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Abstract We study multi-frequency quasiperiodic Schrédinger operators on
Z.. We prove that for a large real analytic potential satisfying certain restrictions
the spectrum consists of a single interval. The result is a consequence of a
criterion for the spectrum to contain an interval at a given location that we
establish non-perturbatively in the regime of positive Lyapunov exponent.
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1 Introduction

In the last 40 years after the groundbreaking paper [11] the theory of quasiperi-
odic Schrodinger operators has been developed extensively, see the monograph
[5] for an overview and [17] for a survey of the more recent results. For shifts
on a one-dimensional torus T most of the results have been established non-
perturbatively, i.e., either in the regime of almost reducibility or in the regime
of positive Lyapunov exponent, and Avila’s global theory, see [3], gives a qual-
itative spectral picture, covering both regimes, for generic potentials. One of
the main results of the one-dimensional theory is the fact that the spectrum is
a Cantor set. For the case of the almost Mathieu operator (corresponding to a
cosine potential), this result has been proved for any non-zero coupling and
any irrational shift, see [22] and [1,2]. For general analytic potentials in the
regime of positive Lyapunov exponent with generic shift the Cantor structure
of the spectrum has been obtained in [15].

On the other hand, shifts on a multidimensional torus T¢ turned out to be
harder to analyze and the theory is less developed, even in the perturbative
setting. In particular, not much is known about the geometry of the spectrum
for multidimensional shifts. In their pioneering paper [9], Chulaevsky and Sinai
conjectured that in contrast to the shift on the one-dimensional torus, for the
two-dimensional shift the spectrum can be an interval for generic large smooth
potentials. In this paper we prove this conjecture for large analytic potentials.

Heuristically, gaps in the spectrum of the one-frequency operators are
created by horizontal “forbidden zones” appearing at the points of intersec-
tion of the graphs of shifted finite scale eigenvalues parametrized by phase,
see [15,23]. In contrast to this, the heuristic principle underlying [9] is that
for multiple frequencies, the intersection curves of the graphs of shifted finite
scale eigenvalues may not be too flat, thus preventing the appearance of the
horizontal “forbidden zones” and stopping the formation of gaps. It is clear
that some genericity assumption on the potential function is needed for this to
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On the spectrum of multi-frequency 605

be true, since potentials like V (x, y) = v(x) lead to flat intersection curves
and have Cantor spectrum. Furthermore, the largeness of the potential is also
needed. Indeed, it is known that for small potentials with atypical frequency
vector the spectrum has gaps, see [4].

Implementing such an argument, appears to be very challenging for a num-
ber of reasons. First, the analytical techniques available in finite volume are less
favorable (mainly the large deviation theorems and everything that depends on
them) as compared to the case of one frequency. In particular, it is difficult to
implement an approach based on finite scale localization as in [15]. This is due
to the fact that it is hard to handle long chains of resonances and to control the
intersections of the resonant curves with the level sets of the eigenvalues. Sec-
ond, it is inevitable that the intersection curves of the graphs of shifted finite
scale eigenvalues flatten near the absolute extrema and handling this situation
seems to be a delicate matter.

In [16] we addressed some of the issues regarding the analytical techniques,
including establishing finite scale localization. We will use most of the basic
tools from [16]. However, for the purpose of this paper one would need a refined
version of finite scale localization, beyond what is achieved in that paper. We
analyze the spectrum of the operator Hy (x), x € T¢, on a finite interval [1, N]
subject to Dirichlet boundary conditions. To keep this spectrum under control
requires resolving the following problem. Given E let Ry (E) be the set of
all phases x such that E is in the spectrum of the operator Hy (x). One has to
identify phases x € Ry (E) for which x + nw is not too close to Ry (E) as n
runs in the interval N << n < N4, A > 1. This issue, commonly referred to as
double resonances, is well-known. Similar strategies, leading to the formation
of intervals in the spectrum, have been implemented for the skew-shift in [18]
and for continuous two-dimensional Schrodinger operators in [19]. The main
new device that we develop in this work, consists of an elimination of double
resonances for all shifts x + h, and not just the “arithmetic ones” x + nw.
Of course the shift 2 cannot be too small. Although this problem looks less
accessible, it turns out to provide more control on the resonant set Ry (E) of
the previous scale. The level sets V (x) = E of the potential in question must
satisfy the requirements of this more general elimination in order to launch
the multi-scale analysis. This is exactly the origin of our main condition on
the potential, see Definition 1.1 below.

Furthermore, in order to show that the spectrum is actually an interval, we
develop a Cartan type estimate that controls the intersections of the level sets
of an analytic function near a non-degenerate extremum with their shifts.

The core of our approach is non-perturbative and works in the regime of
positive Lyapunov exponent. More precisely, we develop two non-perturbative
inductive schemes, one leading to the formation of intervals in the bulk of the
spectrum and the other leading to intervals at the edges of the spectrum. We
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will only use the largeness of the potential to check that the initial inductive
conditions are satisfied.

We introduce some notation and definitions that we need to state our main
result. We work with operators

[H () Y1) = =Y+ 1) =y -1+ AV +no)d(n), (1.1

with A > O being a real parameter, and with the potential V a real analytic
function on the torus T¢, T = R/Z, d > 2. We assume that the frequency
vector w € T obeys the standard Diophantine condition

Ik - w| > # for all nonzero k € Z¢, (1.2)

where a > 0, b > d are some constants, ||-|| denotes the usual norm on T,
and | - | denotes the sup-norm on Z?. Unless otherwise stated, throughout the
paper a, b will refer to the constants from (1.2). In this paper we don’t use
elimination of frequencies and our results apply to any Diophantine frequency
. To simplify notation, we omit dependence on w from notation whenever
possible. The dependence on frequency will still be reflected by having some
of the constants depend on a, b.

Definition 1.1 We let & be the class of real-analytic functions V on T¢,d > 2,
for which there exist constants ¢o = ¢o(V,d) € (0,1), ¢; = ¢1(d) € (0, 1),
&y = €o(V,d) > 1, such that the following properties hold.

(1) V is a Morse function, i.e., all its critical points are non-degenerate.
(i1) V attains each global extremum at just one point.
(iii) Given h € T, let

i i(x) =det A, V(%) 0x; V (x)
8Vt j ) =C G v (x + h) a; Vx+h) |

Foranyi # j, K > &y, and any | h| > exp(—coK) we have
mes{x; € T 1. rr)lcln (|V(x +h)—VX)|+ Igv,h,,-,j(x)|) < exp(—K)}
< exp(—K),

where x; = (X1, ..., Xi—1, Xit1, -« Xd)-

(iv) Forany i, K > €y, n € R, and hg € R?, ||hg|| = 1, we have

mes{x; € T min (|V(x) = 1l + {VV @), ho)|) < exp(=K)}

<exp(—K).
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On the spectrum of multi-frequency 607

Recall that spec H) (x) is known not to depend on the phase. We will use
the notation S, := spec H, (x). An essential feature of our inductive argument
is the following one: we use the genericity of V only at the first step of the
proof, and never change V at subsequent steps.

Theorem A There exists Ao = ,o(V, a, b, d) such that the following state-
ments hold for A > Xo.

(a) Assume that V attains its global minimum at exactly one non-degenerate
critical point x. Then there exists E € R, |\™VE — V(x)| < A~ V4, such
that

[E, E + rexp(—(log )] C S, and (=00, EYNS; = .

An analogous statement holds relative to the global maximum of V (using
the notation x, E). o o
(b) Assume that V € & and let E, E be as in (a). Then S, = [E, E].

Remark 1.2 (a) The constant Ag(V, a, b, d) can be expressed explicitly, see
the proof of Theorem A.

(b) We conjecture the genericity of our assumptions on V. More precisely, we
believe the following to be true: consider real trigonometric polynomials

of the form .
Vx)= Z em €TMY x e RY,
meZd:|m|<n
of a given cumulative degreen > 1, |m| := Zl<j<d |m j|. Then for almost

all vectors (¢ )|m|<n one has V. € &. While genericity of admissible V
remains a conjecture for general degrees, we do present specific examples
of V of low degree in two variables, which obey our conditions.

(c) Infact, in Sect. 9, we show that

V(x,y) =cos(Qmrx) + s cos(2mwy)

satisfies the assumptions of Definition 1.1 for all s € R\{—1,0, 1}. We
note that as s approaches {—1, 0, 1} our explicit value for Ay diverges to
oo and the geometry of the spectrum cannot be decided by continuity. Of
course, for s = 0 the spectrum is a Cantor set. However, for s = %1, part
(a) of Theorem A still applies and guarantees the existence of intervals at
the edges of the spectrum.

(d) The measure estimates from conditions (iii) and (iv) of Definition 1.1
are Cartan type estimates (see Sect. 2.2). We note that one cannot apply
Cartan’s estimate directly to the functions from this conditions. Instead, the
estimates can be obtained by applying Cartan’s estimate to some resultants
associated with these functions, see Sect. 9.
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608 M. Goldstein et al.

As mentioned above, the derivation of Theorem A is based on two non-
perturbative statements in the regime of positive Lyapunov exponent, which
appear later in Sect. 8. Namely, Theorem B produces an interval in the spec-
trum in the vicinity of a spectral value at which certain finite scale conditions
hold, and Theorem C shows that the spectrum is an interval under certain addi-
tional finite scale conditions. Since they are rather technical, we do not state
these theorems here. The inductive conditions and the theorems which provide
the inductive step are discussed in Sect. 5 (see Theorem D) and Sect. 6 (see
Theorem E). In Sect. 7 we show how these conditions hold at large coupling,
given a potential as in Theorem A. Throughout the paper we will employ the
basic tools discussed in Sect. 2 for the non-perturbative regime and in Sect. 3
for large coupling. The Cartan type estimate that we use to handle the edges
of the spectrum is discussed in Sect. 4.

We conclude this introduction with more detailed comments on the afore-
mentioned paper by Chulaevsky, Sinai [9], which is closely related to the
one-frequency paper [23]. In [9] the authors propose an inductive pertur-
bative scheme to establish localization, positive Lyapunov exponents, and
the absence of gaps for the operators (1.1) for large A and for @ outside
a set of small measure. The potential V is assumed to be a generic (in a
suitable sense) C2 Morse function. The induction, of which [9] only pro-
vides a sketch with many details having been omitted, proceeds from the
base case in which the eigenfunctions are taken to be §-functions, to suc-
cessively more accurate approximations of the true eigenfunctions. It is
claimed that the corrections are obtained via first order eigenvalue pertur-
bations only. It is well-understood by now that many delicate issues arise in
the implementation of any inductive procedure aiming at Anderson localiza-
tion. First and foremost, one needs to exclude the possibility of arbitrarily
long chains of resonances between finite-volume Hamiltonians of successive
scales.

The research literature devoted to Anderson localization with determinis-
tic potentials has been almost entirely limited to the analytic category, i.e.,
V in (1.1) is either a trigonometric polynomial or an analytic function, see
for example [5-8,12-16]. In essence, resonances arise through intersections
of level surfaces of the eigenvalue parametrizations of finite volume Hamil-
tonians. For algebraic curves Bezout’s theorem gives a quantitative bound
on the number of intersections. In the C¥ category no analogous mecha-
nism exists, and intersections can be extremely complicated. Bourgain [7]
used semi-algebraic techniques such as the Gromov-Yomdin parametriza-
tion to limit the length of chains of resonances in any number of variables.
For example, in the setting of (1.1) with d = 2 he needs to allow for
chains of length 9. Bourgain’s technique for eliminating variables via semi-
algebraic methods (essentially, Bezout’s theorem), played an important role
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On the spectrum of multi-frequency 609

in the implementation of an inductive argument for finite volume localiza-
tion of (1.1) in the regime of positive Lyapunov exponent (i.e., without
assuming large coupling as we do here), see [16]. In addition, we cru-
cially relied on an effective separation between the eigenvalues in finite
volume as in [15]. Complex variable tools such as the Weierstrass prepara-
tion theorem, and the resultant between polynomials are used to obtain these
bounds.

Wang and Zhang [24] claim positive Lyapunov exponents for C2-potentials
of one variable with two non-degenerate critical points and large disorder A.
While they acknowledge Sinai’s mechanism from [23] that resonances cre-
ate gaps, their argument bears little resemblance with [23], and relies instead
on techniques developed over the past 20 years such as the avalanche princi-
ple. Wang and Zhang’s arguments are however entirely one-dimensional (for
example, they use Rolle’s theorem) and to our knowledge nothing comparable
exists for CX-potentials of several variables. We are therefore unable to rec-
oncile the strategies which were proposed in [9,23] with the facts established
over the past 20 years.

2 Basic tools

In this section we discuss some basic results that we will use throughout the
paper. The results will apply to a family of discrete Schrédinger operators,

[H)Y]n) =y + 1) —y¥m -1+ Vx+no)yh) 2.1)

with V real-analytic on T¢ and w as in (1.2). Note that we omit the coupling
constant A because the results of this section are non-perturbative. We also
assume that V extends complex analytically to

T‘; :={x—|—iy:x€']1‘d, yeRd, ly| < p},

with some p > 0. Note that we use | - | to denote the sup-norm on R¢ and
|-l to denote the Euclidean norm on R<. At the same time when we apply
it to shifts on T9, ||-|| will stand for the usual norm on T¢. It is well-known
that for any real-analytic function on T%, such p = p(V) exists. To simplify
some later estimates we also assume p < 1. Throughout the paper, with the
exception of Sect. 4, we reserve p for this constant.

We recall some standard notation. Given an interval [a, b] C Z, the transfer
matrix is defined by
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610 M. Goldstein et al.

a
Vix+nw)— E —1
M[a,b](x,E)=l_[[ ( | ) 0]-

n=>b

We let H, p1(x) be the restriction of H (x) to the interval [a, b] with Dirichlet
boundary conditions and we denote the corresponding Dirichlet determinant
by fia.p)(x, E) := det(Hpq p)(x) — E). We use EE.“’b] (x), wj[.“"’] (x, -) to denote

the eigenpairs of H [a.0](x), with wj[.a’b] (x, -) being £2-normalized. The transfer
matrix is related to the Dirichlet determinants through the following formula

My (x, E) = [ fiaplx, E) = flap1,61(x, E) ] 22

Jla—11x, E) = flat1,5-11(x, E)

We let MN = M[l,N], HN = H[l,N]’ fN = f[17N]. The Lyapunov exponent
is defined by

1
L(E) = lim Ly(E) = inf Ly(E), LN(E)=—/ log | My (x, E)| dx.
N—oo N N Jpd

Most of the results in this section do not use the fact that V assumes only
real values on the torus T¢ and therefore they also hold on T¢ +iy, |y| < p/2,
by replacing V with V(- + iy). In particular, this applies to all the results up
to and including Corollary 2.13. Of course, when we change the potential, we
also need to adjust the Lyapunov exponents. To this end we define

| |
Ly(y. E) = —/ log | My (x + iy, )]l dx,
N Td

L(y,E)= lim Ln(y, E). (2.3)

We will use some standard conventions. Unless stated otherwise, the con-
stants denoted by ¢, C might have different values each time they are used. We
leta < b denote a < Cb with some positive C, a < b denote a < Cb with a
sufficiently large positive C, and a >~ b stand for a < b and b < a. It will be
clear from the context what the implicit constants are allowed to depend on.
To emphasize the dependence on some parameter we may use it as a subscript
for the above symbols (e.g., a ~4 b).

Our constants will depend on w, V, E, d, and y, where y > 0 will stand
for a lower bound on the Lyapunov exponent. The dependence on w will be
through the parameters a, b from (1.2). The dependence on V will be through
p and

IVlloo :=sup{|V ()| : z € TS, ,4}.
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On the spectrum of multi-frequency 611

The dependence on E will be uniform on bounded sets. In most cases we leave
the dependence on d implicit and, unless stated otherwise, all constants may
depend on the dimension d.

When we work in the perturbative setting we will need to replace V by
AV and we will need explicit knowledge of the dependence on A. This means
that we need to keep track explicitly of the dependence on ||V || o, E (because
the range of energies we need to consider depends on V), and y (note that p
remains unchanged when we introduce the coupling constant). To this end we
will use the quantity

Sv.e :=10gB + [Vlloo + |ED.

This definition is motivated by the fact that

H [V(x +nw) — E
1

—1
0 }H =1+ [Vl + IE]

and therefore

0 <log|[My(x, E)|| = Nlog(1+[[Vlle + [ED, 2.4)
0 < Ly(E) <log(1 4+ [[Vlle + [ED. (2.5)

The choice of the absolute constant in the definition of Sy g is for the conve-
nience of having Sy g > 1. Since

spec Hy (x) C [=2 = [[Vlloo, 2+ IV ],

it will actually be enough to work with |E| < ||V || + 4 and when we want
to suppress the dependence on E we will use

Sv i=1og3 + Vo). (2.6)
Note that Sy g >~ Sy for |[E| < ||V]l» + 4.

We will make repeated use of the observation that using the mean value
theorem and Cauchy estimates, we have

b b
|EX ) — B o) < | Hia oy (%) = Hia oy 0) | < Cp IV Il |x = 0.
2.7)

We will also use the following basic identity:

spec Hyy[q,p)(x) = spec Hiy p)(x + mw). (2.8)
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612 M. Goldstein et al.

2.1 Large deviations estimates

We recall the Large Deviations Theorem (LDT) for the transfer matrix. We
refer to [5] and [13] for two different approaches to its proof. The particular
formulation we give here is based on [13] (see Corollary 9.2 therein).

Theorem 2.1 Assume E € C. There exist 0 = o(a,b), T = 1(a,b), 0,17 €
0, 1), Co = Cola, b, p), such that for N > 1 one has

mes {x e T : |log |[My(x, E)|| — NLy(E)| > COSV,ENH}
< exp(—N?).

In [14] it was shown (see Proposition 2.11 therein) that in the the regime
of positive Lyapunov exponent, the large deviations estimate extends to the
entries of the transfer matrix.

Theorem 2.2 Assume E € C, and L(E) > y > 0. There exist o0 = o(a, b),
T =1(a,b), o,t € (0, 1), such that for N > No(V,a, b, E, y) one has

mes {x e T : |log | fy(x, E)| — NLy(E)| > Nl—f} < exp(—N©).

Note that the large deviations estimates also hold with any other smaller
choices of the actual exponents o, . The sharpness of these exponents plays
no role for us, so we will also assume without loss of generality that the
exponents are the same in both statements and 0 < 7 « 1.

We claim that by inspecting the proof from [14] it can be seen that the
constant Ny from Theorem 2.2 can be chosen to be (Sy g + y‘l)c, C =
C(a, b, p). In fact, all the large constants in our statements can be chosen of
this form (though not optimally). Since the proof in [14] is quite lengthy and
intricate, and we only need to be explicit about Ny in the perturbative setting,
we will give a simpler proof of the (LDT) for determinants at large coupling
in Sect. 3.

The usefulness of the (LDT) is enhanced by the following result, known as
the Avalanche Principle.

Proposition 2.3 ([13, Prop. 2.2]). Let Ay, ..., A, be a sequence of 2 x 2—
matrices whose determinants satisfy

max |detA;| < 1. (2.9)
1<j<n
Suppose that
min [|Aj|| > >n and (2.10)
1<j<n
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On the spectrum of multi-frequency 613

1
max [log||Ajill +1logllAjll —log|lAj+1All] < 5logu. (2.11)
1<j<n 2

Then

n—1 n—1
n
log |A, ... A1l + E log Al — E log|Aj+14;ll| < Cﬁ (2.12)
j:2 j:]

with some absolute constant C.

To apply the Avalanche Principle one needs to be in the positive Lyapunov
exponent regime and to be able to compare the Lyapunov exponents Ly at
different scales. This can be achieved through the following result.

Proposition 2.4 ([13, Lem. 10.1]). Assume E € C, and L(E) > y > 0. Then
forany N > 2,

(log N)'/°

where Co = Co(V, a, b, E, y) and o is as in (LDT).

The constant C from the previous proposition can be evaluated explicitly
by inspecting its proof in [13]. However, we will obtain an explicit perturbative
version of this result in Sect. 3.

The remaining results that we state without proof in this section are proved
in [16]. The specific constants from their statements are obtained by a simple
inspection of the proofs in [16]. Note that in the choice of constants we favour
simplicity over sharpness. Some of the constants will depend on the constants
Np from Theorem 2.2 and C¢ from Proposition 2.4. To keep track of this we
fix

By := Ny + Co. (2.13)

As a consequence of the (LDT) and the submean value property for subhar-
monic functions one gets the following uniform upper estimate.

Proposition 2.5 ([16, Prop. 2.13]). Let E € C and t as in (LDT). Then for all
N > 1,
sup log [ My (x, E)|| < NLy(E) + CoSv,gN',

xeTd

with Co = Co(a, b, p).

To extend the uniform upper estimate to a complex neighborhood of T¢ we
need the following result.
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Lemma 2.6 ([16, Cor. 2.12]). Let E € C. For any N > 1 we have

d

Ly, E) = Ln(E)| < CpSv.e Y Iyil.
i=1

In particular, the same bound holds with L instead of L.

Corollary 2.7 Let E € C and t as in (LDT). Then for all N > 1 and all
y € RY, |y| < min(p/2, 1/N),

sup log [ My (x + iy, E)| < NLy(E) 4+ CoSy.eN' ™, (2.14)

xeTd

with Co = Co(a, b, p). In particular we also have

sup log | fx (x + iy, E)| < NLy(E) + CoSy gN'~".

xeTd

Proof The conclusion follows by applying Proposition 2.5 with V (x + iy)
instead of V (x) and by using Corollary 2.6. O

Next we recall a way of obtaining off-diagonal decay for Green’s function.
We use the notation G, p)(x, E) := (Hg,p)(x) — E)~ L.

Lemma 2.8 ([16, Lem. 2.24]). Assume xo € T¢, Ey € C, and L(Eg) > y >
0. Let K € R and t as in (LDT). There exists Coy = Co(a, b, p) such that if
N > (Bo+ Sy,g, + ¥~ 1), C=C(a, b, p), and

log | fv (x0, Eo)| > NLy(wo. Eo) — K, (2.15)

thenforany (x, E) € T¢ x Cwith |x —xo|, |E—Eg| < exp(—(K +CoN'~7)),
we have

|G v (x. Es j. )| < exp <—g|k —jl+ K+ 2c0N1—f) . (2.16)
G113 (x, E)|| < exp(K +3CoN'"7). (2.17)

2.2 Cartan’s estimate

We recall the definition of Cartan sets from [14]. We use the notation
D(zp,r) ={z€C:|z—2z0| <r}
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On the spectrum of multi-frequency 615

Definition 2.9 Let H > 1. For an arbitrary set B C D(z9, 1) € C we say that
B e Cari(H,K)if B C Ujozl D(zj,rj) with jo < K, and

Z rj < e 1 (2.18)
J

If d > 1 is an integer and B C ]_[‘;:1 D(zjo0, 1) C C4, then we define
inductively that B € Cary(H, K) if for any 1 < j < d there exists B; C
D(zj0,1) Cc C,B; € Cari(H, K) so that ng) € Cary_1(H, K) for any

z € C\Bj, here By) = {(Zl,...,Zd) eB:z;= z}.
The definition is motivated by the following generalization of the usual
Cartan estimate to several variables. Note that given a set S that has a centre

of symmetry, we will let oS, o > 0, stand for the set scaled with respect to its
centre of symmetry.

