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RELAXATION OF WAVE MAPS EXTERIOR TO A BALL
TO HARMONIC MAPS FOR ALL DATA

Carlos E. Kenig, Andrew Lawrie and Wilhelm Schlag

Abstract. In this paper we establish relaxation of an arbitrary 1-equivariant
wave map from R

1+3
t,x \(R × B(0, 1)) → S3 of finite energy and with a Dirichlet

condition at r = 1, to the unique stationary harmonic map in its degree class.
This settles a recent conjecture of Bizoń, Chmaj, Maliborski who observed this
asymptotic behavior numerically.

1 Introduction

In this paper we describe all possible asymptotic dynamics for the 1-equivariant
wave-map equation from

R
1+3
t,x \(R ×B(0, 1)) → S3

with a Dirichlet condition on the boundary of the ball B(0, 1), and data of finite
energy. To be specific, consider the Lagrangian

L(U, ∂tU) =
∫

R1+3\(R×B(0,1))

1
2

⎛
⎝−|∂tU |2g +

3∑
j=1

|∂jU |2g

⎞
⎠ dtdx

where g is the round metric on S3, and we only consider functions for which the
boundary of the cylinder R × B(0, 1) gets mapped to a fixed point on S3, say the
north pole. Under the usual 1-equivariance assumption the Euler-Lagrange equation
associated with this Lagrangian becomes

ψtt − ψrr − 2
r
ψr +

sin(2ψ)
r2

= 0 (1.1)
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where ψ(t, r) measures the angle from the north-pole on S3. The imposed Dirich-
let boundary condition is then ψ(t, 1) = 0 for all t ∈ R. In other words, we are
considering the Cauchy problem

ψtt − ψrr − 2
r
ψr +

sin(2ψ)
r2

= 0, r ≥ 1,

ψ(t, 1) = 0, ∀ t,
ψ(0, r) = ψ0(r), ψt(0, r) = ψ1(r).

(1.2)

The conserved energy is

E(ψ,ψt) =

∞∫

1

1
2

(
ψ2

t + ψ2
r + 2

sin2(ψ)
r2

)
r2 dr. (1.3)

Any ψ(t, r) of finite energy and continuous dependence on t ∈ I := (t0, t1) must
satisfy ψ(t,∞) = nπ for all t ∈ I where n ∈ Z is fixed. We can restrict to the case
n ≥ 0 since this covers the entire range n ∈ Z by the symmetry ψ �→ −ψ. We call
n the degree, and denote by En the connected component of the metric space of all
�ψ = (ψ0, ψ1) with E(�ψ) < ∞ and fixed degree n (of course obeying the boundary
condition at r = 1), i.e.,

En := {(ψ0, ψ1) | E(ψ0, ψ1) < ∞, ψ0(1) = 0, lim
r→∞ψ0(r) = nπ}. (1.4)

The advantage of this model lies with the fact that removing the unit ball elimi-
nates the scaling symmetry and also renders the equation subcritical relative to the
energy. This subcriticality immediately implies global wellposedness in the energy
class. Both of these features are in stark contrast to the same equation on 1 + 3-
dimensional Minkowski space, which is known to be super-critical and to develop
singularities in finite time, see Shatah [S88] and also Shatah and Struwe [SS98].

Another striking feature of this model, which fails for the 1+2-dimensional ana-
logue, lies with the fact that it admits infinitely many stationary solutions (Qn(r), 0)
which satisfy Qn(1) = 0 and limr→∞Qn(r) = nπ, for each n ≥ 1. These solutions
have minimal energy in the degree class En, and they are the unique stationary
solutions in that class.

The natural space to place the solution into for n = 0 is the energy space H0 :=
(Ḣ1

0 × L2)(R3∗) with norm

‖�ψ‖2
H0

:=

∞∫

1

(ψ2
r (r) + ψ2

t (r)) r
2 dr, �ψ = (ψ,ψt). (1.5)

Here, R
3∗ := R

3\B(0, 1) and Ḣ1
0 (R3∗) is the completion under the first norm on the

right-hand side of (1.5) of the smooth radial functions on {x ∈ R
3 | |x| > 1} with

compact support. For n ≥ 1, we denote Hn := En − (Qn, 0) with “norm”

‖�ψ‖Hn
:= ‖�ψ − (Qn, 0)‖H0 .
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The point of this notation is that the boundary condition at r=∞ is �ψ−(Qn, 0)(r) →
0 as r → ∞.

