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In this article, we continue our study [16] on the long time dynamics of radial solutions
to defocusing energy critical wave equation with a trapping radial potential in 3 + 1
dimensions. For generic radial potentials (in the topological sense), there are only finitely
many steady states which might be either stable or unstable. We first observe that there
can be stable excited states (i.e., a steady state which is not the ground state) if the
potential is large and attractive, although all small excited states are unstable. We prove
that the set of initial data for which solutions scatter to any one unstable excited state
forms a finite co-dimensional connected C' manifold in energy space. This amounts
to the construction of the global path-connected, and unique, center-stable manifold
associated with, but not necessarily close to, any unstable steady state. In particular,
the set of data for which solutions scatter to unstable states has empty interior in the
energy space, and generic radial solutions scatter to one of the stable steady states.
Our main tools are (1) near any given finite energy radial initial data (uo, u;) for which
the solution u(t) scatters to some unstable steady state ¢ we construct a C! manifold
containing (ug, u;) with the property that any solution starting on the manifold scatters

to ¢; moreover, any solution remaining near the manifold for all positive times lies on
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the manifold and (2) an exterior energy inequality from [9, 10, 16]. The latter is used to
obtain a result in the spirit of the one-pass theorem [22], albeit with completely different

techniques.

1 Introduction

Fix 8 > 2. Define

xeR3

Y = {V € C(R® : V radial and sup(l + |x))?|V(x)| < oo},

with the natural norm

IVIly := sup(1 + x|V (x)].

xeR3

We study solutions to
du—Au—Vu+u®=0, (1.1)

with initial data U (0) = (uo, u1) € H' x L2(R®). Since for a short time, the term Vu can be
considered as a small perturbation, by adaptations of results in [3, 14, 15, 25] we know

for any initial data (uo, u;) € H' x L?(R®), there exists a unique solution
u(t) € C([0,00), H") NLIL([0, T) x R®)

for any T < oo to equation (1.1). Moreover, the energy

E(U @) = f

RrR3

[Vul?  (u)? Vu? ub
- —+ — | (x,t)dx
[ 7t >t (x, )
is constant for all time. Our main interest in this work is the long time behavior of u(t)
under radial symmetry. If the operator —A — ¥ has negative eigenvalues, equation (1.1)

admits a nontrivial ground state Q > 0, which is the global minimizer of

[ IV Ve ¢
J("”"/RS[ o T —i—E]dX.

It has negative energy. The linearized operator around Q

Lo:=—A—-V+50*
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has no negative or zero eigenvalues, and no zero resonance. Consequently by well-known
dispersive estimates for £, we know Q is asymptotically stable: solutions with ini-
tial data close to (Q,0) will scatter to (Q,0). We remark that in our work by generic
choice of potentials, all steady states are hyperbolic (This means that the linearized
operator around the steady state has neither zero eigenvalues nor zero resonance.) and
consequently spectral stability implies asymptotic stability by well-known dispersive
estimates for the associated linearized operator. Hence we will not distinguish the two
notions below. In addition to the ground states Q and —Q, there can be a number of
“excited states” with higher energies (see Appendix A of [16]), which are changing sign
steady states to equation (1.1). Surprisingly, some of the excited states can be stable as
well, although all small excited states can be shown to be unstable (see Section 2). More

precisely we have the following result.

Theorem 1.1. There exists an open set O C Y, such that for V € O, there exists an
excited state ¢ to equation (1.1) which is stable. O

Roughly speaking, this is due to the stabilizing effect of the nonlinearity as a
result of its defocusing nature, and the instability is mainly due to the potential. Hence if
the excited state is large, the nonlinear stabilizing effect may dominate and the resulting
dynamics around that excited state could become stable.

Due to the presence of many steady states, in general the global dynamics can be
quite complicated, even in the radially symmetric setting. [16] establishes the following

result characterizing the long time dynamics of radial finite energy solutions.
Theorem 1.2. Let (ug, u1) € H' x L? be radial. Denote
2 = {(¢,0)| (¢,0) is a radial steady state solution to equation (1.1)}. (1.2)

Let u € C([0, 00), HY) NL2L°([0, T) x R3) for any T < oo be the unique solution to equation
(1.1) with initial data (u(0), 9;u(0)) = (ug, u;). Then for some radial finite energy solu-
tion (uf, 3;u’) to the linear wave equation without potential (We often call such linear

solutions free radiation.)
(LW) dgu—Au=0,
we have

lim inf |[(u(®),du®) —(¢,0) - (@), U @)1 a2 = 0. (1.3)

t—00 (¢,0)e
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Moreover, for V in a dense open set Q C Y, there are only finitely many radial steady
states to equation (1.1). In this case, there exist a steady state solution (¢,0) and some

solution (u®, 3;u’) to the linear wave equation without potential, such that

lim [l (w(®), ;u(®)) — (¢,0) — @), .u" @)l 2 = 0. (1.4)

We remark that we can in fact choose the set @ C Y such that for any V €
Q, all steady states are hyperbolic (In Theorem 6.1 [16], we only showed that in the
radially symmetric case, the linearized operator has neither a zero eigenvalue nor a zero
resonance when restricted to radial functions. This leaves the possibility of having zero
eigenvalue or zero resonance when we consider nonradial functions. We will address this
issue in Section 2.). We fix this choice of € below. Theorem 1.2 is a particular instance
of the soliton resolution conjecture for general dispersive equations, which has been
intensively studied for many dispersive equations. We refer the reader to [9, 10] and
references therein for results on the focusing energy critical wave equation, [5, 6, 8, 18,
19] and references therein for results on equivariant wave maps, and [27, 29] for results
on Schrdédinger equation with potential. The difference between these works on this
lies with the defocusing nature of our equation which precludes any blowup. In other
words, the flow on phase space is global in time, and together with [16] the present work
establishes a complete description of the long term dynamics as well as a decomposition
of the global data set into components which lead to distinct final states.

The result in [16] proves convergence for all radial solutions, thus establishing
the so-called soliton resolution in the setting of equation (1.1). The proof relies crucially
on the channel of energy inequalities for the linear wave equation, introduced in the
works of Duyckaerts, Kenig, and Merle [9, 10]. This tool implies, among other properties,
that all non-stationary radial solutions emit a positive amount of energy into large
distances (the “far field”). The main local decay mechanism for equation (1.1) is the
dispersion of energy into large distances, and the channel of energy inequalities provide
a powerful tool to quantify such effects. In fact, due to the presence of the potential
which destroys many of the favorable algebraic identities of virial type (The virial type
identities can still be of some use even in this context, see [27]), the channel of energy
inequality is perhaps the only tool currently available to measure dispersion in this
context. As a consequence, in absence of radial symmetry, where the channel of energy
inequalities (see[11]) become less effective, we have little knowledge of the “compact

solutions”, that is, solution u(t) with the property that {i(t),t € R} is precompact in
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H' x L?. This should be compared to the focusing energy critical wave equation, for
which one knows (albeit along a sequence of times) modulo symmetries, that compact
solutions converge to some steady state (A recent result of Duyckaerts, Kenig and Merle
[12], under certain nondegeneracy assumptions, completely characterizes all compact
solutions as Lorentz transformations of steady states).

In this article, our main goal is to obtain refined descriptions of the global
dynamics of solutions to equation (1.1) in the radial case. Let us denote

Hg x L% g = {(uo, u1) € H' x L*(R®) : (uo, uy) radial}.

T

We establish the following result.

Theorem 1.3. Let Q2 be an open dense subset of Y such that equation (1.1) has only
finitely many steady states, which are all hyperbolic, and let ¥ be the set of radial
steady states. Denote U(t) := _S)(t)(uo, u;) as the solution to equation (1.1) with radial
initial data (uo, u,) € H., x L2, ,(R®). For each (¢,0) € ¥, define

T rad

rad

My = {(uo,ul) e HL x L2 ,(R%): E’(t)(uo,ul) scatters to (¢,0)as t — +oo}. (1.5)
Denote
Ly:=—A—V +5¢* (1.6)

as the linearized operator around ¢. If £, has no negative eigenvalues, then M, is an

2

open set C HY , x L2

a AR If L, restricted to radial functions has n negative eigenvalues,

then M, is a path connected C' manifold c H

a

4 X L2, 4(R®) of co-dimension n. a

Remark. This result shows that each unstable excited steady state attracts a finite
co-dimensional manifold of solutions, hence scattering to unstable excited states is
non-generic. If £, has no negative eigenvalues, then ¢ is stable. This is a relatively
straightforward consequence of the known dispersive estimates for £, (see [4]) (Due to
our relatively mild decay assumption on V, the dispersive estimates we need are close to
optimal, hence the need for the work [4] which requires less decay on the potential than,
say, V)| < gramee

in some other works) and standard perturbation arguments. O

that is usually required for the L? boundedness of wave operators

On the other hand, if £, has negative eigenvalues then the local dynamics near

(¢, 0) is nontrivial. Thanks to [21] and reference therein, it is now well-known in a small
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neighborhood (in the energy space) of (¢, 0) that we can construct a center-stable mani-
fold, on which the solution scatters to (¢, 0). Off that manifold, the solution will exit the
small neighborhood in finite time. In particular, this center-stable manifold is unique.
Generally speaking, after exiting the small neighborhood, we lose control on the dynam-
ics based on perturbative arguments alone and some global information is needed. While
the one-pass theorem provided this global information in [21], here it is the channel of
energy inequality that allows for the key global control on the solution after the exit
time. We will provide further explanations below.

Let us briefly outline the main ideas in the proof of Theorem 1.3. Take any unsta-
ble steady state (¢,0) € ¥ and a radial finite energy solution U (t) with initial data
(uo, u) which scatters to (¢, 0), that is, for some radial solution TZL(t) to the linear wave

equation (LW), we have

m |7 (8) = W) — (@, 0l cazes) = 0. (1.7)

1

2
adXLr

We first show in a small neighborhood B, ((uq, u1)) C H ' a(R?) there exists a local

r
manifold M, such that any solution V (t) with initial data on this manifold remains
close to U (¢) in H! x L? for all positive times and also scatters to (¢,0). Moreover,
this manifold has the following uniqueness property: any radial finite energy solution
V (t) which stays close to U (t) for all positive times necessarily emanates from M. The
construction of this manifold differs from the usual ones in that this is not a center-
stable manifold around a steady state. In fact, since the energy of the solution ¥ (t) may
be much higher than that of (¢, 0), the free radiation U * may contain a large amount of
excess energy. One new technical aspect is that in addition to using (1.7), we also need

the space-time control on the radiation term, such as
u—¢ e LL°([0,00) x R?). (1.8)

(1.8) is of course expected, but was not usually mentioned in the literature. With the
help of (1.8), the construction of M follows from standard techniques. The next step is
to describe the dynamics of solutions starting in B, ((uo, u;)) C Hrlad x L2 (R®), but off
the manifold M. This is where we need the global control provided by the channel of
energy inequalities. Take any solution V(1) starting in B, ((ug, u1)) C Hrlad x L2 ((R%) and
off the manifold (possibly with a smaller ¢), then by the property of M, T (¢t) — V (t) will
have energy of a fixed size at some time ¢, no matter how small U (0) — V (0) is. We will
show from this that ¥ () will emit a fixed amount more energy than U, thanks to the

channel of energy inequality. The main difficulty is that since % (t) may have already
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emitted a large amount of energy in order to settle down to ¢, we need to distinguish the
new radiation from the old radiation. This is done with careful perturbation arguments
as follows. Choose (vg, v;) very close to (ug, u;) so that the solutions YV (t) and T ()
remain close for a sufficiently long time. During this time, the radiation has propagated
sufficiently far from the origin (with the bulk of energy traveling at speed ~ 1). In the
finite region, the solution V is just a small perturbation of (¢, 0). Due to the assumption
(vo, v1) & M, after another long time V (t) will deviate from (¢,0) in the finite region by
a fixed amount. Then we apply the channel of energy inequality to show that V (t) emits
a second piece of radiation, which is supported very far away from the first radiation.
Hence, in total ¥ (t) emits quantitatively more energy into spatial infinity although the
energy of V (t) can be chosen arbitrarily close to that of T (b). Consequently, V (t) has
less energy than (¢, 0) in the finite region for large times, and must scatter instead to a
steady state of lower energy, not (¢, 0). This establishes the proposition that in a small
neighborhood of (ug, u;), only initial data on M can lead to solutions scattering to (¢, 0).
Thus M, is truly a global manifold in A ; x L2, ,(R®) whence Theorem 1.3. The fact that
M, is path connected follows from a perturbation argument which we present at the

end of Section 5.