Lemma 2.10 ([14, Lem. 2.15]). Let ¢(z1,...,zq) be an analytic function

defined on a polydisk P = ]_[‘;:1 D(zj,0,1),zj,0 € C.Let M > suplog |¢(z)],
zeP
m < log|¢(z0)|, z0 = (21,0 - - - » 2d.0)- Given H > 1there existsaset B C P,

B € Cary (Hl/d, K), K =CyH(M — m), such that
loglo(2)| > M — Cq4H(M —m) (2.19)
forany z € éP\B. Furthermore, when d = 1 we can take K = C(M — m)

and keep only the disks of B containing a zero of ¢ in them.

We note that the definition of the Cartan sets gives implicit information
about their measure.

Lemma 2.11 If 5 € Cary(H, K) then
mesca(B) < C(d)e ™ and mesgpa(BNRY) < C(d)e ™.
Proof The case d = 1 follows immediately from the definition of Car;. The

case d > 1 follows by induction, using Fubini and the definition of Cary. 0O

The following simple corollary of the Cartan estimate will allow us to
upgrade estimates from T¢, where we can take advantage of the fact that
H (x) is self-adjoint, to some complex neighborhood of T¢.

Corollary 2.12 Let ¢(z1, ..., 2q) be an analytic function defined on a poly-
disk P = ]_[?:1 D(xjo,1), xjo € R Assume supplog|e(z)] < 0 and

log |¢(x)| <m < 0 forany x € PNRe . Then for any z € 2—1473,

log |p(2)| < com,
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with some cy <q 1.

Proof Assume, to the contrary, that there exists zo = (2;,0), |20 —xo| < 1/24,
such that 10g|g0(zg)| > com, with cq to be specified later. Take H > 1 and
find B C []9_, D(x;.0. 1/2). 2(B — z0) € Carg (HY?, K), K = coCqH|m|,
such that

log|(2)| > —coCaH |m| (2.20)

for any z € ]_[?:1 D(zj,0, 1/12)\B. Note that since |zg — xo| < 1/24,

d
mesga ([ [ D(zj0.1/12) NRY) = c1(d), ¢1 > 0.
j=1
On the other hand

mesga (BNRY) < C(d) exp(—H) < ci,

provided H > 1. So, there exists x € (]—[?:1 D(zj,0, 1/12)\[)’) N R4, This
implies 10g|<p(x)| > —coCqH|m| > 7, provided we choose ¢y < 1 appro-
priately. This contradicts our assumptions. O

Another simple consequence of Cartan’s estimate is the following statement
that we refer to as the spectral form of (LDT).

Corollary 2.13 ([16,Cor.2.21]). Assume x € T¢ E € C,and L(E) > y > 0.
Let o, t asin (LDT). If N > (By + Sv,E)C, C=C(a,b,p), and

[(Hy(x) — E)~!| < exp(N/?),

then
log|fn(x, E)| > NLy(E) — N1I-T/2

2.3 Poisson’s formula

Recall that for any solution ¥ of the difference equation H (x)y
Poisson’s formula reads

Ey,
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Y (m) = Ga,py(x, E;m, a)y (a—1)+Gpa,p1(x, E;m, b)Y (b+1), m € [a,b].
(2.21)
With the help of Poisson’s formula one gets the following covering lemma.

Lemma 2.14 ([16, Lem. 2.22]). Let x € T, E € R, and [a, b] C Z. If for
any m € |a, b], there exists an interval I, = |a,,, by,] C la, b] containing m
such that

(1=8a,a,) |G1,, (x, E; m, am)| 4+ (1= 8p ) |Gr, (x, Es m, by)| < 1, (2.22)
then E ¢ spec Hq p)(x) (here §.. stands for the Kronecker delta).

We refer to the next result as the covering form of (LDT).

Lemma 2.15 ([16, Lem. 2.25]). Assume N > 1, xo € T, Ey € R, and
L(Eg) >y > 0. Let o, T as in (LDT). Suppose that for each pointm € [1, N|]
there exists an interval I,, C [1, N] such that:

(1) dist(m, [1, NI\Iy) > |I,x]/100,
(2) [In] > (Bo+ Sv.g, + v~ 1E, C = C(a, b, p),
(3) log| f1, (x0, Eo)| > |Lu|L1,,|(E0) — |Ln]' /4.

Then for any (x, E) € T¢ x C such that

|x —xol, |E— Eo| < exp(—2max|1m|1—f/4)’
m

we have
dist(E, spec Hy (x)) > exp(—2 max |I,|'~7/%).
m

Remark 2.16 In some of the results to follow we will refer to intervals [a, b] C
Z, with a, b € 7. It should be clear that in this context the integers a, b are
different from the real constants a, b from the Diophantine condition. We also
note that in such results the dependence of the constants on a, b still refers to
the dependence on the Diophantine condition.

We give another formulation of the covering form of (LDT) that is better
suited for the setting of this paper.

Lemma 2.17 Assume xo € T%, S ¢ R, and L(E)>y >0forE €S. Leto
as in (LDT), and a < b integers. Suppose that for each point m € [a, b] there
exists an interval J,, such that m € J,, and:

(1) dist(m, 3Jpm) = |J]/100,
(2) dist(spec H, (x0), S) > exp(—K), with K < § min,, |J,,|°/%,
(3) K> (By+ Sy +y )¢, C=C(a,b,p) (herea,bare as in (1.2)),
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Let J = Ume[a,b] Jm. Then for any |x — xo| < exp(—2K) we have

1
dist(spec Hy(x), S) > 3 exp(—K).

Proof Itis enough to consider the case S = {Eo} because the full result follows
by applying this particular case to each Eg € S. Furthermore, we can assume
|Eo|l < ||Vl + 4, because otherwise the conclusion holds trivially.

First we need to set up some intervals for which we will be able to apply
the covering lemma. Let J,,, = [c¢y, dj,]- Then

J =lc,d], c=infcy,, d=supd,.
m m

Let

m_ =sup{m € la,b] : ¢,y =c}, my =inf{m € la, b] : d,, = d},
I m € [c,m_]

Iy = 3 I, me[m_,my].
I+, m € [my,d]

Then dist(m, J\1,) > |I,,|/100.
Take m € [c, d]. Using (2) and (3) (also recall (2.7)), for any

1
Ix — xo| < exp(=2K), |E'—Eo| < ECXP(—K)
we have
) N1 o2
dist(spec Hy, (x), E") > Zexp(—K) > exp(—|Ln|”"9).

Combining the spectral form of (LDT) from Corollary 2.13 with Lemma 2.8
we get

3
G1,, (x, E'sm, k)| < exp (—%Im T 5|Im|1—r/2) ‘

Using (1) and (3) (which implies |/,,| > 1), the assumptions of Lemma 2.14
are satisfied, and therefore E’ ¢ spec Hy (x) forany |[E' — Eg| < % exp(—K).
This yields the conclusion. O

Remark 2.18 Obviously, for the covering forms of (LDT) it is enough to have
a collection of intervals that overlap near their edges for a fraction of their size.
We will use this observation tacitly when we invoke the above results.
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In connection with the estimates given by the covering form of (LDT) we
recall the following elementary criterion for an energy not to be in the spectrum.

Lemma 2.19 ([16, Lem. 2.39)). If for some x € T, E € R, p > 0, there
exist sequences N| — 0o, N!' — +00 such that

diSt(E, spec H[_Ns,’Ns”](x)) > p,

then
dist(E, spec H(x)) > p.

2.4 Finite scale localization

The covering and spectral forms of (LDT) can be used to obtain localization
of the eigenfunctions on a finite interval. The following result is a version of
[16, Prop. 3.1] that is better suited to the setting of Sects. 5 and 6.

Proposition 2.20 Let x¢ € T4, Ey € R, and assume L(Ey) > y > 0. Let
o asin (LDT) and 0 < B < o/2. Let N > Ny be integers. Assume that
for any 3Nog/2 < |m| < N there exists an interval J,, such that m € J,
dist(m, 3J,) > No — Ny'*, || < 10Ny, and

dist(spec H;, (x0), Eo) > exp(—N(’)g).

Let
[=N'.N"]=[-3No/2.3No/2JU () Jm.
3No/2<|m|<N

Then the following holds provided Ny > (By + Sy + y )¢, C =
C(a,b,p,B). If

_ N/ N 1
x — xo| < exp(=2NE), |ELN N () — Eo| < Z exp(—NJ),

then

WM m)| < exp (—yInl/10),  Inl = 3No/4.

Proof Takex, E = E ,E_N,’N”](x), satisfying the assumptions, and without loss
of generality assume n > 3Ny/4. Letd = [n — No/2]. Note that d > n/3.
Let

J=JUn:meln—d.n+d+ Noln(3No/2, N}
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(we add Np to make sure 3Ny/2 < n + d + Ny, so that the intersection is not
empty). Note that by the assumptions on J,, we have m+[—(Ng— NO1 / 2), No—

Ny/*1 € Jpy No < [J| S d,n € J, and dist(n, [-N’, N"\J) > d. Using
the covering form of (LDT),

. 1 B o2
dist(H, (x), E) = 7 exp(=Np) > exp(=J|7/%),
and by the spectral form of (LDT),
log | f(x, E)| > |J|L(E) — |J|'7*/2. (2.23)

Using Lemma 2.8 and Poisson’s formula we get

‘p/E_N/’N,/](x, n)‘ <2exp <_gd n C|J|1—T/2)

< exp (—%d) < exp <—ly—0n)

(recall that ¥ is normalized). O

Next we discuss the stability of localized eigenpairs when we increase the
scale. Again, the particular set-up is motivated by the setting of Sects. 5 and 6.
We will use the following elementary lemma from basic perturbation theory.

Lemma 2.21 ([16, Lem. 2.40]). Let A be an N x N Hermitian matrix. Let
E,e € R, ¢ > 0, and suppose there exists ¢ € RN, ||¢|| = 1, such that

(A — E)¢| < e. (2.24)

Then the following statements hold.
(a) There exists a normalized eigenvector  of A with an eigenvalue Eq such
that
Eo € (E —ev/2, E +v2),
¢, ¥)l = 2Ny~ (2.25)
(b) Ifin addition there exists n > ¢ such that the subspace of the eigenvectors
of A with eigenvalues falling into the interval (E — n, E 4+ n) is at most

of dimension one, then there exists a normalized eigenvector \ of A with
an eigenvalue Eg € (E — ¢, E + ¢), such that

lp — vl <20 te. (2.26)
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Proposition 2.22 We use the notation and assumptions of Proposition 2.20.
We further assume that there exist integers [N) — No| < N, 172 . INg — Nol <

NO and ko, such that the following conditions hold:
® IE, M(x0) — Eol < exp(—2NE),
(i) 10 () — B0 M ()] > exp(—Nf), ) # ko,

(i) W[ NN e, =N T MM (g, NI < exp(—2NE).

Then there exist E ,E_N,’NHJ, W,E_N,’N”J, such that the following estimates hold

for any |x — x| < exp(—ZNg), provided Ny > (By + Sy +y )¢, C =

(@, b, p, B):

(1) [EFY Ny — BN ) < exp(—y Nos20),

@ [EFY N )—E,E NN > Lexp(=ND). j #k,

3) 1wy V"N e, )| < exp (—yInl/10), |n| = 3No/4,

@ YN,y =y MM e ) < exp(—y No/20).

Furthermore, if we additionally have

[—Nps

[zv0

dist(spec Hy, (xo), (—00, Eol) = exp(—=NL), 3No/2 < |m| <N (2.27)

(Jm as in Proposition 2.20) and

() N(/ ( ) [ N()

(i) ) EL MM () > exp(=NE), j # ko,

then
(2) EXMN ) — YN > Lexp(=NE). j # k.
Proof Due to condition (iii),

[N0 [—N,

N (o) — EL M0 eyt M ) S exp—2ng),

where we naturally extend w,EO_NO’NO] to [=N’, N”] by adding zero entries.
Part (a) in Lemma 2.21 applies and we get that there exists k = k(xg) such
that

[ NosNg

|ELN NV (xg) — (x0)| < exp(—2N)).

Then for |x — xg| < exp(—ZNO) (recall (2.7)) we have

N//
(EEV Ny — gM0M0) ) « exp(—ND),
|ELN ’N ]<x> — Eo| < exp(—NE).
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Due to the last estimate, Proposition 2.20 applies and (3) follows. This implies
ICH -y @) = E5 YNyt M e )
S exp(—y (No — Ny'*)/10).

Due to condition (ii), part (b) in Lemma 2.21 applies with H|_ N§. N1 (x) in the

role of A and n = cexp(—N(’)3 ), ¢ < 1. This yields (1) and (4). To prove (2)
assume to the contrary that there exist j # k and x such that

[ECN Ny — BN ) < %exp(—N(f).

It follows that
EN Y — E,E(TNS’N‘/’/ )] < %exp(—N(’)g),
EFN N ) — Bl < %exp(—Né‘y

Proposition 2.20 applies and we get

WV G, )| < exp (—yInl/10),  |n] = 3No/4.

Now just as above we have

_ N/ N N//
Iyt N, — g M G ) < exp(—y No/20)
and hence

I ) — 7 e, ) S exp(—y No/20) < 1.

NN NN . . . .
Since, w,E NN ](x, ), 1//j[. NN ](x, -) are normalized eigenvectors with dif-
ferent eigenvalues

N ) — N w2 = 2.

This contradiction verifies (2).

Finally, we check (2). Clearly all the estimates obtained so far hold with
the extra assumptions. Assume to the contrary that there exist j # k and x
such that (4') fails. By (4) we must have

AN NN 1
EFNANT ) < BV ) — gexp(—Ngf).
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It follows that
ELN' Ny < gl () —exp( ND).

! " 1
[-N",N"]
Ej (x) < Eg — 1 exp(—NO ).
By (ii") and (2.27) (recall (2.7)) we get
. NN 1
dist(spec H[—Né,N(’)/](x)’ EE N.N ](x)) > 1 exp(—N(’)g),
NN 1
dist(spec Hy, (x), ELM(x)) > Eexp(—Ng‘).

It follows from Lemma 2.17 that EY"""(x) ¢ spec Hy_ys y(x). This
contradiction concludes the proof. O

2.5 Semialgebraic sets

Recall that a set S C R” is called semialgebraic if it is a finite union of sets
defined by a finite number of polynomial equalities and inequalities. More
precisely, a semialgebraic set S C R" is given by an expression

S =Uj Neer; {Pesje0},
where {Pq, ..., Py} is a collection of polynomials of n variables,
L;cf{l,....s}andsj, € {>, <,=}.

If the degrees of the polynomials are bounded by d, then we say that the degree
of § is bounded by sd. See [5, Ch. 9] for more information on semialgebraic
sets.

In our context, semialgebraic sets can be introduced by approximating the
analytic potential V with a polynomial V. More precisely, given N > 1,
by truncating V’s Fourier series and the Taylor series of the trigonometric
functions, one can obtain a polynomial V of degree less than

C(d, p)(1 +1og |V ]s)N*
such that ~
sup |V (x) — V(x)| < exp(—=N?). (2.28)

xeTd
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If we let H be the operator with the truncated potential V, we have

sup || Hyap(x) — Fl[a,b](x)H < exp(—N?) (2.29)

xeTd

for any [a, b] C Z.
Our use of semialgebraic sets will be limited to applying the following
result.

Lemma 2.23 ([5, Cor. 9.6]). Let S C [0, 1]" be semialgebraic of degree B.
Let ¢ > 0 be a small number and mes, (S) < &". Then S may be covered by

at most B€ (%)nil balls of radius ¢

2.6 Resultants

We briefly recall the definition of the resultant of two univariate polynomials
and some of the basic properties that we will use in Sect. 9. Let

P(z) = an?" +an_12" '+ -+ao, 0() = bz +bm_172" 4+ by
be polynomials, a;, b; € C, a, # 0, b, # 0. Let §;, 1 < i < n and n;,

1 < j < m be the zeros of P and Q respectively. The resultant of P and Q is
the quantity

Res(P, Q) = ay'by, [ [ — ). (2.30)
ij

The resultant can be expressed explicitly in terms of the coefficients (see [20]):

dp by,
an—1 bn—1
Res(P, Q) = n b 2.31)
ag an—1 bo bin—1
ap by

Lemma 2.24 Let P, Q, §;, n; as above and rp = max; [{;|, ro = max; |n;|.
If there exists z such that

max(|P(2)], |Q(2)]) < min(|ay], by [)8™*"m, (2.32)
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for some § € (0, 1), then
[Res(P, Q)| < 2lan|™ by l" (2r)™" 18,

with r = max(rp,rg).

Proof For (2.32) to hold there must exist ¢;y, nj, such that [z — ;| < 9,
|z — nj,| < & and therefore, using (2.30),

|RCS(P, Q)| < |an|m|bm|n(21’)mn_lléio — njol < |an|m|bm|n(2r)m"_128,
O

For the application of the previous lemma in Sect. 9 we will also need a
couple of auxiliary results. First, recall the following elementary bound for the
location of zeros of a polynomial due to Cauchy (see [21, Thm. (27,2)]).

Lemma 2.25 All the zeros of a polynomial P(2) = anz" +an—12"~" - - +ao,
an # 0, n > 1, are located in the disk |z| < 1 + maxg—, |ax/ay|.

Second, we will need the following consequence of Cartan’s estimate.
Lemma 2.26 Let P(z) = anz" + an_12" '+ ---4+ap,n > 1, a, # 0,

M = max; |a;|. There exists an absolute constant Cq such that for any H >> 1,
we have

mes{x € [0, 2] : log|P(exp(ix))| < logM — ConH} < exp(—H/2).
Proof Using Cauchy estimates,

M < max |P(2)].
lz|=1

In particular, there exists zg, |zo| = 1, such that log | P(zg)| > log M. At the
same time

sup |P(z)| <2M100".
|z]<100

Given H > 1, by Cartan’s estimate, there exists B = ll?:l D(&k, rk),

> Tk S exp(—H), such that
log|P(2)| > log(2M100") — C H (log(2M 100") —log M) > logM — C'nH,

for any z € D(0, 2)\B. The conclusion follows. |
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3 Basic tools at large coupling

In this section we discuss some results that rely on having a large coupling
constant. So, we work with operators of the form (1.1). As in the previous
section we assume that V extends complex analytically to ’]I‘fé. Furthermore,
we assume that V' is not constant.

Our first goal is to give an explicit expression for the constant By from the
previous section (recall (2.13)). To this end we will obtain, in Proposition 3.4,
a version of Theorem 2.2 and Proposition 2.4 at large coupling.

Let

(= (V)= inf sup{|]V(x') = V(x)|: x’ € T, |x’' — x| < p/100}. (3.1)

xeTd
Since V is continuous and non-constant we have ¢ > 0.

Lemma 3.1 Let n € C. For any H > 1 we have

mes{x € T : [log |V (x) — n|| > Hy ,H} < C(d)exp(—H?),
with

Hy , = C(d)(1 + max(0, log(| V lloo + [11)) + max(0, logg_l)).

Proof Given xq € T? there exists X € T¢ such that |xo — x4l < p/100 and
either
[V(x0) =nl = ¢/2 or [V(xp) —nl=1/2.

The conclusion follows by Lemmas 2.10, 2.11, and a covering argument. O

To keep track of the dependence of the various constants on the potential
we introduce

Ty =2 + max(0, log ||Vl ) + max(0, log [1). 3.2)

Note that Syy < 2log A, when log A >> Ty. In what follows we will restrict
ourselves to “spectral” values of E, thatis, we will assume |E| < A ||V |l o +4.

Lemma 3.2 There exists Ag(V) = exp((Tv)C), C = C(d), such that the

following hold for . > hoand |E| < L ||V ||so+4. Forany N < exp((log A)ﬁ)
we have

1
Ly (E) = 2Ls(E) + L1 (E)]| < (IO%VW ,

ILn(E) —logA| < (log)?,

@ Springer



On the spectrum of multi-frequency

627

and there exists a set By, mes(By) < exp(—(log )\)ﬁ), such that

|log | fv(x, E)| —log |Mn(x, E)||| < (log1)'/2,

(3.3)
for any x ¢ By.

Proof Denote by B the set from Lemma 3.1 with n = E/)A and H =

(log)\)%"’e, e K 1. Set By = UlgjgN (B - jw). Note that we have
(log)»)l/2 > Hy ,H and

mes(By) < NC(d) exp(—(log ) 3H97) < exp(—(log 1)37).

Forx ¢ By,1 < j <N,

log |AV (x + jw) — E| — logA| < (log1)?

and therefore

llog| fi(x + (j — Dw, E)| — logh| < (logh)?, £=1,2, (34)
llog [[Me(x + (j — Do, E)|| — £log | < (logh)?, £=1,2. (3.5)

Applying the avalanche principle we get that for any x ¢ By,

N-2 N-2
log [ My (x, E)| = ) log [Ma(x + jo, E)|| = ) log [ Mi(x + jw, E)|
j=0 j=1
+OOD) (3.6)
and
log|fn(x, E)|
10 N-3
= log ‘ M)(x, E) [O 0} H + Zl log | Ma(x + jo, E)|
J:
1 0
+ log 0 0 Mr(x + (N —2)w, E)
N-2 ]
— Y log[Mi(x + jo, E)| + OO 2). (3.7)
j=1
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We used the fact that
1 0 1 0
log | /iy ()| = log H [O 0} My (x) [0 0} H (3.8)
(recall (2.2)). It follows that (3.3) holds. Integrating (3.6) yields

INLy(E) — (N — 1)2Ly(E) + (N — )L{(E)| < CA™Z + 4mes(Bx) Sy
< exp(—(log 1) ).

By integrating (3.4) we get
|L1(E) —log 2|, [L2(E) —log A|

< (log1)? + (Sy + log &) exp(—(log )37
< (logh)?.

Therefore

2(L1(E) — Ly(E))
N

|Ly(E) — 2Lo(E) + Li(E)| < exp(—(log 1)#) +

_ (log’)?
~ N

and

(log 1)?
N

ILy(E) —loga| < + (log )2 < (logA)?.

O

We use the avalanche principle to extend by induction the estimates of the
previous lemma for arbitrarily large N.

Lemma 3.3 Let E € C, and o, T as in Theorem 2.1. There exist £y(a, b, p)
and rAy(V) = exp((TV)C), C = C(d), such that the following hold for A > Lo,
> Ly, and |E| < A ||Vl o + 4. Assume that for any £ < €', £” < 4¢ we have

log A) log ¢
Lo(E) — Lo = (B

1
» Le(E) = S loga, (3.9

mes {x eT?: ‘log|f€/(x, E)| — E/Lg/(E)‘ - SAV(E’)I_T/Z}
< exp(=(¢)7"). (3.10)
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Then for £'0 < N < ¢ N < N’ N” < 4N, we have

(logA) log N

L (E) = Ly (E)| = ===,
2(logA)logt  (logi)log N’
Ly (E) = Lo(E) - =228 - 2808

mes {x eT: |log |y (x, E)| — N/LN/(E)| - SW(N/)l—z/z}
< exp(=(N)7"?).