The exterior equation (1.2) was proposed by Bizon et al. [BCM12] as a model in
which to study the problem of relaxation to the ground states given by the various
equivariant harmonic maps. In the physics literature, this model was introduced
in [BSS92] as an easier alternative to the Skyrmion equation. Moreover, [BSS92]
stresses the analogy with the damped pendulum which plays an important role
in our analysis. Both [BCM12,BSS92] obtain the existence and uniqueness of the
ground state harmonic maps via the phase-plane of the damped pendulum, and
they also observed stability of the linearized equation around the harmonic maps.
Numerical simulations described in [BCM12] indicated that in each equivariance
class and topological class given by the boundary value nπ at r = ∞ every solution
scatters to the unique harmonic map Qn that lies in this class. In this paper we
verify this conjecture in the 1-equivariant setting, for all degrees and all data.

Our main result is as follows. It should be viewed as a verification of the soliton
resolution conjecture for this particular case.

Theorem 1.1. For any smooth energy data in En there exists a unique global
and smooth solution to (1.2) which scatters to the harmonic map (Qn, 0).

Scattering here means that on compact regions in space one has (ψ,ψt)(t) −
(Qn, 0) → (0, 0) in the energy topology, or alternatively

(ψ,ψt)(t) = (Qn, 0) + (ϕ,ϕt)(t) + oHn
(1) t → ∞ (1.6)

where (ϕ,ϕt) ∈ H0 solves the linearized version of (1.2), i.e.,

ϕtt − ϕrr − 2
r
ϕr +

2
r2
ϕ = 0, r ≥ 1, ϕ(t, 1) = 0. (1.7)

We would like to emphasize that only the scattering part of Theorem 1.1 is difficult.
In [LS13] the second and third authors established this theorem for degree zero,

and also proved asymptotic stability of the Qn for n ≥ 1. Here we are able to treat
data of all sizes in the higher degree case. As in [LS13] we employ the method of
concentration compactness from [KM06,KM08]. The main difference from [LS13] lies
with the rigidity argument. While the virial identity was the key to rigidity in [LS13]
for degree zero (which seems to be impossible for n ≥ 1), here we follow an alternate
route which was developed in a very different context in [DKM13,DKM12] for the
three-dimensional energy critical nonlinear focusing wave equation. To be specific we
rely on the exterior asymptotic energy arguments developed there. A novel feature of
our work is that we elucidate the role of the Newton potential as an obstruction to
linear energy estimates exterior to a cone in odd dimensions; in particular we do this
for dim = 5, which is what is needed for equivariant wave maps in R

3. It is precisely
this feature which allows us to adapt the rigidity blueprint from [DKM13,DKM12]
to the model under consideration.

Finally, let us mention that we expect the methods of this paper to carry over
to higher equivariance classes as well.
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2 Preliminaries

In this section we discuss the harmonic maps Qn, as well as the reduction of the
equivariant wave maps equation to a semi-linear equation in R

5∗ := R
5\B(0, 1) with

a Dirichlet condition at r = 1.

2.1 Exterior harmonic maps. In each energy class, En there is a unique finite
energy exterior harmonic map, (Q, 0) = (Qn, 0). In fact (Qn, 0) can be seen to have
minimal energy in En. An exterior harmonic map is a stationary solution of (1.2), i.e.,

Qrr +
2
r
Qr =

sin(2Q)
r2

(2.1)

Q(1) = 0, lim
r→∞Q(r) = nπ. (2.2)

Lemma 2.1. For all α ∈ R there exists a unique solution Qα ∈ Ḣ1(R3∗) to (2.1) with

Qα(r) = nπ − αr−2 +O(r−6).

The O(·) is determined by α, and vanishes for α = 0. Moreover, there exists a unique
α such that Qα(1) = 0, which we denote by α0. One has α0 > 0.

