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Abstract We study multi-frequency quasiperiodic Schrödinger operators on
Z.We prove that for a large real analytic potential satisfying certain restrictions
the spectrum consists of a single interval. The result is a consequence of a
criterion for the spectrum to contain an interval at a given location that we
establish non-perturbatively in the regime of positive Lyapunov exponent.
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1 Introduction

In the last 40 years after the groundbreaking paper [11] the theory of quasiperi-
odic Schrödinger operators has been developed extensively, see themonograph
[5] for an overview and [17] for a survey of the more recent results. For shifts
on a one-dimensional torus T most of the results have been established non-
perturbatively, i.e., either in the regime of almost reducibility or in the regime
of positive Lyapunov exponent, and Avila’s global theory, see [3], gives a qual-
itative spectral picture, covering both regimes, for generic potentials. One of
the main results of the one-dimensional theory is the fact that the spectrum is
a Cantor set. For the case of the almost Mathieu operator (corresponding to a
cosine potential), this result has been proved for any non-zero coupling and
any irrational shift, see [22] and [1,2]. For general analytic potentials in the
regime of positive Lyapunov exponent with generic shift the Cantor structure
of the spectrum has been obtained in [15].

On the other hand, shifts on a multidimensional torus Td turned out to be
harder to analyze and the theory is less developed, even in the perturbative
setting. In particular, not much is known about the geometry of the spectrum
formultidimensional shifts. In their pioneering paper [9],Chulaevsky andSinai
conjectured that in contrast to the shift on the one-dimensional torus, for the
two-dimensional shift the spectrum can be an interval for generic large smooth
potentials. In this paper we prove this conjecture for large analytic potentials.

Heuristically, gaps in the spectrum of the one-frequency operators are
created by horizontal “forbidden zones” appearing at the points of intersec-
tion of the graphs of shifted finite scale eigenvalues parametrized by phase,
see [15,23]. In contrast to this, the heuristic principle underlying [9] is that
for multiple frequencies, the intersection curves of the graphs of shifted finite
scale eigenvalues may not be too flat, thus preventing the appearance of the
horizontal “forbidden zones” and stopping the formation of gaps. It is clear
that some genericity assumption on the potential function is needed for this to
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On the spectrum of multi-frequency 605

be true, since potentials like V (x, y) = v(x) lead to flat intersection curves
and have Cantor spectrum. Furthermore, the largeness of the potential is also
needed. Indeed, it is known that for small potentials with atypical frequency
vector the spectrum has gaps, see [4].

Implementing such an argument, appears to be very challenging for a num-
ber of reasons. First, the analytical techniques available in finite volume are less
favorable (mainly the large deviation theorems and everything that depends on
them) as compared to the case of one frequency. In particular, it is difficult to
implement an approach based on finite scale localization as in [15]. This is due
to the fact that it is hard to handle long chains of resonances and to control the
intersections of the resonant curves with the level sets of the eigenvalues. Sec-
ond, it is inevitable that the intersection curves of the graphs of shifted finite
scale eigenvalues flatten near the absolute extrema and handling this situation
seems to be a delicate matter.

In [16] we addressed some of the issues regarding the analytical techniques,
including establishing finite scale localization. We will use most of the basic
tools from [16].However, for the purpose of this paper onewould need a refined
version of finite scale localization, beyond what is achieved in that paper. We
analyze the spectrum of the operator HN (x), x ∈ T

d , on a finite interval [1, N ]
subject to Dirichlet boundary conditions. To keep this spectrum under control
requires resolving the following problem. Given E let RN (E) be the set of
all phases x such that E is in the spectrum of the operator HN (x). One has to
identify phases x ∈ RN (E) for which x + nω is not too close toRN (E) as n
runs in the interval N � n < N A, A � 1. This issue, commonly referred to as
double resonances, is well-known. Similar strategies, leading to the formation
of intervals in the spectrum, have been implemented for the skew-shift in [18]
and for continuous two-dimensional Schrödinger operators in [19]. The main
new device that we develop in this work, consists of an elimination of double
resonances for all shifts x + h, and not just the “arithmetic ones” x + nω.
Of course the shift h cannot be too small. Although this problem looks less
accessible, it turns out to provide more control on the resonant set RN (E) of
the previous scale. The level sets V (x) = E of the potential in question must
satisfy the requirements of this more general elimination in order to launch
the multi-scale analysis. This is exactly the origin of our main condition on
the potential, see Definition 1.1 below.

Furthermore, in order to show that the spectrum is actually an interval, we
develop a Cartan type estimate that controls the intersections of the level sets
of an analytic function near a non-degenerate extremum with their shifts.

The core of our approach is non-perturbative and works in the regime of
positive Lyapunov exponent.More precisely, we develop two non-perturbative
inductive schemes, one leading to the formation of intervals in the bulk of the
spectrum and the other leading to intervals at the edges of the spectrum. We
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will only use the largeness of the potential to check that the initial inductive
conditions are satisfied.

We introduce some notation and definitions that we need to state our main
result. We work with operators

[Hλ(x)ψ](n) = −ψ(n + 1) − ψ(n − 1) + λV (x + nω)ψ(n), (1.1)

with λ > 0 being a real parameter, and with the potential V a real analytic
function on the torus Td , T = R/Z, d ≥ 2. We assume that the frequency
vector ω ∈ T

d obeys the standard Diophantine condition

‖k · ω‖ ≥ a

|k|b for all nonzero k ∈ Z
d , (1.2)

where a > 0, b > d are some constants, ‖·‖ denotes the usual norm on T,
and | · | denotes the sup-norm on Zd . Unless otherwise stated, throughout the
paper a, b will refer to the constants from (1.2). In this paper we don’t use
elimination of frequencies and our results apply to any Diophantine frequency
ω. To simplify notation, we omit dependence on ω from notation whenever
possible. The dependence on frequency will still be reflected by having some
of the constants depend on a, b.

Definition 1.1 We letG be the class of real-analytic functions V onTd , d ≥ 2,
for which there exist constants c0 = c0(V, d) ∈ (0, 1), c1 = c1(d) ∈ (0, 1),
C0 = C0(V, d) > 1, such that the following properties hold.

(i) V is a Morse function, i.e., all its critical points are non-degenerate.
(ii) V attains each global extremum at just one point.
(iii) Given h ∈ T

d , let

gV,h,i, j (x) = det

[
∂xi V (x) ∂x j V (x)

∂xi V (x + h) ∂x j V (x + h)

]
.

For any i �= j , K ≥ C0, and any ‖h‖ ≥ exp(−c0K ) we have

mes{xı̂ ∈ T
d−1 : min

xi

(|V (x + h) − V (x)| + |gV,h,i, j (x)|
)

< exp(−K )}
≤ exp(−K c1),

where xı̂ = (x1, . . . , xi−1, xi+1, . . . , xd).

(iv) For any i , K ≥ C0, η ∈ R, and h0 ∈ R
d , ‖h0‖ = 1, we have

mes{xı̂ ∈ T
d−1 : min

xi
(|V (x) − η| + |〈∇V (x), h0〉|) < exp(−K )}

≤ exp(−K c1).
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On the spectrum of multi-frequency 607

Recall that spec Hλ(x) is known not to depend on the phase. We will use
the notation Sλ := spec Hλ(x). An essential feature of our inductive argument
is the following one: we use the genericity of V only at the first step of the
proof, and never change V at subsequent steps.

Theorem A There exists λ0 = λ0(V, a, b, d) such that the following state-
ments hold for λ ≥ λ0.

(a) Assume that V attains its global minimum at exactly one non-degenerate
critical point x. Then there exists E ∈ R, |λ−1E − V (x)| < λ−1/4, such
that

[E, E + λ exp(−(log λ)1/2)] ⊂ Sλ and (−∞, E) ∩ Sλ = ∅.

An analogous statement holds relative to the global maximum of V (using
the notation x, E).

(b) Assume that V ∈ G and let E, E be as in (a). Then Sλ = [E, E].
Remark 1.2 (a) The constant λ0(V, a, b, d) can be expressed explicitly, see

the proof of Theorem A.
(b) We conjecture the genericity of our assumptions on V . More precisely, we

believe the following to be true: consider real trigonometric polynomials
of the form

V (x) =
∑

m∈Zd :|m|≤n

cm e2π im·x , x ∈ R
d ,

of a given cumulative degree n ≥ 1, |m| := ∑
1≤ j≤d |m j |. Then for almost

all vectors (cm)|m|≤n one has V ∈ G. While genericity of admissible V
remains a conjecture for general degrees, we do present specific examples
of V of low degree in two variables, which obey our conditions.

(c) In fact, in Sect. 9, we show that

V (x, y) = cos(2πx) + s cos(2πy)

satisfies the assumptions of Definition 1.1 for all s ∈ R\{−1, 0, 1}. We
note that as s approaches {−1, 0, 1} our explicit value for λ0 diverges to
∞ and the geometry of the spectrum cannot be decided by continuity. Of
course, for s = 0 the spectrum is a Cantor set. However, for s = ±1, part
(a) of Theorem A still applies and guarantees the existence of intervals at
the edges of the spectrum.

(d) The measure estimates from conditions (iii) and (iv) of Definition 1.1
are Cartan type estimates (see Sect. 2.2). We note that one cannot apply
Cartan’s estimate directly to the functions from this conditions. Instead, the
estimates can be obtained by applying Cartan’s estimate to some resultants
associated with these functions, see Sect. 9.
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As mentioned above, the derivation of Theorem A is based on two non-
perturbative statements in the regime of positive Lyapunov exponent, which
appear later in Sect. 8. Namely, Theorem B produces an interval in the spec-
trum in the vicinity of a spectral value at which certain finite scale conditions
hold, and Theorem C shows that the spectrum is an interval under certain addi-
tional finite scale conditions. Since they are rather technical, we do not state
these theorems here. The inductive conditions and the theorems which provide
the inductive step are discussed in Sect. 5 (see Theorem D) and Sect. 6 (see
Theorem E). In Sect. 7 we show how these conditions hold at large coupling,
given a potential as in Theorem A. Throughout the paper we will employ the
basic tools discussed in Sect. 2 for the non-perturbative regime and in Sect. 3
for large coupling. The Cartan type estimate that we use to handle the edges
of the spectrum is discussed in Sect. 4.

We conclude this introduction with more detailed comments on the afore-
mentioned paper by Chulaevsky, Sinai [9], which is closely related to the
one-frequency paper [23]. In [9] the authors propose an inductive pertur-
bative scheme to establish localization, positive Lyapunov exponents, and
the absence of gaps for the operators (1.1) for large λ and for ω outside
a set of small measure. The potential V is assumed to be a generic (in a
suitable sense) C2 Morse function. The induction, of which [9] only pro-
vides a sketch with many details having been omitted, proceeds from the
base case in which the eigenfunctions are taken to be δ-functions, to suc-
cessively more accurate approximations of the true eigenfunctions. It is
claimed that the corrections are obtained via first order eigenvalue pertur-
bations only. It is well-understood by now that many delicate issues arise in
the implementation of any inductive procedure aiming at Anderson localiza-
tion. First and foremost, one needs to exclude the possibility of arbitrarily
long chains of resonances between finite-volume Hamiltonians of successive
scales.

The research literature devoted to Anderson localization with determinis-
tic potentials has been almost entirely limited to the analytic category, i.e.,
V in (1.1) is either a trigonometric polynomial or an analytic function, see
for example [5–8,12–16]. In essence, resonances arise through intersections
of level surfaces of the eigenvalue parametrizations of finite volume Hamil-
tonians. For algebraic curves Bezout’s theorem gives a quantitative bound
on the number of intersections. In the Ck category no analogous mecha-
nism exists, and intersections can be extremely complicated. Bourgain [7]
used semi-algebraic techniques such as the Gromov-Yomdin parametriza-
tion to limit the length of chains of resonances in any number of variables.
For example, in the setting of (1.1) with d = 2 he needs to allow for
chains of length 9. Bourgain’s technique for eliminating variables via semi-
algebraic methods (essentially, Bezout’s theorem), played an important role
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On the spectrum of multi-frequency 609

in the implementation of an inductive argument for finite volume localiza-
tion of (1.1) in the regime of positive Lyapunov exponent (i.e., without
assuming large coupling as we do here), see [16]. In addition, we cru-
cially relied on an effective separation between the eigenvalues in finite
volume as in [15]. Complex variable tools such as the Weierstrass prepara-
tion theorem, and the resultant between polynomials are used to obtain these
bounds.

Wang and Zhang [24] claim positive Lyapunov exponents forC2-potentials
of one variable with two non-degenerate critical points and large disorder λ.
While they acknowledge Sinai’s mechanism from [23] that resonances cre-
ate gaps, their argument bears little resemblance with [23], and relies instead
on techniques developed over the past 20 years such as the avalanche princi-
ple. Wang and Zhang’s arguments are however entirely one-dimensional (for
example, they use Rolle’s theorem) and to our knowledge nothing comparable
exists for Ck-potentials of several variables. We are therefore unable to rec-
oncile the strategies which were proposed in [9,23] with the facts established
over the past 20 years.

2 Basic tools

In this section we discuss some basic results that we will use throughout the
paper. The results will apply to a family of discrete Schrödinger operators,

[H(x)ψ](n) = −ψ(n + 1) − ψ(n − 1) + V (x + nω)ψ(n) (2.1)

with V real-analytic on T
d and ω as in (1.2). Note that we omit the coupling

constant λ because the results of this section are non-perturbative. We also
assume that V extends complex analytically to

T
d
ρ := {x + iy : x ∈ T

d , y ∈ R
d , |y| < ρ},

with some ρ > 0. Note that we use | · | to denote the sup-norm on R
d and

‖·‖ to denote the Euclidean norm on R
d . At the same time when we apply

it to shifts on T
d , ‖·‖ will stand for the usual norm on T

d . It is well-known
that for any real-analytic function on T

d , such ρ = ρ(V ) exists. To simplify
some later estimates we also assume ρ ≤ 1. Throughout the paper, with the
exception of Sect. 4, we reserve ρ for this constant.

We recall some standard notation. Given an interval [a, b] ⊂ Z, the transfer
matrix is defined by
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M[a,b](x, E) =
a∏

n=b

[
V (x + nω) − E −1

1 0

]
.

We let H[a,b](x) be the restriction of H(x) to the interval [a, b] with Dirichlet
boundary conditions and we denote the corresponding Dirichlet determinant
by f[a,b](x, E) := det(H[a,b](x)−E). We use E [a,b]

j (x),ψ [a,b]
j (x, ·) to denote

the eigenpairs of H [a,b](x), withψ
[a,b]
j (x, ·) being 
2-normalized. The transfer

matrix is related to the Dirichlet determinants through the following formula

M[a,b](x, E) =
[

f[a,b](x, E) − f[a+1,b](x, E)

f[a,b−1](x, E) − f[a+1,b−1](x, E)

]
. (2.2)

We let MN := M[1,N ], HN := H[1,N ], fN := f[1,N ]. The Lyapunov exponent
is defined by

L(E) = lim
N→∞ LN (E) = inf

N
LN (E), LN (E) = 1

N

∫
Td

log ‖MN (x, E)‖ dx .

Most of the results in this section do not use the fact that V assumes only
real values on the torus Td and therefore they also hold on Td + iy, |y| < ρ/2,
by replacing V with V (· + iy). In particular, this applies to all the results up
to and including Corollary 2.13. Of course, when we change the potential, we
also need to adjust the Lyapunov exponents. To this end we define

LN (y, E) = 1

N

∫
Td

log ‖MN (x + iy, E)‖ dx,
L(y, E) = lim

N→∞ LN (y, E). (2.3)

We will use some standard conventions. Unless stated otherwise, the con-
stants denoted by c,C might have different values each time they are used. We
let a � b denote a ≤ Cb with some positive C , a � b denote a ≤ Cb with a
sufficiently large positive C , and a � b stand for a � b and b � a. It will be
clear from the context what the implicit constants are allowed to depend on.
To emphasize the dependence on some parameter we may use it as a subscript
for the above symbols (e.g., a �d b).

Our constants will depend on ω, V , E , d, and γ , where γ > 0 will stand
for a lower bound on the Lyapunov exponent. The dependence on ω will be
through the parameters a, b from (1.2). The dependence on V will be through
ρ and

‖V ‖∞ := sup{|V (z)| : z ∈ T
d
3ρ/4}.
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The dependence on E will be uniform on bounded sets. In most cases we leave
the dependence on d implicit and, unless stated otherwise, all constants may
depend on the dimension d.

When we work in the perturbative setting we will need to replace V by
λV and we will need explicit knowledge of the dependence on λ. This means
that we need to keep track explicitly of the dependence on ‖V ‖∞, E (because
the range of energies we need to consider depends on V ), and γ (note that ρ

remains unchanged when we introduce the coupling constant). To this end we
will use the quantity

SV,E := log(3 + ‖V ‖∞ + |E |).

This definition is motivated by the fact that

∥∥∥∥
[
V (x + nω) − E −1

1 0

]∥∥∥∥ ≤ 1 + ‖V ‖∞ + |E |

and therefore

0 ≤ log ‖MN (x, E)‖ ≤ N log(1 + ‖V ‖∞ + |E |), (2.4)

0 ≤ LN (E) ≤ log(1 + ‖V ‖∞ + |E |). (2.5)

The choice of the absolute constant in the definition of SV,E is for the conve-
nience of having SV,E > 1. Since

spec HN (x) ⊂ [−2 − ‖V ‖∞ , 2 + ‖V ‖∞],

it will actually be enough to work with |E | ≤ ‖V ‖∞ + 4 and when we want
to suppress the dependence on E we will use

SV := log(3 + ‖V ‖∞). (2.6)

Note that SV,E � SV for |E | ≤ ‖V ‖∞ + 4.
We will make repeated use of the observation that using the mean value

theorem and Cauchy estimates, we have

|E [a,b]
j (x) − E [a,b]

j (x0)| ≤ ∥∥H[a,b](x) − H[a,b](x0)
∥∥ ≤ Cρ ‖V ‖∞ |x − x0|.

(2.7)
We will also use the following basic identity:

spec Hm+[a,b](x) = spec H[a,b](x + mω). (2.8)

123



612 M. Goldstein et al.

2.1 Large deviations estimates

We recall the Large Deviations Theorem (LDT) for the transfer matrix. We
refer to [5] and [13] for two different approaches to its proof. The particular
formulation we give here is based on [13] (see Corollary 9.2 therein).

Theorem 2.1 Assume E ∈ C. There exist σ = σ(a, b), τ = τ(a, b), σ, τ ∈
(0, 1), C0 = C0(a, b, ρ), such that for N ≥ 1 one has

mes
{
x ∈ T

d : | log ‖MN (x, E)‖ − NLN (E)| > C0SV,E N
1−τ

}
< exp(−Nσ ).

In [14] it was shown (see Proposition 2.11 therein) that in the the regime
of positive Lyapunov exponent, the large deviations estimate extends to the
entries of the transfer matrix.

Theorem 2.2 Assume E ∈ C, and L(E) > γ > 0. There exist σ = σ(a, b),
τ = τ(a, b), σ, τ ∈ (0, 1), such that for N ≥ N0(V, a, b, E, γ ) one has

mes
{
x ∈ T

d : | log | fN (x, E)| − NLN (E)| > N 1−τ
}

< exp(−Nσ ).

Note that the large deviations estimates also hold with any other smaller
choices of the actual exponents σ, τ . The sharpness of these exponents plays
no role for us, so we will also assume without loss of generality that the
exponents are the same in both statements and σ � τ � 1.

We claim that by inspecting the proof from [14] it can be seen that the
constant N0 from Theorem 2.2 can be chosen to be (SV,E + γ −1)C , C =
C(a, b, ρ). In fact, all the large constants in our statements can be chosen of
this form (though not optimally). Since the proof in [14] is quite lengthy and
intricate, and we only need to be explicit about N0 in the perturbative setting,
we will give a simpler proof of the (LDT) for determinants at large coupling
in Sect. 3.

The usefulness of the (LDT) is enhanced by the following result, known as
the Avalanche Principle.

Proposition 2.3 ([13, Prop. 2.2]). Let A1, . . . , An be a sequence of 2 × 2–
matrices whose determinants satisfy

max
1≤ j≤n

| det A j | ≤ 1. (2.9)

Suppose that

min
1≤ j≤n

‖A j‖ ≥ μ > n and (2.10)
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On the spectrum of multi-frequency 613

max
1≤ j<n

[log ‖A j+1‖ + log ‖A j‖ − log ‖A j+1A j‖] <
1

2
logμ. (2.11)

Then

∣∣∣log ‖An . . . A1‖ +
n−1∑
j=2

log ‖A j‖ −
n−1∑
j=1

log ‖A j+1A j‖
∣∣∣ < C

n

μ
(2.12)

with some absolute constant C.

To apply the Avalanche Principle one needs to be in the positive Lyapunov
exponent regime and to be able to compare the Lyapunov exponents LN at
different scales. This can be achieved through the following result.

Proposition 2.4 ([13, Lem. 10.1]). Assume E ∈ C, and L(E) > γ > 0. Then
for any N ≥ 2,

0 ≤ LN (ω, E) − L(ω, E) < C0
(log N )1/σ

N
,

where C0 = C0(V, a, b, E, γ ) and σ is as in (LDT).

The constant C0 from the previous proposition can be evaluated explicitly
by inspecting its proof in [13]. However, wewill obtain an explicit perturbative
version of this result in Sect. 3.

The remaining results that we state without proof in this section are proved
in [16]. The specific constants from their statements are obtained by a simple
inspection of the proofs in [16]. Note that in the choice of constants we favour
simplicity over sharpness. Some of the constants will depend on the constants
N0 from Theorem 2.2 and C0 from Proposition 2.4. To keep track of this we
fix

B0 := N0 + C0. (2.13)

As a consequence of the (LDT) and the submean value property for subhar-
monic functions one gets the following uniform upper estimate.

Proposition 2.5 ([16, Prop. 2.13]). Let E ∈ C and τ as in (LDT). Then for all
N ≥ 1,

sup
x∈Td

log ‖MN (x, E)‖ ≤ NLN (E) + C0SV,E N
1−τ ,

with C0 = C0(a, b, ρ).

To extend the uniform upper estimate to a complex neighborhood of Td we
need the following result.

123
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Lemma 2.6 ([16, Cor. 2.12]). Let E ∈ C. For any N ≥ 1 we have

|LN (y, E) − LN (E)| ≤ CρSV,E

d∑
i=1

|yi |.

In particular, the same bound holds with L instead of LN .

Corollary 2.7 Let E ∈ C and τ as in (LDT). Then for all N ≥ 1 and all
y ∈ R

d , |y| < min(ρ/2, 1/N ),

sup
x∈Td

log ‖MN (x + iy, E)‖ ≤ NLN (E) + C0SV,E N
1−τ , (2.14)

with C0 = C0(a, b, ρ). In particular we also have

sup
x∈Td

log | fN (x + iy, E)| ≤ NLN (E) + C0SV,E N
1−τ .

Proof The conclusion follows by applying Proposition 2.5 with V (x + iy)
instead of V (x) and by using Corollary 2.6. ��

Next we recall a way of obtaining off-diagonal decay for Green’s function.
We use the notation G[a,b](x, E) := (H[a,b](x) − E)−1.

Lemma 2.8 ([16, Lem. 2.24]). Assume x0 ∈ T
d , E0 ∈ C, and L(E0) > γ >

0. Let K ∈ R and τ as in (LDT). There exists C0 = C0(a, b, ρ) such that if
N ≥ (B0 + SV,E0 + γ −1)C, C = C(a, b, ρ), and

log
∣∣ fN (x0, E0)

∣∣ > NLN (ω0, E0) − K , (2.15)

then for any (x, E) ∈ T
d×Cwith |x−x0|, |E−E0| < exp(−(K+C0N 1−τ )),

we have

∣∣G[1,N ](x, E; j, k)∣∣ ≤ exp
(
−γ

2
|k − j | + K + 2C0N

1−τ
)

, (2.16)∥∥G[1,N ](x, E)
∥∥ ≤ exp(K + 3C0N

1−τ ). (2.17)

2.2 Cartan’s estimate

We recall the definition of Cartan sets from [14]. We use the notation
D(z0, r) = {z ∈ C : |z − z0| < r}.
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On the spectrum of multi-frequency 615

Definition 2.9 Let H ≥ 1. For an arbitrary set B ⊂ D(z0, 1) ⊂ Cwe say that
B ∈ Car1(H, K ) if B ⊂ ⋃ j0

j=1D(z j , r j ) with j0 ≤ K , and

∑
j

r j < e−H. (2.18)

If d ≥ 1 is an integer and B ⊂ ∏d
j=1D(z j,0, 1) ⊂ C

d , then we define
inductively that B ∈ Card(H, K ) if for any 1 ≤ j ≤ d there exists B j ⊂
D(z j,0, 1) ⊂ C,B j ∈ Car1(H, K ) so that B( j)

z ∈ Card−1(H, K ) for any

z ∈ C\B j , here B( j)
z = {

(z1, . . . , zd) ∈ B : z j = z
}
.

The definition is motivated by the following generalization of the usual
Cartan estimate to several variables. Note that given a set S that has a centre
of symmetry, we will let αS, α > 0, stand for the set scaled with respect to its
centre of symmetry.

Lemma 2.10 ([14, Lem. 2.15]). Let ϕ(z1, . . . , zd) be an analytic function
defined on a polydiskP = ∏d

j=1D(z j,0, 1), z j,0 ∈ C. Let M ≥ sup
z∈P

log |ϕ(z)|,
m ≤ log |ϕ(z0)|, z0 = (z1,0, . . . , zd,0). Given H � 1 there exists a setB ⊂ P ,
B ∈ Card

(
H1/d , K

)
, K = CdH(M − m), such that

log |ϕ(z)| > M − CdH(M − m) (2.19)

for any z ∈ 1
6P\B. Furthermore, when d = 1 we can take K = C(M − m)

and keep only the disks of B containing a zero of φ in them.

We note that the definition of the Cartan sets gives implicit information
about their measure.

Lemma 2.11 If B ∈ Card(H, K ) then

mesCd (B) ≤ C(d)e−H and mesRd (B ∩ R
d) ≤ C(d)e−H .

Proof The case d = 1 follows immediately from the definition of Car1. The
case d > 1 follows by induction, using Fubini and the definition of Card . ��

The following simple corollary of the Cartan estimate will allow us to
upgrade estimates from T

d , where we can take advantage of the fact that
H(x) is self-adjoint, to some complex neighborhood of Td .

Corollary 2.12 Let ϕ(z1, . . . , zd) be an analytic function defined on a poly-
disk P = ∏d

j=1D(x j,0, 1), x j,0 ∈ R. Assume supP log |ϕ(z)| ≤ 0 and

log |ϕ(x)| ≤ m < 0 for any x ∈ P ∩ R
d . Then for any z ∈ 1

24P ,

log |ϕ(z)| < c0m,
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with some c0 �d 1.

Proof Assume, to the contrary, that there exists z0 = (z j,0), |z0 − x0| < 1/24,
such that log

∣∣ϕ(z0)
∣∣ ≥ c0m, with c0 to be specified later. Take H � 1 and

find B ⊂ ∏d
j=1D(x j,0, 1/2), 2(B − z0) ∈ Card

(
H1/d , K

)
, K = c0CdH |m|,

such that
log
∣∣ϕ(z)

∣∣ > −c0CdH |m| (2.20)

for any z ∈ ∏d
j=1D(z j,0, 1/12)\B. Note that since |z0 − x0| < 1/24,

mesRd

( d∏
j=1

D(z j,0, 1/12) ∩ R
d) ≥ c1(d), c1 > 0.

On the other hand

mesRd

(B ∩ R
d) ≤ C(d) exp(−H

1
d ) � c1,

provided H � 1. So, there exists x ∈ (∏d
j=1D(z j,0, 1/12)\B

) ∩ R
d . This

implies log
∣∣ϕ(x)

∣∣ > −c0CdH |m| > m
2 , provided we choose c0 � 1 appro-

priately. This contradicts our assumptions. ��

Another simple consequence of Cartan’s estimate is the following statement
that we refer to as the spectral form of (LDT).