Proof We first prove the statements pertaining to the Lyapunov exponents.
The derivation follows the method in [13, Lemma 4.2]. We omit some details.
We also suppress E from most of the notation. To shorten the presentation we
consider the case N = nf, n € N, only. By Theorem 2.1 and (3.9) we have

1
log || My (x + jew)|| = €Ly — CoSpy 017 > 4 log 2 (3.11)

and

log || M(x + jew)|| +log | M¢(x + (j + Déw)| — log [ Mag(x + jlw)|
1
< 20(L¢ — Lag) +2CoSov €' ™7 + CoSuy 20)' 7 < gllogh,  (3.12)

forany 0 < j < N, x ¢ B, mes(BB) < 2nexp(—£°) < exp(—£°/2). With
these estimates in hand the avalanche principle kicks in and yields

n—2 n—2

log [My ()l =) log | Mae(x + jew)| — ) log [ Me(x + jlw)|
j=0 j=1
4O (exp(—(£1log A)/8)), (3.13)

for any x ¢ B. Recalling (2.5) and integrating (3.13) over x yields

n—1 n
2L2@—i—

-2 1
Ly — Ly| < NC exp(—(€¢logX)/8) 4+ 4mes(B) S,y
n

< exp(—col’ /4) log A.

Therefore

3(log ) logt

2
|ILy —2Lo¢ + L¢| < exp(—col? /4)log 1 + ;(Le —Ly) < N

_ (logX) log N
- 3N '
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The same estimate also holds for general N (not just N = nf) and N <
N’, N” < 4N. This implies the estimates for the Lyapunov exponents.

Next, we consider the statement about the determinants. The main tool here
is the application of the avalanche principle to expand log | fx|. The argument
is very close to the one in [14, Corollary 3.10]. Again we omit some details
and assume N = nf,n € N. On top of (3.11) and (3.12), using Theorem 2.1
and (3.10) we have

1
‘ch) [(1) 8] H > log | fe(0)| = (L = Sy €777 = tlog),

log

log

‘[(1) 8] Me(x + (n — l)ﬁw)H > log|fe(x + (n = Ditw)| = %Zlogk,

1 0
log | Me ()|l + log [ Me(x + )| — log IIMzﬁ(x)[O O] | < §elogh,
log | Me(x + (n — 2)€w) | +log || Me(x + (1 — Dtw)]

10
—log || [0 O]Mzg(x +(n—2)tw)| < telogr

for any x ¢ B, mes(B) < 4exp(—£°/?). So we can apply the avalanche
principle to expand log | f (x)| for x ¢ BU B’ (similarly to (3.7)). Combining
this with (3.13) we get

log|fn(x)| = log [[My(x)] + log

'Mze(x) [(1) 8] H ~ log 1M ()]

+log

1 0
[0 O] Moe(x + (n — 2)lw) H —log [ Mz (x 4 (n — 2)tw)|

4O (exp(—(£1log1r)/8)
> log ||My (x)|| — 285y (20)1 772 = 2CoS,v 20" = NLy — Sy N7 °
(3.14)

for any x ¢ BU B’ (recall that 7 < 1). In particular, for any xo € T¢ there
exists x; € T, |x; —xo| < pN~!suchthatlog|fy(x1)| > NLy—S,yN'~7.
On the other hand due to Corollary 2.7

sup  log|fy(x +iy)| < NLy+C(a,b, p)SiyN'"".
xeTd,|y|<pN-1

Applying Cartan’s estimate (with H = N/3) and using a covering argument
we get
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mes {x : |log|fy(x)| — NLy| > SWNI—T/Z} < C(d) exp(—NT/GD)
< exp(—N°/?),

(recall that 0 « 7). The same estimate also holds for general N and N <
N',N" <4N. =

Proposition 3.4 Let E € C, and o,t as in Theorem 2.1. There exists
Mo(a,b,p,V) = exp((TV)C), C = C(a, b, p), such that the following state-
ments hold for A > Lo and |E| < A ||V ||s + 4.

(a) We have

Co(log A) log N
N 9

|
L(E) > logh — Ci(logh)? > S log .,

Ln(E) — L(E) < > 2,

with Co = Co(a, b, p) and C an absolute constant.
(b) For any N > log A we have

mes {x e T : |log | fy(x, E)| — Ly(E)| > Swzvl—f/z} <exp(—=N°/2).,

Proof of Proposition 3.4 (a) By Lemma 3.2, for 1 < ¢ < exp((log A)ﬁ)/4,
£ < /¢, 0" <44, we have

|Le(E) — Ly (E)| <

k]

C(log 1)? _ (log2)log¢
12 - l
1
Ly (E) > logh — C(log)»)% > Elogk.
Let £¢ as in Lemma 3.3. We choose Ag such that £y < log A¢. Using the above,

Lemma 3.3, and induction we get that for any N > £9, N < N',N” < 4N
we have

log M) log N
Ly(E) — Lyn(E)| < %

In particular we have

k—1 i
(logx)log(2/ N)  C(logi)log N
LN(E) = Ly (E) < ,-2_0: T S
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with C an absolute constant. The first statement of part (a) follows by letting
k — oo and by adjusting the constant C to also cover the case N < £g. The

second statement follows from the fact that for £ = |exp((log 1) 2 )], we have

C(logA)logt 1 L
L(E) > L¢(E) — —7 logd — C(log2)2 — exp(—(log1)59)

> log ) — C'(log 1)?.

(b) Take log < £ < (logA)!'%. Using Lemma 3.2 and Theorem 2.1 we get

mes {x log | fu(x, E)| — €L¢(E)| > CoSpy €' ™™ + C(1og,\)%}
< exp(—(log )\)3%1).
Note that with this choice of £ we have
C 1—1 1 1—1/2 £ a/2
oSyl + C(ogi)2 < Syt , exp(—(log1)3d) < exp(—£°79)

(recall that 0 « 7 < 1). Recalling that ¢y < log A¢, the conclusion follows
by Lemma 3.3 and induction. |

Remark 3.5 (a) The previous proposition shows that for A > A9 > 1 and
|E| < A||V|lo + 4, Theorem 2.2 holds with Ng = (log1)¢@?) and
Proposition 2.4 holds with Cy = C(a, b, p) log A. Therefore, for such A
and E we can take By = (logA)€@?P) By inspection of the previous
proofs one can see that for |[E| > A || V|| + 4 we can take By = (log A +
log |E|)C(@b:9) but we will not use this fact.

(b) The positivity of the Lyapunov exponent for A > 1¢ > 1 is well-known
(see [6,10,13]). We only included the proof because it is an easy conse-
quence of the lemmas we needed for the other statements.

Next we establish a version of the covering form of (LDT) and of the result
on finite scale localization from Proposition 2.22, starting from the potential.
We will need these results in Sect. 7 to connect the assumptions on the potential
to the initial conditions required by our inductive schemes from Sects. 5 and 6.

Lemma 3.6 Let xog € T¢ [a,b] C Z, a < b. There exists (V) =
exp((Tv)C), C = C(p), such that the following hold for A > Ao and
|[Eol < A ||V leo + 4. Assume

|V (xg + nw) — A_lEol > exp(—K), foranyn € |a,b],

with some K > (10gk)1/3. Then for any |x —xo| < exp(—2K), A VE—Ey| <
3 exp(=K),
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(a) dist(spec Hiq.p)(x), Eo) > %)» exp(—K),
() |Glap1(x, E; j. k)| < exp(—=(lj — k| + Dlogh + C(b — a)K),

where C is an absolute constant.

Proof For any |x — xg| < exp(—2K), A_1|E — Eo| < %exp(—K),
1 1 :
[Vx +nw) — 1" E| > Zexp(—K), j € la, b]
(1o depends on p because we used a Cauchy estimate). Then

[log [A\V(x +nw) — E| —logA| S K, n€la,b]

(note that |V (x +nw) — Al E| <exp((logi) 173y < exp(K), for large enough
A) and this implies

|log| fe(x + (n — Dw, E)| — tlogh| S K, nela,b—t],6=1,2,
|log [|M¢(x + (n — Dw, E)|| — LlogA| S K, nela,b—10],L=1,2.

Applying the avalanche principle (as in the proof of Lemma 3.2) we have

log | fia.p)(x, E)| = log

‘Mz(x + (a — 1w, E) |:(1) 8] H

b—a—2
+ ) log|May(x +nw, E)|
n=a
10
+ log [0 Oi| Mg(x—l—(b—a—l)a),E)“
b—a—1 |
— Y logllM(x + nw, E)|| + 0.7 2).

It then follows that
[log | fla.p)(x, E)| — (b —a + 1)logA| S (b —a+ DK,
In particular, E ¢ spec Hj, pj(x). This implies (a). Analogous estimates hold

on any subinterval of [a, b]. Using these estimates and Cramer’s rule for the
resolvent we get (for j < k)

10g |Gla.p)(x, Es j. k)| = log | fia,j-11(x, E)| + log| fixs1.61(x, E)
—log | fia.b1(x, E)|
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<[(j—a)+ ®—-kllogr+ CK)
—(b—a+1D((j —a)logr — CK))
<(j—k—1logh+C'(b—a)K.
This implies (b). O
Corollary 3.7 Let xg € T¢, S C R, [a,b] CZ, a < b. There exists ho(V) =
exp((Tv)C), C = C(p), such that the following hold for . > ,g. If
dist(V (xo + nw), A_IS) > exp(—K), foranyn € |a,b],

with some K > (log A)'/3, then for any |x — xo| < exp(—2K),
. 1
dist(spec Hyg p)(x), S) > EA exp(—K).

Proof This follows by applying Lemma 3.6 (a) for each Eg € S with |Eg| <
AV ls +4. Note that for |[Ep| > A ||V 5 +4, Lemma 3.6 (a) holds trivially.
O

In the results of this section we could have used (log1)?, ¢ € (0, 1),
instead of (log A)!/2. So far, working in such generality wasn’t needed. How-
ever, we will need this setting for the applications of the next lemma. Recall
Remark 2.16.

Lemma3.8 Letxo e T¢ a <0 <b, e c (0, 1), and assume
|V (xo + nw) — V(xo)| > exp(—(log1)*), foranyn € [a, b]\{0}.

There exists Ag(V) = exp((Tv)C), C = C(p,¢), such that the following
hold for A > Aq. There exist E,Ea’b], 1//,£a’b] such that for any |x — xgo| <
exp(—3(og 1)?) the following estimates hold:

(1) AEMP ) — Vol <2a7,

@) [P (x, n)| < exp(—(ogM)Inl/2), |n| >0,

3) [P (x,0) — 1] < exp(—(log )/2),

@ A NEM () — B (0] = fexp(—(log)®), j # k.

Furthermore, if
V(xp + nw) — V(xg) > exp(—(logAr)®), foranyn € [a, b]\{0}, (3.15)

then
@) A7NEP P (x) = B () = Fexp(—(log2)®), j # k.
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Proof The proof is very similar to the one of Proposition 2.22. We have
1" Hia, 5 (6) = V@)Soll < V227,

where §¢ stands for the standard unit vector with mass concentrated at 0. By
Lemma 2.21 there exists k = k(x) such that (1) holds. At the end we will
argue that k(x) = k(x¢p). Note that

ATNEM P (x) — Eol < exp(—2(log1)%),  Eg = AV (xp).

Estimate (2) now follows from Poisson’s formula and Lemma 3.6 (b) (applied,

forn > 0,on[1,2n]NJa, b]). Since w,Ea’b] is normalized, estimate (3) follows

from (2) (obviously, we choose g/f,Ea’b] such that g//,Ea’b] (x,0) > 0). To prove

(4) assume to the contrary that there exist j # k and x such that

_ 1

WHEMP () — BP0 < g exp(~2(log )°).
Then
A_llEEa’b](x) — Ep| < exp(—=2(logA)?), Eo = AV (x0).

and just as above we get

Y iPl(x, m)| < exp(—(log M)Inl/2),  In| >0,

WP (x, 0) = 1] < exp(—(log 2)/2).

Therefore ” wj[.“’b] (x,) — w,ga’b] (x,") H <« 1, contradicting the fact that

2
i i =2
Now we argue that k(x) = k(xg). Since

— ,b —
2T G (o) = Vo) < 227,

we have
2T EG () = V()] < exp(—2(log )°),
and the conclusion follows using (1) and (4).
Finally, suppose that (3.15) holds. Clearly, estimates (1)—(4) still hold. Sup-
pose to the contrary that there exist j # k and x such that (4) fails. By (4) we
must have

1
A—IEEF‘”’](x) <2 VEMP () — g (g L.
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By (1),
—1 pla.b] 1 ¢
A Ej x) < V(x)— Z(logk) .

Note that due to (3.15),
1
V(x+nw) —V(x) = E(Ing)s,
for |x — xg| < exp(—3(log 1)?). It follows that
1 plabl 1 e
Vx +nw) =2 E; 77 (x)] = Z(logk) , n€la,b],

and by Lemma 3.6, EE.a’b] (x) ¢ spec Hiq, pj(x). This contradiction shows that
(4") holds. O

Corollary 3.9 Using the assumptions and notation of Lemma 3.8 the following
hold. For simplicity let E'%P1 @01 pe the eigenpair from Lemma 3.8. If
N > 1, [—N, N] C [a, b], then for any |x — xo| < exp(—3(log 1)?),

|EWP ) — EFV M) S exp(—(log HN/2).

Proof Using (2) from Lemma 3.8, we have

| Hiya () = E9P00)p P, 9| S exp(—(og )N /2).

The conclusion follows from Lemma 2.21, and (1) and (4) from the previous
lemma. o

4 Cartan type estimates along level sets near a non-degenerate
extremum point

The goal of this section is to prove the next proposition that we will use to
handle the edges of the spectrum in Sect. 6. We let ( f) stand for the Hessian
of a function f. When the function is clear from the context, we will simply
write $). Recall that ||-|| denotes the Euclidean norm, and | - | denotes the
sup-norm.

Proposition 4.1 Let f(x) be a real-analytic function defined on {x € R" :
|x| < ro}, ro < 1, which extends analytically to the polydisk P := {z € C" :
|z| < ro}. Assume that

f0)=0, Vf(©0) =0,
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HO0) >vpl, 0<vyy < 1.
Let M (k) = max|q|—k supp [0% f]. Set
v = cmuo(1+MQ)+M3) L, p=row,

with c(n) a sufficiently small constant. Let 0 < ||xol| < p, Eo = f(x0), r =
v1 |xoll. Then there exists a real-analytic map x(y, E), (y, E) € R x R,
ly| < r, |E — Eo| < r?, such that

fx(y, E)) =E, x(0, Eg) = xo

and satisfying the following properties.

(I) The map x(y, E) extends analytically to {(w, E) € C""! x C : |w| <
r, |E — Eo| < r?} and satisfies
llxoll
x(w, E) — xoll < —

(II) For any |E — Eo| < r?, any vector h € R" with 0 < ||h| < p, and any
H > 1, we have

mes{y € R""!, |y| <r:log|f(x(y, E) +h) — E| < HyH)

< 72r)" exp(—HT),

with Hy = C(n) log([IA]| llxol]).
(IIl) Let ho € R" be an arbitrary unit vector. For any |E — Eo| < r?, and any
H > 1, we have

mes{y € R"™', |y| < r :log|(V f(x(y. E)). ho)| < H H)}

< (02" exp(—H ),
with Hy = C(n) log(v xoll).

Part (I) of the proposition is a version of the implicit function theorem. For
parts (II) and (IIT) we will apply Cartan’s estimate to f along its level sets. To
apply it we need a reference point with a “nice” lower bound estimate. So, it
is important to accurately book-keep the size of the neighborhood where one
can apply the implicit function theorem for it limits the search for the point
in question. The same applies to all auxiliary estimates in the proof. For that
matter we need to work out a version of the implicit function theorem, explicit
enough for our purposes (see Lemma 4.4).
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Lemma 4.2 Let f(z, w) be an analytic function defined on the polydisk
P={(z,w) e CxC":|z|, |lw| < po}.

Let My = sup |9, f|, M(2) = max|q|=2 sup |3% f|. Assume that f(0,0) = 0,
no :=19; f£(0,0)] > 0. Let

p1 < min(p/2, c(m)uoM2) "), ri = c(n)py min(1, 120/|dw, (0, 0))),
with c(n) a sufficiently small constant. Then for any w, |w;| < r;, the equation
fz,w)=0

has a unique solution |z(w)| < p1 which is an analytic function of w.

Proof Take arbitrary w, |w;| < r;, and z, |z| = p1. Then by Taylor’s formula
and the definition of py, r;,

| f(z,w)| =18 £(0,0)lIz] = [(Va £ (0, 0), w)| = CoOM () l|(z, w)|I?
> op1/2. 4.1

In particular we also have
|f(z,0)] = 18.£(0,0)||z]| — C(r)M(2)|z|* > 0,

for 0 < |z] < p1. So, f(z,0) has a simple root at z = 0 and no other roots in
the disk |z| < p1, hence

1 ;. f(z,0)
— ————dz =1
27i Jiz1=p f(z,0)
By continuity,
g eew,
27 Jig=p1 Sz, w)

for |w;| < r;. This means z — f(z, w) has one simple root z(w) in the disk
{|z| < p1} and by the residue theorem

1 9. f(z, w)

- dz.
<) lzl=p1 - f(z, w) :

2mi

Clearly, the function on the right-hand side is analytic in w for |w;| < r;. O
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For the proof of part (II) of Proposition 4.1 it will be crucial that the size in
the direction of y of the polydisk where the implicit function is defined is of
magnitude ~ ||V f || and in particular is much bigger than >~ ||V £ || (assuming
IV fll < 1;see Lemma4.9). This is one reason why in Lemma 4.4 we consider
implicit functions in the direction of the gradient. The second reason is the fact
that this way one gets some quadratic control over the implicit function (see

4.2)).

Definition 4.3 Given a function f differentiable at xo € R”", with puy, =
IV f(xo)ll > 0, we let ng, = pu; 'V f(x0). Let ey, j, 1 < j <n—1bean
orthonormal basis in {nxO}L. Given (£,y) €e R x R"~! we denote

Q(E, yi X0) 1= X0 + Engy + Y yjex ).
J
The set-up of the lemmas to follow is tailored around that of Proposition 4.1.

Lemma 4.4 Let f(z) be an analytic function defined on P = {z € C" :
|z — xo0l < po}, x0 € R". Let M (k) = max|q = sup [0% f|. Assume fLy, :=
IV f(xo)ll > 0. Let Eg = f(xo). Let

o1 < c(m)ymin(po, uyyM@2)™Y), r=cmpr, r' =cm)prmin(l, py,),

with ¢(n) a sufficiently small constant. Then for any (w, E) € C*~! x C,
lw| < r, |E — Eg| <1/, the equation

floE, wixp) =E

has a unique solution &€ = g(w, E) in |&| < p1 which is an analytic function
of w, E. Furthermore, the following statements hold.

(a) Forany (w, E) € C"!' x C, |w| < r, |E — Eo| < r’ we have
lg(w, E)| < 2/1;01(|E — Eol + C(m)M(2)|w]?). 4.2)

(b) For any x|, € R", |x6 —on < r, such that f(xj) = E, |E — Eo| <7/,
there exists y € R", || y| < ”x(/) — X0 ” such that xj, = ¢(g(y, E), y; Xo).

Proof The existence and uniqueness of the solution £ = g(w, E) follows from
Lemma4.2 appliedto F (&, w, E) = f(¢(&, w; x9))—EonP' = {(&,w, E) :
€], lw], |E — Eg| < cpo}, with ¢ small enough so that |¢ (&, w; x9) — xo| <
po/2, for |€], |lw| < cpp. Note that

F(O7 Os EO) = 07 a.’;"F(O’ 0’ EO) = I’LX()7
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awiF(O’ 07 EO) = 0’ aEF(O’ O’ EO) = _la

We just need to prove the claims (a),(b).

(a) Note that (V f(x0), ¢ (&, w; x0) — x0) = tx,é. Using Taylor’s formula we
have

F (@@, wixo)) — f(x0) = pxeé + R(E, w),
with
IR, w)| < C)MQ)(|E]* + [w]?).
By setting &€ = g(w, E) we get

lg(w, E)| = ui'|E — Eg — R(g(w, E), w)|
< 1 (IE = Eol + CoyM () (Ig(w, E)* + |[w[?)
< ' (E — Eol + ClM Q) (p11g(w, E)| + [w]?))

1
< Sle(w, E)l + ug (IE = Eol + CoyM 2)|wl?),

provided p; is small enough, and (4.2) follows.

(b) Let (£, y) € R"~! x R be such that xo = @(&, y; x0). We have |£], |y| <
||x6 — xo||. Since f(@(&, y;x0)) = E, |€| <r < p1,and |y| < r, unique-
ness implies that & = g(y, E). O

Remark 4.5 In Lemmas 4.2 and 4.4, if the function f is real-valued on R”,
then the implicit functions are also real-valued on R". Indeed, by the usual
implicit function theorem, the implicit functions will be real valued on some
small real polydisk, and by analyticity they will be real-valued on their whole
real domain.

Part (I) of Proposition 4.1 will follow by letting x (v, E) = ¢(g(y, E), y; x0),
with g as in the previous lemma. For part (II) it will be enough to prove the
result with £ = Eg, so we focus on this case. To simplify notation we let
g(y) := g(y, Ep). Part (I) will follow from Cartan’s estimate as soon as we
find a point |y| < r such that

| f(x(y, Eo) + h) — Eol = [ f(e(g(y), y: x0) + h) — f(x0)| = &,

with a certain ¢ = e(||]||, ||xol). If | f(x0 + h) — f(x0)] > &, then we can
simply choose y = 0. We single out a simple case when this happens.

Lemma 4.6 Let f(x) be a smooth real function defined on {x € R" : |x —
xo|l < po}. Let M (k) = maxq|— sup [0% f|. Assume $(xo) > v,/ > 0 and
set
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1 = c(m)vg, (1 + M@3))~ L

with c¢(n) a sufficiently small constant. val_1 IVl < k]l < min(vy, po),
then

1
[f o+ 1) = f o)l = Jvxg 171

Proof Using Taylor’s formula and the assumptions on #,

|f (xo +h) — f(x0)
1
z 5 [OG0h, k)| = [V f(x0), )| = C()M(3) Ik

v

l 2 2 2 l 2
7 Vxo A7 =i lIA]™ = €M)y A7 = Fvx 117

O

Suppose that | f(xo + &) — f(xp)| < ¢e. Then we want to find x() =

@(g(y), y: x0), f(xy) = f(xo), such that | f(xj 4+ h) — f(x()| > &. To this
end it is enough to find x, such that | f (x(4+h) — f (xo+h)| > 2&. By Taylor’s
formula

FGg+h) — fxo+h) = (Vfxo+ h), x5 — x0) + O(Ix — x0l%).

The linear term will dominate the quadratic term if the projection of x,—xo onto
V f(xo+ h) is large relative to x/, — xo. By (4.2), the projection of x, — x( onto
V f (xo) is relatively small, so the projection onto {V f (xo)}* is relatively large.
This means thatif V f (xg) and V f (xo + &) are not too close to being collinear,
the projection of x(/) — xp onto V f (xg + h) will be relatively large (see Fig. 1),

Fig. 1 If Vf(xg + h) is not collinear with V f(xq), then the projection of x(/) — X onto
V f(xg + h) is relatively large
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and we should be able to find a lower bound on | f (x[) +h)— f(xo+h)| viathe
linear term of the Taylor expansion. A quantitative version of this observation
is given in the next lemma.