The proof of Lemma 2.1 is standard so we just sketch an outline below. In order
to study solutions to (2.1) it is convenient to introduce new variables s = log(r) and
φ(s) = Q(r). With this change of variables we obtain an autonomous differential
equation for φ, viz.,

φ̈+ φ̇ = sin(2φ) (2.3)

which is the equation for a damped pendulum. We can thus reduce matters to the
phase portrait associated to (2.3). Setting x(s) = φ(s), y(s) = φ̇(s) we rewrite (2.3)
as the system

(
ẋ
ẏ

)
=
(

y
−y + sin(2x)

)
=: X(x, y) (2.4)

and we denote by Φs the flow associated to X. The equilibria of (2.4) occur at
points vk/2 = (kπ

2 , 0) where k ∈ Z. For each k
2 = n ∈ Z the flow has a saddle

with eigenvalues λ+ = 1, λ− = −2, and the corresponding unstable and stable
invariant subspaces for the linearized flow are given by the spans of (1, λ+) = (1, 1),
respectively (1, λ−) = (1,−2). In a neighborhood V 	 vn = (nπ, 0) one can define
the 1-dimensional invariant unstable manifold

W u
n = {(x, y) ∈ V | Φs(x, y) → vn as s → −∞}

and the 1-dimensional invariant stable manifold

W st
n = {(x, y) ∈ V | Φs(x, y) → vn as s → ∞}



614 C. E. KENIG ET AL. GAFA

which are tangent at vn to the invariant subspaces of the linearized flow. In partic-
ular, for each n one can parameterize the stable manifold W st

n by

φn,α(s) = nπ − αe−2s +O(e−6s)

with the parameter α determining all the coefficients of higher order. This proves
the existence of the Qα in Lemma 2.1. One can show that if the parameter α satisfies
α > 0 then φn,α(s) lies on the branch of the stable manifold which stays below nπ
for all s ∈ R, i.e., φn,α(s) < nπ for all s ∈ R. If α = 0 then φn,α(s) = nπ for all s.
Finally, if α < 0 then φn,α(s) > nπ for all s ∈ R. Different choices of α correspond
to translations in s along the respective branches of the stable manifold, which is
what we mean by uniqueness in the statement of Lemma 2.1.

To prove the existence and uniqueness of α0, we note that an analysis of the
phase portrait shows that any trajectory with α > 0 must have crossed the y-axis
at some finite time s0, and once it has crossed can never do so again. Note that if
the parameter α satisfies α < 0 then the trajectory can never cross the y-axis since
in this case φn,α(s) > nπ for all s ∈ R.

Now, fix any α+ > 0 and α− < 0. Passing back to the original variables we have
three trajectories

Qn,α±(r) = nπ − α±r−2 +O(r−6)
Qn,0(r) = nπ

(2.5)

where Qn,α+(r) is a trajectory on the branch of W st
n that increases to nπ as r → ∞,

and Qn,α−(r) is a trajectory on the branch of W st
n that decreases to nπ as r → ∞.

Since the trajectory Qn,α+ satisfies Qn,α+(r0) = 0 for some r0 > 0, we can obtain
our solution Qn(r) to (2.1) which satisfies (2.2) by rescaling Qn,α+(r) by λ0 > 0, i.e.,
we set

Qn(r) = Q+
n (r/λ0) = nπ − λ2

0α+r
−2 +O(r−6)

where we note that λ0 > 0 is uniquely chosen to ensure that the boundary condition
Qn(1) = 0 is satisfied. Note that such rescalings amount to a translation in the
s-variable above. Setting α0 := λ2

0α+, the unique harmonic map (Qn(r), 0) ∈ En

therefore satisfies

Qn(r) = nπ − α0r
−2 +O(r−6) (2.6)

as claimed above.

2.2 5d reduction. In the higher topological classes, En for n ≥ 1, we linearize
about Q = Qn by writing

ψ = Q+ ϕ

where Q = Qn is the unique harmonic map and energy minimizer in En. If �ψ ∈ En

is a wave map, then �ϕ ∈ Hn satisfies
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ϕtt − ϕrr − 2
r
ϕr +

2 cos(2Q)
r2

ϕ = Z(r, ϕ)

Z(r, ϕ) :=
cos(2Q)(2ϕ− sin(2ϕ)) + 2 sin(2Q) sin2(ϕ)

r2
(2.7)

ϕ(t, 1) = 0, ϕ(t,∞) = 0 ∀t, �ϕ(0) = (ψ0 −Q,ψ1).

The standard 5d reduction is given by setting ru := ϕ and then �u solves

utt − urr − 4
r
ur + V (r)u = F (r, u) +G(r, u), r ≥ 1

u(t, 1) = 0 ∀t, �u(0) = (u0, u1)

V (r) :=
2(cos(2Q) − 1)

r2

F (r, u) := 2 sin(2Q)
sin2(ru)
r3

G(r, u) := cos(2Q)
(2ru− sin(2ru))

r3
.

