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In this article, we continue our study [16] on the long time dynamics of radial solutions

to defocusing energy critical wave equation with a trapping radial potential in 3 + 1

dimensions. For generic radial potentials (in the topological sense), there are only finitely

many steady states which might be either stable or unstable. We first observe that there

can be stable excited states (i.e., a steady state which is not the ground state) if the

potential is large and attractive, although all small excited states are unstable.We prove

that the set of initial data for which solutions scatter to any one unstable excited state

forms a finite co-dimensional connected C1 manifold in energy space. This amounts

to the construction of the global path-connected, and unique, center-stable manifold

associated with, but not necessarily close to, any unstable steady state. In particular,

the set of data for which solutions scatter to unstable states has empty interior in the

energy space, and generic radial solutions scatter to one of the stable steady states.

Our main tools are (1) near any given finite energy radial initial data (u0,u1) for which

the solution u(t) scatters to some unstable steady state φ we construct a C1 manifold

containing (u0,u1)with the property that any solution starting on the manifold scatters

to φ; moreover, any solution remaining near the manifold for all positive times lies on
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5978 H. Jia et al.

the manifold and (2) an exterior energy inequality from [9, 10, 16]. The latter is used to

obtain a result in the spirit of the one-pass theorem [22], albeit with completely different

techniques.

1 Introduction

Fix β > 2. Define

Y :=
{
V ∈ C(R3) : V radial and sup

x∈R3
(1 + |x|)β |V(x)| < ∞

}
,

with the natural norm

‖V‖Y := sup
x∈R3

(1 + |x|)β |V(x)|.

We study solutions to

∂ttu−�u− Vu+ u5 = 0, (1.1)

with initial data −→u (0) = (u0,u1) ∈ Ḣ1 ×L2(R3). Since for a short time, the term Vu can be

considered as a small perturbation, by adaptations of results in [3, 14, 15, 25] we know

for any initial data (u0,u1) ∈ Ḣ1 × L2(R3), there exists a unique solution

u(t) ∈ C([0,∞), Ḣ1) ∩ L5
t L

10
x ([0,T)× R

3)

for any T < ∞ to equation (1.1). Moreover, the energy

E(−→u (t)) :=
∫

R3

[ |∇u|2
2

+ (∂tu)2

2
− Vu2

2
+ u6

6

]
(x, t)dx

is constant for all time. Our main interest in this work is the long time behavior of u(t)

under radial symmetry. If the operator −�− V has negative eigenvalues, equation (1.1)

admits a nontrivial ground state Q > 0, which is the global minimizer of

J(φ) :=
∫

R3

[ |∇φ|2
2

− Vφ2

2
+ φ6

6

]
dx.

It has negative energy. The linearized operator around Q

LQ := −�− V + 5Q4
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Defocusing Energy Critical Wave Equation 5979

has no negative or zero eigenvalues, and no zero resonance. Consequently bywell-known

dispersive estimates for LQ we know Q is asymptotically stable: solutions with ini-

tial data close to (Q, 0) will scatter to (Q, 0). We remark that in our work by generic

choice of potentials, all steady states are hyperbolic (This means that the linearized

operator around the steady state has neither zero eigenvalues nor zero resonance.) and

consequently spectral stability implies asymptotic stability by well-known dispersive

estimates for the associated linearized operator. Hence we will not distinguish the two

notions below. In addition to the ground states Q and −Q, there can be a number of

“excited states” with higher energies (see Appendix A of [16]), which are changing sign

steady states to equation (1.1). Surprisingly, some of the excited states can be stable as

well, although all small excited states can be shown to be unstable (see Section 2). More

precisely we have the following result.

Theorem 1.1. There exists an open set O ⊂ Y , such that for V ∈ O, there exists an

excited state φ to equation (1.1) which is stable. �

Roughly speaking, this is due to the stabilizing effect of the nonlinearity as a

result of its defocusing nature, and the instability ismainly due to the potential. Hence if

the excited state is large, the nonlinear stabilizing effect may dominate and the resulting

dynamics around that excited state could become stable.

Due to the presence of many steady states, in general the global dynamics can be

quite complicated, even in the radially symmetric setting. [16] establishes the following

result characterizing the long time dynamics of radial finite energy solutions.

Theorem 1.2. Let (u0,u1) ∈ Ḣ1 × L2 be radial. Denote

� = {(φ, 0)| (φ, 0) is a radial steady state solution to equation (1.1)}. (1.2)

Let u ∈ C([0,∞), Ḣ1)∩L5
t L

10
x ([0,T)×R

3) for any T < ∞ be the unique solution to equation

(1.1) with initial data (u(0), ∂tu(0)) = (u0,u1). Then for some radial finite energy solu-

tion (uL, ∂tuL) to the linear wave equation without potential (We often call such linear

solutions free radiation.)

(LW) ∂ttu−�u = 0,

we have

lim
t→∞ inf

(φ,0)∈�
‖(u(t), ∂tu(t))− (φ, 0)− (uL(t), ∂tu

L(t))‖Ḣ1×L2 = 0. (1.3)
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5980 H. Jia et al.

Moreover, for V in a dense open set � ⊂ Y , there are only finitely many radial steady

states to equation (1.1). In this case, there exist a steady state solution (φ, 0) and some

solution (uL, ∂tuL) to the linear wave equation without potential, such that

lim
t→∞ ‖(u(t), ∂tu(t))− (φ, 0)− (uL(t), ∂tu

L(t))‖Ḣ1×L2 = 0. (1.4)

�

We remark that we can in fact choose the set � ⊂ Y such that for any V ∈
�, all steady states are hyperbolic (In Theorem 6.1 [16], we only showed that in the

radially symmetric case, the linearized operator has neither a zero eigenvalue nor a zero

resonance when restricted to radial functions. This leaves the possibility of having zero

eigenvalue or zero resonancewhenwe consider nonradial functions.Wewill address this

issue in Section 2.). We fix this choice of � below. Theorem 1.2 is a particular instance

of the soliton resolution conjecture for general dispersive equations, which has been

intensively studied for many dispersive equations. We refer the reader to [9, 10] and

references therein for results on the focusing energy critical wave equation, [5, 6, 8, 18,

19] and references therein for results on equivariant wave maps, and [27, 29] for results

on Schrödinger equation with potential. The difference between these works on this

lies with the defocusing nature of our equation which precludes any blowup. In other

words, the flow on phase space is global in time, and together with [16] the present work

establishes a complete description of the long term dynamics as well as a decomposition

of the global data set into components which lead to distinct final states.

The result in [16] proves convergence for all radial solutions, thus establishing

the so-called soliton resolution in the setting of equation (1.1). The proof relies crucially

on the channel of energy inequalities for the linear wave equation, introduced in the

works of Duyckaerts, Kenig, andMerle [9, 10]. This tool implies, among other properties,

that all non-stationary radial solutions emit a positive amount of energy into large

distances (the “far field”). The main local decay mechanism for equation (1.1) is the

dispersion of energy into large distances, and the channel of energy inequalities provide

a powerful tool to quantify such effects. In fact, due to the presence of the potential

which destroys many of the favorable algebraic identities of virial type (The virial type

identities can still be of some use even in this context, see [27]), the channel of energy

inequality is perhaps the only tool currently available to measure dispersion in this

context. As a consequence, in absence of radial symmetry, where the channel of energy

inequalities (see[11]) become less effective, we have little knowledge of the “compact

solutions”, that is, solution u(t) with the property that {
u(t), t ∈ R} is precompact in
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Defocusing Energy Critical Wave Equation 5981

Ḣ1 × L2. This should be compared to the focusing energy critical wave equation, for

which one knows (albeit along a sequence of times) modulo symmetries, that compact

solutions converge to some steady state (A recent result of Duyckaerts, Kenig and Merle

[12], under certain nondegeneracy assumptions, completely characterizes all compact

solutions as Lorentz transformations of steady states).

In this article, our main goal is to obtain refined descriptions of the global

dynamics of solutions to equation (1.1) in the radial case. Let us denote

Ḣ1
rad × L2

rad := {(u0,u1) ∈ Ḣ1 × L2(R3) : (u0,u1) radial
}
.

We establish the following result.

Theorem 1.3. Let � be an open dense subset of Y such that equation (1.1) has only

finitely many steady states, which are all hyperbolic, and let � be the set of radial

steady states. Denote −→u (t) := −→
S (t)(u0,u1) as the solution to equation (1.1) with radial

initial data (u0,u1) ∈ Ḣ1
rad × L2

rad(R
3). For each (φ, 0) ∈ �, define

Mφ :=
{
(u0,u1) ∈ Ḣ1

rad × L2
rad(R

3) :
−→
S (t)(u0,u1) scatters to (φ, 0)as t → +∞

}
. (1.5)

Denote

Lφ := −�− V + 5φ4 (1.6)

as the linearized operator around φ. If Lφ has no negative eigenvalues, then Mφ is an

open set ⊆ Ḣ1
rad ×L2

rad(R
3). If Lφ restricted to radial functions has n negative eigenvalues,

then Mφ is a path connected C1 manifold ⊂ Ḣ1
rad × L2

rad(R
3) of co-dimension n. �

Remark. This result shows that each unstable excited steady state attracts a finite

co-dimensional manifold of solutions, hence scattering to unstable excited states is

non-generic. If Lφ has no negative eigenvalues, then φ is stable. This is a relatively

straightforward consequence of the known dispersive estimates for Lφ (see [4]) (Due to

our relatively mild decay assumption on V , the dispersive estimates we need are close to

optimal, hence the need for the work [4] which requires less decay on the potential than,

say, |V(x)| � 1
(1+|x|)5+ that is usually required for the Lp boundedness of wave operators

in some other works) and standard perturbation arguments. �

On the other hand, if Lφ has negative eigenvalues then the local dynamics near

(φ, 0) is nontrivial. Thanks to [21] and reference therein, it is now well-known in a small
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5982 H. Jia et al.

neighborhood (in the energy space) of (φ, 0) that we can construct a center-stable mani-

fold, on which the solution scatters to (φ, 0). Off that manifold, the solution will exit the

small neighborhood in finite time. In particular, this center-stable manifold is unique.

Generally speaking, after exiting the small neighborhood, we lose control on the dynam-

ics based onperturbative arguments alone and some global information is needed.While

the one-pass theorem provided this global information in [21], here it is the channel of

energy inequality that allows for the key global control on the solution after the exit

time. We will provide further explanations below.

Let us briefly outline the main ideas in the proof of Theorem 1.3. Take any unsta-

ble steady state (φ, 0) ∈ � and a radial finite energy solution −→u (t) with initial data

(u0,u1)which scatters to (φ, 0), that is, for some radial solution −→u L(t) to the linear wave

equation (LW), we have

lim
t→∞ ‖−→u (t)− −→u L(t)− (φ, 0)‖Ḣ1×L2(R3) = 0. (1.7)

We first show in a small neighborhood Bε((u0,u1)) ⊂ Ḣ1
rad × L2

rad(R
3) there exists a local

manifold M, such that any solution −→v (t) with initial data on this manifold remains

close to −→u (t) in Ḣ1 × L2 for all positive times and also scatters to (φ, 0). Moreover,

this manifold has the following uniqueness property: any radial finite energy solution
−→v (t)which stays close to −→u (t) for all positive times necessarily emanates from M. The

construction of this manifold differs from the usual ones in that this is not a center-

stable manifold around a steady state. In fact, since the energy of the solution −→u (t)may

be much higher than that of (φ, 0), the free radiation −→u L may contain a large amount of

excess energy. One new technical aspect is that in addition to using (1.7), we also need

the space-time control on the radiation term, such as

u− φ ∈ L5
t L

10
x ([0,∞)× R

3). (1.8)

(1.8) is of course expected, but was not usually mentioned in the literature. With the

help of (1.8), the construction of M follows from standard techniques. The next step is

to describe the dynamics of solutions starting in Bε((u0,u1)) ⊂ Ḣ1
rad × L2

rad(R
3), but off

the manifold M. This is where we need the global control provided by the channel of

energy inequalities. Take any solution −→v (t) starting in Bε((u0,u1)) ⊂ Ḣ1
rad × L2

rad(R
3) and

off the manifold (possibly with a smaller ε), then by the property of M, −→u (t)−−→v (t)will

have energy of a fixed size at some time t, no matter how small −→u (0)− −→v (0) is. We will

show from this that −→v (t) will emit a fixed amount more energy than −→u , thanks to the

channel of energy inequality. The main difficulty is that since −→u (t) may have already
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Defocusing Energy Critical Wave Equation 5983

emitted a large amount of energy in order to settle down to φ, we need to distinguish the

new radiation from the old radiation. This is done with careful perturbation arguments

as follows. Choose (v0,v1) very close to (u0,u1) so that the solutions −→v (t) and −→u (t)
remain close for a sufficiently long time. During this time, the radiation has propagated

sufficiently far from the origin (with the bulk of energy traveling at speed ∼ 1). In the

finite region, the solution −→v is just a small perturbation of (φ, 0). Due to the assumption

(v0,v1) 
∈ M, after another long time −→v (t) will deviate from (φ, 0) in the finite region by

a fixed amount. Then we apply the channel of energy inequality to show that −→v (t) emits

a second piece of radiation, which is supported very far away from the first radiation.

Hence, in total −→v (t) emits quantitatively more energy into spatial infinity although the

energy of −→v (t) can be chosen arbitrarily close to that of −→u (t). Consequently, −→v (t) has
less energy than (φ, 0) in the finite region for large times, and must scatter instead to a

steady state of lower energy, not (φ, 0). This establishes the proposition that in a small

neighborhood of (u0,u1), only initial data on M can lead to solutions scattering to (φ, 0).

Thus Mφ is truly a global manifold in Ḣ1
rad × L2

rad(R
3) whence Theorem 1.3. The fact that

Mφ is path connected follows from a perturbation argument which we present at the

end of Section 5.

1.1 Some open questions

Our investigation leaves open the question whether the finite co-dimensional manifold

of radial finite energy data scattering to unstable steady states is closed in the energy

topology. The answer to this question seems to be nontrivial and will require further

understanding of the global dynamics. For example, consider an unstable excited state

(φ, 0) ∈ �. It is not hard to show that there is a radial solution −→u (t) which converges to

(φ, 0) exponentially as t → −∞, that is, −→u (t) is on the unstable manifold of (φ, 0), and

hence E(−→u (t)) = E((φ, 0)). By the channel of energy property established below, −→u (t)
will emit a nontrivial amount of energy to large distances as t → +∞ and subsequently

scatter to a steady state of strictly less energy, say (φ̃, 0). However, there is a possibility

that (φ̃, 0) is also an excited state. In that case, denote by Mφ̃ the manifold of data

scattering to (φ̃, 0) as t → +∞, we see −→u (t) ∈ Mφ̃ for all t, but −→u (t) → (φ, 0) in Ḣ1 × L2

as t → −∞ and clearly (φ, 0) 
∈ Mφ̃. Consequently, in such a situation Mφ̃ would not be

closed. Admittedly, such behavior should be non-generic (due to the fact that φ̃ might

be expected to be the ground state) and perhaps impossible for a generic choice of V .