1.1 Some open questions

Our investigation leaves open the question whether the finite co-dimensional manifold
of radial finite energy data scattering to unstable steady states is closed in the energy
topology. The answer to this question seems to be nontrivial and will require further
understanding of the global dynamics. For example, consider an unstable excited state
(¢,0) € =. It is not hard to show that there is a radial solution U (¢) which converges to
(¢,0) exponentially as t — —oo, that is, U (t) is on the unstable manifold of (¢,0), and
hence E(TZ(t)) = £((¢,0)). By the channel of energy property established below, Tf(t)
will emit a nontrivial amount of energy to large distances as t — +o0o and subsequently
scatter to a steady state of strictly less energy, say (¢, 0). However, there is a possibility
that (qS,O) is also an excited state. In that case, denote by Mg the manifold of data
scattering to (¢,0) as t — +o0o, we see U (t) € M; for all ¢, but U (¢) — (¢,0) in H' x L?
as t — —oo and clearly (¢, 0) ¢ M;. Consequently, in such a situation Mj; would not be
closed. Admittedly, such behavior should be non-generic (due to the fact that ¢ might
be expected to be the ground state) and perhaps impossible for a generic choice of V.

We plan to address this question in future work.
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Another interesting question is if this description of global dynamics can be
achieved without the radial assumption. This question seems to be very challenging.
Recall that in the radial case, due to the channel of energy property, we only need to
consider the dynamics outside some well-chosen light cone, where the dynamics is rel-
atively simple. In contrast, in the nonradial case, where only less effective channel of
energy inequality is available, one must deal directly with the complicated dynamics
in a finite region. In this case, the only other global tool is the virial type identities.
However, the presence of the spatial inhomogeneity V seems to render such identities
ineffective. In particular, we do not know if the only compact solutions are steady states.
Recall that U (¢) is called compact if (W(t): teR}is precompact in H' x L2. This is in
sharp contrast with the energy critical focusing wave equation case, where one knows
exactly what these compact solutions are (modulo some nondegeneracy condition on
steady states). Hence, a full characterization of compact solutions seems to be a natural
first step.

Our article is organized as follows. In Section 2, we study steady states to equa-
tion (1.1) and show in particular the existence of stable excited steady states; in Section 3
we construct the local center-stable manifold. The novelty of his construction lies with
the fact that it is carried out near any solution which scatters to a given unstable steady
state, without, however, being necessarily close to the steady state in the energy topol-
ogy. in Section 4 we recall some results on the well-known profile decompositions and
channel of energy inequalities, adapted to equation (1.1); in Section 5 we prove our
main result Theorem 1.3; Appendix A contains some elliptic estimates for the steady
states; Appendix B proves an endpoint Strichartz estimate for the inhomogeneous wave

equation in the radial case.

2 Steady State Solutions

In this section, we prove some results about the steady states that are relevant for the
global dynamics. We first give necessary and sufficient conditions for the existence of
nontrivial ground state. Recall that such a state is the global minimizer of the energy

functional

[ TIVeP ver  ¢°
J(qb)._/Rs[ R +€] dx. (2.1)

Lemma 2.1. Consider J as a functional defined in H!(R?). If the operator —A — V has

negative eigenvalues then there exists a global minimizer Q > O withJ(Q) < 0.If —A—-V
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has no negative eigenvalues, then the only steady state solution u € H'(R®) to equation
(1.1)isu =0. O

Remark 2.1. The proof of this lemma is a simple application of variational arguments

and the strong maximum principle, we omit the standard details. O

In the case that —A — V has no negative eigenvalues and assuming that we only
consider radial solutions, then from the results in [16] we know that all radial finite
energy solutions to equation (1.1) scatter to the trivial steady state. In what follows we
therefore assume that —A — IV has some negative eigenvalues, so that we have nontrivial
global minimizers Q and —Q. We call Q and —Q ground states, and call other steady

solutions excited states.

The next result shows the uniqueness of ground states. Note that we do not need

radial symmetry here.

Lemma 2.2. There is at most one nontrivial nonnegative steady state in H'(R?) to

equation (1.1). O

Proof. Suppose Q; and Q, are two nontrivial nonnegative steady solutions to equation
(1.1) in H'(R®). Then

- AQ,—-VQ,+Q%=0,

- AQ, —VQ, + Q5 =0.

By standard elliptic estimates, we have Q;, Q; € w2 (R®) for any p < oco. Moreover we

loc

have the following decay estimates

[Q1(X)] + 1Q2(x)| < e R (2.2)

1+ x|

The above claim on the regularity and decay holds for any steady state in H', and follows
from more or less standard elliptic techniques. For the sake of completeness, we provide
a proof in the Appendix A. By strong maximum principle, we see that Q;, Q; > 0. Denote

the open set

Qi={x: Qx> 0Q:(x)},
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we have
/ Q; (—AQ, — VO, + Q}) — Q; (—AQ; — VQ; + Q3) dx = 0. (2.3)
Q

By the regularity and decay properties of Q;, Q,, we can integrate by parts in equation
(2.3), noting that Q; = Q, on 92, we see that

d
/ 01%(02 —Q,)do +/ Q,0,(Q% — Q) dx =0. (2.4)
Q2 Q

Note that

0

— (@Q;—Q;) >0 on 09,

on
and

0,0, (07— Q3) >0 in Q.

Thus equation (2.4) can hold only if Q = ¢. Thus Q; < Q,. Similarly Q, < Q,. Therefore
01 = 02. .

Naively one might expect excited states to be unstable, since they change sign.

However in general this may not be the case, as seen from the following theorem.

Theorem 2.1. There exists an open set O € Y such that for any V € O, there exists an

excited state ¢ to equation (1.1) which is stable. O

Proof. The proof is based on simple perturbation arguments, once a good large poten-
tial is chosen. We can construct an excited state near a good “profile”, for which the
linearized operator is explicit and stable, with a well-chosen potential. Then we can
conclude that the linearization near the excited state is also stable.

Step 1: choice of V. Denote

1
2\ 2
(+5)

as the unique (up to scaling and sign change) radial H'(R?) solution to

W .=

—Au = u’. (2.5)
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Let us take
V,(x) = 2W*, (2.6)
and positive A sufficiently large to be chosen below. Set
V(%) = A* V1 (Ax). (2.7)
It is easy to check that W solves
—Au—TViu+u®=0,
and that W, (x) = )\%W()»X) solves
—Au—-Vyu+ud=0.

We choose V :=V; + Vy,.
Step 2: construction of a stable excited state. Consider the following elliptic

equation
—Ap—Vp+¢°=0. (2.8)

Our goal is to show if A is sufficiently large then we can construct a steady state ¢ of

the form
p=W—W,+n, (2.9)
with some small 5. The equation for » is
—An+ BW* 4+ 3W} — 20WW? — 20W, W? + 30W2W2)n +N(n, 1) = f;, (2.10)
where the nonlinear term is
N, A) = 10(W — W,)*n? + 10(W — W,)*n® + 5(W — W,)n* + n°, (2.11)
and the nonhomogeneous term is

fi=—(W —=W,)° +W° — W — V, W, + WV,,. (2.12)
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If ) is sufficiently large, f; will be small in appropriate function spaces and we can use a
perturbation argument to solve for . A key ingredient is the following standard uniform

estimate in A on the linear part:
Claim 2.1. For sufficiently large A, the operator
L= —A+3W* +3W} — 20WW? — 20W, W* + 30W*W?: H'(R®) — H'(R®

is invertible and we have the following estimate on the norm of the inverse operator L;*

IL; -1 @3y w3y < C, (2.13)
where C is some absolute constant. O

Proof of Claim 2.1. It is easy to verify that —A : H'(R?) — H'(R®) is invertible, and that
L, is a compact perturbation of —A. Thus to prove that L, is invertible we only need to

show its kernel is trivial. This follows directly from the following bound for large A
1 .
(L, $) 2 51911 s, V0 € H' (BY), (2.14)

where the inner product is with respect to the H' and H~! pairing. The proof of (2.14) is
an easy consequence of integration by parts argument and Hoélder's inequality, once we
note that

lim IWW} + WPW, + W*WP|| 3723, = O.
Suppose L,u = f. Then from the bound (2.14) and Hélder's inequality we infer that
IVull2@s) < 2llfllg-1, for sufficiently large A. (2.15)

In view of the preceding, the bound (2.13) follows immediately.

Using the uniform bound on L;' we can easily solve for 7.
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Claim 2.2. For any € > 0, if A is sufficiently large, then there exists a solution n €
H' N L8(R®) to equation (2.10), in the sense of distributions, with

Inllz6®3) < Cé, (2.16)
where C is an absolute constant. O

Proof. Take small € > 0. We can take A sufficiently large, so that ||f,| ;65 < € and (2.13)

holds. We reformulate equation (2.10) in the following way
n=L"fi—L'N@, 1. (2.17)

Note that L%°(R3) embeds continuously into H~!(R?), thus the right-hand side makes

sense. Now one can check that
L7'f, —L7'N(n, »)

is a contraction mapping in B, € L®(R?®), if we choose € small enough. Thus equation
(2.17) and consequently equation (2.10) have a unique solution n, with [|n(sgs, < 2e.
Clearly, this 5 satisfies the requirement of Claim 2.2.

By looking at the L5 norm of the positive and negative parts of ¢ in (2.9), it follows
that the steady state W — W; +n changes sign if we choose ¢ sufficiently small, and thus

is an excited state. Moreover, the linearized operator around this excited state is
—A = 2W* = 2W} + 5(W — W, + n)*.

If we choose € small enough one can show this operator is nonnegative and has no nega-
tive eigenvalues nor zero eigenvalues/resonance. A standard local perturbation analysis
implies that the excited state W — W, + 7 is stable.

Step 3: stability with respect to V = V; + V;,. We now show that our construction is
stable with respect to small perturbations of the potential V in Y. This is more or less

clear from the existence proof. Below we just outline some key points. We now formulate

Claim 2.3. Let V := V; 4+ Vy, be defined as above. Assume X sufficiently large and §

sufficiently small, then for any radial potential V € ¥ satisfying

IV —Viy <3, (2.18)

220z aunp L0 uo Josn Aleiqr [eaipaly Aeupyay/Buiysng ‘Aysiaaiun aleA Ad 280190€/.L6G/6 1/4L0Z/AI0IME/UIWY/WOD dNo"dlWapEoE//:Sd)y Wolj papeojumoq



5990 H. Jia et al.

there exists a stable excited state to

—~Ap—Vp+¢°=0 inR® (2.19)

Proof of Claim 2.3. For any V € Y with
IV —Viy <3,
for some § sufficiently small. We have
I(=A =) = (=A = V)1 < C8.

