &(u)=&EU)+ > [(Ls70:70) + (v1,7) ] —Z2H¢+M5kf+0(51 +6).

i=1

(iv) Since (7p,71) is in the continuous spectrum and L4 has no zero eigenvalues or
zero resonance, we have

(Lg70,7%) + (v1:m) Z || (v0,m) Hi’ilez

In combination with (4.20), (4.24), and (4.29), this coercivity yields

£() — EO)+ 2 1y K

i=1

1
=5 [(£s70,%) + (n:m)] + 001 +€))
> ([ (hosy1) |51, 12 + O (81 +€3)

2ed =3 [t - 4 )| 061+ ).

i=1

This implies that

[\

" & C
D2 kb ok =) 5 D (i)
=1 i=1

Za—[e0) @] -0(a +¢)

2 e%—Ce—O(él +e?).

Since all the constants depend only on U, we can choose d,¢ < e% and conclude
that

n

(4.30) S P+l Pz

i=1

Now we denote |gmax| = max{|u ], |u; |, 1 <i<n}. Wecan find 1 < iy < n such
that either |u;| = | tmax| Or \,u;0| = | f4max|- From (4.19) and (4.30), we get

C,
2n‘ﬂmax‘2 > CE% > Z”wﬁ'{‘xLz’

hence |ftmax| > \/ g5 W] 71 2- The constant ¢ only depends on V' and ¢.

Step 3: Show the second emission of energy and finish the proof.
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Case I: |pmaz| = |1y |- Consider the solution 7 to equation (1.1) with
5(T2) = (¢,0) + (wo,w1).

Take v = 8%, K and ¢, corresponding to R = 0 in Lemma 3.6. Note that both
parameters depend only on V. With these choices of parameters, we get T'(x, K, V')
and €(k, K, ¢e,,T) from Lemma 3.7. Shrinking ¢; if necessary, we can assume that
€1 < e(k, K, e, T). We emphasize that none of these parameters depend on d; or e,
which are free parameters at this point. This is very important of course, in order
not to run into a circular argument. We also note that 7" = T'(x, K, V') from Lemma
3.7 does not depend on 9 or e.

We can now apply part (1) of Lemma 3.7 and part (2) of Lemma 3.6 to conclude
that

4.31) / \ata\z(t,x)da;zc(q) >0, fort>T>+T.
|x|>t—(Tr+T)

Denote = := R? x [T», Ty + T]\J{(t,x): |x| >t —T>»—T,t > T +T}. Note that
4 313 /m3

(IVI+6*)xz € L{ Lz (R* xR),
and that UL + @ is an approximate solution to (1.1) with a right-hand side f with
Ifll£iz2 < 61 By bound (4.12) and Lemma 3.1 (by treating u as perturbation of
UL + @), if we choose d; sufficiently small, then for (z,t) € &,
(4.32) i(t,z) = UL (t, )+ @(t,z) + 7(t, ),
where the remainder term 7 satisfies

(4.33) sup [|7(8) || 71, 12 sy < CO1-
teR

The estimate (4.16), decomposition (4.32) and the estimate on the remainder term
(4.33) imply for ¢t > T5 (in particular, t > 15 + 1)

(4.34) / V.| (t,2) de < C8,
|x|>t—T+L
this combined with (4.31) implies that for ¢t > T, + T

(4.35) |Vt7zﬂ|2(t,aj) dx > c(e)) — C9y.
)

/tT]+L>|I|>t(T2+T
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Hence by estimating ||%i(t)|| ;1 ;- in different regions {|x| >t —Ty+ L} and {t —
Tv+L>|z|>t—(Tr+T)}, we get that

~12
||u||H1><L2(\m\>t (T»+T))

> (0% 4+l -Gy

x L2(|z|>t—(To+T))
HULHH1><L2 (|z|>t— T]+L)+C( 1) = 20y
1

= HULHH]XLZ(R3) +eer) = G301 > HﬁLHzlxm(R»*) + 50(61)'

(4.36)

The last line holds when we choose d; sufficiently small. (4.5) is then proved with
A=T,+Tand § = jc(ey) > 0.
Now we prove that u cannot scatter to (¢,0) ¢t — 0. Suppose it does so with

free radiation @, i.e.,

i(t) = (6,0) = (1) |1, 2 — 0, a5t — +oo.

Then (4.36) implies that
(4.37) HﬁL t)HirleZ(R*) = }g{gHu Hiﬁrle2(|z|sz) = H(jL(t)Hi'{lxm(R»*) +0.
Note that

[TH (12 = ETO) = £(@,0), [T Fp1,10 = E@@) — £(6,0).

We have reached contradiction with (4.37) if [|@(0) — U (0)| 1, r2(r3) is chosen
small, and thus have proved the theorem in case 1.

Case 2: |fmaz| = |11;,|- We will show this is impossible if we take e small
enough. In fact, again applying part (1) of Lemma 3.7 and part (2) of Lemma 3.6,
consider the solution @ to equation (1.1) with data

ﬁ(Tz) = (gb,O) + (wo,wl).