We plan to address this question in future work.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/19/5977/3061082 by Yale U
niversity, C

ushing/W
hitney M

edical Library user on 01 June 2022



5984 H. Jia et al.

Another interesting question is if this description of global dynamics can be

achieved without the radial assumption. This question seems to be very challenging.

Recall that in the radial case, due to the channel of energy property, we only need to

consider the dynamics outside some well-chosen light cone, where the dynamics is rel-

atively simple. In contrast, in the nonradial case, where only less effective channel of

energy inequality is available, one must deal directly with the complicated dynamics

in a finite region. In this case, the only other global tool is the virial type identities.

However, the presence of the spatial inhomogeneity V seems to render such identities

ineffective. In particular, we do not know if the only compact solutions are steady states.

Recall that −→u (t) is called compact if {−→u (t) : t ∈ R} is precompact in Ḣ1 × L2. This is in

sharp contrast with the energy critical focusing wave equation case, where one knows

exactly what these compact solutions are (modulo some nondegeneracy condition on

steady states). Hence, a full characterization of compact solutions seems to be a natural

first step.

Our article is organized as follows. In Section 2, we study steady states to equa-

tion (1.1) and show in particular the existence of stable excited steady states; in Section 3

we construct the local center-stable manifold. The novelty of his construction lies with

the fact that it is carried out near any solutionwhich scatters to a given unstable steady

state, without, however, being necessarily close to the steady state in the energy topol-

ogy. in Section 4 we recall some results on the well-known profile decompositions and

channel of energy inequalities, adapted to equation (1.1); in Section 5 we prove our

main result Theorem 1.3; Appendix A contains some elliptic estimates for the steady

states; Appendix B proves an endpoint Strichartz estimate for the inhomogeneous wave

equation in the radial case.

2 Steady State Solutions

In this section, we prove some results about the steady states that are relevant for the

global dynamics. We first give necessary and sufficient conditions for the existence of

nontrivial ground state. Recall that such a state is the global minimizer of the energy

functional

J(φ) :=
∫

R3

[ |∇φ|2
2

− Vφ2

2
+ φ6

6

]
dx. (2.1)

Lemma 2.1. Consider J as a functional defined in Ḣ1(R3). If the operator −� − V has

negative eigenvalues then there exists a global minimizerQ > 0 with J(Q) < 0. If −�−V
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Defocusing Energy Critical Wave Equation 5985

has no negative eigenvalues, then the only steady state solution u ∈ Ḣ1(R3) to equation

(1.1) is u ≡ 0. �

Remark 2.1. The proof of this lemma is a simple application of variational arguments

and the strong maximum principle, we omit the standard details. �

In the case that −�−V has no negative eigenvalues and assuming that we only

consider radial solutions, then from the results in [16] we know that all radial finite

energy solutions to equation (1.1) scatter to the trivial steady state. In what follows we

therefore assume that −�−V has some negative eigenvalues, so that we have nontrivial

global minimizers Q and −Q. We call Q and −Q ground states, and call other steady

solutions excited states.

The next result shows the uniqueness of ground states. Note that we do not need

radial symmetry here.

Lemma 2.2. There is at most one nontrivial nonnegative steady state in Ḣ1(R3) to

equation (1.1). �

Proof. Suppose Q1 and Q2 are two nontrivial nonnegative steady solutions to equation

(1.1) in Ḣ1(R3). Then

−�Q1 − VQ1 +Q5
1 = 0,

−�Q2 − VQ2 +Q5
2 = 0.

By standard elliptic estimates, we have Q1, Q2 ∈ W2,p
loc (R

3) for any p < ∞. Moreover we

have the following decay estimates

|Q1(x)| + |Q2(x)| ≤ C

1 + |x| , x ∈ R
3. (2.2)

The above claim on the regularity and decay holds for any steady state in Ḣ1, and follows

frommore or less standard elliptic techniques. For the sake of completeness, we provide

a proof in the Appendix A. By strong maximum principle, we see that Q1, Q2 > 0. Denote

the open set

� := {x : Q1(x) > Q2(x)},
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5986 H. Jia et al.

we have ∫
�

Q2

(−�Q1 − VQ1 +Q5
1

)−Q1

(−�Q2 − VQ2 +Q5
2

)
dx = 0. (2.3)

By the regularity and decay properties of Q1, Q2, we can integrate by parts in equation

(2.3), noting that Q1 = Q2 on ∂�, we see that∫
∂�

Q1
∂

∂n
(Q2 −Q1)dσ +

∫
�

Q1Q2(Q
4
1 −Q4

2)dx = 0. (2.4)

Note that

∂

∂n
(Q2 −Q1) ≥ 0 on ∂�,

and

Q1Q2

(
Q4

1 −Q4
2

)
> 0 in �.

Thus equation (2.4) can hold only if � = ∅. Thus Q1 ≤ Q2. Similarly Q2 ≤ Q1. Therefore

Q1 ≡ Q2. �

Naively one might expect excited states to be unstable, since they change sign.

However in general this may not be the case, as seen from the following theorem.

Theorem 2.1. There exists an open set O ∈ Y such that for any V ∈ O, there exists an

excited state φ to equation (1.1) which is stable. �

Proof. The proof is based on simple perturbation arguments, once a good large poten-

tial is chosen. We can construct an excited state near a good “profile”, for which the

linearized operator is explicit and stable, with a well-chosen potential. Then we can

conclude that the linearization near the excited state is also stable.

Step 1: choice of V . Denote

W := 1(
1 + |x|2

3

) 1
2

as the unique (up to scaling and sign change) radial Ḣ1(R3) solution to

−�u = u5. (2.5)
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Let us take

V1(x) = 2W4, (2.6)

and positive λ sufficiently large to be chosen below. Set

V1λ(x) = λ2V1(λx). (2.7)

It is easy to check that W solves

−�u− V1u+ u5 = 0,

and that Wλ(x) = λ
1
2W(λx) solves

−�u− V1λu+ u5 = 0.

We choose V := V1 + V1λ.

Step 2: construction of a stable excited state. Consider the following elliptic

equation

−�φ − Vφ + φ5 = 0. (2.8)

Our goal is to show if λ is sufficiently large then we can construct a steady state φ of

the form

φ = W −Wλ + η, (2.9)

with some small η. The equation for η is

−�η + (3W4 + 3W4
λ − 20WW3

λ − 20WλW
3 + 30W2W2

λ )η + N(η, λ) = fλ, (2.10)

where the nonlinear term is

N(η, λ) = 10(W −Wλ)
3η2 + 10(W −Wλ)

2η3 + 5(W −Wλ)η
4 + η5, (2.11)

and the nonhomogeneous term is

fλ = −(W −Wλ)
5 +W5 −W5

λ − V1Wλ +WV1λ. (2.12)
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5988 H. Jia et al.

If λ is sufficiently large, fλ will be small in appropriate function spaces and we can use a

perturbation argument to solve for η. A key ingredient is the following standard uniform

estimate in λ on the linear part:

Claim 2.1. For sufficiently large λ, the operator

Lλ := −�+ 3W4 + 3W4
λ − 20WW3

λ − 20WλW
3 + 30W2W2

λ : Ḣ1(R3) → Ḣ−1(R3)

is invertible and we have the following estimate on the norm of the inverse operator L−1
λ

‖L−1
λ ‖Ḣ−1(R3)→Ḣ1(R3) ≤ C, (2.13)

where C is some absolute constant. �

Proof of Claim 2.1. It is easy to verify that −� : Ḣ1(R3) → Ḣ−1(R3) is invertible, and that

Lλ is a compact perturbation of −�. Thus to prove that Lλ is invertible we only need to

show its kernel is trivial. This follows directly from the following bound for large λ

(Lλφ,φ) ≥ 1

2
‖φ‖2

Ḣ1(R3)
, ∀φ ∈ Ḣ1(R3), (2.14)

where the inner product is with respect to the Ḣ1 and Ḣ−1 pairing. The proof of (2.14) is

an easy consequence of integration by parts argument and Hölder’s inequality, once we

note that

lim
λ→∞

‖WW3
λ +W3Wλ +W2W2

λ ‖L3/2(R3) = 0.

Suppose Lλu = f . Then from the bound (2.14) and Hölder’s inequality we infer that

‖∇u‖L2(R3) ≤ 2‖f ‖Ḣ−1 , for sufficiently large λ. (2.15)

In view of the preceding, the bound (2.13) follows immediately.

Using the uniform bound on L−1
λ we can easily solve for η.
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Defocusing Energy Critical Wave Equation 5989

Claim 2.2. For any ε > 0, if λ is sufficiently large, then there exists a solution η ∈
Ḣ1 ∩ L6(R3) to equation (2.10), in the sense of distributions, with

‖η‖L6(R3) < Cε, (2.16)

where C is an absolute constant. �

Proof. Take small ε > 0. We can take λ sufficiently large, so that ‖fλ‖L6/5 < ε and (2.13)

holds. We reformulate equation (2.10) in the following way

η = L−1
λ fλ − L−1

λ N(η, λ). (2.17)

Note that L6/5(R3) embeds continuously into Ḣ−1(R3), thus the right-hand side makes

sense. Now one can check that

L−1
λ fλ − L−1

λ N(η, λ)

is a contraction mapping in B2ε ⊆ L6(R3), if we choose ε small enough. Thus equation

(2.17) and consequently equation (2.10) have a unique solution η, with ‖η‖L6(R3) ≤ 2ε.

Clearly, this η satisfies the requirement of Claim 2.2.

By looking at the L6 norm of the positive and negative parts of φ in (2.9), it follows

that the steady stateW −Wλ +η changes sign if we choose ε sufficiently small, and thus

is an excited state. Moreover, the linearized operator around this excited state is

−�− 2W4 − 2W4
λ + 5(W −Wλ + η)4.

If we choose ε small enough one can show this operator is nonnegative and has no nega-

tive eigenvalues nor zero eigenvalues/resonance. A standard local perturbation analysis

implies that the excited state W −Wλ + η is stable.

Step 3: stability with respect to V = V1 + V1λ. We now show that our construction is

stable with respect to small perturbations of the potential V in Y . This is more or less

clear from the existence proof. Belowwe just outline some key points. We now formulate

Claim 2.3. Let V := V1 + V1λ be defined as above. Assume λ sufficiently large and δ

sufficiently small, then for any radial potential Ṽ ∈ Y satisfying

‖Ṽ − V‖Y ≤ δ, (2.18)
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5990 H. Jia et al.

there exists a stable excited state to

−�φ − Ṽφ + φ5 = 0 in R
3. (2.19)

�

Proof of Claim 2.3. For any Ṽ ∈ Y with

‖Ṽ − V‖Y ≤ δ,

for some δ sufficiently small. We have

‖(−�− Ṽ)− (−�− V)‖Ḣ1→Ḣ−1 ≤ Cδ.

Hence if we choose λ sufficiently large, δ sufficiently small, we can repeat Step 2 with V

replaced by Ṽ . The resulting Lλ will still satisfy the uniform bound in Claim 2.1, fλ with

extra terms (Ṽ − V)W and (Ṽ − V)Wλ, and N(η, λ) can still be controlled in exactly the

same way, as long as δ is chosen sufficiently small. One can then use the contraction

mapping theorem to finish the proof. We omit the routine details. This finishes the proof

of Theorem 2.1. �

The above theorem proves the existence of stable excited states, on the other

hand it is clear that there are unstable excited states. For example, suppose that the

operator −� − V has negative eigenvalues (so that there are nontrivial ground states),

then the excited state φ ≡ 0 is unstable. A perhaps more interesting fact is that “newly

bifurcated” excited states are unstable.

Lemma2.3. Let α ∈ [0,∞),V ∈ C∞
c (R

3)be nonnegative andnot identically zero. Suppose

that for α ≥ α1, the principal eigenvalue λ1(α) of the operator−�−αV is negative. Assume

further that

(α2, 0) ∈ (α1,∞)× Ḣ1(R3)

is a bifurcation point for the equation

−�φ − αVφ + φ5 = 0, (2.20)
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Defocusing Energy Critical Wave Equation 5991

in the sense that for any ε > 0 there is a nontrivial radial steady state (α,φ) to equation

(2.20) with

|α − α2| + ‖φ‖Ḣ1(R3) ≤ ε. (2.21)

Then for ε sufficiently small, the steady state (α,φ) satisfying (2.21) is unstable. �

Proof. Choosing ε sufficiently small we have α > α1. Since V is nonnegative, we have

that

λ1(α) ≤ λ1(α1) < 0,

thus there exist δ > 0 and ψ ∈ Ḣ1(R3) such that∫
R3
(|∇ψ |2 − αVψ2)dx ≤

∫
R3
(|∇ψ |2 − α1Vψ

2)dx ≤ −δ‖ψ‖2
Ḣ1(R3)

. (2.22)

Note the linearized operator around φ is

−�− αV + 5φ4. (2.23)

If ε is sufficiently small, by Hölder’s inequality, we obtain∫
R3
(|∇ψ |2 − αVψ2 + 5φ4ψ2)dx ≤ −(δ − Cε4)‖ψ‖2

Ḣ1 < 0.

Thus the linearized operator has at least one negative eigenvalue and consequently the

small excited states are unstable. �

Remark 2.2. For a description of bifurcations, see Appendix A of [16]. The above argu-

ments also imply that if −� − V has negative eigenvalues, then all sufficiently small

excited states in Ḣ1(R3) are unstable. �

In Theorem 6.1 of [16], we showed that there exists a dense open set �1 ⊆ Y

such that for any V ∈ �1, there exists only finitely many radial steady states to equation

(1.1), all of which are hyperbolic when the linearized operator is restricted to the space of

radial functions. As ismentioned in the introduction, this leaves open the possibility that

some radial steady states may still have zero eigenvalues or a zero resonance without

the radial assumption. As the property of having zero eigenvalues or a zero resonance

is non-generic, we can expect to eliminate such behavior by removing from �1 a closed

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/19/5977/3061082 by Yale U
niversity, C

ushing/W
hitney M

edical Library user on 01 June 2022



5992 H. Jia et al.

set while making the remaining set still open and dense. More precisely we have the

following result.

Lemma 2.4. Let �1 be a dense open subset of Y such that for any V ∈ �1 there are only

finitely many radial steady states to equation (1.1), all of which are hyperbolic if the

linearized operator is restricted to radial functions. Then there exists a dense open set

� ⊆ �1, such that for any V ∈ �, all radial steady states are hyperbolic without radial

symmetry. �

Remark. We fix this choice of � below. �

Proof. Take any V ∈ �1, and suppose that φ1,φ2, . . . ,φn are the radial steady states

corresponding toV . Since the linearized operator around any φi is hyperbolic in the space

of radial functions, standard perturbation arguments imply that any sufficiently small

perturbation ofV in�will not change the number of radial steady states, and each radial

steady state φi depends smoothly on the perturbation. We will show that we can find a

specific perturbation Ṽ ofV with arbitrarily small norm in Y , (in particular Ṽ ∈ �1), such

that the perturbed steady state φ1(Ṽ) becomes hyperbolic even without restricting to

radial functions. Since being hyperbolic is an open property, we can then make repeated

small perturbations to the potential until all the steady states become hyperbolic even

in the nonradial function space. Then it is clear the subset � ⊆ �1 with the property

that for any V ∈ �, all the radial steady states are hyperbolic without restriction to

radial functions, is dense and open in Y . Below we describe the perturbation in detail.

