
Global center stable manifold for the defocusing energy 
critical wave equation with potential 

Hao Jia, Baoping Liu, Wilhelm Schlag, Guixiang Xu

American Journal of Mathematics, Volume 142, Number 5, October 2020,
pp. 1497-1557 (Article)

Published by Johns Hopkins University Press
DOI:

For additional information about this article

[ Access provided at 1 Jun 2022 02:27 GMT from Yale University Library ]

https://doi.org/10.1353/ajm.2020.0038

https://muse.jhu.edu/article/763851/summary

https://doi.org/10.1353/ajm.2020.0038
https://muse.jhu.edu/article/763851/summary


GLOBAL CENTER STABLE MANIFOLD FOR THE DEFOCUSING
ENERGY CRITICAL WAVE EQUATION WITH POTENTIAL

By HAO JIA, BAOPING LIU, WILHELM SCHLAG, and GUIXIANG XU

Abstract. In this paper we consider the defocusing energy critical wave equation with a trapping
potential in dimension 3. We prove that the set of initial data for which solutions scatter to an unstable
excited state (φ,0) forms a finite co-dimensional path connected C1 manifold in the energy space.
This manifold is a global and unique center-stable manifold associated with (φ,0). It is constructed
in a first step locally around any solution scattering to φ, which might be very far away from φ in the
Ḣ1×L2(R3) norm. In a second crucial step a no-return property is proved for any solution which
starts near, but not on the local manifolds. This ensures that the local manifolds form a global one.
Scattering to an unstable steady state is therefore a non-generic behavior, in a strong topological sense
in the energy space. This extends a previous result of ours to the nonradial case. The new ingredients
here are (i) application of the reversed Strichartz estimate from Beceanu-Goldberg to construct a local
center stable manifold near any solution that scatters to (φ,0). This is needed since the endpoint
of the standard Strichartz estimates fails nonradially. (ii) The nonradial channel of energy estimate
introduced by Duyckaerts-Kenig-Merle, which is used to show that solutions that start off but near
the local manifolds associated with φ emit some amount of energy into the far field in excess of the
amount of energy beyond that of the steady state φ.

1. Introduction. Fix β > 2. Define

Y :=

{
V ∈ C(R3) : sup

x∈R3

(
1+ |x|)β∣∣V (x)

∣∣< ∞

}
.

We study solutions to

∂ttu−Δu−V u+u5 = 0,(1.1)

with initial data �u(0) = (u0,u1)∈ Ḣ1×L2(R3). Since for a short time the term V u

can be considered as a small perturbation, by adaptations of results in [2, 16, 17, 33]
we know for any initial data (u0,u1)∈ Ḣ1×L2(R3), there exists a unique solution

u(t,x) ∈ C([0,∞), Ḣ1)∩L5
tL

10
x

(
[0,T )×R

3)
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for any T < ∞ to equation (1.1). Moreover, the energy

E(�u(t))= E(u(t),∂tu(t)
)

:=
∫

R3

[ |∇u|2
2

+
(∂tu)

2

2
− V u

2

2
+
u6

6

]
(x,t)dx

is conserved for all time.
If V +(x)=max(V (x),0) is large enough, then the operator−Δ−V may have

negative eigenvalues. In this case, the equation admits a unique nontrivial ground
state Q> 0 which is the global minimizer of

J(φ) :=
∫

R3

[ |∇φ|2
2
− V φ

2

2
+
φ6

6

]
dx.

In addition to the ground states Q and −Q, there can be a number of “excited
states” with higher energies (see Appendix A of [20]), which are changing sign
steady states to equation (1.1) and decay like O( 1

(1+|x|) ). Small excited states are
always unstable, but large excited states may be stable. These steady states play a
fundamental role in understanding the long time dynamics for finite energy solu-
tions to equation (1.1) with initial data of arbitrary energy. We say a steady state
(φ,0) is hyperbolic if the linearized operator Lφ :=Δ−V +5φ4 around it has no
zero eigenvalue nor zero resonance. We say a steady state (φ,0) is stable if the
linearized operator Lφ has no negative eigenvalue. In the radial case we proved in
[19, 20] that if we consider generic radial potential V ∈ Y such that the equation
admits only finitely many steady states, which are all hyperbolic, then generic data
will lead to solutions that scatter to one of the stable steady states, while each un-
stable steady state will attract a finite codimensional C1 manifold in the energy
space. The result in [19] satisfactorily characterized the global dynamical behavior
of all finite energy solutions to equation (1.1) in the radial case.

The proof in [19, 20] relies crucially on the channel of energy estimate for
the linear wave equation which was first developed by Duyckaerts-Kenig-Merle
[12, 14]. The channel of energy estimate works best for wave equation in dimen-
sion 3 with radial data. In this case for many nonlinear problems, it characterizes
the steady states as the only solutions that do not radiate energy in either time di-
rection. It is an essential ingredient in the work of Duyckaerts, Kenig and Merle
[14] where they established the “soliton resolution” for all type II solutions (i.e.,
solutions that stay bounded in energy norm up to time infinity or finite blow up
time.) for focusing energy critical wave equation with radial data in R

3. In the non-
radial case or other dimensions, there are only weaker versions of the channel of
energy estimate available [9, 13, 21], and they have been used to establish similar
resolution results for focusing energy critical wave equations either under size re-
striction for the initial data [13], or along a sequence of times [8, 10, 18, 31]. All
the results mentioned here belong to a larger effort that aims to understand the long
time dynamics for solutions of dispersive equations in the presence of nontrivial
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coherent structures. We recall that as defined in [32], coherent structures are solu-
tions that are localized in space, uniformly in time. Examples are solitons, kinks,
vortices, monopoles, breathers, etc. Due to the limitation of techniques to deal with
problems beyond the perturbative regime, we are still at an early stage of under-
standing of this type of problem. Hence the current interest is to work on carefully
chosen models in order to develop our intuition and technique.

We refer the reader to [5, 6, 7, 18, 22, 23] and references therein for the re-
lated results on equivariant wave maps, and to [34, 35] for results on nonlinear
Schrödinger equations with potential.

In this paper, we consider nonradial solutions to (1.1) and construct the global
center stable manifold for unstable excited states. This gives us a better under-
standing of the non-generic behavior of solutions. More precisely, our result shows
that solutions that scatter to unstable excited states form a finite co-dimentional
manifold in the energy space and hence such solutions are non-generic in a very
precise, topological sense. Although such results are expected, it is often not easy
to rigorously confirm them, in a non-perturbative setting.

More precisely, we say a solution �u scatters to steady state (φ,0) as t→+∞ if
there exists a finite energy free wave �uL (solution to the linear wave equation) such
that

∥∥�u(t)− (φ,0)−�uL(t)∥∥
Ḣ1×L2 −→ 0, as t−→+∞.

We establish the following result.

THEOREM 1.1. Let Ω be an open dense subset of Y such that equation (1.1)
with V ∈ Ω has only finitely many steady states which are all hyperbolic. Let Σ
be the set of steady states. Denote �u(t) := �S(t)(u0,u1) as the solution to equation
(1.1) with initial data (u0,u1) ∈ Ḣ1×L2(R3). For each (φ,0) ∈ Σ, define

Mφ :=
{(
u0,u1

) ∈ Ḣ1×L2(
R

3) : �S(t)
(
u0,u1

)
scatters to (φ,0) as t−→+∞

}
.

(1.2)

Denote

Lφ :=−Δ−V +5φ4(1.3)

as the linearized operator around φ. If Lφ has no negative eigenvalues, thenMφ is
an open set ⊆ Ḣ1×L2(R3). If Lφ has n negative eigenvalues, thenMφ is a path
connected C1 manifold ⊂ Ḣ1×L2(R3) of co-dimension n.

Notice that the existence of the set Ω follows from [20, Theorem 6.1] and
its proof. We note that there is no smallness assumption in the theorem, and the
manifold can extend arbitrarily far away from the unstable steady state relative to
the norm in Ḣ1×L2(R3).
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Along the proof of Theorem 1.1, we also obtain completeness of scattering
operator on the center manifold, i.e., for a fixed unstable steady state φ, given any
linear wave uL with finite energy, we can find a solution u to equation (1.1) such
that u scatters to φ with the scattering profile uL. See more details in Proposition
2.5.

Theorem 1.1 characterizes all solutions that scatter to a steady state. We ex-
pect that generically all solutions scatter to steady states. In the radial case, it was
proved that for generic potential all finite energy solutions scatter to one of the
steady states, but the proof depends on a particular form of the channel of energy
inequality which is valid only in three dimensions and in the radial case. In the non-
radial case, it remains an open problem how to characterize the generic behavior.
It is perhaps worth pointing out that all nonradial large data results in the study of
dynamics of nonlinear dispersive equations depend crucially on monotonicity for-
mulae which are sensitive to algebraic features of the equation. There are currently
no effective monotonicity formulae known for equation (1.1) in the nonradial case.

Compared with the radial case [19], we have two main difficulties in construct-
ing the manifold:

(i) Consider any solution �U that scatters to unstable excited states (φ,0). When
we perturb around U , i.e., we write the solution as U+η, the resulting nonlinearity
contains quadratic terms like U(t)3η2 which have a component that behaves like
φ3η2. Standard Strichartz estimate requires control of the nonlinearity in spaces
such as L1

tL
2
x, which forces us to estimate η in the endpoint Strichartz norm L2

tL
∞
x .

However, the endpoint Strichartz estimate for free waves was shown to be false
for general data in [24]. To overcome this technical obstacle, we use the reversed
Strichartz estimate due to Beceanu and Goldberg [3]. By reverse Strichartz esti-
mates, we mean estimates in the space ‖ · ‖Lp

xL
q
t
. That is, we first integrate in time

and then in space, which is the reverse order of integration for the usual Strichartz
estimates. This order of integration arises naturally in the context of KdV and de-
rivative nonlinear Schrödinger equations, where the local smoothing effect needs
to be exploited. For the wave equation the advantages of space-time reversal are
less well known, see however Proposition 3.1 in [25] for an example of an L∞

xL
1
t

estimate which fails for L1
tL

∞
x . In that reference as well as in our case, the main fea-

ture is that the fundamental solution for linear wave equation in three dimensions
is nonnegative and is integrable in time:

∫ ∞

0

1
t
δ
(|x|− t)dt= 1

|x| .(1.4)

This property can be used to trade decay in space for decay in time. For the φ3η2

term, which is only quadratic in η, there is not enough decay in time to use the
standard Strichartz estimates. On the other hand, there is enough decay in space
thanks to the φ3 term. This is exactly the right kind of problem where the reverse
Strichartz estimates are more effective.
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Using the reverse Strichartz estimates, we can follow the same techniques in
[19] to construct a local, finite co-dimensional center stable manifoldM near �U(0)
with the property that if a solution u starts on the manifold, i.e., �u(0) ∈M, then
�u(t) stays close to �U(t) for all t≥ 0 and scatters to (φ,0) as t→ ∞; if on the other
hand, �u(0) is close to �U(0) but not on the manifold, then no matter how small
‖�u(0)− �U (0)‖Ḣ1×L2 is, �u(t) will deviate from �U(t) by a fixed amount at a future
time.

(ii) The local manifold construction ensures that any solution �u(t) starting
off the local manifold, i.e., �u(0) ∈ Bε(�U (0))\Mφ, will leave the time dependent
neighborhood Bε(�U(t)) eventually. Up to this point, the argument is still essen-
tially based on perturbative techniques. However, perturbative arguments alone are
not sufficient to determine the dynamics when �u(t) and �U(t) separate from each
other. In order to obtain information on the dynamics for all times, we use the chan-
nel of energy inequality introduced by Duyckaerts-Kenig-Merle [15] to show that
the solution u necessarily radiates energy into the far field after it leaves Bε(�U(t)).
This is the crucial global component in our paper. The channel of energy inequal-
ity we use here works for nonradial solutions and is not sensitive to the dimension.
For another channel of energy inequality which applies in the nonradial case and
in all dimensions, see the one for outgoing waves in [10, 11]. More precisely, since
�U scatters to φ, at large times we know that �U(t) can essentially be identified as
a free radiation at large distances and (φ,0) in the finite region. If we take initial
data �u(0) and �U(0) close enough so that at a given large time t the solutions are
still sufficiently close, we can conclude that locally �u(t) is essentially (φ,0) plus
a small but nontrivial perturbation. We will show that the perturbation contains a
nontrivial unstable mode, which grows exponentially. Hence at a later time, when
the unstable mode dominates all other modes, we use the channel of energy esti-
mate in Lemma 3.6 to conclude that �u will send out a fixed amount of energy into
large distances and hence the energy left in the finite region is strictly less than that
of (φ,0). From this we know that �u cannot scatter to (φ,0). It is interesting to note
that our argument shows that a solution, which starts close, but off of the manifold
and far away from the unstable steady state, exhibits two types of radiation: a first
radiation so that locally in space it is close to the unstable steady state at large
times, and a second radiation which eventually pulls it off the steady state forever.

In effect, this second step is in the nature of a one-pass theorem, see [27, 28,
29]. While a virial identity is the key for the one-pass theorem in those references,
here it is an exterior energy estimate.

Our paper is organized as follows. In Section 2, we construct the local center
stable manifold for each solution that scatters to φ. In Section 3 we recall the per-
turbation lemma, prove the channel of energy estimate and also prove a result on
the growth of the unstable modes. Lastly, in Section 4 we prove our main result
Theorem 1.1.
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2. Construction of the local center-stable manifold. We begin with some
notation. We use c,C > 0 to denote positive constants that may be different from
line to line. For nonnegative quantities X and Y , we write X � Y when X ≤ CY
for some non-essential C > 0. When a given operator L has negative eigenvalues,
we denote these as −k2 with k > 0. Since we work with fixed potentials, we allow
all constants to depend on the potential.

Let us first recall the definition of Lorentz spaces Lp,qx (R3) for 0 < p < ∞ and
0< q ≤ ∞

‖f‖Lp,q
x (R3) := p

1
q
∥∥λμ{|f | ≥ λ} 1

p
∥∥
Lq(R+, dλλ )

.

Here μ is the standard Lebesgue measure on R
3. Clearly Lp,p = Lp for any 0 <

p < ∞. We adopt the usual convention that L∞,∞ = L∞. Notice that Lp,q ⊂ Lp,r
whenever q < r. The Hölder inequality still holds for Lorentz spaces [30], viz.

‖fg‖Lr,s ≤ r′‖f‖Lp1,q1‖g‖Lp2 ,q2 provided
1
p1

+
1
p2

=
1
r
< 1,

1
q1

+
1
q2
≥ 1
s

(2.1)

and the endpoint

‖fg‖L1 ≤ ‖f‖Lp,q1‖g‖Lp′,q2 ,
1
q1

+
1
q2
≥ 1.(2.2)

Young’s inequalities read as follows:

‖f ∗g‖Lr,s ≤ 3r‖f‖Lp1,q1‖g‖Lp2 ,q2 provided
1
p1

+
1
p2

=
1
r
+1> 1,

1
q1

+
1
q2
≥ 1
s

(2.3)

and the endpoint

‖f ∗g‖L∞ ≤ ‖f‖Lp,q1‖g‖Lp′,q2 ,
1
q1

+
1
q2
≥ 1.(2.4)

Since Y ⊂ L
3
2 ,1
x (R3), Theorem 3, Theorem 1 and Corollary 2 of [3] imply the

following reversed Strichartz estimate for wave equations with a potential V ∈ Y
in R

3.

LEMMA 2.1. Take V ∈ Y such that the operator−Δ−V has no zero eigenval-
ues or zero resonance. Denote by P⊥ the projection operator onto the continuous
spectrum of −Δ−V . Let

ω :=
√
P⊥(−Δ−V ).(2.5)
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Let I be a time interval with t0 ∈ I . Then for any (f,g) ∈ Ḣ1×L2(R3) and F ∈
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t (R
3× I), the solution �γ(t) = (γ(t),∂tγ(t)) to the equation

∂ttγ+ω
2γ = P⊥F, (t,x) ∈ I×R

3,(2.6)

with �γ(t0) = P⊥(f,g) satisfies
∥∥(γ,γt)

∥∥
C0

t (Ḣ
1×L2)

+‖γ‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×I)

≤ C
(∥∥(f,g)

∥∥
Ḣ1×L2 +‖F‖L6/5,2

x L∞
t ∩L3/2,1

x L2
t(R

3×I)
)
.

(2.7)

The appearance of Lorentz spaces here is both natural and essential. Indeed,
|x|−1 ∈ L3,∞(R3), and by (2.2) or (2.4),

sup
y∈R3

∫

R3

∣∣f(x)
∣∣|x−y|−1dx≤ C‖f‖

L
3
2 ,1(R3)

,

cf. (1.4). Our main goal in this section is to prove the following result on the local
center stable manifold.