Corollary 2.13 ([16,Cor. 2.21]).Assume x ∈ T
d , E ∈ C, and L(E) > γ > 0.

Let σ, τ as in (LDT). If N ≥ (B0 + SV,E )C, C = C(a, b, ρ), and

∥∥(HN (x) − E)−1
∥∥ ≤ exp(Nσ/2),

then
log | fN (x, E)| > NLN (E) − N 1−τ/2.

2.3 Poisson’s formula

Recall that for any solution ψ of the difference equation H(x)ψ = Eψ ,
Poisson’s formula reads
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On the spectrum of multi-frequency 617

ψ(m) = G[a,b](x, E;m, a)ψ(a−1)+G[a,b](x, E;m, b)ψ(b+1), m ∈ [a, b].
(2.21)

With the help of Poisson’s formula one gets the following covering lemma.

Lemma 2.14 ([16, Lem. 2.22]). Let x ∈ T
d , E ∈ R, and [a, b] ⊂ Z. If for

any m ∈ [a, b], there exists an interval Im = [am, bm] ⊂ [a, b] containing m
such that

(1−δa,am )
∣∣GIm (x, E;m, am)

∣∣+ (1−δb,bm )
∣∣GIm (x, E;m, bm)

∣∣ < 1, (2.22)

then E /∈ spec H[a,b](x) (here δ·,· stands for the Kronecker delta).

We refer to the next result as the covering form of (LDT).

Lemma 2.15 ([16, Lem. 2.25]). Assume N ≥ 1, x0 ∈ T
d , E0 ∈ R, and

L(E0) > γ > 0. Let σ, τ as in (LDT). Suppose that for each point m ∈ [1, N ]
there exists an interval Im ⊂ [1, N ] such that:
(1) dist(m, [1, N ]\Im) ≥ |Im |/100,
(2) |Im | ≥ (B0 + SV,E0 + γ −1)C, C = C(a, b, ρ),
(3) log | f Im (x0, E0)| > |Im |L |Im |(E0) − |Im |1−τ/4.

Then for any (x, E) ∈ T
d × C such that

|x − x0|, |E − E0| < exp(−2max
m

|Im |1−τ/4),

we have
dist(E, spec HN (x)) ≥ exp(−2max

m
|Im |1−τ/4).

Remark 2.16 In some of the results to followwewill refer to intervals [a, b] ⊂
Z, with a, b ∈ Z. It should be clear that in this context the integers a, b are
different from the real constants a, b from the Diophantine condition. We also
note that in such results the dependence of the constants on a, b still refers to
the dependence on the Diophantine condition.

We give another formulation of the covering form of (LDT) that is better
suited for the setting of this paper.

Lemma 2.17 Assume x0 ∈ T
d , S ⊂ R, and L(E) > γ > 0 for E ∈ S. Let σ

as in (LDT), and a < b integers. Suppose that for each point m ∈ [a, b] there
exists an interval Jm such that m ∈ Jm and:

(1) dist(m, ∂ Jm) ≥ |Jm |/100,
(2) dist(spec HJm (x0), S) ≥ exp(−K ), with K < 1

2 minm |Jm |σ/2,
(3) K ≥ (B0 + SV + γ −1)C, C = C(a, b, ρ) (here a, b are as in (1.2)),
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618 M. Goldstein et al.

Let J = ⋃
m∈[a,b] Jm. Then for any |x − x0| < exp(−2K ) we have

dist(spec HJ (x), S) ≥ 1

2
exp(−K ).

Proof It is enough to consider the case S = {E0} because the full result follows
by applying this particular case to each E0 ∈ S. Furthermore, we can assume
|E0| ≤ ‖V ‖∞ + 4, because otherwise the conclusion holds trivially.

First we need to set up some intervals for which we will be able to apply
the covering lemma. Let Jm = [cm, dm]. Then

J = [c, d], c = inf
m

cm, d = sup
m

dm .

Let

m− = sup{m ∈ [a, b] : cm = c}, m+ = inf{m ∈ [a, b] : dm = d},

Im =

⎧⎪⎨
⎪⎩
Jm−, m ∈ [c,m−]
Jm, m ∈ [m−,m+]
Jm+, m ∈ [m+, d]

.

Then dist(m, J\Im) ≥ |Im |/100.
Take m ∈ [c, d]. Using (2) and (3) (also recall (2.7)), for any

|x − x0| < exp(−2K ), |E ′ − E0| ≤ 1

2
exp(−K )

we have

dist(spec HIm (x), E ′) ≥ 1

4
exp(−K ) > exp(−|Im |σ/2).

Combining the spectral form of (LDT) from Corollary 2.13 with Lemma 2.8
we get

∣∣GIm (x, E ′;m, k)
∣∣ ≤ exp

(
−γ

2
|m − k| + 3

2
|Im |1−τ/2

)
.

Using (1) and (3) (which implies |Im | � 1), the assumptions of Lemma 2.14
are satisfied, and therefore E ′ /∈ spec HN (x) for any |E ′ − E0| ≤ 1

2 exp(−K ).
This yields the conclusion. ��
Remark 2.18 Obviously, for the covering forms of (LDT) it is enough to have
a collection of intervals that overlap near their edges for a fraction of their size.
We will use this observation tacitly when we invoke the above results.
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On the spectrum of multi-frequency 619

In connection with the estimates given by the covering form of (LDT) we
recall the following elementary criterion for an energy not to be in the spectrum.

Lemma 2.19 ([16, Lem. 2.39]). If for some x ∈ T
d , E ∈ R, ρ > 0, there

exist sequences N ′
s → ∞, N ′′

s → +∞ such that

dist(E, spec H[−N ′
s ,N

′′
s ](x)) ≥ ρ,

then
dist(E, spec H(x)) ≥ ρ.

2.4 Finite scale localization

The covering and spectral forms of (LDT) can be used to obtain localization
of the eigenfunctions on a finite interval. The following result is a version of
[16, Prop. 3.1] that is better suited to the setting of Sects. 5 and 6.

Proposition 2.20 Let x0 ∈ T
d , E0 ∈ R, and assume L(E0) > γ > 0. Let

σ as in (LDT) and 0 < β < σ/2. Let N ≥ N0 be integers. Assume that
for any 3N0/2 < |m| ≤ N there exists an interval Jm such that m ∈ Jm,
dist(m, ∂ Jm) ≥ N0 − N 1/2

0 , |Jm | ≤ 10N0, and

dist(spec HJm (x0), E0) ≥ exp(−Nβ
0 ).

Let
[−N ′, N ′′] = [−3N0/2, 3N0/2] ∪

⋃
3N0/2<|m|≤N

Jm .

Then the following holds provided N0 ≥ (B0 + SV + γ −1)C, C =
C(a, b, ρ, β). If

|x − x0| < exp(−2Nβ
0 ), |E [−N ′,N ′′]

k (x) − E0| <
1

4
exp(−Nβ

0 ),

then

|ψ [−N ′,N ′′]
k (x, n)| < exp (−γ |n|/10) , |n| ≥ 3N0/4.

Proof Take x, E = E [−N ′,N ′′]
k (x), satisfying the assumptions, andwithout loss

of generality assume n ≥ 3N0/4. Let d = �n − N0/2�. Note that d > n/3.
Let

J =
⋃

{Jm : m ∈ [n − d, n + d + N0] ∩ (3N0/2, N ]}
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(we add N0 to make sure 3N0/2 < n + d + N0, so that the intersection is not
empty). Note that by the assumptions on Jm we havem+[−(N0−N 1/2

0 ), N0−
N 1/2
0 ] ⊆ Jm , N0 < |J | � d, n ∈ J , and dist(n, [−N ′, N ′′]\J ) ≥ d. Using

the covering form of (LDT),

dist(HJ (x), E) ≥ 1

4
exp(−Nβ

0 ) > exp(−|J |σ/2),

and by the spectral form of (LDT),

log | f J (x, E)| ≥ |J |L(E) − |J |1−τ/2. (2.23)

Using Lemma 2.8 and Poisson’s formula we get

∣∣∣ψ [−N ′,N ′′]
k (x, n)

∣∣∣ ≤ 2 exp
(
−γ

2
d + C |J |1−τ/2

)

< exp
(
−γ

3
d
)

< exp
(
− γ

10
n
)

(recall that ψ is normalized). ��
Next we discuss the stability of localized eigenpairs when we increase the

scale. Again, the particular set-up is motivated by the setting of Sects. 5 and 6.
We will use the following elementary lemma from basic perturbation theory.

Lemma 2.21 ([16, Lem. 2.40]). Let A be an N × N Hermitian matrix. Let
E, ε ∈ R, ε > 0, and suppose there exists φ ∈ R

N , ‖φ‖ = 1, such that

‖(A − E)φ‖ < ε. (2.24)

Then the following statements hold.

(a) There exists a normalized eigenvector ψ of A with an eigenvalue E0 such
that

E0 ∈ (E − ε
√
2, E + ε

√
2),

|〈φ, ψ〉| ≥ (2N )−1/2. (2.25)

(b) If in addition there exists η > ε such that the subspace of the eigenvectors
of A with eigenvalues falling into the interval (E − η, E + η) is at most
of dimension one, then there exists a normalized eigenvector ψ of A with
an eigenvalue E0 ∈ (E − ε, E + ε), such that

‖φ − ψ‖ <
√
2η−1ε. (2.26)
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Proposition 2.22 We use the notation and assumptions of Proposition 2.20.
We further assume that there exist integers |N ′

0 − N0| < N 1/2
0 , |N ′′

0 − N0| <

N 1/2
0 , and k0, such that the following conditions hold:

(i) |E [−N ′
0,N

′′
0 ]

k0
(x0) − E0| < exp(−2Nβ

0 ),

(ii) |E [−N ′
0,N

′′
0 ]

j (x0) − E
[−N ′

0,N
′′
0 ]

k0
(x0)| > exp(−Nβ

0 ), j �= k0,

(iii) |ψ [−N ′
0,N

′′
0 ]

k0
(x0, −N ′

0)|, |ψ
[−N ′

0,N
′′
0 ]

k0
(x0, N ′′

0 )| < exp(−2Nβ
0 ).

Then there exist E [−N ′,N ′′]
k , ψ

[−N ′,N ′′]
k , such that the following estimates hold

for any |x − x0| < exp(−2Nβ
0 ), provided N0 ≥ (B0 + SV + γ −1)C, C =

(a, b, ρ, β):

(1) |E [−N ′,N ′′]
k (x) − E

[−N ′
0,N

′′
0 ]

k0
(x)| < exp(−γ N0/20),

(2) |E [−N ′,N ′′]
j (x) − E [−N ′,N ′′]

k (x)| > 1
8 exp(−Nβ

0 ), j �= k,

(3) |ψ [−N ′,N ′′]
k (x, n)| < exp (−γ |n|/10), |n| ≥ 3N0/4,

(4) ‖ψ [−N ′,N ′′]
k (x, ·) − ψ

[−N ′
0,N

′′
0 ]

k0
(x, ·)‖ < exp(−γ N0/20).

Furthermore, if we additionally have

dist(spec HJm (x0), (−∞, E0]) ≥ exp(−Nβ
0 ), 3N0/2 < |m| ≤ N (2.27)

(Jm as in Proposition 2.20) and

(ii′) E [−N ′
0,N

′′
0 ]

j (x0) − E
[−N ′

0,N
′′
0 ]

k0
(x0) > exp(−Nβ

0 ), j �= k0,

then

(2′) E [−N ′,N ′′]
j (x) − E [−N ′,N ′′]

k (x) > 1
8 exp(−Nβ

0 ), j �= k.

Proof Due to condition (iii),

‖(H[−N ′,N ′′](x0) − E
[−N ′

0,N
′′
0 ]

k0
(x0))ψ

[−N ′
0,N

′′
0 ]

k0
(x0, ·)‖ � exp(−2Nβ

0 ),

where we naturally extend ψ
[−N ′

0,N
′′
0 ]

k0
to [−N ′, N ′′] by adding zero entries.

Part (a) in Lemma 2.21 applies and we get that there exists k = k(x0) such
that

|E [−N ′,N ′′]
k (x0) − E

[−N ′
0,N

′′
0 ]

k0
(x0)| � exp(−2Nβ

0 ).

Then for |x − x0| < exp(−2Nβ
0 ) (recall (2.7)) we have

|E [−N ′,N ′′]
k (x) − E

[−N ′
0,N

′′
0 ]

k0
(x)| � exp(−Nβ

0 ),

|E [−N ′,N ′′]
k (x) − E0| � exp(−Nβ

0 ).
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Due to the last estimate, Proposition 2.20 applies and (3) follows. This implies

‖(H[−N ′
0,N

′′
0 ](x) − E [−N ′,N ′′]

k (x))ψ [−N ′,N ′′]
k (x, ·)‖

� exp(−γ (N0 − N 1/2
0 )/10).

Due to condition (ii), part (b) in Lemma 2.21 applies with H[−N ′
0,N

′′
0 ](x) in the

role of A and η = c exp(−Nβ
0 ), c � 1. This yields (1) and (4). To prove (2)

assume to the contrary that there exist j �= k and x such that

|E [−N ′,N ′′]
j (x) − E [−N ′,N ′′]

k (x)| ≤ 1

8
exp(−Nβ

0 ).

It follows that

|E [−N ′,N ′′]
j (x) − E

[−N ′
0,N

′′
0 ]

k0
(x)| <

1

4
exp(−Nβ

0 ),

|E [−N ′,N ′′]
j (x) − E0| <

1

4
exp(−Nβ

0 ).

Proposition 2.20 applies and we get

|ψ [−N ′,N ′′]
j (x, n)| < exp (−γ |n|/10) , |n| ≥ 3N0/4.

Now just as above we have

‖ψ [−N ′,N ′′]
j (x, ·) − ψ

[−N ′
0,N

′′
0 ]

k0
(x, ·)‖ < exp(−γ N0/20)

and hence

‖ψ [−N ′,N ′′]
j (x, ·) − ψ

[−N ′,N ′′]
k (x, ·)‖ � exp(−γ N0/20) < 1.

Since, ψ [−N ′,N ′′]
k (x, ·), ψ [−N ′,N ′′]

j (x, ·) are normalized eigenvectors with dif-
ferent eigenvalues

‖ψ [−N ′,N ′′]
j (x, ·) − ψ

[−N ′,N ′′]
k (x, ·)‖2 = 2.

This contradiction verifies (2).
Finally, we check (2′). Clearly all the estimates obtained so far hold with

the extra assumptions. Assume to the contrary that there exist j �= k and x
such that (4′) fails. By (4) we must have

E [−N ′,N ′′]
j (x) < E [−N ′,N ′′]

k (x) − 1

8
exp(−Nβ

0 ).
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It follows that

E [−N ′,N ′′]
j (x) < E

[−N ′
0,N

′′
0 ]

k0
(x) − 1

4
exp(−Nβ

0 ),

E [−N ′,N ′′]
j (x) < E0 − 1

4
exp(−Nβ

0 ).

By (ii′) and (2.27) (recall (2.7)) we get

dist(spec H[−N ′
0,N

′′
0 ](x), E

[−N ′,N ′′]
j (x)) >

1

4
exp(−Nβ

0 ),

dist(spec HJm (x), E [−N ′,N ′′]
j (x)) >

1

2
exp(−Nβ

0 ).

It follows from Lemma 2.17 that E [−N ′,N ′′]
j (x) /∈ spec H[−N ′,N ′′](x). This

contradiction concludes the proof. ��

2.5 Semialgebraic sets

Recall that a set S ⊂ R
n is called semialgebraic if it is a finite union of sets

defined by a finite number of polynomial equalities and inequalities. More
precisely, a semialgebraic set S ⊂ R

n is given by an expression

S = ∪ j ∩
∈L j {P
s j
0},

where {P1, . . . , Ps} is a collection of polynomials of n variables,

L j ⊂ {1, . . . , s} and s j
 ∈ {>, <, =}.

If the degrees of the polynomials are bounded by d, then we say that the degree
of S is bounded by sd. See [5, Ch. 9] for more information on semialgebraic
sets.

In our context, semialgebraic sets can be introduced by approximating the
analytic potential V with a polynomial Ṽ . More precisely, given N ≥ 1,
by truncating V ’s Fourier series and the Taylor series of the trigonometric
functions, one can obtain a polynomial Ṽ of degree less than

C(d, ρ)(1 + log ‖V ‖∞)N 4

such that
sup
x∈Td

|V (x) − Ṽ (x)| ≤ exp(−N 2). (2.28)
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If we let H̃ be the operator with the truncated potential Ṽ , we have

sup
x∈Td

∥∥∥H[a,b](x) − H̃[a,b](x)
∥∥∥ ≤ exp(−N 2) (2.29)

for any [a, b] ⊆ Z.
Our use of semialgebraic sets will be limited to applying the following

result.

Lemma 2.23 ([5, Cor. 9.6]). Let S ⊂ [0, 1]n be semialgebraic of degree B.
Let ε > 0 be a small number and mesn(S) < εn. Then S may be covered by

at most BC
(1

ε

)n−1
balls of radius ε

2.6 Resultants

We briefly recall the definition of the resultant of two univariate polynomials
and some of the basic properties that we will use in Sect. 9. Let

P(z) = anz
n+an−1z

n−1+· · ·+a0, Q(z) = bmz
m+bm−1z

m−1+· · ·+b0

be polynomials, ai , b j ∈ C, an �= 0, bm �= 0. Let ζi , 1 ≤ i ≤ n and η j ,
1 ≤ j ≤ m be the zeros of P and Q respectively. The resultant of P and Q is
the quantity

Res(P, Q) = amn b
n
m

∏
i, j

(ζi − η j ). (2.30)

The resultant can be expressed explicitly in terms of the coefficients (see [20]):

Res(P, Q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an bm

an−1
. . . bm−1

. . .
...

. . . an
...

. . . bm

a0
. . . an−1 b0

. . . bm−1
. . .

...
. . .

...

︸ ︷︷ ︸
m

a0 ︸ ︷︷ ︸
n

b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.31)

Lemma 2.24 Let P, Q, ζi , η j as above and rP = maxi |ζi |, rQ = max j |η j |.
If there exists z such that

max(|P(z)|, |Q(z)|) < min(|an|, |bm |)δmax(m,n), (2.32)
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for some δ ∈ (0, 1), then

∣∣Res(P, Q)
∣∣ < 2|an|m |bm |n(2r)mn−1δ,

with r = max(rP , rQ).

Proof For (2.32) to hold there must exist ζi0, η j0 such that |z − ζi0 | < δ,
|z − η j0 | < δ and therefore, using (2.30),

|Res(P, Q)| ≤ |an|m |bm |n(2r)mn−1|ζi0 − η j0 | < |an|m |bm |n(2r)mn−12δ.

��
For the application of the previous lemma in Sect. 9 we will also need a

couple of auxiliary results. First, recall the following elementary bound for the
location of zeros of a polynomial due to Cauchy (see [21, Thm. (27,2)]).

Lemma 2.25 All the zeros of a polynomial P(z) = anzn +an−1zn−1 · · ·+a0,
an �= 0, n ≥ 1, are located in the disk |z| < 1 + maxk<n |ak/an|.

Second, we will need the following consequence of Cartan’s estimate.

Lemma 2.26 Let P(z) = anzn + an−1zn−1 + · · · + a0, n ≥ 1, an �= 0,
M = maxi |ai |. There exists an absolute constant C0 such that for any H � 1,
we have

mes{x ∈ [0, 2π ] : log |P(exp(i x))| < logM − C0nH} < exp(−H/2).

Proof Using Cauchy estimates,

M ≤ max|z|=1
|P(z)|.

In particular, there exists z0, |z0| = 1, such that log |P(z0)| ≥ logM . At the
same time

sup
|z|≤100

|P(z)| ≤ 2M100n.

Given H � 1, by Cartan’s estimate, there exists B = ⋃k0
k=1D(ζk, rk),∑

k rk � exp(−H), such that

log |P(z)| ≥ log(2M100n)−CH(log(2M100n)− logM) ≥ logM −C ′nH,

for any z ∈ D(0, 2)\B. The conclusion follows. ��
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3 Basic tools at large coupling

In this section we discuss some results that rely on having a large coupling
constant. So, we work with operators of the form (1.1). As in the previous
section we assume that V extends complex analytically to T

d
ρ . Furthermore,

we assume that V is not constant.
Our first goal is to give an explicit expression for the constant B0 from the

previous section (recall (2.13)). To this end we will obtain, in Proposition 3.4,
a version of Theorem 2.2 and Proposition 2.4 at large coupling.

Let

ι = ι(V ) := inf
x∈Td

sup{|V (x ′) − V (x)| : x ′ ∈ T
d , |x ′ − x | ≤ ρ/100}. (3.1)

Since V is continuous and non-constant we have ι > 0.

Lemma 3.1 Let η ∈ C. For any H � 1 we have

mes{x ∈ T
d : | log |V (x) − η|| > HV,ηH} ≤ C(d) exp(−H1/d),

with

HV,η = C(d)(1 + max(0, log(‖V ‖∞ + |η|)) + max(0, log ι−1)).

Proof Given x0 ∈ T
d there exists x ′

0 ∈ T
d such that |x0 − x ′

0| ≤ ρ/100 and
either

|V (x0) − η| ≥ ι/2 or |V (x ′
0) − η| ≥ ι/2.

The conclusion follows by Lemmas 2.10, 2.11, and a covering argument. ��
To keep track of the dependence of the various constants on the potential

we introduce

TV = 2 + max(0, log ‖V ‖∞) + max(0, log ι−1). (3.2)

Note that SλV ≤ 2 log λ, when log λ � TV . In what follows we will restrict
ourselves to “spectral” values of E , that is, we will assume |E | ≤ λ ‖V ‖∞+4.

Lemma 3.2 There exists λ0(V ) = exp((TV )C ), C = C(d), such that the

following hold forλ ≥ λ0 and |E | ≤ λ ‖V ‖∞+4. For any N ≤ exp((log λ)
1
4d )

we have

|LN (E) − 2L2(E) + L1(E)| � (log λ)
1
2

N
,

|LN (E) − log λ| � (log λ)
1
2 ,
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and there exists a set BN , mes(BN ) < exp(−(log λ)
1
3d ), such that

∣∣ log | fN (x, E)| − log ‖MN (x, E)‖∣∣ � (log λ)1/2, (3.3)

for any x /∈ BN .

Proof Denote by B the set from Lemma 3.1 with η = E/λ and H =
(log λ)

1
3+ε, ε � 1. Set BN = ⋃

1≤ j≤N

(B − jω
)
. Note that we have

(log λ)1/2 ≥ HV,ηH and

mes(BN ) ≤ NC(d) exp(−(log λ)(
1
3+ε) 1d ) < exp(−(log λ)

1
3d ).

For x /∈ BN , 1 ≤ j ≤ N ,

|log |λV (x + jω) − E | − log λ| ≤ (log λ)
1
2

and therefore

∣∣ log | f
(x + ( j − 1)ω, E)| − 
 log λ
∣∣ � (log λ)

1
2 , 
 = 1, 2, (3.4)∣∣ log ‖M
(x + ( j − 1)ω, E)‖ − 
 log λ

∣∣ � (log λ)
1
2 , 
 = 1, 2. (3.5)

Applying the avalanche principle we get that for any x /∈ BN ,

log ‖MN (x, E)‖ =
N−2∑
j=0

log ‖M2(x + jω, E)‖ −
N−2∑
j=1

log ‖M1(x + jω, E)‖

+O(λ− 1
2 ) (3.6)

and

log | fN (x, E)|

= log

∥∥∥∥M2(x, E)

[
1 0
0 0

]∥∥∥∥+
N−3∑
j=1

log ‖M2(x + jω, E)‖

+ log

∥∥∥∥
[
1 0
0 0

]
M2(x + (N − 2)ω, E)

∥∥∥∥
−

N−2∑
j=1

log ‖M1(x + jω, E)‖ + O(λ− 1
2 ). (3.7)
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We used the fact that

log | fN (x)| = log

∥∥∥∥
[
1 0
0 0

]
MN (x)

[
1 0
0 0

]∥∥∥∥ (3.8)

(recall (2.2)). It follows that (3.3) holds. Integrating (3.6) yields

|NLN (E) − (N − 1)2L2(E) + (N − 1)L1(E)| ≤ Cλ− 1
2 + 4mes(BN )SλV

≤ exp(−(log λ)
1
4d ).

By integrating (3.4) we get

|L1(E) − log λ|, |L2(E) − log λ|
� (log λ)

1
2 + (SλV + log λ) exp(−(log λ)

1
3d )

� (log λ)
1
2 .

Therefore

|LN (E) − 2L2(E) + L1(E)| ≤ exp(−(log λ)
1
4d ) + 2(L1(E) − L2(E))

N

� (log λ)
1
2

N

and

|LN (E) − log λ| � (log λ)
1
2

N
+ (log λ)

1
2 � (log λ)

1
2 .

��
We use the avalanche principle to extend by induction the estimates of the

previous lemma for arbitrarily large N .

Lemma 3.3 Let E ∈ C, and σ, τ as in Theorem 2.1. There exist 
0(a, b, ρ)

and λ0(V ) = exp((TV )C ), C = C(d), such that the following hold for λ ≥ λ0,

 ≥ 
0, and |E | ≤ λ ‖V ‖∞ +4. Assume that for any 
 ≤ 
′, 
′′ ≤ 4
 we have

|L
′(E) − L
′′(E)| ≤ (log λ) log 




, L
′(E) ≥ 1

2
log λ, (3.9)

mes
{
x ∈ T

d : ∣∣ log | f
′(x, E)| − 
′L
′(E)
∣∣ > SλV (
′)1−τ/2

}

< exp(−(
′)σ/2). (3.10)
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Then for 
10 ≤ N ≤ 
100, N ≤ N ′, N ′′ ≤ 4N, we have

|LN ′(E) − LN ′′(E)| ≤ (log λ) log N

N
,

LN ′(E) ≥ L
(E) − 2(log λ) log 




− (log λ) log N ′

3N ′ ,

mes
{
x ∈ T

d : ∣∣ log | fN ′(x, E)| − N ′LN ′(E)
∣∣ > SλV (N ′)1−τ/2

}

< exp(−(N ′)σ/2).

Proof We first prove the statements pertaining to the Lyapunov exponents.
The derivation follows the method in [13, Lemma 4.2]. We omit some details.
We also suppress E from most of the notation. To shorten the presentation we
consider the case N = n
, n ∈ N, only. By Theorem 2.1 and (3.9) we have

log ‖M
(x + j
ω)‖ ≥ 
L
 − C0SλV 
1−τ ≥ 1

4

 log λ (3.11)

and

log ‖M
(x + j
ω)‖ + log ‖M
(x + ( j + 1)
ω)‖ − log ‖M2
(x + j
ω)‖
≤ 2
(L
 − L2
) + 2C0SλV 
1−τ + C0SλV (2
)1−τ <

1

8

 log λ, (3.12)

for any 0 ≤ j ≤ N , x /∈ B, mes(B) ≤ 2n exp(−
σ ) ≤ exp(−
σ /2). With
these estimates in hand the avalanche principle kicks in and yields

log ‖MN (x)‖ =
n−2∑
j=0

log ‖M2
(x + j
ω)‖ −
n−2∑
j=1

log ‖M
(x + j
ω)‖

+O(exp(−(
 log λ)/8)), (3.13)

for any x /∈ B. Recalling (2.5) and integrating (3.13) over x yields
∣∣∣∣LN − n − 1

n
2L2
 + n − 2

n
L


∣∣∣∣ ≤ 1

N
C exp(−(
 log λ)/8) + 4mes(B)SλV

≤ exp(−c0

σ /4) log λ.