For ε > 0 sufficiently small, set

Ṽ := V + ε φ4
1 . (2.24)

Suppose that the perturbed steady state becomes

φ̃1 := φ1 + ε ψ . (2.25)

Then the equation for ψ is

−�ψ − Vψ + 5φ4
1ψ = φ5

1 + ε φ4
1ψ − N(ψ , ε), in R

3, (2.26)

where

N(ψ , ε) = 10ε φ3
1ψ

2 + 10ε2φ2
1ψ

3 + 5ε3φ1ψ
4 + ε4ψ5. (2.27)
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Defocusing Energy Critical Wave Equation 5993

Noting that

−�φ1 − Vφ1 + 5φ4
1 · φ1 = 4φ5

1 ,

and the fact that the linearized operator −� − V + 5φ4
1 is invertible from Ḣ1 ∩ Ḣ2 ↪→

Ḣ−1 ∩ L2 when restricted to radial functions (which follows from hyperbolicity in radial

functions), we can rewrite equation (2.26) as

ψ = φ1

4
+ (−�− V + 5φ4

1)
−1(ε φ4

1 ψ − N(ψ , ε)). (2.28)

If we take ε sufficiently small we can assume Ṽ ∈ �1, and moreover we can use standard

perturbation arguments to show that

ψ = φ1

4
+ OḢ1∩Ḣ2(ε). (2.29)

Then the linearized operator around the perturbed steady state φ1 + ε ψ becomes

−�− V +
[
5
(
1 + ε

4

)4 − ε

]
φ4
1 + O

L
3
2 ∩L∞(ε

2). (2.30)

The key point for us is that

[
5
(
1 + ε

4

)4 − ε

]
φ4
1 ≥ 5φ4

1 + 4ε φ4
1 , (2.31)

hence we have gained a positive factor which will eliminate the zero eigenvalues/zero

resonance. The proof is finished with the following claim and the min–max principle for

eigenvalues. �

Claim 2.4. Let V and φ1 be given as above. Suppose that the linearized operator

−�− V + 5φ4
1

has k ≥ 0 negative eigenvalues with corresponding eigenfunctions ρ1, . . . , ρk, and possi-

bly also zero eigenvalues or zero resonance. Then for ε > 0 sufficiently small, and any

f ∈ Ḣ1 with ∫
R3
f ρ1 dx = · · · =

∫
R3
f ρk dx = 0,
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5994 H. Jia et al.

we have ∫
R3
(−V + 5φ4

1 + 4ε φ4
1)f

2 + |∇f |2 dx ≥ cε ‖f ‖2
Ḣ1 , (2.32)

for some fixed c > 0. �

Proof. Consider the functional

�(f ) :=
∫

R3
(−V + 5φ4

1)f
2 + |∇f |2 dx (2.33)

on the space

X :=
{
f ∈ Ḣ1 :

∫
R3
f ρ1 dx = · · · =

∫
R3
f ρk dx = 0

}
. (2.34)

Suppose

{
f ∈ Ḣ1 : (−�− V + 5φ4

1)f = 0
} = span {Z1, . . . ,Zm}.

Using the same arguments as in Proposition 3.6 in [12], we can find linearly independent

E1, . . . ,Em ∈ C∞
0 , with

∀i = 1 . . .k, ∀j = 1 . . .m,
∫
ρi Ej = 0, ∀i, j = 1 . . .m,

∫
φ4
1 Ei Zj = δij, (2.35)

such that for any f with∫
f ρi = 0,

∫
f Ej φ

4
1 = 0, ∀i = 1 . . .k, j = 1 . . .m, (2.36)

one has

�(f ) ≥ c‖f ‖2
Ḣ1 . (2.37)

For any f ∈ X , we can decompose

f =
m∑
i=1

ci Ei + g, with
∫
gY1 = · · · =

∫
gYk = 0,

∫
gE1 φ

4
1 = · · · =

∫
gEm φ

4
1 = 0.

(2.38)

We distinguish two cases.
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Defocusing Energy Critical Wave Equation 5995

Case 1:
m∑
i=1

|ci| ≥ δ1‖f ‖Ḣ1 for some small δ1 > 0. Then the claimed bound (2.32)

follows from

�(f ) ≥ 4ε
∫
φ4
1 f

2 ≥ ε

∫ ( m∑
i=1

ciEi

)2

φ4
1 dx ≥ ε

m∑
i=1

c2i ≥ δ2δ1ε ‖f ‖2
Ḣ1 , (2.39)

for some small δ2 > 0, where in the third inequality we have used the equivalence of

norms in a finite dimensional space and the linear independence of Ei.

Case 2:
m∑
i=1

|ci| � ‖f ‖Ḣ1 . Then the claimed bound (2.32) follows directly from the

bound (2.37). �

3 Construction of the Local Center-Stable Manifold

In [16], we showed that there exists a dense open set � ⊂ Y , such that for any potential

V ∈ �, there are only finitely many radial steady states and all radial finite energy

solutions scatter to one of the steady states. Furthermore, the linearized operator −�−
V + 5φ4 has no zero eigenvalues nor zero resonance for any radial steady state φ. Our

goal in this section is to study local dynamics around a solution which scatters to an

unstable excited state. Recall

−→
S (t) = (S0(t),S1(t)), t ∈ R

denotes the solution flow. Thus given (u0,u1) ∈ Ḣ1 × L2(R3),
−→
S (t)(u0,u1) is the solution

to equation (1.1) with initial data (u0,u1). To prove our main result, let us first state the

Strichartz estimate for the linear wave equation in dimension 3.

Theorem 3.1. Let I be a time interval and let v : I × R
3 → R be a finite energy solution

to the wave equation

(∂tt −�)v = F

with initial data (v(t0), ∂tv(t0)) = (f ,g) for some t0 ∈ I . Then we have the estimates

‖(v,vt)‖C0t (Ḣ1×L2) + ‖v‖Lqt Lrx (I×R3) ≤ C(q, r)
(
‖(f ,g)‖Ḣ1×L2 + ‖F‖L1t L2x (I×R3)

)
, (3.1)

where 2 ≤ q ≤ ∞ and 2 ≤ r < ∞ satisfy the scaling condition

1

q
+ 3

r
= 1

2
(3.2)
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5996 H. Jia et al.

and the wave admissible condition

1

q
+ 1

r
≤ 1

2
. (3.3)

Moreover, if f ,g, and F are radial functions, (3.1) holds true when (q, r) = (2,∞). �

Later, we will call a pair (q, r), 2 ≤ q, r ≤ ∞ admissible if it satisfies (3.2)

and (3.3).

See [13] for the proof of this theorem in the nonradial and nonendpoint case.

The forbidden endpoint (q, r) = (2,∞) was found in [20], where it was also proved

that for the homogeneous equation (F ≡ 0), (2,∞) becomes “admissible” if the initial

data are of the form (v(t0), ∂tv(t0)) = (0,g) with g radially symmetric. For the sake of

completeness, in Appendix B, we provide the proof of the endpoint Strichartz estimate

for the inhomogeneous equation with general radial data.

For applications below, we need the following Strichartz estimates for solutions

to linear wave equation with potential.

Lemma 3.1. Take V ∈ Y such that the operator −�−V has no zero eigenvalues or zero

resonance. Denote P⊥ as the projection operator to the continuous spectrum of −�− V .

Denote

ω :=
√
P⊥(−�− V). (3.4)

Let I be a time interval with t0 ∈ I . Then for any (f ,g) ∈ Ḣ1 × L2(R3) and F ∈ L1
t L

2
x(I × R

3),

the solution −→γ (t) to the equation

∂ttγ + ω2γ = P⊥F , (t,x) ∈ I × R
3, (3.5)

with −→γ (t0) = P⊥(f ,g) satisfies

‖(γ , γt)‖C0t (Ḣ1×L2) + ‖γ ‖Lqt Lrx (I×R3) ≤ C(q, r)
(
‖(f ,g)‖Ḣ1×L2 + ‖F‖L1t L2x (I×R3)

)
, (3.6)

where 2 ≤ q ≤ ∞ and 2 ≤ r < ∞ satisfy the conditions (3.2) and (3.3). Moreover, if f ,g,

and F are radial functions, (3.6) holds true when (q, r) = (2,∞). �

Remark. Our proof of Strichartz estimates (3.6) relies crucially on Lp boundedness of

wave operators withminimal decay conditions on V , obtained by Beceanu [4]. For earlier
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Defocusing Energy Critical Wave Equation 5997

important work on Lp boundedness of wave operators, see Yajima[30] and references

therein. �

Proof. The energy estimate on −→γ follows from standard integration by parts argu-

ment and inequality (3.10) below. We will therefore concentrate only on the Strichartz

estimates. Recall the definition of the forward wave operator

W+ := s− lim
t→∞ eit(−�−V)e−it(−�). (3.7)

It iswell known that forV ∈ Y ,W+ is linearly isomorphic from L2 to P⊥L2, see for example

[2]. In [4], Beceanu obtained among other things an important structural theorem forW+,

which implies that W+ is also bounded in Lp spaces with 1 ≤ p ≤ ∞:

‖W+ϕ‖Lp � ‖ϕ‖Lp ∀ϕ ∈ L2 ∩ Lp. (3.8)

Hence W+ can be naturally extended as a bounded operator in Lp for 1 ≤ p < ∞ and in

L∞
0 , which is the completion of L2 ∩L∞ in L∞. An important fact ofW+ is the intertwining

property

ϕ(ω) = W+ϕ(|∇|)W ∗
+, (3.9)

which holds for ϕ ∈ L∞, and also for more general ϕ by limiting arguments provided that

one can obtain suitable bounds. Here W ∗
+ is the adjoint operator of W+. Note that −→γ (t)

admits the following representation

γ (t) = cos (ωt)P⊥f + sinωt

ω
P⊥g+

∫ t

0

sinω(t − s)

ω
P⊥F(s)ds

= W+ cos (|∇|t)W ∗
+ f +W+

sin |∇|t
|∇| W ∗

+ g+W+

∫ t

0

sin |∇|(t − s)

|∇| W ∗
+P

⊥F(s)ds

= I + II + III .

The Strichartz estimates for part II and III then follow directly from the Lp boundedness

(3.8) of W+ and the corresponding Strichartz estimates for free radiations. For the end-

point (q, r) = (2,∞), we only need to note in addition that P⊥ leaves the space of radial

functions invariant, since V is radial. It remains to consider I. Firstly we claim
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5998 H. Jia et al.

Claim 3.1. The operator ω which is initially defined in H2, satisfies

‖∇ϕ‖2
L2 �

∫
(ωϕ)2 � ‖∇ϕ‖2

L2 , ∀ϕ ∈ P⊥H2, (3.10)

and can be extended naturally as a linear isomorphism from P⊥Ḣ1 to P⊥L2. �

Let us assume this claim momentarily. Then the Strichartz estimate for part I is

easy to prove. By Claim 3.1, we can write P⊥f = ω−1f̃ for some f̃ ∈ P⊥L2. Thus

W+ cos (|∇|t)W ∗
+ f = W+ cos (|∇|t)W ∗

+ ω
−1f̃

= W+ cos (|∇|t)|∇|−1W ∗
+ f̃ ,

wherewe have used the fact thatW ∗
+ω

−1 = |∇|−1W ∗
+ on P⊥L2, which follows from the inter-

twining property (3.9) by suitable limiting arguments with the help of bounds (3.10) and

(3.8). Note that W ∗
+ f̃ ∈ L2, consequently |∇|−1W ∗

+ f̃ ∈ Ḣ1. Hence the Strichartz estimates

for part I follow straightforwardly from the corresponding estimates for free radiations

and the bound (3.8). �

Now we give a brief proof of Claim 3.1. The second part of the inequality (3.10)

is an easy consequence of the fact that ω is self adjoint and ω2 = P⊥(−� − V), and an

integration by parts argument. The first part of the inequality follows from the assump-

tion that −�−V has no zero eigenvalues or zero resonance. Hence ω can be extended as

a bounded operator from P⊥Ḣ1 to P⊥L2. Moreover ω has closed range due to the bound

(3.10). Since −�−V has no zero eigenvalues, we conclude that the range of P⊥(−�−V) is

dense in P⊥L2. Thus the range of ω which is bigger than the range of P⊥(−�− V) is also

dense in P⊥L2. Combining these two facts, we see that ω is indeed a linear isomorphism

from P⊥Ḣ1 to P⊥L2 and the claim is proved.

Our main goal in this section is to prove the following result.

Theorem 3.2. Let � be a dense open subset of Y such that equation (1.1) has only

finitely many radial steady states, all of which are hyperbolic. Suppose V ∈ � ⊂ Y .

Suppose
−→
U (t) is a radial finite energy solution to equation (1.1) which scatters to an

unstable steady state (φ, 0). Let

−k2
1 ≤ −k2

2 ≤ · · · ≤ −k2
n < 0 (3.11)
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Defocusing Energy Critical Wave Equation 5999

be the negative eigenvalues of −�−V +5φ4 restricted to radial functions (counted with

multiplicity) with normalized eigenfunctions ρ1, ρ2, . . . , ρn, respectively. Decompose

Ḣ1
rad × L2

rad(R
3) = Xs ⊕ Xu, (3.12)

where

Xs = {(u0,u1) ∈ Ḣ1
rad × L2

rad(R
3) : 〈kju0 + u1, ρj〉L2 = 0, for all 1 ≤ j ≤ n

}
, (3.13)

and

Xu = span
{
(ρj,kjρj), 1 ≤ j ≤ n

}
. (3.14)

Then there exist ε0 > 0, T sufficiently large, a ball Bε0((0, 0)) ⊂ Ḣ1
rad × L2

rad(R
3), and a

smooth mapping

� :
−→
U (T)+ (Bε0((0, 0)) ∩ Xs

) −→ Ḣ1
rad × L2

rad, (3.15)

satisfying �(
−→
U (T)) = −→

U (T), with the following property. Let M̃ be the graph of � and

set M = −→
S (−T)M̃. Then any solution to equation (1.1) with initial data (u0,u1) ∈ M

scatters to (φ, 0). Moreover, there is an ε1 with 0 < ε1 < ε0, such that if a solution −→u (t)
with initial data (u0,u1) ∈ Bε1(

−→
U (0)) ⊂ Ḣ1

rad × L2
rad(R

3) satisfies

‖−→u (t)− −→
U (t)‖Ḣ1×L2 < ε1 for all t ≥ 0, (3.16)

then (u0,u1) ∈ M. �

Proof. By assumption, there exists free radial radiation
−→
U L, such that

lim
t→∞ ‖−→U (t)− (φ, 0)− −→

U L(t)‖Ḣ1×L2 = 0. (3.17)

We divide our construction of the center-stable manifold into a series of steps:

Step 0: L6 decay for free waves.We observe that for any finite energy free radiation −→u L,

we have

‖uL(t)‖L6x → 0 as t → ∞. (3.18)

For smooth −→u L(0) with supp−→u L(0) � BR, we have

|uL(t,x)| ≤ C

t
χt−R≤|x|≤t+R, for t > R.
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6000 H. Jia et al.