Hence if we choose A sufficiently large, § sufficiently small, we can repeat Step 2 with V
replaced by V. The resulting L, will still satisfy the uniform bound in Claim 2.1, f; with
extra terms (V — V)W and (T~/ — V)W,, and N(n, 1) can still be controlled in exactly the
same way, as long as § is chosen sufficiently small. One can then use the contraction
mapping theorem to finish the proof. We omit the routine details. This finishes the proof
of Theorem 2.1. |

The above theorem proves the existence of stable excited states, on the other
hand it is clear that there are unstable excited states. For example, suppose that the
operator —A — V has negative eigenvalues (so that there are nontrivial ground states),
then the excited state ¢ = 0 is unstable. A perhaps more interesting fact is that “newly

bifurcated” excited states are unstable.
Lemma2.3. Leta €[0,00), V € C°(R?) benonnegative and not identically zero. Suppose
that foro > «;, the principal eigenvalue A, («) of the operator —A—aV is negative. Assume
further that

(@2,0) € (@, 00) x H'(R?)

is a bifurcation point for the equation

—Ap —aVp+¢° =0, (2.20)
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in the sense that for any € > 0 there is a nontrivial radial steady state («, ¢) to equation
(2.20) with

lo —oz| + 1@l gs) < €. (2.21)
Then for € sufficiently small, the steady state («, ¢) satisfying (2.21) is unstable. O

Proof. Choosing ¢ sufficiently small we have @ > «,. Since V is nonnegative, we have
that

M) = () <O,

thus there exist § > 0 and ¥ € H'(R®) such that

/RJ'V‘/"Z —aVy?) dx < /RS(IW/IZ ~ V) dx < —3|Y 1 o - (2.22)
Note the linearized operator around ¢ is

—A —aV +5¢%. (2.23)
If € is sufficiently small, by Holder's inequality, we obtain
/3(|V1ﬁ|2 —aVy? +5¢*y?) dx < —(8 — CeM||y|%: <O.
R

Thus the linearized operator has at least one negative eigenvalue and consequently the

small excited states are unstable. [ |

Remark 2.2. For a description of bifurcations, see Appendix A of [16]. The above argu-
ments also imply that if —A — ¥ has negative eigenvalues, then all sufficiently small

excited states in H'(R®) are unstable. O

In Theorem 6.1 of [16], we showed that there exists a dense open set Q; C Y
such that for any V € Q,, there exists only finitely many radial steady states to equation
(1.1), all of which are hyperbolic when the linearized operator is restricted to the space of
radial functions. As is mentioned in the introduction, this leaves open the possibility that
some radial steady states may still have zero eigenvalues or a zero resonance without
the radial assumption. As the property of having zero eigenvalues or a zero resonance

is non-generic, we can expect to eliminate such behavior by removing from ; a closed
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set while making the remaining set still open and dense. More precisely we have the

following result.

Lemma 2.4. Let ©, be a dense open subset of Y such that for any V € @, there are only
finitely many radial steady states to equation (1.1), all of which are hyperbolic if the
linearized operator is restricted to radial functions. Then there exists a dense open set
Q C @, such that for any V € Q, all radial steady states are hyperbolic without radial
symmetry. O

Remark. We fix this choice of Q2 below. O

Proof. Take any V € Q;, and suppose that ¢;,¢,,..., ¢, are the radial steady states
corresponding to V. Since the linearized operator around any ¢; is hyperbolic in the space
of radial functions, standard perturbation arguments imply that any sufficiently small
perturbation of V in 2 will not change the number of radial steady states, and each radial
steady state ¢; depends smoothly on the perturbation. We will show that we can find a
specific perturbation V of V with arbitrarily small normin Y, (in particular V € ©)),such
that the perturbed steady state #1(V) becomes hyperbolic even without restricting to
radial functions. Since being hyperbolic is an open property, we can then make repeated
small perturbations to the potential until all the steady states become hyperbolic even
in the nonradial function space. Then it is clear the subset @ C Q; with the property
that for any V € , all the radial steady states are hyperbolic without restriction to
radial functions, is dense and open in Y. Below we describe the perturbation in detail.

For € > 0 sufficiently small, set
V:=V+eopt (2.24)
Suppose that the perturbed steady state becomes
b1 =1 €. (2.25)
Then the equation for v is
—AY — VY +5¢%% = ¢% + e gy —N(,€), inR?, (2.26)
where

N, €) = 10e ¢39? + 102>y + 53y yr* + 2y, (2.27)
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Noting that
—Apy — Vg + 507 - ¢ = 447,

and the fact that the linearized operator —A — V + 5¢% is invertible from H' N H? <>
H~'NL? when restricted to radial functions (which follows from hyperbolicity in radial

functions), we can rewrite equation (2.26) as

v=l AV s gty - N, (2.28)

If we take € sufficiently small we can assume V € Q;, and moreover we can use standard

perturbation arguments to show that

Y= % + Op1ng2(€). (2.29)

Then the linearized operator around the perturbed steady state ¢, + € ¥ becomes

A—V+ 5(1+6)4 4 2
—A— 7)) € dr+0 3 (€%). (2.30)

L2NL®
The key point for us is that
€\2
[5 (1 + Z> —e] ¢* > 5o + 4e g%, (2.31)

hence we have gained a positive factor which will eliminate the zero eigenvalues/zero
resonance. The proof is finished with the following claim and the min-max principle for

eigenvalues. |
Claim 2.4. Let V and ¢; be given as above. Suppose that the linearized operator

—A -V +5¢F
has k > 0 negative eigenvalues with corresponding eigenfunctions p;, ..., px, and possi-

bly also zero eigenvalues or zero resonance. Then for € > 0 sufficiently small, and any
f € H' with

/f,oldX:-u:f fprdx =0,
R3 R3
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we have
[R (V450 + 4eghf 4 IVFF dx = ce IFI, 2.32)
for some fixed ¢ > 0. O
Proof. Consider the functional
A(f) = /1;3(—11 +5¢H)f? + |VfI*dx (2.33)
on the space
X::{fele/fpldX:~-:/f,okdX=O}. (2.34)
R3 R3
Suppose
{feH : (—A—V+5¢Hf =0} =span {Z,...,Zn}.

Using the same arguments as in Proposition 3.6 in [12], we can find linearly independent
Ey,... En € C®, with

Vi=1...k,Vj=1...m, /,OiEjZO, Vi,j:1...m,/¢fEizj:5i,-, (2.35)
such that for any f with
/fPiZO, /ijqs;‘=0,Vi=1...k,j=1...m, (2.36)
one has
A = clf . (2.37)

For any f € X, we can decompose

i=1
(2.38)

We distinguish two cases.
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Case 1: > |ci| = 8;|f ;1 for some small §; > 0. Then the claimed bound (2.32)
i=1
follows from

m 2 m
Mﬂz4§/ﬁﬁze/<2kﬂ>¢hwze§}ﬁz&&dﬂ;, (2.39)
i=1 i=1

for some small §, > 0, where in the third inequality we have used the equivalence of
norms in a finite dimensional space and the linear independence of E;.
m
Case 2: Y |c;| < |fllg. Then the claimed bound (2.32) follows directly from the

i=1

bound (2.37). [ ]

3 Construction of the Local Center-Stable Manifold

In [16], we showed that there exists a dense open set 2 C Y, such that for any potential
V € Q, there are only finitely many radial steady states and all radial finite energy
solutions scatter to one of the steady states. Furthermore, the linearized operator —A —
V + 5¢* has no zero eigenvalues nor zero resonance for any radial steady state ¢. Our
goal in this section is to study local dynamics around a solution which scatters to an

unstable excited state. Recall
ﬁ
S (1) = (So(t),S:1(1)), teR

. —
denotes the solution flow. Thus given (ug, u;) € H' x L2(R®%), S (t)(uo, u;) is the solution
to equation (1.1) with initial data (ug, u;). To prove our main result, let us first state the

Strichartz estimate for the linear wave equation in dimension 3.

Theorem 3.1. LetI be a time interval and let v : I x R® — R be a finite energy solution

to the wave equation
3y — AWV =F
with initial data (v (), 9;v(tp)) = (f, g) for some t, € I. Then we have the estimates
17 v legin iz + IV lnganes) < €@ 1) (1F Doz + IFllyizgssy)e (31
where 2 < g < 0o and 2 < r < oo satisfy the scaling condition

1 3 1
T+i-3 (3.2)
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and the wave admissible condition

+ 3.3)

Q| =
N
IA
N| =~

Moreover, if f, g, and F are radial functions, (3.1) holds true when (g, r) = (2, 00). O

Later, we will call a pair (q,r),2 < q,r < oo admissible if it satisfies (3.2)
and (3.3).

See [13] for the proof of this theorem in the nonradial and nonendpoint case.
The forbidden endpoint (q,7) = (2,00) was found in [20], where it was also proved
that for the homogeneous equation (F = 0), (2,00) becomes “admissible” if the initial
data are of the form (v(ty), 9;v(ty)) = (0,g) with g radially symmetric. For the sake of
completeness, in Appendix B, we provide the proof of the endpoint Strichartz estimate
for the inhomogeneous equation with general radial data.

For applications below, we need the following Strichartz estimates for solutions

to linear wave equation with potential.

Lemma 3.1. Take V € Y such that the operator —A — V has no zero eigenvalues or zero
resonance. Denote P! as the projection operator to the continuous spectrum of —A — V.

Denote

w = /PL(=A — V). (3.4)

Let I be a time interval with t, € I. Then for any (f,g) € H' x L?(R®) and F € LIL*(I x R?),

the solution 7(t) to the equation
Oy +w?y =P'F, (t,x) el xR?, (3.5)
with 7 (ty) = PL(f, g) satisfies

”(Vf yt)”c?([l[l xL2) + ||y”LgL§(I><R3) < C(q/ r) <||(fl g)”I-'leL2 + ”F”L%L)ZK(]X]R:S)) ’ (3.6)

where 2 < g < oo and 2 < r < oo satisfy the conditions (3.2) and (3.3). Moreover, if f, g,

and F are radial functions, (3.6) holds true when (g, r) = (2, o). O

Remark. Our proof of Strichartz estimates (3.6) relies crucially on L? boundedness of

wave operators with minimal decay conditions on V, obtained by Beceanu [4]. For earlier
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important work on P boundedness of wave operators, see Yajima[30] and references
therein. O

Proof. The energy estimate on 7 follows from standard integration by parts argu-
ment and inequality (3.10) below. We will therefore concentrate only on the Strichartz

estimates. Recall the definition of the forward wave operator

W, =5 — lim "4V 4 (3.7)

t—o0
It is well known that for V € Y, W, is linearly isomorphic from L? to P1L?, see for example
[2]. In [4], Beceanu obtained among other things an important structural theorem for W, ,

which implies that W, is also bounded in L? spaces with 1 < p < oco:
IWigllw S ll@le Vo € L2NLP. (3.8)

Hence W, can be naturally extended as a bounded operator in L? for 1 < p < oo and in

Ly, which is the completion of L2 NL™ in L*. An important fact of W, is the intertwining

property
p(w) = Wip(|V)WT, (3.9)

which holds for ¢ € L*, and also for more general ¢ by limiting arguments provided that
one can obtain suitable bounds. Here W} is the adjoint operator of W.. Note that V(@

admits the following representation

. inons
Y (t) = cos (wt) P f + 22 pig 4 / SO =) 51 p s ds
w 0 w

sin |Vt tsin|V|(t —s)

= W+COS (|V|t)W_tf+W+TWj_g+W+/ TWj_PLF(S) ds
0

=I+1+1.

The Strichartz estimates for part IT and III then follow directly from the L? boundedness
(3.8) of W, and the corresponding Strichartz estimates for free radiations. For the end-
point (g, r) = (2, 00), we only need to note in addition that P+ leaves the space of radial

functions invariant, since V is radial. It remains to consider I. Firstly we claim
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5998 H. Jia et al.

Claim 3.1. The operator w which is initially defined in H?, satisfies
Vol S [ SIVel, Vo P, (3.10
and can be extended naturally as a linear isomorphism from P*H! to P12 O

Let us assume this claim momentarily. Then the Strichartz estimate for part Iis

easy to prove. By Claim 3.1, we can write P1f = w~'f for some f € PL%. Thus

W, cos (IVIO) W f = W, cos (IVIH)W} aflf

= W, cos (IV|)|V|"' W} f,

where we have used the fact that W} ™' = |V|"'W; on P*L?, which follows from the inter-
twining property (3.9) by suitable limiting arguments with the help of bounds (3.10) and
(3.8). Note that Wif € L2, consequently |V|*1ij € H'. Hence the Strichartz estimates
for part I follow straightforwardly from the corresponding estimates for free radiations
and the bound (3.8). |

Now we give a brief proof of Claim 3.1. The second part of the inequality (3.10)
is an easy consequence of the fact that w is self adjoint and w? = P*(—A — V), and an
integration by parts argument. The first part of the inequality follows from the assump-
tion that —A — V7 has no zero eigenvalues or zero resonance. Hence w can be extended as
a bounded operator from P'H' to P'L?. Moreover w has closed range due to the bound
(3.10). Since —A — V has no zero eigenvalues, we conclude that the range of P*(—A —TV) is
dense in P1L%. Thus the range of w which is bigger than the range of P*(—A — V) is also
dense in P1L?. Combining these two facts, we see that w is indeed a linear isomorphism
from P-H' to P*L? and the claim is proved.