Lemma 4.7 Using the notation and assumptions of Lemma 4.4 the following
hold. Let h € R", |h| < po/2, x1 = x0 + h, py, := [V f(x1)]. Assume

(V(x1), V@) < A =8DIVFEDIPIVLGol®,  0<8 < 1.

Let
p < cm)ymin(r, uM(2)7'65) <7, = min(py,, py,).

where c(n) is a sufficiently small constant and r as in Lemma 4.4. Then there
exists | xy, — xo|| < 2p, xj, = @(g(y), y; x0), Iyl < p, such that

1
|f(xh+h) — flxo+h)| > zuxls(%p.

Proof The case 1y, = 0 is trivial, so we assume (y, > 0. Givenn e R", y €
R"~! and using the notation of Definition 4.3 let

P xo) = Y (exyjoMegjn  Aix0) = Y yjey . (4.3)
J

J

Let n,, = ;L;IIVf(xl). We choose y € R"! such that q(y;xo) =
op(ny,; xo), with p as in the statement. Note that

1= ||p(nx1; x0) ”2 = anl ”2 - (nxl’nxo>2 >1-01- 8(%) = 8(%'

It follows that
Iyl = lla(y; xo)ll = p |p(rg s x0) | < o

and

(Vf(x1), q(y; x0)) = tx; (x5 45 X0)) = px, (P(Myy5 x0), 4 (5 x0))
= Hx1 P Hp(ﬂxl; xo)”2 > /Lxlé(%,o.

Let x, = ¢(g(y), y; xo) with y as above. Then

|6 — %o < 1gI+ Iyl < uyy CYMQ) Iy 1> + NIyl < 21yl < 2p,
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provided p is small enough. Note that we used (4.2). By Taylor’s formula

F e+ h) = f (o + k) = (V£ (x1). g = x0) + R(xj = x0)
= (Vf(x1), gy + (VF(x1), q(; X0))
+R(xy — x0), (4.4)

with
1
IR(xp = x0)| < CM@)l1xg = x0l* < 4CWM2)p? < 11 55p-
We also have

_ 1
(V£ (1), gng)| < iy iy COM(2)p° < iy, 83 p-

The conclusion follows by combining the estimates we obtained for the terms
on the left hand side of (4.4). O

Now we have to deal with the situation when | f (xo + /&) — f(x0)| < &, and
V f(xo) and V f (xo + h) are close to being collinear. We show that for small
enough £ this can only happen if / is very close to a particular “bad” direction.

Lemma 4.8 Let f(x) be a smooth real function defined on {x € R* : |x —
xo| < po}. Let M (k) = maXq|—k sup |0% f|. Assume $(x0) > vy, I, 0 < vy, <
1, and set

V1= ey (1 + M(2) + M(3))™!

with c¢(n) a sufficiently small constant. Let 0 < ||h| < min(pp, v16). Assume
that the following conditions hold:

| f (xo 4+ 1) — f(x0)| < [IA]P, (4.5)
IV f(xo +h) — AV f(xo)|l < Ih]1%, (4.6)

with some ) € R. Then
17+ 26 (x0) "'V f (o) | < vi ¥ IV £ (x0) 11 (4.7)

Proof Note that (4.5) together with Lemma 4.6 imply ||| < vfl IV fxo)ll.
In particular, this implies ||V f(xo)|| > O.
Combining (4.6) with Taylor’s formula we get

10- = DV £ (x0) — H(xo)]| < Cm)(1 + M3))|]>.
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Therefore

10 = DHCx0) ™'V £ (x0) = kIl < 19(x0) " IC) A+ MB3)) |12
<v'C) 1+ MA)[AI* < vy IRl

Combining (4.5) with Taylor’s formula we get
1 _
(Vfx0) by + 5 (H(x0)h, h)| < 1211 + CyM@)|h)1® < vt Al

Letv= (L — DH(xp)" 'V f(xp) — h. Combining the previous two estimates
yields

1
On = D{V f(x0), H(x0) "'V £ (x0)) + SO= DV f(x0), H(x0) "'V f(x0))

_ 1
< v RIP +1V £ Go)l vl + 5 190l (vl + 2 o1l llv + )

= ‘)1_1 IA1® + IV f(xo)l v IR + C(n)M(Z)(vl_2 el + ”1_1 AR
< v IV £ o) A1 + v 2 (Rl

Since (V f (x0), H(x0) "'V £ (x0)) = [9x)I7 IV £ xo)I? = vi IV f (x0)]I%,
it follows that

(A= DA+ D] < e =02 VL@ AP + v IV £ o) 72 A1
Since max(|A — 1], |A + 1]) > 1, we have

min(|]A — 1|, |]A +1]) < e.
If |A — 1] < &, then

2] < |h — (A = D$Hx0) "'V F o)l + 12 — D$H(x0) ™'V f (o)l
< v R+t e IV F o)l = v IR 4 v 1R

o IV E) I IR < v )

(recall that || 2| < vl_l IV f (x0) ). This is not compatible with the assumption
that 0 < ||A| < v16. So, we must have |A + 1| < & and therefore

7+ 29 (x0) "'V f (xo)ll < 1B — (A — D$H(x0) "V £ (x0) |
I A+ 1)H(x0) V£ (o)l
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<7 IRl + v e IV F o)l < vy a2
< v 3V £ (x0) %
O

Finally, we show that (4.7) cannot hold over the entire piece of the f (xg)-
level set parametrized in Lemma 4.4.

Lemma 4.9 Let f(x) be a smooth real function defined on {x € R" : |x —

xol < po}, po < 1. Let M (k) = maXq|—k sup |0 f|. Assume $)(x0) > vy, 1,
0 <y < 1L and0 < |V fxo)ll < povy/20 with

vy = c(m)vg (1 + MQ2) + M@3)) ™!

with c(n) a sufficiently small constant. Then there exists “x(/) — X0 H <L r, with
r asin Lemma 4.4, xy = ¢(g(y), y; x0), |yl < r, such that

1900V () — H0x0) " V£ o) | > v UV LG I + |V FE )

Proof Choose y € R"~! such that ||yl = vi |V f(xo)ll and let x, =
©(g(y), y; x0). Using (4.2) we have

|6 — xo0]| < 1gMIHIVI < pg CEIM@) Iy 1Pyl < 201 [V f (o)l < 7,
provided v; is small enough. Then

Vxo

|9(x0) = H(x0) | < COOM@B) | x5 — xo| < IVf (x0)ll < B

(recall that |V £ (xo)|l < pov}° po < 1) and therefore $H(x;) > 52/ and
(IE7S I = 2v;, 1. We have

9GO ™'V £ (xh) — H(x0) 'V £ (x0)||
> [9G0) NV Fxo) = VL) | = [ ™" = 9x0) " HV £ (x0) | -

On one hand using Taylor’s formula applied to the gradient we get

|9GH) 1V f(x0) = V) |
= [l = xo| = |9 ™| ConMB) [y — xo*

2 x6=xol _ v IVSGol
a 2 - 2

> xg = xoll = v [ = xo
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On the other hand

[HEH ™ = H5x0)"HV f(xo) |
< [9G) 7 9G] D) = H@o) | 1V £l < vi IV £ o)l
Therefore

|9 'V £ () — H(x0) 'V £ (x0) ||

> WIVICON 19 r g2 =

vi |V f (x0)ll -
= 2 4

S IV (xo) I

Since

IV fx0) = Vfxp)|| < C)M Q) ||x — xo| < 2C )M ©2)v1 |V £ (x0)l
< IVf&xoll,

we get that

v VEED P+ IV LGP < SvrS IV FolI?
and the conclusion follows. O

We will use the following simple consequence of Taylor’s formula. We leave
the proof as a simple exercise.

Lemma 4.10 Let f(x) be a smooth real function defined on {x € R" : |x| <
ro}. Assume that

f0)=0, Vf(0) =0,
9HO0) > vol, vg>0.

Let M (k) = maxq|= sup, [0% f|. Then for |x| < min(ro, c(mvoM(3)~h,
with c(n) a sufficiently small constant, we have

YO 2 2
7 X7 = £ ) = (CM2) + DIlx]l*,
%IIXII =Vl = (Cm)MQ2) + Dllx]l,
HIOEEY
x)z 1.
Now we prove Proposition 4.1.
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Proof of Proposition 4.1 Let0 < ||xoll < p, Eo = f(x0). Using Lemma 4.10
we have

0] o ¢
> lxoll = IVf(xo)ll < (Cn)M(2) + 1) [[xoll < S < 1. (4.8)

Let iy, = IV f(xo0)ll,
pr = Emymin(ro, uyM2)™). F=Em)pr, 7= Emprmin(l, py,).

with ¢(n) standing for the c(n) constant from Lemma 4.4. By Lemma 4.4, for
any (w, E) € C"~! x C, |w| < 7, |E — Eg| < 7, the equation

floE, w;xp) =E

has a unique solution § = g(w, E) in |§| < p; which is an analytic function
of w, E. Note that by the smallness of xo we have

p1 = EmpyMQ2)™, F=m) M), F=m)ur, M),
4.9)
r&F, rt L F (4.10)
(we used the fact that M (2) > c(n)vg). By (4.2),

lo(g(w, E), w; x0) — xoll < [g(w, E)]+ [lw]|
<2u P+ CM@)r?) +rv/n—1

1, 1
< vi'r =3 Il (4.11)

for any |w| < r, |E — Ep| < r2. Now part (I) follows by setting x(w, E) =

p(g(w, E), w; xo).
We first prove (II) with £ = Eg. Let 0 < ||k|| < p. We claim that there
exists yo, || yoll < 7, such that

| f (x(y0, Eo) + 1) — Eol = | £ (9((0), y0; x0) + k) — £ (x0)| = [I1lI* [Ixo]l .

From the claim (also note that | f (x(w, E) + h) — E| < 1), Lemmas 2.10,
and 2.11 it follows that for H > 1 we have

mes {y e R |y| <r:log|f(x(y, Eo) + h) — Eq|
— 1
> C(n)H log(||h| IxolD} < C ()"~ exp(—H 1)

< (72" exp(—HT)
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as stated in Proposition 4.1 (recall (4.8), (4.9), (4.10)). Now we check the
claim. Let x1 = xo + /1, px, = VA @D I [ f(x1) — f(xo)| > 121 lIxoll,
the claim holds with yg = 0. Suppose

Ifx) — fo)l < IAIB ol and IV f(x1) — AV FGo)l > k12,
(V f(x0), Vf(x1))

~(Vf(x0), V(x0)

Then a direct computation yields

2 2 2 2 L
(VI(x1), VI(xo)™ = A =8IV xol*IVfxoll®, S0 = ——.

xq

Note that
IVFGDI = IV F(x1) — AV F o)l > A2

We choose a small enough constant c(r) such that Lemma 4.7 applies with

p=cyuM@2) "85, w=min(uy. /tx)

instead of p, pg = ro/2, r instead of r, and &g as above. Applying Lemma 4.7
we get that there exists y, ||y|| < p <« F, such that

1
| f(0(g(y), y; x0) + h) — f(x1)| = Euxlaéﬁ > c(n)MQ2) ™ iy, 183
> 21113 lxoll -

We used (4.8) and the fact that
IVFaDIl < (C)MQ2) + 1) |lxo + Al < rov] < 1.

Since | f(x1) — f(x0)] < 17211® lIxo]l, the claim follows with Yo = Y.
We are left with the case when

|fGen) = f o) < RN lxoll and IV f(x1) = AV £ (o)l < [IA)1°.

Note that by Lemma 4.10, $(x)) > 21 for any |x, — xo| < . Choosing
sufficiently small constants c¢(n) we can apply Lemmas 4.8 and 4.9 with the
same v as in Proposition 4.1. Furthermore, we can apply Lemma 4.8 with any
Hx(’) — X0 H < 7 instead of xo. Lemmas 4.8 and 4.9 imply that there exists

|x) —xo| <7, fxp) = fx0), xp=e0O). ¥5x0), |y <7,
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such that 5
|h+ 2060~ VFGaY| > v [VEap]”

Lemma 4.8 (with x(/) instead of xq) implies that

£ = £l > [RIP or |V = AV > A7,
with , ,
(Vf(xp), Vf(x))
(VF&x), V)
If |fx)) — &l > [l the claim holds with yo = . If
H Vi) =2V f(xg) ” > ||h||?, the reasoning above, based on Lemma 4.7,
implies that there exists Hx(’)/ — X H <2p «F,

xp=x(+h, N=

i _ . A
pr=cmu' M)~ (60, ' =min(uy, my, 1), (8)° = —-,

x|
such that f(x() = f(x;) = f(xo) and
/" / 1 IN2 7 8
[f(xg+h)— flxg+h)| = M o = 2||Al” llxoll -

Note that we added p, to the definition of ' to ensure p’ < 7, and we used
the fact that ||x(’) || > |lxoll /2. We now have that either

|f (o4 1) — FG > IR ol or [ f(xg +h) — FGg)] > AP llxoll -

Since Hx(’)/ — X0 H &« F, Lemma 4.4 implies that there exists y”, y”H < 7,
suchthat x| = ¢(g(y"), ¥”; xo). Therefore the claim holds with either yo = y’
oryo=y".

Next we consider part (I) with |E — Eg| < r2. Let x6 = ¢(g(0, E), 0; xq).
Repeating the above argument with x;, instead of xo we get that there exists
Yor

Iyoll < E)* g M2)~!
(recall that 7 = &(n)*u oM (2)~1) such that
| (@8 (yp: x0), Y03 x0) + ) — El = [1111° g | -
We used g(y;x() to denote the analogue of g(y) obtained by applying
Lemma 4.4 with x{ replacing xo. By (4.11) we have Hx(/) H > |lxoll /2. Let

xg = (g(y): X{). ¥o: x0)- Note that f(x()) = f(x)) = E. We have
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|x6 = xo < [[xo — xol| + 18(o: x)1 + |30 -
Using (4.2) we get
% — xo0|| = 1g(0, E)| < 2 ' |E — Eol <2 (vo lIxoll /2)7' r? < r & F

X0

and

800 2l < g CorM @) [|3p]” = ! ConM@Em) M@~ g
| ’

provided ¢(n) is made small enough. Since

< |¥

|y = gl < COOM2) [ xg = x0]| < CIM2) (vo Ixoll /2)' 72

<o llxoll /2 < x,

we have
[0 < &)’ uy M@~ <27,

Therefore we have
[+ o] < 7.

By Lemma 4.4 there exists yo, [yoll < 7, such that x| = ¢(g(yo, E), yo; x0).
Since

| £ (@(g(yo. E). yo: x0) + h) — E| = [|h]|® lxoll /2,

the conclusion follows as above from Cartan’s estimate.
Next we prove (III) with E = Ep. We will argue that there exists yy,
lyoll < 7, such that

log | f (x(yo, Eo)), ho)| Z vi llxoll - (4.12)

Recall that x(y, Eo) = ¢(g(»), y; x0). If [{(V f(x0), ho)| = [xoll%, we take
yo = 0. We just need to deal with the case

(V£ (x0), ho)| < Ilxol*. (4.13)
Let x, = ¢(g(y), y; X0), with y to be specified later. By Taylor’s formula

[V (x(), ho) — (V f(x0), ho)|
> [{5(x0) () — x0). ho))| — C()M3) |xy — xo?
= [((x) — %0), Hx0)h0))| — CWIM@B) [ — xo |
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Using the notation from (4.3) we write
H(xo)ho = aony, + p($H(x0)ho; xo)

and we choose y such that q(y; xo) = pp(H(x0)ho; x0), p = vlz llxo]l. Note
that ||y|| < r < 7 and

((xg — x0), H(x0)h0)) = @og(¥) + (4(y; x0), p(H(x0)ho; x0))
= apg(y) + p Ip(H(x0)ho; x0) I

Using (4.2) it follows that

(V£ (xb), ho) — (V. f(x0), ho)| = p Ip(H(x0)ho; x0)|I> — letog ()]
—CmMB)(IgW)* + Iyl
> g 1P ($H(x0)o: x0) 12

(note that o] < [|9(x0)holl < C(n) M (2)). We claim that |[p(£(xo)ho; x0)ll >
lxol|. We argue by contradiction. Assume that

|9 (x0)ho — aony, || = 1p(Hx0)ho; x0) || < lIxoll -
By Taylor’s formula (recall that V £(0) = 0)
IV £ (x0) = Hx0)x0ll < COIM3) llxoll*.
So, using (4.8) we have
Inxe = iy HGxo)xo | < py COIM@B) llxoll* < vyt fixoll
and using (4.13) we have
[(H(x0)ho, X0)| = 1{(H(x0)x0, ho)| < (C()YM3) + 1) [lxolI* < vl_l ENE
Now we have
|9 (x0)ho — OtoM;OlfJ(xo)XOH < (1 +aovy ) lIxoll < v1—2 llxoll -
and therefore

| {etopty, H(x0)x0. x0)| < [(H(x0)ho — crope,' H(x0)x0. x0)| + [{H(x0)ho. X0)|
< v 2 xoll® 4 v llxoll? < 2v772 flxoll (4.14)
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On the other hand
-1 —1%0 2 3
[{exosty, $H(x0)x0, x0)| = laol ey, > lxoll© = vy llxoll . 4.15)
We used Lemma 4.10, (4.8), and the fact that
laol? = 19 (x0)holl> = Ip($H o) x0)I* = (v0/2)7% — [lxoll? = vy

(recall that ||xg|| < vlll <« vp). The estimates (4.14) and (4.15) are incompat-
ible due to the smallness of xg. Therefore we have ||p($H(x0)ho; x0) || = |l xoll
and

[V £(x(). ho) — (V £ (x0). ho)| Z p llxoll* = vi llxoll’ -

This shows that (4.12) must hold either with yo = 0 or yo = y. From (4.12)
(also note that ||V f (x(w, E))|| < 1), Lemmas 2.10, and 2.11 it follows that
for H > 1 we have

mes{y € R"™!, |y| <7 :log {(Vf(x(y, Eo)), ho)| = C(n)H log(vy l|x0ll)}
< CF " exp(—H™T) < (v %)~ exp(—H=T)

as stated in Proposition 4.1. The case |E — Eg| < r? follows from the case
E = Ej analogously to the proof of (II). O

5 Inductive scheme for the bulk of the spectrum

In this section we assume the same non-perturbative setting as in Sect. 2. We
introduce five conditions such that once they hold at a large enough initial
scale they can be propagated to arbitrarily large scales (see Theorem D below)
and lead to the formation of an interval in the spectrum, away from the edges
(see Theorem B in Sect. 8).

For the statement of the conditions we need several exponents. Let 0 <
T <« 1 be as in (LDT). Set § = (¢, B = (6", u = (6/)¢? with
0 <o’ <o0,and Cy, Cy, Cy > 1, satisfying the following relations:

Ci+1<Cy < Cy<?2Cy.
Then we have

B2 <8 <K <k Bo kB <Ko, 5.1

with the constants implied by <« being as large as we wish, provided we take
o' < ¢(Cyp, Cy, Cy)o small enough. The specific choice of the exponents
38, B, u is not important. However, to carry out the induction with our set-up
we will need that (5.1) holds.
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Let y > 0. Given an integer s > 0, let
EseR, NyeN, r,:= exp(—Nf).

The inductive conditions are as follows.
(A) There exist integers | N, — Ns|, I[N — Ny| < Nsl/z, amap x; : [Ty — R,

My =7y x (Eg — 1y, Eg +715), Iy = ¢ + (=, rs)d_I,

and k; such that for any (¢, E) € Il we have

[ N/ N//

a9, ) = (5.2)

|E[ NN s<¢,E>>—E|>exp<—N3>» jEk 63

To simplify notation we suppress ky; and use E[=Vs SN , =N N1 instead.
(B) The map x;(¢, E) extends analytically on the domain

Py ={(¢, E) € C : dist((¢, E), [Ty) < rg} (5.4)

(the distance is with respect to the sup-norm) and

xs(Ps) C Tp/z (5.5
(C) For each (¢, E) € I,
1NN (ko (¢, E), n)| < exp(—y|n|/10), |n| > Ny/4. (5.6)
(D) Define
Ts = {nw : 0 < |n| < 3N,/2}. (5.7

Take an arbitrary h € T¢ with dist(h, T,) > exp(—Ns“ ). Then for any E €
(Es —rs, Eg +1y),

mes{¢ e : max dist(spec H_y,4n’ N,+n"]|(Xs(@P, E) + h), E)
', In” | <Ny 2
A8 726
< exp(—Nj /2)} < exp(—N;*).
(E) Take an arbitrary unit vector kg € R4 Then for any £ € (Eg—rs, Es+ry),

mes{¢ € T, : log |[(VELN N (x (¢, E)), ho)| < —N'/2} < exp(—N2).
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Remark 5.1 (a) From the proof of Proposition 5.6 below it will become clear
that in (A) it would be enough to have separation of eigenvalues by
exp(—NSﬁ ). However, it will also be clear that even if we have separa-
tion by exp(—N(’)S ), for s = 0, we will still get separation by exp(—N?),
fors > 1.

(b) The fact that condition (B) also increases the domain of x; in R? is not
accidental. This buffer around the original domain is convenient for Cauchy
estimates and for avoiding problems with “over-shooting” the domain of
Xy in the E variable.

(c) The particular choices of the exp(—Nf /2) cutoff in (D) and of the — N/ /2
cutoff in (E) are made out of technical convenience. Specifically, the first
choice allows us to have Lemma 5.3 with a exp(— N, 5’3 ) cutoff, and the sec-
ond choice spares us one application of Cartan’s estimate in Lemma 5.10.

(d) For the measure estimate from (D) to be possible we need that the intervals
h + [—Ng +n’, Ny + n"] do not overlap the localization centre from (C).
This is the reason for the choice of .

(e) The reason for working with non-symmetric intervals [—N{, N;'], as well
as for the set being used in (D) is explained in Remark 5.12 below.

To simplify notation, the dependence of the constants in this section on the
choice of the exponents §, 8, u will be kept implicit as part of the dependence
on the parameters a, b of the Diophantine condition.

Theorem D Assume the notation of the inductive conditions. Let Ey € R,
and assume L(E) > y > 0 for E € (Eq — 2ro, Eg + 2rg). Let Ny > 1,
Ny=INA LA=B"1s>1IfNo> (Bo+Sy+y 1 C=Cla,b,p),
and conditions (A)—(E) hold with s = 0, then for any s > 1 and Es; €
(Eg_1—rs_1, Es_1 +1y_1) the conditions (A)—(E) also hold with T, € Z,_1.
Furthermore, for any (¢, E) € Ilj,

x5 (¢, E) — xs_1(¢, E)| < exp(—y Ny_1/30), (5.8)
=N N (x (8, E), ) — p NN (kg 1(g, E), )|
< exp(—y Ns;—1/40). (5.9)

Remark 5.2 Theorem D also holds with any A > ,8_1, but the relations (5.1)
would need to be adjusted. The reason for needing A > B! will become clear
at the end of the proof of Proposition 5.11 below (see Remark 5.12).