Then (3.18) follows by direct calculation. For general initial data, (3.18) follows from

approximations by compactly supported smooth functions and the uniform bound

‖uL(t)‖L6(R3) ≤ C‖−→u L(0)‖Ḣ1×L2(R3).

Step 1: space-time estimates for U − φ. Denote h(t,x) = U(t,x) − φ(x), then h satisfies

the equation

htt −�h− V(x)h+ 5φ4h+ N(φ,h) = 0, (3.19)

where

N(φ,h) = (φ + h)5 − φ5 − 5φ4h.

Since
−→
U ∈ L∞

t ([0,∞), Ḣ1 × L2) and U ∈ L5
t L

10
x (I × R

3) for any finite interval I , by equation

(1.1) and Strichartz estimate (3.1) we seeU ∈ L2
t L

∞
x (I×R

3). By standard elliptic estimates,

we know that φ ∈ C1(R3)(see also Appendix A), hence h ∈ L2
t L

∞
x (I × R

3) for any finite time

interval I . In what follows, we will show that

‖h‖L2t L∞
x ([0,∞)×R3) < ∞.

Recall that ρ1, . . . , ρn are the n radial L2 normalized orthogonal eigenfunctions of the

operator

Lφ = −�− V + 5φ4,

corresponding to the eigenvalues (counting multiplicity) −k2
1 ≤ . . .−k2

n < 0, respectively.

From Agmon’s estimate [1], we know these eigenfunctions decay exponentially. Writing

h = λ1(t)ρ1 + · · · + λn(t)ρn + γ ,

with γ ⊥ ρi for i = 1, · · · ,n, and plugging this into equation (3.19) we obtain

n∑
i=1

(λ̈i(t)− k2
i λi(t))ρi + γ̈ + Lφγ = N(φ,h). (3.20)

Denote by Pi the projection operator onto the i-th eigenfunction and by P⊥ the projec-

tion operator onto the continuous spectrum restricted to radial functions (Note that P⊥

can be written via Stone’s formula as integral of resolvant of Lφ, hence it is invariant
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Defocusing Energy Critical Wave Equation 6001

for radial functions. In particular, P⊥ does not involve any nonradial eigenfunctions),

that is,

Pi = ρi ⊗ ρi, P⊥ = I −
n∑
i=1

ρi ⊗ ρi

Applying the projection operators Pi and P⊥ to equation (3.20), we derive the following

equations for λi(t) and γ (t,x):

⎧⎪⎨⎪⎩
λ̈i(t)− k2

i λi(t) = PiN(φ,h) := Nρi
, i = 1, . . .n

γ̈ + ω2γ = P⊥N(φ,h) := Nc, ω :=
√
P⊥Lφ.

(3.21)

Note that the steady state φ decays at the rate O( 1
1+|x| ) as |x| → ∞, hence the potential in

the operator Lφ which is −V + 5φ4, decays like O( 1
(1+|x|)min{β,4} ). This decay rate is better

than the critical rate O( 1
|x|2 ) as |x| → ∞ (in fact −V + 5φ4 ∈ Y ). Hence we can apply the

result of Lemma 3.1 and conclude that Strichartz estimates as in Lemma 3.1 hold for

solutions of the equation

vtt + ω2v = F , (3.22)

with F radial and satisfying the compatibility condition P⊥F = F .

From (3.17) and (3.18), we know that

lim
t→∞ ‖h(t,x)‖L∞

t L6x ([T ,∞)×R3) = 0

Also using the fact that ρi decay exponentially, we have

|λi(t)| = |〈ρi|h〉| ≤ ‖ρi‖
L
6
5
‖h(t,x)‖L6x (R3) → 0 as t → ∞.

Let �(t) be the solution operator to the equation vtt + ω2v = 0, that is,

�(t − t0)(γ (t0), γ̇ (t0)) = cos(ω(t − t0))γ (t0)+ 1

ω
sin(ω(t − t0))γ̇ (t0).
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6002 H. Jia et al.

We claim:

Claim 3.2. Given any ε � 1, we have

‖�(t − T)(γ (T), γ̇ (T))‖L2t L∞
x ([T ,∞)×R3) ≤ ε.

for sufficiently large T > 0. �

We postpone the proof of Claim 3.2 to the end of the proof of Theorem 3.2.

Hence given a small positive number ε � 1, which will be chosen later, we can

pick a large time T = T(ε,U), such that

‖h‖L∞
t L6x ([T ,∞)×R3) ≤ ε (3.23)

‖λi(t)‖L∞
t ([T ,∞)) ≤ ε (3.24)

‖�(t − T)(γ (T), γ̇ (T))‖L2t L∞
x ([T ,∞)×R3) ≤ ε. (3.25)

From the equation for λi(t) in (3.21), we conclude that for t ≥ T

λi(t) = cosh(ki(t − T))λi(T)+ 1

ki
sinh(ki(t − T))λ̇i(T)

+ 1

ki

∫ t

T
sinh(ki(t − s))Nρi

(s)ds

=eki(t−T)

2

[
λi(T)+ 1

ki
λ̇i(T)+ 1

ki

∫ t

T
eki(T−s)Nρi

(s)ds
]

+ R(t),

where R(t) denotes a term that remains bounded for bounded Nρi
(s). By (3.24), we obtain

the following stability condition

λ̇i(T) = −kiλi(T)−
∫ ∞

T
eki(T−s)Nρi

(s)ds. (3.26)

Under this condition, we can rewrite equation (3.21) as the following integral equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi(t) = e−ki(t−T)

[
λi(T)+ 1

2ki

∫ ∞

T
eki(T−s)Nρi

(s)ds
]

− 1

2ki

∫ ∞

T
e−ki|t−s|Nρi

(s)ds,

γ (t) = cos(ω(t − T))γ (T)+ 1

ω
sin(ω(t − T))γ̇ (T)+

∫ t

T

sin(ω(t − s))

ω
Nc(s)ds.

(3.27)

For any time T̃ > T , we define

‖(λ1, . . . , λn, γ )‖X([T ,T̃)) : =
n∑
i=1

‖λi(t)‖L2t ([T ,T̃)) + ‖γ ‖L2t L∞
x ([T ,T̃)×R3).
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Defocusing Energy Critical Wave Equation 6003

With the help of Strichartz estimates from Lemma 3.1, by estimating (3.27), we get that

‖λi(t)‖L2([T ,T̃)) ≤C1

(
|λi(T)| + ‖Nρi

‖L1t ([T ,T̃)) + ‖Nρi
‖L∞

t ([T̃ ,∞))

)
, (3.28)

‖γ ‖L2t L∞
x ([T ,T̃)×R3) ≤C2

(
‖�(t − T)(γ (T), γ̇ (T))‖L2t L∞

x ([T ,T̃)×R3) + ‖Nc‖L1t L2x ([T ,T̃)×R3)

)
. (3.29)

Here that constant C1 depends on the L1 and L2 integrals of e−kit and the constant C2

depends only on the constants in the Strichartz estimates.

In (3.29), instead of estimating initial data (γ (T), γ̇ (T)) in Ḣ1 ×L2(R3) which may

not be small, we estimate its free evolution in L2
t L

∞
x ([T , T̃)×R

3). Consequently, we obtain

smallness because of (3.25).

Using the fact that

Nρi
= 〈ρi|N(φ,h)〉, Nρ =

∑
i

Nρi
ρi, Nc = N − Nρ

and the exponential decay of ρi, we have

‖Nρi
‖L1t ([T ,T̃)), ‖Nc‖L1t L2x ([T ,T̃)×R3) ≤ ‖N(φ,h)‖L1t L2x ([T ,T̃)×R3). (3.30)

Recall that

N(φ,h) = 10φ3h2 + 10φ2h3 + 5φh4 + h5.

Hence, by Hölder inequalities, we have

‖φ3h2‖L1t L2x ([T ,T̃)×R3) ≤ ‖φ‖3
L6x

‖h‖2
L2t L

∞
x ([T ,T̃)×R3)

,

‖φ2h3‖L1t L2x ([T ,T̃)×R3) ≤ ‖φ‖2
L6x

‖h‖2
L2t L

∞
x ([T ,T̃)×R3)

‖h‖L∞
t L6x ([T ,T̃)×R3),

‖φh4‖L1t L2x ([T ,T̃)×R3) ≤ ‖φ‖L6x‖h‖2
L2t L

∞
x ([T ,T̃)×R3)

‖h‖2
L∞
t L6x ([T ,T̃)×R3)

,

‖h5‖L1t L2x ([T ,T̃)×R3) ≤ ‖h‖2
L2t L

∞
x ([T ,T̃)×R3)

‖h‖3
L∞
t L6x ([T ,T̃)×R3)

,

Consequently

‖N(φ,h)‖L1t L2x ([T ,T̃)×R3) ≤ C‖h‖2
L2t L

∞
x ([T ,T̃)×R3)

, (3.31)
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6004 H. Jia et al.

and

‖Nρi
‖L∞

t ([T̃ ,∞)) ≤ C‖ρi‖L6x (R3)‖N(φ,h)‖
L∞
t L

6
5
x ([T̃ ,∞)×R3)

≤ C
5∑
i=2

‖φ‖5−i
L6x

‖h‖i
L∞
t L6x ([T̃ ,∞)×R3)

≤ Cε2. (3.32)

Using (3.23) and

‖h‖L2t L∞
x ([T ,T̃)×R3) � ‖(λ1, · · · , λn, γ )‖X([T ,T̃))

with constant depending on ‖ρi‖L∞
x , we can combine estimates (3.28),(3.29) with (3.24),

(3.25), and (3.30)–(3.32) to get

‖(λ1, · · · , λn, γ )‖X([T ,T̃)) ≤ K
{
ε + ‖(λ1, · · · , λn, γ )‖2

X([T ,T̃)) + ε2
}
,

Here K is some constant depending only on the constants in Strichartz inequalities for

equation (3.22) and ‖φ‖L6x and ‖ρi‖L∞
x . Since this estimate is true for all T̃ > T , we can

choose ε � 1, which can be achieved by taking T sufficiently large, such that

(4K2 + 1)ε < 1.

By a continuity argument, we then obtain that

‖(λ1, · · · , λn, γ )‖X([T ,∞)) ≤ 2Kε,

which implies that ‖h‖L2t L∞
x ([T ,∞)×R3) � ε. Using interpolation between the L∞

t L
6
x and L2

t L
∞
x

norms, we can also obtain

‖h‖Lqt Lrx ([T ,∞)×R3) � ε, for any admissible pair (q, r),q ≥ 2. (3.33)

In particular, we infer that h ∈ L5
t L

10
x ([0,∞)× R

3).

Step 2: construction of the center-stable manifold near a solution U. Given a radial

finite energy solution U to (1.1) satisfying (3.17), we consider another radial finite energy

solution u, with ‖−→U (T) − −→u (T)‖Ḣ1×L2(R3) small for a fixed large time T from Step 1 (we

may need to take T large to close the estimates below, which of course can be done). We

write u = U + η, then η satisfies the equation

ηtt −�η − V(x)η + (U + η)5 − U5 = 0, (t,x) ∈ (T ,∞).
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Defocusing Energy Critical Wave Equation 6005

Plugging in U = φ + h, we can further write the equation as

ηtt + Lφη + Ñ(φ,h, η) = 0, (t,x) ∈ (T ,∞), (3.34)

with

Ñ(φ,h, η) = (φ + h+ η)5 − (φ + h)5 − 5φ4η

We note that Ñ still contains terms linear in η. However, a closer inspection shows that

the coefficients of the linear terms in η decay in both space and time, and can be made

small if we choose T sufficiently large. First write

η = λ̃1(t)ρ1 + · · · + λ̃n(t)ρn + γ̃ , γ̃ ⊥ ρi

for i = 1, . . . ,n. We use similar arguments as in step 1 to obtain a solution η which

stays small for all positive times with given (λ̃1(T), . . . , λ̃n(T)) and (γ̃ , ˙̃γ )(T). We can

obtain equations for λ̃i, γ̃ similar to (3.21). Since we seek a forward solution which grows

at most polynomially, we obtain a similar necessary and sufficient stability condition

as (3.26)

˙̃
λi(T) = −kiλ̃i(T)−

∫ ∞

T
eki(T−s)Ñρi

(s)ds. (3.35)

Using equations (3.34) and (3.35) we arrive at the system of equations for λ̃i and γ̃ ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ̃i(t) = e−ki(t−T)

[
λ̃i(T)+ 1

2ki

∫ ∞

T
eki(T−s)Ñρi

(s)ds
]

− 1

2ki

∫ ∞

T
e−ki|t−s|Ñρi

(s)ds,

γ̃ (t) = cos(ω(t − T))γ̃ (T)+ 1

ω
sin(ω(t − T)) ˙̃γ (T)+ 1

ω

∫ t

T
sin(ω(t − s))Ñc(s)ds.

(3.36)

Define

‖(λ̃1, . . . , λ̃n, γ̃ )‖X :=
n∑
i=1

‖λ̃i(t)‖L∞
t ∩L2t ([T ,∞)) + ‖γ̃ ‖L∞

t Ḣ1∩L2t L∞
x ([T ,∞)×R3). (3.37)

Estimating system (3.36), we obtain that

‖λ̃i(t)‖L∞∩L2([T ,∞)) �|λ̃i(T)| + ‖Ñρi
‖L1t ([T ,∞)) � |λ̃i(T)| + ‖Ñ‖L1t L2x ([T ,∞)×R3), (3.38)

‖γ̃ ‖L∞
t Ḣ1∩L2t L∞

x ([T ,∞)×R3) �‖(γ̃ (T), ˙̃γ (T))‖Ḣ1×L2 + ‖Ñ‖L1t L2x ([T ,∞)×R3). (3.39)
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6006 H. Jia et al.

Recalling |Ñ | �
∑4

j=1 |φ4−jhjη| +∑k≥2,i+j+k=5 |φihjηk|, we have

‖φ3hη‖L1t L2x ([T ,∞)×R3) ≤ ‖φ‖3
L6x

‖h‖L2t L∞
x ([T ,∞)×R3)‖η‖L2t L∞

x ([T ,∞)×R3),

‖φ2h2η‖L1t L2x ([T ,∞)×R3) ≤ ‖φ‖2
L6x

‖h‖L∞
t L6x ([T ,∞)×R3)‖h‖L2t L∞

x ([T ,∞)×R3)‖η‖L2t L∞
x ([T ,∞)×R3),

‖φh3η‖L1t L2x ([T ,∞)×R3) ≤ ‖φ‖L6x‖h‖2
L∞
t L6x ([T ,∞)×R3)

‖h‖L2t L∞
x ([T ,∞)×R3)‖η‖L2t L∞

x ([T ,∞)×R3),

‖h4η‖L1t L2x ([T ,∞)×R3) ≤ ‖h‖3
L∞
t L6x ([T ,∞)×R3)

‖h‖L2t L∞
x ([T ,∞)×R3)‖η‖L2t L∞

x ([T ,∞)×R3).