Our main goal in this section is to prove the following result.

Theorem 3.2. Let Q2 be a dense open subset of ¥ such that equation (1.1) has only
finitely many radial steady states, all of which are hyperbolic. Suppose V € Q@ C Y.
Suppose TJ)(t) is a radial finite energy solution to equation (1.1) which scatters to an
unstable steady state (¢, 0). Let

—kr<-ki<..-<-k?<0O (3.11)
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be the negative eigenvalues of —A — V + 5¢* restricted to radial functions (counted with

multiplicity) with normalized eigenfunctions p;, 2, ..., on, respectively. Decompose
Hyg x L2 (R%) = X, © Xy, (3.12)
where
X, = {(uo, w1) € Hyg x L23(R®) @ (kjuo + us, pj)y2 = 0, foralll <j <n}, (3.13)
and
X, = span {(p;, kjpj), 1 <j <n}. (3.14)

Then there exist ¢, > 0, T sufficiently large, a ball B, ((0,0)) C HL, x L2,(R%), and a

T

smooth mapping

W T (T) + (Boy ((0,00) N X;) —> HL, x L2 (3.15)

rad’

satisfying lI/(_U>(T)) = T}(T), with the following property. Let M be the graph of ¥ and
set M = ?(—T)M. Then any solution to equation (1.1) with initial data (uq, u;) € M
scatters to (¢, 0). Moreover, there is an ¢; with 0 < ¢; < ¢, such that if a solution ﬂ)(t)
with initial data (uo, u,) € B, (_U) (0)) C HL, x L2 ,(R®) satisfies

T rad
— —
U @) — U@®)l|giy2 < e forall t >0, (3.16)
then (Uup, uy) € M. U
Proof. By assumption, there exists free radial radiation TJ)L, such that

. — =
tlgglo U@ —(@,0)— U @O lg1x2 = 0. (3.17)

We divide our construction of the center-stable manifold into a series of steps:
Step 0: LS decay for free waves. We observe that for any finite energy free radiation %,

we have
U@l >0  as t— . (3.18)
For smooth ©(0) with supp U %(0) € Bg, we have

C
lu(t, x)| < ?Xt7R§|X\§t+R/ for ¢t > R.
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Then (3.18) follows by direct calculation. For general initial data, (3.18) follows from
approximations by compactly supported smooth functions and the uniform bound
IU* @)l g3y < CHTO) 1 12s3)-

Step 1: space-time estimates for U — ¢. Denote h(t,x) = U(t,x) — ¢(x), then h satisfies

the equation
hy — Ah — V(x)h + 5¢*h + N(¢, h) =0, (3.19)
where
N(¢,h) = (¢ +h)°® — ¢° — 5¢*h.

Since U « L®([0,00), H' x L?) and U € L’L!°(I x R®) for any finite interval I, by equation
(1.1) and Strichartz estimate (3.1) we see U € LL°(I x R®). By standard elliptic estimates,
we know that ¢ € C'(R®)(see also Appendix A), hence h € L?L (I x R®) for any finite time

interval I. In what follows, we will show that

||h||L§L§°([o,oo)xR3) < 0.

Recall that py,..., o, are the n radial L? normalized orthogonal eigenfunctions of the

operator
Ly=—A—V +5¢%,

corresponding to the eigenvalues (counting multiplicity) —k? < ...—k?Z < 0, respectively.

From Agmon's estimate [1], we know these eigenfunctions decay exponentially. Writing
h=xMm@®p1+ -+ ra@®pn+ v,

with y 1L p;fori=1,---,n, and plugging this into equation (3.19) we obtain

D @) — kPi@®)pi + 7 + Loy = N, h). (3.20)

i=1

Denote by P; the projection operator onto the i-th eigenfunction and by P! the projec-
tion operator onto the continuous spectrum restricted to radial functions (Note that P+

can be written via Stone’s formula as integral of resolvant of £,, hence it is invariant
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for radial functions. In particular, P+ does not involve any nonradial eigenfunctions),
that is,

n
Pi=pi®p, P =I-) p®p;
i=1

Applying the projection operators P; and P+ to equation (3.20), we derive the following
equations for A;(t) and y (¢, x):

Xi(t) — ki (t) = PN (¢, h) :=N,,, i=1,...n

(3.21)
¥ + o’y = P*N(¢,h) := N,, w = /P+L,.

Note that the steady state ¢ decays at the rate O(ﬁx‘) as |x| — oo, hence the potential in

the operator £, which is —V + 5¢*, decays like O((H‘X”lm). This decay rate is better

than the critical rate O(#) as |x| — oo (in fact —V + 5¢* € Y). Hence we can apply the
result of Lemma 3.1 and conclude that Strichartz estimates as in Lemma 3.1 hold for

solutions of the equation
Vi + 0*v=F, (3.22)

with F radial and satisfying the compatibility condition PF =F.
From (3.17) and (3.18), we know that

tlirgo ”h(t/X)”LgoLg([T,oo)xR% =0
Also using the fact that p; decay exponentially, we have
2] = [{p:lh)| < IIPiIILg IR, )16 @s) —> O as t — oo.
Let ['(¢) be the solution operator to the equation v;; + w?v = 0, that is,

1
Lt — to)(y (to), ¥ (o)) = cos(w(t — tp))y (to) + - sin(w(t — o))y (to).
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We claim:
Claim 3.2. Given any € « 1, we have
It = T)(y (T), )}(T))||L§L;°<[T,oo)xR3) <e€.
for sufficiently large T > 0. O

We postpone the proof of Claim 3.2 to the end of the proof of Theorem 3.2.
Hence given a small positive number ¢ « 1, which will be chosen later, we can

pick a large time T = T(¢, U), such that

||h||L?OL)6(([T'00)X]R3) <e€ (323)
A ()20 (7,000) < € (3.24)
”F(t - T)(V(T)r ?(T))”Lf@o“nm)ms) < €. (325)

From the equation for 4;(¢) in (3.21), we conclude that for ¢t > T

hi(t) = cosh(ki(t — T)A(T) + kl sinh(ki(t — T))ii(T)

t
+ kl/ sinh(k;(t — s5))N,,(s) ds
i Jr

ekit=1)

= [M(T) +

1. 1 [t
M) + / e TIN, (s) ds} +R(®),
i i JT

where R(t) denotes a term that remains bounded for bounded N, (s). By (3.24), we obtain

the following stability condition

A(T) = —kidi(T) — / e TN, (s)ds. (3.26)

T

Under this condition, we can rewrite equation (3.21) as the following integral equation

1 o 1 >
ri(t) = e D |:Ai(T) + — eki(T”Npi(s)ds] — —/T e ilSIN, (s)ds,

1 ! sin(w(t — 3)) 3.27)
y (@) = cos(w(t —T))y(T) + = sin(w(t — T)y(T) +/ TNC(S)ds.
T

For any time T > T, we define

n
O de P lxary 2 = D 1@ g2z + 17 li2ege o,y ens) -

i=1
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Defocusing Energy Critical Wave Equation 6003

With the help of Strichartz estimates from Lemma 3.1, by estimating (3.27), we get that

12O l2qrzy <Co (P + 1Nyl + N iz oen ) (3.28)

”V“Lngo([T,%)xuzgii) <C; (“F(t - T)(]/(T), ?(T))”L?L;C([Tj)xmii) + ||NC||L}L§([T,T)><R3)) . (3.29)
Here that constant C, depends on the L! and L? integrals of e %’ and the constant C,
depends only on the constants in the Strichartz estimates.

In (3.29), instead of estimating initial data (y(T), y(T)) in H' x L*(R%) which may
not be small, we estimate its free evolution in LfL;O([T, 7’) x R?). Consequently, we obtain

smallness because of (3.25).
Using the fact that

Npi = (pL|N(¢1h)>r N,o = ZNpi:Oir N, =N _Np
i
and the exponential decay of p;, we have

I k7 INe 212 Fyced) < 1N (@) L2 7,7 s3)- (3.30)
Recall that
N(¢, h) = 10¢°h? + 10¢2h® + 5ph* + hS.
Hence, by Holder inequalities, we have

31,2 3 2
S PP v A L EA—
21,3 2 2
¢ h ||L%L,2(([T,T')><R3) = ”d)”Lg”h”L%LJO{O([T,'f')XR%||h”L§°L§([T,T)><R3)'
4 2 2
llph Iz ez mxee) = ”¢”L;6{||h||LfL§°([T,f‘)xR3)||h||L§°Lg([T,T)><R3)’

5 _ 2 3
Ih I2122 07,7 xm3) < ”h||L§L§0<[T,%>xR3)||h”L§°L§([T,T~)xR3)'
Consequently

2
||N(¢, h)HL%L)Z{([Tj')XRS) = CHh”L?Lﬁo([T,f‘)xRi")’ (3.31)
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6004 H. Jia et al.

and

1V oo (F 00y < Clipills s, IN(@, Rl 6
P ILZE ([T ,00)) iILY (R3) L;X’L,? (F.00)xR3)

5
< C 3 IAU5 Nl oy 5y i3y < Ce (3.32)
i=2
Using (3.23) and

||h||L§L§°([T5‘)><IR3) 5 ”()‘-1/ oy An/ V)HX([T,T‘))

with constant depending on ||p;ll;c, we can combine estimates (3.28),(3.29) with (3.24),
(3.25), and (3.30)—(3.32) to get

1Gts e e Dlxry K e+ 100 o Py + €,

Here K is some constant depending only on the constants in Strichartz inequalities for
equation (3.22) and lllze and ||p;llz. Since this estimate is true for all T > T, we can

choose € « 1, which can be achieved by taking T sufficiently large, such that
(4K*+ 1)e < 1.
By a continuity argument, we then obtain that

N1, An W xar.coy < 2K,

which implies that A L2189 (T 00 xE3) < €. Using interpolation between the L*LS and L*LY

norms, we can also obtain
1Rl 295 47 00)xx3) < €, for any admissible pair (g,7),q = 2. (3.33)

In particular, we infer that h € L2L1°([0, 00) x R3).

Step 2: construction of the center-stable manifold near a solution U. Given a radial
finite energy solution U to (1.1) satisfying (3.17), we consider another radial finite energy
solution u, with || U (T) — U (T)|l;1 «z2z3) small for a fixed large time T from Step 1 (we
may need to take T large to close the estimates below, which of course can be done). We

write u = U + 7, then 7 satisfies the equation

N — An = V@) + U +n)° = U° =0, (t,x) € (T,00).
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Defocusing Energy Critical Wave Equation 6005

Plugging in U = ¢ + h, we can further write the equation as

e + Lon + N(¢, h,n) =0, (t,x) € (T, 00), (3.34)
with

N k) =@ +h+n°—@+h)° 50"

We note that N still contains terms linear in n. However, a closer inspection shows that
the coefficients of the linear terms in 1 decay in both space and time, and can be made

small if we choose T sufficiently large. First write
n=h®p+ -+ ha®ont+7, VLo

fori = 1,...,n. We use similar arguments as in step 1 to obtain a solution n which
stays small for all positive times with given (A1 (T), ..., (T)) and ()7,)5)(T). We can
obtain equations for };, 7 similar to (3.21). Since we seek a forward solution which grows
at most polynomially, we obtain a similar necessary and sufficient stability condition
as (3.26)

7 (T) = —k i (T) — / e "IN, (s)ds. (3.35)

T

Using equations (3.34) and (3.35) we arrive at the system of equations for A; and 7,

- e - 1 R o~ 1 © v
Xi(t) = e kD |:Ai(T) + — e TN, (s)ds} - —/ e SN, (s) ds,

2k; 2k;
LT v (3.36)
1 . 1 .
y(t) = cos(w(t — T))y(T) + — sin(w(t — T))y(T) + — / sin(w(t — s))N(s) ds.
0] w Jr
Define
n
“()‘-lr R I)"nl ?)”X = Z ”)"i(t)”LtooﬂL?([T,oo)) + ”f ”L?OHIHL?L?(C([T,oo)st)' (3.37)
i=1
Estimating system (3.36), we obtain that
3 oerz2r,sen ST+ TNl 1700 S 1T+ IV 5212 7,000 052 (3.38)
||J7||L?OHIQL§L§°([TIOO)><R3) S”();(T), J7(T))||H1 x12 + ||N|IL%L)2(([T,OO)><IR3)' (3.39)
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6006 H. Jia et al.