Therefore

|LN − 2L2
 + L
| ≤ exp(−c0

σ /4) log λ + 2

n
(L
 − L2
) ≤ 3(log λ) log 


N

≤ (log λ) log N

3N
.
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The same estimate also holds for general N (not just N = n
) and N ≤
N ′, N ′′ ≤ 4N . This implies the estimates for the Lyapunov exponents.
Next, we consider the statement about the determinants. The main tool here

is the application of the avalanche principle to expand log | fN |. The argument
is very close to the one in [14, Corollary 3.10]. Again we omit some details
and assume N = n
, n ∈ N. On top of (3.11) and (3.12), using Theorem 2.1
and (3.10) we have

log

∥∥∥∥M
(x)

[
1 0
0 0

]∥∥∥∥ ≥ log | f
(x)| ≥ 
L
 − SλV 
1−τ/2 ≥ 1

4

 log λ,

log

∥∥∥∥
[
1 0
0 0

]
M
(x + (n − 1)
ω)

∥∥∥∥ ≥ log | f
(x + (n − 1)
ω)| ≥ 1

4

 log λ,

log ‖M
(x)‖ + log ‖M
(x + ω)‖ − log ‖M2
(x)

[
1 0
0 0

]
‖ < 1

8
 log λ,

log ‖M
(x + (n − 2)
ω)‖ + log ‖M
(x + (n − 1)
ω)‖
− log ‖

[
1 0
0 0

]
M2
(x + (n − 2)
ω)‖ < 1

8
 log λ

for any x /∈ B′, mes(B′) ≤ 4 exp(−
σ/2). So we can apply the avalanche
principle to expand log | fN (x)| for x /∈ B∪B′ (similarly to (3.7)). Combining
this with (3.13) we get

log | fN (x)| = log ‖MN (x)‖ + log

∥∥∥∥M2
(x)

[
1 0
0 0

]∥∥∥∥− log ‖M2
(x)‖

+ log

∥∥∥∥
[
1 0
0 0

]
M2
(x + (n − 2)
ω)

∥∥∥∥− log ‖M2
(x + (n − 2)
ω)‖
+O(exp(−(
 log λ)/8)

≥ log ‖MN (x)‖ − 2SλV (2
)1−τ/2 − 2C0SλV (2
)1−τ ≥ NLN − SλV N
1−τ

(3.14)

for any x /∈ B ∪ B′ (recall that τ � 1). In particular, for any x0 ∈ T
d there

exists x1 ∈ T
d , |x1−x0| � ρN−1 such that log | fN (x1)| ≥ NLN −SλV N 1−τ .

On the other hand due to Corollary 2.7

sup
x∈Td ,|y|<ρN−1

log | fN (x + iy)| ≤ NLN + C(a, b, ρ)SλV N
1−τ .

Applying Cartan’s estimate (with H = N τ/3) and using a covering argument
we get
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mes
{
x : | log | fN (x)| − NLN | > SλV N

1−τ/2} ≤ C(d) exp(−N τ/(3d))

< exp(−Nσ/2),

(recall that σ � τ ). The same estimate also holds for general N and N ≤
N ′, N ′′ ≤ 4N . ��
Proposition 3.4 Let E ∈ C, and σ, τ as in Theorem 2.1. There exists
λ0(a, b, ρ, V ) = exp((TV )C), C = C(a, b, ρ), such that the following state-
ments hold for λ ≥ λ0 and |E | ≤ λ ‖V ‖∞ + 4.

(a) We have

LN (E) − L(E) ≤ C0(log λ) log N

N
, N ≥ 2,

L(E) ≥ log λ − C1(log λ)
1
2 >

1

2
log λ,

with C0 = C0(a, b, ρ) and C1 an absolute constant.
(b) For any N ≥ log λ we have

mes
{
x ∈ T

d : | log | fN (x, E)| − LN (E)| > SλV N
1−τ/2

}
<exp(−Nσ/2).

Proof of Proposition 3.4 (a) By Lemma 3.2, for 1 � 
 ≤ exp((log λ)
1
4d )/4,


 ≤ 
′, 
′′ ≤ 4
, we have

|L
′(E) − L
′(E)| ≤ C(log λ)
1
2



≤ (log λ) log 




,

L
′(E) ≥ log λ − C(log λ)
1
2 ≥ 1

2
log λ.

Let 
0 as in Lemma 3.3. We choose λ0 such that 
0 ≤ log λ0. Using the above,
Lemma 3.3, and induction we get that for any N ≥ 
0, N ≤ N ′, N ′′ ≤ 4N
we have

|LN ′(E) − LN ′′(E)| ≤ (log λ) log N

N
.

In particular we have

LN (E) − L2k N (E) ≤
k−1∑
j=0

(log λ) log(2 j N )

2 j N
≤ C(log λ) log N

N
,
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with C an absolute constant. The first statement of part (a) follows by letting
k → ∞ and by adjusting the constant C to also cover the case N < 
0. The

second statement follows from the fact that for 
 = �exp((log λ)
1
4d )�, we have

L(E) ≥ L
(E) − C(log λ) log 




≥ log λ − C(log λ)

1
2 − exp(−(log λ)

1
5d )

≥ log λ − C ′(log λ)
1
2 .

(b) Take log λ ≤ 
 ≤ (log λ)100. Using Lemma 3.2 and Theorem 2.1 we get

mes
{
x : | log | f
(x, E)| − 
L
(E)| > C0SλV 
1−τ + C(log λ)

1
2

}

< exp(−(log λ)
1
3d ).

Note that with this choice of 
 we have

C0SλV 
1−τ + C(log λ)
1
2 < SλV 
1−τ/2, exp(−(log λ)

1
3d ) < exp(−
σ/2)

(recall that σ � τ � 1). Recalling that 
0 ≤ log λ0, the conclusion follows
by Lemma 3.3 and induction. ��
Remark 3.5 (a) The previous proposition shows that for λ ≥ λ0 � 1 and

|E | ≤ λ ‖V ‖∞ + 4, Theorem 2.2 holds with N0 = (log λ)C(a,b), and
Proposition 2.4 holds with C0 = C(a, b, ρ) log λ. Therefore, for such λ

and E we can take B0 = (log λ)C(a,b,ρ). By inspection of the previous
proofs one can see that for |E | > λ ‖V ‖∞ + 4 we can take B0 = (log λ +
log |E |)C(a,b,ρ), but we will not use this fact.

(b) The positivity of the Lyapunov exponent for λ ≥ λ0 � 1 is well-known
(see [6,10,13]). We only included the proof because it is an easy conse-
quence of the lemmas we needed for the other statements.

Next we establish a version of the covering form of (LDT) and of the result
on finite scale localization from Proposition 2.22, starting from the potential.
Wewill need these results in Sect. 7 to connect the assumptions on the potential
to the initial conditions required by our inductive schemes from Sects. 5 and 6.

Lemma 3.6 Let x0 ∈ T
d , [a, b] ⊂ Z, a < b. There exists λ0(V ) =

exp((TV )C ), C = C(ρ), such that the following hold for λ ≥ λ0 and
|E0| ≤ λ ‖V ‖∞ + 4. Assume

|V (x0 + nω) − λ−1E0| ≥ exp(−K ), for any n ∈ [a, b],
with some K ≥ (log λ)1/3. Then for any |x−x0| < exp(−2K ), λ−1|E−E0| <
1
2 exp(−K ),
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(a) dist(spec H[a,b](x), E0) ≥ 1
2λ exp(−K ),

(b)
∣∣G[a,b](x, E; j, k)∣∣ ≤ exp (−(| j − k| + 1) log λ + C(b − a)K ),

where C is an absolute constant.

Proof For any |x − x0| < exp(−2K ), λ−1|E − E0| ≤ 1
2 exp(−K ),

|V (x + nω) − λ−1E | ≥ 1

4
exp(−K ), j ∈ [a, b]

(λ0 depends on ρ because we used a Cauchy estimate). Then

| log |λV (x + nω) − E | − log λ| � K , n ∈ [a, b]

(note that |V (x+nω)−λ−1E | ≤ exp((log λ)1/3) ≤ exp(K ), for large enough
λ) and this implies

∣∣ log | f
(x + (n − 1)ω, E)| − 
 log λ
∣∣ � K , n ∈ [a, b − 
], 
 = 1, 2,∣∣ log ‖M
(x + (n − 1)ω, E)‖ − 
 log λ
∣∣ � K , n ∈ [a, b − 
], 
 = 1, 2.

Applying the avalanche principle (as in the proof of Lemma 3.2) we have

log | f[a,b](x, E)| = log

∥∥∥∥M2(x + (a − 1)ω, E)

[
1 0
0 0

]∥∥∥∥
+

b−a−2∑
n=a

log ‖M2(x + nω, E)‖

+ log

∥∥∥∥
[
1 0
0 0

]
M2(x + (b − a − 1)ω, E)

∥∥∥∥
−

b−a−1∑
n=a

log ‖M1(x + nω, E)‖ + O(λ− 1
2 ).

It then follows that

| log | f[a,b](x, E)| − (b − a + 1) log λ| � (b − a + 1)K ,

In particular, E /∈ spec H[a,b](x). This implies (a). Analogous estimates hold
on any subinterval of [a, b]. Using these estimates and Cramer’s rule for the
resolvent we get (for j ≤ k)

log
∣∣G[a,b](x, E; j, k)∣∣ = log

∣∣ f[a, j−1](x, E)
∣∣+ log

∣∣ f[k+1,b]
(
x, E

)∣∣
− log

∣∣ f[a,b](x, E)
∣∣
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≤ [( j − a) + (b − k)](log λ + CK )

−(b − a + 1)(( j − a)(log λ − CK ))

≤ ( j − k − 1) log λ + C ′(b − a)K .

This implies (b). ��
Corollary 3.7 Let x0 ∈ T

d , S ⊂ R, [a, b] ⊂ Z, a < b. There exists λ0(V ) =
exp((TV )C ), C = C(ρ), such that the following hold for λ ≥ λ0. If

dist(V (x0 + nω), λ−1S) ≥ exp(−K ), for any n ∈ [a, b],
with some K ≥ (log λ)1/3, then for any |x − x0| < exp(−2K ),

dist(spec H[a,b](x), S) ≥ 1

2
λ exp(−K ).

Proof This follows by applying Lemma 3.6 (a) for each E0 ∈ S with |E0| ≤
λ ‖V ‖∞ +4. Note that for |E0| > λ ‖V ‖∞ +4, Lemma 3.6 (a) holds trivially.

��
In the results of this section we could have used (log λ)ε, ε ∈ (0, 1),

instead of (log λ)1/2. So far, working in such generality wasn’t needed. How-
ever, we will need this setting for the applications of the next lemma. Recall
Remark 2.16.

Lemma 3.8 Let x0 ∈ T
d , a < 0 < b, ε ∈ (0, 1), and assume

|V (x0 + nω) − V (x0)| ≥ exp(−(log λ)ε), for any n ∈ [a, b]\{0}.
There exists λ0(V ) = exp((TV )C ), C = C(ρ, ε), such that the following
hold for λ ≥ λ0. There exist E [a,b]

k , ψ
[a,b]
k such that for any |x − x0| <

exp(−3(log λ)ε) the following estimates hold:

(1) |λ−1E [a,b]
k (x) − V (x)| ≤ 2λ−1,

(2) |ψ [a,b]
k (x, n)| < exp(−(log λ)|n|/2), |n| > 0,

(3) |ψ [a,b]
k (x, 0) − 1| < exp(−(log λ)/2),

(4) λ−1|E [a,b]
j (x) − E [a,b]

k (x)| ≥ 1
8 exp(−(log λ)ε), j �= k.

Furthermore, if

V (x0 + nω) − V (x0) ≥ exp(−(log λ)ε), for any n ∈ [a, b]\{0}, (3.15)

then

(4’) λ−1(E [a,b]
j (x) − E [a,b]

k (x)) ≥ 1
8 exp(−(log λ)ε), j �= k.
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Proof The proof is very similar to the one of Proposition 2.22. We have

‖(λ−1H[a,b](x) − V (x))δ0‖ ≤ √
2λ−1,

where δ0 stands for the standard unit vector with mass concentrated at 0. By
Lemma 2.21 there exists k = k(x) such that (1) holds. At the end we will
argue that k(x) = k(x0). Note that

λ−1|E [a,b]
k (x) − E0| � exp(−2(log λ)ε), E0 = λV (x0).

Estimate (2) now follows from Poisson’s formula and Lemma 3.6 (b) (applied,
for n > 0, on [1, 2n]∩[a, b]). Sinceψ

[a,b]
k is normalized, estimate (3) follows

from (2) (obviously, we choose ψ
[a,b]
k such that ψ

[a,b]
k (x, 0) ≥ 0). To prove

(4) assume to the contrary that there exist j �= k and x such that

λ−1|E [a,b]
j (x) − E [a,b]

k (x)| <
1

8
exp(−2(log λ)ε).

Then
λ−1|E [a,b]

j (x) − E0| < exp(−2(log λ)ε), E0 = λV (x0).

and just as above we get

|ψ [a,b]
j (x, n)| < exp(−(log λ)|n|/2), |n| > 0,

|ψ [a,b]
j (x, 0) − 1| < exp(−(log λ)/2).

Therefore
∥∥∥ψ [a,b]

j (x, ·) − ψ
[a,b]
k (x, ·)

∥∥∥ � 1, contradicting the fact that

∥∥∥ψ [a,b]
j (x, ·) − ψ

[a,b]
k (x, ·)

∥∥∥2 = 2.

Now we argue that k(x) = k(x0). Since

|λ−1E [a,b]
k(x0)

(x0) − V (x0)| ≤ 2λ−1,

we have
|λ−1E [a,b]

k(x0)
(x) − V (x)| � exp(−2(log λ)ε),

and the conclusion follows using (1) and (4).
Finally, suppose that (3.15) holds. Clearly, estimates (1)–(4) still hold. Sup-

pose to the contrary that there exist j �= k and x such that (4′) fails. By (4) we
must have

λ−1E [a,b]
j (x) < λ−1E [a,b]

k (x) − 1

8
(log λ)ε.

123



636 M. Goldstein et al.

By (1),

λ−1E [a,b]
j (x) < V (x) − 1

4
(log λ)ε.

Note that due to (3.15),

V (x + nω) − V (x) ≥ 1

2
(log λ)ε,

for |x − x0| < exp(−3(log λ)ε). It follows that

|V (x + nω) − λ−1E [a,b]
j (x)| ≥ 1

4
(log λ)ε, n ∈ [a, b],

and by Lemma 3.6, E [a,b]
j (x) /∈ spec H[a,b](x). This contradiction shows that

(4′) holds. ��
Corollary 3.9 Using the assumptions andnotation of Lemma3.8 the following
hold. For simplicity let E [a,b], ψ [a,b] be the eigenpair from Lemma 3.8. If
N ≥ 1, [−N , N ] ⊂ [a, b], then for any |x − x0| < exp(−3(log λ)ε),

|E [a,b](x) − E [−N ,N ](x)| � exp(−(log λ)N/2).

Proof Using (2) from Lemma 3.8, we have

∥∥∥(H[−N ,N ](x) − E [a,b](x))ψ [a,b](x, ·)
∥∥∥ � exp(−(log λ)N/2).

The conclusion follows from Lemma 2.21, and (1) and (4) from the previous
lemma. ��

4 Cartan type estimates along level sets near a non-degenerate
extremum point

The goal of this section is to prove the next proposition that we will use to
handle the edges of the spectrum in Sect. 6. We let H( f ) stand for the Hessian
of a function f . When the function is clear from the context, we will simply
write H. Recall that ‖·‖ denotes the Euclidean norm, and | · | denotes the
sup-norm.

Proposition 4.1 Let f (x) be a real-analytic function defined on {x ∈ R
n :

|x | < r0}, r0 < 1, which extends analytically to the polydisk P := {z ∈ C
n :

|z| < r0}. Assume that
f (0) = 0, ∇ f (0) = 0,
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H(0) ≥ ν0 I, 0 < ν0 < 1.

Let M(k) = max|α|=k supP |∂α f |. Set

ν1 := c(n)ν0(1 + M(2) + M(3))−1, ρ = r0ν
10
1 ,

with c(n) a sufficiently small constant. Let 0 < ‖x0‖ < ρ, E0 = f (x0), r =
ν1 ‖x0‖. Then there exists a real-analytic map x(y, E), (y, E) ∈ R

n−1 × R,
|y| < r , |E − E0| < r2, such that

f (x(y, E)) = E, x(0, E0) = x0

and satisfying the following properties.

(I) The map x(y, E) extends analytically to {(w, E) ∈ C
n−1 × C : |w| <

r, |E − E0| < r2} and satisfies

‖x(w, E) − x0‖ <
‖x0‖
2

.

(II) For any |E − E0| < r2, any vector h ∈ R
n with 0 < ‖h‖ < ρ, and any

H � 1, we have

mes{y ∈ R
n−1, |y| < r : log | f (x(y, E) + h) − E | ≤ H0H}

≤ (ν−2
1 r)n−1 exp(−H

1
n−1 ),

with H0 = C(n) log(‖h‖ ‖x0‖).
(III) Let h0 ∈ R

n be an arbitrary unit vector. For any |E − E0| < r2, and any
H � 1, we have

mes{y ∈ R
n−1, |y| < r : log ∣∣〈∇ f (x(y, E)), h0〉

∣∣ ≤ H1H}
≤ (ν−2

1 r)n−1 exp(−H
1

n−1 ),

with H1 = C(n) log(ν1‖x0‖).
Part (I) of the proposition is a version of the implicit function theorem. For

parts (II) and (III) we will apply Cartan’s estimate to f along its level sets. To
apply it we need a reference point with a “nice” lower bound estimate. So, it
is important to accurately book-keep the size of the neighborhood where one
can apply the implicit function theorem for it limits the search for the point
in question. The same applies to all auxiliary estimates in the proof. For that
matter we need to work out a version of the implicit function theorem, explicit
enough for our purposes (see Lemma 4.4).
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Lemma 4.2 Let f (z, w) be an analytic function defined on the polydisk

P = {(z, w) ∈ C × C
n : |z|, |w| < ρ0}.

Let M1 = sup |∂z f |, M(2) = max|α|=2 sup
∣∣∂α f

∣∣. Assume that f (0, 0) = 0,
μ0 := |∂z f (0, 0)| > 0. Let

ρ1 ≤ min(ρ0/2, c(n)μ0M(2)−1), ri = c(n)ρ1 min(1, μ0/|∂wi f (0, 0)|),

with c(n) a sufficiently small constant. Then for anyw, |wi | < ri , the equation

f (z, w) = 0

has a unique solution |z(w)| < ρ1 which is an analytic function of w.

Proof Take arbitrary w, |wi | < ri , and z, |z| = ρ1. Then by Taylor’s formula
and the definition of ρ1, ri ,

∣∣ f (z, w)
∣∣ ≥ |∂z f (0, 0)||z| − |〈∇w f (0, 0), w〉| − C(n)M(2) ‖(z, w)‖2

≥ μ0ρ1/2. (4.1)

In particular we also have

| f (z, 0)| ≥ |∂z f (0, 0)||z| − C(n)M(2)|z|2 > 0,

for 0 < |z| ≤ ρ1. So, f (z, 0) has a simple root at z = 0 and no other roots in
the disk |z| < ρ1, hence

1

2π i

∮
|z|=ρ1

∂z f (z, 0)

f (z, 0)
dz = 1.

By continuity,

1

2π i

∮
|z|=ρ1

∂z f (z, w)

f (z, w)
dz = 1,

for |wi | < ri . This means z → f (z, w) has one simple root z(w) in the disk
{|z| < ρ1} and by the residue theorem

z(w) = 1

2π i

∮
|z|=ρ1

z
∂z f (z, w)

f (z, w)
dz.

Clearly, the function on the right-hand side is analytic in w for |wi | < ri . ��
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For the proof of part (II) of Proposition 4.1 it will be crucial that the size in
the direction of y of the polydisk where the implicit function is defined is of
magnitude� ‖∇ f ‖ and in particular is much bigger than� ‖∇ f ‖2 (assuming
‖∇ f ‖ < 1; see Lemma 4.9). This is one reasonwhy in Lemma 4.4we consider
implicit functions in the direction of the gradient. The second reason is the fact
that this way one gets some quadratic control over the implicit function (see
(4.2)).

Definition 4.3 Given a function f differentiable at x0 ∈ R
n , with μx0 :=

‖∇ f (x0)‖ > 0, we let nx0 = μ−1
x0 ∇ f (x0). Let ex0, j , 1 ≤ j ≤ n − 1 be an

orthonormal basis in {nx0}⊥. Given (ξ, y) ∈ R × R
n−1 we denote

ϕ(ξ, y; x0) := x0 + ξnx0 +
∑
j

y jex0, j .

The set-up of the lemmas to follow is tailored around that of Proposition 4.1.

Lemma 4.4 Let f (z) be an analytic function defined on P = {z ∈ C
n :

|z − x0| < ρ0}, x0 ∈ R
n. Let M(k) = max|α|=k sup |∂α f |. Assume μx0 :=

‖∇ f (x0)‖ > 0. Let E0 = f (x0). Let

ρ1 ≤ c(n)min(ρ0, μx0M(2)−1), r = c(n)ρ1, r ′ = c(n)ρ1 min(1, μx0),

with c(n) a sufficiently small constant. Then for any (w, E) ∈ C
n−1 × C,

|w| < r , |E − E0| < r ′, the equation

f (ϕ(ξ, w; x0)) = E

has a unique solution ξ = g(w, E) in |ξ | < ρ1 which is an analytic function
of w, E. Furthermore, the following statements hold.

(a) For any (w, E) ∈ C
n−1 × C, |w| < r , |E − E0| < r ′ we have

|g(w, E)| ≤ 2μ−1
x0 (|E − E0| + C(n)M(2)|w|2). (4.2)

(b) For any x ′
0 ∈ R

n,
∥∥x ′

0 − x0
∥∥ < r , such that f (x ′

0) = E, |E − E0| < r ′,
there exists y ∈ R

n, ‖y‖ ≤ ∥∥x ′
0 − x0

∥∥ such that x ′
0 = ϕ(g(y, E), y; x0).

Proof The existence and uniqueness of the solution ξ = g(w, E) follows from
Lemma 4.2 applied to F(ξ, w, E) = f (ϕ(ξ, w; x0))−E onP ′ = {(ξ, w, E) :
|ξ |, |w|, |E − E0| < cρ0}, with c small enough so that |ϕ(ξ, w; x0) − x0| <

ρ0/2, for |ξ |, |w| < cρ0. Note that

F(0, 0, E0) = 0, ∂ξ F(0, 0, E0) = μx0,
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∂wi F(0, 0, E0) = 0, ∂E F(0, 0, E0) = −1,

We just need to prove the claims (a),(b).
(a) Note that 〈∇ f (x0), ϕ(ξ, w; x0)− x0〉 = μx0ξ . Using Taylor’s formula we

have

f (ϕ(ξ, w; x0)) − f (x0) = μx0ξ + R(ξ, w),

with

|R(ξ, w)| ≤ C(n)M(2)(|ξ |2 + |w|2).
By setting ξ = g(w, E) we get

|g(w, E)| = μ−1
x0 |E − E0 − R(g(w, E), w)|

≤ μ−1
x0 (|E − E0| + C(n)M(2)(|g(w, E)|2 + |w|2))

≤ μ−1
x0 (|E − E0| + C(n)M(2)(ρ1|g(w, E)| + |w|2))

≤ 1

2
|g(w, E)| + μ−1

x0 (|E − E0| + C(n)M(2)|w|2),

provided ρ1 is small enough, and (4.2) follows.
(b) Let (ξ, y) ∈ R

n−1 × R be such that x ′
0 = ϕ(ξ, y; x0). We have |ξ |, |y| ≤∥∥x ′

0 − x0
∥∥. Since f (ϕ(ξ, y; x0)) = E , |ξ | < r < ρ1, and |y| < r , unique-

ness implies that ξ = g(y, E). ��
Remark 4.5 In Lemmas 4.2 and 4.4, if the function f is real-valued on R

n ,
then the implicit functions are also real-valued on R

n . Indeed, by the usual
implicit function theorem, the implicit functions will be real valued on some
small real polydisk, and by analyticity they will be real-valued on their whole
real domain.

Part (I) ofProposition4.1will followby letting x(y, E) = ϕ(g(y, E), y; x0),
with g as in the previous lemma. For part (II) it will be enough to prove the
result with E = E0, so we focus on this case. To simplify notation we let
g(y) := g(y, E0). Part (II) will follow from Cartan’s estimate as soon as we
find a point |y| � r such that

| f (x(y, E0) + h) − E0| = | f (ϕ(g(y), y; x0) + h) − f (x0)| ≥ ε,

with a certain ε = ε(‖h‖ , ‖x0‖). If | f (x0 + h) − f (x0)| ≥ ε, then we can
simply choose y = 0. We single out a simple case when this happens.

Lemma 4.6 Let f (x) be a smooth real function defined on {x ∈ R
n : |x −

x0| < ρ0}. Let M(k) = max|α|=k sup |∂α f |. Assume H(x0) ≥ νx0 I > 0 and
set
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ν1 := c(n)νx0(1 + M(3))−1.

with c(n) a sufficiently small constant. If ν−1
1 ‖∇ f (x0)‖ ≤ ‖h‖ < min(ν1, ρ0),

then

| f (x0 + h) − f (x0)| ≥ 1

4
νx0 ‖h‖2 .

Proof Using Taylor’s formula and the assumptions on h,

| f (x0 + h) − f (x0)|
≥ 1

2
|〈H(x0)h, h〉| − |〈∇ f (x0), h〉| − C(n)M(3) ‖h‖3

≥ 1

2
νx0 ‖h‖2 − ν1 ‖h‖2 − C(n)M(3)ν1 ‖h‖2 ≥ 1

4
νx0 ‖h‖2 .

��
Suppose that | f (x0 + h) − f (x0)| < ε. Then we want to find x ′

0 =
ϕ(g(y), y; x0), f (x ′

0) = f (x0), such that | f (x ′
0 + h) − f (x ′

0)| ≥ ε. To this
end it is enough to find x ′

0 such that | f (x ′
0+h)− f (x0+h)| ≥ 2ε. By Taylor’s

formula

f (x ′
0 + h) − f (x0 + h) = 〈∇ f (x0 + h), x ′

0 − x0〉 + O(|x ′
0 − x0|2).

The linear termwill dominate the quadratic term if the projection of x ′
0−x0 onto

∇ f (x0+h) is large relative to x ′
0− x0. By (4.2), the projection of x ′

0− x0 onto
∇ f (x0) is relatively small, so the projection onto {∇ f (x0)}⊥ is relatively large.
This means that if∇ f (x0) and∇ f (x0+h) are not too close to being collinear,
the projection of x ′

0 − x0 onto ∇ f (x0 + h) will be relatively large (see Fig. 1),

Fig. 1 If ∇ f (x0 + h) is not collinear with ∇ f (x0), then the projection of x ′
0 − x0 onto

∇ f (x0 + h) is relatively large
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and we should be able to find a lower bound on | f (x ′
0+h)− f (x0+h)| via the

linear term of the Taylor expansion. A quantitative version of this observation
is given in the next lemma.

Lemma 4.7 Using the notation and assumptions of Lemma 4.4 the following
hold. Let h ∈ R

n, |h| < ρ0/2, x1 = x0 + h, μx1 := ‖∇ f (x1)‖. Assume

〈∇ f (x1), ∇ f (x0)〉2 ≤ (1 − δ20)‖∇ f (x1)‖2‖∇ f (x0)‖2, 0 < δ0 ≤ 1.

Let
ρ ≤ c(n)min(r, μM(2)−1δ20) � r, μ = min(μx0, μx1),

where c(n) is a sufficiently small constant and r as in Lemma 4.4. Then there
exists

∥∥x ′
0 − x0

∥∥ ≤ 2ρ, x ′
0 = ϕ(g(y), y; x0), ‖y‖ ≤ ρ, such that

| f (x ′
0 + h) − f (x0 + h)| ≥ 1

2
μx1δ

2
0ρ.

Proof The case μx1 = 0 is trivial, so we assume μx1 > 0. Given n ∈ R
n, y ∈

R
n−1 and using the notation of Definition 4.3 let

p(n; x0) =
∑
j

〈ex0, j , n〉ex0, j , q(y; x0) =
∑
j

y jex0, j . (4.3)

Let nx1 = μ−1
x1 ∇ f (x1). We choose y ∈ R

n−1 such that q(y; x0) =
ρp(nx1; x0), with ρ as in the statement. Note that

1 ≥ ∥∥p(nx1; x0)∥∥2 = ∥∥nx1∥∥2 − 〈nx1, nx0〉2 ≥ 1 − (1 − δ20) = δ20 .