THEOREM 2.2. Let Ω be a dense open subset of Y such that equation (1.1)
has only finitely many steady states, all of which are hyperbolic. Let V ∈ Ω ⊂ Y .
Suppose that �U(t) is a finite energy solution to equation (1.1) which scatters to an
unstable steady state (φ,0). Let

−k2
1 ≤−k2

2 ≤ ·· · ≤ −k2
n < 0(2.8)

be the negative eigenvalues of Lφ = −Δ− V + 5φ4 (counted with multiplicity)
with orthonormal eigenfunctions ρ1,ρ2, . . . ,ρn, respectively. We denote by Pi the
projection operator onto the i-th eigenfunction and by P⊥ the projection operator
onto the continuous spectrum, i.e.,

Pi = ρi⊗ρi, P⊥ = I−
n∑

i=1

ρi⊗ρi.

Decompose

Ḣ1×L2(R3) =Xcs⊕Xu,(2.9)

where

Xcs=
{(
u0,u1

)∈Ḣ1×L2(
R

3) :
〈
kju0+u1,ρj

〉
L2 =0, for all 1≤j≤n},(2.10)

and

Xu = span
{(
ρj ,kjρj

)
, 1≤ j ≤ n}.(2.11)
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Then there exist ε0 > 0, T sufficiently large, a ball Bε0((0,0))⊂ Ḣ1×L2(R3), and
a smooth mapping

Ψ : �U(T )+
(
Bε0

(
(0,0)

)∩Xcs

)−→ Ḣ1×L2,(2.12)

satisfying Ψ(�U(T )) = �U(T ), with the following property. Let M̃ be the graph of Ψ
and setM = �S(−T )M̃, where �S(t) denotes the solution map for equation (1.1).
Then any solution to equation (1.1) with initial data (u0,u1)∈M scatters to (φ,0).
Moreover, there is an ε1 with 0 < ε1 < ε0, such that if a solution �u(t) with initial
data (u0,u1) ∈Bε1(

�U (0))⊂ Ḣ1×L2(R3) satisfies
∥∥�u(t)− �U(t)∥∥

Ḣ1×L2 < ε1 for all t≥ 0,(2.13)

then (u0,u1) ∈M.

Remark. Ω as in the theorem exists, see [19]. The proof of Theorem 2.2 closely
follows the argument for the local manifold in the radial case in [19]. However,
there is an important additional technical difficulty: in order to control the quadratic
nonlinear term φ3η2 in η, we need to use reversed Strichartz estimates instead of
the endpoint version of the standard Strichartz estimates—which do not hold in the
nonradial case. We note that if ε1 satisfies the theorem, then any smaller ε1 will
also suffice.

Proof. By the assumption that �U scatters to φ, there exists a free radiation
�UL ∈ Ḣ1×L2(R3), such that

lim
t→∞

∥∥�U(t)− (φ,0)− �UL(t)∥∥
Ḣ1×L2 = 0.(2.14)

We now divide the construction of the center-stable manifold into the following
four steps as those in [19].

Step 1: L6 decay for free waves. We observe that for any finite energy free
radiation �UL, we have

∥∥UL(t)
∥∥
L6
x
−→ 0 as t−→ ∞.(2.15)

This is a simple consequence of the dispersive estimate for smooth free waves, and
an approximation argument.

Step 2: Reversed space-time estimates for the radiation term U −φ. Denote
h(t,x) = U(t,x)−φ(x), then the radiation term h satisfies

htt−Δh−V (x)h+5φ4h+N(φ,h) = 0,(2.16)

where

N(φ,h) = (φ+h)5−φ5−5φ4h= 10φ3h2 +10φ2h3 +5φh4 +h5.
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In what follows, we will show that

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
<∞,

for sufficiently large T . From Agmon’s estimate in [1], the eigenfunctions {ρi}i
decay exponentially. Decomposing

h= λ1(t)ρ1 + · · ·+λn(t)ρn+γ,
with γ ⊥ ρi for i= 1, . . . ,n, and plugging this into equation (2.16), we obtain

n∑

i=1

(
λ̈i(t)−k2

i λi(t)
)
ρi+ γ̈+Lφγ =N(φ,h),(2.17)

where Lφ = −Δ−V + 5φ4. By orthogonality between γ(t) and ρi, i = 1, . . . ,n,
we derive the following equations for λi(t) and γ(t,x):

{
λ̈i(t)−k2

i λi(t) = PiN(φ,h) :=Nρi , i= 1, . . . ,n

γ̈+ω2γ = P⊥N(φ,h) :=Nc, ω :=
√
P⊥Lφ.

(2.18)

By the decay of the potential V and the steady state φ, we know that−V +5φ4

in the linearized operator Lφ decays like O( 1
(1+|x|)min{β,4} ), which is better than the

critical rate O( 1
|x|2 ) as |x| → ∞. Hence we can apply the result of Proposition 6 in

[3] and conclude that the reversed Strichartz estimates as in Lemma 2.1 hold for
solutions to the equation

γtt+ω
2γ = F,(2.19)

where F satisfies the compatibility condition P⊥F = F .
From (2.14) and (2.15), we know that

lim
T→∞

∥∥h(t,x)
∥∥
L∞
t L

6
x([T,∞)×R3)

= 0.

Also by the exponential decay of ρi, we have
∣∣λi(t)

∣∣=
∣∣〈ρi|h〉

∣∣≤ ∥∥ρi
∥∥
L

6
5

∥∥h(t,x)
∥∥
L6
x(R

3)
−→ 0 as t−→ ∞.

Let Γ(t) be the solution operator for the equation γtt+ω2γ = 0, i.e.,

Γ
(
t− t0

)(
γ
(
t0
)
, γ̇
(
t0
))

= cos
(
ω
(
t− t0

))
γ
(
t0
)
+

1
ω

sin
(
ω
(
t− t0

))
γ̇
(
t0
)
.

We claim:

Claim 2.2.1.

lim
T→+∞

∥∥Γ(t−T )(γ(T ), γ̇(T ))∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
= 0.(2.20)
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We postpone the proof of Claim 2.2.1 to the end of this section.
Hence given a small positive number ε� 1, which will be chosen later, we can

pick a large time T = T (ε,U), such that

‖h‖L∞
t L

6
x([T,∞)×R3) ≤ ε(2.21)

∥∥λi(t)
∥∥
L∞
t ([T,∞))

≤ ε(2.22)
∥∥Γ(t−T )(γ(T ), γ̇(T ))∥∥

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
≤ ε.(2.23)

From (2.23) and (2.22), by the reverse Strichartz estimates in Lemma 2.1, it follows
that the linear solution hL to

∂tth
L−ΔhL+5φ4hL−V hL = 0,

with initial data �hL(T ) = �h(T ) satisfies that

∥∥hL
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤
K

2
ε,(2.24)

if T̃ is sufficiently close to T . We can then use standard perturbation arguments to
show that h ∈ L6,2

x L∞
t ∩L∞

xL
2
t (R

3× [T,T̃ )) with

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤Kε,

as long as we choose ε to be sufficiently small. Here we take K large enough so
that it dominates any constants appearing in the reverse Strichartz estimates. By a
continuity argument, we shall prove that

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤Kε,(2.25)

for all T̃ , not just for T̃ that are close to T . Suppose that (2.25) holds for T̃ , we
shall show that for a small δ > 0, (2.25) holds for T̃ + δ.

Claim 2.2.2. Let h be a solution to the equation (2.16) with

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤Kε

and

‖h‖L∞
t L

6
x(R

3×[T,T̃ )) ≤ ε.

Suppose that K > 10. If ε is sufficiently small, then for δ > 0 sufficiently small, we
have

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃+δ)) ≤C1Kε,

where C1 is a constant that only depends on V .
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The claim will be proved at the end of the theorem. We note that due to the use
of L6,2

x L∞
t type spaces, the continuity in time is not obvious. From the equation for

λi(t) in (2.18) and the uniform bound (2.22) on λi, we conclude that for t≥ T

λi(t) = cosh
(
ki(t−T )

)
λi(T )+

1
ki

sinh
(
ki(t−T )

)
λ̇i(T )

+
1
ki

∫ t

T
sinh

(
ki(t− s)

)
Nρi(s)ds

=
eki(t−T )

2

[
λi(T )+

1
ki
λ̇i(T )+

1
ki

∫ t

T
eki(T−s)Nρi(s)ds

]

+ e−ki(t−T )
[
λi(T )+

1
2ki

∫ ∞

T
eki(T−s)Nρi(s)ds

]

− 1
2ki

∫ ∞

T
e−ki|t−s|Nρi(s)ds,

where the last line remains bounded(in fact decays to 0 as t→ +∞) for bounded
Nρi(s). By (2.22) and the above formula, we obtain the following stability condi-
tion

λ̇i(T ) =−kiλi(T )−
∫ ∞

T
eki(T−s)Nρi(s)ds.(2.26)

Under this condition we can rewrite equation (2.18) as the following integral equa-
tion

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi(t) = e−ki(t−T )
[
λi(T )+

1
2ki

∫ ∞

T
eki(T−s)Nρi(s)ds

]

− 1
2ki

∫ ∞

T
e−ki|t−s|Nρi(s)ds,

= e−ki(t−T )
[
λi(T )+

1
2ki

∫ T̃+δ

T
eki(T−s)Nρi(s)ds

]

− 1
2ki

∫ T̃+δ

T
e−ki|t−s|Nρi(s)ds

+ e−ki(t−T )
1

2ki

∫ ∞

T̃+δ
eki(T−s)Nρi(s)ds

− 1
2ki

∫ ∞

T̃+δ
e−ki|t−s|Nρi(s)ds,

γ(t) = cos
(
ω(t−T ))γ(T )+ 1

ω
sin
(
ω(t−T ))γ̇(T )

+

∫ t

T

sin
(
ω(t− s))

ω
Nc(s)ds.

(2.27)
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By (2.27) and the reversed Strichartz estimates in Lemma 2.1, we get that

∥∥λi(t)
∥∥
L2([T,T̃+δ))

≤C
(∣∣λi(T )

∣∣+
∥∥Nρi

∥∥
L2
t([T,T̃+δ))

+
∥∥Nρi

∥∥
L∞
t ([T̃+δ,∞))

)
,

(2.28)

and

‖γ‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃+δ))

≤ C
(∥∥Γ(t−T )(γ(T ), γ̇(T ))∥∥

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃+δ))

+‖Nc‖L6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

)
.

(2.29)

Here the constant C depends on the L1 and L2 integrals of e−kit and on the con-
stants in the reversed Strichartz estimates. Notice that instead of estimating the
energy norm Ḣ1×L2(R3) of (γ(T ), γ̇(T )) in (2.29), which may not be small, we
estimate its free evolution in L6,2

x L∞
t ∩L∞

xL
2
t (R

3× [T,T̃ + δ)). Consequently, we
can obtain smallness thanks to (2.23).

On the one hand, by the fact that

Nρi = 〈ρi|N(φ,h)〉, Nρ =
∑

i

Nρi ρi, Nc =N −Nρ

and the exponential decay of ρi, we have
∥∥Nρi

∥∥
L2
t([T,T̃+δ))

+
∥∥Nc

∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

≤ C∥∥N(φ,h)
∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ)).

(2.30)

By the Hölder inequality in Lorentz spaces, noting that φ does not depend on time,
we have
∥∥φ3h2

∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

� ‖φ‖3
L6
x

(
‖h‖2

L6,2
x L∞

t (R
3×[T,T̃+δ)) +‖h‖L6,2

x L∞
t (R

3×[T,T̃+δ))‖h‖L∞
xL

2
t(R

3×[T,T̃+δ))
)
,

∥∥φ2h3
∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

� ‖φ‖2
L6
x

(
‖h‖3

L6,2
x L∞

t (R
3×[T,T̃+δ)) +‖h‖

2
L6,2
x L∞

t (R
3×[T,T̃+δ))‖h‖L∞

xL
2
t(R

3×[T,T̃+δ))
)
,

as well as

‖φh4‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

� ‖φ‖L6
x

(
‖h‖4

L6,2
x L∞

t (R
3×[T,T̃+δ)) +‖h‖

3
L6,2
x L∞

t (R
3×[T,T̃+δ))‖h‖L∞

xL
2
t(R

3×[T,T̃+δ))
)
,

‖h5‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

� ‖h‖5
L6,2
x L∞

t (R
3×[T,T̃+δ)) +‖h‖

4
L6,2
x L∞

t (R
3×[T,T̃+δ))‖h‖L∞

xL
2
t(R

3×[T,T̃+δ)).
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Consequently

‖Nρi‖L2
t([T,T̃+δ))

+‖Nc‖L6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃+δ))

≤ C
5∑

j=2

‖h‖j
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃+δ)).
(2.31)

On the other hand, by (2.21) and the exponential decay of ρi, we have

∥∥Nρi

∥∥
L∞
t ([T̃+δ,∞))

≤ C∥∥ρi
∥∥
L6
x(R

3)

∥∥N(φ,h)
∥∥
L∞
t L

6
5
x ([T̃+δ,∞)×R3)

≤ C
5∑

i=2

‖φ‖5−i
L6
x
‖h‖i

L∞
t L

6
x([T̃+δ,∞)×R3)

≤ Cε2.
(2.32)

The bounds on λi and γ imply an estimate on h via

h=
∑

i

λiρi+γ.

In fact, combining estimates (2.28), (2.29), (2.30)–(2.32), with (2.22), (2.23) and
Claim 2.2.2, one concludes that

‖h‖
L6,2
x L∞∩L∞

xL
2
t(R

3×[T,T̃+δ)) ≤
K

2
ε+C

⎧
⎨

⎩

5∑

j=2

(
4C1Kε+ ε

)j
+ ε2

⎫
⎬

⎭ ,

here C only depends on the constants in the reversed Strichartz inequalities and
‖φ‖L6

x
and ‖ρi‖L∞

x∩L6,2
x

. If we choose ε� 1, which can be achieved by taking T
sufficiently large, such that

ε+

5∑

j=2

(
4C1K+1

)j
εj−1 < 1,

say, then it follows that

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃+δ)) ≤Kε.(2.33)

Hence, by a standard continuity argument, we conclude that (2.25) holds for all
T̃ > T and

h ∈ L6,2
x L∞

t ∩L∞
xL

2
t

(
R

3× [T,∞)
)
.

Step 3: Construction of the center-stable manifold near a solution U . Given a
finite energy solution U to (1.1) satisfying (2.14), we consider another finite energy
solution u, with ‖�U(T )− �u(T )‖Ḣ1×L2(R3) small for a fixed large time T , taken
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from Step 2. We write u= U +η, then η satisfies

ηtt−Δη−V (x)η+(U +η)5−U 5 = 0, (t,x) ∈ (T,∞).

With U = φ+h, we can rewrite the equation as

ηtt+Lφη+ Ñ(φ,h,η) = 0, (t,x) ∈ (T,∞),(2.34)

with

Ñ(φ,h,η) = (φ+h+η)5− (φ+h)5−5φ4η.

Note that Ñ contains terms which are linear in η. However, a further inspection
shows that the coefficients of the linear terms in η contains the factor h and hence
decay in both space and time, and can be made small if we choose T sufficiently
large. First decompose η as

η = λ̃1(t)ρ1 + · · ·+ λ̃n(t)ρn+ γ̃, γ̃ ⊥ ρi(2.35)

for i = 1, . . . ,n. We shall use similar arguments as in step 2 to obtain a solution η
which stays small for all large, positive times, with given (λ̃1(T ), . . . , λ̃n(T )) and
(γ̃, ˙̃γ)(T ). Note that in order to determine the solution η, we still have to determine
˙̃λ(T ). We can obtain equations for λ̃i, γ̃ similar to (2.18). Since we seek a forward
solution which grows at most polynomially, we obtain a similar necessary and
sufficient stability condition as (2.26)

˙̃λi(T ) =−kiλ̃i(T )−
∫ ∞

T
eki(T−s)Ñρi(s)ds.(2.36)

Using equations (2.34) and (2.36) we arrive at the system of equations for λ̃i and
γ̃,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃i(t) = e−ki(t−T )
[
λ̃i(T )+

1
2ki

∫ ∞

T
eki(T−s)Ñρi(s)ds

]

− 1
2ki

∫ ∞

T
e−ki|t−s|Ñρi(s)ds

γ̃(t) = cos(ω(t−T ))γ̃(T )+ 1
ω

sin
(
ω(t−T )) ˙̃γ(T )

+
1
ω

∫ t

T
sin
(
ω(t− s))Ñc(s)ds.