Recalling [N| < Y7, [¢* Wl + ¥yopyjixes 6" 0*], we have

3 3
”¢ hn||L%L§([T,OO)XR3) = ”¢”L§||h||L?L§c([T,oo)><R3)||77||LfL§°([T,oo)><R3)'
21,2 2
lo°h n”LtlL)Z{([T,oo)xR?') = ||¢”L)6(”h”L?OLg([T,oo)X]]@)||h||L?L§°([T,oo)><R3)”n“L?L)O(O([T,oc)XﬂgS)/
3 2
”¢h 77||L%L)2(([TIOO)XJR3) = ”(b”L;Sg”h”L?OLg([T,oo)x]]@)”h”L%L?go([T,OO)XRs)|In||L§L)°(°([T,OO)><R3)’

4 3
g n”LtlLfr([T,OO)xR?') = ||h||Lt°°L2([T,00)><R3)”h”Ltngo([TrOO)XRa)||n||L?L§O([T,00)><R3)'
Using (3.33), we get that
4
4-jpi
24’ RWn S 6||77||L§L;°([T,oo)xna<3)- (3.40)
J=1 LILZ (T 00) xR3)
The higher order terms are easier to estimate. We can always place h in L°L8, whence

5

L <2 Il
Y. o D L A—— (3.41)
k>2,i+j+k=5 L%L,%([T,oo)xn@) k=2
Since Il o1 nr21g0 7,00y xB3) S Ny -+ 0 A, P lIxr,00. We can combine the preced-

ing estimates and get that

G, Ay P Ixaroon <K (Z (D) + I (7(T), f(T))Ilmez)

i=1

5
+Kel| Gy, dons Pllxazooy + K Y MNGas s dons P .00
k=2

where K > 1 is a constant only depending on the constants in the Strichartz estimates
for equation (3.22) and ||¢|| 53, and || p;llzgc. This inequality implies that if we take € = ¢,

sufficiently small (which can be achieved by choosing T suitably large), and § < ¢, with

S D+ IG5 (Tl < 6, (3.42)

i=1

such that K¢y < ; and K?§ < o,

(3.36) takes a ball Byk;s(0) into itself. Moreover, we can check by the same argument

then the map defined by the right-hand side of system

that this map is in fact a contraction. Thus for any given small (Ai(T), -+ an(T), 7(T))
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Defocusing Energy Critical Wave Equation 6007

satisfying (3.42), we obtain a unique fixed point of (3.36). Then
k
u(t,x) :=U(t,x)+ ) h(®)p; + 7(t,%)

i=1

solves the equation (1.1) on R? x [T, c0), satisfying
—
||TZ -U ||L§°([T,oo);H1xL2) =Cs (3.43)

with Lipschitz dependence on the data A;(T) and ((T), f(T)). Since the nonlinearity N
only involves integer powers of 5, we see that the integral terms in (3.36) have smooth
dependence on 1;, 7. Hence we conclude that ;(t), (¢, x) and the solution u(t, x) actually
have smooth dependence on the data.

By the estimates on %; and 7, we conclude in addition that

n= ht)pi+7(tx) € LILT(T,00) x R?),

i=1

hence U (t) scatters to the same steady state as T])(t) which is (¢, 0).

We can now define
E3 1 2
W U(T)+ (B, ((0,0) N X;) — H' x L?, (3.44)

as follows: for any (7, 71) € P+ (HL4 x L2,(R%) and %; € R such that

£:=Y hiloi, —kipi) + (7o, 71) + UM eT @+ (Bo((0,0) NXy),
i=1
set
“M(T) =1, fori=1,...,n and (F(T), 7(T)) = (o, 7)-

Then with ii(T) given by (3.35), we define
no N no. ~ N
W(E) = <in(T)pi + 70, ) hi(T)pi + m) + U (T).
i=1 i=1

If o is chosen sufficiently small, then ii is uniquely determined by contraction mapping
in the above. We define M as the graph of ¥ and let M be ?(—T)(ﬂ). We can then check
that &, M, M verify the requirements of the theorem. Since ?(T) is a diffeomorphism,
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6008 H. Jia et al.

. . . - ~
M is a C! manifold. We remark that due to the presence of radiations UZ, the graph M
is in general not tangent to the center-stable subspace X;.
Step 3: unconditional uniqueness. Now suppose that we are given a solution u to

equation (1.1), which satisfies

— -
I — U llzooqo,00m x12) < €1 K €o.

We need to show that @(T) € M. We denote

n(t,x) = u(t,x) — Ut,x) = Y_L(t)p; + 7(t, %),
i=1
then 7/ € L;"’([O,oo);liI1 x L?). By the fact that u, U are solutions to equation (1.1) and
Strichartz estimates, we see that n € L‘ZL;(I x R®) for any finite interval I C [0, c0) and

admissible pair (g, ), we get forany T > T,

”Xi(t)”Lgo([T,oo)) + ||)7(t,X)||L;>°([T,oo);H1xL2> S e (3.45)
Ai(t) € L*(T, T)),

p(t,x) € L’LE(IT, T) x R®).

Notice the L™ bound on A; implies that the stability condition (3.35) must hold true, so
we are again reduced to considering system (3.36). Now we wish to show that A;(t) €
L*([T, 00)) and 7 (¢, x) € LZL3 ([T, 00) x R?). To do this, we follow similar arguments as in

step 1. Define the norm

n
NG Pz 2 = D 1@ lizgr.z + 171200z, 5pc)
i=1

By estimating (3.36) similar to (3.28) and (3.29), we get

n n
D IR ® 2,y + 17 2sge o, zyxm3) S Y (DI + NG (D), 7 (T) g 2
i=1

i=1
F N2 7y xe3) + INIL 6
L Lx (TR LPLY (IT,00)xR3)
Recall we have h = U — ¢, ||h||L§L§°<[T,oo)xR3) < € = ¢p. Using the same estimate as in (3.40)
and (3.41) on the time interval [T, T), we obtain that

5

N k
IV UL 2 .y m3) S €0l li2ige g, 7y xr3) + Z ”’7||L§°HInL§L§o([T,i)xR3>'
k=2
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Defocusing Energy Critical Wave Equation 6009

and

-~ . . K
NI e S E 16 IRl o 6 - 1711 00,6 4 S €1
5 4 . L LPLY ([T,00)xR3) LPLY (T ,00)xR3) ~
LPLY (T ,00)xR3) i+j+k=5k>1 * £ e

Hence

5
”()\'lr e I)\’rll ?)”X([T,T)) S €1 + 60”()"1! e l)\'nl f)”X([T,T)) +K Z ||()\’1I Tt )"nr );)”;[ij)
k=2

From this, by a continuity argument, we can conclude that
1Gse s Pllxar ooy < B IDE (G, 2o, Plxry = Cer < €o,
— 00

and the contraction mapping theorem then implies U(T) e M.
Step 4: summary. Let us sum up our construction as follows: consider any point (U, U;) €
M., which generates a solution U(t, x) to equation (1.1) satisfying (3.17). For sufficiently

large time T, we can construct a smooth graph M of co-dimension n in
= rl 2
Beo( U(T)) e Hrad X Lrad

. . ~ . -
such that solutions starting from M remain close to U (t) for all ¢ > T and scatter to

(¢,0). The graph can also be parameterized smoothly by

7(T),  in(T) € R, 7(T) € PH(HL, x L2,),

rad

in the following sense. For the parameters satisfying

n
D D+ G, 7 (Tl 2 < €0
i=1
there exists a unique solution u to equation (1.1) on ¢ > T satisfying
n .
w(T) =U(T)+ Y M(T)pi+ 7(T,x), P u(T) = #(T) + PHo,U(T),

i=1

with the property that u(t) scatters to ¢, and

— —
Il u (t) — U(t)”Lgo([T,oo),Hl «12) < Ceq.
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6010 H. Jia et al.

. . - .
Moreover, any solution that satisfies 1T () — U (@) |lgr.2 < €, with some €; < ¢, for all
~ . . =
times t > T necessarily starts on M. Using the solution flow S (t), we pull back our

- ~ .
construction to time 0, M = S (—T)M, and the theorem is proved. [ |

Now we give a proof of Claim 3.2. Claim 3.2 will be proved as a consequence of

the following lemma.

Lemma 3.2. Let U be a radial finite energy free radiation and (¢, 0) be a steady state

to equation (1.1). Recall that

w = /PH(—A — V +5¢%).

Let y be the solution to

duy + 0’y =0, in [T, 00) x R?,
R ~ (3.46)
Y (T) = P-(UM(T)).
For any € > 0, if we take T = T(e, TI)L) > 0 sufficiently large, then
”y”LfL;?(O([T'oo)xRS) < €. (347)
O

Proof. For a givene > 0, fix 0 < § « € to be determined below. We can take a radial

=
smooth compactly supported (in space) free radiation U’ such that
— =
ITE0) — ULO0) g1 0s23) < 8. (3.48)

=
Let us assume that supp U%(0) € Bgr(0) for some R > 0. Hence by strong Huygens’
= =
principle, for large time T we have supp U*(T) € By r\Br_g. Since U* is a free radiation,

we see that
3 U — AU" — VU* + 5¢*U" = —VU" +5¢*U% in (0, 00) x R®. (3.49)

By the decay property of V7, 5¢* and the support property of Ur, simple calculations
show that

. L 477L
lm | = VU +5¢* U ll132 7,000 x23) = O-
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Defocusing Energy Critical Wave Equation 6011

Choose T sufficiently large, such that
| — VO" + 5¢4[7LIIL§L§<1T,OO>XW> <. (3.50)
= - L:)L
Note that v := Y — P+ U’ solves
dV + 0?v = —P (—VU" +5¢*T), (t,x) € [T, 00) x R®,

=
with initial data Vv (T) = P (T/‘)L(T) — Pt UL(T)). By the bounds (3.48) and (3.50),
energy conservation for free radiation, and Strichartz estimates from Lemma 3.1, we

can conclude that
||V||Lt2L§°([T,oo)><R3) < Cé. (3.51)
. ﬁ . . . . . .
Since U is a finite energy free radiation, if we choose T sufficiently large, we have
”ﬁL”L?L;C([T,oo)XRs) < Cé. (3.52)
Combining bounds (3.51) and (3.52), and fixing § small, the lemma is proved. [
Now the proof of Claim 3.2 is easy. Note that due to the fact that
. — =
Hm [ U(T) — (#,0) = UMDl r2@s) = 0,
we see that the initial data for y satisfies
. -
im [|Y(T) = P UMD i1 23 = O.
Hence the claim follows from the above lemma and Strichartz estimates.

4 Profile Decomposition and Channel of Energy Inequality

In this section, we recall some well-known properties of profile decompositions first
introduced in the context of wave equations by Bahouri and Gerard[3], and channel of
energy inequalities discovered by Duyckaerts, Kenig, and Merle [9, 10]. For both, we
require the versions adapted to the wave equation with a potential. We refer the reader

to [16] for proofs. We first recall the following perturbation result.
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6012 H. Jia et al.