Using (3.33), we get that∥∥∥∥∥∥
4∑
j=1

φ4−jhjη

∥∥∥∥∥∥
L1t L

2
x ([T ,∞)×R3)

� ε‖η‖L2t L∞
x ([T ,∞)×R3). (3.40)

The higher order terms are easier to estimate. We can always place h in L∞
t L

6
x , whence

∥∥∥∥∥∥
∑

k≥2,i+j+k=5

φihjηk

∥∥∥∥∥∥
L1t L

2
x ([T ,∞)×R3)

�
5∑

k=2

‖η‖k
L∞
t Ḣ1∩L2t L∞

x ([T ,∞)×R3)
. (3.41)

Since ‖η‖L∞
t Ḣ1∩L2t L∞

x ([T ,∞)×R3) � ‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,∞)), we can combine the preced-

ing estimates and get that

‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,∞)) ≤K

(
n∑
i=1

|λ̃i(T)| + ‖(γ̃ (T), ˙̃γ (T))‖Ḣ1×L2

)

+ Kε‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,∞)) + K
5∑

k=2

‖(λ̃1, · · · , λ̃n, γ̃ )‖kX([T ,∞)),

where K > 1 is a constant only depending on the constants in the Strichartz estimates

for equation (3.22) and ‖φ‖L6(R3) and ‖ρi‖L∞
x . This inequality implies that if we take ε = ε0

sufficiently small (which can be achieved by choosing T suitably large), and δ < ε0 with

n∑
i=1

|λ̃i(T)| + ‖(γ̃ (T), ˙̃γ (T))‖Ḣ1×L2 ≤ δ, (3.42)

such that Kε0 < 1
4 and K2δ < 1

32 , then the map defined by the right-hand side of system

(3.36) takes a ball B2Kδ(0) into itself. Moreover, we can check by the same argument

that this map is in fact a contraction. Thus for any given small (λ̃1(T), · · · λ̃n(T), γ̃ (T))
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Defocusing Energy Critical Wave Equation 6007

satisfying (3.42), we obtain a unique fixed point of (3.36). Then

u(t,x) := U(t,x)+
k∑
i=1

λ̃i(t)ρi + γ̃ (t,x)

solves the equation (1.1) on R
3 × [T ,∞), satisfying

‖−→u − −→
U ‖L∞

t ([T ,∞);Ḣ1×L2) ≤ Cδ (3.43)

with Lipschitz dependence on the data λ̃i(T) and (γ̃ (T), ˙̃γ (T)). Since the nonlinearity Ñ

only involves integer powers of η, we see that the integral terms in (3.36) have smooth

dependence on λ̃i, γ̃ . Hence we conclude that λ̃i(t), γ̃ (t,x) and the solution u(t,x) actually

have smooth dependence on the data.

By the estimates on λ̃i and γ̃ , we conclude in addition that

η =
n∑
i=1

λ̃i(t)ρi + γ̃ (t,x) ∈ L2
t L

∞
x ([T ,∞)× R

3),

hence −→u (t) scatters to the same steady state as
−→
U (t) which is (φ, 0).

We can now define

� :
−→
U (T)+ (Bε0((0, 0)) ∩ Xs

) −→ Ḣ1 × L2, (3.44)

as follows: for any (γ̃0, γ̃1) ∈ P⊥ (Ḣ1
rad × L2

rad(R
3)
)
and λ̃i ∈ R such that

ξ :=
n∑
i=1

λ̃i(ρi,−kiρi)+ (γ̃0, γ̃1)+ −→
U (T) ∈ −→

U (T)+ (Bε0((0, 0)) ∩ Xs

)
,

set

λ̃i(T) = λ̃i, for i = 1, . . . ,n and (γ̃ (T), ˙̃γ (T)) = (γ̃0, γ̃1).

Then with ˙̃
λi(T) given by (3.35), we define

�(ξ) :=
(

n∑
i=1

λ̃i(T)ρi + γ̃0,
n∑
i=1

˙̃
λi(T)ρi + γ̃1

)
+ −→
U (T).

If ε0 is chosen sufficiently small, then ˙̃
λi is uniquely determined by contraction mapping

in the above. We define M̃ as the graph of� and let M be
−→
S (−T)(M̃). We can then check

that �, M, M̃ verify the requirements of the theorem. Since
−→
S (T) is a diffeomorphism,
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6008 H. Jia et al.

M is a C1 manifold. We remark that due to the presence of radiations
−→
U L, the graph M̃

is in general not tangent to the center-stable subspace Xs.

Step 3: unconditional uniqueness. Now suppose that we are given a solution u to

equation (1.1), which satisfies

‖−→u − −→
U ‖L∞([0,∞);Ḣ1×L2) ≤ ε1 � ε0.

We need to show that −→u (T) ∈ M̃. We denote

η(t,x) = u(t,x)− U(t,x) =
n∑
i=1

λ̃i(t)ρi + γ̃ (t,x),

then −→η ∈ L∞
t ([0,∞); Ḣ1 × L2). By the fact that u,U are solutions to equation (1.1) and

Strichartz estimates, we see that η ∈ Lqt L
r
x(I × R

3) for any finite interval I ⊆ [0,∞) and

admissible pair (q, r), we get for any T̃ > T ,

‖λ̃i(t)‖L∞
t ([T ,∞)) + ‖ 
̃γ (t,x)‖L∞

t ([T ,∞);Ḣ1×L2) � ε1, (3.45)

λ̃i(t) ∈ L2([T , T̃)),
γ̃ (t,x) ∈ L2

t L
∞
x ([T , T̃)× R

3).

Notice the L∞ bound on λ̃i implies that the stability condition (3.35) must hold true, so

we are again reduced to considering system (3.36). Now we wish to show that λ̃i(t) ∈
L2([T ,∞)) and γ̃ (t,x) ∈ L2

t L
∞
x ([T ,∞)× R

3). To do this, we follow similar arguments as in

step 1. Define the norm

‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,T̃)) : =
n∑
i=1

‖λ̃i(t)‖L2t ([T ,T̃)) + ‖γ̃ ‖L2t L∞
x ([T ,T̃)×R3)

By estimating (3.36) similar to (3.28) and (3.29), we get

n∑
i=1

‖λ̃i(t)‖L2([T ,T̃)) + ‖γ̃ ‖L2t L∞
x ([T ,T̃)×R3) �

n∑
i=1

|λ̃i(T)| + ‖(γ̃ (T), ˙̃γ (T))‖Ḣ1×L2

+ ‖Ñ‖L1t L2x ([T ,T̃)×R3) + ‖Ñ‖
L∞
t L

6
5
x ([T̃ ,∞)×R3)

Recall we have h = U − φ, ‖h‖L2t L∞
x ([T ,∞)×R3) ≤ ε = ε0. Using the same estimate as in (3.40)

and (3.41) on the time interval [T , T̃), we obtain that

‖Ñ‖L1t L2x ([T ,T̃)×R3) � ε0‖η‖L2t L∞
x ([T ,T̃)×R3) +

5∑
k=2

‖η‖k
L∞
t Ḣ1∩L2t L∞

x ([T ,T̃)×R3)
,
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Defocusing Energy Critical Wave Equation 6009

and

‖Ñ‖
L∞
t L

6
5
x ([T̃ ,∞)×R3)

�
∑

i+j+k=5,k≥1

‖φ‖i
L6x

‖h‖j
L∞
t L6x ([T̃ ,∞)×R3)

‖η‖k
L∞
t L6x ([T̃ ,∞)×R3)

� ε1.

Hence

‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,T̃)) � ε1 + ε0‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,T̃)) + K
5∑

k=2

‖(λ̃1, · · · , λ̃n, γ̃ )‖kX [T ,T̃).

From this, by a continuity argument, we can conclude that

‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,∞)) ≤ lim inf
T̃→∞

‖(λ̃1, · · · , λ̃n, γ̃ )‖X([T ,T̃)) ≤ Cε1 < ε0,

and the contraction mapping theorem then implies −→u (T) ∈ M̃.

Step 4: summary.Let us sumupour construction as follows: consider anypoint (U0,U1) ∈
Mφ, which generates a solution U(t,x) to equation (1.1) satisfying (3.17). For sufficiently

large time T , we can construct a smooth graph M̃ of co-dimension n in

Bε0(
−→
U (T)) ∈ Ḣ1

rad × L2
rad

such that solutions starting from M̃ remain close to
−→
U (t) for all t ≥ T and scatter to

(φ, 0). The graph can also be parameterized smoothly by

λ̃1(T), · · · λ̃n(T) ∈ R, 
̃γ (T) ∈ P⊥(Ḣ1
rad × L2

rad),

in the following sense. For the parameters satisfying

n∑
i=1

|λ̃i(T)| + ‖(γ̃ (T), ˙̃γ (T))‖Ḣ1×L2 ≤ ε0

there exists a unique solution u to equation (1.1) on t ≥ T satisfying

u(T) = U(T)+
n∑
i=1

λ̃i(T)ρi + γ̃ (T ,x), P⊥u̇(T) = ˙̃γ (T)+ P⊥∂tU(T),

with the property that u(t) scatters to φ, and

‖−→u (t)− −→
U (t)‖L∞

t ([T ,∞),Ḣ1×L2) ≤ Cε0.
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6010 H. Jia et al.

Moreover, any solution that satisfies ‖−→u (t) − −→
U (t)‖Ḣ1×L2 < ε1 with some ε1 < ε0, for all

times t ≥ T necessarily starts on M̃. Using the solution flow
−→
S (t), we pull back our

construction to time 0, M = −→
S (−T)M̃, and the theorem is proved. �

Now we give a proof of Claim 3.2. Claim 3.2 will be proved as a consequence of

the following lemma.

Lemma 3.2. Let
−→
U L be a radial finite energy free radiation and (φ, 0) be a steady state

to equation (1.1). Recall that

ω = √P⊥(−�− V + 5φ4).

Let γ be the solution to ⎧⎨⎩ ∂ttγ + ω2γ = 0, in [T ,∞)× R
3,

−→γ (T) = P⊥(
−→
U L(T)).

(3.46)

For any ε > 0, if we take T = T(ε,
−→
U L) > 0 sufficiently large, then

‖γ ‖L2t L∞
x ([T ,∞)×R3) < ε. (3.47)

�

Proof. For a given ε > 0, fix 0 < δ � ε to be determined below. We can take a radial

smooth compactly supported (in space) free radiation
−→̃
U L such that

‖−→U L(0)− −→̃
U L(0)‖Ḣ1×L2(R3) ≤ δ. (3.48)

Let us assume that supp
−→̃
U L(0) � BR(0) for some R > 0. Hence by strong Huygens’

principle, for large time T we have supp
−→̃
U L(T) � BT+R\BT−R. Since

−→̃
U L is a free radiation,

we see that

∂ttŨ
L −�ŨL − VŨL + 5φ4ŨL = −VŨL + 5φ4ŨL, in (0,∞)× R

3. (3.49)

By the decay property of V , 5φ4 and the support property of ŨL, simple calculations

show that

lim
T→∞ ‖ − VŨL + 5φ4ŨL‖L1t L2x ([T ,∞)×R3) = 0.
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Defocusing Energy Critical Wave Equation 6011

Choose T sufficiently large, such that

‖ − VŨL + 5φ4ŨL‖L1t L2x ([T ,∞)×R3) ≤ δ. (3.50)

Note that −→v := −→γ − P⊥−→̃
U L solves

∂ttv + ω2v = −P⊥ (−VŨL + 5φ4ŨL
)
, (t,x) ∈ [T ,∞)× R

3,

with initial data −→v (T) = P⊥
(−→
U L(T)− P⊥−→̃

U L(T)
)
. By the bounds (3.48) and (3.50),

energy conservation for free radiation, and Strichartz estimates from Lemma 3.1, we

can conclude that

‖v‖L2t L∞
x ([T ,∞)×R3) ≤ Cδ. (3.51)

Since
−→̃
U L is a finite energy free radiation, if we choose T sufficiently large, we have

‖ŨL‖L2t L∞
x ([T ,∞)×R3) ≤ Cδ. (3.52)

Combining bounds (3.51) and (3.52), and fixing δ small, the lemma is proved. �

Now the proof of Claim 3.2 is easy. Note that due to the fact that

lim
T→∞ ‖−→U (T)− (φ, 0)− −→

U L(T)‖Ḣ1×L2(R3) = 0,

we see that the initial data for γ satisfies

lim
T→∞ ‖−→γ (T)− P⊥−→

U L(T)‖Ḣ1×L2(R3) = 0.

Hence the claim follows from the above lemma and Strichartz estimates.

4 Profile Decomposition and Channel of Energy Inequality

In this section, we recall some well-known properties of profile decompositions first

introduced in the context of wave equations by Bahouri and Gerard[3], and channel of

energy inequalities discovered by Duyckaerts, Kenig, and Merle [9, 10]. For both, we

require the versions adapted to the wave equation with a potential. We refer the reader

to [16] for proofs. We first recall the following perturbation result.
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6012 H. Jia et al.

Lemma 4.1. Let 0 ∈ I ⊂ R be an interval of time. Suppose ũ(t,x) ∈ Ct(I , Ḣ1(R3)) with

‖ũ‖L5t L10x (I×R3) ≤ M < ∞, ‖a‖
L5/4t L5/2x (I×R3)

≤ β < ∞ and e(t,x), f (t,x) ∈ L1
t L

2
x(I × R

3), satisfy

∂ttũ−�ũ+ a(t,x)ũ+ ũ5 = e, (4.1)

with initial data
−→̃
u (0) = (ũ0, ũ1) ∈ Ḣ1 × L2. Suppose for some sufficiently small positive

ε < ε0 = ε0(M ,β),

‖|e| + |f |‖L1t L2x (I×R3) + ‖(u0,u1)− (ũ0, ũ1)‖Ḣ1×L2 < ε. (4.2)

Then there is a unique solution u ∈ C(I , Ḣ1) with ‖u‖L5t L10x (I×R3) < ∞, satisfying the

equation

∂ttu−�u+ a(t,x)u+ u5 = f , (4.3)

with initial data −→u (0) = −→u (0) = (u0,u1). Moreover, we have the following estimate

sup
t∈I

‖−→u (t)− −→̃
u (t)‖Ḣ1×L2 + ‖u− ũ‖L5t L10x (I×R3) < C(M ,β)ε. (4.4)

�

Lemma 4.1 has the following implication concerning global existence and scat-

tering for defocusing energy critical wave equation with potential, decaying both in

space and time.