(2.37)

Define

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X

:=
n∑

i=1

∥∥λ̃i(t)
∥∥
L∞
t ∩L2

t([T,∞))
+‖γ̃‖

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
.(2.38)
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Estimating system (2.37), we obtain that
∥∥λ̃i(t)

∥∥
L∞∩L2([T,∞))

�
∣∣λ̃i(T )

∣∣+
∥∥Ñρi

∥∥
L∞
t ∩L2

t([T,∞))

�
∣∣λ̃i(T )

∣∣+‖Ñ‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

,
(2.39)

and

‖γ̃‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
�
∥∥(γ̃(T ), ˙̃γ(T )

)∥∥
Ḣ1×L2

+‖Ñ‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

.
(2.40)

Note that

|Ñ |�
4∑

j=1

∣∣φ4−jhjη
∣∣+

∑

k≥2,i+j+k=5

∣∣φihjηk
∣∣.(2.41)

For the linear term in η, by the Hölder inequalities in Lorentz spaces (2.1), we get
that

‖φ3hη‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ ‖φ‖3
L6
x
‖h‖

L6,2
x L∞

t (R
3×[T,∞))

‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
,

‖φ2h2η‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ ‖φ‖2
L6
x
‖h‖2

L6,2
x L∞

t (R
3×[T,∞))

‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
,

‖φh3η‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ ‖φ‖L6
x
‖h‖3

L6,2
x L∞

t (R
3×[T,∞))

‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
,

‖h4η‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ ‖h‖4
L6,2
x L∞

t (R
3×[T,∞))

‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
.

By (2.33), we have
∥∥∥∥∥∥

4∑

j=1

φ4−jhjη

∥∥∥∥∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ Cε‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
.(2.42)

The higher order terms in η are easier to estimate. Similar to the above, we can
always estimate h in L6,2

x L∞
t , hence

∥∥∥∥∥∥

∑

k≥2,i+j+k=5

φihjηk

∥∥∥∥∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ C
5∑

k=2

‖η‖k
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
.

(2.43)
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By definition of X, ‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
≤ C‖(λ̃1, . . . , λ̃n, γ̃)‖X . We can

combine (2.39), (2.40) and (2.42), (2.43) to get

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X
≤ L

(
n∑

i=1

∣∣λ̃i(T )
∣∣+
∥∥(γ̃(T ), ˙̃γ(T )

)‖Ḣ1×L2

)

+Lε
∥∥(λ̃1, . . . , λ̃n, γ̃

)∥∥
X
+L

5∑

k=2

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥k
X
,

(2.44)

where L> 1 is a constant only depending on the constants in the reversed Strichartz
estimates, ‖φ‖L6(R3) and ‖ρi‖L∞

x∩L6,2
x

(for convenience of later use, we will also
assume L > n). This inequality implies that if we take ε = ε0 sufficiently small
(which can be achieved by choosing T suitably large), with

n∑

i=1

∣∣λ̃i(T )
∣∣+
∥∥(γ̃(T ), ˙̃γ(T )

)∥∥
Ḣ1×L2 ≤ ε0,(2.45)

such that L3ε0 <
1

32 , then the map defined by the right-hand side of system (2.37)
takes a ball B2Lε0(0) ⊆X into itself. Moreover, we can check by the same argu-
ment that this map is in fact a contraction on B2Lε0(0) ⊆ X. Thus for any given
small (λ̃1(T ), . . . , λ̃n(T ), γ̃(T )) satisfying (2.45), we obtain a unique fixed point of
(2.37). It follows that

u(t,x) := U(t,x)+
k∑

i=1

λ̃i(t)ρi+ γ̃(t,x)(2.46)

solves (1.1) on R
3× [T,∞), satisfying

‖�u− �U‖L∞
t ([T,∞);Ḣ1×L2) �

n∑

i=1

∣∣λ̃i(T )
∣∣+
∥∥(γ̃(T ), ˙̃γ(T )

)∥∥
Ḣ1×L2(2.47)

with Lipschitz dependence on the data λ̃i(T ) and (γ̃(T ), ˙̃γ(T )). By the smoothness
of the nonlinearity Ñ , the integral terms in (2.37) depend on λ̃i, γ̃ smoothly. Hence
λ̃i(t), γ̃(t,x) and the solution u(t,x) actually have smooth dependence on the data.

Step 4: Proof of scattering. In this step, we prove that the solution �u con-
structed in step 3 scatters to the same steady state (φ,0) as �U .

For each solution �u with the decomposition (2.46) and any time T ′ ≥ T , we
denote

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X[T ′,∞)

:=
n∑

i=1

∥∥λ̃i(t)
∥∥
L∞
t ∩L2

t([T
′,∞))

+‖γ̃‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T ′,∞))
.

(2.48)
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Here X[T,∞) is the space X from step 3, and from the construction we know that

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X[T,∞)

< 2Lε0 <
1

16
.

We will show that ‖(λ̃1, . . . , λ̃n, γ̃)‖X[T ′,∞)→ 0 as T ′ → ∞.
We shall need the following property of the linear evolution, which will be

proved towards the end of this section:

Claim 2.2.3. For (f0,f1) ∈ P⊥(Ḣ1×L2), denote

f(t,x) = cos(ωt)f0 +
1
ω

sin(ωt)f1,

then we have

lim
T0→∞

∥∥f(t,x)
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))
= 0.(2.49)

And there exists a free wave fL(t,x) with data �fL(0) ∈ Ḣ1×L2, such that

lim
t→+∞

∥∥�f(t,x)− �fL(t,x)∥∥
Ḣ1×L2 = 0.(2.50)

Using (2.49) in Claim 2.2.3, for the ε0 chosen in step 3, we can take T1 > T

large enough such that

∥∥∥e−ki(t−T )λ̃i(T )
∥∥∥
L∞
t ∩L2

t([T1,∞))
< ε2

0,(2.51)
∥∥∥∥cos

(
ω(t−T ))γ̃(T )+ 1

ω
sin
(
ω(t−T )) ˙̃γ(T )

∥∥∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T1,∞))

< ε2
0.(2.52)

We control the system (2.37) on the interval [T1,∞) in the following fashion: we
estimate the linear part on the interval [T1,∞) using (2.51)(2.52), and then estimate
the nonlinear (integral) term over the larger interval [T,∞). This yields

∥∥λ̃i(t)
∥∥
L∞∩L2([T1,∞))

�
∥∥e−ki(t−T )λ̃i(T )

∥∥
L∞
t ∩L2

t([T1,∞))
+
∥∥Ñ
∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

,
(2.53)

‖γ̃‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))

�
∥∥∥∥cos

(
ω(t−T ))γ̃(T )+ 1

ω
sin
(
ω(t−T )) ˙̃γ(T )

∥∥∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T1,∞))

+‖Ñ‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

.

(2.54)
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Combing these estimates with (2.41), (2.42), (2.43), we infer that (notice we as-
sumed L > n)

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥

X[T1,∞)

≤ (n+1)ε2
0 +Lε0

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X[T,∞)

+L

5∑

k=2

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥k
X[T,∞)

≤ Lε2
0 +2L2ε2

0 +L
5∑

k=2

(
2Lε0

)k
< 2L

(
2Lε0

)2
.

Next, fix our choice of T1 and rewrite system (2.37) by breaking the integral into
finer pieces,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃i(t) = e−ki(t−T )
[
λ̃i(T )+

1
2ki

∫ T1

T
eki(T−s)Ñρi(s)ds

]

− 1
2ki

∫ T1

T
e−ki|t−s|Ñρi(s)ds

+ e−ki(t−T1)
1

2ki

∫ ∞

T1

eki(T1−s)Ñρi(s)ds

− 1
2ki

∫ ∞

T1

e−ki|t−s|Ñρi(s)ds,

γ̃(t) = cos
(
ω(t−T ))γ̃(T )+ 1

ω
sin
(
ω(t−T )) ˙̃γ(T )

+
1
ω

∫ T1

T
sin
(
ω(t− s))Ñc(s)ds+

1
ω

∫ t

T1

sin
(
ω(t− s))Ñc(s)ds.

(2.55)

We can pick T2 > T1 large enough such that the first line in the expression of λ̃i
is small in L∞

t ∩L2
t ([T2,∞)), also the first line in the expression of γ̃ is small in

L6,2
x L∞

t ∩L∞
xL

2
t (R

3× [T2,∞)). We can require that they are bounded by ε3
0. Note

that we used Claim 2.2.3 for the term 1
ω

∫ T1
T sin(ω(t− s))Ñc(s)ds, which can be

viewed as a superposition of linear evolutions.
Then estimating the second line of λ̃i and γ̃ over the larger interval [T1,∞), we

obtain

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥

X[T2,∞)

≤ (n+1)ε3
0 +L

(
ε0
∥∥(λ̃1, . . . , λ̃n, γ̃

)∥∥
X[T1,∞)

+

5∑

k=2

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥k
X[T1,∞)

)
,

≤ 2L
(
2Lε0

)3
.
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It is clear that this process can be repeated indefinitely: once we fix Tj , we can
rewrite the system (2.37) as in (2.55), and find Tj+1 > Tj such that the first line is
bounded by εj+1

0 , which implies the estimate

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X[Tj+1,∞)

≤ 2L
(
2Lε0

)j+1
.

In view of (2.35), (2.41), (2.42), (2.43) we conclude that

lim
T ′→+∞

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X[T ′,∞)

= 0,

lim
T ′→∞

‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T ′,∞))
= 0,

lim
T ′→∞

‖Ñ‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T ′,∞))

= 0.

These asymptotics allow us to write the asymptotic profile of γ̃ in the form

γ̃∞(t) = cos
(
ω(t−T ))γ̃(T )+ 1

ω
sin
(
ω(t−T )) ˙̃γ(T )

+
1
ω

∫ ∞

T
sin
(
ω(t− s))Ñc(s)ds,

(2.56)

with the property that

∥∥�̃γ− �̃γ∞
∥∥
L∞
t Ḣ×L2[T ′,∞)

� ‖Ñ‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T ′,∞))

−→ 0 as T ′ −→+∞.

γ̃∞(t) can be further replaced with a free wave by (2.50) in Claim 2.2.3. Combining
the preceding with the fact ‖λ̃i(t)‖L∞

t ∩L2
t([T

′,∞))→ 0 as T ′ →+∞, we conclude that

�u scatters to the same steady state (φ,0) as �U . We can now define

Ψ : �U(T )+
(
Bε0

(
(0,0)

)∩Xcs

)−→ Ḣ1×L2,(2.57)

as follows: for any (γ̃0, γ̃1) ∈ P⊥(Ḣ1×L2(R3)) and λ̃i ∈ R such that

∼ :=
n∑

i=1

λ̃i
(
ρi,−kiρi

)
+
(
γ̃0, γ̃1

)
+ �U(T ) ∈ �U(T )+

(
Bε0

(
(0,0)

)∩Xcs

)
,

set

λ̃i(T ) = λ̃i, for i= 1, . . . ,n and
(
γ̃(T ), ˙̃γ(T )

)
=
(
γ̃0, γ̃1

)
.
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Then with ˙̃λi(T ) given by (2.36), we define

Ψ(∼) :=

(
n∑

i=1

λ̃i(T )ρi+ γ̃0,
n∑

i=1

˙̃λi(T )ρi+ γ̃1

)
+ �U(T ).

If ε0 is chosen sufficiently small, then ˙̃λi is uniquely determined by contraction
mapping in the above. We define M̃ as the graph of Ψ and letM be �S(−T )(M̃).
We can then check that Ψ,M, M̃ verify the requirements of the theorem. Since
�S(T ) is a diffeomorphism,M is a C1 manifold.

Step 5: Unconditional uniqueness. Now suppose that a solution u to equation
(1.1) satisfies

‖�u− �U‖L∞([0,∞);Ḣ1×L2) ≤ ε1� ε0.

We need to show that �u(T ) ∈ M̃. We denote

η(t,x) = u(t,x)−U(t,x) =

n∑

i=1

λ̃i(t)ρi+ γ̃(t,x),

then �η ∈ L∞
t ([0,∞);Ḣ1×L2) with norm smaller than ε1. Using similar arguments

as in Step 2, we can conclude that for sufficiently large T and T̃ which is bigger
than but close to T ,

∥∥λ̃i(t)
∥∥
L∞
t ([T,∞))

+
∥∥�̃γ(t,x)

∥∥
L∞
t ([T,∞);Ḣ1×L2)

≤ Cε1,
∥∥λ̃i(t)

∥∥
L2([T,T̃ ))

≤ Cε1,

‖γ̃‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤ Cε1.

(2.58)

Notice the L∞ bound on λ̃i implies that the stability condition (2.36) must hold
true, we are again reduced to (2.37). Now we wish to show that

λ̃i(t) ∈ L2([T,∞)
)
, γ̃(t,x) ∈ L6,2

x L∞
t ∩L∞

xL
2
t

(
R

3× [T,∞)
)
,(2.59)

with a small norm, which together with the fixed point theorem imply �u(T ) ∈ M̃.
Pulling back from T to 0, we can obtain the desired result. To show (2.59), we
follow similar arguments as in step 2. Define the norm

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥

X([T,T̃ ))
:=

n∑

i=1

∥∥λ̃i(t)
∥∥
L2
t([T,T̃ ))

+‖γ̃‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )).
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Similar to (2.28), (2.29), (2.42) and (2.43), we get

n∑

i=1

∥∥λ̃i(t)
∥∥
L2([T,T̃ ))

+‖γ̃‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ ))

≤ C
(

n∑

i=1

∣∣λ̃i(T )
∣∣+
∥∥(γ̃(T ), ˙̃γ(T )

)∥∥
Ḣ1×L2

+‖Ñ‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,T̃ )) +‖Ñ‖L∞

t L
6
5
x ([T̃ ,∞))

)

≤ Cε1 +Cε0‖η‖L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) +C
5∑

k=2

‖η‖k
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ ))

+C
∑

i+j+k=5, k≥1

‖φ‖iL6
x
‖h‖j

L∞
t L

6
x([T̃ ,∞))

‖η‖k
L∞
t L

6
x([T̃ ,∞))

≤ Cε1 +Cε0‖η‖L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) +C
5∑

k=2

‖η‖k
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )),

where the constant C may change from line to line. Hence by (2.58), we have

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X([T,T̃ ))

≤ Cε1 +Cε0‖(λ̃1, . . . , λ̃n, γ̃
)∥∥
X([T,T̃ ))

+L
5∑

k=2

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥k
X[T,T̃ )

.

By a continuity argument similar to the one used in Step 2, we can conclude that

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥
X([T,∞))

≤ liminf
T̃→∞

∥∥(λ̃1, . . . , λ̃n, γ̃
)∥∥

X([T,T̃ ))
≤ Cε1 < ε0,

We omit the routine details. �

Now we give the proof for Claim 2.2.1. Claim 2.2.1 will be proved as a conse-
quence of the following lemma.

LEMMA 2.3. Let �UL be a finite energy free radiation and (φ,0) be a steady
state to equation (1.1). Recall that

ω =
√
P⊥(−Δ−V +5φ4).

Let γ be the solution to

{
∂ttγ+ω

2γ = 0, in [T,∞)×R
3,

�γ(T ) = P⊥
(
�UL(T )

)
.

(2.60)
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For any ε > 0, if we take T = T (ε, �UL)> 0 sufficiently large, then

‖γ‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
< ε.(2.61)

Proof. For a given ε > 0, fix 0< δ� ε to be determined below. We can take a

smooth compactly supported (in space) free radiation �̃U
L

such that

∥∥�UL(0)− �̃U
L

(0)
∥∥
Ḣ1×L2(R3)

≤ δ.(2.62)

Let us assume that supp(�̃U
L

(0)) � BR(0) for some R > 0. Hence by the strong
Huygens’ principle, for large time t we have

∣∣ŨL(t,x)
∣∣≤ C

t
χ[t−R≤|x|≤t+R], for t > R.

Now for T � R, by direct computation we get that

‖ŨL(t,x)‖
L6,2
x L∞

t (R
3×[T,∞))

�
∥∥∥∥

1
t
χ[t−R≤|x|≤t+R]

∥∥∥∥
L6,2
x L∞

t (R
3×[T,∞))

�
∥∥∥∥

1
|x|−Rχ[|x|>T−R]

∥∥∥∥
L6,2
x

�
∥∥∥∥

1
|x|χ[|x|>T

2 ]

∥∥∥∥
L6,2
x

� 1√
T
.