It follows that
‖y‖ = ‖q(y; x0)‖ = ρ

∥∥p(nx1; x0)∥∥ ≤ ρ

and

〈∇ f (x1), q(y; x0)〉 = μx1〈nx1, q(y; x0)〉 = μx1〈p(nx1; x0), q(y; x0)〉
= μx1ρ

∥∥p(nx1; x0)∥∥2 ≥ μx1δ
2
0ρ.

Let x ′
0 = ϕ(g(y), y; x0) with y as above. Then

∥∥x ′
0 − x0

∥∥ ≤ |g(y)| + ‖y‖ ≤ μ−1
x0 C(n)M(2) ‖y‖2 + ‖y‖ ≤ 2 ‖y‖ ≤ 2ρ,
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provided ρ is small enough. Note that we used (4.2). By Taylor’s formula

f (x ′
0 + h) − f (x0 + h) = 〈∇ f (x1), x

′
0 − x0〉 + R(x ′

0 − x0)

= 〈∇ f (x1), g(y)nx0〉 + 〈∇ f (x1), q(y; x0)〉
+R(x ′

0 − x0), (4.4)

with

|R(x ′
0 − x0)| ≤ C(n)M(2)‖x ′

0 − x0‖2 ≤ 4C(n)M(2)ρ2 ≤ 1

4
μx1δ

2
0ρ.

We also have

|〈∇ f (x1), g(y)nx0〉| ≤ μx1μ
−1
x0 C(n)M(2)ρ2 ≤ 1

4
μx1δ

2
0ρ.

The conclusion follows by combining the estimates we obtained for the terms
on the left hand side of (4.4). ��

Now we have to deal with the situation when | f (x0 + h)− f (x0)| < ε, and
∇ f (x0) and ∇ f (x0 + h) are close to being collinear. We show that for small
enough h this can only happen if h is very close to a particular “bad” direction.

Lemma 4.8 Let f (x) be a smooth real function defined on {x ∈ R
n : |x −

x0| < ρ0}. Let M(k) = max|α|=k sup |∂α f |. AssumeH(x0) ≥ νx0 I , 0 < νx0 <

1, and set

ν1 := c(n)νx0(1 + M(2) + M(3))−1

with c(n) a sufficiently small constant. Let 0 < ‖h‖ < min(ρ0, ν61). Assume
that the following conditions hold:

| f (x0 + h) − f (x0)| ≤ ‖h‖3, (4.5)

‖∇ f (x0 + h) − λ∇ f (x0)‖ ≤ ‖h‖2, (4.6)

with some λ ∈ R. Then

‖h + 2H(x0)
−1∇ f (x0)‖ ≤ ν−8

1 ‖∇ f (x0)‖2. (4.7)

Proof Note that (4.5) together with Lemma 4.6 imply ‖h‖ ≤ ν−1
1 ‖∇ f (x0)‖.

In particular, this implies ‖∇ f (x0)‖ > 0.
Combining (4.6) with Taylor’s formula we get

‖(λ − 1)∇ f (x0) − H(x0)h‖ ≤ C(n)(1 + M(3))‖h‖2.
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Therefore

‖(λ − 1)H(x0)
−1∇ f (x0) − h‖ ≤ ‖H(x0)

−1‖C(n)(1 + M(3))‖h‖2
≤ ν−1

x0 C(n)(1 + M(3))‖h‖2 ≤ ν−1
1 ‖h‖2 .

Combining (4.5) with Taylor’s formula we get

∣∣∣〈∇ f (x0), h〉 + 1

2
〈H(x0)h, h〉

∣∣∣ ≤ ‖h‖3 + C(n)M(3)‖h‖3 ≤ ν−1
1 ‖h‖3 .

Let v = (λ − 1)H(x0)−1∇ f (x0) − h. Combining the previous two estimates
yields

∣∣∣(λ − 1)〈∇ f (x0),H(x0)
−1∇ f (x0)〉 + 1

2
(λ − 1)2〈∇ f (x0),H(x0)

−1∇ f (x0)〉
∣∣∣

≤ ν−1
1 ‖h‖3 + ‖∇ f (x0)‖ ‖v‖ + 1

2
‖H(x0)‖ (‖v‖2 + 2 ‖v‖ ‖v + h‖)

≤ ν−1
1 ‖h‖3 + ‖∇ f (x0)‖ ν−1 ‖h‖2 + C(n)M(2)(ν−2

1 ‖h‖4 + ν−1
1 ‖h‖3)

≤ ν−1
1 ‖∇ f (x0)‖ ‖h‖2 + ν−2

1 ‖h‖3 .

Since 〈∇ f (x0),H(x0)−1∇ f (x0)〉 ≥ ‖H(x0)‖−1 ‖∇ f (x0)‖2 ≥ ν1 ‖∇ f (x0)‖2,
it follows that

|(λ − 1)(λ + 1)| ≤ ε := ν−2
1 ‖∇ f (x0)‖−1 ‖h‖2 + ν−3

1 ‖∇ f (x0)‖−2 ‖h‖3 .

Since max(|λ − 1|, |λ + 1|) ≥ 1, we have

min(|λ − 1|, |λ + 1|) ≤ ε.

If |λ − 1| ≤ ε, then

‖h‖ ≤ ‖h − (λ − 1)H(x0)
−1∇ f (x0)‖ + ‖(λ − 1)H(x0)

−1∇ f (x0)‖
≤ ν−1

1 ‖h‖2 + ν−1
1 ε ‖∇ f (x0)‖ = ν−1

1 ‖h‖2 + ν−3
1 ‖h‖2

+ν−4
1 ‖∇ f (x0)‖−1 ‖h‖3 ≤ ν−6

1 ‖h‖2

(recall that ‖h‖ ≤ ν−1
1 ‖∇ f (x0)‖). This is not compatible with the assumption

that 0 < ‖h‖ < ν61 . So, we must have |λ + 1| ≤ ε and therefore

‖h + 2H(x0)
−1∇ f (x0)‖ ≤ ‖h − (λ − 1)H(x0)

−1∇ f (x0)‖
+‖(λ + 1)H(x0)

−1∇ f (x0)‖
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≤ ν−1
1 ‖h‖2 + ν−1

1 ε ‖∇ f (x0)‖ ≤ ν−6
1 ‖h‖2

≤ ν−8
1 ‖∇ f (x0)‖2.

��
Finally, we show that (4.7) cannot hold over the entire piece of the f (x0)-

level set parametrized in Lemma 4.4.

Lemma 4.9 Let f (x) be a smooth real function defined on {x ∈ R
n : |x −

x0| < ρ0}, ρ0 < 1. Let M(k) = max|α|=k sup |∂α f |. Assume H(x0) ≥ νx0 I ,
0 < νx0 < 1, and 0 < ‖∇ f (x0)‖ < ρ0ν

9
1/20 with

ν1 := c(n)νx0(1 + M(2) + M(3))−1

with c(n) a sufficiently small constant. Then there exists
∥∥x ′

0 − x0
∥∥ � r , with

r as in Lemma 4.4, x ′
0 = ϕ(g(y), y; x0), ‖y‖ � r , such that

∥∥H(x ′
0)

−1∇ f (x ′
0) − H(x0)

−1∇ f (x0)
∥∥ > ν−8

1 (‖∇ f (x0)‖2 + ∥∥∇ f (x ′
0)
∥∥2).

Proof Choose y ∈ R
n−1 such that ‖y‖ = ν1 ‖∇ f (x0)‖ and let x ′

0 =
ϕ(g(y), y; x0). Using (4.2) we have
∥∥x ′

0 − x0
∥∥ ≤ |g(y)|+‖y‖ ≤ μ−1

x0 C(n)M(2) ‖y‖2+‖y‖ ≤ 2ν1 ‖∇ f (x0)‖ � r,

provided ν1 is small enough. Then

∥∥H(x ′
0) − H(x0)

∥∥ ≤ C(n)M(3)
∥∥x ′

0 − x0
∥∥ ≤ ‖∇ f (x0)‖ ≤ νx0

2

(recall that ‖∇ f (x0)‖ < ρ0ν
10
1 , ρ0 < 1) and therefore H(x ′

0) ≥ νx0
2 I and∥∥H(x ′

0)
−1
∥∥ ≤ 2ν−1

x0 . We have

∥∥H(x ′
0)

−1∇ f (x ′
0) − H(x0)

−1∇ f (x0)
∥∥

≥ ∥∥H(x ′
0)

−1(∇ f (x0) − ∇ f (x ′
0))
∥∥− ∥∥(H(x ′

0)
−1 − H(x0)

−1)∇ f (x0)
∥∥ .

On one hand using Taylor’s formula applied to the gradient we get

∥∥H(x ′
0)

−1(∇ f (x0) − ∇ f (x ′
0))
∥∥

≥ ∥∥x ′
0 − x0

∥∥− ∥∥H(x ′
0)

−1
∥∥C(n)M(3)

∥∥x ′
0 − x0

∥∥2
≥ ∥∥x ′

0 − x0
∥∥− ν−1

1

∥∥x ′
0 − x0

∥∥2 ≥
∥∥x ′

0 − x0
∥∥

2
≥ ν1 ‖∇ f (x0)‖

2
.
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On the other hand

∥∥(H(x ′
0)

−1 − H(x0)
−1)∇ f (x0)

∥∥
≤ ∥∥H(x ′

0)
−1
∥∥ ∥∥H(x0)

−1
∥∥ ∥∥(H(x ′

0) − H(x0)
∥∥ ‖∇ f (x0)‖ ≤ ν−1

1 ‖∇ f (x0)‖2 .

Therefore

∥∥H(x ′
0)

−1∇ f (x ′
0) − H(x0)

−1∇ f (x0)
∥∥

≥ ν1 ‖∇ f (x0)‖
2

− ν−1
1 ‖∇ f (x0)‖2 ≥ ν1 ‖∇ f (x0)‖

4
> 5ν−8

1 ‖∇ f (x0)‖2 .

Since

∥∥∇ f (x0) − ∇ f (x ′
0)
∥∥ ≤ C(n)M(2)

∥∥x ′
0 − x0

∥∥ ≤ 2C(n)M(2)ν1 ‖∇ f (x0)‖
≤ ‖∇ f (x0)‖ ,

we get that

ν−8
1 (

∥∥∇ f (x ′
0)
∥∥2 + ‖∇ f (x0)‖2) ≤ 5ν−8

1 ‖∇ f (x0)‖2 ,

and the conclusion follows. ��
Wewill use the following simple consequence of Taylor’s formula.We leave

the proof as a simple exercise.

Lemma 4.10 Let f (x) be a smooth real function defined on {x ∈ R
n : |x | <

r0}. Assume that

f (0) = 0, ∇ f (0) = 0,

H(0) ≥ ν0 I, ν0 > 0.

Let M(k) = max|α|=k supx |∂α f |. Then for |x | < min(r0, c(n)ν0M(3)−1),
with c(n) a sufficiently small constant, we have

ν0

2
‖x‖2 ≤ f (x) ≤ (C(n)M(2) + 1)‖x‖2,

ν0

2
‖x‖ ≤ ‖∇ f (x)‖ ≤ (C(n)M(2) + 1)‖x‖,
H(x) ≥ ν0

2
I.

Now we prove Proposition 4.1.
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On the spectrum of multi-frequency 647

Proof of Proposition 4.1 Let 0 < ‖x0‖ < ρ, E0 = f (x0). Using Lemma 4.10
we have

ν0

2
‖x0‖ ≤ ‖∇ f (x0)‖ ≤ (C(n)M(2) + 1) ‖x0‖ ≤ r0

2
ν91 � 1. (4.8)

Let μx0 = ‖∇ f (x0)‖,

ρ̃1 = c̃(n)min(r0, μx0M(2)−1), r̃ = c̃(n)ρ̃1, r̃ ′ = c̃(n)ρ1 min(1, μx0),

with c̃(n) standing for the c(n) constant from Lemma 4.4. By Lemma 4.4, for
any (w, E) ∈ C

n−1 × C, |w| < r̃ , |E − E0| < r̃ ′, the equation

f (ϕ(ξ, w; x0)) = E

has a unique solution ξ = g(w, E) in |ξ | < ρ̃1 which is an analytic function
of w, E . Note that by the smallness of x0 we have

ρ̃1 = c̃(n)μx0M(2)−1, r̃ = c̃(n)2μx0M(2)−1, r̃ ′ = c̃(n)2μ2
x0M(2)−1,

(4.9)

r � r̃ , r2 � r̃ ′ (4.10)

(we used the fact that M(2) ≥ c(n)ν0). By (4.2),

‖ϕ(g(w, E), w; x0) − x0‖ ≤ |g(w, E)| + ‖w‖
≤ 2μ−1

x0 (r2 + C(n)M(2)r2) + r
√
n − 1

<
1

2
ν−1
1 r = 1

2
‖x0‖ , (4.11)

for any |w| < r , |E − E0| < r2. Now part (I) follows by setting x(w, E) =
ϕ(g(w, E), w; x0).

We first prove (II) with E = E0. Let 0 < ‖h‖ < ρ. We claim that there
exists y0, ‖y0‖ � r̃ , such that

| f (x(y0, E0) + h) − E0| = | f (ϕ(g(y0), y0; x0) + h) − f (x0)| ≥ ‖h‖8 ‖x0‖ .

From the claim (also note that | f (x(w, E) + h) − E | � 1), Lemmas 2.10,
and 2.11 it follows that for H � 1 we have

mes
{
y ∈ R

n−1, |y| < r : log | f (x(y, E0) + h) − E0|
≥ C(n)H log(‖h‖ ‖x0‖)} ≤ C(n)r̃ n−1 exp(−H

1
n−1 )

≤ (ν−2
1 r)n−1 exp(−H

1
n−1 )
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as stated in Proposition 4.1 (recall (4.8), (4.9), (4.10)). Now we check the
claim. Let x1 = x0 + h, μx1 = ‖∇ f (x1)‖. If | f (x1) − f (x0)| > ‖h‖8 ‖x0‖,
the claim holds with y0 = 0. Suppose

| f (x1) − f (x0)| ≤ ‖h‖8 ‖x0‖ and ‖∇ f (x1) − λ∇ f (x0)‖ > ‖h‖2 ,

λ = 〈∇ f (x0), ∇ f (x1)〉
〈∇ f (x0), ∇ f (x0)〉 .

Then a direct computation yields

〈∇ f (x1), ∇ f (x0)〉2 ≤ (1 − δ20)‖∇ f (x1)‖2‖∇ f (x0)‖2, δ0 = ‖h‖4
μ2
x1

.

Note that
‖∇ f (x1)‖ ≥ ‖∇ f (x1) − λ∇ f (x0)‖ > ‖h‖2 .

We choose a small enough constant c(n) such that Lemma 4.7 applies with

ρ̃ = c(n)μM(2)−1δ20, μ = min(μx0, μx1)

instead of ρ, ρ0 = r0/2, r̃ instead of r , and δ0 as above. Applying Lemma 4.7
we get that there exists y, ‖y‖ ≤ ρ̃ � r̃ , such that

| f (ϕ(g(y), y; x0) + h) − f (x1)| ≥ 1

2
μx1δ

2
0 ρ̃ ≥ c(n)M(2)−1μx1μδ40

≥ 2 ‖h‖8 ‖x0‖ .

We used (4.8) and the fact that

‖∇ f (x1)‖ ≤ (C(n)M(2) + 1) ‖x0 + h‖ ≤ r0ν
9
1 � 1.

Since | f (x1) − f (x0)| ≤ ‖h‖8 ‖x0‖, the claim follows with y0 = y.
We are left with the case when

| f (x1) − f (x0)| ≤ ‖h‖8 ‖x0‖ and ‖∇ f (x1) − λ∇ f (x0)‖ ≤ ‖h‖2 .

Note that by Lemma 4.10, H(x ′
0) ≥ ν0

2 I for any
∥∥x ′

0 − x0
∥∥ < r̃ . Choosing

sufficiently small constants c(n) we can apply Lemmas 4.8 and 4.9 with the
same ν1 as in Proposition 4.1. Furthermore, we can apply Lemma 4.8 with any∥∥x ′

0 − x0
∥∥ < r̃ instead of x0. Lemmas 4.8 and 4.9 imply that there exists

∥∥x ′
0 − x0

∥∥ � r̃ , f (x ′
0) = f (x0), x ′

0 = ϕ(g(y′), y′; x0),
∥∥y′∥∥ � r̃ ,
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On the spectrum of multi-frequency 649

such that ∥∥h + 2H(x ′
0)

−1∇ f (x ′
0)
∥∥ > ν−8

1

∥∥∇ f (x ′
0)
∥∥2 .

Lemma 4.8 (with x ′
0 instead of x0) implies that

| f (x ′
1) − f (x ′

0)| > ‖h‖3 or
∥∥∇ f (x ′

1) − λ′∇ f (x ′
0)
∥∥ > ‖h‖2 ,

with

x ′
1 = x ′

0 + h, λ′ = 〈∇ f (x ′
0), ∇ f (x ′

1)〉
〈∇ f (x ′

0), ∇ f (x ′
0)〉

.

If | f (x ′
1) − f (x ′

0)| > ‖h‖3, the claim holds with y0 = y′. If∥∥∇ f (x ′
1) − λ′∇ f (x ′

0)
∥∥ > ‖h‖2, the reasoning above, based on Lemma 4.7,

implies that there exists
∥∥x ′′

0 − x ′
0

∥∥ ≤ 2ρ̃′ � r̃ ,

ρ̃′ = c(n)μ′M(2)−1(δ′
0)

2, μ′ = min(μx ′
0
, μx ′

1
, μx0), (δ′

0)
2 = ‖h‖4

μ2
x ′
1

,

such that f (x ′′
0 ) = f (x ′

0) = f (x0) and

| f (x ′′
0 + h) − f (x ′

0 + h)| ≥ 1

2
μx ′

1
(δ′

0)
2ρ̃′ ≥ 2 ‖h‖8 ‖x0‖ .

Note that we added μx0 to the definition of μ′ to ensure ρ̃′ � r̃ , and we used
the fact that

∥∥x ′
0

∥∥ ≥ ‖x0‖ /2. We now have that either

| f (x ′
0 + h) − f (x ′

0)| > ‖h‖8 ‖x0‖ or | f (x ′′
0 + h) − f (x ′′

0 )| > ‖h‖8 ‖x0‖ .

Since
∥∥x ′′

0 − x0
∥∥ � r̃ , Lemma 4.4 implies that there exists y′′,

∥∥y′′∥∥ � r̃ ,
such that x ′′

0 = ϕ(g(y′′), y′′; x0). Therefore the claim holdswith either y0 = y′
or y0 = y′′.

Next we consider part (II) with |E − E0| < r2. Let x ′
0 = ϕ(g(0, E), 0; x0).

Repeating the above argument with x ′
0 instead of x0 we get that there exists

y′
0,

‖y′
0‖ � c̃(n)2μx ′

0
M(2)−1

(recall that r̃ = c̃(n)2μx0M(2)−1) such that

| f (ϕ(g(y′
0; x ′

0), y
′
0; x ′

0) + h) − E | ≥ ‖h‖8 ∥∥x ′
0

∥∥ .

We used g(y; x ′
0) to denote the analogue of g(y) obtained by applying

Lemma 4.4 with x ′
0 replacing x0. By (4.11) we have

∥∥x ′
0

∥∥ ≥ ‖x0‖ /2. Let
x ′′
0 = ϕ(g(y′

0; x ′
0), y

′
0; x ′

0). Note that f (x
′′
0 ) = f (x ′

0) = E . We have
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∥∥x ′′
0 − x0

∥∥ ≤ ∥∥x ′
0 − x0

∥∥+ |g(y′
0; x ′

0)| + ∥∥y′
0

∥∥ .

Using (4.2) we get

∥∥x ′
0 − x0

∥∥ = |g(0, E)| ≤ 2μ−1
x0 |E − E0| ≤ 2 (ν0 ‖x0‖ /2)−1 r2 ≤ r � r̃

and

|g(y′
0; x ′

0)| ≤ μ−1
x ′
0
C(n)M(2)

∥∥y′
0

∥∥2 ≤ μ−1
x ′
0
C(n)M(2)c̃(n)2μx ′

0
M(2)−1

∥∥y′
0

∥∥
≤ ∥∥y′

0

∥∥ ,

provided c̃(n) is made small enough. Since

|μx ′
0
− μx0 | ≤ C(n)M(2)

∥∥x ′
0 − x0

∥∥ ≤ C(n)M(2) (ν0 ‖x0‖ /2)−1 r2

≤ ν0 ‖x0‖ /2 ≤ μx0,

we have ∥∥y′
0

∥∥ � c̃(n)2μx ′
0
M(2)−1 ≤ 2r̃ .

Therefore we have ∥∥x ′′
0 − x0

∥∥ � r̃ .

By Lemma 4.4 there exists y0, ‖y0‖ � r̃ , such that x ′′
0 = ϕ(g(y0, E), y0; x0).

Since
| f (ϕ(g(y0, E), y0; x0) + h) − E | ≥ ‖h‖8 ‖x0‖ /2,

the conclusion follows as above from Cartan’s estimate.
Next we prove (III) with E = E0. We will argue that there exists y0,

‖y0‖ � r̃ , such that

log |〈 f (x(y0, E0)), h0〉| � ν1 ‖x0‖ . (4.12)

Recall that x(y, E0) = ϕ(g(y), y; x0). If |〈∇ f (x0), h0〉| ≥ ‖x0‖2, we take
y0 = 0. We just need to deal with the case

|〈∇ f (x0), h0〉| < ‖x0‖2 . (4.13)

Let x ′
0 = ϕ(g(y), y; x0), with y to be specified later. By Taylor’s formula

|〈∇ f (x ′
0), h0〉 − 〈∇ f (x0), h0〉|

≥ |〈H(x0)(x
′
0 − x0), h0)〉| − C(n)M(3)

∥∥x ′
0 − x0

∥∥2
= |〈(x ′

0 − x0),H(x0)h0)〉| − C(n)M(3)
∥∥x ′

0 − x0
∥∥2 .

123



On the spectrum of multi-frequency 651

Using the notation from (4.3) we write

H(x0)h0 = α0nx0 + p(H(x0)h0; x0)

and we choose y such that q(y; x0) = ρp(H(x0)h0; x0), ρ = ν21 ‖x0‖. Note
that ‖y‖ ≤ r � r̃ and

〈(x ′
0 − x0),H(x0)h0)〉 = α0g(y) + 〈q(y; x0), p(H(x0)h0; x0)〉

= α0g(y) + ρ ‖p(H(x0)h0; x0)‖2 .

Using (4.2) it follows that

|〈∇ f (x ′
0), h0〉 − 〈∇ f (x0), h0〉| ≥ ρ ‖p(H(x0)h0; x0)‖2 − |α0g(y)|

−C(n)M(3)(|g(y)|2 + ‖y‖2)
≥ ρ

2
‖p(H(x0)h0; x0)‖2

(note that |α0| ≤ ‖H(x0)h0‖ ≤ C(n)M(2)).Weclaim that‖p(H(x0)h0; x0)‖ ≥
‖x0‖. We argue by contradiction. Assume that

∥∥H(x0)h0 − α0nx0

∥∥ = ‖p(H(x0)h0; x0)‖ < ‖x0‖ .

By Taylor’s formula (recall that ∇ f (0) = 0)

‖∇ f (x0) − H(x0)x0‖ ≤ C(n)M(3) ‖x0‖2 .

So, using (4.8) we have

∥∥nx0 − μ−1
x0 H(x0)x0

∥∥ ≤ μ−1
x0 C(n)M(3) ‖x0‖2 ≤ ν−1

1 ‖x0‖ ,

and using (4.13) we have

|〈H(x0)h0, x0〉| = |〈H(x0)x0, h0〉| ≤ (C(n)M(3) + 1) ‖x0‖2 ≤ ν−1
1 ‖x0‖2 .

Now we have

∥∥H(x0)h0 − α0μ
−1
x0 H(x0)x0

∥∥ ≤ (1 + α0ν
−1
1 ) ‖x0‖ ≤ ν−2

1 ‖x0‖ .

and therefore

|〈α0μ
−1
x0 H(x0)x0, x0〉| ≤ |〈H(x0)h0 − α0μ

−1
x0 H(x0)x0, x0〉| + |〈H(x0)h0, x0〉|

≤ ν−2
1 ‖x0‖2 + ν−1

1 ‖x0‖2 ≤ 2ν−2
1 ‖x0‖2 . (4.14)
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On the other hand

|〈α0μ
−1
x0 H(x0)x0, x0〉| ≥ |α0|μ−1

x0

ν0

2
‖x0‖2 ≥ ν31 ‖x0‖ . (4.15)

We used Lemma 4.10, (4.8), and the fact that

|α0|2 = ‖H(x0)h0‖2 − ‖p(H(x0)h0; x0)‖2 ≥ (ν0/2)
−2 − ‖x0‖2 ≥ ν−2

0

(recall that ‖x0‖ < ν111 � ν0). The estimates (4.14) and (4.15) are incompat-
ible due to the smallness of x0. Therefore we have ‖p(H(x0)h0; x0)‖ ≥ ‖x0‖
and

|〈∇ f (x ′
0), h0〉 − 〈∇ f (x0), h0〉| � ρ ‖x0‖2 = ν21 ‖x0‖3 .

This shows that (4.12) must hold either with y0 = 0 or y0 = y. From (4.12)
(also note that ‖∇ f (x(w, E))‖ � 1), Lemmas 2.10, and 2.11 it follows that
for H � 1 we have

mes{y ∈ R
n−1, |y| < r : log |〈∇ f (x(y, E0)), h0〉| ≥ C(n)H log(ν1 ‖x0‖)}

≤ C(n)r̃ n−1 exp(−H
1

n−1 ) ≤ (ν−2
1 r)n−1 exp(−H

1
n−1 )

as stated in Proposition 4.1. The case |E − E0| < r2 follows from the case
E = E0 analogously to the proof of (II). ��

5 Inductive scheme for the bulk of the spectrum

In this section we assume the same non-perturbative setting as in Sect. 2. We
introduce five conditions such that once they hold at a large enough initial
scale they can be propagated to arbitrarily large scales (see Theorem D below)
and lead to the formation of an interval in the spectrum, away from the edges
(see Theorem B in Sect. 8).

For the statement of the conditions we need several exponents. Let σ �
τ � 1 be as in (LDT). Set δ = (σ ′)C0 , β = (σ ′)C1 , μ = (σ ′)C2 with
0 < σ ′ ≤ σ , and C0,C1,C2 > 1, satisfying the following relations:

C1 + 1 < C2 < C0 < 2C1.

Then we have
β2 � δ � μ � βσ � β � σ, (5.1)

with the constants implied by � being as large as we wish, provided we take
σ ′ ≤ c(C0,C1,C2)σ small enough. The specific choice of the exponents
δ, β, μ is not important. However, to carry out the induction with our set-up
we will need that (5.1) holds.
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On the spectrum of multi-frequency 653

Let γ > 0. Given an integer s ≥ 0, let

Es ∈ R, Ns ∈ N, rs := exp(−N δ
s ).

The inductive conditions are as follows.
(A) There exist integers |N ′

s − Ns |, |N ′′
s − Ns | < N 1/2

s , a map xs : �s → R
d ,

�s = Is × (Es − rs, Es + rs), Is = φs + (−rs, rs)
d−1,

and ks such that for any (φ, E) ∈ �s we have

E
[−N ′

s ,N
′′
s ]

ks
(xs(φ, E)) = E, (5.2)∣∣E [−N ′

s ,N
′′
s ]

j (xs(φ, E)) − E
∣∣ > exp(−N δ

s ), j �= ks . (5.3)

To simplify notation we suppress ks and use E [−N ′
s ,N

′′
s ], ψ [−N ′

s ,N
′′
s ] instead.