Lemma4.2. Let I be an interval of time anda ∈ L5/4
t L5/2

x ∩L1
t L

3
x(I×R

3), and f ∈ L1
t L

2
x(I×R

3),

with bounds ‖a‖
L5/4t L5/2x

+‖a‖L1t L3x ≤ M and ‖f ‖L1t L2x ≤ β. Then there exists a unique solution

u ∈ C(I , Ḣ1) ∩ L5
t L

10
x (I × R

3) to the equation

∂ttu−�u+ a(t,x)u+ u5 = f , (4.5)

with initial data (u0,u1) ∈ Ḣ1 × L2 (‖(u0,u1)‖Ḣ1×L2 ≤ E). Moreover, we have

‖u‖L5t L10x (I×R3) ≤ C(E,M ,β). (4.6)
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Defocusing Energy Critical Wave Equation 6013

Thus if I = R, then there exist solutions uL
+, u

L
− to free wave equation, such that

lim
t→+∞ ‖u(t)− uL

+(t)‖Ḣ1×L2 = 0, (4.7)

lim
t→−∞ ‖u(t)− uL

−(t)‖Ḣ1×L2 = 0. (4.8)

�

The following lemma shows that for potentials a ∈ L5/4
t L5/2

x (thus with space-time

decay), large or small profiles are essentially not influenced by the potential.

Lemma 4.3. Let a ∈ L5/4
t L5/2

x (R × R
3) and UL be a solution to the free wave equation

in R × R
3. Take parameters (λn, tn) with λn > 0, tn ∈ R. Assume one of the following

conditions holds:

1. tn ≡ 0, lim
n→∞(λn + 1

λn
) = ∞,

2. lim
n→∞

tn
λn

∈ {±∞}.

Let U be the nonlinear profile associated with UL, λn, tn. More precisely

∂ttU −�U + U5 = 0 inR × R
3, (4.9)

with
−→
U (0) = (UL(0), ∂tUL(0)) if tn ≡ 0; or with

lim
t→+∞ ‖−→U (t)− −→

UL(t)‖Ḣ1×L2 = 0, ( lim
t→−∞) (4.10)

if limn→∞ tn
λn

= −∞ (lim = ∞ respectively). Let un be the solution to the Cauchy problem

∂ttun −�un + a(t,x)un + u5
n = 0 inR × R

3, (4.11)

with −→u n(0) =
(

1

λ
1/2
n
UL(− tn

λn
, x
λn
), 1

λ
3/2
n
∂tUL(− tn

λn
, x
λn
)
)
. Then

lim
n→∞

(
sup
t∈R

‖−→un(t)− −→
Un(t)‖Ḣ1×L2 + ‖un − Un‖L5t L10x (R×R3)

)
= 0, (4.12)

where
−→
U n(x, t) =

(
1

λ
1/2
n
U( t−tn

λn
, x
λn
), 1

λ
3/2
n
∂tU(

t−tn
λn

, x
λn
)
)
. �

The following profile decomposition adapted for wave equation with potential

plays an important role in our analysis.
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6014 H. Jia et al.

Lemma 4.4. Let a ∈ L5/4
t L5/2

x ∩L1
t L

3
x(R×R

3). Suppose a radial sequence (u0n,u1n) ∈ Ḣ1×L2

is uniformly bounded and that we have the following linear profile decompositions (see

Bahouri-Gerard[3])

(u0n,u1n) = −→
U L

1(0)+
J∑
j=2

(
1

λ
1/2
jn

UL
j

(
− tjn
λjn

,
x

λjn

)
,

1

λ
3/2
jn

∂tU
L
j

(
− tjn
λjn

,
x

λjn

))
+ −→wJn(0), (4.13)

with the following properties:

UL
j andwJn are radial and solve the free wave equation for each j, J ;

either tjn ∈ R, λjn > 0, lim
n→∞

tjn
λjn

∈ {±∞} or tjn ≡ 0, lim
n→∞

(
λjn + 1

λjn

)
= ∞;

for j 
= j′, lim
n→∞

(
λjn

λj′n
+ λj′n
λjn

+ |tjn − tj′n|
λjn

)
= ∞;

write wJn(t,x) = 1

λ
1/2
jn

w̃j
Jn(

t − tjn
λjn

,
x

λjn
), then w̃j

Jn ⇀ 0, and wJn ⇀ 0, as n → ∞;

lim
J→∞ lim sup

n→∞
‖wJn‖L5t L10x (R×R3) = 0.

Let U1 satisfy

∂ttU1 −�U1 + a(t,x)U1 + U5
1 = 0, inR × R

3, (4.14)

with
−→
U 1(0) = −→

U L
1(0). Let Uj be the nonlinear profile associated to UL

j , λjn, tjn as defined

in Lemma 4.3 for j ≥ 2. Let un be the solution to

∂ttun −�un + a(t,x)un + u5
n = 0, inR × R

3, (4.15)

with −→u n(0) = (u0n,u1n). Then we have the following decomposition:

−→u n(t) = −→
U1(t)+

J∑
j=2

−→
U jn(t)+ −→wJn(t)+ −→r Jn(t), (4.16)

with

lim
J→∞ lim sup

n→∞

(
sup
t∈R

‖−→r Jn(t)‖Ḣ1×L2 + ‖rJn‖L5t L10x (R×R3)

)
= 0, (4.17)
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Defocusing Energy Critical Wave Equation 6015

where
−→
U jn(t,x) =

(
1

λ
1/2
jn

Uj(
t−tjn
λjn

, x
λjn
), 1

λ
3/2
jn

∂tUj(
t−tjn
λjn

, x
λjn
)

)
. Moreover, denoting U1n = U1, for

ρn > σn > 0 and θn ∈ R we have the following orthogonality property for 1 ≤ j 
= j′

lim
n→∞

∫
σn<|x|<ρn

∇Ujn∇Uj′n + ∂tUjn∂tUj′n(θn,x)dx = 0; (4.18)

lim
n→∞

∫
σn<|x|<ρn

∇Ujn∇wJn + ∂tUjn∂twJn(θn,x)dx = 0. (4.19)

�

We also need the following channel of energy inequality from [16], which was

proved with similar arguments as in Duyckaerts, Kenig and Merle [10].

Theorem 4.1. Suppose radial finite energy (u0,u1) 
≡ (φ, 0) for any steady state solution

(φ, 0) of equation (1.1). Let u ∈ C(R, Ḣ1) ∩ L5
t L

10
x ((−T ,T) × R

3) for any T ∈ (0,∞) be the

unique solution to equation (1.1) with −→u (0) = (u0,u1). Then there exists R > 0 and δ > 0

such that ∫
|x|≥R+|t|

[|∇u|2 + (∂tu)
2](t,x)dx ≥ δ > 0, (4.20)

for all t ≥ 0 or all t ≤ 0. �

This theorem tells us that if a radial solution to equation (1.1) is not a steady

state, then it must emit energy to spatial infinity. For applications below we also need

the following quantitative version of Theorem 4.1.

Theorem 4.2. Take V ∈ � ⊂ Y . Suppose that radial finite energy initial data (u0,u1) 
≡
(φ, 0) for any steady state solution of equation (1.1), with ‖(u0,u1)‖Ḣ1×L2(R3) ≤ M < ∞.

Let

u ∈ C(R, Ḣ1) ∩ L5
t L

10
x ((−T ,T)× R

3)

for any T ∈ (0,∞) be the unique solution to equation (1.1) with −→u (0) = (u0,u1). Denote

by � the set of radial steady states of equation (1.1) and define

δ := inf
{‖(u0,u1)− (φ, 0)‖Ḣ1×L2 : (φ, 0) ∈ �} > 0. (4.21)
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6016 H. Jia et al.

Then there exists c = c(δ,M ,V) > 0 such that∫
|x|≥|t|

[|∇u|2 + (∂tu)
2](t,x)dx ≥ c, (4.22)

for all t ≥ 0 or all t ≤ 0. �

Proof. Suppose the theorem fails. Then there exists a sequence of solutions un to equa-

tion (1.1) with initial data (u0n,u1n) ∈ Ḣ1 × L2(R3) satisfying ‖(u0n,u1n)‖Ḣ1×L2(R3) ≤ M ,

(4.21) with a uniform δ > 0, and

inf
t≥0

∫
|x|≥|t|

|∇un|2 + (∂tun)
2(t,x)dx + inf

t≤0

∫
|x|≥|t|

|∇un|2 + (∂tun)
2(t,x)dx ≤ 1

n
. (4.23)

By passing to a subsequence, we can assume that (u0n,u1n) admits the following profile

decomposition

(u0n,u1n) = −→
U L

1(0)+
J∑
j=2

(
1

λ
1/2
jn

UL
j (−

tjn
λjn

,
x

λjn
),

1

λ
3/2
jn

∂tU
L
j (−

tjn
λjn

,
x

λjn
)

)
+ −→wJn(0), (4.24)

with the following properties:

UL
j and wJn are radial and solve the free wave equation for each j, J ;

either tjn ∈ R, λjn > 0, lim
n→∞

tjn
λjn

∈ {±∞} or tjn ≡ 0, lim
n→∞

(
λjn + 1

λjn

)
= ∞;

for j 
= j′, lim
n→∞

(
λjn

λj′n
+ λj′n
λjn

+ |tjn − tj′n|
λjn

)
= ∞;

write wJn(t,x) = 1

λ
1/2
jn

w̃j
Jn(

t − tjn
λjn

,
x

λjn
), then w̃j

Jn ⇀ 0, and wJn ⇀ 0, as n → ∞;

lim
J→∞ lim sup

n→∞
‖wJn‖L5t L10x (R×R3) = 0.

Note that

‖V‖
L5/4t L5/2x ({(x,t): |x|≥|t|}) < ∞,

thus by finite speed of propagation we can apply Lemma 4.4 in the exterior light cone

{(x, t) : |x| ≥ |t|}, and obtain

−→u n(t) = −→
U1(t)+

J∑
j=2

−→
U jn(t)+ −→wJn(t)+ −→r Jn(t), for |x| ≥ |t| (4.25)
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Defocusing Energy Critical Wave Equation 6017

with

lim
J→∞ lim sup

n→∞

(
sup
t∈R

‖−→r Jn(t)‖Ḣ1×L2 + ‖rJn‖L5t L10x (R×R3)

)
= 0, (4.26)

where
−→
U jn(t,x) =

(
1

λ
1/2
jn

Uj(
t−tjn
λjn

, x
λjn
), 1

λ
3/2
jn

∂tUj(
t−tjn
λjn

, x
λjn
)

)
, and with Uj and U1 given as in

Lemma 4.3 and Lemma 4.4. Moreover, denoting U1n = U1, for ρn > σn > 0 and θn ∈ R we

have the following orthogonality property for 1 ≤ j 
= j′

lim
n→∞

∫
σn<|x|<ρn

∇Ujn∇Uj′n + ∂tUjn∂tUj′n(θn,x)dx = 0; (4.27)

lim
n→∞

∫
σn<|x|<ρn

∇Ujn∇wJn + ∂tUjn∂twJn(θn,x)dx = 0. (4.28)

If for some 2 ≤ j ≤ J , UL
j 
≡ 0, by results in [16] (see remark at the end of proof of

Lemma 4.6 in [16]) there exists some fixed ε > 0 such that∫
|x|≥|t|

|∇Ujn|2 + (∂tUjn)
2(t,x)dx ≥ ε > 0, (4.29)

for all t ≥ 0 or all t ≤ 0. Thus by the orthogonality property of profiles (4.27) and (4.28)

we have

inf
t≥0

∫
|x|≥|t|

|∇un|2 + (∂tun)
2(t,x)dx + inf

t≤0

∫
|x|≥|t|

|∇un|2 + (∂tun)
2(t,x)dx

≥ 1

2
inf
t≥0

∫
|x|≥|t|

|∇Ujn|2 + (∂tUjn)
2(t,x)dx + 1

2
inf
t≤0

∫
|x|≥|t|

|∇Ujn|2 + (∂tUjn)
2(t,x)dx

≥ ε

2
> 0

for all n sufficiently large. A contradiction with (4.23). Thus we must have UL
j ≡ 0 for

2 ≤ j ≤ J . The profile decompositions of (un0,un1) then simplify to this form:

(u0n,u1n) = −→
U L

1(0)+ −→wn(0). (4.30)

By the decomposition (4.25), Theorem 4.1 and orthogonality property of profiles, using

the same arguments as above, we conclude that
−→
U L

1(0)must be a steady state. Thus from

the bound (4.21) we have

‖−→wn(0)‖Ḣ1×L2(R3) ≥ δ. (4.31)
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6018 H. Jia et al.

By the channel of energy estimates for the linear wave equation, by the decomposition

(4.25), and the orthogonality property, we obtain

inf
t≥0

∫
|x|≥|t|

|∇un|2 + (∂tun)
2(t,x)dx + inf

t≤0

∫
|x|≥|t|

|∇un|2 + (∂tun)
2(t,x)dx

≥ 1

2
inf
t≥0

∫
|x|≥|t|

|∇wn|2 + (∂twn)
2(t,x)dx + 1

2
inf
t≤0

∫
|x|≥|t|

|∇wn|2 + (∂twn)
2(t,x)dx

≥ 1

2
δ > 0,

for all sufficiently large n. We thus again arrive at a contradiction with (4.23). The

theorem is proved. �

5 Center-Stable Manifold of Unstable Excited States

In this section, we show that any unstable excited state can only attract a finite

co-dimensional manifold of solutions and finish the proof of our main Theorem 1.3. We

first prove Theorem 5.1 which provides the key estimate on the energy of the radiation

term.

Before going into the technical details let us briefly outline themain ideas under-

lying the proof. By results in Section 3, we know that if a solution U(t) scatters to an

unstable excited state (φ, 0), then there exists a local finite co-dimensional center-stable

manifold around
−→
U (0), on which solutions scatter to the same excited state. We would

like to show the following in a small neighborhood of
−→
U (0): if the data (u0,u1) do not lie

on this local center-stable manifold, then the solution −→u (t)with initial data (u0,u1)will

scatter to a steady state with strictly less energy, thus not to (φ, 0). Then it is clear that

the set of initial data in Ḣ1 × L2(R3) for which solutions scatter to an unstable excited

state is a global finite co-dimensional manifold.