Similarly,

∥∥∥ŨL(t,x)
∥∥∥
L∞
xL

2
t(R

3×[T,∞))
�
∥∥∥∥

1
t
χ[t−R≤|x|≤t+R]

∥∥∥∥
L∞
xL

2
t(R

3×[T,∞))

�
∥∥∥∥∥

(
1
|x|2χ[|x|>T−R] ·R

)1/2
∥∥∥∥∥
L∞
x

�R
1
T
.

Hence

lim
T→∞

∥∥ŨL
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
= 0.(2.63)

Since �̃U
L

is a free radiation, we see that

∂ttŨ
L−ΔŨL−V ŨL+5φ4ŨL =−V ŨL+5φ4ŨL, in (0,∞)×R

3.(2.64)

By the decay property of V , 5φ4 and (2.63), simple calculations show that

lim
T→∞
‖−V ŨL+5φ4ŨL‖

L
6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

= 0.
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Choose T sufficiently large, such that

∥∥ŨL
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
≤ δ,(2.65)

∥∥−V ŨL+5φ4ŨL
∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ δ.(2.66)

Note that �v := �γ−P⊥ �̃U
L

solves

∂ttv+ω
2 v =−P⊥(−V ŨL+5φ4ŨL

)
, (t,x) ∈ [T,∞)×R

3,

with initial data �v(T ) = P⊥
(
�UL(T )−P⊥ �̃U

L

(T )
)
. We note that by definition, it

is easy to see that P⊥ is bounded in L
6
5 ,2
x L∞

t ∩L
3
2 ,1
x L2

t . It is clear from the bounds
(2.62) and energy conservation for the free radiation that

∥∥�v(T )
∥∥
Ḣ1×L2 ≤ Cδ.

By (2.66) and reversed Strichartz estimates from Lemma 2.1, we can conclude that

‖v‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
≤ Cδ.(2.67)

Combining bounds (2.67) and (2.65), and fixing δ small, the lemma is proved. �

Now the proof of Claim 2.2.1 is easy. Note that due to the fact that

lim
T→∞

∥∥�U(T )− (φ,0)− �UL(T )∥∥
Ḣ1×L2(R3)

= 0,

we see that the initial data for γ satisfies

lim
T→∞

∥∥�γ(T )−P⊥�UL(T )∥∥
Ḣ1×L2(R3)

= 0.

Hence Claim 2.2.1 follows from the above lemma and reversed Strichartz esti-
mates.

Proof of Claim 2.2.2. From the bound

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤Kε,

we check as in the proof of Theorem 2.2 that

‖f‖
L

6
5 ,2
x L∞

t ∩L
3
2 ,1
x L2

t(R
3×[T,T̃ ))

�K5ε2,(2.68)

where f =N(φ,h). h satisfies

∂tth−Δh−V h+5φ4h+ f = 0,
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and thus h̃ := P⊥h satisfies

∂tth̃−Δh̃−V h̃+5φ4h̃+P⊥f = 0.

By reverse Strichartz estimates and the estimates (2.68) on f , we conclude that the
solution h̃L to

∂tth̃
L−Δh̃L−V h̃L+5φ4h̃L = 0

with �̃hL(T̃ ) = P⊥(�h(T̃ )) satisfies that

∥∥h̃L− h̃∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤ CK5ε2,

and hence

∥∥h̃L
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃ )) ≤C0Kε+CK
5ε2.

Using approximation by smooth and compactly supported data, it is easy to show
that there exists sufficiently small δ > 0 such that

∥∥h̃L
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,T̃+δ)) ≤C0Kε+2CK5ε2.

Hence, by taking δ smaller if necessary so that the growth of the unstable modes
can be controlled, we can conclude that the solution hL to

∂tth
L−ΔhL−V hL+5φ4hL = 0

with �hL(T̃ ) = �h(T̃ ) satisfies that

∥∥hL
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T̃ ,T̃+δ)) ≤ C0Kε+ ε+4CK5ε2.

Then by a standard perturbation argument, we see that if ε is sufficiently small,
then

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T̃ ,T̃+δ)) ≤ C0Kε+ ε+8CK5ε2.

Combining the above with estimates of h on the interval [T,T̃ ) and choosing C1�
C0, the claim is proved. �

Proof of Claim 2.2.3. From the proof of Lemma 2.3, we know that for free
wave UL with smooth compactly supported data, we have

lim
T0→∞

∥∥UL
∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))
= 0.(2.69)

Then by approximation, (2.69) holds true for any free wave with finite energy.
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Now let f(t,x) be a solution to the equation (recall ω2 = P⊥(−Δ−V +5φ4))
{
∂ttf +ω

2f = 0, in [0,∞)×R
3,

�u(0) = (f0,f1) ∈ P⊥
(
Ḣ1×L2).

(2.70)

For any given ε > 0, we first take smooth and compactly supported data (f̃0, f̃1)

such that
∥∥(f0,f1

)− (f̃0, f̃1
)∥∥
Ḣ1×L2 � ε,

which further implies
∥∥(f0,f1

)−P⊥(f̃0, f̃1
)∥∥

Ḣ1×L2 ≤
∥∥(f0,f1

)− (f̃0, f̃1
)∥∥
Ḣ1×L2 � ε.

We take g(t,x) to be the solution to the equation
{
∂ttg+ω

2g = 0, in [0,∞)×R
3,

�g(0) =
(
g0,g1

)
:= P⊥

(
f̃0, f̃1

)
.

(2.71)

From Strichartz estimates, we have g ∈ L6,2
x L∞

t ∩L∞
xL

2
t (R

3× [0,∞)).
Let us recall an estimate from the proof of [3, Corollary 2] (page 27 in the

journal version) which is slightly stronger than the estimate stated in the main
result [3, Corollary 2]. Notice that it in fact follows from interpolation between the
bounds in [3, Theorem 1]. For 0≤ θ1, θ2 ≤ 1 and θ1 + θ2 ≤ 1,

∥∥∥∥t
1−θ1−θ2

(
cos(tω)g0 +

sin tω
ω

g1

)∥∥∥∥
(Kθ2 )∗xL∞

t

�
∥∥Δg0

∥∥
Kθ1

+
∥∥∇g1

∥∥
Kθ1

(2.72)

It is not necessary for us to give the detailed definition of Kθ and (Kθ)∗, as we only
need the embedding property

L
3

3−θ ,1 ⊂Kθ, (Kθ)∗ ⊂ L3/θ,∞.

Hence we can take θ2 =
1
2 and θ1 = 0, and obtain the estimate we need, viz.

∥∥∥∥cos(tω)g0 +
sin tω
ω

g1

∥∥∥∥
L6,∞
x L∞

t [T0,∞)

� T
− 1

2
0

(∥∥Δg0
∥∥
L1 +

∥∥∇g1
∥∥
L1

)
.(2.73)

Notice that eigenfunctions ρi to Lφ = −Δ− V + 5φ4 decay exponentially and
ρi ∈W 2,p, 1 ≤ p ≤ ∞. Together with the fact (f̃0, f̃1) is smooth and compactly
supported and (g0,g1) = P⊥(f̃0, f̃1), we have Δg0,∇g1 ∈ L1.

Define the matrix operator

J(t) =

[
cos
(
t|∇|) |∇|−1 sin

(
t|∇|)

−|∇|sin
(
t|∇|) cos

(
t|∇|)

]
,
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and consider the free wave gL(t,x) with the initial data
[
gL(0)

gLt (0)

]
=

[
g0

g1

]
+

∫ ∞

0
J(−s)

[
0(

V −5φ4
)
g(s)

]
ds.(2.74)

We wish to compare g and gL. By the decay property of V , 5φ4 and the Strichartz
estimate (2.7), we know the integral term in (2.74) converges in Ḣ1×L2.

Then we have
[
g(t)

gt(t)

]
−
[
gL(t)

gLt (t)

]
=−

∫ ∞

t
J(t− s)

[
0(

V −5φ4
)
g(s)

]
ds.

In particular

g(t) = gL(t)−
∫ ∞

t

sin
(
(t− s)|∇|)

|∇|
((
V −5φ4)g(s)

)
ds.(2.75)

Since g ∈ L∞
xL

2
t (R

3× [0,∞)), by continuity of the norm in the time variable, we
have ‖g‖L∞

xL
2
t(R

3×[T0,∞))→ 0 as T0→∞. Together with the fact V −5φ4 ∈L 3
2 ,1 and

from Hölder, we obtain
∥∥(V −5φ4)g

∥∥
L

3/2,1
x L2

t(R
3×[T0,∞))

−→ 0 as T0 −→ ∞.

From (2.73), we also have
∥∥(V −5φ4)g

∥∥
L

6/5,2
x L∞

t (R
3×[T0,∞))

�
∥∥V −5φ4

∥∥
L

3
2 ,2
x

‖g‖
L6,∞
x L∞

t [T0,∞)
−→ 0, T0 −→+∞.

Now we can apply the Strichartz estimate (2.7) to (2.75) which implies

‖g‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))

�
∥∥gL

∥∥
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))

+
∥∥(V −5φ4)g

∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T0,∞))

−→ 0 as T0 −→+∞.

Hence we can pick T∗ large enough such that ‖g‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))
< ε for

T0 > T∗. Combining this with the difference estimate
∥∥f(t,x)− g(t,x)∥∥

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))
�
∥∥(f0,f1

)− (g0,g1
)∥∥
Ḣ1×L2 � ε,

we get

‖f‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))
< ε, for T0 > T∗.

We have proved (2.49).
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In a similar fashion, we consider the free wave fL(t,x) with the initial data

[
fL(0)

fLt (0)

]
=

[
f0

f1

]
+

∫ ∞

0
J(−s)

[
0

(V −5φ4)f(s)

]
ds.(2.76)

We know the integral term here converges in Ḣ1×L2 and

f(t) = fL(t)−
∫ ∞

t

sin((t− s)|∇|)
|∇| ((V −5φ4)f(s))ds.(2.77)

Now that we have already proved ‖f‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T0,∞))
→ 0 as T0→+∞, we

can apply Strichartz to obtain

∥∥�f(t,x)− �fL(t,x)∥∥
Ḣ1×L2

�
∥∥(V −5φ4)f(s,x)

∥∥
L

6/5,2
x L∞

s∩L3/2,1
x L2

s(R
3×[t,∞))

�
∥∥V −5φ4

∥∥
L

3
2 ,1
x

∥∥f(s,x)
∥∥
L6,2
x L∞

s∩L∞
xL

2
s(R

3×[t,∞))
−→ 0 as t−→+∞.

This establishes (2.50). �

Remark 2.4. Due to the near optimal decay assumption on our potential V , we
can not apply the structure formula from [4] to obtain scattering for solutions to the
wave equation with potential. The proof above seems to provide a new perspective:
scattering to a free wave occurs because the potential term becomes negligible for
large times. This insight requires the use of reverse Strichartz estimates.

Before we end this section, let us prove the completeness of scattering operator.

PROPOSITION 2.5. Let φ be a given unstable steady state as in Theorem 2.2.
Then for any free wave uL with finite energy, we can find a solution u to equation
(1.1) such that

∥∥�u(t)− (φ,0)−�uL(t)∥∥
Ḣ1×L2 −→ 0, as t−→+∞.

Proof. Notice the fact V −5φ4 ∈ L
3
2 ,1
x and

lim
T→+∞

‖uL‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
= 0.

Hence for a given ε > 0 to be chosen later, we find a large time T > 0 such that

‖uL‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
+‖(V −5φ4)uL‖

L
6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ ε.
(2.78)
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Now we seek a solution of equation (1.1) with the form u= φ+uL+η. This
means η satisfies the equation

ηtt+
(−Δ−V +5φ4)η =N (φ,uL,η)

with

N (φ,uL,η) = (V −5φ4)uL+10φ3(uL+η
)2

+10φ2(uL+η
)3

+5φ
(
uL+η

)4
+
(
uL+η

)5
,

hence we have

|N |� ∣∣(V −5φ4)uL
∣∣+

5∑

k=2

∣∣φ5−k(uL+η
)k∣∣.

As before, we write η =
∑n

i=1λi(t)ρi+ γ(t,x) with γ(t,x) ⊥ ρi for 1 ≤ i ≤ n,
and plug into the equation, we also apply stability condition as (2.26) and get the
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λi(t) = e−ki(t−T )
[
λi(T )+

1
2ki

∫ ∞

T
eki(T−s)Nρi(s)ds

]

− 1
2ki

∫ ∞

T
e−ki|t−s|Nρi(s)ds

[
γ(t)

γt(t)

]
= J̃(t−T )

[
γ(T )

γ̇(T )

]
+

∫ t

T
J̃(t− s)

[
0

Nc(s)
]
ds.

(2.79)

with the notation ω =
√
P⊥(−Δ−V +5φ4) and

J̃(t) =

[
cos(tω) ω−1 sin(tω)
−ω sin(tω) cos(tω)

]
.

We seek a solution of the system (2.79) such that γ(t,x) scatters to 0, i.e.,

J̃(−t)
[
γ(t)

γt(t)

]
−→Ḣ1×L2

[
0
0

]

which gives the relation between initial condition and solution

[
γ(T )

γ̇(T )

]
=−

∫ ∞

T
J̃(T − s)

[
0

Nc(s)
]
ds.(2.80)
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Hence we use (2.80) and rewrite the system as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λi(t) = e−ki(t−T )
[
λi(T )+

1
2ki

∫ ∞

T
eki(T−s)Nρi(s)ds

]

− 1
2ki

∫ ∞

T
e−ki|t−s|Nρi(s)ds

[
γ(t)

γt(t)

]
=−

∫ ∞

t
J̃(t− s)

[
0

Nc(s)
]
ds.

(2.81)

Once we solve to system (2.81) to get λi(t),γ(t,x), we can use (2.80) to prescribe
the initial data of γ at time T .

Again we define the norm

∥∥(λ1, . . . ,λn,γ)
∥∥
X

:=
n∑

i=1

∥∥λi(t)
∥∥
L∞
t ∩L2

t([T,∞))
+‖γ‖

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
.(2.82)

Estimating system (2.81), we obtain that
∥∥λi(t)

∥∥
L∞∩L2([T,∞))

�
∣∣λi(T )

∣∣+
∥∥Nρi

∥∥
L∞
t ∩L2

t([T,∞))

�
∣∣λi(T )

∣∣+‖N‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

(2.83)

and

‖γ‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
� ‖N‖

L
6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

.(2.84)

And the estimate for nonlinearity is almost identical to (2.42) and (2.43), just with
extra forcing term controlled by (2.78)

‖N‖
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

≤ ∥∥(V −5φ4)uL
∥∥
L

6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

+

5∑

k=2

∥∥φ5−k(uL+η
)k∥∥

L
6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T,∞))

� ε+
5∑

k=2

(
ε+‖η‖

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))

)k
.

By definition of X, ‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
≤ C‖(λ1, . . . ,λn,γ)‖X . We get

∥∥(λ1, . . . ,λn,γ
)∥∥

X
≤ L

(
n∑

i=1

∣∣λi(T )
∣∣
)
+Lε+L

5∑

k=2

(
ε+
∥∥(λ1, . . . ,λn,γ

)∥∥
X

)k
,

with constant L > 1 is a constant only depending on the constants in the reversed
Strichartz estimates, ‖φ‖L6(R3), ‖V ‖L 3

2 ,1(R3)
and ‖ρi‖L∞

x∩L6,2(R3). If we take ε small
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enough such that (3L+1)2ε < 1
2 (this is achieved by taking T large enough), and

n∑

i=1

|λi(T )|< ε,(2.85)

then the map defined by the right-hand side of (2.81) takes a ball B3Lε(0)⊂X into
itself. Moreover, by the same argument, we can check this is contraction mapping.
This means that given small data λi(T ) satisfies (2.85) we have a unique solution.

Our estimate on nonlinearity guarantees the integral in (2.80) converges in
Ḣ1×L2, hence by taking initial data using (2.80), we also get a solution to system
(2.79). Notice the size of initial data is O(ε).

Now we are left to check u scatters to φ with linear wave exactly uL. The proof
is identical to step 4 of the proof for Theorem 2.2. By showing

lim
T ′→+∞

‖η‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T ′,∞))
+‖N‖

L
6/5,2
x L∞

t ∩L3/2,1
x L2

t(R
3×[T ′,∞))

= 0,

we obtain the asymptotic profile of �γ

γ∞(t) = cos
(
ω(t−T ))γ(T )+ 1

ω
sin
(
ω(t−T ))γ̇(T )

+
1
ω

∫ ∞

T
sin
(
ω(t− s))Nc(s)ds.