(B) The map xs(φ, E) extends analytically on the domain

Ps = {(φ, E) ∈ C
d : dist((φ, E), �s) < rs} (5.4)

(the distance is with respect to the sup-norm) and

xs(Ps) ⊂ T
d
ρ/2. (5.5)

(C) For each (φ, E) ∈ �s ,

|ψ [−N ′
s ,N

′′
s ](xs(φ, E), n)| ≤ exp(−γ |n|/10), |n| ≥ Ns/4. (5.6)

(D) Define
Ts = {nω : 0 ≤ |n| ≤ 3Ns/2}. (5.7)

Take an arbitrary h ∈ T
d with dist(h,Ts) ≥ exp(−Nμ

s ). Then for any E ∈
(Es − rs, Es + rs),

mes
{
φ ∈ Is : max

|n′|,|n′′|<N1/2
s

dist(spec H[−Ns+n′,Ns+n′′](xs(φ, E) + h), E)

< exp(−Nβ
s /2)

}
< exp(−N 2δ

s ).

(E)Take an arbitrary unit vector h0 ∈ R
d . Then for any E ∈ (Es−rs, Es+rs),

mes{φ ∈ Is : log |〈∇E [−N ′
s ,N

′′
s ](xs(φ, E)), h0〉| < −Nμ

s /2} < exp(−N 2δ
s ).
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Remark 5.1 (a) From the proof of Proposition 5.6 below it will become clear
that in (A) it would be enough to have separation of eigenvalues by
exp(−Nβ

s ). However, it will also be clear that even if we have separa-
tion by exp(−Nβ

0 ), for s = 0, we will still get separation by exp(−N δ
s ),

for s ≥ 1.
(b) The fact that condition (B) also increases the domain of xs in R

d is not
accidental. This buffer around the original domain is convenient forCauchy
estimates and for avoiding problems with “over-shooting” the domain of
xs in the E variable.

(c) The particular choices of the exp(−Nβ
s /2) cutoff in (D) and of the−Nμ

s /2
cutoff in (E) are made out of technical convenience. Specifically, the first
choice allows us to have Lemma 5.3 with a exp(−Nβ

s ) cutoff, and the sec-
ond choice spares us one application of Cartan’s estimate in Lemma 5.10.

(d) For the measure estimate from (D) to be possible we need that the intervals
h + [−Ns + n′, Ns + n′′] do not overlap the localization centre from (C).
This is the reason for the choice of Ts .

(e) The reason for working with non-symmetric intervals [−N ′
s, N

′′
s ], as well

as for the set being used in (D) is explained in Remark 5.12 below.

To simplify notation, the dependence of the constants in this section on the
choice of the exponents δ, β, μ will be kept implicit as part of the dependence
on the parameters a, b of the Diophantine condition.

Theorem D Assume the notation of the inductive conditions. Let E0 ∈ R,
and assume L(E) > γ > 0 for E ∈ (E0 − 2r0, E0 + 2r0). Let N0 ≥ 1,
Ns = �N A

s−1�, A = β−1, s ≥ 1. If N0 ≥ (B0 + SV + γ −1)C, C = C(a, b, ρ),
and conditions (A)–(E) hold with s = 0, then for any s ≥ 1 and Es ∈
(Es−1 − rs−1, Es−1 + rs−1) the conditions (A)–(E) also hold with Is � Is−1.
Furthermore, for any (φ, E) ∈ �s ,

|xs(φ, E) − xs−1(φ, E)| < exp(−γ Ns−1/30), (5.8)

‖ψ [−N ′
s ,N

′′
s ](xs(φ, E), ·) − ψ [−N ′

s−1,N
′′
s−1](xs−1(φ, E), ·)‖

< exp(−γ Ns−1/40). (5.9)

Remark 5.2 Theorem D also holds with any A ≥ β−1, but the relations (5.1)
would need to be adjusted. The reason for needing A ≥ β−1 will become clear
at the end of the proof of Proposition 5.11 below (see Remark 5.12).

We split the proof into several auxiliary statements. Ultimately the theorem
will follow by referring to these statements. We will check the theorem for the
case s = 1. The inductive conditions and the auxiliary statements are designed
so that the general inductive step follows from this particular one by simply
changing indices. In what follows we fix E0, N0, such that the assumptions of
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Theorem D are satisfied. We also fix E1 ∈ (E0 − r0, E0 + r0) and let N1, A
be as in the statement.

For simplicity, in all of the following statements we assume tacitly that N0
is large enough. More precisely we assume N0 ≥ (B0 + SV + γ −1)C , with
C = C(a, b, ρ) large enough. In particular this allows us to invoke any of the
results from Sect. 2. It will be clear from the proofs that any further largeness
constraints on N0 can be accounted for by increasing C . Of course, it is then
important that we only have finitely many additional constraints. To this end
we note that the additional constraints are independent of s.

Our first goal is to identify [−N ′
1, N

′′
1 ] and E

[−N ′
1,N

′′
1 ]

k1
. In what follows we

let B0,E,h be the set from the measure estimate in condition (D), with s = 0.

Lemma 5.3 Let h as in (D), with s = 0. Set

B′
0,E,h =

{
φ ∈ I0 : max

|n′|,|n′′|<N1/2
0

dist(spec H[−N0+n′,N0+n′′](x0(φ, E) + h), E)

< exp(−Nβ
0 )
}
.

Then for any E ∈ (E0 − r0, E0 + r0), the set B′
0,E,h is contained in a semial-

gebraic set of degree less than N 20
0 and with measure less than exp(−N 2δ

0 ).

Proof Fix E ∈ (E0 − r0, E0 + r0). By truncating the Taylor series of x0(·, E)

we obtain a polynomial x̃0(·, E) of degree less than C(d)N 4
0 such that

sup
φ∈I0

|x0(φ, E) − x̃0(φ, E)| ≤ exp(−N 2
0 )

To estimate the remainder of the Taylor series we used condition (B) and
Cauchy estimates (also recall Remark 5.1 (a)). Note that for any [a, b] ⊂ Z,
φ ∈ I0,
∥∥H[a,b](x0(φ, E)) − H[a,b](x̃0(φ, E))

∥∥ ≤ Cρ ‖V ‖∞ |x0(φ, E) − x̃0(φ, E)|
≤ exp(−N 2

0 /2).

Let Ṽ , H̃ be as in (2.28), (2.29) (with N0 instead of N ). We have
∥∥∥H[a,b](x0(φ, E)) − H̃[a,b](x̃0(φ, E))

∥∥∥ ≤ exp(−N 2
0 /4) (5.10)

for any [a, b] ⊂ Z. Let

B̃0,E,h =
{
φ ∈ I0 : max

|n′|,|n′′|<N
1
2
0

∥∥∥(H̃[−N0+n′,N0+n′′](x̃0(φ, E) + h) − E)−1
∥∥∥
HS

> exp(−3Nβ
0 /4)

}
,
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where‖·‖HS stands for theHilbert-Schmidt norm.Then B̃0,E,h is semialgebraic
of degree less than N 20

0 and using (5.10) we have

B′
0,E,h ⊂ B̃0,E,h ⊂ B0,E,h,

thus concluding the proof. ��
Lemma 5.4 For any E ∈ (E0 − r0, E0 + r0) there exists a semialgebraic set
B0,E,N1 ,

deg(B0,E,N1) � N1N
20
0 , mes(B0,E,N1) < exp(−N 2δ

0 /2),

such that for any φ ∈ I0\B0,E,N1 and any 3N0/2 < |m| ≤ N1, there

exist |n′(φ,m)|, |n′′(φ,m)| < N 1/2
0 such that with Jm = m + [−N0 +

n′(φ,m), N0 + n′′(φ,m)]

dist(spec HJm (x0(φ, E)), E) ≥ exp(−Nβ
0 ).

Proof Take arbitrary 3N0/2 < |m| ≤ N1. Then 0 < |m − n| < 3N1 for any
n ∈ T0 (recall (5.7)) and due to the Diophantine condition we have

dist(mω,T0) > a(3N1)
−b ≥ a(CN A

0 )−b > exp(−Nμ
0 ).

Hence, for any 3N0/2 < |m| ≤ N1 condition (D) applies with h = mω. We let
B0,E,N1 := ⋃

m B̃0,E,mω, where B̃0,E,mω are the semialgebraic sets from the
statement of Lemma 5.3. Then B0,E,N1 is semialgebraic of degree � N1N 20

0
and we have

mes(B0,E,N1) � N1 exp(−N 2δ
0 ) < exp

(
−1

2
N 2δ
0

)
.

Take φ ∈ I0\B0,E,N1 . Since φ ∈ I0\B̃0,E,mω, the conclusion follows from
the definition of B0,E,mω (recall (2.8)). ��

The next lemma is not needed at the moment, but it motivates one of the
choices we make in the statement of Proposition 5.6

Lemma 5.5 (a) The function E [−N ′
0,N

′′
0 ] is analytic on {z ∈ C

d : |z −
x0(φ, E)| < exp(−2N δ

0 )}, for any (φ, E) ∈ �0.

(b) The function E [−N ′
0,N

′′
0 ](x0(φ, E)) is analytic on

P ′
0 = {(φ, E) ∈ C

d : dist((φ, E), �0) < r40 }.
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Proof Statement (a) follows from the separation of eigenvalues in (A) and
basic perturbation theory. Statement (b) follows from (a) by noticing that

|x0(φ + ζ, E + η) − x0(φ, E)| ≤ Cρ exp(N
δ
0 )(|ζ | + |η|) < exp(−2N δ

0 )

for any (ζ, η) ∈ C
d with |ζ |, |η| < exp(−4N δ

0 ) (we used (B) and Cauchy
estimates). ��
Proposition 5.6 There exists φ1 ∈ T

d , |φ1 −φ0| � r40 , and |N ′
1 − N1|, |N ′′

1 −
N1| � N0 such that the following hold.

(i) I ′
1 ⊂ I0\B0,E1,N1 , I ′

1 = φ1 + (−r ′
1, r

′
1)

d−1, r ′
1 = exp(−3Nβ

0 ), with
B0,E1,N1 as in Lemma 5.4.

(ii) There exists k1 such that for any φ ∈ I ′
1, y ∈ R

d , |y| < r ′
1, E ∈ R,

|E − E1| < r ′
1,

∣∣E [−N ′
1,N

′′
1 ]

k1
(x0(φ, E) + y) − E [−N ′

0,N
′′
0 ](x0(φ, E) + y)

∣∣
< exp(−γ N0/20), (5.11)∣∣E [−N ′

1,N
′′
1 ]

j (x0(φ, E) + y) − E
[−N ′

1,N
′′
1 ]

k1
(x0(φ, E) + y)

∣∣
>

1

8
exp(−Nβ

0 ), j �= k1, (5.12)

|ψ [−N ′
1,N

′′
1 ]

k1
(x0(φ, E) + y, n)| < exp(−γ |n|/10), |n| ≥ 3N0/4,

(5.13)

‖ψ [−N ′
1,N

′′
1 ]

k1
(x0(φ, E) + y, ·) − ψ [−N ′

0,N
′′
0 ](x0(φ, E) + y, ·)‖

< exp(−γ N0/20). (5.14)

Proof Using the information we have on B0,E1,N1 and Lemma 2.23, it follows
that there exists φ1, |φ1 − φ0| � r40 (in fact, we could replace r40 by rC0 , with
any fixed C ≥ 1), such that I ′

1 ⊂ I0\B0,E1,N1 (recall that β � δ). Take the
intervals Jm = m + [−N0 + n′(φ1,m), N0 + n′′(φ1,m)] from Lemma 5.4.
Define

[−N ′
1, N

′′
1 ] = [−3N0/2, 3N0/2] ∪

⋃
3N0/2<|m|≤N1

Jm . (5.15)

Due to Lemma 5.4,

dist(spec HJm (x0(φ1, E1)), E1) ≥ exp(−Nβ
0 ).

Using condition (B) and Cauchy estimates we have that for φ ∈ I ′
1, |y| <

exp(−3Nβ
0 ), |E − E1| < exp(−3Nβ

0 ),
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|x0(φ, E) + y − x0(φ1, E1)| ≤ exp(CN δ
0 )(|φ − φ1| + |E − E1|) + |y|

< exp(−2Nβ
0 ).

The conclusion follows by invoking Proposition 2.22 (recall that β � σ ) with
x0 = x0(φ, E1), E0 = E1. ��

For the rest of this section we adopt the notation of Proposition 5.6.
To simplify the notation, we suppress k1 from the notation and use
E [−N ′

1,N
′′
1 ], ψ [−N ′

1,N
′′
1 ] instead. Next we want to prove the existence of the

parametrization x1.

Lemma 5.7 (a) The function E [−N ′
1,N

′′
1 ] is analytic on {z ∈ C

d : |z −
x0(φ, E)| < exp(−2Nβ

0 )}, for any (φ, E) ∈ �′
1.

(b) The function E [−N ′
1,N

′′
1 ](x0(φ, E)) is analytic on

P ′
1 = {(φ, E) ∈ C

d : dist((φ, E), �′
1) < r ′

1},
with�′

1 = I ′
1× (E1−r ′

1, E1+r ′
1). Furthermore, for any (φ, E) ∈ 1

50P ′
1,

∣∣E [−N ′
1,N

′′
1 ](x0(φ, E)) − E

∣∣ < exp(−c0γ N0), (5.16)∣∣∂E E [−N ′
1,N

′′
1 ](x0(φ, E)) − 1

∣∣ < exp(−c0γ N0/2). (5.17)

with c0 = c0(d).

Proof The analyticity statements follow as in Lemma 5.5. By Proposition 5.6,
the estimate (5.16) holds for real (φ, E) ∈ 1

2P ′
1 ∩ R

d with c0 = 1/20 (recall
(5.2)). With the help of Corollary 2.12 one concludes that the estimate is also
valid for complex φ, E , with some c0(d) < 1/20. The estimate (5.17) follows
from Cauchy estimates combined with (5.16). ��
Proposition 5.8 Let

P ′′
1 = {(φ, E) ∈ C

d : |φ − φ1|, |E − E1| < exp(−C0N
β
0 )},

with C0 = C0(d) � 1. There exists a map x1 : �′′
1 → R

d , �′′
1 := P ′′

1 ∩ R
d ,

that extends analytically on P ′′
1 , such that

E [−N ′
1,N

′′
1 ](x1(φ, E)) = E, (φ, E) ∈ P ′′

1 , (5.18)

x1(P ′′
1 ) ⊂ T

d
ρ/2. (5.19)

Furthermore, for any (φ, E) ∈ �′′
1 ,

|x1(φ, E) − x0(φ, E)| < exp(−γ N0/30). (5.20)
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and for any (φ, E) ∈ P ′′
1 ,

|x1(φ, E) − x0(φ, E)| < exp(−c0γ N0), c0 = c0(d).

Proof By Proposition 5.6 one has

∣∣E [−N ′
1,N

′′
1 ](x0(φ, E)) − E

∣∣ < exp(−γ N0/20) (5.21)

for any φ ∈ I ′
1 and any real |E − E1| < exp(−3Nβ

0 ). Given real |E −
E1| < 1

2 exp(−3Nβ
0 ), set E± = E ± 2 exp(−γ N0/20). Since |E± − E1| <

exp(−3Nβ
0 ), using (5.21) we have

E [−N ′
1,N

′′
1 ](x0(φ, E−)) < E < E [−N ′

1,N
′′
1 ](x0(φ, E+)).

It follows that

E [−N ′
1,N

′′
1 ](x0(φ, η)) = E (5.22)

has a solution η ∈ (E−, E+). Let η1 be the solution corresponding to φ = φ1,
E = E1. Recall that due to (5.17) in Lemma 5.7 one has

∂ηE
[−N ′

1,N
′′
1 ](x0(φ, η)) ≥ 1/2.

Therefore, due to the implicit function theorem for analytic functions, see
Lemma 4.2, for

|φ − φ1|, |E − E1| < exp(−2CNβ
0 ), C = C(d) > 3,

there exists a unique analytic solution η(φ, E), |η(φ, E)−η1| < exp(−CNβ
0 )

of (5.22). Then (5.18) and (5.19) hold by setting x1(φ, E) = x0(φ, η(φ, E)).
By uniqueness, for real φ, E , η(φ, E) ∈ (E−, E+), and therefore

|η(φ, E) − E | < 2 exp(−γ N0/20)

and (5.20) follows. The last estimate is a consequence of Corollary 2.12 (note
that we take C0 < 2C). ��
Corollary 5.9 Using the notation of Proposition 5.8, for any (φ, E) ∈ �′′

1 ,

∣∣E − E
[−N ′

1,N
′′
1 ]

j (x1(φ, E))
∣∣> 1

8
exp(−Nβ

0 )>exp(−N δ
1 ), j �=k1, (5.23)

|ψ [−N ′
1,N

′′
1 ](x1(φ, E), n)|<exp(−γ |n|/10), |n| ≥ 3N0/4, (5.24)
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‖ψ [−N ′
1,N

′′
1 ](x1(φ, E), ·)−ψ [−N ′

0,N
′′
0 ](x1(φ, E), ·)‖<exp(−γ N0/20), (5.25)

‖ψ [−N ′
1,N

′′
1 ](x1(φ, E), ·)−ψ [−N ′

0,N
′′
0 ](x0(φ, E), ·)‖<exp(−γ N0/40). (5.26)

Proof All statements, except the last one follow from (5.20) and Proposi-

tion5.6with y = x1(φ, E)−x0(φ, E). In thefirst estimateweused N1 � Nβ−1

0
and β2 � δ. The last estimate follows from

∥∥∥(H[−N ′
0,N

′′
0 ](x0(φ, E)) − E [−N ′

1,N
′′
1 ](x1(φ, E)))ψ [−N ′

1,N
′′
1 ](x1(φ, E))

∥∥∥
≤
∥∥∥(H[−N ′

0,N
′′
0 ](x0(φ, E)) − H[−N ′

0,N
′′
0 ](x1(φ, E)))ψ [−N ′

1,N
′′
1 ](x1(φ, E))

∥∥∥
+
∥∥∥(H[−N ′

0,N
′′
0 ](x1(φ, E)) − E [−N ′

1,N
′′
1 ](x1(φ, E)))ψ [−N ′

1,N
′′
1 ](x1(φ, E))

∥∥∥
≤ Cρ ‖V ‖∞ |x0(φ, E) − x1(φ, E)| + 2 exp(−γ (N0 − N 1/2

0 /10)

< exp(−γ N0/35),

the separation of eigenvalues, and Lemma 2.21. ��
Next we check condition (D) with s = 1. Let

I ′
0 = {φ ∈ R

d−1 : |φ − φ0| < r40 }
(recall Lemma 5.5).

Lemma 5.10 Let h ∈ R
d , exp(−Nμ

1 ) ≤ ‖h‖ < exp(−Nμ
0 ), and E ∈ (E1 −

r1, E1 + r1). Then for any ν > 0,

mes{φ ∈ I ′
0/10 : log |E [−N ′

0,N
′′
0 ](x0(φ, E) + h) − E

∣∣ ≤ −Nμ+ν
1 }

< exp(−c(d)(N δ
0 + N ν/(d−1)

1 )).

Proof By Taylor’s formula,

E [−N ′
0,N

′′
0 ](x0(φ, E) + h) − E [−N ′

0,N
′′
0 ](x0(φ, E)) = 〈∇E [−N ′

0,N
′′
0 ](x0(φ, E), h〉

+O(exp(CN δ
0 ) ‖h‖2). (5.27)

We used the fact that by Cauchy estimates (recall Lemma 5.5),

∣∣∣∣ d
2

dh2
E [−N ′

0,N
′′
0 ](x0(φ, E) + h)

∣∣∣∣ ≤ exp(CN δ
0 ).

Due to condition (E) we can find |φ̂0 − φ0| � r40 such that

|〈∇E [−N ′
0,N

′′
0 ](x0(φ̂0, E1)), h0〉| ≥ exp(−Nμ

0 /2), h0 := h

‖h‖ .
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Since

|∇E [−N ′
0,N

′′
0 ](x0(φ̂0, E1)) − ∇E [−N ′

0,N
′′
0 ](x0(φ̂0, E))|

≤ exp(CN δ
0 )|x0(φ̂0, E1) − x0(φ̂0, E)| ≤ exp(C ′N δ

0 )|E − E1|,
we have

|〈∇E [−N ′
0,N

′′
0 ](x0(φ̂0, E)), h0〉| � exp(−Nμ

0 /2),

for any E ∈ (E1−r1, E1+r1) (note that N δ
1 � Nμ

0 ; recall that δ � β2 � βμ).
Plugging the above in (5.27),

|E [−N ′
0,N

′′
0 ](x0(φ̂0, E) + h) − E

∣∣ � ‖h‖ exp(−Nμ
0 /2) ≥ exp(−2Nμ

1 )

(we used exp(CN δ
0 ) ‖h‖ ≤ exp(CN δ

0 − Nμ
0 ) � exp(−Nμ

0 /2)). The conclu-
sion follows by applying Cartan’s estimate to E [−N ′

0,N
′′
0 ](x0(φ, E) + h) − E

on the polydisk |φ − φ̂0| < r40 , with H = c exp(N ν
1 ), c � 1. ��

Proposition 5.11 Let h ∈ T
d such that dist(h,T1) ≥ exp(−Nμ

1 ) (recall (5.7))
and

B′′
1,E,h =

{
φ ∈ I ′′

1 : max
|n′|,|n′′|<N1/2

1

dist(spec H[−N1+n′,N1+n′′](x1(φ, E) + h), E)

< exp(−Nβ
1 /2)

}
.

Then for any E ∈ (E1 − r1, E1 + r1), mes(B′′
1,E,h) < exp(−N 2δ

1 ).

Proof Let |m1| ≤ 3N1/2, h1 ∈ R
d such that

dist(h,T1) = ‖h1‖, h1 = h − m1ω (modZd).

Note that for any m1 ∈ [−N1, N1] we have
dist(h + mω,T0) = dist(h, −mω + T0) ≥ dist(h,T1) = ‖h1‖ , (5.28)

since −m + [−3N0/2, 3N0/2] ⊂ [−3N1/2, 3N1/2]. At the same time, if
|m + m1| > 3N0/2, using the Diophantine condition we get

‖h + mω − nω‖ = ‖h1 + (m + m1 − n)ω‖ ≥ ‖(m + m1 − n)ω‖ − ‖h1‖
≥ a(CN1)

−b − ‖h1‖ , (5.29)

for any n ∈ T0.
We consider two cases: ‖h1‖ ≥ exp(−Nμ

0 ) and ‖h1‖ < exp(−Nμ
0 ). In

either case, by the above, we have dist(h +mω,T0) ≥ exp(−Nμ
0 ) for all m ∈
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[−N1, N1]with |m+m1| > 3N0/2. So, for suchm, condition (D) implies that
for each φ ∈ I0\B0,E1,h+mω there exists |n′(φ,m, h)|, |n′′(φ,m, h)| < N 1/2

0
such that with Jm(φ) = m + [−N0 + n′(φ,m, h), N0 + n′′(φ,m, h)],

dist(spec HJm(φ)(x0(φ, E1) + h), E1) ≥ exp(−Nβ
0 /2)

and therefore

dist(spec HJm(φ)(x0(φ, E) + h), E) ≥ exp(−Nβ
0 /4) ≥ exp(−Nσ/2

0 )

for any E ∈ (E1 − r1, E1 + r1) (note that N δ
1 � Nβ

0 ; recall that δ � β2).
In particular, since mes(B0,E1,h+mω) < exp(−N 2δ

0 ), there exists φ0,m ∈
I0\B0,E1,h+mω, |φ0,m − φ0| � r40 . Let Jm := Jm(φ0,m). Due to the spec-
tral form of (LDT),

log | f Jm (x0(φ0,m, E) + h), E)| > |Jm |L |Jm |(E) − |Jm |1−τ/2.

Using the uniform upper estimate (see Corollary 2.7) we can apply Cartan’s
estimate to get

mes{φ ∈ I ′
0/10 : log | f Jm (x0(φ, E) + h, E)| < |Jm |L(E) − |Jm |1−τ/4}

< exp(−N τ/8(d−1)
0 ) (5.30)

(in fact, the estimate holds for φ ∈ I0/10). Denote by B′
0,E,m the set in the

above estimate and let

B′
0,E,N1

=
⋃

−N1≤m≤N1,|m+m1|>3N0/2

B′
0,E,m .

Since δ � βσ � βτ , we have

mes(B′
0,E,N1

) � N1 exp(−N τ/8(d−1)
0 ) < exp(−N τ/8(d−1)

0 /2) � exp(−N 2δ
1 ).

We now have to deal with |m + m1| ≤ 3N0/2. It will be enough to focus
on m = −m1. We assume m1 ∈ [−N1, N1] so that (5.28) holds. If ‖h1‖ ≥
exp(−Nμ

0 ), then by (5.28), dist(h+m1ω,T0) ≥ exp(−Nμ
0 ) and by the above

reasoning there exists an interval J−m1 such that (5.30) holds with m = −m1.
In this case we let B′

0,E,−m1
be the set from (5.30). Suppose that ‖h1‖ <

exp(−Nμ
0 ). Let J−m1 := −m1 + [−N ′

0, N
′′
0 ]. We have

spec HJ−m1
(x + h) = spec H[−N ′

0,N
′′
0 ](x + h1).
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Let

B′
0,E,−m1

:= {φ ∈ I ′
0/10 : ∣∣E [−N ′

0,N
′′
0 ](x0(φ, E)+h1)−E

∣∣ ≤ exp(−Nμ+ν
1 )},

with ν = 3(d − 1)δ. By Lemma 5.10,

mes(B′
0,E,−m1

) < exp(−c(N δ
0 + N ν/(d−1)

1 )) � exp(−N 2δ
1 ).

Since

E [−N ′
0,N

′′
0 ](x0(φ, E)) = E,∣∣E [−N ′

0,N
′′
0 ]

j (x0(φ, E) + h1) − E
[−N ′

0,N
′′
0 ]

j (x0(φ, E))
∣∣ ≤ Cρ‖V ‖∞‖h1‖

� exp(−N δ
0 ),

the separation of eigenvalues in condition (A) implies

dist(spec HJ−m1
(x0(φ, E) + h), E) > exp(−Nμ+ν

1 ),

for any φ ∈ 1
10I ′

0\B′
0,E,−m1

. Note that |J−m1 |σ/2 � Nσ/2
0 � Nμ+ν

1 � N δ
0

since δ, μ � βσ . Therefore we can apply the spectral form of (LDT) to get

log | f J−m1
(x0(φ, E) + h)| > |J−m1 |L(E) − |J−m1 |1−τ/2,

for φ ∈ 1
10I ′

0\B′
0,E,−m1

. So, in either case we identified an interval J−m1 and
got a similar conclusion.

Let

I :=
{
J−m1 ∪ (

⋃
−N1≤m≤N1,|m+m1|>3N0/2 Jm), m1 ∈ [−N1, N1]⋃

−N1+2N0≤m≤N1−2N0
Jm, m1 /∈ [−N1, N1].

(5.31)
Note that J−m1 overlaps with the union of the other intervals and |m +m1| >

3N0/2 for allm’s in the last union. By the above, we can use the covering form
of (LDT) from Lemma 2.15 to get that

dist(spec HI (x0(φ, E)) + h), E) ≥ exp(−2max
m

|Jm |1−τ/4)

> exp(−4N 1−τ/4
0 ),

for any φ ∈ 1
10I ′

0\(B′
0,E,N1

∪ B′
0,E,−m1

). Due to (5.20),

dist(spec HI (x1(φ, E)) + h), E) � exp(−4N 1−τ/4
0 ) � exp(−Nβ

1 /2),
(5.32)
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for φ ∈ I ′′
1 \(B′

0,E,N1
∪ B′

0,E,−m1
). Therefore B′′

1,E,h ⊂ B′
0,E,N1

∪ B′
0,E,−m1

and the conclusion holds. ��
Remark 5.12 (a) Taking the maximum in the definition of the set B0,E,h from

condition (D) is a convenient way of capturing the fact that while we do
not know precisely the interval I for which (5.32) holds, we do know that
it is “close” to [−N1, N1].

(b) If in the definition of B0,E,h we would use symmetric intervals, then we
could also choose I to be symmetric. However, even so, [−N ′

1, N
′′
1 ] need

not be symmetric because we don’t have enough control over the sizes of
the intervals Jm in (5.15) (for example we cannot say that Jm and J−m
have the same size).

(c) The reason for wanting A ≥ β−1, as noted in Remark 5.2, is the estimate
(5.32).

Now we just need to check condition (E) with s = 1.