Lemma 4.1. Let 0 € I C R be an interval of time. Suppose i(t,x) € C,(I, H (R%) with

||11||Lt5L)1(o(IxR3) <M < oo, ”a||Lf/4L§/2<1xR3> < B < oo and e(t, x), f(t,x) € L]L2(I x R®), satisfy
Il — AU+ at, x)u+0° =e, (4.1)

— .
with initial data @ (0) = (@iy, &) € H' x L2. Suppose for some sufficiently small positive
€ <€ =M, B),

el + Il axes) + (Uo, Ur) = (To, o)l 2 < €. (4.2)

Then there is a unique solution u € C(I,H') with ||u||L?L}1(o(,XR3) < oo, satisfying the

equation
du — Au+at,x)u+u’=f, (4.3)
with initial data TI(O) = TZ(O) = (up, u;). Moreover, we have the following estimate
— = -~
sup||u () — u (®)llgrygz + llu— u||L§L§0(sz3) < C(M, pP)e. (4.4)
tel

O

Lemma 4.1 has the following implication concerning global existence and scat-
tering for defocusing energy critical wave equation with potential, decaying both in
space and time.

Lemmad4.2. LetIbeaninterval oftimeanda € Ly*L¥?NLIL3(IxR?), and f € LIL2(IxR?),
with bounds ”a”Lf/“L;’;/Z + ||a||LgL§ < M and ”f”L}Li < B. Then there exists a unique solution
ue CI,H") NLLC(I x R?) to the equation

du— Au+at,x)u+u’=f, (4.5)

with initial data (uo, u;) € H' x L? (|(Uo, U1)|lg1,2 < E). Moreover, we have

||u||LfL,£0(1xR3) <C(E M, B). (4.6)
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Defocusing Energy Critical Wave Equation 6013

Thus if I = R, then there exist solutions uﬁ, ul to free wave equation, such that

Jim fu®) — uk @l a2 =0, (4.7)
lim Jju(®) - ut @l 2 = 0. (4.8)
O

The following lemma shows that for potentials a € LY/*L/? (thus with space-time

decay), large or small profiles are essentially not influenced by the potential.

Lemma 4.3. Let a € L*L¥*(R x R®) and U’ be a solution to the free wave equation
in R x R®, Take parameters (A,,t,) with A, > 0, t, € R. Assume one of the following

conditions holds:

1. t, =0, lim(, + ) =00,
n—oo n

2. lim ;—’; € {£o0}.
Let U be the nonlinear profile associated with U*, A,, t,,. More precisely
39U — AU+ U° =0 inR x R?, (4.9)

with Tf)(O) = (U*(0), 9,U*(0)) if ¢, = 0; or with

. - - .

thlgl 11U @) — U@,z =0, (th{n ) (4.10)
if lim,,_, i—z = —oo (lim = oo respectively). Let u,, be the solution to the Cauchy problem
AUy — AUy +at, Xx)u, +u> =0 inR x R?, (4.11)

with 7 ,,(0) = (A?UL(—;—Z, ), Fea UM, %)). Then

. o d
%LIIolo <Szgn£ 1T (8) = Un(®)llg1 z2 + lun — UnIILtsL;(o(Rst)) =0, (4.12)
h T} = (L gt x 1o (st x O
where "(X’)_W(kn’m’;j?t(kn’m'

The following profile decomposition adapted for wave equation with potential

plays an important role in our analysis.
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6014 H. Jia et al.

Lemma4.4. Leta e LY/*L5/? NL!L3 (R xR%). Suppose a radial sequence (Uon, Un) € H' x L2
is uniformly bounded and that we have the following linear profile decompositions (see
Bahouri-Gerard[3])

tin X 1 t X
(Uon, trn) = U (0)+Z I—/QUL (—ﬂ,—>,3—/28tUjL<—ﬂ —> +Wm(0), (4.13)
)‘jn an )‘jn )\‘]n )\]n

with the following properties:

UjLand w, are radial and solve the free wave equation for each j, J;

t: 1
either ¢, € R, Aj, > 0, lim > € {00} or t;, =0, lim <Ajn + —) = 00;
n—oo )\jn

n—oo ]’n
Ajn Ay tin — to
,\, A Ajn
write Wyn(t,X) = —75 wjn( A_) then W), — 0, and wy, — 0, as n — oc;
]n jn

jn

hm lim sup Winllzs110 @ rs) = O-

n—oo

Let U; satisfy
30Uy — AU, + a(t,x)U, + U =0, inR x R?, (4.14)

with TJ)I(O) = Tf%(O). Let U; be the nonlinear profile associated to UjL, Ajns tin as defined

in Lemma 4.3 for j > 2. Let u,, be the solution to
deUn — AUpn +a(t, x)u, +u =0, inR x R?, (4.15)

with @ ,(0) = (Uon, U1n). Then we have the following decomposition:
— J —
Un@®) =1+ Y Up(®) + Wm0 + 7 (@), (4.16)

J=2

with

hm lim sup (sup 17 @ grw2 + ||rJn||L5L10(RXm{3)> =0, (4.17)

Jo0 00 teR
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Defocusing Energy Critical Wave Equation 6015

- t—t; t—t;, .
where U j,(t,x) = (AﬁUj(Tg‘, %) #BtUj(Ti”, %)) Moreover, denoting U,, = U, for
n jn

Ji
pn > 0, > 0 and 6, € R we have the following orthogonality property for 1 <j #j’

lim VUi VU + 8, U8 Uy (6, %) dx = O; (4.18)
=00 Jon <Ixl<pn

lim VUi VW, + 0:Ujn 0y Wy (65, X) dx = 0. (4.19)

n—oo
on<|x|<pn

O

We also need the following channel of energy inequality from [16], which was

proved with similar arguments as in Duyckaerts, Kenig and Merle [10].
Theorem 4.1. Suppose radial finite energy (uo, u;) # (¢, 0) for any steady state solution
(¢,0) of equation (1.1). Let u € C(R,H") N L’L°((—T, T) x R®) for any T € (0, 0) be the
unique solution to equation (1.1) with T (0) = (uo, u;). Then there exists R > 0 and § > 0
such that
/ [IVul® + (3:w)?1(t, x) dx = § > 0, (4.20)
x|>R-+]t]
forallt >0orallt <O. O
This theorem tells us that if a radial solution to equation (1.1) is not a steady

state, then it must emit energy to spatial infinity. For applications below we also need

the following quantitative version of Theorem 4.1.

Theorem 4.2. Take V € Q C Y. Suppose that radial finite energy initial data (uy, u;) #
(¢,0) for any steady state solution of equation (1.1), with ||(uo, 1) g1, 23y < M < 0.
Let

ueCRH)NLLY((~T, T) x R®)

for any T € (0, c0) be the unique solution to equation (1.1) with T (0) = (uo, up). Denote

by ¥ the set of radial steady states of equation (1.1) and define

8 :=inf {|l(uo, u1) — (¢, 0)llg1,,2 : (¢,0) € T} > 0. (4.21)
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6016 H. Jia et al.

Then there exists ¢ = ¢(8, M, V) > 0 such that
/ [IVul®* + (3;w)?1(t, x) dx > c, (4.22)
x|l
forallt >0orallt<O. O

Proof. Suppose the theorem fails. Then there exists a sequence of solutions u, to equa-
tion (1.1) with initial data (uon, u1n) € H' x L*(R®) satisfying | (Won, Urn) i1 w23y < M,

(4.21) with a uniform § > 0, and

inf[ [Vu,|? + 3,u,)?(t, x) dx + itngf IVu,|? + (3:un)?(t, x) dx < (4.23)
|x|>|¢] =

1
=0 <0 Jixiz n

By passing to a subsequence, we can assume that (o, U1,) admits the following profile

decomposition
— J 1 t X 1 t X
- Ut E:_L_ﬂ__ Le_tn % w
(Uon, Urn) = U1(0)+j:2 ()M%ZUJ( P y )r)\%zatUj( i , ]ﬂ)) + W (0), (4.24)

with the following properties:

UjL and wj, are radial and solve the free wave equation for each j, J;

t; 1
either t;, € R, A, > 0, lim = € {+o0} or t;, =0, lim <Ajn + —) = 00;
n A n—oo A

=00 Ajp in
o Am Aim |tim — timl
for /, lim ﬂ_’.ﬂ.‘_u :oo’
, 1 . t—tp X .
write Wi, (t,x) = i Jn(T, A_)' then w), — 0, and w,, —~ 0, as n — oo;
jn -

jn
}ng lim sup Wi ll 15130 @xr3) = O-

n—oo

Note that

1Vl 5741572

52 (s xlz el ~ O

thus by finite speed of propagation we can apply Lemma 4.4 in the exterior light cone
{(x,t) : |x| > |t|}, and obtain

J
T =T®)+ Y Upnt) + Wom®) + T omlt), for x| > |t (4.25)
j=2
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Defocusing Energy Critical Wave Equation 6017

with

lim lim sup (SUP ”—r)Jn(t)”Hl x12 + ”rJn”L?L}(O(RxRii)) =0, (4.26)

J=0 00 teR

- —t; —t; . . .
where U j,(t,x) = <#@(#,%),#8t@(%,%)), and with U; and U, given as in
in n n in jn ‘n
Lemma 4.3 and Lemma 4.4. Moreover, denoting U,,, = U, for p, > 0, > 0 and 6,, € R we

have the following orthogonality property for 1 <j #j’

lim VUi VUjy + 0,Uj0: Uy (0, x) dx = 0; (4.27)
=0 Jop<Ixl<pn

lim VU;jn VWi, + 0;Ujn8: W, (6n, x) dx = 0. (4.28)

n—oo
on<|x|<pn

If for some 2 < j < J, UjL # 0, by results in [16] (see remark at the end of proof of
Lemma 4.6 in [16]) there exists some fixed € > 0 such that

/ VU |? + (8, Upn)?(t, x)dx > € > 0, (4.29)
|x]1>1¢|

for all ¢ > 0 or all ¢t < 0. Thus by the orthogonality property of profiles (4.27) and (4.28)

we have

inff Vg )? + (3:un)?(t, x)dx + inf/ [VUug)? + (3:un)?(t, x)dx
Ix[=¢] Ix|2¢]

t>0 t<0

1 1
> —inf VU * + (3, Upn)(t, x)dx + = inf/ VU |* + (8, Upn)? (t, x)dx
2120 Jixps 2120 Jixps
€
>—-—>0
2

for all n sufficiently large. A contradiction with (4.23). Thus we must have U = 0 for

2 <j < J. The profile decompositions of (uno, Un1) then simplify to this form:
—
(Uon, Uin) = UT(0) + W (0). (4.30)
By the decomposition (4.25), Theorem 4.1 and orthogonality property of profiles, using
the same arguments as above, we conclude that Tf)’f(O) must be a steady state. Thus from

the bound (4.21) we have

W (0) |1 1223, = & (4.31)
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6018 H. Jia et al.

By the channel of energy estimates for the linear wave equation, by the decomposition

(4.25), and the orthogonality property, we obtain

inf/ [Vu,|? + (3;un)?(t, x)dx + 1}1(1)"[ [Vu, |2 + 3;u,)?(t, x)dx
||| =

£20 Ix|=t]

1 1
> — inf IVw, |2 + (3,w,)?(t, x)dx + > inf IVw, |2 + (3,w,)2(t, x)dx

20 Jixiz 1| =0 Jixpzt|

>—-§>0,
for all sufficiently large n. We thus again arrive at a contradiction with (4.23). The

theorem is proved. n

5 Center-Stable Manifold of Unstable Excited States

In this section, we show that any unstable excited state can only attract a finite
co-dimensional manifold of solutions and finish the proof of our main Theorem 1.3. We
first prove Theorem 5.1 which provides the key estimate on the energy of the radiation
term.

Before going into the technical details let us briefly outline the main ideas under-
lying the proof. By results in Section 3, we know that if a solution U(t) scatters to an
unstable excited state (¢, 0), then there exists a local finite co-dimensional center-stable
manifold around TJ)(O), on which solutions scatter to the same excited state. We would
like to show the following in a small neighborhood of TI)(O): if the data (uo, u;) do not lie
on this local center-stable manifold, then the solution ¥ (¢) with initial data (uo, u;) will
scatter to a steady state with strictly less energy, thus not to (¢, 0). Then it is clear that
the set of initial data in H' x L2(R®) for which solutions scatter to an unstable excited
state is a global finite co-dimensional manifold.