Together with our initial condition (2.80), we proved that γ∞(t) = 0, which means
γ scatters to 0. Combining with the fact ‖λi(t)‖L2

t∩L∞
t [T

′,∞)→ 0 as T ′ → +∞, we

conclude that u scatters to φ with a scattering profile uL, i.e.,
∥∥�u(t)− (φ,0)−�uL(t)∥∥

Ḣ1×L2 −→ 0, as t−→+∞. �

3. Channel of energy inequality. In this section, we first prove the channel
of energy estimate for solutions to the linear wave equation with potential if the
initial data has a dominating discrete mode. Then we show this estimate also holds
for equation (1.1) as long as the initial data is small enough. Finally, for data which
has a nontrivial but not dominant discrete mode, we prove a growth lemma which
ensures that once we require the initial data to be sufficiently small, we can find
a large time at which the solution is still small and the discrete mode becomes
dominant.

For the following basic perturbation result, we refer the reader to [20, Lemma
2.1] for proof.

LEMMA 3.1. Let 0 ∈ I ⊂ R be an interval of time. Suppose ũ(t,x) ∈
Ct(I,Ḣ

1(R3)) with ‖ũ‖L5
tL

10
x (I×R3) ≤ M < ∞, ‖a‖

L
5/4
t L

5/2
x (I×R3)

≤ β < ∞ and

e(t,x),f(t,x) ∈ L1
tL

2
x(I×R

3), satisfy

∂ttũ−Δũ+a(t,x)ũ+ ũ5 = e,(3.1)



THE DEFOCUSING ENERGY CRITICAL WAVE EQUATION WITH POTENTIAL 1527

with initial data �̃u(0) = (ũ0, ũ1) ∈ Ḣ1×L2. Suppose for some sufficiently small
positive ε < ε0 = ε0(M,β),

‖|e|+ |f |‖L1
tL

2
x(I×R3) +‖(u0,u1)− (ũ0, ũ1)‖Ḣ1×L2 < ε.(3.2)

Then there is a unique solution u ∈ C(I,Ḣ1) with ‖u‖L5
tL

10
x (I×R3) < ∞, satisfying

the equation

∂ttu−Δu+a(t,x)u+u5 = f,(3.3)

with initial data �u(0) = (u0,u1). Moreover, we have the following estimate

sup
t∈I
‖�u(t)− �̃u(t)‖Ḣ1×L2 +‖u− ũ‖L5

tL
10
x (I×R3) < C(M,β)ε.(3.4)

We also need the following result on the precise asymptotics of eigenfunctions
corresponding to negative eigenvalues of the Schrödinger operator −Δ−V , which
is a consequence of Theorem 4.2 in Meshkov [26].

LEMMA 3.2. Let V satisfy supx∈R3(1+ |x|)β |V (x)|< ∞ for some β > 2, and
suppose that ρ �≡ 0 is an eigenfunction corresponding to the eigenvalue −k2 of
−Δ−V . Then there exists f ∈L2(S2) which does not vanish identically, such that

ρ(x) = e−k|x||x|−1
(
f

(
x

|x|
)
+ω(x)

)
,(3.5)

where ω(x) satisfies

∫

S2

∣∣ω(Rθ)
∣∣2 dσ(θ) =O

(
R−

1
2
)
, as R−→+∞.(3.6)

An important observation in [15] is that the above precise asymptotics implies
the following channel of energy inequality for the associated linear wave equation.

LEMMA 3.3. Let V satisfy supx∈R3(1+ |x|)β |V (x)|< ∞ for some β > 2, and
suppose that ρ �≡ 0 is an eigenfunction corresponding to the eigenvalue −k2 of the
operator −Δ−V . Suppose that u solves the equation

utt−Δu−V u= 0

with �u(0) =μ+(ρ,kρ), then for anyR> 0 the following channel of energy estimate
holds for some constant c(ρ,V,R) > 0

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx≥ c(ρ,V,R)∣∣μ+∣∣2, for t≥ 0.(3.7)
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Similarly, if �u(0) = μ−(ρ,−kρ), then
∫

|x|≥|t|+R

∣∣∂tu
∣∣2(t,x)dx≥ c(ρ,V,R)∣∣μ−∣∣2, for t≤ 0.(3.8)

Proof. We first prove the lemma for initial data �u(0) = μ+(ρ,kρ). In this case
the solution u has the explicit form

u(t,x) = μ+ektρ.

From (3.6), we can take r0 large enough such that when r > r0, we have
∫

S2

∣∣ω(rθ)
∣∣2 dσ(θ)< 1

10

∫

S2

∣∣f(θ)
∣∣2dσ(θ).(3.9)

By the asymptotics of ρ in (3.5), we get that
∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx≥

∫

r≥t+R+r0

∫

S2

∣∣μ+k
∣∣2e−2k(r−t)(f(θ)+ω(rθ)

)2
dσ(θ)dr

�
∫ ∞

R+r0

∫

S2

∣∣μ+k
∣∣2e−2kr

∣∣f(θ)
∣∣2dσ(θ)dr.

Then (3.7) follows.
The case when �u(0) = μ−(ρ,−kρ) is similar, and we omit the detail. �

Lemma 3.3 can be generalized to the case when the initial data has finitely
many discrete modes.

LEMMA 3.4. Let V satisfy supx∈R3(1+ |x|)β |V (x)| < ∞ for some β > 2, and
suppose that −Δ−V has negative eigenvalues −k2

1 ≤−k2
2 ≤ ·· · ≤ −k2

n < 0 with
corresponding orthonormal eigenmodes ρ1,ρ2, . . . ,ρn. Suppose that u solves the
equation

utt−Δu−V u= 0(3.10)

with initial data �u(0) =
∑n

i=1μ
+
i (ρi,kiρi), then for any R > 0, there exists a con-

stant c(R)> 0 such that we have the following channel of energy estimate forward
in time

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx ≥ c(R)

n∑

i=1

∣∣μ+i
∣∣2, for t > 0.(3.11)

Similarly, if we consider data of the form �u(0) =
∑n

i=1μ
−
i (ρi,−kiρi), the channel

of energy estimate holds backward in time.

Proof. It suffices to prove the lemma for sufficiently large R > 0. By normal-
izing the coefficients, we will prove (3.11) when

∑n
i=1 |μ+i |2 = 1. We divide the

proof into several steps.
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Step 0: Computing the asymptotics. First notice that the solution has an ex-
plicit formula

u=

n∑

i=1

μ+i e
kitρi.

From Lemma 3.2, we know that each ρi has the following asymptotic

ρi = e−ki|x|
1
|x|
(
fi

(
x

|x|
)
+ωi(x)

)

with fi ∈ L2(S2) which does not vanishing identically, and ωi satisfies (3.6).
Now given any R > 0, using Lemma 3.2 we have

lim
t→+∞

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx

= lim
t→+∞

∫

r>t+R

∫

θ∈S2

[
n∑

i=1

μ+i kie
−ki(r−t)(fi(θ)+ωi(rθ)

)
]2

dσ(θ)dr

= lim
t→+∞

∫

r>R

∫

θ∈S2

[
n∑

i=1

μ+i kie
−kir (fi(θ)+ωi

(
(r+ t)θ

))
]2

dθdr

=

∫

r>R

∫

θ∈S2

[
n∑

i=1

μ+i kie
−kirfi(θ)

]2

dσ(θ)dr.

Here we used the decay condition (3.6) for ωi.

Step 1: Lower bound for the asymptotics. We claim that for any R ≥ 0 fixed,
there exists constant c(R)> 0 such that for any μ+i satisfying

∑n
i=1 |μ+i |2 = 1, we

have

∫

r>R

∫

θ∈S2

[
n∑

i=1

μ+i kie
−kirfi(θ)

]2

dσ(θ)dr ≥ c(R).(3.12)

Suppose (3.12) is not true, then for any N > 0, we find μ+i (N) satisfying∑n
i=1 |μ+i (N)|2 = 1 such that

∫

r>R

∫

θ∈S2

[
n∑

i=1

μ+i (N)kie
−kirfi(θ)

]2

dσ(θ)dr <
1
N
.(3.13)

Using that μ+i (N) are bounded, we can extract a convergent subsequence.
Hence we can assume that μ+i (N) → ai as N → ∞, and

∑n
i=1a

2
i = 1. By the
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dominated convergence theorem, we pass to the limit in (3.13) and get

∫

r>R

∫

θ∈S2

[
n∑

i=1

aikie
−kirfi(θ)

]2

dσ(θ)dr = 0

which implies that

n∑

i=1

aikie
−kirfi(θ) = 0 for r > R, θ ∈ S

2.(3.14)

Now we consider the problem in several cases:

Case 1. if ki are different, then in (3.14) we first multiply with e−knr and let
r→ ∞, we conclude anfn = 0, and similarly we conclude

ai fi(θ) = 0, for 1≤ i≤ n and θ ∈ S
2.

Since ‖fi‖L2(S2) �= 0, we conclude that ai= 0, which is a contradiction to
∑
a2
i = 1.

Case 2. If one of the eigenvalues has multiplicity more than 1, say, ki0 with
multiplicity m, i.e., ki0 = ki0+1 = ki0+m−1 �= kj for any j ∈ {1, . . . ,n}\{i0, i0 +
1, . . . , i0 +m− 1}. All other eigenvalue still have multiplicity 1. Then (3.14) now
reads as

a1k1e
−k1rf1(θ)+ · · ·+ e−ki0rki0

⎡

⎣
i0+m−1∑

i=i0

aifi(θ)

⎤

⎦+ · · ·+ankne−knrfn(θ) = 0

for r > R, θ ∈ S
2.

Applying the same method as in Case 1, we conclude that

a1f1(θ) = 0, . . . ,
i0+m−1∑

i=i0

aifi(θ) = 0, . . . ,anfn(θ) = 0, for θ ∈ S
2,

which implies ai = 0, for any i ∈ {1, . . . ,n}\{i0, i0 +1, . . . , i0 +m−1}.
Now we consider the part

∑i0+m−1
i=i0

aifi(θ) = 0 and prove that all ai = 0. De-
note L=−Δ−V . By Lφρi =−k2

i0
ρi, i0 ≤ i≤ i0 +m−1, we see that

L

⎛

⎝
i0+m−1∑

i=i0

aiρi

⎞

⎠=−k2
i0

⎛

⎝
i0+m−1∑

i=i0

aiρi

⎞

⎠ .

Assuming towards a contradiction that not all ai = 0, we conclude that∑i0+m−1
i=i0

aiρi is an eigenfunction for L with eigenvalue −k2
i0

.
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On the other hand,

i0+m−1∑

i=i0

aiρi = e−ki0 |x| 1
|x|

⎡

⎣
i0+m−1∑

i=i0

aiwi(x)

⎤

⎦ .

This contradicts Lemma 3.2, in particular (3.5). Hence we conclude that ai = 0,
1≤ i≤ n, which is a contradiction to

∑
a2
i = 1.

Case 3. In general, we could have several eigenvalues that have multiplicity
more than 1. In that case we repeat the argument in Case 2 as needed.

Hence we conclude that our claim (3.12) is true.

Step 2: Refining the lower bound for asymptotics. Next we refine (3.12) by
obtaining a better lower bound. Let αi = kie

−kirfi(θ), 1≤ i≤ n for r > 0, θ ∈ S2,
and

〈αi,αj〉 :=
∫

r>0

∫

θ∈S2
αiαj dσ(θ)dr, An×n := [〈αi,αj〉]1≤i,j≤n.

Then (3.12) with R = 0 implies that A is a positive definite matrix. And for any
�v ∈R

n, ‖�v‖= 1, one has �vtA�v ≥ c(0)> 0.
Now for any R> 0, we change variables r = s+R in (3.12) to wit

∫

r>R

∫

θ∈S2

[
n∑

i=1

μ+i kie
−kirfi(θ)

]2

dσ(θ)dr

=

∫

s>0

∫

θ∈S2

[
n∑

i=1

μ+i kie
−kise−kiRfi(θ)

]2

dσ(θ)ds

=
∑

i,j

μ+i e
−kiRμ+j e

−kjR〈αi,αj
〉

≥ c(0)
n∑

i=1

∣∣μ+i e
−kiR∣∣2.

(3.15)

Step 3: Channel of energy estimate. Now we prove (3.11). The computation
from Step 0 implies that

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx

=

∫

r>R

∫

θ∈S2

[
n∑

i=1

μ+i kie
−kir (fi(θ)+ωi

(
(r+ t)θ

))
]2

dσ(θ)dr.

(3.16)
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Expanding the square, this further equals

=
n∑

i,j=1

∫

r>R

∫

θ∈S2
μ+i μ

+
j kikje

−(ki+kj)rfi(θ)fj(θ)dσ(θ)dr

+
n∑

i,j=1

∫

r>R

∫

θ∈S2
μ+i μ

+
j kikje

−(ki+kj)r

×[fi(θ)ωj
(
(r+ t)θ

)
+ fj(θ)ωi

(
(r+ t)θ

)]
dθdr

+

n∑

i,j=1

∫

r>R

∫

θ∈S2
μ+i μ

+
j kikje

−(ki+kj)rωi
(
(r+t)θ

)
ωj
(
(r+t)θ

)
dσ(θ)dr.

(3.17)

Using the decay estimate of ωj in (3.6) and Cauchy-Schwarz inequality, we infer
that

n∑

i,j=1

∣∣∣∣
∫

r>R

∫

θ∈S2
μ+i μ

+
j kikje

−(ki+kj)rfi(θ)ωj
(
(r+ t)θ

)
dσ(θ)dr

∣∣∣∣

≤
n∑

i,j=1

(∫

r>R

∫

θ∈S2

∣∣μ+i ki
∣∣2e−2kir

∣∣fi(θ)
∣∣2dσ(θ)dr

) 1
2

×
(∫

r>R

∫

θ∈S2

∣∣μ+j kj
∣∣2e−2kjr

∣∣ωj
(
(r+ t)θ

)∣∣2dσ(θ)dr
) 1

2

�R−
1
4

n∑

i=1

∣∣μ+i
∣∣2e−2kiR.

Similarly, we have

n∑

i,j=1

∫

r>R

∫

θ∈S2
μ+i μ

+
j kikje

−(ki+kj)rωi
(
(r+ t)θ

)
ωj
(
(r+ t)θ

)
dσ(θ)dr

�R−
1
2

n∑

i=1

∣∣μ+i
∣∣2e−2kiR.

Together with (3.15) we obtain
∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx

≥ c(0)
n∑

i=1

∣∣μ+i
∣∣2e−2kiR−C(R− 1

4 +R−
1
2
) n∑

i=1

∣∣μ+i
∣∣2e−2kiR

≥ c(0)
2

n∑

i=1

∣∣μ+i e
−kiR∣∣2 ≥ c(0)

2
e−2k1R,

where R is sufficiently large. The lemma is proved. �
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Next we consider the case when there are several negative eigenvalues and
prove that if one of the discrete modes is dominant, then we still have the channel
of energy estimate.

COROLLARY 3.5. Let V satisfy supx∈R3(1+ |x|)β|V (x)|<∞ for some β > 2,
and suppose that−Δ−V has no zero eigenvalue or zero resonance, and that it has
negative eigenvalues −k2

1 ≤−k2
2 ≤ ·· · ≤−k2

n< 0 with corresponding orthonormal
eigenmodes ρ1,ρ2, . . . ,ρn.

Let u(t) be a solution to (3.10) with initial data

�u(0) =
(
γ0,γ1

)
+

n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]

satisfying the orthogonality conditions
∫
ρiγ0 dx=

∫
ρiγ1 dx= 0, 1≤ i≤ n.

(1) For any R≥ 0, if we have

∣∣μ+i0
∣∣>K0

[
∥∥(γ0,γ1

)∥∥
Ḣ1×L2 +

n∑

i=1

∣∣μ−i
∣∣
]

(3.18)

for sufficiently large constant K0 := K0(R) > 0, then there exists a constant
c(R)> 0 such that

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx≥ c(R)∣∣μ+i0

∣∣2, for all t≥ 0.(3.19)

(2) For any R≥ 0, if we have

∣∣μ−i0
∣∣>K0

[
∥∥(γ0,γ1

)∥∥
Ḣ1×L2 +

n∑

i=1

∣∣μ+i
∣∣
]

for sufficiently large fixed constant K0 :=K0(R) > 0, then there exists a constant
c(R)> 0 such that

∫

|x|≥|t|+R

∣∣∂tu
∣∣2(t,x)dx≥ c(R)∣∣μ−i0

∣∣2, for all t≤ 0.(3.20)

Proof. To prove (1), first note that the solution is of the form

u=

n∑

i=1

μ+i e
kitρi+μ

−
i e
−kitρi+γ(t,x)

with the continuous part γ solving the equation

γtt+P
⊥(−Δ−V )γ = 0.
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Hence from Lemma 3.4 and the Strichartz estimate for γ (2.7), we get for t≥ 0

∫

|x|>t+R

∣∣∂tu(t,x)
∣∣2 dx

≥ 1
2

∫

|x|≥t+R

∣∣∣∣∣

n∑

i=1

μ+i kie
kitρi

∣∣∣∣∣

2

dx−2
n∑

i=1

∫

|x|≥t+R

∣∣∣μ−i kie
−kitρi

∣∣∣
2
dx

−2
∫

|x|≥t+R

∣∣∂tγ
∣∣2dx

≥ c(R)
n∑

i=1

∣∣μ+i
∣∣2−C

n∑

i=1

∣∣μ−i
∣∣2−C∥∥(γ0,γ1

)∥∥2
Ḣ1×L2

≥ c(R)

2

∣∣μ+i0
∣∣2,

if K0 in (3.18) is sufficiently large.
Case (2) follows from (1) by time reversal. �

Next we shall see that the channel of energy estimate is stable with respect to
nonlinear perturbations. In particular, the following lemma shows that if the initial
data is very close to a steady state, and one discrete eigenmode of the initial data is
dominant, then the solution will radiate energy outside the light cone either forward
or backward in time.