We split the proof into several auxiliary statements. Ultimately the theorem
will follow by referring to these statements. We will check the theorem for the
case s = 1. The inductive conditions and the auxiliary statements are designed
so that the general inductive step follows from this particular one by simply
changing indices. In what follows we fix Ey, Ny, such that the assumptions of
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Theorem D are satisfied. We also fix E1 € (Eg — ro, Eg + ro) and let Ny, A
be as in the statement.

For simplicity, in all of the following statements we assume tacitly that Ng
is large enough. More precisely we assume Ny > (By + Sy + y 1), with
C = C(a, b, p) large enough. In particular this allows us to invoke any of the
results from Sect. 2. It will be clear from the proofs that any further largeness
constraints on Ng can be accounted for by increasing C. Of course, it is then
important that we only have finitely many additional constraints. To this end
we note that the additional constraints are independent of s.

L —N/|,N/
Our first goal is to identify [-N{, N{'] and E ,E] ! ']. In what follows we
let By, £, be the set from the measure estimate in condition (D), with s = 0.

Lemma 5.3 Let h as in (D), with s = 0. Set

Bops={p€To:  max dist(spec Hinysw o n) (0@, E) + ), E)

172
! 4
[n'],In"| <Ny

< exp(—Ng)}.

Then for any E € (Ey — ro, Eo + 1), the set B(’) £ 18 contained in a semial-
gebraic set of degree less than Ngo and with measure less than exp(—Ng‘S).

Proof Fix E € (Eg — ro, Eg + o). By truncating the Taylor series of xo(-, E)
we obtain a polynomial Xo(-, E) of degree less than C(d)Ng such that

sup |xo(¢, E) — %o(¢, E)| < exp(—NJ)
¢9€ly

To estimate the remainder of the Taylor series we used condition (B) and
Cauchy estimates (also recall Remark 5.1 (a)). Note that for any [a, b] C Z,
¢ € 1o,

| Hia,p)(x0(, E)) — Hia,p)(Zo(@, E))| < Cp IV lloo 1X0(9, E) — Xo(9, E)|
< exp(=Ng /2).

Let V, H be as in (2.28), (2.29) (with N instead of N). We have
| Hian 0@, E)) = Al (Go(@, ED| < exp(=N/4)  (5.10)

for any [a, b] C Z. Let

Bogn = [¢> €Zo: max H (Hi—Nytn' Notn')(Fo(p, E) +h) — E)™! HHS

N\ 2
[n'],In"|<Ng

> eXp(—3N66/4) ],
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where ||-||gg stands for the Hilbert-Schmidt norm. Then Bo, E.h 1s semialgebraic
of degree less than Ngo and using (5.10) we have

By g C Bo.esn C Bo,kn,
thus concluding the proof. O

Lemma 5.4 Forany E € (Eg — ro, Eg + ro) there exists a semialgebraic set
Bo, £ Ny

deg(Bo..n) < NiNZ®, mes(Bo. g.n,) < exp(—NZ?/2),

such that for any ¢ € Zo\Bo,g,n, and any 3Ng/2 < |m| < Nj, there
exist |n'(¢, m)|, In" (¢, m)| < No/* such that with J,, = m + [—No +
n'(¢, m), No+n" (¢, m)]

dist(spec Hy, (xo(¢, E)), E) > exp(—N(’)B).

Proof Take arbitrary 3Nog/2 < |m| < Ni. Then 0 < |m — n| < 3N for any
n € %y (recall (5.7)) and due to the Diophantine condition we have

dist(mw, To) > a3N1) ™7 > a(CN$H) ™" > exp(—N{).

Hence, forany 3Np/2 < |m| < Ni condition (D) applies with 7 = mw. We let
Bo.en, == U B(), E.mw» Where 1’5’0, E.me are the semialgebraic sets from the
statement of Lemma 5.3. Then By, g n, is semialgebraic of degree < Nj Ngo
and we have

1
mes(Bo.£.x,) < N1exp(—Np®) < exp (—5 33) ~
Take ¢ € Zo\Bo,E,n,. Since ¢ € Io\lg’o, E.mw» the conclusion follows from

the definition of By, g e (recall (2.8)). O

The next lemma is not needed at the moment, but it motivates one of the
choices we make in the statement of Proposition 5.6

Lemma 5.5 (a) The function EL=No-Ngl g analytic on {z € C? : |z —
x0(, E)| < exp(=2N()}, for any (¢, E) € To.
(b) The function E=No-Nol(xo (¢, E)) is analytic on

Py = (¢, E) € C¢ - dist((¢, E), o) < rg).
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Proof Statement (a) follows from the separation of eigenvalues in (A) and
basic perturbation theory. Statement (b) follows from (a) by noticing that

Ixo(¢ + ¢, E 4+ 1) — x0(¢, E)| < Cpexp(NO(I2] + n]) < exp(=2NY)

for any (¢, n) € C? with g1, Inl < exp(—4N3) (we used (B) and Cauchy
estimates). |

Proposition 5.6 There exists ¢1 € T, |1 — ¢o| < rg, and |N| — Ni|, [Ny —
N1| < Ny such that the following hold.

(i) I} C Zo\Bo.e,ni, I = ¢1 + (—r], iDL r] = eXp(—3N63), with
Bo.E,.n, as in Lemma 5.4.

(ii) There exists ky such that for any ¢ € T/, y € R, |y| < r, E € R,
|E — Ei| <ry,

[—N/,N//] _ 7 Y
|E,, T (xo(g, E) +y) — EFNoNol(xo (g, E) + )

< exp(—y No/20), (5.11)
[_N/ ,N”] [_N/ 7N//]
|E; " (xo(¢, E)+y) — B (xo(¢, E) + )|
1
> S exp(=Np). j #hki. (5.12)
[—N|.NY
¥ (x0(, E) +y, m)| < exp(=y|n|/10), |n| = 3No/4,
1
(5.13)
[=N/,N/] NN
Iy, T 0@, E) 4y, ) =y NNl (o (¢, E) + y, )|
< exp(—y No/20). (5.14)

Proof Using the information we have on By g, n, and Lemma 2.23, it follows
that there exists ¢1, |1 — ¢o| K rg (in fact, we could replace rg by rOC , with
any fixed C > 1), such that Ii C Zo\Bo.E,.n, (recall that B > §). Take the
intervals J,, = m + [—No + n'(¢1, m), Ny + n”(¢1, m)] from Lemma 5.4.
Define
[—N{, N{1=[-3Ny/2,3Ny/2]U U Jm. (5.15)
3No/2<|m|<Ni

Due to Lemma 5.4,
dist(spec Hy, (xo(¢1, E1)), E1) > exp(—=N{).

Using condition (B) and Cauchy estimates we have that for ¢ € Z7, |y| <
exp(=3N), |E — E1| < exp(—=3N)),
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X0, E) + y — x0(d1, ED| < exp(CNO)(I¢ — 1] + |E — E1]) + |y
< exp(—ZNOﬁ).
The conclusion follows by invoking Proposition 2.22 (recall that 8 < o) with
xo = xo(¢, E1), Eo = Ej. O

For the rest of this section we adopt the notation of Proposition 5.6.
To simplify the notation, we suppress ki from the notation and use
EL-NEN yl=N 1M1 instead. Next we want to prove the existence of the
parametrization x.

Lemma 5.7 (a) The function EL-NLNT g analytic on {7z € c? : |z —
x0(¢. E)| < exp(—2N})}, for any (¢, E) € II].
(b) The function E[le’Nl](xo(q’), E)) is analytic on

P, ={(¢, E) € C? : dist((¢, E), T1}) < r}},
with l'I/1 = I; x (E; —r{, E; +r{). Furthermore, for any (¢, E) € %7’{,
|EVNEN (xo(¢p, E)) — E| < exp(—coy No). (5.16)
|0 EC NN (g (¢, E)) — 1] < exp(—coyNo/2).  (5.17)

with co = co(d).

Proof The analyticity statements follow as in Lemma 5.5. By Proposition 5.6,
the estimate (5.16) holds for real (¢, E) € %P{ NR? with ¢g = 1 /20 (recall
(5.2)). With the help of Corollary 2.12 one concludes that the estimate is also
valid for complex ¢, E, with some co(d) < 1/20. The estimate (5.17) follows
from Cauchy estimates combined with (5.16). O

Proposition 5.8 Let
Pl ={(¢, E) € C? 1 |p — ¢1l, |[E — Eq| < exp(—CoN))},

with Cy = Co(d) > 1. There exists a map x1 : 11| — RY, Iy :=P/N R4,
that extends analytically on Py, such that

EVNiN(x (¢, E)) = E, (¢, E) € P, (5.18)
x1(P{) C T . (5.19)

Furthermore, for any (¢, E) € 17,

Ix1(¢, E) — x0(¢, E)| < exp(—y No/30). (5.20)
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and for any (¢, E) € P/,

|x1(¢p, E) — x0(¢p, E)| < exp(—coy No), co = co(d).

Proof By Proposition 5.6 one has
[ENM (o (9, E)) — E < exp(—y No/20) (5.21)

for any ¢ € 7] and any real |E — Eq| < exp(—3N68). Given real |E —
Eq| < %exp(—3N§), set Ex = E £ 2exp(—y Np/20). Since |[E+ — Eq| <
exp(—3N(')3), using (5.21) we have

EFNM (¢, E2) < E < EFNEM (xg(g, Ey)).
It follows that

EFNeM (xo(p. ) = E (5.22)

has a solution n € (E_, E4). Let n1 be the solution corresponding to ¢ = ¢,
E = E;. Recall that due to (5.17) in Lemma 5.7 one has

0, E NI (xo (¢, m)) = 1/2.

Therefore, due to the implicit function theorem for analytic functions, see
Lemma 4.2, for

6 — 1], |E — Ei| < exp(—2CNf), C = C(d) > 3,

there exists a unique analytic solution n(¢, E), |n(¢, E) —n1| < exp(—C N(‘)6 )
of (5.22). Then (5.18) and (5.19) hold by setting x1 (¢, E) = xo(¢p, n(¢, E)).
By uniqueness, for real ¢, E, n(¢, E) € (E_, E4), and therefore

[n(¢, E) — E| < 2exp(=y No/20)

and (5.20) follows. The last estimate is a consequence of Corollary 2.12 (note
that we take Cy < 2C). |

Corollary 5.9 Using the notation of Proposition 5.8, for any (¢, E) € 1},

[—N{.NY

E-E| 1. E)| > = exp(=NE) > exp(=N?), j#ki,  (5.23)

1
8
[N (¢, E), n)| <exp(—yInl/10),  |n| > 3No/4, (5.24)

@ Springer



660 M. Goldstein et al.

Iy =M (k1 (¢, E), )=y No Nl (x) (¢, E), )| <exp(—y No/20), (5.25)
Iy =NeM (e (¢, E), ) =y No Mo (ko (¢, E), )| <exp(—y No/40).  (5.26)

Proof All statements, except the last one follow from (5.20) and Proposi-

-1
tion5.6 withy = x (¢, E)—xo(¢, E). Inthe first estimate weused N1 =~ Ng
and B2 < 8. The last estimate follows from

| g g1 0@, B9 = EMM ey (6, By t=NeM 0 9, B)) |
= | g g o0 B = Hi gy wpper @, Eut =Yy 9, )
+ | Hiwg v @1, B2 = BTV @, Ny MM 9, )|

< Cp IV lloo 1x0($, E) — x1($, E)| + 2exp(—y (No — Ny/*/10)

< exp(—yNo/35),

the separation of eigenvalues, and Lemma 2.21. O

Next we check condition (D) with s = 1. Let
Ty=1{p € R 11 — gol < g}

(recall Lemma 5.5).

Lemma 5.10 Let h € RY, exp(—N1I") < |1 < exp(—N{), and E € (E; —
ri, E1 4+ r1). Then for any v > 0,

mes{p € Zy/10 : log |EN0N N (xo(p, E) + h) — E| < =N}
< exp(—c(d)(N§ + N}/“7Vy).

Proof By Taylor’s formula,

EFNoNol(xo(¢, E) + h) — EZNoNol(xo (¢, E)) = (VEL NNl (xo (9, E), h)
+0(exp(CNY) [11]1%). (5.27)
We used the fact that by Cauchy estimates (recall Lemma 5.5),
2

S BTN o, E) + 1| < exp(CND).

Due to condition (E) we can find |q§0 — ¢o| K ré such that

A N A h
|(VE[ NosNo](xO(qj)o’ Ey)), ho)| > eXP(_N(éL/z)’ ho == m
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Since

IV ENoNol (xo (o, Er)) — VELNN (x(do, E))|
< exp(CND)Ixo(do. E1) — x0(do. E)| < exp(C'NY)|E — E,

we have o R
(v EFNo-Nod (xo (o, ED), ho)l 2 exp(—Ng'/2),

forany £ € (E1—ry1, E1+r1) (notethath > Ng;recallthat(S > ,82 > Bu).
Plugging the above in (5.27),

|ENoNol(xo (o, E) 4+ h) — E| 2 ||kl exp(—NE /2) = exp(=2N")

(we used exp(CNg) |k < exp(CNg — N(’)‘) < exp(—N(’)‘/Z)). The conclu-
sion follows by applying Cartan’s estimate to E [=No-Nol(xo(¢p, E) + h) —
on the polydisk |¢p — ¢o| < ré’, with H = cexp(Ny), c < 1. O

Proposition 5.11 Leth € T such that dist(h, T1) > exp(—Nf) (recall (5.7))
and

VEn= {¢ €Z{: max _dist(spec H_n,yn N j+n"1(X1(¢, E) + h), E)
'), In"|<N}/?

< exp(—N{g/2)}.
Then for any E € (E1 —r1, E1 +11), mes(Bj”E,h) < exp(—le‘s).
Proof Let |m1| < 3N1/2, hy € R such that
dist(h, 1) = [lh1ll,  h1 =h —mjo (mod Z7).
Note that for any m| € [—Ny, N1] we have
dist(h + mw, o) = dist(h, —mw + o) > dist(h, T1) = [|h1]], (5.28)

since —m + [—3Ngy/2,3Ng/2] C [—3N1/2,3N1/2]. At the same time, if
|m + m1| > 3Np/2, using the Diophantine condition we get

Ih 4 mw — no|| = |h1 4+ (m +my —n)o| > |(m +m; —n)w| — |||
> a(CNy)™2 — ||l (5.29)
for any n € %.

We consider two cases: ||h1|| > exp(— No) and ||h1] < exp( Né‘) In
either case, by the above, we have dist(h + mw, Tg) > exp(— N ) forallm €
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[—Ni, Ni] with |m+my| > 3Ngy/2. So, for such m, condition (D) implies that
for each ¢ € To\Bo. £, h+me there exists [n/(@, m, b)|, |n" (¢, m, h)| < Ny'>
such that with J,,,(¢) = m + [—Ng +n'(¢, m, h), Ny +n" (¢, m, h)],

dist(spec Hy, ) (x0(¢, E1) + h), E1) > exp(—=NJ /2)
and therefore
dist(spec Hy, () (x0(¢. E) + h). E) > exp(—N} /4) = exp(—Ng'?)

for any E € (E| — ry1, E1 + r1) (note that Nf > N(’)g; recall that § > ,82).
In particular, since mes(Bo, g, h+mw) < exp(—Ng‘S), there exists ¢o,, €

Zo\Bo, £y htmas |$o.m — ¢ol <K rg. Let Jy := Ju(do,m). Due to the spec-
tral form of (LDT),

log | £1,, (X0(P0.m» E) 4+ 1), E)| > |Jm| L1,/ (E) = |Jm | 77/2.

Using the uniform upper estimate (see Corollary 2.7) we can apply Cartan’s
estimate to get

mes{¢ € Z)/10 : log | £, (xo(¢, E) + h, E)| < |J|L(E) — |Jn|'""%)
< exp(—Ng/g(d_l)) (5.30)

(in fact, the estimate holds for ¢ € Zp/10). Denote by B{), Eum the set in the
above estimate and let

/ — /
Bo.g.m = U Bo.e.m-
—N1<m<Ni,|m+mi|>3Ny/2

Since § K Bo K Bt, we have

mes(B{)’E’Nl) < Ny exp(—Ng/g(d_l)) < exp(—Ng/S(d_l)/D < exp(—le‘s).

We now have to deal with |m + m | < 3Np/2. It will be enough to focus
onm = —mi. We assume m| € [—Nj, Ni] so that (5.28) holds. If ||k >
exp(—N{), then by (5.28), dist(h +m o, Tp) > exp(—N};) and by the above
reasoning there exists an interval J_,,, such that (5.30) holds withm = —m.
In this case we let B(,),E,fml be the set from (5.30). Suppose that ||h1] <

exp(—Nj). Let J_y, := —m + [—N{, Nj1. We have
spec HLml (x + h) = spec H[—N(’),N(/)’] (x + hy).
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Let
Bh g, = 1& € Tp/10 : |[E-No N (xo(¢p, E)+h1)— E| < exp(—=N{"™)),
with v =3(d — 1)é. By Lemma 5.10,
mes(By g ) < exp(—c(N§ + va/(d_l))) &L exp(—N).
Since

ENoNol(xo(¢p, E)) = E,
[—N/,N//]
(x0(@. E) + ) — E; " (xo(¢, ED)| < CpllVlloolihnll
< exp(—=NY),

[N NG

E;

the separation of eigenvalues in condition (A) implies

dist(spec Hy_,, (x0(¢, E) + h), E) > exp(—NJ"™),

forany ¢ € [5Zg\Bp 5 _,, . Note that [J_p, |72 =~ Ng/> > NI > N
since §, u K Bo. Therefore we can apply the spectral form of (LDT) to get

log| 1, (X0(¢. E) + m)| > [y |L(E) — [J_pn,|' "2,

1 77 / . . . . .
for ¢ € EIO\BO, E—my* So, in either case we identified an interval J_,,, and
got a similar conclusion.

Let
] = Jom U (U—N1§m§N1,|m+m||>3N0/2 Im), my € [Ny, Ni]
U—NH—ZNQSMSN]—ZN() I i ¢ [=N1, N1l
(5.31)

Note that J_,,, overlaps with the union of the other intervals and [m +m | >
3Ny/2 for all m’s in the last union. By the above, we can use the covering form
of (LDT) from Lemma 2.15 to get that
dist(spec Hy (xo(¢, E)) + h), E) = exp(=2max |/ |' "7/
m

> exp(—4N(;_r/4

)
for any ¢ € [5Zo\(B) 1 n, U Bj . _,n,)- Due to (5.20),

dist(spec Hy (x1(¢, E)) + h), E) = exp(—4N, /") > exp(~N’/2),
(5.32)

@ Springer



664 M. Goldstein et al.

7! / / /! / /
for ¢ € Il\(BQ,E,Nl U By g _m,)- Therefore BY ., C By gy, Y By g,
and the conclusion holds. O

Remark 5.12 (a) Taking the maximum in the definition of the set By g ; from
condition (D) is a convenient way of capturing the fact that while we do
not know precisely the interval I for which (5.32) holds, we do know that
it is “close” to [— N1, Nq].

(b) If in the definition of By g, we would use symmetric intervals, then we
could also choose I to be symmetric. However, even so, [—N{, N{'] need
not be symmetric because we don’t have enough control over the sizes of
the intervals J,, in (5.15) (for example we cannot say that J;,, and J_,,
have the same size).

(c) The reason for wanting A > —1 as noted in Remark 5.2, is the estimate
(5.32).

Now we just need to check condition (E) with s = 1.

Lemma 5.13 Let hg € RY be a unit vector. Then

VESNN (G (9, E)) — VEE YoMl (x (¢, E))| < exp(—coy No).
co = co(d),
forany (¢, E) € ITj.
Proof Using (5.20), we have
VEINoN (xy (¢, E)) — VEI VoMol (xo (¢, E))
< exp(CNY)Ix1(¢, E) — x0(¢, E)| < exp(—y No/35).

On the other hand, using (5.11), (5.20), Corollary 2.12, and Cauchy estimates,
we have

VEENoN (¢, E)) — VEENo N (x) (4, E))| < exp(—c(d)y No),

and the conclusion follows. O

Proposition 5.14 Let hg € R? be a unit vector. Then for any E € (E; —
ri, Ey +rp),

mes{¢ € I} : log (VE NN (x (¢, E)), ho)| < —NI'/2} < exp(—=NP?).
Proof Due to condition (E) we can find dA)o, |¢30 — ¢l K ré , such that

log |(VE=N0Nol (xo(o, E)), ho)l = —N{' /2.
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Applying Cartan’s estimate we get

mes{¢ € Zy/10 : log (VE! 0N (xo (¢, E)), ho)| < =N}
< exp(—c(@d)(N§ + NJ/“™)) < exp(=NP?),

where v = 3(d — 1) /8_18. Let BB be the set on the left-hand side. Note that
7| C Z;,/10, since |¢1 — ¢o| K rg. Since u + v < 1, Lemma 5.13 implies

log [(VEUNM(x (¢, E)), ho)| = 2N, = —N1/2,

for any ¢ € Z{\B (recall that § < ). This concludes the proof. |

We briefly summarize how Theorem D follows from the previous state-
ments.

Proof of Theorem D The existence of ¢p; was obtained in Proposition 5.6. Note
that since 8 >> 2, we have P; @ P{. Conditions (A)—(C), and the estimates
(5.8), (5.9), follow from Proposition 5.8 and Corollary 5.9. Condition (D)
follows from Proposition 5.11. Condition (E) follows from Proposition 5.14.

O

6 Inductive scheme for the edges of the spectrum

As in the previous section we assume the non-perturbative setting from Sect. 2.
We introduce another set of conditions that will address the edges of the spec-
trum.

We assume the exponents §, «, 8 from the previous section and we introduce
a new exponent 0 such that 0 < §. Let y > 0. Given an integer s > 0, let

X, € T, NyeN, ry:= exp(—Nsa), I, ={x e RY lx — x| < re}.

The inductive conditions for the lower edge are as follows.
(A) There exist integers |N! — Ni|, [N/ — Ny| < N,/*, and EF-NNT =

_N/’NH
E,Ev s S],suchthat

N/ N” NN
ECN My — EENN (1) > exp(—ND), (6.1)

forany x € Il and j # k.
(B) For any x e

|£[—N§,Ns”](x, n)| < exp(—y|n|/10), |n| > N/4.
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(C) The point x, is a non-degenerate minimum of the function £ [=NG N,

Specifically, with vy = exp(—N?),
VEENNI(x ) =0, HETNNY(x,) = vl

D) Let E, = E[_Ns,'NA{/]()_cs). Let T be as in (5.7). Take arbitrary i € T4
with

dist(h, T,) > exp(—N2>?).
There exist [n/(h)], [n”(h)| < NY/? such that
dist(spec Hi— n, ' (hy. Ny +n () (&g + 1), (=00, E(]) = exp(—=N;?).

The conditions (A), (B), (C), (D), for the upper edge are defined analogously,
with obvious adjustments in notation.