We can find a time 7" > 0 such that

(4.38) / |ata\2(t,x)dx >c(e]) >0, fort<T,—T.
| >[t—(T2-1)]

By taking e sufficiently small, we can assume 75 > 27'. Now setting time ¢ = 0 in
(4.38), we get ||1~L(0)||H1 ><L2(\m\>%T2) > C(El).
Introduce the set

B =R x [T - T, )| J{(t,2): [x| > |t — (T T)|, 0<t < T - T}.
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In analogy to case 1, if we choose d; > 0 sufficiently small, then for (z,t) € =’ we
have

(4.39) i(t,x) = UM (t,x) + a(t,x) + 7(t, z),
with the remainder term 7 satisfying

(4.40) sup || 7(t)]| g1, 12 gy < CO1-
teR

From (4.10) and by our choice of 75, i.e., T» > 2(L+ Ty + 1) and T5 > 2T, we
have HUL(O)”H'><L2(|95|>%T2) < d; and

H (’LLo,ul) HH'><L2(|$|>%T2)

1
> vavtﬁ(o)HH'XLZ(\ID%Tz) —051 > C(El) —051 > 50(61).

The last inequality holds provided we take ¢; small enough. This yields a contradic-
tion to the finite energy of U (0) by choosing e sufficiently small and 75 sufficiently
large. Hence case 2 does not arise and we are done. (]

Next we prove the property of path connectedness.

THEOREM 4.3. For any unstable excited state (¢,0), the corresponding
center-stable manifold M is path connected.

Proof. Given data (ug,u1), (o, 1) € Mgy, we denote the corresponding solu-
tions by wu, @. Write h = u — ¢, £ = i — ¢. Repeat step 1 and step 2 in the proof of
Theorem 2.2. Then given any € < 1, we can find 7" = T'(¢, u, @), such that

4.41) Hh”Lﬁ_,z <€, < €.

- 4 -
LyNLG L3 (R3x[T ) I HL‘;@Lt NLZL3(R3x[T,))

Now we seek a function w(#,t,x) of the form

w(f,t,x) = (1—0)u+0u+n

(4.42) = ¢+ (1= 0)h+00+> " Xi(0,t)pi++(0,t,2)

i=1

with initial data A\;(0,T") and (0, T,z) decided later, such that for all € [0,1],
v(0,t,x) L p;,i=1,...,nand w(0,t,z) is a solution to equation (1.1) that scatters

to ¢.
For 6 € [0, 1] fixed, the equation satisfied by n=>""" | \;(6,t)p; +~(0,¢,2) is:

Nt — AU— V(ﬂf)n+5¢477+N(9>h757¢777) = 07
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where
N(@,h,l,6,m) = (6+ (1= )h+00+17)° — (1—60)(¢+h)° —8(d+£)° — 5¢*n.

Now we can repeat the stability condition (2.36) and obtain the reduced system of
the form (2.37).
In N(0,h,¢,¢,n), the terms independent of 7 are of the form

(p+(1=0)h+00) —(1-0)(6+h) ~0(p+0° = > C(0,i,5,k)¢ hI¢*.

it+j+k=5,i<3

Notice that there are no terms ¢ or ¢*h, ¢*/.
Also, the linear term of 1 in N (6,h,¢,¢,n) is

5(¢p+(1—0)h+60)*'n—5¢*n

hence all linear terms involve a factor of A or /.

Now we can repeat estimates (2.39)(2.40), then (2.42) for the linear term in 7,
(2.43) for higher order terms in 7. We also have the following estimate on terms
independent of 7

S cwiimewe
i+j+k=5,i<3 LiL3 ([T,02) xIR3)

To sum up, using the X norm defined in (2.38), we conclude that

(A An) HX([T,«,))

< L62+L (Z ‘)\Z(H,T)‘ + H (7(97T)7;Y(97T)) HH‘><L2>

i=1
5

k
+Le| (A1, Ans) HX([T,oo)) +LZ [(Ats-o An) HX([T,oo))’
k=2

where L > 1 is a constant only depending on the constants in the reversed Strichartz
estimates, ||@|| .o (g3) and ||pi\|L;ng,z.

Moreover, in a similar fashion one sees that the difference of two solutions
satisfies a similar estimate in which the first two terms disappear. Following step
3 of the proof for Theorem 2.2, we can use the contraction mapping principle and
conclude that for sufficiently small data

SO+ [[(5(6,T), 560, T)) | 1 12 < 6
i=1

there is a solution w as in (4.42) which solves (1.1). We can also check that w
scatters to ¢ as in step 4 of the proof for Theorem 2.2.
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In particular, let us take A\;(6,7) = 166(1 — 6) and 5(0,T,z) = 0. We claim
that the corresponding solution w(6,¢,x) satisfies the following relation

(4.43) w(0,t,z) =u(t,x), w(l,t,z)=7a(t,x), forallteR.

In fact, notice that \;(0,7) = 0, (0,7, z) = 0 implies X;(0,t) = 0, 7(0,¢,z) = 0
for ¢ > T, which further implies w(0,t,2) = u(t,x), t > T'. Similarly we have
w(l,t,x) =1a(t,x),t >T. Then (4.43) follows from the uniqueness of solutions to
equation (1.1).

Hence {w(6,0,z), § € [0,1]} is a path in M4 connecting the two data (ug, u;),
(g, @y). O

Now we can finish the proof for our main theorem.

Proof of Theorem 1.1. We only consider the case in which (¢,0) is unstable;
stable (¢,0) can be handled using standard perturbation arguments and the reversed
Strichartz estimates. We only note that due to the lack of local wellposedness of
equation (1.1) in the reverse Strichartz space Lg’sz N L3 L7, we need to use the
fact that

Hm U =0l e r50mz oo =
if U(t) scatters to ¢ as t — oo. This fact can be easily deduced by using the same
argument as in Claim 2.2.1. In some small neighborhood of any point U (0) on My,
M coincides with the local center-stable manifold M of codimension n which
we constructed in Section 2. By Theorem 4.2, M is thus a global manifold of
co-dimension n. The path-connectedness follows from Theorem 4.3. U
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