Note that the local center-stable manifold theorem 3.2 guarantees that the solu-
tion u(t) will exit a small ball centered at TJ)(O). However after it exits the small ball,
we will lose control on the solution based on perturbative analysis alone. Thus we need
some global information about the future development of the solution u(t). The key
global information here is the channel of energy inequality. Roughly speaking we show
by a channel of energy argument that u(t) will emit at least some fixed amount of energy
more than solution starting from the center-stable manifold to spatial infinity, thus
leaving u(t) with less energy in a bounded region as ¢ — oo than is required for it to
scatter to (¢, 0). This forces u(t) to scatter to a different steady state from (¢,0). The

precise result is as follows.
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Defocusing Energy Critical Wave Equation 6019

Theorem 5.1. Let V € Q C Y. Suppose that radial finite energy solution TJ)(t) to equa-
tion (1.1) scatters to an unstable excited state (¢,0). Let M be the local center-stable
manifold around TJ)(O) and let ¢, €; be as defined in Theorem 3.2. Then there exist €
with 0 < € < €; < €y and §(¢;) > €, such that for any solution u with radial finite energy
initial data (ug, u;) ¢ M with

—
[(wo, 1) — Ugllginpe < €,

we can find L > 0 such that

2 2
/ |:|V;L| 4 (Bt;l) ] (t,x)dx > E(Tl)(t)) —E((¢,0)) + 8, for t > L. (5.1)
|x|>t—-L

Suppose T (t) scatters to (¢1,0) € X (the set of steady states). Then

E((91,0)) < £((¢,0)). (5.2)
O

Proof. By the local center-stable manifold theorem of Section 3, the locally defined
finite co-dimensional manifold M satisfies the property that any solution to equation
(1.1) with initial data on M scatters to (¢, 0). Moreover, if a solution U (t) with initial

data (ug, u;) € B, (fi)o) satisfies
1T () — U@y < € forall t >0, (5.3)

then (ug, u;) € M. By shrinking ¢;, if necessary we can assume that the distance from any
other steady state to (¢, 0) is greater than 3¢;. Take € < ¢; sufficiently small to be chosen
below. Since solution TJ)(t) scatters to (¢,0) as t — oo, denoting by TJ)L the scattered

linear wave, we have the property that
lim | T (¢) — T — (@, )1z = 0. (5.4)

By (5.4), the fact that ¢ € H'(R®) and U* e L3L!°([0, c0) x R®), for any small §, > 0, we can

choose L > 0 and T; > L sufficiently large such that for ¢ > T; we have:

e (Closeness of TJ) to TJ)L + (¢, 0) and choice of the bounded region)

— —;
U@ — U@ — (@, 0)lz1xz2 + ||¢||H1(|X|3L) < dy; (5.5)
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6020 H. Jia et al.

e (Most energy of the free radiation is exterior)
/ |V UM (¢, %) dx Z/ |Vex U2 (¢, %) dx — §1; (5.6)
|x|>t—T1+L R3
¢ (Control on the Strichartz norm of the radiation) Let
Then we have

L
| ||L?L,1(0((0,oo)><R3\D) < 8y. (5.7)

We remark that (5.6) ensures that U’ can essentially be taken as zero for our purposes
inside the region |x| < t — T} + L for t > T}, which will be important to keep in mind
later, in order to distinguish the second piece of radiation.

By the continuous dependence of the solution to equation (1.1) with respect to
the initial data in H' x L?(R®) and by finite speed of propagation, if we take € sufficiently

small and radial initial data (uo, u;) € H' x L2\ M with | (uo, u1) — TJ)(O)HHlez < ¢, then
1T (T) — T (Tl a2 (5.8)

can be made sufficiently small. Hence, noting that || V|| 5/4,5/2 is finite, we can apply
t >

(Ix|=1t)
Lemma 4.1 to conclude that

I (t) - Tf)(t)llyl «2(xzt-1y) = 61, for all ¢t > T;. (5.9)
(5.9) means that we can effectively identify ¥ with T in the exterior region
x| >t—T, t>T;.
Hence by (5.5), we see
1T () — T* @)l rzgumerin < 381, (5.10)

that is, we can also identify U with ?J)L in the exterior region |x| >t — T, + L, t > T;.
At this point to avoid any possibility of confusion due to the many parameters,

we remark that §; and € can be made as small as we wish, with T;, L depending on §,

and U only. € is a small free parameter below some threshold determined by §;. The key

point for us is that ¢; > 0 is fixed no matter how small ¢ is chosen.
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Since (ug, u;) ¢ M, there exists T, > 0 such that
—
I (T2) = U (To) it a2y = €1 (5.11)
Note that the choice of T} and L does not depend on ¢, thus by the continuous dependence
of solution on initial data in H! x L2, if we choose € sufficiently small, we can assume
T, > L+ T, + 1. Let us consider the data TL)(TZ) in more detail. By estimates (5.5) and
(5.11) we can write
— L —
u(Tz) =(¢,00+ U™ (T2) + w, (5.12)
where W € H! x L? satisfies
26, > €1+ 81 > [ Wlgy2ps = € — 81 > €/2, (5.13)
if §; is chosen smaller than %1 Consider the solution @(t) to equation (1.1) with
%
U(T2) = (¢,0) + W.

Then by the quantitative channel of energy inequality from Theorem 4.2, we infer that

/ |V xU|*(t,x)dx > c(e;) >0, forallt > T, orall t < Ty. (5.14)
[x|=[t—=T2|

By bound (5.7) and Lemma 4.1 we obtain that for |x| > |t — T,|
T(t,x) = TXt, %)+ @ (6% + T (£, %), (5.15)
where the remainder term 7 satisfies
sup 17 @l z2e3) < Co1. (5.16)

We claim that the channel of energy inequality (5.14) holds for all ¢ > T,. Otherwise,
inequality (5.14) holds for all ¢ < T,. By (5.15) and (5.16), setting ¢ = 0 and noting that

I UL||Hlez(‘X‘>T2) can be made smaller than § if T, is large enough, we see that

1
[ (Wo, Ul x12(x215) = C(€1) — Cd1 > 50(61), (5.17)
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6022 H. Jia et al.

if 8, is chosen sufficiently small, a contradiction with finiteness of T])(O) in H! x L? and

I (uo, uy) — f/')(O)HHlez < € for T, large. Thus we have the following channel of energy

inequality

/ |V x@|*(t,x) dx > c(e;) > 0, for all t > Ty.
|x|>t—To

(5.18)

The estimate (5.10), decomposition (5.15) and estimate on the remainder term (5.16) imply

fort> T,
/ |Vt,xa|2(th) dx < Cé,
|x|>t—T1+L

and consequently

/ |Vt,xa|2(t,X) dx > c(e;) — Cé;.
t—Ty+L>|x|>t— Ty

Hence

-2
I8 W a2 xize-1)
> | TL)2 +ce) — C8
= HxL2(|x|>t—Ty +L) 1 1
7L 2
Z || U ||H1XL2(R3) + C(El) - C(Sll

(5.19)

(5.20)

if 8; is chosen sufficiently small. Choose §; sufficiently small depending on ¢;, (5.1) is

then proved with some § = §(¢;) > 0.

Now let W %(t) be the free radiation term for the solution W () as t — oo. Then

Um [T (@) = THE) ~ (@1, 0)llin 23 = 0.

By the first part of Theorem 5.1,

L2 ST 2 T7L)2
I u ||Hle2(R3> = tlgglo I u ||Hle2(|X‘Zt,T2) >||U ||Hle2(R3) + c(e).

Note that

- -
[ U0, = E(U) — E,0);

ITEN2,, . = E(U) — E(¢r, 0).

H!x12

(5.21)

(5.22)
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If | T (0) — ?])(0)||H1><L2(R3) is chosen small, by (5.22) we conclude
E(pr,0) < E(p,0). (5.23)
The theorem is proved. |

Proof of Theorem 1.3. We only consider the case in which (¢, 0) is unstable, the case of
(¢,0) being stable can be handled using standard perturbation arguments. Since in some
small neighborhood of any point bij (0) on M,, M, coincides with the local center-stable
manifold M of co-dimension n which we constructed in Section 3 by Theorem 5.1, M,
is thus a global manifold of co-dimension n. The path-connectedness follows from the

following theorem. |

Theorem 5.2. For any unstable excited state (¢,0), the corresponding center-stable

manifold M, is path connected. O

Proof. Given data (uo, u;), (&g, ;) € M,, we denote the corresponding solutions by
u,u. Write h = u — ¢,£ = U — ¢. Repeat step 0 and step 1 in the proof of Theorem 3.2.
Then given any € « 1, we can find T = T(e, u, @), such that

||h||L§L§°mL§°L§([T,oo)xR3)r 1€l 22100 nnperg i copxrs) = €- (5.24)
Now we seek a function w (9, t, x) of the form
w®,t,x)=(1—0)u+0u+n

=¢+(L—0h+6L+) 20,00 +y0,t,%) (5.25)

i=1
such thatforall6 € [0,1],y(#,t,x) L p;,i=1,...,nand w(6, t, x) is a solution to equation
(1.1) that scatters to ¢.
For 6 € [0, 1] fixed, the equation satisfied by n = Z?:I A0, )0 + (0, t,x) is:
N — A — V(xX)n +5¢*n + N@©, h, £,¢,1) =0,

where

N@ ht,¢.m =@+ 1 -Oh+60L+n°—(1—-60)(¢+h)°—0+0°—5¢").
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Now we can repeat the stability condition (3.35) and obtain the reduced system of the
form (3.36).
InN@,h,t, ¢,n), the terms independent of 1 are of the form

@+ 1 —Oh+00°—(1-0)@+R°—0@+0°= Y C@O,ijke¢HeE

i+j+k=5,i<3

Notice that there are no terms ¢° or ¢*h, ¢*¢.

Also, the linear term of n in N, h, £, ¢, n) is
5(¢ + (1 —O)h +00)"n — 59"y

hence all linear terms involve a factor of h or ¢.
Now we can repeat estimates (3.38),(3.39), then (3.40) for the linear term in 7, (3.41)
for higher order terms in . We also have the following estimate on terms independent

of

> CO,ig ket < ¢€?

i+j+k=5,i<3
k=512 LIL2 (T 00) xR3)

For example, one checks that

37,2 3 2 2
10" A7 L 12 17 00) w3y = ||¢||Le||h||L?L§o <e

using (5.24). To sum up, using the X norm defined in (3.37), we conclude that

n
Ias- s A, V) lxar,o0n <Ke? +K <Z 12:(0, T) + [I(y (0, T),?(Q,T))Ilylxﬂ)
i=1
5

+ Kell(A1, -+ An V) Ixar,con + K Z A1, An, J/)||§([T,oo)),
k=2

where K is some absolute constant.
Moreover, in a similar fashion one sees that the difference of two solutions sat-
isfies a similar estimate in which the first two terms disappear. Using the contraction

mapping principle, we conclude that for sufficiently small data

DM@ DI+ I @, T), 90, T2 < 8

i=1
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there is a solution w as in (5.25) which solves (1.1). We can also check that w scatters

to ¢.
In particular, let us take 1;(0,T) = %89(1 —0)and y(@,T,x) = 0. We claim that

the corresponding solution w(#, t, x) satisfies the following relation
w(0,t,x) =u(t,x), w(,t x)=1u(t,x), foralltelR. (5.26)

In fact, notice that A;(0,T) =0,7(0, T, x) = 0 implies 2;(0,t) = 0,7(0,t,x) = Ofort>T,
which further implies w (0, t, x) = u(t, x),t > T. Similarly we have w(1,t,x) = @i(t, x),t >
T. Then (5.26) follows from the uniqueness of solutions to equation (1.1).

Hence {w(9,0,x),6 € [0,1]} is a path in M, connecting the two data

(Uo, u1), (o, Uy). [ |

Appendix A: Some elliptic estimates

We begin with the following lemma.