LEMMA 3.6. Fix any R≥ 0. Consider a finite energy solution u to the nonlin-
ear equation (1.1) with initial data (u0,u1)∈ Ḣ1×L2. Given a stationary solution
φ and Lφ = −Δ− V + 5φ4 with orthonormal eigenmodes ρ1,ρ2, . . . ,ρn corre-
sponding to negative eigenvalues −k2

1 ≤−k2
2 ≤ ·· · ≤ −k2

n < 0.
(1) Let (u0,u1) be of the form �u(0) = (φ,0)+ (h0,h1) with

(
h0,h1

)
=
(
γ0,γ1

)
+

n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]

and
∫
ρiγ0dx=

∫
ρiγ1 dx= 0 for all 1≤ i≤ n. Assume that

∣∣μ+i0
∣∣ := max{∣∣μ+i

∣∣, i= 1, . . . ,n
}

and that

∣∣μ+i0
∣∣>K

[
∥∥(γ0,γ1

)∥∥
Ḣ1×L2 +

n∑

i=1

∣∣μ−i
∣∣
]
,(3.21)
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as well as

∥∥(h0,h1
)∥∥
Ḣ1×L2 < ε∗,

for some sufficiently large constants K� 1 and sufficiently small ε∗ > 0 that only
depend on the potential V and R. Then the solution satisfies the channel of energy
estimate

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx≥ c(R)∣∣μ+i0

∣∣2, for t≥ 0(3.22)

for some constant c(R)> 0.
(2) Assume that (u0,u1) has the decomposition �u(0) = (φ,0)+ (h0,h1) with

(
h0,h1

)
=

n∑

i=1

μ+i
(
ρi,kiρi

)
+
(R0,R1

)
.

Furthermore, suppose that for |μ+i0 | := max{|μ+i |, i= 1, . . . ,n}, we have

∣∣μ+i0
∣∣>K

∥∥(R0,R1
)∥∥
Ḣ1×L2(3.23)

and ‖(h0,h1)‖Ḣ1×L2 < ε∗, for sufficiently large K� 1 and sufficiently small ε∗ >
0 that depend only on V , R. Then the solution u satisfies the channel of energy
estimate

∫

|x|≥t+R

∣∣∂tu
∣∣2(t,x)dx≥ c(R)∣∣μ+i0

∣∣2, for t≥ 0(3.24)

for some constant c(R)> 0.
(3) Similar results hold when we switch μ−i with μ+i in (1), (2) and consider

t≤ 0.

Proof. (1) Write u= φ+h. Then h solves the equation

htt+
(−Δ−V +5φ4)h=N (h,φ)

with N (h,φ) =−(φ+h)5 +φ5 +5φ4h.
Let hL be the solution to the linear equation

hLtt+
(−Δ−V +5φ4)hL = 0.(3.25)

Define

Ṽ (t,x) :=

{
V (x) if |x| ≥ |t|,
0 if |x|< |t|,

(3.26)
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and

φ̃(t,x) :=

{
φ(x) if |x| ≥ |t|,
0 if |x|< |t|,

(3.27)

respectively. Let h̃L and h̃ be the solution to the linear and nonlinear wave equation
with truncated potential, viz.

h̃Ltt+
(−Δ− Ṽ +5φ̃4)h̃L = 0,(3.28)

h̃tt+
(−Δ− Ṽ +5φ̃4)h̃=N (h̃, φ̃).(3.29)

It is easy to check that

Ṽ , φ̃ ∈ L
5
4
t L

5
2
x

(
R

3×R
)
.

We take the initial data

�h(0) = �hL(0) = �̃hL(0) = �̃h(0) =
(
γ0,γ1

)
+

n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]

which satisfy the condition (3.21) with a large constant K to be chosen later. By

finite speed of propagation, t ∈R, �h= �̃h, �hL = �̃hL for |x|> |t|. In view of Lemma
3.1,

sup
t∈[0,∞)

∥∥�̃h(t)
∥∥
Ḣ1×L2 +‖h̃‖L5

tL
10
x ([0,∞)×R3) �

∥∥�̃h(0)
∥∥
Ḣ1×L2 �

∣∣μ+i0
∣∣(3.30)

and

sup
t∈[0,∞)

∥∥∥�̃h(t)− �̃hL(t)
∥∥∥
Ḣ1×L2

+
∥∥h̃− h̃L∥∥

L5
tL

10
x ([0,∞)×R3)

�
∣∣μ+i0
∣∣2,

if ε∗ is chosen sufficiently small depending on V .
Take K >K0(R) where K0(R) is the constant from part (1) of Corollary 3.5,

then we get that the linear solution hL satisfies the channel estimate,

∫

|x|≥t+R

∣∣∂thL(t,x)
∣∣2 dx≥ c(R)∣∣μ+i0

∣∣2, for t≥ 0.



THE DEFOCUSING ENERGY CRITICAL WAVE EQUATION WITH POTENTIAL 1537

Hence, for all t≥ 0

∫

|x|≥t+R

∣∣∂th
∣∣2(t,x)dx =

∫

|x|≥t+R

∣∣∂th̃
∣∣2(t,x)dx

≥
∫

|x|≥t+R

∣∣∂th̃L
∣∣2(t,x)dx−C∣∣μ+i0

∣∣4

=

∫

|x|≥t+R

∣∣∂thL
∣∣2(t,x)dx−C ∣∣μ+i0

∣∣4

≥ c(R)∣∣μ+i0
∣∣2−C∣∣μ+i0

∣∣4 ≥ c(R)

2

∣∣μ+i0
∣∣2.

The last line holds provided ε∗ = ε∗(R)� |μ+i0 | is small enough.
(2) Consider two solutions to equation (1.1) u and v, with data

�u(0) = (φ,0)+
n∑

i=1

μ+i
(
ρi,kiρi

)
+
(R0,R1

)
,

�v(0) = (φ,0)+
n∑

i=1

μ+i
(
ρi,kiρi

)
,

respectively. If we set u= φ+h and v = φ+ �, then h,� satisfy

htt+
(−Δ−V +5φ4)h=N (h,φ)

�tt+
(−Δ−V +5φ4)�=N (�,φ)

with initial data

�h(0) =
n∑

i=1

μ+i
(
ρi,kiρi

)
+
(R0,R1

)
, ��(0) =

n∑

i=1

μ+i
(
ρi,kiρi

)
.

As in the proof for (1), we define Ṽ , φ̃ and consider truncated versions h̃, �̃ that

satisfy the equation (3.29), with data �̃h(0) = �h(0), �̃�(0) = ��(0). Then from finite

speed of propagation we infer �h = �̃h,�� = �̃� for |x| ≥ |t|. The perturbation Lemma
3.1 and (3.23) yield the bound

sup
t∈[0,∞)

∥∥∥�̃h(t)− �̃�(t)
∥∥∥
Ḣ1×L2

≤C∥∥�̃h(0)− �̃�(0)∥∥
Ḣ1×L2 ≤ C

K

∣∣μ+i0
∣∣.

Note that

∥∥��(0)
∥∥
Ḣ1×L2 �

∣∣μ+i0
∣∣.
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From part (1) we know that there exists ε∗(R) > 0 small enough, such that if
‖��(0)‖ < ε∗, then �(t,x) satisfy the channel of energy inequality

∫

|x|≥t+R

∣∣∂t�
∣∣2(t,x)dx≥ c(R)∣∣μ+i0

∣∣2 for t≥ 0.

Hence we get for t≥ 0,

∫

|x|≥t+R

∣∣∂th
∣∣2(t,x)dx=

∫

|x|≥t+R

∣∣∂th̃
∣∣2(t,x)dx

≥
∫

|x|>t+R

∣∣∂t�̃
∣∣2(t,x)dx− C2

K2

∣∣μ+i0
∣∣2

=

∫

|x|≥t+R

∣∣∂t�
∣∣2(t,x)dx− C2

K2

∣∣μ+i0
∣∣2

≥ c(R)∣∣μ+i0
∣∣2− C2

K2

∣∣μ+i0
∣∣2 ≥ c(R)

2

∣∣μ+i0
∣∣2.

The last line holds if we pick K :=K(R) large enough.
(3) The proof is similar to (1) and (2) and we omit the details here. �

Initially, the discrete spectral component may not be large enough as required
by (3.23). But since any eigenmode grows exponentially either forward or back-
ward in time, we might expect that it will take over the dispersive term for large
times as long as it is not too small initially. The following lemma makes this logic
precise.

LEMMA 3.7. Given a steady state solution φ to the nonlinear equation (1.1),
suppose that Lφ =−Δ−V +5φ4 has orthonormal eigenmodes ρ1,ρ2, . . . ,ρn cor-
responding to eigenvalues −k2

1 ≤−k2
2 ≤ ·· · ≤ −k2

n < 0. Suppose that �u is a solu-
tion to equation (1.1) with initial data

�u(0) = (φ,0)+
n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]
+
(
γ0,γ1

)

obeying the orthogonality conditions
∫
ρiγ0dx =

∫
ρiγ1dx= 0, for all 1≤ i ≤ n.

Write the solution as

�u(t) = (φ,0)+�h(t).

(1) Suppose

∣∣μ+i0
∣∣ := max

{∣∣μ+i
∣∣, i= 1, . . . ,n

}≥ κ∥∥�h(0)∥∥
Ḣ1×L2
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for some constant κ > 0. Then for any ε∗ > 0, K > 1, there exist T (κ,K)> 0 suffi-
ciently large and ε(κ,ε∗,K,T )> 0 sufficiently small, such that if ‖�h(0)‖Ḣ1×L2 < ε

then

�h(T ) =
n∑

i=1

ekiTμ+i
(
ρi,kiρi

)
+
(R0,R1

)
,

with

∥∥�h(T )
∥∥
Ḣ1×L2 < ε∗

and

∥∥(R0,R1
)∥∥
Ḣ1×L2 ≤ 1

K
eki0T

∣∣μ+i0
∣∣∥∥(ρi0 ,ki0ρi0

)∥∥
Ḣ1×L2 .

(2) Suppose

∣∣μ−i0
∣∣ := max

{
μ−i : i= 1, . . . ,n

}≥ κ∥∥�h(0)∥∥
Ḣ1×L2

for some constant κ > 0. Then for any ε∗ > 0, K > 1, there exist T (κ,K)> 0 suffi-
ciently large and ε(κ,ε∗,K,T )> 0 sufficiently small, such that if ‖�h(0)‖Ḣ1×L2 < ε

then

�h(−T ) =
n∑

i=1

ekiTμ−i
(
ρi,−kiρi

)
+
(R0,R1

)
,

with

∥∥�h(−T )∥∥
Ḣ1×L2 < ε∗

and

∥∥(R0,R1
)∥∥
Ḣ1×L2 ≤ 1

K
eki0T

∣∣μ−i0
∣∣∥∥(ρi0 ,−ki0ρi0

)∥∥
Ḣ1×L2 .

Proof. The proof of (2) is again the time reversal of (1), so it suffices to con-
sider the latter.

Step 1: Bound on h. Writing u= φ+h, we see that h solves the equation (with
N as above)

htt+
(−Δ−V +5φ4)h=N (h,φ).

Let hL be the solution to the linear equation

hLtt+
(−Δ−V +5φ4)hL = 0(3.31)
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with data �hL(0) = �h(0). We denote by S(t)g the solution to the linear equation
(3.31) with data (0,g) for any g ∈ L2. By decomposing the data into continuous
and discrete modes, the Strichartz estimates (2.7) for the continuous modes, and the
explicit formula for the evolution of discrete modes, we can find absolute constants
C,A≥ 1 such that

sup
τ∈[0,t)

∥∥�S(τ)g
∥∥
Ḣ1×L2 +

∥∥S(τ)g
∥∥
L5
tL

10
x ([0,t)×R3)

≤ Cek1t‖g‖L2(3.32)

sup
τ∈[0,t)

∥∥�hL(τ)
∥∥
Ḣ1×L2 +

∥∥hL(τ)
∥∥
L5
tL

10
x ([0,t)×R3)

≤ A

8
ek1t
∥∥ �hL(0)

∥∥
Ḣ1×L2 .(3.33)

Denote ε := ‖�h(0)‖Ḣ1×L2 < ε. Now on an interval [0,T ) with e3k1T ε sufficiently
small, we will use a continuity argument to show that for t ∈ [0,T )

sup
τ∈[0,t)

∥∥�h(τ)
∥∥
Ḣ1×L2 +

∥∥h(τ)
∥∥
L5
tL

10
x ([0,t)×R3)

≤Aek1t
∥∥�h(0)

∥∥
Ḣ1×L2 .(3.34)

In fact, assuming that the bound (3.34) holds for 0≤ t≤ t0 with some 0< t0 < T ,
we will show that we actually have

sup
τ∈[0,t)

∥∥�h(τ)
∥∥
Ḣ1×L2 +

∥∥h(τ)
∥∥
L5
tL

10
x ([0,t)×R3)

≤ A

2
ek1t
∥∥�h(0)

∥∥
Ḣ1×L2 , for all 0≤ t≤ t0.

(3.35)

Then a simple continuity argument finishes the proof of proof of (3.34). From
Duhamel’s formula

h(τ) = hL(τ)+

∫ τ

0
S(τ − s)N (h,φ)(s)ds

Denote F (τ,x) =
∫ τ

0 S(τ − s)N (h,φ)(s)ds, then from (3.32) we get

sup
τ∈[0,t)

(∥∥F (τ)
∥∥
Ḣ1 +

∥∥∂τF (τ)
∥∥
L2

)

≤ sup
τ∈[0,t)

C

∫ τ

0
ek1(τ−s)∥∥N (h,φ)(s)

∥∥
L2 ds

≤ sup
τ∈[0,t)

Cek1τ
∥∥N (h,φ)(s)

∥∥
L1
sL

2
x([0,τ)×R3)

≤ Cek1t
∥∥N (h,φ)(s)

∥∥
L1
sL

2
x([0,t)×R3)

(3.36)
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and

‖F‖L5
τL

10
x ([0,t)×R3)

≤
∥∥∥∥
∫ t

0
χ{τ−s≥0}

∥∥S(τ − s)N (h,φ)(s)
∥∥
L10
x
ds

∥∥∥∥
L5
τ [0,t)

≤
∫ t

0

∥∥S(τ − s)N (h,φ)(s)
∥∥
L5
τL

10
x ([s,t)×R3)

ds

≤ C
∫ t

0
ek1(t−s)∥∥N (h,φ)(s)

∥∥
L2 ds ≤Cek1t

∥∥N (h,φ)(s)
∥∥
L1
sL

2
x([0,t)×R3)

.

(3.37)

Note that |N (h,φ)(s)| �∑5
j=2 |φ|5−j |h|j . Assuming the bound (3.34) on [0, t0),

for any t ∈ [0, t0) we pick an integer J0 ≥ 0 such that J0 < t ≤ J0 + 1. This leads
to

‖φ3h2‖L1
sL

2
x([0,t)×R3) =

J0∑

q=0

‖φ3h2‖L1
sL

2
x([q,q+1)×R3) +

∥∥φ3h2
∥∥
L1
sL

2
x([J0,t)×R3)

�
J0∑

q=0

‖h‖2
L5
sL

10
x ([q,q+1)×R3) +‖h‖2

L5
sL

10
x ([J0,t)×R3)

�
J0∑

q=0

(
Aek1(q+1)ε

)2
+
(
Aek1t ε

)2 �A2ε2e2k1t.

We can control the other terms in N (h,φ) in an analogous fashion, whence

∥∥N (h,φ)(s)
∥∥
L1
sL

2
x([0,t)×R3)

�
5∑

j=2

(
Aεek1t

)j
for 0≤ t < t0.