Note that the local center-stable manifold theorem 3.2 guarantees that the solu-

tion u(t) will exit a small ball centered at
−→
U (0). However after it exits the small ball,

we will lose control on the solution based on perturbative analysis alone. Thus we need

some global information about the future development of the solution u(t). The key

global information here is the channel of energy inequality. Roughly speaking we show

by a channel of energy argument that u(t)will emit at least some fixed amount of energy

more than solution starting from the center-stable manifold to spatial infinity, thus

leaving u(t) with less energy in a bounded region as t → ∞ than is required for it to

scatter to (φ, 0). This forces u(t) to scatter to a different steady state from (φ, 0). The

precise result is as follows.
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Defocusing Energy Critical Wave Equation 6019

Theorem 5.1. Let V ∈ � ⊆ Y . Suppose that radial finite energy solution
−→
U (t) to equa-

tion (1.1) scatters to an unstable excited state (φ, 0). Let M be the local center-stable

manifold around
−→
U (0) and let ε0, ε1 be as defined in Theorem 3.2. Then there exist ε

with 0 < ε < ε1 < ε0 and δ(ε1) � ε, such that for any solution u with radial finite energy

initial data (u0,u1) /∈ M with

‖(u0,u1)− −→
U0‖Ḣ1×L2 < ε,

we can find L > 0 such that∫
|x|≥t−L

[ |∇u|2
2

+ (∂tu)2

2

]
(t,x)dx ≥ E(−→U (t))− E((φ, 0))+ δ, for t ≥ L. (5.1)

Suppose −→u (t) scatters to (φ1, 0) ∈ � (the set of steady states). Then

E((φ1, 0)) < E((φ, 0)). (5.2)

�

Proof. By the local center-stable manifold theorem of Section 3, the locally defined

finite co-dimensional manifold M satisfies the property that any solution to equation

(1.1) with initial data on M scatters to (φ, 0). Moreover, if a solution −→u (t) with initial

data (u0,u1) ∈ Bε1(
−→
U 0) satisfies

‖−→u (t)− −→
U (t)‖Ḣ1×L2 < ε1 for all t ≥ 0, (5.3)

then (u0,u1) ∈ M. By shrinking ε1, if necessarywe can assume that the distance from any

other steady state to (φ, 0) is greater than 3ε1. Take ε < ε1 sufficiently small to be chosen

below. Since solution
−→
U (t) scatters to (φ, 0) as t → ∞, denoting by

−→
U L the scattered

linear wave, we have the property that

lim
t→∞ ‖−→U (t)− −→

U L(t)− (φ, 0)‖Ḣ1×L2 = 0. (5.4)

By (5.4), the fact that φ ∈ Ḣ1(R3) and UL ∈ L5
t L

10
x ([0,∞)× R

3), for any small δ1 > 0, we can

choose L > 0 and T1 > L sufficiently large such that for t ≥ T1 we have:

• (Closeness of
−→
U to

−→
U L + (φ, 0) and choice of the bounded region)

‖−→U (t)− −→
U L(t)− (φ, 0)‖Ḣ1×L2 + ‖φ‖Ḣ1(|x|≥L) ≤ δ1; (5.5)
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6020 H. Jia et al.

• (Most energy of the free radiation is exterior)∫
|x|≥t−T1+L

|∇x,tU
L|2(t,x)dx ≥

∫
R3

|∇t,xU
L|2(t,x)dx − δ1; (5.6)

• (Control on the Strichartz norm of the radiation) Let

D := {(x, t) : |x| ≤ T1 + L− t, 0 ≤ t ≤ T1}.

Then we have

‖UL‖L5t L10x ((0,∞)×R3\D) < δ1. (5.7)

We remark that (5.6) ensures that UL can essentially be taken as zero for our purposes

inside the region |x| ≤ t − T1 + L for t ≥ T1, which will be important to keep in mind

later, in order to distinguish the second piece of radiation.

By the continuous dependence of the solution to equation (1.1) with respect to

the initial data in Ḣ1 ×L2(R3) and by finite speed of propagation, if we take ε sufficiently

small and radial initial data (u0,u1) ∈ Ḣ1 × L2\M with ‖(u0,u1)− −→
U (0)‖Ḣ1×L2 < ε, then

‖−→u (T1)− −→
U (T1)‖Ḣ1×L2 (5.8)

can be made sufficiently small. Hence, noting that ‖V‖
L5/4t L5/2x (|x|≥|t|) is finite, we can apply

Lemma 4.1 to conclude that

‖−→u (t)− −→
U (t)‖Ḣ1×L2(|x|≥t−T1) ≤ δ1, for all t ≥ T1. (5.9)

(5.9) means that we can effectively identify −→u with
−→
U in the exterior region

|x| ≥ t − T1, t ≥ T1.

Hence by (5.5), we see

‖−→u (t)− −→
U L(t)‖Ḣ1×L2(|x|≥t−T1+L) ≤ 3δ1, (5.10)

that is, we can also identify −→u with
−→
U L in the exterior region |x| ≥ t − T1 + L, t ≥ T1.

At this point to avoid any possibility of confusion due to the many parameters,

we remark that δ1 and ε can be made as small as we wish, with T1, L depending on δ1

and
−→
U only. ε is a small free parameter below some threshold determined by δ1. The key

point for us is that ε1 > 0 is fixed no matter how small ε is chosen.
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Defocusing Energy Critical Wave Equation 6021

Since (u0,u1) 
∈ M, there exists T2 > 0 such that

‖−→u (T2)− −→
U (T2)‖Ḣ1×L2(R3) = ε1. (5.11)

Note that the choice of T1 and L does not depend on ε, thus by the continuous dependence

of solution on initial data in Ḣ1 × L2, if we choose ε sufficiently small, we can assume

T2 > L + T1 + 1. Let us consider the data −→u (T2) in more detail. By estimates (5.5) and

(5.11) we can write

−→u (T2) = (φ, 0)+ −→
U L(T2)+ −→w , (5.12)

where −→w ∈ Ḣ1 × L2 satisfies

2ε1 ≥ ε1 + δ1 ≥ ‖−→w‖Ḣ1×L2(R3) ≥ ε1 − δ1 ≥ ε1/2, (5.13)

if δ1 is chosen smaller than ε1
2 . Consider the solution ũ(t) to equation (1.1) with

−→̃
u (T2) = (φ, 0)+ −→w .

Then by the quantitative channel of energy inequality from Theorem 4.2, we infer that∫
|x|≥|t−T2|

|∇t,xũ|2(t,x)dx ≥ c(ε1) > 0, for all t ≥ T2 or all t ≤ T2. (5.14)

By bound (5.7) and Lemma 4.1 we obtain that for |x| ≥ |t − T2|

−→u (t,x) = −→
U L(t,x)+ −→̃

u (t,x)+ −→r (t,x), (5.15)

where the remainder term −→r satisfies

sup
t∈R

‖−→r (t)‖Ḣ1×L2(R3) ≤ Cδ1. (5.16)

We claim that the channel of energy inequality (5.14) holds for all t ≥ T2. Otherwise,

inequality (5.14) holds for all t ≤ T2. By (5.15) and (5.16), setting t = 0 and noting that

‖UL‖Ḣ1×L2(|x|>T2) can be made smaller than δ if T2 is large enough, we see that

‖(u0,u1)‖Ḣ1×L2(|x|≥T2) ≥ c(ε1)− Cδ1 >
1

2
c(ε1), (5.17)
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6022 H. Jia et al.

if δ1 is chosen sufficiently small, a contradiction with finiteness of
−→
U (0) in Ḣ1 × L2 and

‖(u0,u1) − −→
U (0)‖Ḣ1×L2 < ε for T2 large. Thus we have the following channel of energy

inequality ∫
|x|≥t−T2

|∇t,xũ|2(t,x)dx ≥ c(ε1) > 0, for all t ≥ T2. (5.18)

The estimate (5.10), decomposition (5.15) and estimate on the remainder term (5.16) imply

for t ≥ T2 ∫
|x|≥t−T1+L

|∇t,xũ|2(t,x)dx ≤ Cδ1, (5.19)

and consequently ∫
t−T1+L≥|x|≥t−T2

|∇t,xũ|2(t,x)dx ≥ c(ε1)− Cδ1. (5.20)

Hence

‖−→u ‖2
Ḣ1×L2(|x|≥t−T2)

≥ ‖−→U L‖2
Ḣ1×L2(|x|≥t−T1+L) + c(ε1)− Cδ1

≥ ‖−→U L‖2
Ḣ1×L2(R3)

+ c(ε1)− Cδ1,

if δ1 is chosen sufficiently small. Choose δ1 sufficiently small depending on ε1, (5.1) is

then proved with some δ = δ(ε1) > 0.

Now let −→u L(t) be the free radiation term for the solution −→u (t) as t → ∞. Then

lim
t→∞ ‖−→u (t)− −→u L(t)− (φ1, 0)‖Ḣ1×L2(R3) = 0. (5.21)

By the first part of Theorem 5.1,

‖−→u L‖2
Ḣ1×L2(R3)

≥ lim
t→∞ ‖−→u ‖2

Ḣ1×L2(|x|≥t−T2) ≥ ‖−→U L‖2
Ḣ1×L2(R3)

+ c(ε1). (5.22)

Note that

‖−→U L‖2
Ḣ1×L2 = E(−→U )− E(φ, 0);

‖−→u L‖2
Ḣ1×L2 = E(−→u )− E(φ1, 0).
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Defocusing Energy Critical Wave Equation 6023

If ‖−→u (0)− −→
U (0)‖Ḣ1×L2(R3) is chosen small, by (5.22) we conclude

E(φ1, 0) < E(φ, 0). (5.23)

The theorem is proved. �

Proof of Theorem 1.3. We only consider the case in which (φ, 0) is unstable, the case of

(φ, 0) being stable can be handled using standard perturbation arguments. Since in some

small neighborhood of any point
−→
U (0) on Mφ, Mφ coincides with the local center-stable

manifold M of co-dimension n which we constructed in Section 3 by Theorem 5.1, Mφ

is thus a global manifold of co-dimension n. The path-connectedness follows from the

following theorem. �

Theorem 5.2. For any unstable excited state (φ, 0), the corresponding center-stable

manifold Mφ is path connected. �

Proof. Given data (u0,u1), (ũ0, ũ1) ∈ Mφ, we denote the corresponding solutions by

u, ũ. Write h = u − φ, � = ũ − φ. Repeat step 0 and step 1 in the proof of Theorem 3.2.

Then given any ε � 1, we can find T = T(ε,u, ũ), such that

‖h‖L2t L∞
x ∩L∞

t L6x ([T ,∞)×R3), ‖�‖L2t L∞
x ∩L∞

t L6x ([T ,∞)×R3) ≤ ε. (5.24)

Now we seek a function w(θ , t,x) of the form

w(θ , t,x) = (1 − θ)u+ θũ+ η

= φ + (1 − θ)h+ θ�+
n∑
i=1

λi(θ , t)ρi + γ (θ , t,x) (5.25)

such that for all θ ∈ [0, 1], γ (θ , t,x) ⊥ ρi, i = 1, . . . ,n andw(θ , t,x) is a solution to equation

(1.1) that scatters to φ.

For θ ∈ [0, 1] fixed, the equation satisfied by η =∑n
i=1 λi(θ , t)ρi + γ (θ , t,x) is:

ηtt −�η − V(x)η + 5φ4η + N(θ ,h, �,φ, η) = 0,

where

N(θ ,h, �,φ, η) = (φ + (1 − θ)h+ θ�+ η)5 − (1 − θ)(φ + h)5 − θ(φ + �)5 − 5φ4η.
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6024 H. Jia et al.

Now we can repeat the stability condition (3.35) and obtain the reduced system of the

form (3.36).

In N(θ ,h, �,φ, η), the terms independent of η are of the form

(φ + (1 − θ)h+ θ�)5 − (1 − θ)(φ + h)5 − θ(φ + �)5 =
∑

i+j+k=5,i≤3

C(θ , i, j,k)φihj�k.

Notice that there are no terms φ5 or φ4h,φ4�.

Also, the linear term of η in N(θ ,h, �,φ, η) is

5(φ + (1 − θ)h+ θ�)4η − 5φ4η

hence all linear terms involve a factor of h or �.

Nowwe can repeat estimates (3.38),(3.39), then (3.40) for the linear term in η, (3.41)

for higher order terms in η. We also have the following estimate on terms independent

of η ∥∥∥∥∥∥
∑

i+j+k=5,i≤3

C(θ , i, j,k)φihj�k

∥∥∥∥∥∥
L1t L

2
x ([T ,∞)×R3)

� ε2

For example, one checks that

‖φ3h2‖L1t L2x ([T ,∞)×R3) ≤ ‖φ‖3
L6‖h‖2

L2t L
∞
x

≤ ε2

using (5.24). To sum up, using the X norm defined in (3.37), we conclude that

‖(λ1, · · · , λn, γ )‖X([T ,∞)) ≤Kε2 + K

(
n∑
i=1

|λi(θ ,T)| + ‖(γ (θ ,T), γ̇ (θ ,T))‖Ḣ1×L2

)

+ Kε‖(λ1, · · · , λn, γ )‖X([T ,∞)) + K
5∑

k=2

‖(λ1, · · · , λn, γ )‖kX([T ,∞)),

where K is some absolute constant.

Moreover, in a similar fashion one sees that the difference of two solutions sat-

isfies a similar estimate in which the first two terms disappear. Using the contraction

mapping principle, we conclude that for sufficiently small data

n∑
i=1

|λi(θ ,T)| + ‖(γ (θ ,T), γ̇ (θ ,T))‖Ḣ1×L2 ≤ δ
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Defocusing Energy Critical Wave Equation 6025

there is a solution w as in (5.25) which solves (1.1). We can also check that w scatters

to φ.

In particular, let us take λi(θ ,T) = 1
nδθ(1 − θ) and 
γ (θ ,T ,x) = 
0. We claim that

the corresponding solution w(θ , t,x) satisfies the following relation

w(0, t,x) = u(t,x), w(1, t,x) = ũ(t,x), for all t ∈ R. (5.26)

In fact, notice that λi(0,T) = 0, 
γ (0,T ,x) = 
0 implies λi(0, t) = 0, 
γ (0, t,x) = 
0 for t ≥ T ,

which further impliesw(0, t,x) = u(t,x), t ≥ T . Similarly we havew(1, t,x) = ũ(t,x), t ≥
T . Then (5.26) follows from the uniqueness of solutions to equation (1.1).

Hence { 
w(θ , 0,x), θ ∈ [0, 1]} is a path in Mφ connecting the two data

(u0,u1), (ũ0, ũ1). �

Appendix A: Some elliptic estimates

We begin with the following lemma.

Lemma A.1. Denote by B1 the ball of radius 1 in R
3. Let V ∈ L∞(B1) and λ > 0. Suppose

u ∈ Ḣ1 ∩ L6(B1) is a weak solution to

−�u− Vu+ λu5 = 0, in B1, (A.1)

in the sense of distributions. Then u ∈ L∞(B 1
2
) and

‖u‖L∞(B 1
2
) ≤ C(‖V‖L∞(B1))‖u‖L2(B1). (A.2)

�

Remark A.1. The assumption on the regularity of V can be significantly relaxed to

V ∈ Lq with q > 3
2 . For the sake of simplicity, we shall not prove the most general

version. The proof is based on DeGiorgi-Nash iteration arguments. �

Proof. Assume u is not identically zero. By multiplying a positive constant to u, we

can assume in addition that ‖u‖L2(B1) = 1. u still satisfies equation (A.1) with possibly

a different λ in the equation. Fixing an M > 1 to be determined later, we need to show
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6026 H. Jia et al.

‖u‖L∞(B 1
2
) ≤ M . For each integer k ≥ 1, we define

rk = 1

2
+ 1

2k
;

ck =
(
1 − 1

2k

)
M .