(2.8)

We will consider radial initial data (u0, u1) ∈ H := Ḣ1
0 × L2(R5∗) where R

5∗ =
R

5\B(0, 1),

‖(u0, u1)‖2
H :=

∞∫

1

((∂ru0(r))2 + u2
1(r)) r

4 dr (2.9)

where Ḣ1
0 (R5∗) is the completion under the first norm on the right-hand side above of

all smooth radial compactly supported functions on {x ∈ R
5 | |x| > 1}. We remark

that the potential

V (r) :=
2(cos(2Q) − 1)

r2
(2.10)

is real-valued, radial, bounded, smooth and by (2.6) satisfies

V (r) = O(r−6) as r → ∞. (2.11)

Also, by (2.6) we can deduce that

|F (r, u)| � r−3 |u|2
|G(r, u)| � |u|3. (2.12)

For the remainder of the paper we deal exclusively with u(t, r) in R
5∗ rather than the

equivariant wave map angle ψ(t, r). In fact, one can check that the Cauchy prob-
lem (1.2) with data (ψ0, ψ1) ∈ En is equivalent to (2.8). To see this let �ψ ∈ En and set

r�u(r) := (ψ0(r) −Qn(r), ψ1(r)). (2.13)

We claim that

‖�ψ‖Hn

 ‖�u‖H. (2.14)
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Indeed, setting ϕ(r) := ψ0(r) −Qn(r) we see that
∞∫

1

ϕ2
r(r)r

2 dr 

∞∫

1

u2
r(r)r

4 dr (2.15)

via Hardy’s inequality and the relations

ϕr = rur + u = rur +
ϕ

r
.

Therefore for each topological class En the map

�ψ �→ 1
r
(ψ0(r) −Qn(r), ψ1(r))

is an isomorphism between the spaces En and H respectively.
In particular, we will prove the analogous formulation of Theorem 1.1 in the

u-setting rather than the original one. Scattering in this context will mean that we
approach a solution of (2.8) but with V = F = G = 0.

3 Small Data Theory and Concentration Compactness

3.1 Global existence and scattering for data with small energy. Here
we give a brief review of the small data well-posedness theory for (2.8) that was
developed in [LS13]. As usual the small data theory rests on Strichartz estimates for
the inhomogeneous linear, radial exterior wave equation with the potential V ,

utt − urr − 4
r
ur + V (r)u = h

u(t, 1) = 0 ∀t (3.1)
�u(0) = (u0, u1) ∈ H

where V (r) is as in (2.10). We define SV (t) to be the exterior linear propagator
associated to (3.1). The conserved energy associated to (3.1) with h = 0 is given by

EL(u, ut) =
1
2

∞∫

1

(u2
t + u2

r + V (r)u2) r4 dr.

This energy has an important positive definiteness property: one has

EL(u, ut) =
1
2
(‖ut‖2

2 + 〈Hu|u〉), H = −Δ + V. (3.2)

It is shown in [BCM12,LS13] that H is a nonnegative self-adjoint operator in L2(R5∗)
(with a Dirichlet condition at r = 1), and moreover, that the threshold energy zero is
regular; in other words, if Hf = 0 where f ∈ H2 ∩ Ḣ1

0 then f = 0. It is now standard
to conclude from this spectral information that for some constants 0 < c < C,

c‖f‖2
Ḣ1

0
≤ 〈Hf |f〉 ≤ C‖f‖2

Ḣ1
0

∀ f ∈ Ḣ1
0 (R5

∗). (3.3)
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We sometimes write ‖�u‖2
E := EL(�u), which satisfies

‖�u‖E 
 ‖�u‖H ∀�u ∈ H. (3.4)

In what follows we say a triple (p, q, γ) is admissible if

p > 2, q ≥ 2
1
p

+
5
q

=
5
2

− γ

1
p

+
2
q

≤ 1.

For the free exterior 5d wave, i.e., the case V = 0 in (3.1), Strichartz estimates
were established in [HMSSZ10]. Although the estimates in [HMSSZ10] hold in more
general exterior settings, we state only the specific example of these estimates that
we need here.