Using (3.33), we therefore obtain

sup
τ∈[0,t)

∥∥�h(τ)
∥∥
Ḣ1×L2 +‖h‖L5

tL
10
x ([0,t)×R3)

≤ sup
τ∈[0,t)

∥∥�hL(τ)
∥∥
Ḣ1×L2 +

∥∥hL
∥∥
L5
tL

10
x ([0,t)×R3)

+Cek1t
∥∥N (h,φ)(s)

∥∥
L1
sL

2
x([0,t)×R3)

≤ A

8
ek1tε+Cek1t

⎡

⎣
5∑

j=2

(
Aek1tε

)j
⎤

⎦≤ A

2
ek1tε,

provided e3k1T ε� 1 is sufficiently small. Hence (3.34) holds on [0,T ) as long as
T,ε satisfy the relation e3k1T ε < ε1 with a small fixed constant ε1.
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Step 2: Decide the constants. Now we consider the linear solution hL with
data

�hL(0) =
n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]
+
(
γ0,γ1

)
,

then we have the explicit formula for the linear solution

�hL(t) =
n∑

i=1

μ+i e
kit
(
ρi,kiρi

)
+

n∑

i=1

μ−i e
−kit(ρi,−kiρi

)
+�γ(t).

For any given κ, K, we can choose a large constant T (κ,K) such that

∥∥∥∥∥

n∑

i=1

μ−i e
−kiT (ρi,−kiρi

)
+�γ(T )

∥∥∥∥∥
Ḣ1×L2

� T

κ

∣∣μ+i0
∣∣≤ 1

2K

∣∣μ+i0
∣∣eki0T

∥∥(ρi0 ,ki0ρi0
)∥∥

Ḣ1×L2.

(3.38)

Next from Duhamel’s formula and the estimate of N in Step 1, we have

∥∥∥�h(T )−�hL(T )
∥∥∥
Ḣ1×L2

=

∥∥∥∥
∫ T

0
S(T − s)N (h,φ)(s)ds

∥∥∥∥
Ḣ1×L2

≤Cek1T

⎡

⎣
5∑

j=2

(
Aεek1T

)j
⎤

⎦< 1
2K

∣∣μ+i0
∣∣,

if e3k1T ε is sufficiently small.
Hence we have �h(T ) =

∑n
i=1μ

+
i e

kiT (ρi,kiρi)+ (R0,R1) with

(R0,R1
)
=

n∑

i=1

μ−i e
−kit(ρi,−kiρi

)
+�γ(t)+�h(T )−�hL(T )

and

∥∥(R0,R1
)∥∥
Ḣ1×L2 ≤ 1

K

∣∣μ+i0
∣∣eki0T

∥∥(ρi0 ,ki0ρi0
)∥∥
Ḣ1×L2.

We also have

∥∥�h(T )
∥∥
Ḣ1×L2 ≤

n∑

i=1

ekiT
∣∣μ+i
∣∣+
∥∥(R0,R1

)∥∥
Ḣ1×L2 � ek1T ε < ε∗,

by choosing ε sufficiently small. �
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Remark 3.8. While part (1) of Lemma 3.7 guarantees that at time T the unsta-
ble mode

eki0Tμ+i0
(
ρi0 ,ki0ρi0

)

dominates the continuous part and the stable mode, we cannot be sure of its size
compared to the other unstable modes, which might grow faster. However, we can
easily conclude that the largest mode at time T , say ekjTμ+j (ρj ,kjρj), satisfies

∥∥∥ekjTμ+j
(
ρj ,kjρj

)∥∥∥
Ḣ1×L2

≥ 1
n+1

∥∥�h(T )
∥∥
Ḣ1×L2 .

4. Global center stable manifold of unstable excited states. In this sec-
tion we prove our main result. Before giving the detailed proof, let us briefly sum-
marize the main ideas in physical terms. The crucial fact that we establish can be
explained roughly as follows. Take any solution U(t) which scatters to an unstable
steady state φ. We have shown in Section 2 that in a small neighborhood of �U(0)
in the energy space Ḣ1×L2, there exists a local, finite co-dimensional manifold
M such that if �u(t) starts on the manifold, i.e., if �u(0) ∈M, then �u(t) stays close
to �U(t) for all positive times and scatters to (φ,0). On the other hand, if �u(t) starts
in a small neighborhood of �U(0) but off the manifold, then

sup
t≥0

∥∥∥�u(t)− �U(t)
∥∥∥
Ḣ1×L2

≥ ε1 > 0,

no matter how small
∥∥�u(0)− �U(0)∥∥

Ḣ1×L2 is. Suppose that
∥∥�u(0)− �U(0)∥∥

Ḣ1×L2

is sufficiently small, then dynamically �u(t) will stay close to �U(t) for a long time,
say for 0≤ t≤ T0. Since �U(t) scatters to (φ,0), we can write (in the energy space)

�U(t)≈ (φ,0)+ �UL(t)

for large times. Hence for large t≤ T0,

�u(t)≈ (φ, 0)+ �UL(t)

in the energy space. After time T0, �u(t) starts to deviate from �U(t) as �u(0) �∈ M.
By an expansion of the energy functional near the steady state, we shall show that
the deviation is due to growth in the unstable mode. Then it is not hard to conclude
that at a large time T1 > T0, �u(t)− (φ,0)− �UL(t) concentrates most of its energy
in the discrete mode and has energy � ε1. These arguments finally set the stage for
us to apply the channel of energy inequalities proved in the previous section. We
will show that besides the radiated energy that �UL carries to spatial infinity, �u(t)
emits a second radiation. The total radiated energy for �u(t) will therefore exceed
the radiated energy for �U(t) by a fixed amount. Now note that �u(t) has almost the
same amount of energy as �U(t), a comparison argument of the energy in the local
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region then implies that �u(t), having strictly less energy than (φ,0) in the local
region, can no longer scatter to (φ,0). Hence, locally the setMφ of all initial data
for which the solution scatters to (φ,0) coincide with M. Thus the set Mφ has
a manifold structure. This is the key property showing that scattering to unstable
steady states is non-generic.

Now we turn to the main argument. Let us first compute the expansion of
energy around any steady state (φ,0).

LEMMA 4.1. Let (u0,u1) = (φ,0)+ (Λ0,Λ1), where (Λ0,Λ1) ∈ Ḣ1×L2. As-
sume that

‖Λ0‖L6(R3) < β� 1,

then we have

E((u0,u1
))

= E(φ,0)+ 1
2

(LφΛ0,Λ0
)
+

1
2

(
Λ1,Λ1

)
+O

(
β3),(4.1)

where Lφ =−Δ−V +5φ4.
Suppose Lφ has orthonormal eigenmodes ρ1,ρ2, . . . ,ρn corresponding to

eigenvalues −k2
1 ≤−k2

2 ≤ ·· · ≤ −k2
n < 0. If we further decompose

(
Λ0,Λ1

)
=
(
X0,X1

)
+
(
w0,w1

)
,(4.2)

(
w0,w1

)
=

n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]
+
(
γ0,γ1

)
,(4.3)

with (X0,X1)∈ Ḣ1×L2 and the orthogonality condition
∫
ρjγ0 dx=

∫
ρjγ1 dx=

0, for all 1≤ j ≤ n. Then we have

E((u0,u1
))

= E(φ,0)+ 1
2

[(LφX0,X0
)
+
(
X1,X1

)]

+
1
2

[(Lφγ0,γ0
)
+
(
γ1,γ1

)]−
n∑

i=1

2μ+i μ
−
i k

2
i

+
(LφX0,w0

)
+
(
X1,w1

)
+O

(
β3).

(4.4)

Proof. The proof is by direct computation

E((u0,u1
))

= E((φ,0)+ (Λ0,Λ1
))

=

∫ ∣∣∇φ+∇Λ0
∣∣2

2
+

∣∣Λ1
∣∣2

2
− V (φ+Λ0)

2

2
+

(
φ+Λ0

)6

6
dx
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=

∫
1
2

(
|∇φ|2− 1

2
V φ2 +

1
6
φ6
)
dx+

∫ (−Δφ−V φ+φ5)Λ0 dx

+

∫
1
2

[
∣∣∇Λ0

∣∣2−1
2
V Λ2

0+
5
2
φ4Λ2

0+
1
2

∣∣Λ1
∣∣2+1

6

∑

j≥3

Cj6φ
6−jΛj0

]
dx

= E(φ,0)+ 1
2

(LφΛ0,Λ0
)
+

1
2

(
Λ1,Λ1

)
+O

(
β3).

This finishes the proof of (4.1).
Next we further expand the energy functional using (4.2)

E((u0,u1
))

= E(φ,0)+ 1
2

(Lφ
(
X0 +w0

)
,X0 +w0

)
+

1
2

(
X1 +w1,X1 +w1

)
+O

(
β3)

= E(φ,0)+ 1
2

[(Lφw0,w0
)
+
(
w1,w1

)]
+

1
2

[(LφX0,X0
)
+
(
X1,X1

)]

+
(LφX0,w0

)
+
(
X1,w1

)
+O

(
β3).

Since Lφρi =−k2
i ρi, we get

(Lφw0,w0
)
=−

n∑

i=1

(
μ+i +μ

−
i

)2
k2
i +
(Lφγ0,γ0

)
,

(
w1,w1

)
=

n∑

i=1

(
μ+i −μ−i

)2
k2
i +
(
γ1,γ1

)
.

Combining the calculations above, we get (4.4). �

Now we are ready to present the main idea of our paper, which is crucial to
conclude that the set of initial data for which the solution scatters to an unstable
steady state (φ,0) has a manifold structure, and hence is a “thin set”.

THEOREM 4.2. Let V ∈ Y be a potential such that equation (1.1) has only
finitely many steady states, all of which are hyperbolic. Suppose that the finite
energy solution �U(t) to equation (1.1) scatters to an unstable excited state (φ,0).
LetM be the local center-stable manifold around �U(0) and let ε0, ε1 be as defined
in Theorem 2.2. Then there exist ε with 0 < ε < ε1 < ε0 and δ(ε1)� ε, such that
for any solution u with finite energy initial data (u0,u1) /∈M with

∥∥(u0,u1
)− �U(0)∥∥

Ḣ1×L2 < ε,
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we can find A> 0 such that for all t≥A
∫

|x|≥t−A

[
|∇u|2

2
+

(
∂tu
)2

2

]
(t,x)dx≥ E(�U(t)

)−E((φ,0))+ δ.(4.5)

As a consequence, �u(t) will not scatter to (φ,0).

We remark that by a simple adaptation of the result in [19], we know that the
collection of potential V which satisfies the condition in Theorem 4.2 are dense in
Y .

Proof. We divide our proof into several steps.

Step 1: Set up the parameters. By the local center-stable manifold theorem
of Section 3, the locally defined finite co-dimensional manifold M satisfies the
property that any solution to equation (1.1) with initial data onM scatters to (φ,0).
Moreover, if a solution �u(t) with initial data (u0,u1) ∈Bε1(

�U0) satisfies
∥∥�u(t)− �U(t)∥∥

Ḣ1×L2 < ε1 for all t≥ 0,(4.6)

then (u0,u1) ∈M. Take ε < ε1 sufficiently small to be chosen below. Since the
solution �U(t) scatters to (φ,0) as t→∞, denoting by �UL the scattered linear wave,
we have the property that

lim
t→∞

∥∥�U(t)− �UL(t)− (φ,0)
∥∥
Ḣ1×L2 = 0.(4.7)

This implies that

E(�U) = E(φ,0)+ 1
2

∥∥�UL
∥∥2
Ḣ1×L2 .(4.8)

By (4.7), the fact that φ ∈ Ḣ1(R3) and UL ∈ L5
tL

10
x ([0,∞)×R

3), for any small
δ1 > 0, we can first fix some large L and then choose T1 > L sufficiently large,
such that for all t≥ T1,
• (Free wave small in L6 norm)

∥∥UL(t)
∥∥
L6(R3)

≤ δ1(4.9)

• (Closeness of �U to �UL+(φ,0) and choice of the bounded region)

∥∥�U(t)− �UL(t)− (φ,0)
∥∥
Ḣ1×L2 +

∥∥�UL(0)
∥∥
Ḣ1×L2(|x|≥L) +‖φ‖Ḣ1(|x|≥L) ≤ δ1;

(4.10)

• (Most energy of the free radiation is exterior)
∫

|x|≥t−T1+L

∣∣∇x,tU
L
∣∣2(t,x)dx≥

∫

R3

∣∣∇t,xU
L
∣∣2(t,x)dx− δ2

1;(4.11)
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• (Control on the Strichartz norm of the radiation) Let

D :=
{
(t,x) : |x| ≤ T1 +L− t, 0≤ t≤ T1

}
.

Then we have

∥∥UL
∥∥
L5
tL

10
x ((0,∞)×R3\D)

< δ1.(4.12)

We remark that (4.11) is a consequence of the strong Huygens principle and
approximation by free waves with compactly supported initial data. (4.11) ensures
that UL can essentially be taken as zero for our purposes inside the region |x| ≤
t−T1 +L for t ≥ T1, which will be important to keep in mind later, in order to
distinguish the second piece of radiation. By the continuous dependence of the
solution to equation (1.1) on the initial data in Ḣ1×L2(R3) and by finite speed of
propagation, if we take ε sufficiently small and initial data (u0,u1) ∈ Ḣ1×L2\M
with

∥∥(u0,u1
)− �U(0)∥∥

Ḣ1×L2 < ε,(4.13)

then

∥∥�u
(
T1
)− �U(T1

)∥∥
Ḣ1×L2(4.14)

can be made sufficiently small. Hence, noting that ‖V ‖
L

5/4
t L

5/2
x (|x|≥|t|) is finite, we

can apply Lemma 3.1 to conclude that

∥∥�u(t)− �U(t)∥∥
Ḣ1×L2(|x|≥t−T1)

≤ δ1, for all t≥ T1.(4.15)

(4.15) means that we can effectively identify �u with �U in the exterior region

|x| ≥ t−T1, t≥ T1.

Hence by (4.10), we see that

∥∥�u(t)− �UL(t)∥∥
Ḣ1×L2(|x|≥t−T1+L)

≤ 3δ1,(4.16)

that is, we can also identify �u with �UL in the exterior region |x| ≥ t− T1 +L,
t≥ T1.

In order to avoid any possibility of confusion due to the many parameters, we
remark that δ1 and ε can be made as small as we wish, and will be chosen later.
T1, L depend on δ1 and �U only. ε is a small free parameter below some threshold
determined by δ1. The key point for us is that ε1 > 0 is fixed no matter how small
ε is chosen, see (4.6).
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Since (u0,u1) �∈M, there exists an exit time T2 > 0 from the ε1 ball, i.e., such
that

∥∥�u
(
T2
)− �U(T2

)∥∥
Ḣ1×L2(R3)

= ε1.(4.17)

Note that the choices of T1 and L do not depend on ε. Therefore, by the continuous
dependence of the solution on its initial data in Ḣ1×L2, if we choose ε sufficiently
small, we can assume T2 > 2(L+T1 +1).

Step 2: Analyze the size of discrete mode at time T2. Let us analyze �u(T2) in
more detail. By the estimates (4.10) and (4.17) we can write

�u
(
T2
)
= (φ,0)+ �UL

(
T2
)
+
(
w0,w1

)
,(4.18)

where �w = (w0,w1) ∈ Ḣ1×L2 satisfies

2ε1 ≥ ε1 + δ1 ≥
∥∥�w
∥∥
Ḣ1×L2(R3)

≥ ε1− δ1 ≥ ε1/2,(4.19)

if δ1 is chosen smaller than ε1
2 . We now list several facts:

(i) From (4.13), we infer that

∣∣E(�u)−E(�U)
∣∣� ε.(4.20)

(ii) Rewrite the decompostion (4.18) in the form

�u
(
T2
)
= (φ,0)+

(
Λ0,Λ1

)
,(4.21)

(
Λ0,Λ1

)
= �UL

(
T2
)
+
(
w0,w1

)
,(4.22)

(
w0,w1

)
=

n∑

i=1

[
μ+i
(
ρi,kiρi

)
+μ−i

(
ρi,−kiρi

)]
+
(
γ0,γ1

)
,(4.23)

with orthogonality conditions
∫
ρ0γj dx=

∫
ρ1γj dx= 0, for all 1≤ j ≤ n. (4.19)

implies that

ε2
1 �

∥∥(γ0,γ1
)∥∥2

Ḣ1×L2 +

n∑

i=1

[
k2
i

(
μ+i −μ−i

)2
+
(
μ+i +μ

−
i

)2
]
.(4.24)

(iii) Expand the energy functional at T2. Since Λ0 = UL(T2)+w0, from (4.9),
(4.19) and our a priori choice δ1 <

1
2ε1, we have ‖Λ0‖L6 � ε1. We now apply
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Lemma 4.1 and obtain

E(�u(T2
))

= E(φ,0)+ 1
2

[(LφUL
(
T2
)
,UL

(
T2
))

+
(
ULt
(
T2
)
,ULt

(
T2
))]

−
n∑

i=1

2μ+i μ
−
i k

2
i +

1
2

[(Lφγ0,γ0
)
+
(
γ1,γ1

)]

+
(LφUL

(
T2
)
,w0
)
+
(
ULt
(
T2
)
,w1
)
+O

(
ε3

1

)
.