Lemma 5.13 Let h0 ∈ R
d be a unit vector. Then

∣∣∣∇E [−N ′
1,N

′′
1 ](x1(φ, E)) − ∇E [−N ′

0,N
′′
0 ](x0(φ, E))

∣∣∣ < exp(−c0γ N0),

c0 = c0(d),

for any (φ, E) ∈ �′′
1 .

Proof Using (5.20), we have
∣∣∣∇E [−N ′

0,N
′′
0 ](x1(φ, E)) − ∇E [−N ′

0,N
′′
0 ](x0(φ, E))

∣∣∣
≤ exp(CN δ

0 )|x1(φ, E) − x0(φ, E)| < exp(−γ N0/35).

On the other hand, using (5.11), (5.20), Corollary 2.12, and Cauchy estimates,
we have∣∣∣∇E [−N ′

1,N
′′
1 ](x1(φ, E)) − ∇E [−N ′

0,N
′′
0 ](x1(φ, E))

∣∣∣ ≤ exp(−c(d)γ N0),

and the conclusion follows. ��
Proposition 5.14 Let h0 ∈ R

d be a unit vector. Then for any E ∈ (E1 −
r1, E1 + r1),

mes{φ ∈ I ′′
1 : log |〈∇E [−N ′

1,N
′′
1 ](x1(φ, E)), h0〉| < −Nμ

1 /2} < exp(−N 2δ
1 ).

Proof Due to condition (E) we can find φ̂0, |φ̂0 − φ0| � r40 , such that

log |〈∇E [−N ′
0,N

′′
0 ](x0(φ̂0, E)), h0〉| ≥ −Nμ

0 /2.
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Applying Cartan’s estimate we get

mes{φ ∈ I ′
0/10 : log |〈∇E [−N ′

0,N
′′
0 ](x0(φ, E)), h0〉| < −Nμ+ν

0 }
< exp(−c(d)(N δ

0 + N ν/(d−1)
0 )) < exp(−N 2δ

1 ),

where ν = 3(d − 1)β−1δ. Let B be the set on the left-hand side. Note that
I ′′
1 ⊂ I ′

0/10, since |φ1 − φ0| � r40 . Since μ + ν � 1, Lemma 5.13 implies

log |〈∇E [−N ′
1,N

′′
1 ](x1(φ, E)), h0〉| ≥ −2Nμ+ν

0 ≥ −Nμ
1 /2,

for any φ ∈ I ′′
1 \B (recall that δ � μ). This concludes the proof. ��

We briefly summarize how Theorem D follows from the previous state-
ments.

Proof of Theorem D The existence ofφ1 was obtained in Proposition 5.6.Note
that since δ � β2, we have P1 � P ′′

1 . Conditions (A)–(C), and the estimates
(5.8), (5.9), follow from Proposition 5.8 and Corollary 5.9. Condition (D)
follows from Proposition 5.11. Condition (E) follows from Proposition 5.14.

��

6 Inductive scheme for the edges of the spectrum

As in the previous sectionwe assume the non-perturbative setting from Sect. 2.
We introduce another set of conditions that will address the edges of the spec-
trum.

Weassume the exponents δ, μ, β from the previous section andwe introduce
a new exponent d such that d � δ. Let γ > 0. Given an integer s ≥ 0, let

xs ∈ T
d , Ns ∈ N, rs := exp(−N d

s ), �s = {x ∈ R
d : |x − xs | < rs}.

The inductive conditions for the lower edge are as follows.
(A) There exist integers |N ′

s − Ns |, |N ′′
s − Ns | < N 1/2

s , and E [−N ′
s ,N

′′
s ] =

E
[−N ′

s ,N
′′
s ]

ks
, such that

E
[−N ′

s ,N
′′
s ]

j (x) − E [−N ′
s ,N

′′
s ](x) ≥ exp(−N d

s ), (6.1)

for any x ∈ �s and j �= ks .
(B) For any x ∈ �s ,

|ψ [−N ′
s ,N

′′
s ](x, n)| ≤ exp(−γ |n|/10), |n| ≥ Ns/4.
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(C) The point xs , is a non-degenerate minimum of the function E [−N ′
s ,N

′′
s ].

Specifically, with νs = exp(−N d
s ),

∇E [−N ′
s ,N

′′
s ](xs) = 0, H(E [−N ′

s ,N
′′
s ])(xs) ≥ νs I.

(D) Let Es = E [−N ′
s ,N

′′
s ](xs). Let Ts be as in (5.7). Take arbitrary h ∈ T

d

with

dist(h,Ts) ≥ exp(−N 2d
s ).

There exist |n′(h)|, |n′′(h)| < N 1/2
s such that

dist(spec H[−Ns+n′(h),Ns+n′′(h)](xs + h), (−∞, Es]) ≥ exp(−N 4d
s ).

The conditions (A), (B), (C), (D), for the upper edge are defined analogously,
with obvious adjustments in notation.

Theorem E Assume the notation of the inductive conditions. Let x0 ∈ T
d ,

N0 ≥ 1, assume that the conditions (A)–(D) hold with s = 0, and L(E) >

γ > 0 for E ∈ (E0 − 2r0, E0 + 2r0). Let Ns = N 5
s−1, s ≥ 1. If N0 ≥

(B0 + SV + γ −1)C, C = C(a, b, ρ), then for any s ≥ 1 there exists xs ∈ T
d

such that the conditions (A)–(D) hold and we have

|E [−N ′
s ,N

′′
s ](x) − E [−N ′

s−1,N
′′
s−1](x)| < exp(−γ Ns−1/20), x ∈ �s,∥∥∥ψ [−N ′

s ,N
′′
s ](x) − ψ [−N ′

s−1,N
′′
s−1](x)

∥∥∥ < exp(−γ Ns−1/20), x ∈ �s,

|xs − xs−1| < exp(−γ Ns−1/50), |Es − Es−1| < exp(−γ Ns−1/60).
(6.2)

Furthermore, for any Es ∈ R, exp(−N 100d
s ) ≤ |Es − Es | ≤ exp(−N 2d

s ),
conditions (A)–(E) hold for E [−N ′

s ,N
′′
s ]. The analogous statements based on

conditions (A)–(D) also hold.

As for Theorem D, we only check Theorem E for s = 1, the general case
following by simply replacing the indices. Furthermore, we only consider
the statement with the conditions for the lower edge, the other case being
completely analogous. Throughout the section we tacitly assume that N0 ≥
(B0 + SV + γ −1)C , with C = C(a, b, ρ) large enough. As in the previous
section, the dependence on the exponents d, δ, β, μ is left implicit. We split
the proof of the first part of Theorem E into several auxiliary statements. In
what follows we fix x0, N0, such that the assumptions of Theorem E hold, and
N1 = N 5

0 .
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Proposition 6.1 There exist integers |N ′
1 − N1|, |N ′′

1 − N1| � N0, k1, such

that the following hold with E [−N ′
1,N

′′
1 ] = E

[−N ′
1,N

′′
1 ]

k1
and for any |x − x0| <

exp(−2N 4d
0 ):

∣∣E [−N ′
1,N

′′
1 ](x) − E [−N ′

0,N
′′
0 ](x)

∣∣ < exp(−γ N0/20), (6.3)

E
[−N ′

1,N
′′
1 ]

j (x) − E [−N ′
1,N

′′
1 ](x) >

1

8
exp(−N 4d

0 ), j �= k1, (6.4)

|ψ [−N ′
1,N

′′
1 ](x, n)| < exp(−γ |n|/10), |n| > 3N0/4, (6.5)

‖ψ [−N ′
1,N

′′
1 ](x, ·) − ψ [−N ′

0,N
′′
0 ](x, ·)‖ < exp(−γ N0/20). (6.6)

Proof Take arbitrary 3N0/2 < |m| ≤ N1. Using the Diophantine condition
we have

dist(mω,T0) ≥ a(CN0)
−b ≥ exp(−N 2d

0 ).

Then by condition (D) with h = mω, there exist |n′(m)|, |n′′(m)| < N 1/2
0

such that with Jm = m + [−N0 + n′(m), N0 + n′′(m)],

dist(spec HJm (x0), (−∞, E0]) ≥ exp(−N 4d
0 )

(recall (2.8)). Define

[−N ′
1, N

′′
1 ] = [−3N0/2, 3N0/2] ∪

⋃
3N0/2<|m|≤N1

Jm .

Using (6.1) and (B) we can apply Proposition 2.22 (with x0 = x0, E0 = E0,
β = 4d) and all the estimates follow. ��

For the rest of this section E [−N ′
1,N

′′
1 ] will stand for the eigenvalue from the

previous proposition. Let

P ′
0 = {z ∈ C

d : |z − x0| < r ′
0}, r ′

0 = exp(−2N d
0 ),

P ′
1 = {z ∈ C

d : |z − x0| < r ′
1}, r ′

1 = exp(−3N 4d
0 ).

Lemma 6.2 The functions E [−N ′
0,N

′′
0 ], E [−N ′

1,N
′′
1 ] are analytic on P ′

0, P ′
1,

respectively, and

max|α|=k
sup
P ′
0

|∂αE [−N ′
0,N

′′
0 ]| ≤ exp(C(k)N d

0 ), max|α|=k
sup
P ′
1

|∂αE [−N ′
1,N

′′
1 ]|

≤ exp(C(k)N 4d
0 ).
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Furthermore,

sup
P ′
1

∥∥∥∇E [−N ′
1,N

′′
1 ] − ∇E [−N ′

0,N
′′
0 ]
∥∥∥ , sup

P ′
1

∥∥∥H(E [−N ′
1,N

′′
1 ]) − H(E [−N ′

0,N
′′
0 ])
∥∥∥

< exp(−c0γ N0),

with c0 = c0(d).

Proof The analyticity of the functions follows from the separation of eigen-
values (see (6.1) and (6.4)) combined with basic perturbation theory. The
derivative estimates are just Cauchy estimates. They hold on P ′

i because the
functions are in fact analytic on 100P ′

i , i = 0, 1.
Using (6.3) and Corollary 2.12 we have

sup
2P ′

1

|E [−N ′
1,N

′′
1 ] − E [−N ′

0,N
′′
0 ]| < exp(−cγ N0), c = c(d),

and the last estimates holds by Cauchy estimates (we chose r ′
1 = exp(−3N 4d

0 )

instead of exp(−2N 4d
0 ) to ensure we have the above estimate). ��

Proposition 6.3 There exists x1, |x1 − x0| < exp(−γ N0/50), such that

E [−N ′
1,N

′′
1 ](x1) ≤ E [−N ′

1,N
′′
1 ](x), for any |x − x0| < r ′

1,

∇E [−N ′
1,N

′′
1 ](x1) = 0, H(E [−N ′

1,N
′′
1 ])(x1) ≥ ν0

4
I.

Proof By Taylor’s formula (recall Lemma 4.10 and (C))

E [−N ′
0,N

′′
0 ](x) − E0 ≥ ν0

2
|x − x0|2, for |x − x0| < r ′

1.

In particular,

E [−N ′
0,N

′′
0 ](x) ≥ E0 + 3 exp(−γ N0/20),

for exp(−γ N0/50) ≤ |x − x0| < r ′
1.

Combining this with (6.3) we get

E [−N ′
1,N

′′
1 ](x) ≥ E [−N ′

1,N
′′
1 ](x0) + exp(−γ N0/20),

for exp(−γ N0/50) ≤ |x − x0| < r ′
1.

This implies the existence of a point x1, |x1 − x0| where E [−N ′
1,N

′′
1 ] attains

its minimum on |x − x0| < r ′
1. The estimate on the Hessian follows from
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Lemma 6.2 and the fact that by Taylor’s formula (again, recall Lemma 4.10
and (C)), we have H(E [−N ′

0,N
′′
0 ])(x1) ≥ (ν0/2)I . ��

We fix an x1 as in Proposition 6.3 (in fact, in can be argued that such x1 is
unique).

Lemma 6.4 We have |E1 − E0| < exp(−γ N0/60).

Proof By the mean value theorem, Lemma 6.2, and Proposition 6.3,

|E [−N ′
0,N

′′
0 ](x1) − E [−N ′

0,N
′′
0 ](x0)| ≤ exp(CN d

0 )|x1 − x0| < exp(−γ N0/55).

Now the conclusion follows using (6.3). ��
Proposition 6.5 The condition (D) holds with s = 1.

Proof The proof is similar to that of Proposition 5.11. Let |m1| ≤ 3N1/2,
h1 ∈ R

d such that

dist(h,T1) = ‖h1‖, h1 = h − m1ω (modZd).

As in the proof of Proposition 5.11 (recall (5.28),(5.29)), we have

dist(h + mω,T0) ≥ ‖h1‖ , provided |m| ≤ N1,

dist(h + mω,T0) ≥ a(CN1)
−b − ‖h1‖ , provided |m + m1| > 3N0/2.

(6.7)
We consider two cases: ‖h1‖ ≥ exp(−N 2d

0 ) and exp(N 2d
1 ) ≤ ‖h1‖ <

exp(−N d
0 ). In either case, by the above, we have dist(h + mω,T0) ≥

exp(−N 2d
0 ) for all m ∈ [−N1, N1] with |m + m1| > 3N0/2. So, for

such m, condition (D) (with h = mω) implies that there exists an interval
Jm = m + [−N0 + n′(h), N0 + n′′(h)] such that

dist(spec HJm (x0 + h), (−∞, E0]) ≥ exp(−N 4d
0 ). (6.8)

Our goal is to apply Lemma 2.17 (with S = (−∞, E0]). To this end we
will deal with |m+m1| ≤ 3N0/2 by focusing onm = −m1. We assumem1 ∈
[−N1, N1]. If ‖h1‖ ≥ exp(−N 2d

0 ), then dist(h + m1ω,T0) ≥ exp(−N 2d
0 )

and by condition (D) there exists an interval J−m1 such that (6.8) holds with
m = −m1. Suppose that exp(−N 2d

1 ) ≤ ‖h1‖ < exp(−N 2d
0 ). Let J−m1 :=

−m1 + [−N ′
0, N

′′
0 ]. We have

spec HJ−m1
(x0 + h) = spec H[−N ′

0,N
′′
0 ](x0 + h1). (6.9)
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By Taylor’s formula (recall Lemma 4.10 and (C)),

E [−N ′
0,N

′′
0 ](x0 + h1) ≥ E0 + ν0

2
‖h1‖2 ≥ E0 + exp(−3N 2d

1 ).

Using (A) it follows that

dist(spec HJ−m1
(x0 + h), (−∞, E0]) ≥ exp(−3N 2d

1 ) > exp(−N 11d
0 ).

We now have what we need to invoke the covering form of (LDT). Let I as
in (5.31). By the above, we can use Lemma 2.17 (with K = N 11d

0 ; recall that
d � δ � σ ) to get that

dist(spec HI (x0 + h), (−∞, E0]) ≥ exp(−N 12d
0 ) � exp(−N 4d

1 ).

Using Proposition 6.3 and Lemma 6.4 we have

dist(spec HI (x1 + h), (−∞, E1]) ≥ exp(−N 4d
1 )

and the conclusion follows. ��
We now proceed to the proof of Theorem E.

Proof of Theorem E The existence of x1 and E [−N ′
1,N

′′
1 ] is given by Proposi-

tion 6.1 andProposition 6.3.Note that due to Proposition 6.3,�1 ⊂ {|x−x0| <

r ′
1} (recall that r ′

1 = exp(−3N 4d
0 ), N1 = N 5

0 ). Now, for s = 1, conditions (A)
and (B) hold by Proposition 6.1, condition (C) holds by Proposition 6.3, and
condition (D) holds by Proposition 6.5. The estimates (6.2) (with s = 1) hold
by Proposition 6.1, Proposition 6.3, and Lemma 6.4.

Fix x , exp(−N 200d
1 ) ≤ |x − x0| ≤ exp(−N d

1 ). We will check that the
conditions (A)–(E), with s = 1, hold for E [−N ′

1,N
′′
1 ] with E1 = E [−N ′

0,N
′′
0 ](x).

The conclusion then holds by noticing that

{E [−N ′
0,N

′′
0 ](x) : exp(−N 200d

1 ) ≤ |x − x0| ≤ exp(−N d
1 )}

⊃ [E0 + exp(−N 100d
1 )/2, E0 + 2 exp(−N 2d

1 )]
⊃ [E1 + exp(−N 100d

1 ), E1 + exp(−N 2d
1 )]

(recall Lemma 4.10 and Lemma 6.4).
We apply Proposition 4.1 to E [−N ′

0,N
′′
0 ] on P ′

0. Using the notation of Propo-
sition 4.1, condition (C), and Lemma 6.2, we have

ν1 � exp(−CN d
0 ), ρ = r ′

0ν
10
1 � exp(−C ′N d

0 ), r = ν1
∥∥x − x0

∥∥ .
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Since 0 <
∥∥x − x0

∥∥ < ρ, Proposition 4.1 applies with x in the role of x0 and
we get the following:

(1) There exists a map x0 : �0 → R
d ,

�0 = I0 × (E1−r2, E1+r2), I0 = (−r, r)d−1, E1 = E [−N ′
0,N

′′
0 ](x),

such that
E [−N ′

0,N
′′
0 ](x0(φ, E)) = E,

x0(φ, E) extends analytically to

P0 = {(φ, E) ∈ C
d : |φ| < r, |E − E1| < r2},

and ∥∥x0(φ, E) − x0
∥∥ <

∥∥x − x0
∥∥ /2 � exp(−N 5d

0 ) (6.10)

In particular, from the last estimate it follows that x0(P0) ⊂ T
d
ρ/2.

(2) For any |E − E1| < r2, any vector h ∈ R
d with 0 < ‖h‖ < ρ, and any

H � 1, we have

mes{φ ∈ I0 : log |E [−N ′
0,N

′′
0 ](x0(φ, E))−E | ≤ H0H} < exp(−H1/(d−1)),

(6.11)
with H0 = C(d) log(‖h‖ ∥∥x − x0

∥∥) (note that ν−2
1 r = ν−1

1

∥∥x − x0
∥∥ <

ν−1
1 ρ = r ′

0ν
9
1 < 1).

(3) Let h0 be an arbitrary unit vector. For any |E − E1| < r2, and any H � 1,
we have

mes{φ ∈ I0 : log |〈∇E [−N ′
0,N

′′
0 ](x0(φ, E)), h0〉| ≤ H1H} < exp(−H1/(d−1)),

(6.12)

with H1 = C(d) log(ν1
∥∥x − x0

∥∥).
By (6.3) and (6.10) we have

|E [−N ′
1,N

′′
1 ](x0(φ, E)) − E [−N ′

0,N
′′
0 ](x0(φ, E))|

= |E [−N ′
1,N

′′
1 ](x0(φ, E)) − E | < exp(−γ N0/20),

for (φ, E) ∈ �0. Then, just as in Proposition 5.8, we can find a map x1 :
�′′

1 → R
d ,

�′′
1 = P ′′

1 ∩ R
d , P ′′

1 = {(φ, E) ∈ C
d : |φ| < rC0, |E − E1| < rC0},

C0 = C0(d) � 1,

123



672 M. Goldstein et al.

that extends analytically to P ′′
1 , x1(P ′′

1 ) ⊂ T
d
ρ/2, and such that

|x1(φ, E) − x0(φ, E)| < exp(−γ N0/30), (φ, E) ∈ �′′
1. (6.13)

Since r � exp(−N 300d
1 ), we have that P1 as defined in condition (B) (with

φ1 = 0), satisfies P1 ⊂ P ′′
1 (recall that d � δ). Note that |x1(φ, E) − x0| �

exp(−2N 4d
0 ). Now, by Proposition 6.1, conditions (A)–(C) holdwith the above

choice of parametrization x1.
We proceed to check condition (D). The argument is based on applying the

covering form of (LDT), similarly to Proposition 6.5. We assume everything
from the proof of Proposition 6.5, up to and including (6.8), except that we
take the lower bound for dist(h,T1) to be exp(−Nμ

1 ). Fix |E − E1| < rC0 .
By (6.8) and (6.10),

dist(spec Jm(x0(φ, E) + h), (−∞, E [−N ′
0,N

′′
0 ](x0(φ, E))])

= dist(spec Jm(x0(φ, E) + h), (−∞, E]) � exp(−N 4d
0 ), (6.14)

provided |m + m1| > 3N0/2.
Now we focus on m = −m1. We assume m1 ∈ [−N1, N1]. If ‖h1‖ ≥

exp(−N 2d
0 ), then dist(h + m1ω,T0) ≥ exp(−N 2d

0 ) and as above, there
exists an interval J−m1 such that (6.14) holds with m = −m1. Suppose that
exp(−Nμ

1 ) ≤ ‖h1‖ < exp(−N 2d
0 ). Let J−m1 := −m1+[−N ′

0, N
′′
0 ] and recall

(6.9). From (6.11) with H = N 2(d−1)δ
1 (note that ‖h1‖ ≤ exp(−N 2d

0 ) < ρ), it
follows that

mes{φ ∈ I0 : |E [−N ′
0,N

′′
0 ](x0(φ, E)+h1)− E | ≤ exp(−N 2μ

1 )} < exp(−N 2δ
1 )

(6.15)
(we used d � δ � μ, H0 � −(N 200d

1 + Nμ
1 ) � −Nμ

1 ). Using (A) it follows
that

dist(spec HJ−m1
(x0(φ, E) + h), E) > exp(−N 2μ

1 ),

for any φ ∈ I0\B′
1, where B′

1 is the set from (6.15).
We now have what we need to invoke the covering form of (LDT). We let

the interval I be as in the proof of Proposition 6.5. By the above, we can use
Lemma 2.17 (with K = N 2μ

1 = N 10μ
0 � Nσ/2

0 ; recall that μ � σ ) to get that

dist(spec HI (x0(φ, E) + h), E) ≥ exp(−2N 2μ
1 ) = exp(−2N 10μ

0 ),

for any φ ∈ I0\B′
1. Let I ′′

1 = Projφ�′′
1. Then, using (6.13), we get

dist(spec HI (x1(φ, E) + h), E) ≥ exp(−3N 2μ
1 ) > exp(−Nβ

1 /2),
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for any φ ∈ I ′′
1 \B′

1 (recall that β � μ). This implies that condition (D) holds.
Finally, we check condition (E). Fix |E − E1| < rC0 and h0 ∈ R

d a unit
vector. By (6.12) with H = N 2(d−1)δ

1 ,

mes{φ ∈ I0 : log |〈∇E [−N ′
0,N

′′
0 ](x0(φ, E)), h0〉| < −Nμ

1 /4} < exp(−N 2δ
1 )

(we used HH1 � −N 200d
1 N 2(d−1)δ

1 � Nμ
1 ; recall that μ � δ � d). Now

condition (E) follows by using (6.13) and Lemma 6.2. ��

7 From conditions on potential to inductive conditions

We start by assuming that V attains its absolute extrema at exactly one non-
degenerate critical point and show that for large enough couplingwe can satisfy
the initial inductive conditions from Sect. 6. This means that we are working
with operators of the form (1.1). Having the assumption be about both absolute
extrema is just a matter of convenience, it will be clear that they can be handled
separately.

Let x , x , be the points where the absolute minimum and maximum of V are
attained. Since x , x are assumed to be non-degenerate critical points they will
be isolated from the other critical points. We give a quantitative version of this
observation. We use E to denote the set of critical points of V .

Lemma 7.1 Given x0, x1 ∈ E, such that x0 is non-degenerate, we have

‖x0 − x1‖ ≥ cρ

∥∥H(x0)
−1
∥∥−1

(1 + ‖V ‖∞)−1.

Proof By Taylor’s formula and Cauchy estimates,

‖∇V (x)‖ = ‖∇V (x) − ∇V (x0)‖
≥ ‖H(x0)(x − x0)‖ − Cρ ‖V ‖∞ ‖x − x0‖2

≥ 1

2

∥∥H(x0)
−1
∥∥−1 ‖x − x0‖ ,

provided ‖x − x0‖ ≤ cρ

∥∥H(x0)−1
∥∥−1

(1 + ‖V ‖∞)−1. The conclusion fol-
lows. ��

Note thatE is compact and since x, x are isolated,E\{x, x} is also compact.
Therefore there exists ι = ι(V ) > 0, such that

V (x) + ι ≤ V (x) ≤ V (x) − ι, x ∈ E\{x, x}. (7.1)

Let
ν := min(

∥∥H(x)−1
∥∥−1

,
∥∥H(x)−1

∥∥−1
)
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Note that since x , x are non-degenerate extrema, we have

H(x) ≥ ν I, H(x) ≤ −ν I.

Lemma 7.2 Let r = cν(1+‖V ‖∞)−1, with c = c(ρ) sufficiently small. Then

ν

2

∥∥x − x
∥∥2 ≤ V (x) − V (x) ≤ Cρ(1 + ‖V ‖∞)

∥∥x − x
∥∥2 ,

∥∥x − x
∥∥ ≤ r,

ν

2

∥∥x − x
∥∥ ≤ ‖∇V (x)‖ ≤ Cρ(1 + ‖V ‖∞)

∥∥x − x
∥∥ ,

∥∥x − x
∥∥ ≤ r,

min(ι, νr2/2) ≤ V (x) − V (x),
∥∥x − x

∥∥ ≥ r.
(7.2)

Analogous estimates hold for x.

Proof The estimates with
∥∥x − x

∥∥ ≤ r follow from Lemma 4.10 (we use
Cauchy estimates to controlM(3)). FromLemma7.1wehave that, by choosing
r small enough,

E\{x} ⊂ T
d\{x : ∥∥x − x

∥∥ ≤ r}.
Then

min‖x−x‖≥r
(V (x) − V (x))

= min

(
min

x∈E\{x}(V (x) − V (x)), min‖x−x‖=r
(V (x) − V (x))

)

and the conclusion follows. ��
For the purpose of the next result we update TV (recall (3.2)), to be

TV = 2 + max(0, log ‖V ‖∞) + max(0, log ι−1) + max(0, log ι−1)

+ max(0, log ν−1). (7.3)

Clearly all the previous results using TV also hold with this possibly larger
TV . The proofs of the next proposition and later of Proposition 7.5 are very
similar to the proofs of Theorems E and D respectively, with some of the tools
from Sect. 2 replaced by their analogues from Sect. 3. Due to the similarity
we omit some details. However, for clarity, we do give complete proofs, as
the key differences are spread out. Recall the exponent d from the inductive
conditions (A)–(D).

Proposition 7.3 Assume the notation of conditions (A)–(D) from Sect. 6. Let
ε > 0. There exists λ0 = exp((TV )C), C = C(a, b, ρ, ε), such that the fol-
lowing hold for λ ≥ λ0. For any (log λ)C(a,b,ε) ≤ N0 ≤ exp((log λ)ε/2)
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there exists x0 ∈ T
d , |x0 − x | � λ−1/3, such that the conditions (A)–

(D) hold with s = 0, γ = (log λ)/2, [−N ′
0, N

′′
0 ] = [−N0, N0], and

|λ−1E0 − V (x)| � λ−1/4. Furthermore, for any E0 ∈ R, exp(−N 100d
0 ) ≤

|E0 − E0| ≤ λ exp(−(log λ)4ε), conditions (A)–(E), with s = 0, hold for
E [−N0,N0]. Analogous statements hold relative to conditions (A)–(D).

Proof To check (D) we will need to obtain conditions (A)–(C) not just for
[−N ′

0, N
′′
0 ] = [−N0, N0], but also for other intervals. By Lemma 7.2, for any

0 < |n| ≤ 2N0 we either have

V (x + nω) − V (x) ≥ ν

2
‖nω‖2 ≥ ν

2
a(2N0)

−b,

or
V (x + nω) − V (x) ≥ min(ι, νr2/2).

Then for large enoughλ (this iswhyweaddedmax(0, log ι−1)+max(0, log ν−1)

to TV ) and N0 not too large, we have

V (x + nω) − V (x) ≥ exp(−(log λ)ε), 0 < |n| ≤ N0.

Let a < 0 < b, [a, b] ⊂ [−2N0, 2N0]. Then by Lemma 3.8, there exists
E [a,b] = E [a,b]

k such that for any |x − x | < exp(−3(log λ)ε),

|λ−1E [a,b](x) − V (x)| ≤ 2λ−1,

|ψ [a,b](x, n)| < exp(−(log λ)|n|/2), |n| > 0,

λ−1(E [a,b]
j (x) − E [a,b](x)) ≥ 1

8
exp(−(log λ)ε), j �= k.