Theorem E Assume the notation of the inductive conditions. Let x, € T,
No > 1, assume that the conditions (A)—(D) hold with s = 0, and L(E) >
y > 0for E € (Ey— 2ro, Eq + 2r9). Let Ny = N2, s > 1. If Ng >
(Bo + Sy + yfl)c, C = C(a, b, p), then for any s > 1 there exists x; € T
such that the conditions (A)—(D) hold and we have

|EFNs Ny — NN (0] < exp(—y Ny_1/20), x € IO,

MMy — gV M) | < exp(—yN-1/20), x € I,

|xg — x4 <exp(=yNs—1/50), |E; — E;_| < exp(—yNs—1/60).
(6.2)
Furthermore, for any E; € R, exp(—Nslooa) < |Es —E| < exp(—NSZD),
conditions (A)~(E) hold for E [=NGNST The analogous statements based on
conditions (A)—(D) also hold.

As for Theorem D, we only check Theorem E for s = 1, the general case
following by simply replacing the indices. Furthermore, we only consider
the statement with the conditions for the lower edge, the other case being
completely analogous. Throughout the section we tacitly assume that Ny >
(Bo + Sy + y_l)c, with C = C(a, b, p) large enough. As in the previous
section, the dependence on the exponents 0, §, 8, u is left implicit. We split
the proof of the first part of Theorem E into several auxiliary statements. In
what follows we fix x, No, such that the assumptions of Theorem E hold, and
Ni = N;.
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Proposition 6.1 There exist integers [Ny — Ni|, IN{ — Ni| < No, ki, such
, 1 —N’,N”
that the following hold with EI=Ni-N1 = E,E] LN

exp(—2Ng°):

and for any |x — x| <

|EFNENT () — EFNoNol ()| < exp(—y No/20), (6.3)
N/ N” N N 1 .
E; M) — BN > Sexp(-NED.L Ak (64)
WM, )] < exp(—yInl/10),  |nl > 3No/4, (6.5)
Iy NN e, — Ve (| < exp(—y No/20). (6.6)

Proof Take arbitrary 3Ng/2 < |m| < Nj. Using the Diophantine condition
we have
dist(mw, Tp) = a(CNp) ™" > exp(—N3°).

Then by condition (D) with & = maw, there exist |n'(m)|, [n"(m)| < N>
such that with J,,, = m + [—Ng + n’'(m), Ng + n”’ (m)],

dist(spec Hy, (x,), (—00, Eq]) > exp(—Ng®)
(recall (2.8)). Define

[-N{. N/1=1[-3No/2.3No/21U | ) Ju.
3No/2<|m|<Ny

Using (6.1) and (B) we can apply Proposition 2.22 (with xo = x,, Eo = E,
B = 40) and all the estimates follow. |

For the rest of this section EI=V 1M1 will stand for the eigenvalue from the
previous proposition. Let

={zeC% |z —xyl <1}, rh=exp(—2ND),
Pi={ze€ ce . |z — xol <71} ry = exp(—SN(‘)m).

Lemma 6.2 The functions E!=NoNol EI=NUNT gre analytic on Py P,
respectively, and

max sup |9 £ 01| < exp(CUING). max s sup|a°‘ NN
o|=k 73/ —

< exp(C(k)NG®).
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Furthermore,

E[ Ni,N{T _ VE[—N(),N()']

’

EIMN) — (1NN |

< eXP(—Co)/No),
with co = co(d).

Proof The analyticity of the functions follows from the separation of eigen-
values (see (6.1) and (6.4)) combined with basic perturbation theory. The
derivative estimates are just Cauchy estimates. They hold on P/ because the
functions are in fact analytic on 1007/, i =0, 1.

Using (6.3) and Corollary 2.12 we have

sup [EFNENT — EENoNG]) < exp(—cy No), ¢ = e(d),
2P;

and the last estimates holds by Cauchy estimates (we chose r| = exp(—3N§ %)
instead of exp(—2N8’a) to ensure we have the above estimate). O

Proposition 6.3 There exists x;, |x; — xol < exp(—y No/50), such that
EFNiNI @) < EENINT G, for any x — xol < 1,

/ " YARN I V
VEENMI(x ) =0, HENN ) > Ioz.

Proof By Taylor’s formula (recall Lemma 4.10 and (C))

_N/’N// ])0 2 ,
EFNoNol(0) — By > —x = xof?, for v — x| < 1.
In particular,

EFNoNol(x) > E + 3exp(—y No/20),
for exp(—yNo/50) < |x — xy| < r{.

Combining this with (6.3) we get

EFNENT () > BN (xg) + exp(—y No/20),
for exp(—y No/50) < |x — x,| < ry.

.. . . . NN .
This implies the existence of a point x|, [x; — x| where E [=N1-N1T attains
its minimum on [x — x4 < ri. The estimate on the Hessian follows from
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Lemma 6.2 and the fact that by Taylor’s formula (again, recall Lemma 4.10
and (Q)), we have H(E!=NoNol)(x,) > (vo/2)1. O

We fix an x, as in Proposition 6.3 (in fact, in can be argued that such x is
unique).

Lemma 6.4 We have |[E; — Ey| < exp(—y Ny/60).

Proof By the mean value theorem, Lemma 6.2, and Proposition 6.3,
|EFNoNol (x ) — EFNo-No)(x )| < exp(CNQ)1x, — x| < exp(—y No/55).
Now the conclusion follows using (6.3). O

Proposition 6.5 The condition (D) holds with s = 1.

Proof The proof is similar to that of Proposition 5.11. Let |m| < 3N1/2,
hi € RY such that

dist(h, 1) = ||h1ll,  h1 =h — miow (mod Z%).
As in the proof of Proposition 5.11 (recall (5.28),(5.29)), we have

dist(h + mw, %) > ||h1l|, provided |m| < Ny,

dist(h + mw, ¥y) > a(CNl)_b — ||htll, provided |m 4 my| > 3Ngy/2.
(6.7)
We consider two cases: ||A1] > exp(—Nga) and exp(NIZD) < |lhll <
exp(—Ng). In either case, by the above, we have dist(h + mw, %) >
exp(—Ng®) for all m € [—Ni, N1l with [m + mi| > 3Np/2. So, for
such m, condition (D) (with & = mw) implies that there exists an interval
Ju =m + [—=No+n'(h), Ny + n”(h)] such that

dist(spec Hy, (xo + 1), (=00, Ey]) > exp(—Ng°). (6.8)

Our goal is to apply Lemma 2.17 (with § = (—o0, E,]). To this end we
will deal with |m +m | < 3Ny/2 by focusingonm = —m . We assume m| €
[—N1, N1l If [|y]| > exp(—NZP), then dist(h + miw, Tp) > exp(—NZ°)
and by condition (D) there exists an interval J_,,, such that (6.8) holds with
m = —mj. Suppose that exp(—NIZD) < I < exp(—Nga). Let J_p, =
—my + [—Ny, Ny]1. We have

spec HLml (xg + h) = spec H[—N(g,Ng]()_Co + hy). (6.9)

@ Springer



670 M. Goldstein et al.

By Taylor’s formula (recall Lemma 4.10 and (C)),
ENN g + ) = Eg+ 5 11 = Eg +exp(=3N7).
Using (A) it follows that
dist(spec H;_,, (xo +h), (=00, Egl) > exp(—3N{°) > exp(—N;'®).

We now have what we need to invoke the covering form of (LDT). Let I as
in (5.31). By the above, we can use Lemma 2.17 (with K = Ng 19. recall that
0 K § « o) to get that

dist(spec Hy(xq + h), (=00, Ey]) > exp(—N(}za) > exp(—Nf'a).
Using Proposition 6.3 and Lemma 6.4 we have
dist(spec H;(x; + h), (=00, E;1) = exp(—N{°)
and the conclusion follows. O
We now proceed to the proof of Theorem E.

Proof of Theorem E The existence of x; and £ [=N1NTT g given by Proposi-
tion 6.1 and Proposition 6.3. Note that due to Proposition 6.3, IT; C {|x—x,| <
r1} (recall that | = exp(—3Ng®), N1 = NJ). Now, for s = 1, conditions (A)
and (B) hold by Proposition 6.1, condition (C) holds by Proposition 6.3, and
condition (D) holds by Proposition 6.5. The estimates (6.2) (with s = 1) hold
by Proposition 6.1, Proposition 6.3, and Lemma 6.4.

Fix x, exp(—NIZOOD) < |x = x| = exp(—Nla). We will check that the
conditions (A)—(E), with s = 1, hold for E-Ni-MT with E; = EI-No-Nol(x).
The conclusion then holds by noticing that

ETNN () exp(=NPP%) < |x — x| < exp(=N}))
D [Eg +exp(=N{*"®)/2, Ey + 2exp(=N{")]
D [E; +exp(—=N{"™), E| + exp(—=N{")]
(recall Lemma 4.10 and Lemma 6.4).
We apply Proposition 4.1 to EI=Yo-Nol on P Using the notation of Propo-
sition 4.1, condition (C), and Lemma 6.2, we have

v = exp(=CNY), p=rjv® ~exp(=C'NY), r=nw | = x| -
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Since 0 < ||x — Xy || < p, Proposition 4.1 applies with x in the role of xg and
we get the following:

(1) There exists a map xg : [1g — R4,
Mo =Zo x (E1 —r2 E1+12), To= (—r,r)?7Y, Ej = EFNeNo (),
such that o
EFNoNol(xo(p, E)) = E,

xo(¢, E) extends analytically to
Po=1{(@,E) € C?:|¢| <r, |E—Ei| <r’},

and
|x0(p, E) — x4 < [x — x0] /2 S exp(=N3®) (6.10)

In particular, from the last estimate it follows that xo(Py) C Tz 2

(2) For any |E — Eq| < r2, any vector h € R? with 0 < ||h|| < p, and any
H > 1, we have

mes{¢ € T : log |[E'" NN (xo(¢p, E))—E| < HoH} < exp(—H /@),
(6.11)
with Hy = C(d)log(|I1]l |x — x4 ) (note that vf2r = vfl |x = xo| <
vl_lp = r(/)v? < 1.
(3) Let hg be an arbitrary unit vector. For any |E — E1| < r2, and any H > 1,
we have

mes{¢ € To : log [(VEI NN (xo (¢, E)), ho)| < HiH} < exp(—H /=D,
(6.12)

with Hy = C(d) log(vy | x — xo).
By (6.3) and (6.10) we have

|EENN (x(p, E)) — EFNoNol(xo (6, E))|
= |EFNN (xo (¢, E)) — E| < exp(—y No/20),

for (¢, E) € Ilp. Then, just as in Proposition 5.8, we can find a map x; :
ny — R4

T=P/NRY, P/ ={(¢,E) eC?:|¢p| <r,|E - Eq| <r0},
Co = Co(d) > 1,
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d

/2 and such that

that extends analytically to P}, x;(P{) C T

Ix1(¢, E) — x0(¢, E)| < exp(—yNo/30), (¢, E) € I. (6.13)

Since r 2 exp(—N 13003), we have that P; as defined in condition (B) (with
¢1 = 0), satisfies P; C P}’ (recall that 9 < 8). Note that |x{ (¢, E) — x| <
exp(—2N61 ). Now, by Proposition 6.1, conditions (A)—(C) hold with the above
choice of parametrization x;.

We proceed to check condition (D). The argument is based on applying the
covering form of (LDT), similarly to Proposition 6.5. We assume everything
from the proof of Proposition 6.5, up to and including (6.8), except that we
take the lower bound for dist(z, T1) to be exp(—N{‘). Fix |E — E| < rCo.
By (6.8) and (6.10),

dist(spec J, (xo(¢, E) + h), (—oo, EFNoNol(xo (¢, E))])
= dist(spec Jy, (xo(p, E) + h), (—o0, E]) 2, exp(—Nga), (6.14)

provided |m 4 m1| > 3Ny/2.

Now we focus on m = —mj. We assume mq € [—Ny, Ni]. If ||| >
exp(—Nga), then dist(h + miw, Tg) > exp(—Nga) and as above, there
exists an interval J_,,, such that (6.14) holds with m = —m . Suppose that
exp(—N1") < ||h1|l < exp(—NZ®). Let J_p, := —mi +[—N{, N}/]and recall
(6.9). From (6.11) with H = N7““""? (note that [ || < exp(~NZ) < p), it
follows that

mes{g € Zo : [ETNoN (xo(¢, E) +hp) — E| < exp(—N{™)} < exp(—~NP)
(6.15)
(weused 0 < 8 < p, Hy = —(N7%%° + N1y > —N1"). Using (A) it follows
that
dist(spec Hy_,, (xo(¢, E) +h), E) > exp(=N;™),

for any ¢ € Zo\B}, where B] is the set from (6.15).
We now have what we need to invoke the covering form of (LDT). We let

the interval / be as in the proof of Proposition 6.5. By the above, we can use

Lemma 2.17 (with K = le = N(;O’L < NJ /2. recall that 1 < o) to get that

dist(spec H; (x0(¢p. E) + h). E) > exp(—2N{") = exp(—2Ny"™"),

for any ¢ € Zo\B). Let Z = Proj,I1/. Then, using (6.13), we get
dist(spec Hy (x1(¢, E) + h), E) > exp(=3N") > exp(—~N’ /2),
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for any ¢ € Z}\B] (recall that 8 >> ). This implies that condition (D) holds.
Finally, we check condition (E). Fix |E — E{| < r€0 and hg € R? a unit

vector. By (6.12) with H = le(d—l)é,

mes{¢ € Iy : log [(VE™No N (x (¢, E)), ho)| < —NI'/4} < exp(—=ND?)

(we used HH; 2, —NIZOODle(d_l)‘S > N!; recall that i > 8 > 0). Now

condition (E) follows by using (6.13) and Lemma 6.2. O

7 From conditions on potential to inductive conditions

We start by assuming that V attains its absolute extrema at exactly one non-
degenerate critical point and show that for large enough coupling we can satisfy
the initial inductive conditions from Sect. 6. This means that we are working
with operators of the form (1.1). Having the assumption be about both absolute
extrema is just a matter of convenience, it will be clear that they can be handled
separately.

Let x, X, be the points where the absolute minimum and maximum of V are
attained. Since x, X are assumed to be non-degenerate critical points they will
be isolated from the other critical points. We give a quantitative version of this
observation. We use € to denote the set of critical points of V.

Lemma 7.1 Given xo, x1 € €, such that xq is non-degenerate, we have

_1-1 _
lxo = x1ll = ¢p [HC0) ™ A+ VI ™
Proof By Taylor’s formula and Cauchy estimates,

IVV)I =1VV(x) = VV(xo)ll
> [[9(x0)(x — x0) || = Cp Voo lx — x0l?

1 _
zﬂmmYWlM—mW

provided fx — xoll < ¢, [H(x0)™ | (1 + Vlloo)™". The conclusion fol-
lows. O

Note that ¢ is compact and since x, X are isolated, &\ {x, x} is also compact.
Therefore there exists ¢t = (V) > 0, such that

V@) +1<VE) <VQE) —t, xeE\|x, X} (7.1)

Let

v := min(]|$Hx)~! H_l oo H_l)

@ Springer



674 M. Goldstein et al.

Note that since x, X are non-degenerate extrema, we have
Hx) =vl, HE) < —vl.

Lemma 7.2 Letr = cv(1+ || V||oo)’1, with ¢ = c(p) sufficiently small. Then

She—x* = veo—vw = Ca+ Vi) [x =2 x—x| <.
=2 <19Vl = G+ 1Vl [x =], = x] <~
min(, vr?/2) < V() - V@), |x—x|=r

(7.2)

Analogous estimates hold for x.

Proof The estimates with Hx —Xx || < r follow from Lemma 4.10 (we use
Cauchy estimates to control M (3)). From Lemma 7.1 we have that, by choosing
r small enough,

E\lx) € T\ [x: lx — x| < 7).

Then
min  (V(x) = V(x))
[|x—x|[=r
=min|{ min (V(x) —V(x)), min (V(x)—V(x))
ree\l) =l =r
and the conclusion follows. O

For the purpose of the next result we update Ty (recall (3.2)), to be

Ty =2 4+ max(0, log || V| ) + max(0, log [1) + max (0, log L_l)
+ max (0, logv™). (7.3)

Clearly all the previous results using 7y also hold with this possibly larger
Ty. The proofs of the next proposition and later of Proposition 7.5 are very
similar to the proofs of Theorems E and D respectively, with some of the tools
from Sect. 2 replaced by their analogues from Sect. 3. Due to the similarity
we omit some details. However, for clarity, we do give complete proofs, as
the key differences are spread out. Recall the exponent 9 from the inductive
conditions (A)—(D).

Proposition 7.3 Assume the notation of conditions (A)—(D) from Sect. 6. Let
& > 0. There exists Ay = exp((TV)C), C = C(a,b, p, &), such that the fol-
lowing hold for » > Ao. For any (log1)¢@?%) < Ny < exp((log1)*/?)
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there exists x, € T, lxg — x| < A3, such that the conditions (A)—
(D) hold with s = 0, y = (logi)/2, [-N|, N1 = [—No, Nol, and
|)\’1E0 - V)| K A~ V4. Furthermore, for any Ey € R, exp(—N&OOD) <
|[Eg — Egl < Aexp(—(log 1)*), conditions (A)~(E), with s = 0, hold for
E [=No,Nol, Analogous statements hold relative to conditions (A)—(D).

Proof To check (D) we will need to obtain conditions (A)—(C) not just for
[—N{, N1 = [—No, Nol, but also for other intervals. By Lemma 7.2, for any
0 < |n| < 2Ny we either have

V(x + new) — V(x)>5||nw|| %a(2No)_b,

or
V(x +nw) — V(x) > min(t, vr?/2).

Then for large enough A (this is why we added max (0, log ¢ ~!)4+max (0, log v=")
to Ty ) and Ny not too large, we have

V(x +nw) — V(x) > exp(—(log1)®), 0 < |n| < No.

Leta < 0 < b, [a,b] C [-2Nyp, 2Np]. Then by Lemma 3.8, there exists
Elebl — E[a b1 Such that for any |x — x| < exp(—3(log A)¢),

WTEMP ) = Vol <227,
[W1Plx, )| < exp(—(log M)|nl/2), In] >0, (7.4)

WNES P ) — M0 = %exp(—(log WO, j#k.

As in Lemma 6.2, E!“?! is analytic on
={zeC?:|z—x| <r'}, r =exp(—4(log1)®)

and

1 glably _ 53(‘,)” <)@,

As in Proposition 6.3, we can find ¥ = % ([a, b)), |¥ — x| < A~1/3, such that
E*P(@) < E*Pl(x),  forany [x — x| <7/,

VE“P () =0, 90 EPY ) > 21.

Also, as in Lemma 6.4, we have [A"'E — V(x)| <« A4, where E =
E*b1(%). We need to work around the weakness of the estimate |¥ — x| <
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A2~1/3. From now on assume [a, b] D [—N, ]\7], N = (N(}/ﬁ. By Corol-

lary 3.9, we have
[EMP () — EFNVI (0] < exp(—(log MN/2),

for any |x — x| < exp(—3(log))?). Let X = i([—](f, NJ). As in Proposi-
tion 6.3, we can find, with a slight abuse of notation, x = x([a, b]),

¥ — &| < exp(—(log )N /5), (7.5)
such that

ElPl(3) < El*Pl(x),  forany |x — &| < exp(—C(log A)%),

VE“I® =0, 507 EH@ = o1, "
Furthermore, as in Lemma 6.4,
|E — E| < exp(—(log )N /6), (7.7)
with E = E[_N’N]@). Note that
F—x| <A DTTE- vl <A (7.8)

Let xo = X([—No, Nol). Then the first statement, except for condition (D),
holds by all the above and by having Ng > (logA)?. As in Sect. 6 we incor-
porate the dependence on 0 in the dependence on the Diophantine parameters.

Next we check condition (D). First we consider the case dist(h, Tg) >
exp(—(log A)%). Since ||h + nw| > exp(—(log 1)%¢), we have, by Lemma 7.2,

V(x+h+nw) — V(x) = exp(—=3(log 1)*), |n| < No
(provided A is large enough). By Corollary 3.7 we get
dist(spec Hj_no,No] (x + ), (—00, AV (1)]) 2 & exp(—3(log 1))
and by (7.8),
dist(spec Hi—no,No)(Xg+h), (=00, Eg]) 2% exp(=3(log 1)*) > exp(—z¥5*°9)j
7.

Next we consider the case exp(—Ngb) < dist(h, o) < exp(—(log 1)%). Let

ni, |n1| < 3Ng/2, such that dist(h, Tg) = ||h — njw||. We consider two sub-

cases depending on the position of ny. If ny ¢ [—No+ NS/S, No — Né/3], then
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forn € [-Ng + Né/g, No — N(;/3]
Ih +nwl > [(n —npol — | —njoll = aNy® — exp(—(log 1)*)
> exp(—(log 1))

(recall that Ng < exp((log 2)¢/2)) and as above we get

dist(spec H[ 1/3]()_60 + h), (—o0, Eyl) 2 Aexp(—3(log A)za)

—No+Ny"*,No—N,
> exp(—Nga).

Suppose n; € [—Ny + NSB, Ng — N(}/3]. Let hy = h — njw (so, ||l =

dist(h, To)). [a1. b1l = n1+[—No, Nol. &, = Z(lar, bi]), Ey = EIP1(F)).
Notethat [a;, b1] D [—N, N]. By Taylor’s formula (recall Lemma 4.10, (7.6)),

E[a1,b1]@l +hy) _E[al,bll@l) > ; ||h1||2 > exp(—3N§a).

Then, by (7.4) (recall (7.8)),
dist(spec Hia, p,1(X; 4 h1), (=00, E;]) > exp(—=3N3°).

Since spec Hg, p,1(X; + k1) = spec H[_n,, Ny (X, + k) and by (7.5), (7.7),

~ 1/4 ~ 1/4
1%, — xol S exp(—(og )N,*/5),  |E; — Eol < exp(—(log 2)N,"*/6),

it follows that
dist(spec Hj—ny, No](xo + 1), (—00, Egl) 2 eXp(—3N§°) > exP(—N3°)

Thus, condition (D) holds.

Next we check the last statement. Let N| = Ng . Since all the statements of
the proof hold for a range of Ny, they will also hold for Ny, by adjusting the
range. In particular, let x; = X([—Ny, N1]). Note that by (7.5), (7.7),

1/4

1/4
x; — xo| S exp(—(log )N, /

/5). |Ey — Eol S exp(—(logA)Ny"/6).

(7.10)
Fix x, exp(—Nllooa) < |x —xq| < exp(—(log 1)%). We will check that condi-
tions (A)—(E), with s = 1, hold for EI=Nt.Nl with E; = El=No-Nol(x). Then
the conclusion holds since

(EFNMl) s exp(=NP") < [x — x| < exp(—(logh)*)}
D [Eq + A exp(—N{*®), Eq + i exp(—(log)*)]
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O [E; + exp(—N{"%), E| + rexp(—(log »)*)]

(we applied Lemma 4.10to 1™ ! E[_N"’N"] and we used (7.10)). Note that since
this statement will hold for a range of Ny, it will also hold for the stated range
of Ny by relabelling.