Lemma A.1. Denote by B, the ball of radius 1 in R®. Let V € L*(B,) and A > 0. Suppose

u € H' NL%(B,) is a weak solution to
—Au—Vu+iu®=0, inB, (A.1)
in the sense of distributions. Then u € L“(B%) and

||u||L°°(Bl) = C(”V||L°°(B1))”u||L2(Bl)- (A.2)
2

Remark A.1. The assumption on the regularity of V can be significantly relaxed to
V € L9 with q > % For the sake of simplicity, we shall not prove the most general

version. The proof is based on DeGiorgi-Nash iteration arguments. O

Proof. Assume u is not identically zero. By multiplying a positive constant to u, we
can assume in addition that [ull;23,) = 1. u still satisfies equation (A.1) with possibly

a different A in the equation. Fixing an M > 1 to be determined later, we need to show
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lullz=@E,) < M. For each integer k > 1, we define
2

For each k > 2, we fix a smooth nonnegative cutoff function n; such that Meley, =1 and
supp nx € Bre+r_, , with 0 < m < 1 and |Vn,| < C2*. By a sign change, it suffices to prove
that u(x) < szor X € B%. Multiplying equation (A.1) with (u — ci).nx and integrating,
we get that

[ V(u—c)V((u—cp)n) dx — f V(u—cr)y - (u—cp)npdx
By

B

- / aV(u—cp)on,dx + A/ u’(u —cp)ymedx =0,
B

By

which implies that

/ IV(u—co)+* + (u—c)? dx
Bry,

<CUIV|gem)+ 1) (u— Ck)i dx +

Bri+r_1
2

(u—cp)ydx + C4k/ (u —cp)? dx.

Bri+r_1
2

IV sy /

Bri+rp_1
2

Thus,

%
</ (u—cp)t dx)
Bry

< C(| Vg, + 1)4k/ (u—cx1): dx +

Bri_1
1

2
1
2
+ | V|| goo Cr / (u— ck)fr dx ){X € Bri+rp_; : u(x) > cr}| -
Britrey z
2

Note that by Chebyshev inequality we have

1
(X € Bryire; : u(x) > ck}‘ R — (U — 1) dx.
2 (Cx — Ck-1) Bry_;
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Hence, we get that

1
3
(/ (u—cp)? dX)
By

< CUIV Iy, + 14" / (u—ce1)? dx +
B,

Tk—1
Ck
+ ||V||Loo—/ (U — ce)? dx
Cry — Ck—1 Bre_;
< C(IV ][y, + 1)4F / (U= cer)? dx.
B’k—l

Note that

f (u—cpldx > / (U — CerD)? - (Crr — )" dx.
Brk B

Tk+1

Summarizing the above inequalities, we obtain

(f

Denote

3
(U — Ce1)? dx) < C(IV Iz, + 1)2‘”“/ (u—cx-1)>dx, forallk>2. (A3)
B,

Tk+1 Tk—1

1

3
€ 1= ( / (u—cp? dX) , (A.4)
Bry,

then equation (A.3) can be written as
e < G165, < (C116)%¢)_,, (A.5)

where we have suppressed the dependence of C; > 1 on V. Recall that a routine energy

inequality implies IVullz@,) < Cllulze,, = C. Hence, if we choose M sufficiently large,

4
by the Holder and Chebyshev inequalities, we can assume ¢,, €3 satisfy

1 1
€,6<C— < ———. A.6
YT T M T (48C) (4.0
Then from the iterative inequality (A.5) we can prove by induction that ¢, < W for
1
all kK > 2. Hence we have
%irglo (u—cp)?dx =0. (A.7)

Bry,
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Note that r, — % and ¢, — M as k — oo, thus we conclude u(x) < M for x € B%. The

lemma is proved. |

Now we are ready to prove the main result on the regularity and decay of steady

states to equation (1.1).

Theorem A.1. Let V € Y. Suppose u € H'(R®) N L8(R?) is a steady state solution to

equation (1.1), that is, u solves
—Au—TVu+u®=0 in R?, (A.8)

in the sense of distributions. Then u € W>?(R3) for any 1 < p < oo, and

loc

C 3
lux)| < (1+—|X|)’ x e R°. (A.9)

O

Proof. By Lemma A.1, we see u € L*(R?). Then the W;>? estimates follow from standard
elliptic regularity theory. Let us now turn to the proof of the decay estimate (A.9). For

any 2R = |xg| > 2, set v(x) := R%u(RX + Xo). Then v solves
—Au—Vgyu+u®=0, inBy,

where Vg, = R2V(Rx + X,). Since V e Y with sup(1 + |x|)?|V(x)| < oo for some 8 > 2, we
X0 S
xeR

see that ||V llz~@,) < [IV|y. Thus by Lemma A.1,
VO = IVl2@,) < ClIVIee,) < Cllwlsqx=r/z)-

Hence by rescaling and the fact that x, is arbitrary, we see that

lu(x)|=o0 (%) , as |x| — oo.
(1+1x]z

Now choose R > 1 sufficiently large, and set v(x) = R%u(RX), then v|z = R%u|aBR is

small, and Vi := R?V(Rx) is small in the exterior of B;, in the sense that

sup |(1 + |x])’Va(x)] <eg — 0, as R — oo.

|x[=1
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Then for sufficiently large R, by a standard perturbation argument one constructs a

solution ¥ to the equation
—AV — Va¥ +7°=0, in B, (A.10)
with the boundary condition V|5, = vls5,, with the estimates

- c

[7(x)] < ——=—, for |x| > 1. (A.11)
I+ |x))

Since both v and ¥ are small solutions in H' to equation (A.10) with the same boundary

condition, we conclude v = V. Hence v also satisfies (A.11). Scaling back to u, we see

that u satisfies

c 3
lu(x)| < (1+| N’ for x € R°. (A.12)

The theorem is proved. n

Appendix B: Endpoint Radial Strichartz Estimate

In this appendix, we give a proof of Theorem 3.1 in the radial setting. We only need
to prove the endpoint case, since other cases are known from [13]. In the case of the
homogeneous equation, Klainerman and Machedon [20] first observed that the endpoint
case (q,r) = (2,00) holds true for data of the form (v(0), v;(0)) = (0, g) for radial function

g. Here we extend the result to the inhomogeneous equation with general radial data.
Theorem B.1. Let v be a finite energy solution to the 3d wave equation
(0 —A)V=F

with initial data (v(ty), 9;v(to)) = (f,g) € H' x L*(R®) and assume that f,g, and F are

radially symmetric. Then we have the estimate

||V||L2L°°(R><R3) = C(CIIT') (”(f g)||H1 12 + ”F”L LZ(Rx]R3 ) (Bl)

Proof. The solution takes the form

v(t,x) = cos(|VIt)f + —sin(|V|t)g +

/ sin(|V|( — S))F(S)ds.
IVI

V]
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Case 1: f = 0,F = 0, this was proved in [20] using the explicit formula

c t+r
|

t—r|

Denote M (-) to be the 1d maximal function defined as

xel

1
M) (x) = sup—/|f|
1| Jr
for any interval I C R. Extending g to be an even function defined on R, we then have

sup |v| < Csup

r>0 r>0

< CM[g(p)p](T).

1 t+r
- / lg(p)pldp
rJ

t—r

This is obvious for r < t, while for r > t, notice that [t — r, t 4+ r] is a larger interval than
[r —t,t + r], hence the term in the middle is still bounded by maximal function.

Using the Hardy-Littlewood maximal inequality [23], we get that
II'sup [vlll 2+, < CIMIGP) 1Dl 2+) < ClgPIPIL2w) = CllGI2@s3)-
r>0

By time reversibility, we have the same estimate when integrating on t € (—oo, 0].

We rewrite the estimate in the following form

S ||g||L2(R3)- (B.2)
L2LP (RxR3)

1
7 sin(|Vit)g
‘ V]

Case 2: f = g = 0. Using (B.2) and Minkowski inequality, we immediately get

o0
~Y
L2LP (RxR3) 0

o0
5/ IF () ll23)ds = IFIlL 2 )
0

in(|V|(t —
Xr0,61(S) WF (s)

ds

L2LP (RxR3)

t ol _
/ sin(|V|(t S))F(s)ds
0

VI

Case 3: g = 0, F = 0. For simplicity, we prove our estimates for Schwartz function f, and
the estimates for general f € I:Irlad follow by approximation.

In the radial case, we have the following explicit expression for v:
1 r+t 1
V= at; flp)pdt = ;[f(r+t)(r+t) —f(r—thE—-n)], t>0. (B.3)
lt—r|
As a first step we bound

1
sup |v(¢,r)| < sup —

O<r<t O<r<t

t+r
f (pf(p))/dp‘ < Ml(pf (0))1(0).
t

—-r
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Applying Hardy-Littlewood maximal inequality and Hardy's inequality [23], we get

I sup V[l 2+, SIF(0) + of (0)llr2et)

O<r<t

+ ||Vf||L2(1R3) 5 ||vf||L2(R3)' (B.4)

L2(R3)

<HL
~ i

Next if r > t we claim that
o0
IS9P I (D)l e, / (o) p2dp. (8.5)
p>t 0

Dualizing (B.5) we see that it is equivalent to

/oo wf'(w) |:l // h(t,p)dp dti| dw'
0 w w>p>t>0

5 ||f/(W)W||L%,([R+)||h||L§L})(R+XR)' (BG)

‘ / / " Fw) dw h(t, p) dpdt‘ —
p>t>0Jp

So we need to prove that

1
H — // h(t,p)dpdt
w w>p>t>0

by change of variables t = wt, we have

H/f |h(wt, p)|dp dr
w>p>wt>0

- 5 ||h||LfL},(IR+><R)I
Ly, (RT)

1 o0
/ / lh(wz, p)|dpdt
0 0

1
5/
0

SHhHL?L})(]R‘F xR)

5 ‘

12,(RT) 1%, ®")

/ Ih(t, p)ldp
0

dt
L2@®") \/?

as we claimed. Thus we proved (B.5) whence

sup lLf(r +t)|(r+1t)

r>t>0

SIVEl - (B.7)

LZ®t)

Next we will prove that

1
sup —|f (r — 0)|(r — 1)

r>t>0

SIVFlgz. (B.8)

2
LE®RT)
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By the change of variables r = t(p + 1), this is equivalent to

2]

su
! +

By duality, this is equivalent to

or

>tp>0 1

So we only need to show that

1
— P p t,p)dpdt
H w / w>tp>0 1 + ( IO) i

L2, ®*)

By the change of variables t = tw

Hl/ —h(t p)dpdt
w

>tﬂ L+p 12, (r)

0
= ——h(tw,p)dpdr
'/~/1>rp1+p
0 1
P
//Ih(rw,p)ldfdp
1 0
1 00
[ [ mew. pidpar
0 0

! dT
</ ||h|| 2:1 — 4+
0 t p(RTx )ﬁ

> 1
<
~ ”h”LfL},(RerR) +/0 1+<

L2,RT)

A

L2, ®R*)

min(L,1)

A

L2, (RT)

_1
T 2dr ”h”LfL})(WxR)
S, ”h”LfL},(R‘*'x]R)

Hence combining (B.3) and (B.7), (B.8), we deduce

I'sup [vill2@+) S IVFllz2@s)-
r>t

1
oo 2
< (f If’(p)lzpzdp>
L2®Y) 0

plh(tw, p)|dt dp
plh(tw, p)|dp dz

1
1—_H|h(TW, p)ldpdz

/ f'(w)dw h(t, p)dp dt‘ S W WW gz, @) 11200 gt cry

[Toren |5 [ hmdode|dw] S 1 0w e g
0 w

S ||h||L?L})(R+><]R)‘

L2,(R+)

L2, (R+)

L2, RT)
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Together with (B.4) we have proved

||V||L?L§°(R+xm3) N ||Vf||L2(R3)~

By time reversibility, we get

||V||L§L;O(]Rxm<3) S ”Vf"Lz(]R3)
and we are done.a |
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