(7.4)

As in Lemma 6.2, E [a,b] is analytic on

P ′ = {z ∈ C
d : |z − x | < r ′}, r ′ = exp(−4(log λ)ε)

and
sup
P ′

∥∥∥H(λ−1E [a,b]) − H(V )

∥∥∥ ≤ λ−c(d).

As in Proposition 6.3, we can find x̃ = x̃([a, b]), |x̃ − x | � λ−1/3, such that

E [a,b](x̃) ≤ E [a,b](x), for any |x − x | < r ′,
∇E [a,b](x̃) = 0, H(λ−1E [a,b])(x̃) ≥ ν

4
I.

Also, as in Lemma 6.4, we have |λ−1 Ẽ − V (x)| � λ−1/4, where Ẽ =
E [a,b](x̃). We need to work around the weakness of the estimate |x̃ − x | �
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λ−1/3. From now on assume [a, b] ⊃ [−N̂ , N̂ ], N̂ = �N 1/4
0 �. By Corol-

lary 3.9, we have

|E [a,b](x) − E [−N̂ ,N̂ ](x)| � exp(−(log λ)N̂/2),

for any |x − x | < exp(−3(log λ)ε). Let x̂ = x̃([−N̂ , N̂ ]). As in Proposi-
tion 6.3, we can find, with a slight abuse of notation, x̃ = x̃([a, b]),

|x̃ − x̂ | < exp(−(log λ)N̂/5), (7.5)

such that

E [a,b](x̃) ≤ E [a,b](x), for any |x − x̂ | < exp(−C(log λ)ε),

∇E [a,b](x̃) = 0, H(λ−1E [a,b])(x̃) ≥ ν

8
I.

(7.6)

Furthermore, as in Lemma 6.4,

|Ẽ − Ê | < exp(−(log λ)N̂/6), (7.7)

with Ê = E [−N̂ ,N̂ ](x̂). Note that

|x̃ − x | � λ−1/3, |λ−1 Ẽ − V (x)| � λ−1/4. (7.8)

Let x0 = x̃([−N0, N0]). Then the first statement, except for condition (D),
holds by all the above and by having N d

0 � (log λ)ε. As in Sect. 6 we incor-
porate the dependence on d in the dependence on the Diophantine parameters.

Next we check condition (D). First we consider the case dist(h,T0) ≥
exp(−(log λ)2ε). Since‖h + nω‖ ≥ exp(−(log λ)2ε),wehave, byLemma7.2,

V (x + h + nω) − V (x) ≥ exp(−3(log λ)2ε), |n| ≤ N0

(provided λ is large enough). By Corollary 3.7 we get

dist(spec H[−N0,N0](x + h), (−∞, λV (x)]) � λ exp(−3(log λ)2ε)

and by (7.8),

dist(spec H[−N0,N0](x0+h), (−∞, E0])�λ exp(−3(log λ)2ε)�exp(−N 4d
0 ).

(7.9)
Next we consider the case exp(−N 2d

0 ) ≤ dist(h,T0) < exp(−(log λ)2ε). Let
n1, |n1| ≤ 3N0/2, such that dist(h,T0) = ‖h − n1ω‖. We consider two sub-
cases depending on the position of n1. If n1 /∈ [−N0+N 1/3

0 , N0−N 1/3
0 ], then
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On the spectrum of multi-frequency 677

for n ∈ [−N0 + N 1/3
0 , N0 − N 1/3

0 ]

‖h + nω‖ ≥ ‖(n − n1)ω‖ − ‖h − n1ω‖ ≥ aN−b
0 − exp(−(log λ)2ε)

� exp(−(log λ)2ε)

(recall that N0 ≤ exp((log λ)ε/2)) and as above we get

dist(spec H[−N0+N1/3
0 ,N0−N1/3

0 ](x0 + h), (−∞, E0]) � λ exp(−3(log λ)2ε)

� exp(−N 4d
0 ).

Suppose n1 ∈ [−N0 + N 1/3
0 , N0 − N 1/3

0 ]. Let h1 = h − n1ω (so, ‖h1‖ =
dist(h,T0)), [a1, b1] = n1+[−N0, N0], x̃1 = x̃([a1, b1]), Ẽ1 = E [a1,b1](x̃1).
Note that [a1, b1] ⊃ [−N̂ , N̂ ]. ByTaylor’s formula (recall Lemma4.10, (7.6)),

E [a1,b1](x̃1 + h1) − E [a1,b1](x̃1) ≥ ν

2
‖h1‖2 ≥ exp(−3N 2d

0 ).

Then, by (7.4) (recall (7.8)),

dist(spec H[a1,b1](x̃1 + h1), (−∞, Ẽ1]) ≥ exp(−3N 2d
0 ).

Since spec H[a1,b1](x̃1 + h1) = spec H[−N0,N0](x̃1 + h) and by (7.5), (7.7),

|x̃1 − x0| � exp(−(log λ)N 1/4
0 /5), |Ẽ1 − E0| � exp(−(log λ)N 1/4

0 /6),

it follows that

dist(spec H[−N0,N0](x0 + h), (−∞, E0]) � exp(−3N 2d
0 ) � exp(−N 4d

0 )

Thus, condition (D) holds.
Next we check the last statement. Let N1 = N 5

0 . Since all the statements of
the proof hold for a range of N0, they will also hold for N1, by adjusting the
range. In particular, let x1 = x̃([−N1, N1]). Note that by (7.5), (7.7),

|x1 − x0| � exp(−(log λ)N 1/4
0 /5), |E1 − E0| � exp(−(log λ)N 1/4

0 /6).
(7.10)

Fix x , exp(−N 100d
1 ) ≤ |x − x0| ≤ exp(−(log λ)2ε). We will check that condi-

tions (A)–(E), with s = 1, hold for E [−N1,N1] with E1 = E [−N0,N0](x). Then
the conclusion holds since

{E [−N0,N0](x) : exp(−N 200d
1 ) ≤ |x − x0| ≤ exp(−(log λ)2ε)}

⊃ [E0 + λ exp(−N 150d
1 ), E0 + λ exp(−(log λ)3ε)]
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⊃ [E1 + exp(−N 100d
1 ), E1 + λ exp(−(log λ)4ε)]

(we applied Lemma 4.10 to λ−1E [−N0,N0] and we used (7.10)). Note that since
this statement will hold for a range of N1, it will also hold for the stated range
of N0 by relabelling.

We apply Proposition 4.1 to λ−1E [−N0,N0] on

P ′
0 = {z ∈ C

d : |z − x0| < exp(−4(log λ)ε)}.
Using the notation of Proposition 4.1, we have

ν1 � exp(−C(log λ)ε), ρ = exp(−4(log λ)ε)ν101 � exp(−C ′(log λ)ε),

r = ν1
∥∥x − x0

∥∥ .

We chose to apply Proposition 4.1 to λ−1E [−N0,N0] because of the 0 < ν0 < 1
restriction in the statement of the proposition. Of course, we could artificially
choose any ν0 ∈ (0, 1) for E [−N0,N0], but this would result in a much smaller
ν1 � λ−1 exp(C(log λ)ε), which is too small for our purposes. Since 0 <∥∥x − x0

∥∥ < ρ, Proposition 4.1 applies with x in the role of x0 and we get the
following:

(1) There exists a map x0 : �0 → R
d ,

�0 = I0×(E1−λr2, E1+λr2), I0 = (−r, r)d−1, E1 = E [−N0,N0](x),

such that
E [−N0,N0](x0(φ, E)) = E,

x0(φ, E) extends analytically to

P0 = {(φ, η) ∈ C
d : |φ| < r, |E − E1| < λr2},

and

∥∥x0(φ, E) − x0
∥∥ <

∥∥x − x0
∥∥ /2 � exp(−(log λ)2ε). (7.11)

From the last estimate it follows that x0(P0) ⊂ T
d
ρ/2. Of course, Proposi-

tion4.1 actually gives a function x̃0(φ, η), such thatλ−1E [−N0,N0](x̃0(φ, η))

= η, and we get the above statement by setting x0(φ, E) = x̃0(φ, λ−1E).
(2) For any |E − E1| < λr2, any vector h ∈ R

d with 0 < ‖h‖ < ρ, and any
H � 1, we have

mes{φ ∈ I0 : log |E [−N0,N0](x0(φ, E))−E | ≤ H0H} < exp(−H1/(d−1)),

(7.12)
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with H0 = C(d) log(‖h‖ ∥∥x − x0
∥∥).

(3) Let h0 be an arbitrary unit vector. For any |E−E1| < λr2, and any H � 1,
we have

mes{φ ∈ I0 : log |〈∇E [−N0,N0](x0(φ, E)), h0〉| ≤ H1H}
< exp(−H1/(d−1)), (7.13)

with H1 = C(d) log(ν1
∥∥x − x0

∥∥). By Corollary 3.9,

|E [−N1,N1](x) − E [−N0,N0](x)| � exp(−(log λ)N0/2),

|x − x | < exp(−3(log λ)ε), (7.14)

and therefore

|E [−N1,N1](x0(φ, E)) − E [−N0,N0](x0(φ, E))| = |E [−N1,N1](x0(φ, E)) − E |
� exp(−(log λ)N0/2),

for (φ, E) ∈ �0. Then, just as in Proposition 5.8, we can find a map x1 :
�′′

1 → R
d ,

�′′
1 = P ′′

1 ∩ R
d , P ′′

1 = {(φ, E) ∈ C
d : |φ| < rC0, |E − E1| < rC0},

C0 = C0(d) � 1,

that extends analytically to P ′′
1 , x1(P ′′

1 ) ⊂ T
d
ρ/2, and such that

|x1(φ, E) − x0(φ, E)| < exp(−(log λ)N0/3), (φ, E) ∈ �′′
1. (7.15)

In fact the domain in E ismuch larger, butwe have no use for this improvement.
Since r � exp(−N 200d

1 ) , we have that P1 as defined in condition (B) (with
φ1 = 0), satisfies P1 ⊂ P ′′

1 (recall that d � δ). Note that |x1(φ, E) −
x0| � exp(−3(log λ)ε). Now, conditions (A)–(C) hold with the above choice
of parametrization x1 (recall that we have (7.4) with [a, b] = [−N1, N1]).

We proceed to check condition (D). Let |m1| ≤ 3N1/2, h1 ∈ R
d such that

dist(h,T1) = ‖h1‖, h1 = h − m1ω (modZd).

Recall that we have (6.7). We consider two cases: ‖h1‖ ≥ exp(−(log λ)2ε)

and exp(Nμ
1 ) ≤ ‖h1‖ < exp(−(log λ)2ε). In either case, by (6.7), we have

dist(h +mω,T0) ≥ exp(−(log λ)2ε) for all m ∈ [−N1, N1] with |m +m1| >

3N0/2. For such m, (7.9) implies

dist(spec HJm (x0 + h), (−∞, E0]) � λ exp(−3(log λ)2ε), (7.16)
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with Jm = m + [−N0, N0]. Fix |E − E1| < rC0 . By (7.16) and (7.11),

dist(spec HJm (x0(φ, E) + h), (−∞, E [−N ′
0,N

′′
0 ](x0(φ, E))])

= dist(spec HJm (x0(φ, E) + h), (−∞, E]) � λ exp(−3(log λ)2ε),

(7.17)

provided |m + m1| > 3N0/2.
Now we focus on m = −m1. We assume m1 ∈ [−N1, N1]. Let J−m1 :=

−m1 + [−N0, N0]. If ‖h1‖ ≥ exp(−(log λ)2ε), then dist(h + m1ω,T0) ≥
exp(−(log λ)2ε) and as above, (7.17) holds with m = −m1. Suppose that
exp(−Nμ

1 ) ≤ ‖h1‖ < exp(−(log λ)2ε). From (7.12) with H = N 2(d−1)δ
1 , it

follows that

mes{φ ∈ I0 : |E [−N0,N0](x0(φ, E)+ h1)− E | ≤ exp(−N 2μ
1 )} < exp(−N 2δ

1 )

(7.18)
(we used d � δ � μ, H0 � −(N 200d

1 + Nμ
1 ) � −Nμ

1 ). Using (7.4) it follows
that

dist(spec HJ−m1
(x0(φ, E) + h), E) > exp(−N 2μ

1 ),

for any φ ∈ I0\B′
1, where B′

1 is the set from (7.18).
Let I be an interval as in (5.31). By the above, we can use Lemma 2.17

(with K = N 2μ
1 = N 10μ

0 � Nσ/2
0 ; recall that μ � σ ) to get that

dist(spec HI (x0(φ, E) + h), E) ≥ exp(−2N 2μ
1 ) = exp(−2N 10μ

0 ),

for any φ ∈ I0\B′
1. Let I ′′

1 = Projφ�′′
1. Then, using (7.15), we get

dist(spec HI (x1(φ, E) + h), E) ≥ exp(−3N 2μ
1 ) > exp(−Nβ

1 /2),

for any φ ∈ I ′′
1 \B′

1 (recall that β � μ). This implies that condition (D) holds.
Finally, we check condition (E). Fix |E − E1| < rC0 and h0 ∈ R

d a unit
vector. By (7.13) with H = N 2(d−1)δ

1 ,

mes{φ ∈ I0 : log |〈∇E [−N0,N0](x0(φ, E)), h0〉| < −Nμ
1 /4} < exp(−N 2δ

1 )

(we used HH1 � −N 200d
1 N 2(d−1)δ

1 � Nμ
1 ; recall that μ � δ � d). Now

condition (E) follows by using (7.15) and Cauchy estimates. ��
For the rest of the section we assume that V ∈ G, recall Definition 1.1,

and show that, for large enough coupling, we can we can satisfy the initial
inductive conditions from Sect. 5. In fact, it will be clear that we only use
properties (iii) and (iv) from the definition of G. The first two properties will
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only be needed in the proof of Theorem A (b). We fix the constants c0, c1,C0
from Definition 1.1.

Proposition 7.4 Let x0 ∈ T
d , η0 = V (x0) and assumeμ0 := ‖∇V (x0)‖ > 0.

Let
r = min(ρ/4, cμ2

0(1 + ‖V ‖∞)−2),

with c = c(ρ) small enough. There exists a map x : � → R
d ,

� = I × (η0 − r, η0 + r), I = x0 + (−r, r)d−1,

such that the following hold.

(a) The map extends analytically on the domain

P = {(φ, η) ∈ C
d : dist((φ, η), �) < r},

and
x(P) ⊂ T

d
ρ/2, V (x(φ, η)) = η, (φ, η) ∈ P.

(b) For any K � C0 + Cρ max(0, log ‖V ‖∞), ‖h‖ ≥ e−c0K , and η ∈ (η0 −
r, η0 + r),

mes{φ ∈ I : |V (x(φ, η) + h) − η| < exp(−K )} < exp(−K c1/10).

(c) Take an arbitrary unit vector h0 ∈ R
d . For any K ≥ C0, η ∈ (η0 − r, η0 +

r),

mes{φ ∈ I : log |〈∇V (x(φ, η)), h0〉| < −K } < exp(−K c1).

Proof There exists i such that ∂xi V (x0) ≥ μ0/d. To simplify the notation, we
assume that i = 1. Let ρ1 ≤ cρμ0(1 + ‖V ‖∞)−1 with cρ sufficiently small.
Applying Lemma 4.2 (also recall Remark 4.5) to V (x) − η near (x0, η0), we
get that there exists an analytic function x1(x2, . . . , xd , η) on

|x2 − x0,2|, . . . , |xd − x0,d |, |η − η0| < ρ2
1

such that

|x1(x2, . . . , xd , η) − x0,1| < ρ1,

V (x1(x2, . . . , xd , η), x2, . . . , xd) = η.

The existence of the map and part (a) follow by setting

x(φ, η) = (x1(φ, η), φ), φ = (x2, . . . , xd).
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Our choice of r < ρ2
1 is made to ensure that x(P) ⊂ T

d
ρ/2.

Fix ‖h‖ ≥ exp(−c0K ), η ∈ (η0 − r, η0 + r). Let

F(φ) = V (x(φ, η) + h) − η. (7.19)

Let g(x) := gV,h,1,2(x) be as in Definition 1.1. We have

∂x2F(φ) = ∂x1V (x(φ, η) + h)∂x2x1(φ, η) + ∂x2V (x(φ, η) + h)

= −∂x1V (x(φ, η) + h)
∂x2V (x(φ, η))

∂x1V (x(φ, η))
+ ∂x2V (x(φ, η) + h)

= g(x(φ, η))

∂x1V (x(φ, η))
. (7.20)

Let K ≥ C0. By Definition 1.1 (iii) we have that

mes{x1̂ : min
x1

(|V (x + h) − V (x)| + |g(x)|) < exp(−K )} ≤ exp(−K c1).

In particular, it follows that

mes{φ ∈ I : |V (x(φ, η)+h)−η|+|g(x(φ, η))| < exp(−K )} ≤ exp(−K c1).

(7.21)
Let

B = {φ ∈ I : |V (x(φ, η) + h) − η| < exp(−5K )},
B′′ = {φ ∈ I : |V (x(φ, η) + h) − η| < exp(−5K ),

‖g(x(φ, η))| ≥ exp(−K )/2},
and B′ the set from (7.21). Then

B ⊂ B′ ∪ B′′.

We want to estimate mes(B′′). Let z = (x3, . . . , xd) and

B′′
z = {x2 : φ = (x2, z) ∈ B′′}.

Fix z = (x3, . . . , xd) with |xi − x0,i | < r , i = 3, . . . , d. By truncating the
Taylor series (for both V and x(φ, η)) we can find polynomials P(x2), Q(x2)
(depending on z) of degree≤ C max(1, log ‖V ‖∞)K 4, such that for any |x2−
x0,2| < r ,

|F(x2, z) − P(x2)|, |∂x2F(x2, z) − P ′(x2)|, |g(x(x2, z, η)) − Q(x2)|
≤ exp(−5K ).
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Then

B′′
z ⊂ B′′′

z := {x2 ∈ (x0,2 − r, x0,2 + r) : |P(x2)| ≤ 2 exp(−5K ),

|Q(x2)| ≥ 1

4
exp(−K )}.

Using (7.20) and Cauchy estimates, we have that for any x2 ∈ B′′′
z ,

|∂x2F(x2, z)| � ρ ‖V ‖−1∞ |g(x(x2, z, η))| � ρ ‖V ‖−1∞ (|Q(x2)| − e−5K )

� ρ ‖V ‖−1∞ exp(−K ),

|P ′(x2)| � (ρ ‖V ‖−1∞ exp(−K ) − exp(−5K )) > exp(−2K ),

provided K is large enough. It follows that each connected component of
B′′′
z has length � exp(2K ) exp(−5K ). Since B′′′

z consists of the union of
� (deg P + deg Q) intervals, it follows that

mes(B′′′
z ) ≤ C max(1, log ‖V ‖∞)K 4 exp(−3K ) < exp(−2K ).

Thenwe havemes(B′′) < exp(−K ) (recall that ρ ≤ 1, so r ≤ 1/4), mes(B) <

exp(−K c1/2), and statement (b) follows.
Given K ≥ C0, by Definition 1.1 (iv) we have

mes{x1̂ : min
x1

(|V (x) − η| + |〈∇V (x), h0〉|) < exp(−K )} ≤ exp(−K c1).

In particular, it follows that

mes{φ ∈ I : |V (x(φ, η)) − η| + |〈∇V (x(φ, η), h0〉|) < exp(−K )}
≤ exp(−K c1).

Since V (x(φ, η)) = η, statement (c) follows. ��
For the purpose of the next result we update TV again to be to be

TV = 2 + max(0, log ‖V ‖∞) + max(0, log ι−1) + max(0, log ι−1)

+max(0, log ν−1) + C0 + c
−1
0 .

We don’t include c−1
1 because it doesn’t depend on V .

Proposition 7.5 There exists λ0 = exp((TV )C), C = C(a, b, ρ) such that the
following hold forλ ≥ λ0. Let x0 ∈ T

d , η0 = V (x0), and assume ‖∇V (x0)‖ ≥
exp(−(log λ)c1/3). Then for any (log λ)C(a,b) ≤ N0 ≤ exp((log λ)c1/3), the
conditions (A)–(E) hold with s = 0, γ = (log λ)/2, E0 = λη0, and some
φ0 ∈ R

d .
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Proof The proof is similar to that of Theorem D. As in Theorem D we leave
the dependence on the exponents δ, β, μ implicit, as part of the dependence
on the Diophantine condition parameters a, b.

Due to the lower bound on ‖∇V (x0)‖, we can apply Proposition 7.4 with
r = exp(−3(log λ)c1/3). Furthermore, since λ is large enough, we can apply
Proposition 7.4 (b),(c) with K � (log λ)1/2 (this is why we added C0 to TV ).
In what follows we let I, x(φ, η), be as in Proposition 7.4. Let

BK ,η,h = {φ ∈ I : |V (x(φ, η)) − η| < exp(−K )}, Bη,h = B(log λ)1/2,η,h .

By Proposition 7.4, for any η ∈ (η0 − r, η0 + r), ‖h‖ ≥ exp(−c0(log λ)1/2),

mes(Bη,h) < exp(−(log λ)c1/2).

As in Lemma 5.3 we can find a semialgebraic set B̃η,h containing Bη,h , of
degree ≤ (log λ)3, and with measure ≤ exp(−(log λ)c1/2/2). Let

Bη0,N0 =
⋃

0<|n|≤2N0

B̃η0,nω.

Since N0 ≤ exp((log λ)c1/3) we have ‖nω‖ ≥ exp(−c0(log λ)1/2), 0 <

|n| ≤ 2N0 (provided λ is large enough; this why we added c
−1
0 to TV ), and

mes(Bη0,N0) < exp(−(log λ)c1/2/4). Since Bη0,N0 is also semialgebraic of
degree less than exp(2(log λ)c1/3), it follows, using Lemma 2.23, that there
exists φ0, |φ0 − x0| � r , such that

I ′
0 � I\Bη0,N0, I ′

0 = φ0 + (−r ′
0, r

′
0)

d−1, r ′
0 = exp(−(log λ)c1/3).

Let a < 0 < b, [a, b] ⊂ [−2N0, 2N0]. We consider such general intervals for
reasons similar to the ones in Proposition 7.3. As in Proposition 5.6, but using
Lemma 3.8 (with x0 = x(φ, η0), φ ∈ I ′

0) instead of Proposition 2.22, we get
that there exists k such that for any φ ∈ I ′

0, y ∈ R
d , |y| < exp(−4(log λ)1/2),

|η − η0| < exp(−4(log λ)1/2),

|λ−1E [a,b]
k (x(φ, η) + y) − V (x(φ, η) + y)| ≤ 2λ−1,

λ−1|E [a,b]
j (x(φ, η) + y) − E [a,b]

k (x(φ, η) + y)|
>

1

8
exp(−(log λ)1/2), j �= k,

|ψ [a,b]
k (x(φ, η) + y, n)| < exp(−(log λ)|n|/2), |n| > 0. (7.22)
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To simplify notation we will drop the index k and write E [a,b], ψ [a,b]. Let

P ′′
0 = {(φ, E) ∈ C

d : |φ −φ0|, |E − E0| < r ′′
0 }, r ′′

0 = exp(−C0(log λ)c1/3).

C0 = C0(d) � 1. Let �′′
0 = P ′′

0 ∩ R
d , I ′′

0 = Projφ�′′
0. As in Proposition 5.8,

we can find an analytic map x̃(φ, η) such that

λ−1E [a,b](x̃(φ, η)) = η,

for any (φ, λη) ∈ P ′′
0 and

|x̃(φ, η) − x(φ, η)| ≤ λ−1/2, (7.23)

for (φ, λη) ∈ �′′
0 (in fact, in the definition of P ′′

0 we could take |E − E0| <

λ exp(−C0(log λ)1/2)). We note that at this point, we have what we need for
conditions (A)–(C) to hold. However, to check condition (D) we need to set
things upmore carefully. The problemwe need to work around is the weakness
of (7.23). From now on we assume that [a, b] ⊃ [−N , N ], N = �N 1/4

0 �. Let
x be the parametrization obtained as above, so that

λ−1E [−N ,N ](x(φ, η)) = η.

By Corollary 3.9 we have

|E [a,b](x(φ, η) + y) − E [−N ,N ](x(φ, η) + y)| � exp(−(log λ)N/2).

for any |y| < r ′
0, (φ, λη) ∈ �′

0. Using (7.23) (with x̃ = x) it follows that

|E [a,b](x(φ, η)) − λη| = |E [a,b](x(φ, η)) − E [−N ,N ](x(φ, η))|
� exp(−(log λ)N/2).

Again, as in Proposition 5.8, we get that there exists a map x̃(φ, η) such that

E [a,b](x̃(φ, η)) = λη, (φ, λη) ∈ P ′′
0 ,

and for (φ, λη) ∈ �′′
0,

|x̃(φ, η) − x(φ, η)| ≤ exp(−(log λ)N/4). (7.24)

To justify keeping the same domain P ′′
0 as before we can increase the constant

C0 from its definition. Note that we still have

|x̃(φ, η) − x(φ, η)| � λ−1/2,
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and therefore (using (7.22)) conditions (A)–(C) hold with x0(φ, E) =
x̃(φ, λ−1E), [−N ′

0, N
′′
0 ] = [−N0, N0]. Of course, we are assuming N0 is

large enough so that r0 = exp(−N δ
0 ) � r ′′

0 .
Next we check condition (E), as in Proposition 5.14. Let h0 ∈ R

d a unit
vector, η ∈ (η0 − r ′′

0 , η0 + r ′′
0 ). By Proposition 7.4 (c),

mes{φ ∈ I : |〈∇V (x(φ, η)), h0〉| < exp(−(log λ)1/2)} < exp(−(log λ)c1/2).

Since exp(−(log λ)c1/2) � mes(I ′′
0 ), it follows that there exists φ̂, |φ̂−φ0| �

r ′′
0 , such that

|〈∇V (x(φ̂, η)), h0〉| ≥ exp(−(log λ)1/2)

and therefore

|〈∇E [a,b](x̃(φ̂, η)), h0〉| � λ exp(−(log λ)1/2) (7.25)

(we used the first estimate in (7.22), (7.23), Corollary 2.12, and Cauchy esti-
mates). Then Cartan’s estimate yields that given H � 1,

mes{φ ∈ I ′′
0 /10 : |〈∇E [a,b](x̃(φ, η)), h0〉| < log λ − CH(log λ)1/2}

< C(d)(r ′′
0 )d−1 exp(−H1/(d−1)).

In particular, condition (E) follows by setting H = N 2(d−1)δ
0 , with [a, b] =

[−N0, N0] (recall that μ � δ; we choose N0 such that N
μ
0 � log λ).

Finally, we check condition (D). Fix η ∈ (η0 − r ′′
0 , η0 + r ′′

0 ). For the rest of
the proof x̃ stands for the parametrization associated with [a, b] = [−N0, N0].
Note that for condition (D) to hold it is enough that, given h, dist(h,T0) ≥
exp(−Nμ

0 ), we can find |n′|, |n′′| < N 1/2
0 such that

mes{φ ∈ I0 : dist(spec H[−N0+n′,N0+n′′](x̃(φ, η)), λη) < exp(−Nβ
0 /2)}

< exp(−N 2δ
0 ).

We first consider the case dist(h,T0) ≥ exp(−c0(log λ)3/4). Let

B′
η,h = B(log λ)3/4,η,h, B′

N0,η,h =
⋃

|n|≤N0

B′
η,h+nω.

Since ‖h + nω‖ ≥ exp(−c0(log λ)3/4), using Proposition 7.4, we have

mes(B′
N0,η,h) < exp(−(log λ)3c1/4/2).
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In particular, there exists φ̂ ∈ I ′′
0 \B′

N0,η,h , |φ̂ − φ0| � r ′′
0 , such that

|V (x(φ̂, η) + h + nω) − η| ≥ exp(−(log λ)3/4), |n| ≤ N0,

and therefore

|V (x̃(φ̂, η) + h + nω) − η| � exp(−(log λ)3/4), |n| ≤ N0.