We apply Proposition 4.1 to A~ ! E[=No:-Nol op

Py=1{z€ Cc4: |z — xo| < exp(—4(log A)®)}.
Using the notation of Proposition 4.1, we have

v >~ exp(—C(log 1)), p = exp(—4(log )»)8)1)110 ~ exp(—C’(log 1)?),
r=vi|x—x.
We chose to apply Proposition 4.1 to 2~ EI=No-Nol pecause of the 0 < vy < 1
restriction in the statement of the proposition. Of course, we could artificially
choose any vg € (0, 1) for £ [=No.Nol ' put this would result in a much smaller
vi ~ A~ lexp(C(log 1)), which is too small for our purposes. Since 0 <

Hx — Xy H < p, Proposition 4.1 applies with x in the role of xo and we get the
following:

(1) There exists a map xg : [1g — R4,
Mo = Tox(E\=Ar?, Ei+r?), To=(—r,r)""", Ey = EFNoNol(y),

such that
ETNMl(x(9, E)) = E,

x0(¢, E) extends analytically to
Po={(¢.n) €C': || <r, |E—Ei| <rr?},
and
|0, E) — xo| < [x = xo /2 S exp(—(log 1)*). (7.11)

From the last estimate it follows that xo(Py) C ']I‘ﬁ /2 Of course, Proposi-
tion4.1 actually gives a function X (¢, 1), such that A~ EI=No-Nol(54(¢, n))
= 7, and we get the above statement by setting xo(¢, E) = xo(¢, AVE).

(2) For any |E — Eq| < Ar2, any vector h € R? with 0 < k]l < p, and any
H > 1, we have

mes{¢ € Zo : log | EFNM)(xo(¢, E)—E| < HoH} < exp(—H" "),
(7.12)
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with Hy = C(d) log(l|All ||x — x, ).
(3) Lethgbe an arbitrary unit vector. For any |E — E{| < ArZ, and any H > 1,
we have

mes{¢ € Zo : log |(VEI"N- Nl (xo(, E)), ho)| < Hi H}
< exp(—Hl/(dfl)), (7.13)

with Hy = C(d) log(v; | x — x,]). By Corollary 3.9,

|EFNN () — EFENo-Nol ()| < exp(—(log A)No/2),
|x — x| < exp(—=3(log 1)), (7.14)

and therefore

|EFNe N (o (¢, E)) — EFNNI(xg(g, E))| = |ECNM M (xo (9, E)) — E|
< exp(—(logA)No/2),

for (¢, E) € Ip. Then, just as in Proposition 5.8, we can find a map x; :
nf — R4

My =P/ NRY, P/ ={(¢.E)eC:|p| <r |E— E | <r},
Co = Co(d) > 1,

that extends analytically to P;, x; (P]) C ’]Tz /2> and such that

x1(, E) — x0(¢, E)| < exp(—(logA)No/3), (¢, E) € TT{.  (7.15)

In fact the domain in £ is much larger, but we have no use for this improvement.
Since r 2 exp(—N IZOOD) , we have that P; as defined in condition (B) (with
¢1 = 0), satisfies P; C Py (recall that 9 < §). Note that |x1(¢, E) —
Xol <K exp(=3(log A)?). Now, conditions (A)—(C) hold with the above choice
of parametrization x; (recall that we have (7.4) with [a, b] = [— Ny, N1]).
We proceed to check condition (D). Let |m| < 3N1/2,h; € R? such that

dist(h, 1) = ||h1ll,  h1 =h — miow (mod Z%).

Recall that we have (6.7). We consider two cases: ||h1] > exp(—(log »)%)
and exp(N{‘) < ||h1]] < exp(—(log 1)%). In either case, by (6.7), we have
dist(h + mw, Tg) > exp(—(log 2)%) for all m € [—Nj, N1] with lm+mq| >
3Ny/2. For such m, (7.9) implies

dist(spec Hy,, (xo + h), (=00, Eyl) 2 A exp(—3(log A)ZS), (7.16)

@ Springer



680 M. Goldstein et al.

with J,, = m + [—No, Nol. Fix |E — E1| < r©°. By (7.16) and (7.11),

dist(spec Hy, (xo(, E) + h), (—o0, EF- M) (xo (¢, E))])
= dist(spec Hj, (xo(¢, E) + h), (—o0, E]) = rexp(—3(log A)*),
(7.17)

provided |m + m| > 3Ny/2.

Now we focus on m = —mj. We assume m1 € [—Np, Ni]. Let J_,, =
—m1 + [—No, Nol. If ||| = exp(—(logk)z‘e), then dist(h + miw, Ty) >
exp(—(log A)**) and as above, (7.17) holds with m = —m|. Suppose that
exp(—N!) < [[h1]l < exp(—(log 2)%). From (7.12) with H = N;“ D it
follows that

mes{g € Zo : [EINNl(xo (¢, E) +hy) — E| < exp(—N{")} < exp(—NP)
(7.18)
(weused d < 8 < 1, Hy 2 —(N?® + N1y > —N1"). Using (7.4) it follows
that
dist(spec Hy,, (xo(¢p, E)+h), E) > exp(—Nf“),

for any ¢ € Zo\B}, where B] is the set from (7.18).

Let I be an interval as in (5.31). By the above, we can use Lemma 2.17

(with K = N = Ny”* « NJ/?; recall that ;1 < o) to get that

dist(spec Hy (xo(¢p, E) + h), E) > exp(—2N12“ ) = exp(—2N30“ )

for any ¢ € Zo\B). Let I = Proj,I1. Then, using (7.15), we get

dist(spec Hy (x1(¢, E) + h), E) > exp(=3N*) > exp(—~N’ /2),

for any ¢ € Z}\B] (recall that 8 >> ). This implies that condition (D) holds.
Finally, we check condition (E). Fix |E — Eq| < r€0 and ho € R? a unit

vector. By (7.13) with H = N12(d—1)8,

mes{¢ € Z : log |(VE!I"No-Nol(xo (¢, E)), ho)| < —N1'/4} < exp(—N})

(we used HH; 2, —N12000N12(d_1)‘S > N!*; recall that i > 8 > 0). Now
condition (E) follows by using (7.15) and Cauchy estimates. O

For the rest of the section we assume that V € &, recall Definition 1.1,
and show that, for large enough coupling, we can we can satisfy the initial
inductive conditions from Sect. 5. In fact, it will be clear that we only use
properties (iii) and (iv) from the definition of &. The first two properties will
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only be needed in the proof of Theorem A (b). We fix the constants ¢, ¢1, €
from Definition 1.1.

Proposition 7.4 Let xo € T% 19 = V (xo) and assume o := |[VV (xo)|| > 0.
Let
r =min(p/4, cp(1 + [V ]so) 2.

with ¢ = c(p) small enough. There exists a map x : [1 — R,
M=ZIx(mo—rno+r), IT=xo+(-rr""

such that the following hold.

(a) The map extends analytically on the domain

P ={(¢.n) € C! : dist((¢,n), 1) < r},

and
X(P)C TS, V@, m)=n (@, n)eP.

(b) For any K > €y + C, max(0,log || Vo), k] > e K and n e (no —
rano +r),

mes{¢p € T : |V(x(¢p,n) +h) —n| <exp(—K)} < exp(—K*/10).

(c) Take an arbitrary unit vector hqg € R4, For any K > €g,n € (no—r, no+
r),

mes{¢ € Z : log |(VV (x(¢, 1)), ho)| < —K} < exp(—K*).

Proof There exists i such that dy, V (xo) > o/d. To simplify the notation, we
assume thati = 1. Let p; < cpuo(1 + Vo)~ ! with ¢, sufficiently small.
Applying Lemma 4.2 (also recall Remark 4.5) to V (x) — n near (xg, ng), we

get that there exists an analytic function x(x3, ..., x4, 17) on
x2 = x02l, .., [xa — x0.4l. In — nol < pf
such that
lx1(x2, ..oy xd, 1) — x0,1] < p1,
Vxi(xa, ..., Xq,1m), X2, ..., Xq) = 1.

The existence of the map and part (a) follow by setting
x(@,m) = @@, M. ¢), ¢=x2....xq).

@ Springer



682 M. Goldstein et al.

Our choice of r < ,012 is made to ensure that x(P) C Ti’) /2
Fix [[a]| = exp(—coK), n € (no —r, no +r). Let

F(¢) =V(x(¢d,n) +h)—n. (7.19)
Let g(x) := gv.x.1.2(x) be as in Definition 1.1. We have

O F (@) = 05, V(x (P, 1) + h)dxyx1(, ) + 05, V (x (P, 1) + h)

- 1V (. )
= 8x1V(x(¢an)+h)ax1v(x(¢’n)) +8x2V(x(¢’ n +h)
g(x(o,m)

T 0, V(x(¢ M)

Let K > €. By Definition 1.1 (iii) we have that

(7.20)

mes{x; : mxiln(lV(x +h) —VX)|+1gx)]) <exp(—K)} < exp(—K).

In particular, it follows that

mes{¢ € T : |V (x(¢, m)+h)—nl+|g(x(¢, n)| < exp(—K)} < exp(—K*").

(7.21)
Let
B={¢pel:|V(x(@,n+h)—nl<exp(—=5K)},
B'={¢peT:|V(x($.,n)+h)—nl<exp(-5K),
llg(x (e, m)| > exp(—=K)/2},
and B’ the set from (7.21). Then
BcBUB .
We want to estimate mes(B”). Let z = (x3, ..., xg) and
B ={x2:¢ = (x2,2) € B'}.
Fix z = (x3,...,xq) with |[x; — x| < r,i = 3,...,d. By truncating the

Taylor series (for both V and x(¢, n)) we can find polynomials P (x>), Q(x2)
(depending on z) of degree < C max(1, log ||V IIOO)K4, such that for any |x; —
X02| <r,

|F(x2,2) = P(x2)|, |05, F(x2,2) — P'(x2)], |g(x(x2,2,m) — Q(x2)]
< exp(—5K).
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Then
B! C B! :={x3 € (xop —r,x02 +7) : |[P(x2)| <2exp(—5K),

1
[Q(x2)| = 1 exp(—K)}.
Using (7.20) and Cauchy estimates, we have that for any x; € B/,

|05 F (2, 2 2 2 IV 1802, 2| 2 2 VIS (1Qe2)| — )
2 VIS exp(=K).
|P'(x2)| Z (p VIS exp(—K) — exp(—5K)) > exp(—2K),
provided K is large enough. It follows that each connected component of

B! has length < exp(2K)exp(—5K). Since B! consists of the union of
< (deg P + deg Q) intervals, it follows that

mes(B") < Cmax(1, log |V [l,o) K* exp(=3K) < exp(—2K).

Then we have mes(B”) < exp(—K) (recallthat p < 1,807 < 1/4), mes(B) <
exp(—K*‘!/2), and statement (b) follows.
Given K > €y, by Definition 1.1 (iv) we have

mes{x; : H}Ciln(lV(X) =+ K{VV(x), ho)]) < exp(—K)} < exp(—K*").

In particular, it follows that

mes{¢ € I : |V (x(p,n) —nl+[(VV(x(¢,n), ho)) < exp(—K)}
< exp(—K*‘).
Since V (x(¢, n)) = n, statement (c) follows. O
For the purpose of the next result we update 7y again to be to be
Ty =2+ max (0, log |V |l ) + max(0, log ™) + max (0, log ™)
+ max (0, log v+ ¢+ cal.
We don’t include cl_l because it doesn’t depend on V.

Proposition 7.5 There exists Ly = exp((TV)C), C = C(a, b, p) such that the
following hold for A > XLg. Let xo € T<, no = V(xo), and assume |VV (xp)| >
exp(—(log A)1/3). Then for any (log\)€@?) < Ny < exp((log1)<1/3), the
conditions (A)—(E) hold with s = 0, y = (log))/2, Ey = Ang, and some
¢o € R4,
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Proof The proof is similar to that of Theorem D. As in Theorem D we leave
the dependence on the exponents §, 8, u implicit, as part of the dependence
on the Diophantine condition parameters a, b.

Due to the lower bound on ||[VV (x0)||, we can apply Proposition 7.4 with
r = exp(—3(log A)¢1/3). Furthermore, since X is large enough, we can apply
Proposition 7.4 (b),(c) with K > (log A)!/? (this is why we added & to Ty).
In what follows we let Z, x (¢, 1), be as in Proposition 7.4. Let

Biyn=1{¢ € Z:|V(x(¢,m) —nl <exp(=K)}, Byn = Bogr)i/2,yn-
By Proposition 7.4, for any n € (ng — r, no +r), ||kl > exp(—co(log W2,
mes(B, ;) < exp(—(log 2)/?).

As in Lemma 5.3 we can find a semialgebraic set 53, ;, containing B, ,, of
degree < (log 2)?, and with measure < exp(—(log k)cl/z/Z). Let

Byy.ny = U B neo-
0<|n|<2Ny

Since Ng < exp((log M)473) we have ||no| > exp(—cp(log M2, 0 <
In| < 2Ny (provided A is large enough; this why we added ¢, "o Ty), and
mes(By,,n,) < exp(—(log A)‘l/ 2 /4). Since By, n, is also semialgebraic of
degree less than exp(2(log 1)°!/3), it follows, using Lemma 2.23, that there

exists ¢, |¢po — xo| < r, such that
Iy € \Byo.ngs Lo =0+ (=1, 1)1, 1y = exp(—(log 1)"1/3).

Leta <0 < b, [a, b] C [—2Ng, 2Nyp]. We consider such general intervals for
reasons similar to the ones in Proposition 7.3. As in Proposition 5.6, but using
Lemma 3.8 (with xo = x(¢, 10), ¢ € Z)) instead of Proposition 2.22, we get
that there exists k such that forany ¢ € Z, y € R, |y| < exp(—4(log 02,
In — nol < exp(—4(log1)!/?),

AT EEP (g ~V 217"

A M+ ) (x(@,n) + <21,
WNES P () +3) — N (g, m) + )]
1 .
> gexp(=(log '), j #k,

WIE“’b](x(qb, n) +vy,n)| <exp(—(ogi)|n|/2), |n|>0. (7.22)
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To simplify notation we will drop the index k and write EI%-?1 1401 [ et
Py = (¢, E) € C? 1 1p —gol. |E —Eol <13}, rg = exp(—Co(logh)*7).

Co = Co(d) > 1.Let T = P{ NRY, I = Proj,ITjj. As in Proposition 5.8,
we can find an analytic map X (¢, 1) such that

ATTEPI G (¢, ) =,

for any (¢, An) € P{ and

1F(¢, n) — x(p, m)| < A™/2, (7.23)

for (¢, An) € IIj (in fact, in the definition of P; we could take |E — Eo| <
rexp(—Co(log 1)1/2)). We note that at this point, we have what we need for
conditions (A)—(C) to hold. However, to check condition (D) we need to set

things up more carefully. The problem we need to work around is the weakness

of (7.23). From now on we assume that [a, b] D [-N, N], N = (N(}/ﬁ. Let

x be the parametrization obtained as above, so that o
W ETEE (g, m) = .
By Corollary 3.9 we have
[EPN (@, m) +y) — EFEN (@, m) + 3] S exp(—(log )N /2).

for any |y| < r, (¢, An) € ITj. Using (7.23) (with X = x) it follows that

|E'“(x(p, ) — EVEN (x(, 1))

|E'“)(x(p, 1)) — An| =
< exp(—(log VN /2).

Again, as in Proposition 5.8, we get that there exists a map X (¢, n) such that
ENP G @ ) =0, (§.4n) € Py,

and for (¢, An) € I,
|X(¢,m) — x(¢, M| = exp(—(log )N /4). (7.24)

To justify keeping the same domain P as before we can increase the constant
Co from its definition. Note that we still have

(@, 1) — x (@, | S A2
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and therefore (using (7.22)) conditions (A)—(C) hold with xq(¢, E) =
(P, A E), [—Ng, Ny1 = [—No, Nol. Of course, we are assuming Ny is
large enough so that ro = exp(—N) < r{].

Next we check condition (E), as in Proposition 5.14. Let hg € R9 a unit
vector, 1) € (o — r(), no + r()). By Proposition 7.4 (c),

mes{p € Z: [(VV(x(¢, ), ho)| < exp(—(log1)!/?)} < exp(—(log 1)/?).

Since exp(—(log 1)¢1/?) « mes(Z), it follows that there exists b, 1d —do| <
r» such that

(VV (x(¢, n)), ho)| = exp(—(log 1)!/?)

and therefore
(VE“P (%, n)), ho)| = Lexp(—(log 1)"/?) (7.25)

(we used the first estimate in (7.22), (7.23), Corollary 2.12, and Cauchy esti-
mates). Then Cartan’s estimate yields that given H > 1,

mes{p € Zy/10 : |(VE' "% (¢, ). ho)| < logr — CH (log1)'/?)
< @) exp(—H@D),

In particular, condition (E) follows by setting H = Ng (d_l)s, with [a, b] =

[—No, No] (recall that i >> §; we choose Ny such that N(‘)L > log A).
Finally, we check condition (D). Fix n € (o — r(, no + ry). For the rest of

the proof X stands for the parametrization associated with [a, b] = [— N, No].

Note that for condition (D) to hold it is enough that, given &, dist(h, Tg) >

exp(—N{), we can find [n’|, |n"| < Né/z such that

mes{¢ € 7 : dist(spec Hj—yysn'.No-+n)(E($. ). An) < exp(—N§ /2)}
< exp(—N&‘s).

We first consider the case dist(, To) > exp(—co(log 1)3/%). Let

;o / _ /
Bn,h - B(logk)'%/“,'},h’ BN(),n,h - U Bn,h—knw'
[n|<No

Since ||h + now|| > exp(—cp(log )34, using Proposition 7.4, we have
mes(Bly, , ) < exp(—(log 1)>1742).
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In particular, there exists ¢ € Ty \B§v0 nh b — ol < r» such that

V(@ 1) +h +nw) — 1| = exp(—(log W), |n] =< No,
and therefore

V@@, m) +h +nw) =] Z exp(~(oga)*™), || < No.
Using Cartan’s estimate

mes{¢ € Z(/10 : log |V (X(¢, n) + h + nw) — 7|
< —Cyllog W) NG“™%Y < exp(—2NZP), In| < No.

Using Lemma 3.6 we get

mes{¢ € Z)/10 : dist(spec H{—n,. Ny (X (¢, n) + h), An)

< exp(—C(log k)3/4Ng(d_1)8)} < exp(—Ng‘S),

and condition (D) holds, since 8 > §.
Next we consider the case exp(—N(’)}“) < dist(h, Tg) < exp(—co(log 234,
Letny, |n1| < 3Np/2, such that

dist(h, %p) = ||h —nio|| .

We consider two sub-cases. First, suppose ny ¢ [—No + Néﬂ, No — Néﬁ].

Note that for n € [—Ny + N(i/3, No — (}/3]’

17 4 nowll > [(n — n)oll — |k — njw|| > a(CNy) ™" — exp(—co(log 2)*/*)
> exp(—co(log 1)¥/4).

Then, as above, we get

1/ . . ~
mes{¢ € Z;/10 : dist(spec H[_N()+N(}/3’N()_N(i/3](X((b, n) + h), An)
< exp(—C(log 2)*/* Ny D%}
< exp(—Ng‘S),
and condition (D) holds. Next, we consider ny € [—Ng + N8/3, Ny — Né/3].

Let
hi=h—nw, lai,b1]=n1+[—No, Nol
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and X1 (¢, n) the parametrization associated with [ay, b1]. Note that [a1, b1] D
[N, N]. Since

11(p, ) + k1 — x(¢, n)| < exp(—colog 1)¥/4),
using (7.22) we have
TLEW I (R (h, ) 4 1) — 0] < exp(—co(log 2)¥/4/2),

for any ¢ € Z;. Due to the separation of eigenvalues in (7.22), we now have

dist(spec Ha, b,1(%1(#, ) + h1), An) = |EVP(F1(p, ) + k1) — An).

Lethﬁbe asin (7.25), with [a, b] = [a1, b11, ho = || ~" h1.Then by Taylor’s
formula

|EV-PU (%1 (h, ) + hy) — Al = [(VEUYP1 & (B, ), k)| 1A |
—Coh | Vllso 1112
> xexp(—(log 1)) [|h1 || > exp(—2NY).

Using Cartan’s estimate it follows that

mes{¢ € Z,/10 : dist(spec H{a, 5,](X1(¢, 1) + h1, A1)

< exp(—C(NE + Ng“" D))} < exp(—=NZ).

Now the conclusion follows from the fact that spec H[—n, Ny (X (¢, n) +h) =
spec Hiq,.p,1(X(¢, n) 4+ h1), and that by (7.24),

51(6. 1) — ¥, I < exp(—(og HNLH) < exp(—NE /2)

(alsorecall thatd < u K B K 1). O

8 Proofs of the main theorems

The first two results are non-perturbative and are stated for operators asin (2.1).
For their statements recall the constants Sy and By introduced in (2.6),(2.13),
and the exponents §, 0 used for the inductive conditions in Sects. 5 and 6. We
will use the notation S := spec H (x).

Theorem B Assume the notation of the inductive conditions (A)—(E) from
Sect. 5. Let Eg € R, No > 1, and assume L(E) > y > 0 for E € (Eg —
2rg, Eo +2r0), ro = exp(—N{). If No = (Bo+ Sy +y~ 1€, C = C(a, b, p),
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and the conditions (A)—(E) hold with s = 0 for the given Eq, then [Ey —
ro, Eo +1ro] C S.

Proof Take an arbitrary E € (Eo — ro, Eo + rq) and apply Theorem D with
E; = E,s > 1. Since Z; € Z;_1, there exists ¢ € ﬂs Zs. Due to (5.8) there
exists x (E) such that

X(E) — x5(¢, E)| < 2exp(—y Ny/30), s > 0.
Due to (5.9) there exists ¥ (E, -), || (E, -)|| = 1, such that
W (E, ) — NN (@, E), )l < 2exp(—y Ny /40), s > 0.
Note that
I(H (xs(@. E)) — EYY= YN (xg(8, E), )| S exp(—y Ny /20)
(by condition (C)) and

IH(x(E)) — H(xs(@, ENIl < Cp IV llog 1X(E) — x5(, E)|
< exp(—y N, /40).

It follows that
[(H(x(E)) — E)Y(E, )| < exp(—yN;/40), s >0,

and therefore H(x(E))Y(E,-) = Ey(E,-). In particular, E € S and the
conclusion holds (recall that S is closed). O

Theorem C Assume the notation of the inductive conditions (A)—(D) from
Sect. 6. Let x, € T9, Ny > 1, such that the conditions (A)—(D) hold, and
assume L(E) > y > 0 for E € (Ey — 2rg, Eg + 2r9), ro = exp(—Ng).
If No > (Bg + Sy + y_l)c, C = C(a,b, p), then there exists E € R,
such that |E — Eq| < exp(—=yNo/100), S N (=00, E) = ¥, and [E, E; +
exp(—Ngoa)] C S. Analogous statements hold relative to conditions (A)—(D).

Proof We choose Ny large enough for Theorem E to hold. Using (6.2), we
have that there exist

x=limx, E=IlmE
§—> 00 §—> 00

and we have

x = x|, |E— E| < exp(—yN;/100), s > 1. (8.1)
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First we verify that (—oo, E) NS = . Take an arbitrary £ < E and let
p=E—FE >0.By(8.1), forany s > 1 we have

E, — E > p—exp(—yNs/100)
and therefore
dist(spec H[_st,N;r](gs), E) > p —exp(—y N, /100)
(recall condition (A)). Using (8.1) again,
dist(spec Hi_n: nn(x), E) > p — exp(—y Ns/200) > p/2 > 0,

for s > s¢, with 5o such that exp(—y Ny,/200) < p/2. Then by Lemma 2.19
we have dist(E, S) > p/2 > 0, hence E ¢ S, as desired.