(4.25)

Note that using the L6 estimate of UL in (4.9), we further have

1
2

[(LφUL
(
T2
)
,UL

(
T2
))

+
(
ULt
(
T2
)
,ULt

(
T2
))]

=
1
2

∥∥�UL
(
T2
)∥∥2
Ḣ1×L2 +

((−V +5φ4)UL
(
T2
)
,UL

(
T2
))

=
1
2

∥∥�UL
(
T2
)∥∥2
Ḣ1×L2 +O

(
δ2

1

)
.

(4.26)

In view of (4.18), (4.16) together with (4.10) implies that

∥∥w0
∥∥
Ḣ1(|x|≥T2−T1+L)

+
∥∥w1

∥∥
L2(|x|≥T2−T1+L)

≤ 4δ1.

Thus (w0,w1) is small inside the region {|x| ≥ T2−T1 +L}, while (4.11) implies
that �UL is small inside the region {|x|< T2−T1 +L}:

∥∥�UL
(
T2
)∥∥
Ḣ1×L2(|x|<T2−T1+L)

≤ δ1.

Hence we get that

∣∣(ULt
(
T2
)
,w1
)∣∣=

∣∣∣∣
∫

{|x|≥T2−T1+L}∪{|x|<T2−T1+L}
ULt
(
x,T2

)
w1(x)dx

∣∣∣∣� δ1;

(4.27)

and that

∣∣(LφUL
(
T2
)
,w0
)∣∣

=

∣∣∣∣
∫ (−Δ−V +5φ4)UL

(
x,T2

)
w0(x)dx

∣∣∣∣

=

∣∣∣∣
∫

{|x|≥T2−T1+L}∪{|x|<T2−T1+L}
∇UL

(
T2
) ·∇w0dx

+

∫ (−V +5φ4)UL
(
T2
)
w0 dx

∣∣∣∣� δ1.

(4.28)
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Now let us combine estimates (4.26), (4.27), (4.28) with (4.25), noting (4.8), we
deduce

E(�u) = E(�U)+
1
2

[(Lφγ0,γ0
)
+
(
γ1,γ1

)]−
k∑

i=1

2μ+i μ
−
i k

2
i +O

(
δ1 + ε

3
1

)
.(4.29)

(iv) Since (γ0,γ1) is in the continuous spectrum and Lφ has no zero eigenvalues or
zero resonance, we have

(Lφγ0,γ0
)
+
(
γ1,γ1

)
�
∥∥(γ0,γ1

)∥∥2
Ḣ1×L2

In combination with (4.20), (4.24), and (4.29), this coercivity yields

E(�u)−E(�U)+

n∑

i=1

2μ+i μ
−
i k

2
i

=
1
2

[(Lφγ0,γ0
)
+
(
γ1,γ1

)]
+O

(
δ1 + ε

3
1

)

�
∥∥(γ0,γ1

)∥∥2
Ḣ1×L2 +O

(
δ1 + ε

3
1

)

� cε2
1−

n∑

i=1

[
k2
i

(
μ+i −μ−i

)2
+
(
μ+i +μ

−
i

)2
]
+O

(
δ1 + ε

3
1

)
.

This implies that

n∑

i=1

2μ+i μ
−
i k

2
i +

C

2

n∑

i=1

k2
i

(
μ+i −μ−i

)2
+
C

2

n∑

i=1

(
μ+i +μ

−
i

)2

� ε2
1−
∣∣E(�U )−E(�u)∣∣−O(δ1 + ε

3
1

)

� ε2
1−Cε−O

(
δ1 + ε

3
1

)
.

Since all the constants depend only on U , we can choose δ1, ε� ε2
1 and conclude

that

n∑

i=1

∣∣μ+i
∣∣2 +

∣∣μ−i
∣∣2 � ε2

1.(4.30)

Now we denote |μmax|= max{|μ+i |, |μ−i |, 1≤ i≤ n}. We can find 1≤ i0 ≤ n such
that either |μ+i0 |= |μmax| or |μ−i0 |= |μmax|. From (4.19) and (4.30), we get

2n|μmax|2 ≥ cε2
1 ≥

c

4
‖�w‖2

Ḣ1×L2 ,

hence |μmax| ≥
√

c
8n‖�w‖Ḣ1×L2 . The constant c only depends on V and φ.

Step 3: Show the second emission of energy and finish the proof.
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Case 1: |μmax|= |μ+i0 |. Consider the solution ũ to equation (1.1) with

�̃u
(
T2
)
= (φ,0)+

(
w0,w1

)
.

Take κ =
√

C
8n , K and ε∗ corresponding to R = 0 in Lemma 3.6. Note that both

parameters depend only on V . With these choices of parameters, we get T (κ,K,V )

and ε(κ,K,ε∗,T ) from Lemma 3.7. Shrinking ε1 if necessary, we can assume that
ε1 < ε(κ,K,ε∗,T ). We emphasize that none of these parameters depend on δ1 or ε,
which are free parameters at this point. This is very important of course, in order
not to run into a circular argument. We also note that T = T (κ,K,V ) from Lemma
3.7 does not depend on δ1 or ε.

We can now apply part (1) of Lemma 3.7 and part (2) of Lemma 3.6 to conclude
that

∫

|x|>t−(T2+T )

∣∣∂tũ
∣∣2(t,x)dx≥ c(ε1

)
> 0, for t≥ T2 +T.(4.31)

Denote Ξ :=R3× [T2, T2 +T ]
⋃{(t,x) : |x|> t−T2−T, t≥ T2 +T}. Note that

(|V |+φ4)χΞ ∈ L
5
4
t L

5
2
x

(
R

3×R
)
,

and that UL+ ũ is an approximate solution to (1.1) with a right-hand side f with
‖f‖L1

tL
2
x
� δ1. By bound (4.12) and Lemma 3.1 (by treating u as perturbation of

UL+ ũ), if we choose δ1 sufficiently small, then for (x,t) ∈ Ξ,

�u(t,x) = �UL(t,x)+ �̃u(t,x)+�r(t,x),(4.32)

where the remainder term �r satisfies

sup
t∈R

∥∥�r(t)
∥∥
Ḣ1×L2(R3)

≤ Cδ1.(4.33)

The estimate (4.16), decomposition (4.32) and the estimate on the remainder term
(4.33) imply for t≥ T2 (in particular, t≥ T2 +T )

∫

|x|≥t−T1+L

∣∣∇t,xũ
∣∣2(t,x)dx ≤Cδ1,(4.34)

this combined with (4.31) implies that for t≥ T2 +T

∫

t−T1+L≥|x|≥t−(T2+T )

∣∣∇t,xũ
∣∣2(t,x)dx≥ c(ε1)−Cδ1.(4.35)
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Hence by estimating ‖�u(t)‖Ḣ1×L2 in different regions {|x| ≥ t−T1 +L} and {t−
T1 +L≥ |x| ≥ t− (T2 +T )}, we get that

‖�u‖2
Ḣ1×L2(|x|≥t−(T2+T ))

≥ ∥∥�UL+ �̃u∥∥2
Ḣ1×L2(|x|≥t−(T2+T ))

−C1δ1

≥ ∥∥�UL∥∥2
Ḣ1×L2(|x|≥t−T1+L)

+ c
(
ε1
)−C2δ1

≥ ∥∥�UL∥∥2
Ḣ1×L2(R3)

+ c(ε1)−C3δ1 ≥
∥∥�UL

∥∥2
Ḣ1×L2(R3)

+
1
2
c
(
ε1
)
.

(4.36)

The last line holds when we choose δ1 sufficiently small. (4.5) is then proved with
A= T2 +T and δ = 1

2c(ε1)> 0.
Now we prove that u cannot scatter to (φ,0) t→+∞. Suppose it does so with

free radiation �uL, i.e.,

∥∥�u(t)− (φ,0)−�uL(t)∥∥
Ḣ1×L2 −→ 0, as t−→+∞.

Then (4.36) implies that

∥∥�uL(t)
∥∥2
Ḣ1×L2(R3)

≥ lim
t→∞

∥∥�u(t)
∥∥2
Ḣ1×L2(|x|≥t−A) ≥

∥∥�UL(t)
∥∥2
Ḣ1×L2(R3)

+ δ.(4.37)

Note that

∥∥�UL
∥∥2
Ḣ1×L2 = E(�U)−E(φ,0), ∥∥�uL

∥∥2
Ḣ1×L2 = E(�u)−E(φ,0).

We have reached contradiction with (4.37) if ‖�u(0)− �U(0)‖Ḣ1×L2(R3) is chosen
small, and thus have proved the theorem in case 1.

Case 2: |μmax| = |μ−i0 |. We will show this is impossible if we take ε small
enough. In fact, again applying part (1) of Lemma 3.7 and part (2) of Lemma 3.6,
consider the solution ũ to equation (1.1) with data

�̃u
(
T2
)
= (φ,0)+

(
w0,w1

)
.

We can find a time T > 0 such that
∫

|x|>|t−(T2−T )|

∣∣∂tũ
∣∣2(t,x)dx ≥ c(ε1)> 0, for t≤ T2−T.(4.38)

By taking ε sufficiently small, we can assume T2 > 2T . Now setting time t= 0 in
(4.38), we get ‖�̃u(0)‖Ḣ1×L2(|x|> 1

2T2)
> c(ε1).

Introduce the set

Ξ′ :=R3× [T2−T,T2]
⋃{

(t,x) : |x|> ∣∣t− (T2−T )
∣∣, 0≤ t≤ T2−T

}
.
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In analogy to case 1, if we choose δ1 > 0 sufficiently small, then for (x,t) ∈ Ξ′ we
have

�u(t,x) = �UL(t,x)+ �̃u(t,x)+�r(t,x),(4.39)

with the remainder term �r satisfying

sup
t∈R

∥∥�r(t)
∥∥
Ḣ1×L2(R3)

≤ Cδ1.(4.40)

From (4.10) and by our choice of T2, i.e., T2 > 2(L+T1 + 1) and T2 > 2T , we
have ‖�UL(0)‖Ḣ1×L2(|x|> 1

2T2)
< δ1 and

∥∥(u0,u1
)∥∥

Ḣ1×L2(|x|> 1
2T2)

≥ ∥∥∇x,tũ(0)
∥∥
Ḣ1×L2(|x|> 1

2T2)
−Cδ1 > c

(
ε1
)−Cδ1 >

1
2
c
(
ε1
)
.

The last inequality holds provided we take δ1 small enough. This yields a contradic-
tion to the finite energy of �U(0) by choosing ε sufficiently small and T2 sufficiently
large. Hence case 2 does not arise and we are done. �

Next we prove the property of path connectedness.

THEOREM 4.3. For any unstable excited state (φ,0), the corresponding
center-stable manifoldMφ is path connected.

Proof. Given data (u0,u1),(ũ0, ũ1) ∈Mφ, we denote the corresponding solu-
tions by u, ũ. Write h= u−φ, �= ũ−φ. Repeat step 1 and step 2 in the proof of
Theorem 2.2. Then given any ε� 1, we can find T = T (ε,u, ũ), such that

‖h‖
L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
< ε, ‖�‖

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
< ε.(4.41)

Now we seek a function w(θ,t,x) of the form

w(θ,t,x) = (1− θ)u+ θũ+η

= φ+(1− θ)h+ θ�+
n∑

i=1

λi(θ,t)ρi+γ(θ,t,x)
(4.42)

with initial data λi(θ,T ) and γ(θ,T,x) decided later, such that for all θ ∈ [0,1],
γ(θ,t,x)⊥ ρi, i= 1, . . . ,n and w(θ,t,x) is a solution to equation (1.1) that scatters
to φ.

For θ ∈ [0,1] fixed, the equation satisfied by η=
∑n

i=1λi(θ,t)ρi+γ(θ,t,x) is:

ηtt−Δη−V (x)η+5φ4η+N(θ,h,�,φ,η) = 0,
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where

N(θ,h,�,φ,η) =
(
φ+(1− θ)h+ θ�+η)5− (1− θ)(φ+h)5− θ(φ+ �)5−5φ4η.

Now we can repeat the stability condition (2.36) and obtain the reduced system of
the form (2.37).

In N(θ,h,�,φ,η), the terms independent of η are of the form

(
φ+(1−θ)h+θ�)5−(1−θ)(φ+h)5−θ(φ+�)5 =

∑

i+j+k=5, i≤3

C(θ, i,j,k)φihj�k.

Notice that there are no terms φ5 or φ4h,φ4�.
Also, the linear term of η in N(θ,h,�,φ,η) is

5
(
φ+(1− θ)h+ θ�)4η−5φ4η

hence all linear terms involve a factor of h or �.
Now we can repeat estimates (2.39)(2.40), then (2.42) for the linear term in η,

(2.43) for higher order terms in η. We also have the following estimate on terms
independent of η

∥∥∥∥∥∥

∑

i+j+k=5, i≤3

C(θ, i,j,k)φihj�k

∥∥∥∥∥∥
L1
tL

2
x([T,∞)×R3)

� ε2.

To sum up, using the X norm defined in (2.38), we conclude that
∥∥(λ1, . . . ,λn,γ

)∥∥
X([T,∞))

≤ Lε2 +L

(
n∑

i=1

∣∣λi(θ,T )
∣∣+
∥∥(γ(θ,T ), γ̇(θ,T )

)∥∥
Ḣ1×L2

)

+Lε
∥∥(λ1, . . . ,λn,γ

)∥∥
X([T,∞))

+L

5∑

k=2

∥∥(λ1, . . . ,λn,γ
)∥∥k
X([T,∞))

,

where L> 1 is a constant only depending on the constants in the reversed Strichartz
estimates, ‖φ‖L6(R3) and ‖ρi‖L∞

x∩L6,2
x

.
Moreover, in a similar fashion one sees that the difference of two solutions

satisfies a similar estimate in which the first two terms disappear. Following step
3 of the proof for Theorem 2.2, we can use the contraction mapping principle and
conclude that for sufficiently small data

n∑

i=1

∣∣λi(θ,T )
∣∣+
∥∥(γ(θ,T ), γ̇(θ,T )

)∥∥
Ḣ1×L2 ≤ δ

there is a solution w as in (4.42) which solves (1.1). We can also check that w
scatters to φ as in step 4 of the proof for Theorem 2.2.
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In particular, let us take λi(θ,T ) = 1
nδθ(1− θ) and �γ(θ,T,x) = �0. We claim

that the corresponding solution w(θ,t,x) satisfies the following relation

w(0, t,x) = u(t,x), w(1, t,x) = ũ(t,x), for all t ∈ R.(4.43)

In fact, notice that λi(0,T ) = 0, �γ(0,T,x) = �0 implies λi(0, t) = 0, �γ(0, t,x) = �0
for t ≥ T , which further implies w(0, t,x) = u(t,x), t ≥ T . Similarly we have
w(1, t,x) = ũ(t,x), t≥ T . Then (4.43) follows from the uniqueness of solutions to
equation (1.1).

Hence {�w(θ,0,x), θ ∈ [0,1]} is a path inMφ connecting the two data (u0,u1),
(ũ0, ũ1). �

Now we can finish the proof for our main theorem.

Proof of Theorem 1.1. We only consider the case in which (φ,0) is unstable;
stable (φ,0) can be handled using standard perturbation arguments and the reversed
Strichartz estimates. We only note that due to the lack of local wellposedness of
equation (1.1) in the reverse Strichartz space L6,2

x L∞
t ∩L∞

xL
2
t , we need to use the

fact that

lim
T→∞
‖U −φ‖

L6,2
x L∞

t ∩L∞
xL

2
t(R

3×[T,∞))
= 0,

if U(t) scatters to φ as t→ ∞. This fact can be easily deduced by using the same
argument as in Claim 2.2.1. In some small neighborhood of any point �U(0) onMφ,
Mφ coincides with the local center-stable manifold M of codimension n which
we constructed in Section 2. By Theorem 4.2, Mφ is thus a global manifold of
co-dimension n. The path-connectedness follows from Theorem 4.3. �
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