Proposition 3.1 ([HMSSZ10]). Let (p, q, γ) and (r, s, ρ) be admissible triples. Then
any solution �v(t) to

vtt − vrr − 4
r
vr = h

�v(0) = (f, g) ∈ H(R5
∗) (3.5)

v(t, 1) = 0 ∀t ∈ R

with radial initial data satisfies

‖ |∇|−γ ∇v‖Lp
t Lq

x
� ‖(f, g)‖H + ‖ |∇|ρ h‖Lr′

t Ls′
x
. (3.6)

In [LS13], the second and third authors showed that in fact the same family of
Strichartz estimates hold for (3.1).

Proposition 3.2 ([LS13, Proposition 5.1]). Let (p, q, γ) and (r, s, ρ) be admissible
triples. Then any solution �u(t) to (3.1) with radial initial data satisfies

‖ |∇|−γ ∇u‖Lp
t Lq

x
� ‖�u(0)‖H + ‖ |∇|ρ h‖Lr′

t Ls′
x
. (3.7)

With these Strichartz estimates the following small data, global well-posedness
theory for (2.8) follows from the standard contraction argument.

Proposition 3.3 ([LS13, Theorem 1.2]). The exterior Cauchy problem for (2.8) is
globally well-posed in H := Ḣ1

0 × L2(R5∗). Moreover, a solution u scatters as t → ∞
to a free wave, i.e., a solution �uL ∈ H of

�uL = 0, r ≥ 1, uL(t, 1) = 0, ∀t ≥ 0 (3.8)

if and only if ‖u‖S < ∞ where S = L3
t ([0,∞);L6

x(R5∗)). In particular, there exists
a constant δ > 0 small so that if ‖�u(0)‖H < δ, then u scatters to free waves as
t → ±∞.
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Remark 1. We remark that in [LS13, Theorem 1.2], the conclusions of Proposi-
tion 3.3 were phrased in terms of the original wave map angle ψ where here the
result is phased in terms of u(t, r) := 1

r (ψ(t, r) − Qn(r)). As we saw in Section 2
this passage to the u−formulation is allowed since the map �u = 1

r (ψ −Qn, ψt) is an

isomorphism between the energy class En and H := Ḣ0
1 × L2(R5∗), respectively.

We refer the reader to [LS13] for the details regarding Proposition 3.2 and Proposi-
tion 3.3. For convenience, we recall how the scattering norm L3

tL
6
x is obtained. By

Proposition 3.2, solutions to (3.1) satisfy

‖u‖
L3

t (R;Ẇ
1
2 ,3

x (R5∗))
� ‖�u(0)‖H + ‖h‖

L1
t L2

x+L
3
2
t L

30
17
x

. (3.9)

As in [LS13], we claim the embedding Ẇ
1
2
,3

x ↪→ L6
x for radial functions in r ≥ 1 in

R
5∗. Indeed, one checks via the fundamental theorem of calculus that Ẇ 1,3

x ↪→ L∞
x .

More precisely,

|f(r)| ≤ r− 2
3 ‖f‖Ẇ 1,3

x
. (3.10)

Interpolating this with the embedding L3 ↪→ L3 we obtain the claim. From (3.9) we
infer the weaker Strichartz estimate

‖u‖L3
t (R;L6

x(R5∗)) � ‖�u(0)‖H + ‖h‖
L1

t (R;L2
x(R5∗))+L

3
2
t (R;L

30
17
x (R5∗))

(3.11)

which suffices for our purposes. Indeed, using (3.11) on the nonlinear equation (2.8)
gives

‖u‖L3
t (R;L6

x(R5∗)) � ‖�u(0)‖H + ‖F (r, u) +G(r, u)‖
L1

t L2
x+L

3
2
t L

30
17
x

� ‖�u(0)‖H + ‖r−3u2‖
L

3
2
t L

30
17
x

+ ‖u3‖L1
t L2

x

� ‖�u(0)‖H + ‖r−3‖
L∞

t L
30
7

x

‖u2‖
L

3
2
t L3

x

+ ‖u‖3
L3

t L6
x

� ‖�u(0)‖H + ‖u‖2
L3

t L6
x

+ ‖u‖3
L3

t L6
x

where we have estimated the size of the nonlinearity h = F (r, u) + G(r, u) using
(2.12). Thus for small initial data, ‖�u(0)‖H < δ, we obtain the global a priori estimate

‖u‖L3
t (R;L6

x(R5∗)) � ‖�u(0)‖H � δ (3.12)

from which the small data scattering statement in Proposition 3.3 follows.