By Theorem E, the conditions (A)—(E) are satisfied for any E, exp(—N. sl 002y
<|Es—E(| < exp(—sta), s > 1. Then by Theorem B,

[E, +exp(—N!) E 4+ exp(~N?®)] C S.

These intervals overlap for consecutive s (recall that Ny = N2 and |E| 11—
E | < exp(—yNs/60)) and we have

S o (JIE, +exp(—N{"®), E, + exp(—N)] O (E, E; + exp(—=N{)]

s>0

D (E, Eg + exp(—Ng™)]
The conclusion follows since S is closed. O

We are finally ready to prove Theorem A. We fix the constants ¢y, ¢g, &o
from Definition 1.1.

Proof of Theorem A (a) Let Ty as in (7.3). Take Co = Cy(a, b, p, d) large
enough, such that for A > exp((Tv)CO), Proposition 7.3 with ¢ = ¢1/20,
Theorem B, and Theorem C hold for Ng = [exp((loglog A)Z)J (recall
Proposition 3.4 and Remark 3.5; of course, we take y = logA/2). The
choice of ¢ is made with part (b) in mind.

LetEy, |A‘1EO— V(x)| < 2~ Y*beasinProposition 7.3 and E, |[E—Eql <
exp(—(log A)Ng/2), be as in Theorem C. Combining Proposition 7.3 with

Theorem B we have

[Eq + exp(—Ny"), E( + »exp(—(log 1)*'/?)] C S;.
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At the same time, combining Proposition 7.3 with Theorem C we have
[E,Ey+exp(—Ng™)| C Sp.. (=00, EYNS; = 0.

Then
[E, Ey + Aexp(—(log M)/%)] C Sy (8.2)

This yields part (a). Of course, the proof the statement relative to the absolute

maximum is completely analogous. Also, in the statement of part (a) we could

replace exp(—(log 1)!/?) by exp(—(log 1)?), for any & € (0, 1), by adjusting

the constant Cy from above.

(b) Recall that & denotes the set of critical points of V. Note that since all
the critical points are assumed to be non-degenerate, by Lemma 7.1, € is
discrete and hence finite. Let

. _1n—1
vV = min Hﬁ(x) 1“
xe¢
Using Lemmas 7.1 and 7.2 we choose ¢ = c(p) small enough so that with

r=cv(l +||V|]s)~" we have that T¢\ | J..s B(x, r) is connected and (7.2)
holds. Let

xe€

g=g(V) :=min{|[VV@I : x € T\ | ] B(x.r)} >0,

xe€

and increase Ty to be

Ty =2+ max(0, log ||V [|o) + max(0, log:™")
+ max (0, logt_l) + max (0, log v_l) + ¢y + cal + max (0, log g_l).
(8.3)

Take Cy = Co(a, b, p, d) large enough, such that for A > exp((TV)CO) in
addition to the assumptions for part (a) we also have

exp(—(log 1)°1/?) < min(vr/2, g), (8.4)
and Proposition 7.5 holds with Ny = |exp((loglog 03],
Let ry such that vry /2 = exp(—(log A)617/3). By (8.4), r). < r and therefore
G, = Td\ U,ee B(x, 1) is connected. By (8.4) and (7.2),
IVV @)l = exp(—(og )7),  x €G,.

Combining Proposition 7.5 and Theorem B we have

AV(x):x e G} CS,.
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Take x', X' € Gy, H)_c’ — )_cH = ||)_c’ — )_c|| = ry. Since Gy, is connected we have
AV (@), AVE) C{AV(x) 1 x € Gy} C Sy
Let E, E as in part (a). By (7.2) and by increasing Cy if needed,
exp(—3(log M%) < V(&) = V(2) < exp(—(log)"7?)
and therefore
rexp(=3(log )1 S AV () — Egl S Aexp(—(log )77,
From the above and (8.2) it follows that [E, &V(Y_/)] C S,. Let E be as
in Theorem C with respect to the conditions (A)—~(D). Analogously, we get
[AV(x)), E] C S;, and therefore [E, E] C S;.. Since
(—00, EYNS, = (E,00) NSy, = 9,
we conclude that S; = [E, E]. |

Remark 8.1 The constant ¢ in the definition of 7y from the proof of Theorem A
(b) is redundant and can be dropped at the cost of slightly increasing Cy in the
lower bound for A. More precisely, it can be seen, by using Taylor’s formula,
that ¢ can be bound below in terms of v, g, || V|, and p.

9 An example
For the purpose of this section it is convenient to redefine T := R/ (2w Z). Let
V(x,y) = cos(x) + s cos(y).
We will check that V satisfies the conditions of Definition 1.1 for s ¢
{_17 0’ 1}‘
First, a direct computation shows that conditions (i),(ii) of Definition 1.1

are satisfied for s # 0 and they fail for s = 0.
Next we show that condition (iii) holds for s ¢ {—1, 0, 1}. Take

H > 1 +max(log|s|, log|s| ™!, log |1 — s?|71), (9.1)

heT? h=a, B), ||h|| > exp(—H). The largeness of H will be used tacitly
in most of the estimates to follow. Let g(x, y, o, B) := gv n.1,2(x,y), with
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gv.h.1,2 as in Definition 1.1. Note that |gy 4.1.2| = |gv.r.2.1]. In what follows
it is useful to “complexify” the functions involved in condition (iii). Let

z=-exp(x), w=exp(iy), A=-exp(ia), B =-exp(ip).
Then
1
V@ta y BV y) = S PG W), gy, f) =~ 1z w),

2zw
9.2)
with

Pi(z,w) = (A — 1)12w +s(B — l)zw2 + (A_1 — Dw —Fs(B_l — 1z,
01iz,w)=B - AW +A-B H?2+UA'=Bw?>+B 1 —AL

Recall that when ||-|| is applied to the shifts 4, o, B, it stands for the usual norm
on the torus.

Lemma 9.1 If |«|| < exp(—3H) or ||l < exp(—3H), then
mes{y € T: min(|V(x + o,y +p) = V(x, »l + [g(x, y, @ B

< exp(—=3H)} S exp(—H/2),
mes{x € T : m}n(lV(x +a,y+B) =V, I +lgk, y, o B

< exp(—3H)} < exp(—H/2).
Proof We only check the first estimate, the other one following analogously.
First we assume ||| < exp(—3H). Since ||k|| > exp(—H), we must have

|8l 2 exp(—H). Note that

Pz, w) = (A—DZw+s(B—Dzw?>+ (A" = DHw+s(B™' = 1)z
=wA - D@ -AYH +sz2(B-Dw? - B7h.

Then

> cs exp(—H)Iw2 — B*1| — Cexp(—3H) > exp(—3H),

1
— Py(z,
'2zw 1z w)

provided |lw?2—B~1| > exp(— H /2). Therefore the first estimate holds (recall
(9.2)).

Next we assume ||B|| < exp(—3H). As before, we must have [«| =
exp(—H). Note that
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O1z,w)=B —-DZ2w>+(1-B H22+(1-Bw>+B -1
+w? = D1 — A2+ A" —1].

We have
1
'—Pl (z, w)‘ > clw|exp(—H)|z* — A~ — Csexp(—3H)
2zw
and

’%Ql(z, w)’ > eslw? — 1)|(1 — Az + A~L — 1] — Csexp(—3H)
w

> cs|w?® — 1] exp(—H)|z?
+(1—A) " A = 1)| — Csexp(—=3H).

Note that

1Z2—A N+ 12+0 - A D= 1A+ A - AT = D] =2/4] = 2.

Then
1 s
_PI(Z5 U)) + _QI(Z’ w)
2zw 4zw
> cexp(—=2H) (|2 — A7+ |22+ (1= A" A T = 1D)
—Csexp(—3H) > exp(—3H),
provided |w|, [w? — 1| > exp(—H /2). The conclusion follows. O

Lemma 9.2 There exists an absolute constant Co > 1 such that if ||a — B|| <
exp(—2CoH) or ||a + B|| < exp(—2CoH), then

mes{y € T: min(|V(x + o,y +p) = V(x, »| + [gx, y, & B
<exp(—CoH)} < exp(—H/2),
mes{x € T : myin(IV(x +a,y+B) =V, y)|+1gx, y, o B))

< exp(—CoH)} S exp(—H/2).

Proof We only prove the first estimate under the assumption that ||o — ]| is
small. The other cases are completely analogous. We have

Pi(z,w) = 151 (z, w)+s(B — A)zwz—ks(B_1 — A_l)z, (9.3)
Pz, w)=(A-DZ?w+s(A—Dzw’+ (A" = Dw+s(A" ' =1z, 9.4)
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01(z,w) = 01(z, w)+(B — A)Z2w*+B~ 1 — A~ 1, 9.5)
0i1(z,w) = (A— B Hz2+@" ! - Byw?. (9.6)

Let a;, b; be the polynomials in w such that

Pi(z, w) = apz® + a1z +ag, 01(z, w) = baz> + b1z + bo.

Let
a 0 b O
Ri(w) = Res. (P, O01) = det |41 @2 D1 b2
1(w) = Z 1, 1) = aj b() b]
0 a O by

Analyzing the degrees of the terms from the Leibniz formula for the above
determinant, one sees that Rj(w) is a polynomial of degree 6 and the only
terms containing a monomial of degree 6 are

azby = [(A = Dwl[(A™" = Byw’P,
atbaby = [s(A — Dw? +s(A~' = D*(A - B H(A™! — Byw?

corresponding to the even permutations
1 2 3 4 1 2 3 4
1 2 3 4) \2 3 1 4)°
It follows that the leading coefficient is

c6:=(A—D*(AT" = B)[(A™' - B) +s*(A— B7Y)]
= (A—D>A"" = B)*(1 —s*B7'A).

Since |l — B|| < exp(—H) and ||h|| > exp(—H), we have
lleell, B Nl + BII 2 exp(—H)
and therefore
lc6| 2 exp(—2H) exp(—2H)|1 — |s|*| > exp(—5H).
Then, using Lemma 2.26,
|R1(exp(iy))| = exp(~CH),
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for y € T\B, mes(B) < exp(—H /2), with C an absolute constant. Note that

|az (exp(iy))] = (A — 1) exp(iy)| 2 exp(—H),
b2 (exp(iy))| = |A — B~'| > exp(—H)

for any y € :JI‘ Let r(exp(iy)) be the maximum of the absolute values of
the roots of Pi(-,exp(iy)) and Q1(-, exp(iy)). Using Lemma 2.25 we have
r(exp(iy)) < exp(CH), for y € T. It follows that

|R1(exp(iy))| > 2laz(exp(iy))|*|b2(exp(iy))|*r (exp(iy))®8, y € T\B,

where 6 = exp(—CH), with C a sufficiently large absolute constant. By
Lemma 2.24,

max (P (z, exp(iy)), O1(z, exp(iy))) > min(|az(exp(iy))|, |b2(exp(iy))])s?
> exp(—CH)

for any z and y € T\B. The conclusion follows by recalling (9.2) and (9.3). O

Lemma 9.3 If||«|, ||l > exp(—3H), then there exists an absolute constant
Co > 1 such that
mes{y € T:min(|V(x + o,y +B) = V(x, »I+ [gx, y, & BI)
< exp(—=CoH)} < exp(—H/2),
mes{x € T : myin(|V(x +a,y+B) =V, »l+lgkx,y, a B
< exp(=CoH)} < exp(—H/2).
Proof We only check the first estimate, the second one being completely anal-

ogous. The proof is similar to that of the previous lemma. Let a;, b; be the
polynomials in w such that

Pi(z, w) = az® + a1z +ag, Q1(z, w) = baz> + b1z + bo.

Let
a 0 b 0
Ri(w) = Res. (P, 1) = det |41 @2 D1 b2
1 - Z 1, 1) = 01 bO bl
0 a 0 by

Analyzing the degrees of the terms from the Leibniz formula for the above
determinant, one sees that Rj(w) is a polynomial of degree 8 and the only
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term containing a monomial of degree 8 is

a?brby = [s(B — Dw? +s(B~! = D’[(B — A)w? + A — B ]
(A= Bw? + B~ —A7"],

corresponding to the even permutation
1 2 3 4
2 3 1 4)°
It follows that the leading coefficient is
cs :=s2(B—1)*(B— A)(A™' — B).
If |B—- Al < exp(—CH) or A7l — B| < exp(—CH), with C > 1 a
sufficiently large absolute constant, the conclusion follows by Lemma 9.2. So,

we just need to consider the case when |B — A], |[A~! — B| > exp(—CH),
C > 1. Note that we have |cg| > exp(—C H). Using Lemma 2.26, we have

|R1(exp(iy))| = exp(—=CH),

fory € T\B;, mes(B;) < exp(—H /2), with C an absolute constant. Applying
Lemma 2.26 again to by (w) = (B — Awr+ A— B!, we get that

|b2(exp(iy))| = exp(—CH),
for y € T\B>, mes(By) < exp(—H/2). At the same time,
laz(exp(iy))| = [(A — 1) exp(iy)| Z exp(—=3H),

for any y € T. Let r(exp(iy)) be the maximum of the absolute values of the
roots of Pi(-, exp(iy)) and Q(-, exp(iy)). Using Lemma 2.25 we have that
the r(exp(iy)) < exp(CH), for y € T\B,.

Fix y € T\B, B := B; U B;. It follows that

|R1(exp(iy))| = 2]az(exp(iy))|* b2 (exp(iy)) [ (exp(iy))*s,

where 6 = exp(—CH), with C a sufficiently large absolute constant. By
Lemma 2.24,

max(Py(z, exp(iy)), Q1(z, exp(iy))) > min(laz(exp(iy))|, |b2(exp(iy)) s>
> exp(—CH)

for any z and any y € T\, and the conclusion follows (recall (9.2)). |
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Now condition (iii) follows from Lemmas 9.1 and 9.3, by setting K = CoH,
with Cp as in Lemma 9.3, and by taking ¢ = 1/Cop, ¢; = 1/2,

€y = C(C§ + Comax(log |s|, log|s| ™', log |1 —s*|71), C>1. (9.7)

Finally, we check that condition (iv) holds for s ¢ {—1, 0, 1}. Take H as in
9.1), n € R, and ho € R? a unit vector. With some abuse of notation we let

ho = (a, B), o> + % = 1.
Lemma 94 (a) If |a| < exp(—2H), then

mes{y € T : mxin {(VV(x, V), ho)| <exp(—2H)} < exp(—H).

(b) If |B| < exp(—2H), then

mes{x € T : myin {(VV(x,¥),ho)| <exp(—2H)} < exp(—H).

Proof (a) Since |a| < exp(—2H), we have || > (1 —exp(—4H))'/? > 12,
and therefore
1
{VV(x,y), ho)| = |asinx + sBsiny| > Els siny| — exp(—2H)
> exp(—2H),

for all x € T, and y such that |siny| > exp(—3H/2). The conclusion
follows. The proof for (b) is analogous. O

Lemma 9.5 (a) If |a| > exp(—2H), then there exists an absolute constant
Co > 1 such that

mes{y € T: min(|V(x, y) —nl + (VV(x, ), ho)l) < exp(=CoH)}
< exp(—H/2).

(b) If |B| = exp(—2H), then there exists an absolute constant Co > 1 such
that

mes{x € T: myin(IV(x, y) = nl+KVV(x,y), ho)l) <exp(—CoH)}
< exp(—H/2).

Proof We only prove (a), the proof of the second statement being analogous.
By letting z = exp(ix), w = exp(iy), we have

1 1
Vix,y) —n= 2z_wP2(Z’ w), (VV(x,y), ho) = —%Qz(z, w), (9.8)
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with

Py(z, w) = 22w + szw? — 2nzw + w + 57,
02(z, w) = az’w + fzw? — aw — Bz.

Let a;, b; be the polynomials in w such that
Py(z,w) = a2z’ + a1z +ag, Q2(z, w) = baz> + byz + by.

In particular, a> (w) = w and by (w) = aw. A direct computation yields

6
Ry(w) = Res,(Py, 02) = ) cpwh
k=0

= w (—a2s2 + /32) +w (4¢x2ns)
+w? (—4012r]2 —202%5% + 4a* — 2/32) + w3(4a2ns)
+w? (—a2s? + B2)
= wl (1 — (1 +5H) + w’ @’ ys)
+wt (@26 — 4% — 25%) = 2) + w@daPns) + w? (1 — (1 +5?)).
We will argue that not all of the coefficients of R, are too small. To this end,

note that
20 2ce+ a2y =4 — 457 — 4172.

If |n] < exp(—H), then
1200 2c6 + o 2cy| > 41 — 5% — dexp(—=2H) > 2|1 — 5%| > exp(—H),

and therefore, either
lco| = exp(—H)a?> = exp(—=5H)  or  |ca| = exp(—H)a? > exp(—5H).
On the other hand, if |n| > exp(—H), then

les| 2 o? exp(—H)s > exp(—6H).
Thus, maxy, |cx| 2 exp(—6H). Then, using Lemma 2.26,

|Ro(exp(iy))| = exp(—CH),

for y € T\B, mes(B) < exp(—H/2). Let r(exp(iy)) be the maximum of
the absolute values of the roots of P,(-, exp(iy)) and Q>(-, exp(iy)). By
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Lemma 2.25, r(exp(iy)) < exp(3H). Then

|R2(exp(iy))| > 2]az(exp(iy))|*1ba(exp(iy))|*r (exp(iy))s,

for y € T\B, with § = exp(—CH). By Lemma 2.24,

max(P(z, exp(iy)), Q2(z, exp(iy))) > min(|az(exp(iy))|, [b2(exp(iy))|)8*
> exp(—CH)

for any z, and y € T\B. The conclusion follows by recalling (9.8). O

Now condition (iv) follows from Lemmas 9.4 and 9.5, by setting K = CoH,
with Cy as in Lemma 9.5, and by taking ¢; = 1/2 and & as in (9.7), with the
new Co. Obviously, we can arrange for both condition (iii) and (iv) to hold
with the same €.

Remark 9.6 (a) It should be clear that for s € {—1, 0, 1} not all of the con-
ditions are satisfied. Indeed, we noted that conditions (i) and (ii) fail for
s = 0, and for s = %1, for example, condition (iv) fails for n = 0 and A
proportional to (£1, 1).

(b) Due to the choices of €y in (9.7) and Ao implied by the proof of Theorem A
(recall (8.3)), we have that as s approaches {—1, 0, 1}, Lo approaches oo,
as claimed in Remark 1.2 (¢).

References

1. Avila, A., Jitomirskaya, S.: The ten martini problem. Ann. Math. (2) 170(1), 303-342
(2009)

2. Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc.
(JEMS) 12(1), 93-131 (2010)

3. Avila, A.: Global theory of one-frequency Schrodinger operators. Acta Math. 215(1), 1-54
(2015)

4. Bourgain, J.: On the spectrum of lattice Schrodinger operators with deterministic potential.
J. Anal. Math. 87, 37-75 (2002). Dedicated to the memory of Thomas H. Wolff

5. Bourgain, J.: Green’s Function Estimates for Lattice Schrodinger Operators and Applica-
tions. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton, NJ
(2005)

6. Bourgain, J.: Positivity and continuity of the Lyapounov exponent for shifts on T4 with
arbitrary frequency vector and real analytic potential. J. Anal. Math. 96, 313-355 (2005)

7. Bourgain, J.: Anderson localization for quasi-periodic lattice Schrodinger operators on 74,
d arbitrary. Geom. Funct. Anal. 17(3), 682-706 (2007)

8. Bourgain, J., Goldstein, M.: On nonperturbative localization with quasi-periodic potential.
Ann. Math. (2) 152(3), 835-879 (2000)

9. Chulaevsky, V.A., Sinal, Y.G.: Anderson localization for the 1-D discrete Schrodinger
operator with two-frequency potential. Commun. Math. Phys. 125(1), 91-112 (1989)

10. Duarte, P., Klein, S.: Continuity, positivity and simplicity of the Lyapunov exponents for

quasi-periodic cocycles. ArXiv e-prints, March (2016)

@ Springer



On the spectrum of multi-frequency 701

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Dinaburg, E.I., Sinai, J.G.: The one-dimensional Schrodinger equation with quasiperiodic
potential. Funkcional. Anal. i PriloZen. 9(4), 8-21 (1975)

Frohlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasi-
periodic Schrodinger operators. Commun. Math. Phys. 132(1), 5-25 (1990)

Goldstein, M., Schlag, W.: Holder continuity of the integrated density of states for quasi-
periodic Schrédinger equations and averages of shifts of subharmonic functions. Ann.
Math. (2) 154(1), 155-203 (2001)

Goldstein, M., Schlag, W.: Fine properties of the integrated density of states and a quanti-
tative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18(3), 755-869
(2008)

Goldstein, M., Schlag, W.: On resonances and the formation of gaps in the spectrum of
quasi-periodic Schrodinger equations. Ann. Math. (2) 173(1), 337-475 (2011)

Goldstein, M., Schlag, W., Voda, M.: On localization and spectrum of multi-frequency
quasi-periodic operators. ArXiv e-prints (2016)

Jitomirskaya, S., Marx, C.A.: Dynamics and spectral theory of quasi-periodic Schrodinger-
type operators. Ergod. Theory Dyn. Syst. 37(8), 2353-2393 (2017)

Kriiger, H.: The spectrum of skew-shift Schrodinger operators contains intervals. J. Funct.
Anal. 262(3), 773-810 (2012)

Karpeshina, Y., Shterenberg, R.: Extended states for the Schrodinger operator with quasi-
periodic potential in dimension two. ArXiv e-prints, August (2014)

Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York
(2002)

Marden, M.: Geometry of Polynomials. Mathematical Surveys, No. 3, 2nd edn. American
Mathematical Society, Providence, RI (1966)

Puig, J.: Cantor spectrum for the almost Mathieu operator. Commun. Math. Phys. 244(2),
297-309 (2004)

Sinai, Y.G.: Anderson localization for one-dimensional difference Schrodinger operator
with quasiperiodic potential. J. Stat. Phys. 46(5-6), 861-909 (1987)

Wang, Y., Zhang, Z.: Uniform positivity and continuity of Lyapunov exponents for a class
of C“-quasiperiodic Schrodinger cocycles. J. Funct. Anal. 268, 2525-2585 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

@ Springer



	On the spectrum of multi-frequency quasiperiodic Schrödinger operators with large coupling
	Abstract
	1 Introduction
	2 Basic tools
	2.1 Large deviations estimates
	2.2 Cartan's estimate
	2.3 Poisson's formula
	2.4 Finite scale localization
	2.5 Semialgebraic sets
	2.6 Resultants

	3 Basic tools at large coupling
	4 Cartan type estimates along level sets near a non-degenerate extremum point
	5 Inductive scheme for the bulk of the spectrum
	6 Inductive scheme for the edges of the spectrum
	7 From conditions on potential to inductive conditions
	8 Proofs of the main theorems
	9 An example
	References