Using Cartan’s estimate

mes{φ ∈ I ′′
0 /10 : log |V (x̃(φ, η) + h + nω) − η|

< −Cd(log λ)3/4N 3(d−1)δ
0 } < exp(−2N 2δ

0 ), |n| ≤ N0.

Using Lemma 3.6 we get

mes{φ ∈ I ′′
0 /10 : dist(spec H[−N0,N0](x̃(φ, η) + h), λη)

< exp(−C(log λ)3/4N 3(d−1)δ
0 )} < exp(−N 2δ

0 ),

and condition (D) holds, since β � δ.
Next we consider the case exp(−Nμ

0 ) ≤ dist(h,T0) < exp(−c0(log λ)3/4).
Let n1, |n1| ≤ 3N0/2, such that

dist(h,T0) = ‖h − n1ω‖ .

We consider two sub-cases. First, suppose n1 /∈ [−N0 + N 1/3
0 , N0 − N 1/3

0 ].
Note that for n ∈ [−N0 + N 1/3

0 , N0 − N 1/3
0 ],

‖h + nω‖ ≥ ‖(n − n1)ω‖ − ‖h − n1ω‖ ≥ a(CN0)
−b − exp(−c0(log λ)3/4)

≥ exp(−c0(log λ)3/4).

Then, as above, we get

mes{φ ∈ I ′′
0 /10 : dist(spec H[−N0+N1/3

0 ,N0−N1/3
0 ](x̃(φ, η) + h), λη)

< exp(−C(log λ)3/4N 3(d−1)δ
0 )}

< exp(−N 2δ
0 ),

and condition (D) holds. Next, we consider n1 ∈ [−N0 + N 1/3
0 , N0 − N 1/3

0 ].
Let

h1 = h − n1ω, [a1, b1] = n1 + [−N0, N0]
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and x̃1(φ, η) the parametrization associated with [a1, b1]. Note that [a1, b1] ⊃
[−N , N ]. Since

|x̃1(φ, η) + h1 − x(φ, η)| � exp(−c0(log λ)3/4),

using (7.22) we have

|λ−1E [a1,b1](x̃1(φ, η) + h1) − η| < exp(−c0(log λ)3/4/2),

for any φ ∈ I ′′
0 . Due to the separation of eigenvalues in (7.22), we now have

dist(spec H[a1,b1](x̃1(φ, η) + h1), λη) = |E [a1,b1](x̃1(φ, η) + h1) − λη|.

Let φ̂ be as in (7.25), with [a, b] = [a1, b1], h0 = ‖h1‖−1 h1. Then by Taylor’s
formula

|E [a1,b1](x̃1(φ̂, η) + h1) − λη| ≥ |〈∇E [a1,b1](x̃1(φ̂, η)), h1〉| ‖h1‖
−Cρλ ‖V ‖∞ ‖h1‖2

� λ exp(−(log λ)1/2) ‖h1‖ ≥ exp(−2Nμ
0 ).

Using Cartan’s estimate it follows that

mes{φ ∈ I ′′
0 /10 : dist(spec H[a1,b1](x̃1(φ, η) + h1, λη))

< exp(−C(Nμ
0 + N 3(d−1)δ

0 ))} < exp(−N 2δ
0 ).

Now the conclusion follows from the fact that spec H[−N0,N0](x̃(φ, η)+ h) =
spec H[a1,b1](x̃(φ, η) + h1), and that by (7.24),

|x̃1(φ, η) − x̃(φ, η)| � exp(−(log λ)N 1/4
0 ) � exp(−Nβ

0 /2)

(also recall that δ � μ � β � 1). ��

8 Proofs of the main theorems

The first two results are non-perturbative and are stated for operators as in (2.1).
For their statements recall the constants SV and B0 introduced in (2.6),(2.13),
and the exponents δ, d used for the inductive conditions in Sects. 5 and 6. We
will use the notation S := spec H(x).

Theorem B Assume the notation of the inductive conditions (A)–(E) from
Sect. 5. Let E0 ∈ R, N0 ≥ 1, and assume L(E) > γ > 0 for E ∈ (E0 −
2r0, E0 +2r0), r0 = exp(−N δ

0 ). If N0 ≥ (B0 + SV +γ −1)C, C = C(a, b, ρ),
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and the conditions (A)–(E) hold with s = 0 for the given E0, then [E0 −
r0, E0 + r0] ⊂ S.
Proof Take an arbitrary E ∈ (E0 − r0, E0 + r0) and apply Theorem D with
Es = E , s ≥ 1. Since Is � Is−1, there exists φ̂ ∈ ⋂

s Is . Due to (5.8) there
exists x(E) such that

|x(E) − xs(φ̂, E)| < 2 exp(−γ Ns/30), s ≥ 0.

Due to (5.9) there exists ψ(E, ·), ‖ψ(E, ·)‖ = 1, such that

‖ψ(E, ·) − ψ [−N ′
s ,N

′′
s ](xs(φ̂, E), ·)‖ < 2 exp(−γ Ns/40), s ≥ 0.

Note that

‖(H(xs(φ̂, E)) − E)ψ [−N ′
s ,N

′′
s ](xs(φ̂, E), ·)‖ � exp(−γ Ns/20)

(by condition (C)) and

‖H(x(E)) − H(xs(φ̂, E))‖ ≤ Cρ ‖V ‖∞ |x(E) − xs(φ̂, E)|
< exp(−γ Ns/40).

It follows that

‖(H(x(E)) − E)ψ(E, ·)‖ � exp(−γ Ns/40), s ≥ 0,

and therefore H(x(E))ψ(E, ·) = Eψ(E, ·). In particular, E ∈ S and the
conclusion holds (recall that S is closed). ��
Theorem C Assume the notation of the inductive conditions (A)–(D) from
Sect. 6. Let x0 ∈ T

d , N0 ≥ 1, such that the conditions (A)–(D) hold, and
assume L(E) > γ > 0 for E ∈ (E0 − 2r0, E0 + 2r0), r0 = exp(−N d

0 ).
If N0 ≥ (B0 + SV + γ −1)C, C = C(a, b, ρ), then there exists E ∈ R,
such that |E − E0| < exp(−γ N0/100), S ∩ (−∞, E) = ∅, and [E, E0 +
exp(−N 20d

0 )] ⊂ S. Analogous statements hold relative to conditions (A)–(D).
Proof We choose N0 large enough for Theorem E to hold. Using (6.2), we
have that there exist

x = lim
s→∞ xs, E = lim

s→∞ Es,

and we have

|x − xs |, |E − Es | < exp(−γ Ns/100), s ≥ 1. (8.1)
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First we verify that (−∞, E) ∩ S = ∅. Take an arbitrary E < E and let
ρ = E − E > 0. By (8.1), for any s ≥ 1 we have

Es − E > ρ − exp(−γ Ns/100)

and therefore

dist(spec H[−N ′
s ,N

′′
s ](xs), E) > ρ − exp(−γ Ns/100)

(recall condition (A)). Using (8.1) again,

dist(spec H[−N ′
s ,N

′′
s ](x), E) > ρ − exp(−γ Ns/200) ≥ ρ/2 > 0,

for s ≥ s0, with s0 such that exp(−γ Ns0/200) ≤ ρ/2. Then by Lemma 2.19
we have dist(E,S) ≥ ρ/2 > 0, hence E /∈ S, as desired.

ByTheoremE, the conditions (A)–(E) are satisfied for any Es , exp(−N 100d
s )

≤ |Es − Es | ≤ exp(−N 2d
s ), s ≥ 1. Then by Theorem B,

[Es + exp(−N 100d
s ), Es + exp(−N 2d

s )] ⊂ S.

These intervals overlap for consecutive s (recall that Ns+1 = N 5
s and |Es+1 −

Es | < exp(−γ Ns/60)) and we have

S ⊃
⋃
s≥0

[Es + exp(−N 100d
s ), Es + exp(−N 2d

s )] ⊃ (E, E1 + exp(−N 2d
1 )]

⊃ (E, E0 + exp(−N 20d
0 )]

The conclusion follows since S is closed. ��
We are finally ready to prove Theorem A. We fix the constants c1, c0,C0

from Definition 1.1.

Proof of Theorem A (a) Let TV as in (7.3). Take C0 = C0(a, b, ρ, d) large
enough, such that for λ ≥ exp((TV )C0), Proposition 7.3 with ε = c1/20,
Theorem B, and Theorem C hold for N0 = �exp((log log λ)2)� (recall
Proposition 3.4 and Remark 3.5; of course, we take γ = log λ/2). The
choice of ε is made with part (b) in mind.

Let E0, |λ−1E0−V (x)| � λ−1/4 be as in Proposition 7.3 and E , |E−E0| <

exp(−(log λ)N0/2), be as in Theorem C. Combining Proposition 7.3 with
Theorem B we have

[E0 + exp(−N 100d
0 ), E0 + λ exp(−(log λ)c1/5)] ⊂ Sλ.
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At the same time, combining Proposition 7.3 with Theorem C we have

[E, E0 + exp(−N 20d
0 )] ⊂ Sλ, (−∞, E) ∩ Sλ = ∅.

Then
[E, E0 + λ exp(−(log λ)c1/5)] ⊂ Sλ (8.2)

This yields part (a). Of course, the proof the statement relative to the absolute
maximum is completely analogous. Also, in the statement of part (a) we could
replace exp(−(log λ)1/2) by exp(−(log λ)ε), for any ε ∈ (0, 1), by adjusting
the constant C0 from above.

(b) Recall that E denotes the set of critical points of V . Note that since all
the critical points are assumed to be non-degenerate, by Lemma 7.1, E is
discrete and hence finite. Let

ν = min
x∈E

∥∥H(x)−1
∥∥−1

Using Lemmas 7.1 and 7.2 we choose c = c(ρ) small enough so that with
r = cν(1 + ‖V ‖∞)−1 we have that Td\⋃x∈E B(x, r) is connected and (7.2)
holds. Let

g = g(V ) := min{‖∇V (x)‖ : x ∈ T
d\
⋃
x∈E

B(x, r)} > 0,

and increase TV to be

TV = 2 + max(0, log ‖V ‖∞) + max(0, log ι−1)

+max(0, log ι−1) + max(0, log ν−1) + C0 + c
−1
0 + max(0, log g−1).

(8.3)

Take C0 = C0(a, b, ρ, d) large enough, such that for λ ≥ exp((TV )C0) in
addition to the assumptions for part (a) we also have

exp(−(log λ)c1/3) ≤ min(νr/2, g), (8.4)

and Proposition 7.5 holds with N0 = �exp((log log λ)2)�.
Let rλ such that νrλ/2 = exp(−(log λ)c1/3). By (8.4), rλ ≤ r and therefore

Gλ := T
d\⋃x∈E B(x, rλ) is connected. By (8.4) and (7.2),

‖∇V (x)‖ ≥ exp(−(log λ)c1/3), x ∈ Gλ.

Combining Proposition 7.5 and Theorem B we have

{λV (x) : x ∈ Gλ} ⊂ Sλ.
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Take x ′, x ′ ∈ Gλ,
∥∥x ′ − x

∥∥ = ∥∥x ′ − x
∥∥ = rλ. Since Gλ is connected we have

[λV (x ′), λV (x ′)] ⊂ {λV (x) : x ∈ Gλ} ⊂ Sλ.

Let E0, E as in part (a). By (7.2) and by increasing C0 if needed,

exp(−3(log λ)c1/3) ≤ V (x ′) − V (x) ≤ exp(−(log λ)c1/3)

and therefore

λ exp(−3(log λ)c1/3) � |λV (x ′) − E0| � λ exp(−(log λ)c1/3).

From the above and (8.2) it follows that [E, λV (x ′)] ⊂ Sλ. Let E be as
in Theorem C with respect to the conditions (A)–(D). Analogously, we get
[λV (x ′), E] ⊂ Sλ and therefore [E, E] ⊂ Sλ. Since

(−∞, E) ∩ Sλ = (E, ∞) ∩ Sλ = ∅,

we conclude that Sλ = [E, E]. ��
Remark 8.1 The constant ι in the definition of TV from the proof of TheoremA
(b) is redundant and can be dropped at the cost of slightly increasing C0 in the
lower bound for λ. More precisely, it can be seen, by using Taylor’s formula,
that ι can be bound below in terms of ν, g, ‖V ‖∞, and ρ.

9 An example

For the purpose of this section it is convenient to redefine T := R/(2πZ). Let

V (x, y) = cos(x) + s cos(y).

We will check that V satisfies the conditions of Definition 1.1 for s /∈
{−1, 0, 1}.

First, a direct computation shows that conditions (i),(ii) of Definition 1.1
are satisfied for s �= 0 and they fail for s = 0.

Next we show that condition (iii) holds for s /∈ {−1, 0, 1}. Take

H � 1 + max(log |s|, log |s|−1, log |1 − s2|−1), (9.1)

h ∈ T
2, h = (α, β), ‖h‖ ≥ exp(−H). The largeness of H will be used tacitly

in most of the estimates to follow. Let g(x, y, α, β) := gV,h,1,2(x, y), with
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gV,h,1,2 as in Definition 1.1. Note that |gV,h,1,2| = |gV,h,2,1|. In what follows
it is useful to “complexify” the functions involved in condition (iii). Let

z = exp(i x), w = exp(iy), A = exp(iα), B = exp(iβ).

Then

V (x+α, y+β)−V (x, y) = 1

2zw
P1(z, w), g(x, y, α, β) = − s

4zw
Q1(z, w),

(9.2)
with

P1(z, w) = (A − 1)z2w + s(B − 1)zw2 + (A−1 − 1)w + s(B−1 − 1)z,

Q1(z, w) = (B − A)z2w2 + (A − B−1)z2 + (A−1 − B)w2 + B−1 − A−1.

Recall that when ‖·‖ is applied to the shifts h, α, β, it stands for the usual norm
on the torus.

Lemma 9.1 If ‖α‖ < exp(−3H) or ‖β‖ < exp(−3H), then

mes{y ∈ T : min
x

(|V (x + α, y + β) − V (x, y)| + |g(x, y, α, β)|)
< exp(−3H)} � exp(−H/2),

mes{x ∈ T : min
y

(|V (x + α, y + β) − V (x, y)| + |g(x, y, α, β)|)
< exp(−3H)} � exp(−H/2).

Proof We only check the first estimate, the other one following analogously.
First we assume ‖α‖ < exp(−3H). Since ‖h‖ ≥ exp(−H), we must have
‖β‖ � exp(−H). Note that

P1(z, w) = (A − 1)z2w + s(B − 1)zw2 + (A−1 − 1)w + s(B−1 − 1)z

= w(A − 1)(z2 − A−1) + sz(B − 1)(w2 − B−1).

Then
∣∣∣∣ 1

2zw
P1(z, w)

∣∣∣∣ ≥ cs exp(−H)|w2 − B−1| − C exp(−3H) > exp(−3H),

provided |w2 − B−1| ≥ exp(−H/2). Therefore the first estimate holds (recall
(9.2)).

Next we assume ‖β‖ < exp(−3H). As before, we must have ‖α‖ �
exp(−H). Note that
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Q1(z, w) = (B − 1)z2w2 + (1 − B−1)z2 + (1 − B)w2 + B−1 − 1

+(w2 − 1)[(1 − A)z2 + A−1 − 1].
We have∣∣∣∣ 1

2zw
P1(z, w)

∣∣∣∣ ≥ c|w| exp(−H)|z2 − A−1| − Cs exp(−3H)

and∣∣∣∣ s

4zw
Q1(z, w)

∣∣∣∣ ≥ cs|w2 − 1||(1 − A)z2 + A−1 − 1| − Cs exp(−3H)

≥ cs|w2 − 1| exp(−H)|z2
+(1 − A)−1(A−1 − 1)| − Cs exp(−3H).

Note that

|z2 − A−1| + |z2 + (1 − A)−1(A−1 − 1)| ≥ |A−1 + (1 − A)−1(A−1 − 1)| = |2/A| = 2.

Then ∣∣∣∣ 1

2zw
P1(z, w)

∣∣∣∣+
∣∣∣∣ s

4zw
Q1(z, w)

∣∣∣∣
≥ c exp(−2H)(|z2 − A−1| + |z2 + (1 − A)−1(A−1 − 1)|)

−Cs exp(−3H) > exp(−3H),

provided |w|, |w2 − 1| ≥ exp(−H/2). The conclusion follows. ��
Lemma 9.2 There exists an absolute constant C0 � 1 such that if ‖α − β‖ <

exp(−2C0H) or ‖α + β‖ < exp(−2C0H), then

mes{y ∈ T : min
x

(|V (x + α, y + β) − V (x, y)| + |g(x, y, α, β)|)
< exp(−C0H)} � exp(−H/2),

mes{x ∈ T : min
y

(|V (x + α, y + β) − V (x, y)| + |g(x, y, α, β)|)
< exp(−C0H)} � exp(−H/2).

Proof We only prove the first estimate under the assumption that ‖α − β‖ is
small. The other cases are completely analogous. We have

P1(z, w) = P̃1(z, w)+s(B − A)zw2+s(B−1 − A−1)z, (9.3)

P̃1(z, w)=(A−1)z2w+s(A−1)zw2+(A−1−1)w+s(A−1−1)z, (9.4)

123



On the spectrum of multi-frequency 695

Q1(z, w) = Q̃1(z, w)+(B − A)z2w2+B−1 − A−1, (9.5)

Q̃1(z, w) = (A − B−1)z2+(A−1 − B)w2. (9.6)

Let ai , bi be the polynomials in w such that

P̃1(z, w) = a2z
2 + a1z + a0, Q̃1(z, w) = b2z

2 + b1z + b0.

Let

R̃1(w) = Resz(P̃1, Q̃1) = det

⎡
⎢⎢⎣
a2 0 b2 0
a1 a2 b1 b2
a0 a1 b0 b1
0 a0 0 b0

⎤
⎥⎥⎦ .

Analyzing the degrees of the terms from the Leibniz formula for the above
determinant, one sees that R̃1(w) is a polynomial of degree 6 and the only
terms containing a monomial of degree 6 are

a22b
2
0 = [(A − 1)w]2[(A−1 − B)w2]2,

a21b2b0 = [s(A − 1)w2 + s(A−1 − 1)]2(A − B−1)(A−1 − B)w2

corresponding to the even permutations

(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
2 3 1 4

)
.

It follows that the leading coefficient is

c6 := (A − 1)2(A−1 − B)[(A−1 − B) + s2(A − B−1)]
= (A − 1)2(A−1 − B)2(1 − s2B−1A).

Since ‖α − β‖ � exp(−H) and ‖h‖ ≥ exp(−H), we have

‖α‖ , ‖β‖ , ‖α + β‖ � exp(−H)

and therefore

|c6| � exp(−2H) exp(−2H)|1 − |s|2| > exp(−5H).

Then, using Lemma 2.26,

|R̃1(exp(iy))| ≥ exp(−CH),
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for y ∈ T\B, mes(B) < exp(−H/2), with C an absolute constant. Note that

|a2(exp(iy))| = |(A − 1) exp(iy)| � exp(−H),

|b2(exp(iy))| = |A − B−1| � exp(−H)

for any y ∈ T. Let r(exp(iy)) be the maximum of the absolute values of
the roots of P̃1(·, exp(iy)) and Q̃1(·, exp(iy)). Using Lemma 2.25 we have
r(exp(iy)) ≤ exp(CH), for y ∈ T. It follows that

|R̃1(exp(iy))| ≥ 2|a2(exp(iy))|2|b2(exp(iy))|2r(exp(iy))3δ, y ∈ T\B,

where δ = exp(−CH), with C a sufficiently large absolute constant. By
Lemma 2.24,

max(P̃1(z, exp(iy)), Q̃1(z, exp(iy))) ≥ min(|a2(exp(iy))|, |b2(exp(iy))|)δ2
> exp(−CH)

for any z and y ∈ T\B. The conclusion follows by recalling (9.2) and (9.3). ��
Lemma 9.3 If ‖α‖ , ‖β‖ ≥ exp(−3H), then there exists an absolute constant
C0 � 1 such that

mes{y ∈ T : min
x

(|V (x + α, y + β) − V (x, y)| + |g(x, y, α, β)|)
< exp(−C0H)} � exp(−H/2),

mes{x ∈ T : min
y

(|V (x + α, y + β) − V (x, y)| + |g(x, y, α, β)|)
< exp(−C0H)} � exp(−H/2).

Proof We only check the first estimate, the second one being completely anal-
ogous. The proof is similar to that of the previous lemma. Let ai , bi be the
polynomials in w such that

P1(z, w) = a2z
2 + a1z + a0, Q1(z, w) = b2z

2 + b1z + b0.

Let

R1(w) = Resz(P1, Q1) = det

⎡
⎢⎢⎣
a2 0 b2 0
a1 a2 b1 b2
a0 a1 b0 b1
0 a0 0 b0

⎤
⎥⎥⎦ .

Analyzing the degrees of the terms from the Leibniz formula for the above
determinant, one sees that R1(w) is a polynomial of degree 8 and the only
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term containing a monomial of degree 8 is

a21b2b0 = [s(B − 1)w2 + s(B−1 − 1)]2[(B − A)w2 + A − B−1]
[(A−1 − B)w2 + B−1 − A−1],

corresponding to the even permutation
(
1 2 3 4
2 3 1 4

)
.

It follows that the leading coefficient is

c8 := s2(B − 1)2(B − A)(A−1 − B).

If |B − A| < exp(−CH) or |A−1 − B| < exp(−CH), with C � 1 a
sufficiently large absolute constant, the conclusion follows by Lemma 9.2. So,
we just need to consider the case when |B − A|, |A−1 − B| ≥ exp(−CH),
C � 1. Note that we have |c8| ≥ exp(−CH). Using Lemma 2.26, we have

|R1(exp(iy))| ≥ exp(−CH),

for y ∈ T\B1, mes(B1) < exp(−H/2), withC an absolute constant. Applying
Lemma 2.26 again to b2(w) = (B − A)w2 + A − B−1, we get that

|b2(exp(iy))| ≥ exp(−CH),

for y ∈ T\B2, mes(B2) < exp(−H/2). At the same time,

|a2(exp(iy))| = |(A − 1) exp(iy)| � exp(−3H),

for any y ∈ T. Let r(exp(iy)) be the maximum of the absolute values of the
roots of P1(·, exp(iy)) and Q1(·, exp(iy)). Using Lemma 2.25 we have that
the r(exp(iy)) ≤ exp(CH), for y ∈ T\B2.

Fix y ∈ T\B, B := B1 ∪ B2. It follows that

|R1(exp(iy))| ≥ 2|a2(exp(iy))|2|b2(exp(iy))|2r(exp(iy))3δ,
where δ = exp(−CH), with C a sufficiently large absolute constant. By
Lemma 2.24,

max(P1(z, exp(iy)), Q1(z, exp(iy))) ≥ min(|a2(exp(iy))|, |b2(exp(iy))|)δ2
> exp(−CH)

for any z and any y ∈ T\B, and the conclusion follows (recall (9.2)). ��
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Now condition (iii) follows fromLemmas 9.1 and 9.3, by setting K = C0H ,
with C0 as in Lemma 9.3, and by taking c0 = 1/C0, c1 = 1/2,

C0 = C(C2
0 + C0 max(log |s|, log |s|−1, log |1 − s2|−1)), C � 1. (9.7)

Finally, we check that condition (iv) holds for s /∈ {−1, 0, 1}. Take H as in
(9.1), η ∈ R, and h0 ∈ R

2 a unit vector. With some abuse of notation we let
h0 = (α, β), α2 + β2 = 1.

Lemma 9.4 (a) If |α| < exp(−2H), then

mes{y ∈ T : min
x

|〈∇V (x, y), h0〉| < exp(−2H)} < exp(−H).

(b) If |β| < exp(−2H), then

mes{x ∈ T : min
y

|〈∇V (x, y), h0〉| < exp(−2H)} < exp(−H).

Proof (a) Since |α| < exp(−2H), we have |β| ≥ (1−exp(−4H))1/2 > 1/2,
and therefore

|〈∇V (x, y), h0〉| = |α sin x + sβ sin y| ≥ 1

2
|s sin y| − exp(−2H)

≥ exp(−2H),

for all x ∈ T, and y such that | sin y| > exp(−3H/2). The conclusion
follows. The proof for (b) is analogous. ��

Lemma 9.5 (a) If |α| ≥ exp(−2H), then there exists an absolute constant
C0 � 1 such that

mes{y ∈ T : min
x

(|V (x, y) − η| + |〈∇V (x, y), h0〉|) < exp(−C0H)}
< exp(−H/2).

(b) If |β| ≥ exp(−2H), then there exists an absolute constant C0 � 1 such
that

mes{x ∈ T : min
y

(|V (x, y) − η| + |〈∇V (x, y), h0〉|) < exp(−C0H)}
< exp(−H/2).

Proof We only prove (a), the proof of the second statement being analogous.
By letting z = exp(i x), w = exp(iy), we have

V (x, y) − η = 1

2zw
P2(z, w), 〈∇V (x, y), h0〉 = − 1

2i zw
Q2(z, w), (9.8)
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with

P2(z, w) = z2w + szw2 − 2ηzw + w + sz,

Q2(z, w) = αz2w + βzw2 − αw − βz.

Let ai , bi be the polynomials in w such that

P2(z, w) = a2z
2 + a1z + a0, Q2(z, w) = b2z

2 + b1z + b0.

In particular, a2(w) = w and b2(w) = αw. A direct computation yields

R2(w) = Resz(P2, Q2) =
6∑

k=0

ckw
k

= w6 (−α2s2 + β2)+ w5(4α2ηs)

+w4 (−4α2η2 − 2α2s2 + 4α2 − 2β2)+ w3(4α2ηs)

+w2 (−α2s2 + β2)
= w6 (1 − α2(1 + s2)

)+ w5(4α2ηs)

+w4 (α2(6 − 4η2 − 2s2) − 2
)+ w3(4α2ηs) + w2 (1 − α2(1 + s2)

)
.

Wewill argue that not all of the coefficients of R2 are too small. To this end,
note that

2α−2c6 + α−2c4 = 4 − 4s2 − 4η2.

If |η| < exp(−H), then

|2α−2c6 + α−2c4| > 4|1 − s2| − 4 exp(−2H) > 2|1 − s2| > exp(−H),

and therefore, either

|c6| � exp(−H)α2 ≥ exp(−5H) or |c4| � exp(−H)α2 ≥ exp(−5H).

On the other hand, if |η| ≥ exp(−H), then

|c5| � α2 exp(−H)s > exp(−6H).

Thus, maxk |ck | � exp(−6H). Then, using Lemma 2.26,

|R2(exp(iy))| ≥ exp(−CH),

for y ∈ T\B, mes(B) < exp(−H/2). Let r(exp(iy)) be the maximum of
the absolute values of the roots of P2(·, exp(iy)) and Q2(·, exp(iy)). By
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Lemma 2.25, r(exp(iy)) < exp(3H). Then

|R2(exp(iy))| ≥ 2|a2(exp(iy))|2|b2(exp(iy))|2r(exp(iy))3δ,
for y ∈ T\B, with δ = exp(−CH). By Lemma 2.24,

max(P2(z, exp(iy)), Q2(z, exp(iy))) ≥ min(|a2(exp(iy))|, |b2(exp(iy))|)δ2
> exp(−CH)

for any z, and y ∈ T\B. The conclusion follows by recalling (9.8). ��
Now condition (iv) follows fromLemmas 9.4 and 9.5, by setting K = C0H ,

with C0 as in Lemma 9.5, and by taking c1 = 1/2 and C0 as in (9.7), with the
new C0. Obviously, we can arrange for both condition (iii) and (iv) to hold
with the same C0.

Remark 9.6 (a) It should be clear that for s ∈ {−1, 0, 1} not all of the con-
ditions are satisfied. Indeed, we noted that conditions (i) and (ii) fail for
s = 0, and for s = ±1, for example, condition (iv) fails for η = 0 and h0
proportional to (±1, 1).

(b) Due to the choices of C0 in (9.7) and λ0 implied by the proof of TheoremA
(recall (8.3)), we have that as s approaches {−1, 0, 1}, λ0 approaches ∞,
as claimed in Remark 1.2 (c).
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