3.2 Concentration compactness. We now formulate the concentration com-
pactness principle relative to the linear wave equation with a potential, see (3.1)
with h = 0. This is what we mean by “free” in Lemma 3.4. Note that this is a
different meaning of “free” than the one used in Proposition 3.3. However, observe
that any solution to (3.1) with h = 0, which is in L3

tL
6
x must scatter to “free” waves,

where “free” is in the sense of Proposition 3.3.
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Lemma 3.4. Let {un} be a sequence of free radial waves bounded in H = Ḣ1
0 ×

L2(R5∗). Then after replacing it by a subsequence, there exist a sequence of free
solutions vj bounded in H, and sequences of times tjn ∈ R such that for γk

n defined
by

un(t) =
∑

1≤j<k

vj(t+ tjn) + γk
n(t) (3.13)

we have for any j < k,

�γk
n(−tjn) ⇀ 0 (3.14)

weakly in H as n → ∞, as well as

lim
n→∞ |tjn − tkn| = ∞ (3.15)

and the errors γk
n vanish asymptotically in the sense that

lim
k→∞

lim sup
n→∞

‖γk
n‖(L∞

t Lp
x∩L3

t L6
x)(R×R5∗) = 0 ∀ 10

3 < p < ∞. (3.16)

Finally, one has orthogonality of the free energy with a potential, cf. (3.4),

‖�un‖2
E =

∑
1≤j<k

‖�vj‖2
E + ‖�γk

n‖2
E + o(1) (3.17)

as n → ∞.

The proof is essentially identical with that of Lemma 3.2 in [LS13]. In fact,
instead of the Strichartz estimates for � in R

5∗ we use those from Proposition 3.2
above.

Applying this decomposition to the nonlinear equation requires a perturbation
lemma which we now formulate. All spatial norms are understood to be on R

5∗. The
exterior propagator SV (t) is as above.

Lemma 3.5. There are continuous functions ε0, C0 : (0,∞) → (0,∞) such that
the following holds: Let I ⊂ R be an open interval (possibly unbounded), u, v ∈
C(I; Ḣ1

0 ) ∩ C1(I;L2) radial functions satisfying for some A > 0

‖�u‖L∞(I;H) + ‖�v‖L∞(I;H) + ‖v‖L3
t (I;L6

x) ≤ A

‖eq(u)‖L1
t (I;L2

x) + ‖eq(v)‖L1
t (I;L2

x) + ‖w0‖L3
t (I;L6

x) ≤ ε ≤ ε0(A),

where eq(u) := (� + V )u − F (r, u) − G(r, u) in the sense of distributions, and
�w0(t) := SV (t− t0)(�u− �v)(t0) with t0 ∈ I arbitrary but fixed. Then

‖�u− �v − �w0‖L∞
t (I;H) + ‖u− v‖L3

t (I;L6
x) ≤ C0(A)ε.

In particular, ‖u‖L3
t (I;L6

x) < ∞.

The proof of this lemma is essentially identical with that of [LS13, Lemma 3.3].
The only difference is that we use the propagator SV instead of S0.
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3.3 Critical element. We now turn to the proof of Theorem 1.1 following the
concentration compactness methodology from [KM06,KM08]. We begin by noting
that Theorem 1.1 was proved in the regime of all energies slightly above the ground
state energy E(Qn, 0) in [LS13, Theorem 1.2], see also Proposition 3.3 above. As
usual, we assume that Theorem 1.1 fails and construct a critical element which is
a non-scattering solution of minimal energy, E∗, which is necessarily strictly bigger
than E(Qn, 0). This is done in the following proposition on the level of the semi-linear
formulation given by (2.8).

Proposition 3.6. Suppose that Theorem 1.1 fails. Then there exists a nonzero
energy solution to (2.8) (referred to as a critical element) �u∗(t) for t ∈ R with the
property that the trajectory

K := {�u∗(t) | t ∈ R} (3.18)

is pre-compact in H(R5∗).