For each k ≥ 2, we fix a smooth nonnegative cutoff function ηk such that ηk|Brk ≡ 1 and

supp ηk � Brk+rk−1
2

, with 0 ≤ ηk ≤ 1 and |∇ηk| ≤ C2k. By a sign change, it suffices to prove

that u(x) ≤ M for x ∈ B 1
2
. Multiplying equation (A.1) with (u − ck)+ηk and integrating,

we get that ∫
B1

∇(u− ck)+∇ ((u− ck)+ηk) dx −
∫
B1

V(u− ck)+ · (u− ck)+ηk dx

−
∫
B1

ckV(u− ck)+ηk dx + λ

∫
B1

u5(u− ck)+ηk dx = 0,

which implies that∫
Brk

|∇(u− ck)+|2 + (u− ck)
2
+ dx

≤ C(‖V‖L∞(B1) + 1)
∫
B rk+rk−1

2

(u− ck)
2
+ dx +

+ ‖V‖L∞(B1)ck

∫
B rk+rk−1

2

(u− ck)+ dx + C4k
∫
B rk+rk−1

2

(u− ck)
2
+ dx.

Thus,

(∫
Brk

(u− ck)
6
+ dx

) 1
3

≤ C(‖V‖L∞(B1) + 1)4k
∫
Brk−1

(u− ck−1)
2
+ dx +

+ ‖V‖L∞ck

⎛⎜⎝∫
B rk+rk−1

2

(u− ck)
2
+ dx

⎞⎟⎠
1
2 ∣∣∣{x ∈ Brk+rk−1

2
: u(x) > ck}

∣∣∣ 12 .
Note that by Chebyshev inequality we have∣∣∣{x ∈ Brk+rk−1

2
: u(x) > ck}

∣∣∣ ≤ 1

(ck − ck−1)2

∫
Brk−1

(u− ck−1)
2
+ dx.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/19/5977/3061082 by Yale U
niversity, C

ushing/W
hitney M

edical Library user on 01 June 2022



Defocusing Energy Critical Wave Equation 6027

Hence, we get that

(∫
Brk

(u− ck)
6
+ dx

) 1
3

≤ C(‖V‖L∞(B1) + 1)4k
∫
Brk−1

(u− ck−1)
2
+ dx +

+ ‖V‖L∞
ck

ck − ck−1

∫
Brk−1

(u− ck−1)
2
+ dx

≤ C(‖V‖L∞(B1) + 1)4k
∫
Brk−1

(u− ck−1)
2
+ dx.

Note that ∫
Brk

(u− ck)
6
+ dx ≥

∫
Brk+1

(u− ck+1)
2
+ · (ck+1 − ck)

4 dx.

Summarizing the above inequalities, we obtain

(∫
Brk+1

(u− ck+1)
2
+ dx

) 1
3

≤ C(‖V‖L∞(B1) + 1)24k

∫
Brk−1

(u− ck−1)
2
+ dx, for all k ≥ 2. (A.3)

Denote

εk :=
(∫

Brk

(u− ck)
2
+ dx

) 1
3

, (A.4)

then equation (A.3) can be written as

εk+1 ≤ C116
kε3k−1 ≤ (C116)

kε3k−1, (A.5)

where we have suppressed the dependence of C1 > 1 on V . Recall that a routine energy

inequality implies ‖∇u‖L2(B 3
4
) ≤ C‖u‖L2(B1) = C. Hence, if we choose M sufficiently large,

by the Hölder and Chebyshev inequalities, we can assume ε2, ε3 satisfy

ε2, ε3 ≤ C
1

M
1
3

≤ 1

(48C1)6
. (A.6)

Then from the iterative inequality (A.5) we can prove by induction that εk ≤ 1
(48C1)k+3 for

all k ≥ 2. Hence we have

lim
k→∞

∫
Brk

(u− ck)
2
+ dx = 0. (A.7)
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6028 H. Jia et al.

Note that rk → 1
2 and ck → M as k → ∞, thus we conclude u(x) ≤ M for x ∈ B 1

2
. The

lemma is proved. �

Now we are ready to prove the main result on the regularity and decay of steady

states to equation (1.1).

Theorem A.1. Let V ∈ Y . Suppose u ∈ Ḣ1(R3) ∩ L6(R3) is a steady state solution to

equation (1.1), that is, u solves

−�u− Vu+ u5 = 0 in R
3, (A.8)

in the sense of distributions. Then u ∈ W2,p
loc (R

3) for any 1 < p < ∞, and

|u(x)| ≤ C

(1 + |x|) , x ∈ R
3. (A.9)

�

Proof. By Lemma A.1, we see u ∈ L∞(R3). Then theW2,p
loc estimates follow from standard

elliptic regularity theory. Let us now turn to the proof of the decay estimate (A.9). For

any 2R = |x0| > 2, set v(x) := R
1
2u(Rx + x0). Then v solves

−�u− VR,x0u+ u5 = 0, in B1,

where VR,x0 = R2V(Rx+x0). Since V ∈ Y with sup
x∈R3

(1+ |x|)β |V(x)| < ∞ for some β > 2, we

see that ‖VR,x0‖L∞(B1) ≤ ‖V‖Y . Thus by Lemma A.1,

|v(0)| ≤ ‖v‖L2(B1) ≤ C‖v‖L6(B1) ≤ C‖u‖L6({|x|≥R/2}).

Hence by rescaling and the fact that x0 is arbitrary, we see that

|u(x)| = o

(
1

(1 + |x|) 12

)
, as |x| → ∞.

Now choose R > 1 sufficiently large, and set v(x) = R
1
2u(Rx), then v|∂B1 = R

1
2u|∂BR is

small, and VR := R2V(Rx) is small in the exterior of B1, in the sense that

sup
|x|≥1

|(1 + |x|)βVR(x)| < εR → 0, as R → ∞.
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Then for sufficiently large R, by a standard perturbation argument one constructs a

solution ṽ to the equation

−�ṽ − VRṽ + ṽ5 = 0, in BcR, (A.10)

with the boundary condition ṽ|∂B1 = v|∂B1 , with the estimates

|ṽ(x)| ≤ cR
(1 + |x|) , for |x| ≥ 1. (A.11)

Since both v and ṽ are small solutions in Ḣ1 to equation (A.10) with the same boundary

condition, we conclude v = ṽ. Hence v also satisfies (A.11). Scaling back to u, we see

that u satisfies

|u(x)| ≤ C

(1 + |x|) , for x ∈ R
3. (A.12)

The theorem is proved. �

Appendix B: Endpoint Radial Strichartz Estimate

In this appendix, we give a proof of Theorem 3.1 in the radial setting. We only need

to prove the endpoint case, since other cases are known from [13]. In the case of the

homogeneous equation, Klainerman and Machedon [20] first observed that the endpoint

case (q, r) = (2,∞) holds true for data of the form (v(0),vt(0)) = (0,g) for radial function

g. Here we extend the result to the inhomogeneous equation with general radial data.

Theorem B.1. Let v be a finite energy solution to the 3d wave equation

(∂tt −�)v = F

with initial data (v(t0), ∂tv(t0)) = (f ,g) ∈ Ḣ1 × L2(R3) and assume that f ,g, andF are

radially symmetric. Then we have the estimate

‖v‖L2t L∞
x (R×R3) ≤ C(q, r)

(
‖(f ,g)‖Ḣ1×L2 + ‖F‖L1t L2x (R×R3)

)
, (B.1)

�

Proof. The solution takes the form

v(t,x) = cos(|∇|t)f + 1

|∇| sin(|∇|t)g+
∫ t

0

sin(|∇|(t − s))

|∇| F(s)ds.
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Case 1: f = 0,F = 0, this was proved in [20] using the explicit formula

v(t, r) = c

r

∫ t+r

|t−r|
g(ρ)ρdρ, t > 0.

Denote M(·) to be the 1d maximal function defined as

M(f )(x) = sup
x∈I

1

|I |
∫
I
|f |

for any interval I ⊂ R. Extending g to be an even function defined on R, we then have

sup
r>0

|v| ≤ C sup
r>0

∣∣∣∣1r
∫ t+r

|t−r|
|g(ρ)ρ|dρ

∣∣∣∣ ≤ CM[g(ρ)ρ](t).

This is obvious for r < t, while for r > t, notice that [t− r, t+ r] is a larger interval than

[r − t, t + r], hence the term in the middle is still bounded by maximal function.

Using the Hardy-Littlewood maximal inequality [23], we get that

‖ sup
r>0

|v|‖L2t (R+) ≤ C‖M[g(ρ)ρ](t)‖L2t (R+) ≤ C‖g(ρ)ρ‖L2(R) = C‖g‖L2x (R3).

By time reversibility, we have the same estimate when integrating on t ∈ (−∞, 0].
We rewrite the estimate in the following form∥∥∥∥ 1

|∇| sin(|∇|t)g
∥∥∥∥
L2t L

∞
x (R×R3)

� ‖g‖L2(R3). (B.2)

Case 2: f = g = 0. Using (B.2) and Minkowski inequality, we immediately get∥∥∥∥∫ t

0

sin(|∇|(t − s))

|∇| F(s)ds

∥∥∥∥
L2t L

∞
x (R×R3)

�
∫ ∞

0

∥∥∥∥χ[0,t](s)
sin(|∇|(t − s))

|∇| F(s)

∥∥∥∥
L2t L

∞
x (R×R3)

ds

�
∫ ∞

0
‖F(s)‖L2(R3)ds = ‖F‖L1t L2x (R×R3).

Case 3: g = 0,F = 0. For simplicity, we prove our estimates for Schwartz function f , and

the estimates for general f ∈ Ḣ1
rad follow by approximation.

In the radial case, we have the following explicit expression for v:

v = ∂t
1

r

∫ r+t

|t−r|
f (ρ)ρ dt = 1

r
[f (r + t)(r + t)− f (|r − t|)(t − r)], t > 0. (B.3)

As a first step we bound

sup
0<r<t

|v(t, r)| ≤ sup
0<r<t

1

r

∣∣∣∣∫ t+r

t−r
(ρf (ρ))′dρ

∣∣∣∣ � M[(ρf (ρ))′](t).
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Applying Hardy-Littlewood maximal inequality and Hardy’s inequality [23], we get

‖ sup
0<r<t

|v|‖L2t (R+) �‖f (ρ)+ ρf ′(ρ)‖L2(R+)

�
∥∥∥∥ f

|x|
∥∥∥∥
L2(R3)

+ ‖∇f ‖L2(R3) � ‖∇f ‖L2(R3). (B.4)

Next if r > t we claim that

‖ sup
ρ>t

|f (ρ)|‖2
L2t (R

+) �
∫ ∞

0
|f ′(ρ)|2ρ2dρ. (B.5)

Dualizing (B.5) we see that it is equivalent to

∣∣∣∣∫∫
ρ>t>0

∫ ∞

ρ

f ′(w)dw h(t, ρ)dρdt

∣∣∣∣ = ∣∣∣∣∫ ∞

0
wf ′(w)

[
1

w

∫∫
w>ρ>t>0

h(t, ρ)dρ dt
]
dw

∣∣∣∣
� ‖f ′(w)w‖L2w (R+)‖h‖L2t L1ρ (R+×R). (B.6)

So we need to prove that∥∥∥∥ 1

w

∫∫
w>ρ>t>0

h(t, ρ)dρ dt

∥∥∥∥
L2w (R+)

� ‖h‖L2t L1ρ (R+×R),

by change of variables t = wτ , we have

∥∥∥∥∫∫
w>ρ>wτ>0

|h(wτ , ρ)|dρ dτ
∥∥∥∥
L2w (R+)

�
∥∥∥∥∫ 1

0

∫ ∞

0
|h(wτ , ρ)|dρ dτ

∥∥∥∥
L2w (R+)

�
∫ 1

0

∥∥∥∥∫ ∞

0
|h(t, ρ)|dρ

∥∥∥∥
L2t (R

+)

dτ√
τ

�‖h‖L2t L1ρ (R+×R)

as we claimed. Thus we proved (B.5) whence∥∥∥∥sup
r>t>0

1

r
|f (r + t)|(r + t)

∥∥∥∥
L2t (R

+)
� ‖∇f ‖L2x . (B.7)

Next we will prove that ∥∥∥∥sup
r>t>0

1

r
|f (r − t)|(r − t)

∥∥∥∥
L2t (R

+)
� ‖∇f ‖L2x . (B.8)
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By the change of variables r = t(ρ + 1), this is equivalent to

∥∥∥∥sup
ρ>0

ρ

1 + ρ
|f (tρ)|

∥∥∥∥
L2t (R

+)
�
(∫ ∞

0
|f ′(ρ)|2ρ2dρ

) 1
2

.

By duality, this is equivalent to∣∣∣∣∫ ∞

0

∫ ∞

0

ρ

1 + ρ

∫ ∞

tρ
f ′(w)dw h(t, ρ)dρ dt

∣∣∣∣ � ‖f ′(w)w‖L2w (R+)‖h‖L2t L1ρ (R+×R),

or ∣∣∣∣∫ ∞

0
wf ′(w)

[
1

w

∫∫
w>tρ>0

ρ

1 + ρ
h(t, ρ)dρ dt

]
dw

∣∣∣∣ � ‖f ′(w)w‖L2w (R+)‖h‖L2t L1ρ (R+×R).

So we only need to show that∥∥∥∥ 1

w

∫∫
w>tρ>0

ρ

1 + ρ
h(t, ρ)dρ dt

∥∥∥∥
L2w (R+)

� ‖h‖L2t L1ρ (R+×R).

By the change of variables t = τw∥∥∥∥ 1

w

∫∫
w>tρ

ρ

1 + ρ
h(t, ρ)dρ dt

∥∥∥∥
L2w (R+)

=
∥∥∥∥∫∫

1>τρ

ρ

1 + ρ
h(τw, ρ)dρ dτ

∥∥∥∥
L2w (R+)

�
∥∥∥∥∥
∫ ∞

1

∫ 1
ρ

0
|h(τw, ρ)|dτ dρ

∥∥∥∥∥
L2w (R+)

+
∥∥∥∥∥
∫ 1

0

∫ 1
ρ

0
ρ|h(τw, ρ)|dτ dρ

∥∥∥∥∥
L2w (R+)

�
∥∥∥∥∫ 1

0

∫ ∞

0
|h(τw, ρ)|dρ dτ

∥∥∥∥
L2w (R+)

+
∥∥∥∥∥
∫ ∞

0

∫ min( 1τ ,1)

0
ρ|h(τw, ρ)|dρ dτ

∥∥∥∥∥
L2w (R+)

�
∫ 1

0
‖h‖L2t L1ρ (R+×R)

dτ√
τ

+
∥∥∥∥∫ ∞

0

∫ ∞

0

1

1 + τ
|h(τw, ρ)|dρ dτ

∥∥∥∥
L2w (R+)

� ‖h‖L2t L1ρ (R+×R) +
∫ ∞

0

1

1 + τ
τ− 1

2dτ‖h‖L2t L1ρ (R+×R)

� ‖h‖L2t L1ρ (R+×R)

Hence combining (B.3) and (B.7), (B.8), we deduce

‖ sup
r>t

|v|‖L2t (R+) � ‖∇f ‖L2(R3).
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Together with (B.4) we have proved

‖v‖L2t L∞
x (R+×R3) � ‖∇f ‖L2(R3).

By time reversibility, we get

‖v‖L2t L∞
x (R×R3) � ‖∇f ‖L2(R3)

and we are done.a �
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