Proof. Suppose that the theorem fails. Then there exists a bounded sequence of
�ψj = (ψ0,j , ψ1,j) ∈ En with

E(�ψj) → E∗ > 0 (3.19)

and a bounded sequence �uj := (u0,j , u1,j) ∈ H where �uj(r) = 1
r (�ψj(r) − (Q(r), 0))

with

‖uj‖S → ∞
where un denotes the global evolution of �un of (2.8). We may assume that E∗ is
minimal with this property. Applying Lemma 3.4 to the free evolutions SV of �uj(0)
yields free waves vi and times tij as in (3.13). Let U i be the nonlinear profiles of
(vi, tij), i.e., those energy solutions of (2.8) which satisfy

lim
t→ti∞

‖�vi(t) − �U i(t)‖H → 0

where limj→∞ tij = ti∞ ∈ [−∞,∞]. The U i exist locally around t = ti∞ by the local
existence and scattering theory, see Proposition 3.3. Note that here and throughout
we are using the equivalence of norms in (3.4). Locally around t = 0 one has the
following nonlinear profile decomposition

uj(t) =
∑
i<k

U i(t+ tij) + γk
j (t) + ηk

j (t) (3.20)

where ‖�ηk
j (0)‖H → 0 as j → ∞. Now suppose that either there are two non-vanishing

vj , say v1, v2, or that

lim sup
k→∞

lim sup
j→∞

‖�γk
j ‖E > 0. (3.21)
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Note that the left-hand side does not depend on time since γk
j is a free wave. By the

minimality of E∗ and the orthogonality of the nonlinear energy–which follows from
(3.15) and (3.14)–each U i is a global solution and scatters with ‖U i‖L3

t L6
x
< ∞.

We now apply Lemma 3.5 on I = R with u = uj and

v(t) =
∑
i<k

U i(t+ tij). (3.22)

That ‖eq(v)‖L1
t L2

x
is small for large n follows from (3.15). To see this, note that with

N(v) := F (r, v) +G(r, v),

eq(v) = (� + V )v − F (r, v) −G(r, v)

=
∑
i<k

N(U i(t+ tij)) −N

(∑
i<k

U i(t+ tij)

)
.

The difference on the right-hand side here only consists of terms which involve at
least one pair of distinct i, i′. But then ‖eq(v)‖L1

t L2
x

→ 0 as j → ∞ by (3.15). In
order to apply Lemma 3.5 it is essential that

lim sup
j→∞

∥∥∥∥∥
∑
i<k

U i(t+ tij)

∥∥∥∥∥
L3

t L6
x

≤ A < ∞ (3.23)

uniformly in k, which follows from (3.15), (3.17), and Proposition 3.3. The point here
is that the sum can be split into one over 1 ≤ i < i0 and another over i0 ≤ i < k.
This splitting is performed in terms of the energy, with i0 being chosen such that
for all k > i0

lim sup
j→∞

∑
i0≤i<k

‖�U i(tij)‖2
H ≤ ε20 (3.24)

where ε0 is fixed such that the small data result of Proposition 3.3 applies. Clearly,
(3.24) follows from (3.17). Using (3.15) as well as the small data scattering theory
one now obtains

lim sup
j→∞

∥∥∥∥∥∥
∑

i0≤i<k

U i(· + tij)

∥∥∥∥∥∥
3

L3
t L6

x

=
∑

i0≤i<k

∥∥U i(·)∥∥3

L3
t L6

x

≤ C lim sup
j→∞

⎛
⎝ ∑

i0≤i<k

‖�U i(tij)‖2
H

⎞
⎠

3
2

(3.25)

with an absolute constant C. This implies (3.23), uniformly in k.
Hence one can take k and j so large that Lemma 3.5 applies to (3.20) whence

lim sup
j→∞

‖uj‖L3
t L6

x
< ∞
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which is a contradiction. Thus, there can be only one nonvanishing vi, say v1, and
moreover

lim sup
j→∞

‖�γ2
j ‖H = 0. (3.26)

Thus, if we let �ψ1 be the wave map angle associated to �U1 then we have E(�ψ1) = E∗.
By the preceding, necessarily

‖U1‖L3
t L6

x
= ∞. (3.27)

Therefore, U1 =: u∗ is the desired critical element. Suppose that

‖u∗‖L3
t ([0,∞);L6

x) = ∞. (3.28)

Then we claim that

K+ := {�u∗(t) | t ≥ 0}
is precompact in H. If not, then there exists δ > 0 so that for some infinite sequence
tn → ∞ one has

‖�u∗(tn) − �u∗(tm)‖H > δ ∀ n > m. (3.29)

Applying Lemma 3.4 to U1(tn) one concludes via the same argument as before based
on the minimality of E∗ and (3.27) that

�u∗(tn) = �v(τn) + �γn(0) (3.30)

where �v, �γn are free waves in H, and τn is some sequence in R. Moreover, ‖�γn‖H → 0
as n → ∞. If τn → τ∞ ∈ R, then (3.30) and (3.29) lead to a contradiction. If τn → ∞,
then

‖v(· + τn)‖L3
t ([0,∞);L6

x) → 0 as n → ∞
implies via the local wellposedness theory that ‖u∗(· + tn)‖L3

t ([0,∞);L6
x) < ∞ for all

large n, which is a contradiction to (3.28). If τn → −∞, then

‖v(· + τn)‖L3
t ((−∞,0];L6

x) → 0 as n → ∞
implies that ‖u∗(· + tn)‖L3

t ((−∞,0];L6
x) < C < ∞ for all large n where C is some fixed

constant. Passing to the limit yields a contradiction to (3.27) and (3.29) is seen to
be false, concluding the proof of compactness of K+.

Finally, we need to make sure that u∗(t) is precompact with respect to both
t → +∞ and t → −∞, see (3.18). To achieve the latter, we extract another critical
element from the sequence

{�u∗(n)}∞
n=1 ⊂ H.

Indeed, by the compactness that we have already established we can pass to a strong
limit �un → �u∞ in H, which has the same energy E∗. By construction, the nonlin-
ear evolution (2.8) with data �u∞ has infinite L3

tL
6
x-norm in both time directions.

Therefore, the same compactness argument as above concludes the proof. Indeed,
the solution given by �u∞ is now our desired critical element. ��
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In Section 5 we will show that u∗ cannot exist. In order to do so, we need to
develop another tool for the linear evolution.

4 The Linear External Energy Estimates in R
5

We now turn to our main new ingredient from the linear theory, which is Proposi-
tion 4.1. In order to motivate this result, we first review the analogous statements
in dimensions d = 1 and d = 3.

Suppose wtt − wxx = 0 with smooth energy data (w(0), ẇ(0)) = (f, g). Then by
local energy conservation

∫

x>a

1
2
(w2

t + w2
x)(0, x) dx−

∫

x>T+a

1
2
(w2

t +w2
x)(T, x) dx=

1
2

T∫

0

(wt + wx)2(t, t+ a) dt

for any T > 0 and a ∈ R. Since (∂t − ∂x)(wt + wx) = 0, we have that

1
2

T∫

0

(wt + wx)2(t, t+ a) dt =
1
2

T∫

0

(wt + wx)2(0, a+ 2t) dt

=
1
4

a+2T∫

a

(wt + wx)2(0, x) dx =
1
4

a+2T∫

a

(fx + g)2(x) dx.

Consequently,∫

x>a

1
2
(w2

t + w2
x)(0, x) dx− lim

T→∞

∫

x>T+a

1
2
(w2

t + w2
x)(T, x) dx

=
1
4

∞∫

a

(fx + g)2(x) dx

and thus

min±

⎡
⎢⎣
∫

x>a

1
2
(f2

x + g2)(0, x) dx− lim
T→±∞

∫

x>|T |+a

1
2
(w2

t + w2
x)(T, x) dx

⎤
⎥⎦

≤ 1
4

∞∫

a

(f2
x + g2)(x) dx

whence

max± lim
T→±∞

∫

x>|T |+a

1
2
(w2

t + w2
x)(T, x) dx ≥ 1

4

∞∫

a

(f2
x + g2)(x) dx. (4.1)

Here we used that t �→ −t leaves f unchanged, but turns g into −g.
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Given �u = 0 radial in three dimensions, w(t, r) = ru(t, r) solves wtt − wrr = 0.
Consequently, (4.1) gives the following estimate from [DKM11, Lemma 4.2], see also
[DKM12,DKM13,DKM12]: for any a ≥ 0 one has

max± lim
T→±∞

∫

r>|T |+a

1
2
((ru)2r + (rut)2)(T, r) dr

≥ 1
4

∫

r>a

((rf)2r + (rg)2)(r) dr (4.2)

where u(0) = f , u̇(0) = g. The left-hand side of (4.2) equals

max± lim
T→±∞

∫

r>|T |+a

1
2
(u2

r + u2
t )(T, r) r

2dr (4.3)

by the standard dispersive properties of the wave equation. The right-hand side, on
the other hand, exhibits the following dichotomy: if a = 0, then it equals half of the
full energy

1
4

∞∫

0

(f2
r + g2)(r) r2dr.

However, if a > 0, then integration by parts shows that it equals (ignoring the
constant from the spherical measure in R

3)

1
4

∫

r>a

(f2
r + g2)(r)r2 dr − 1

4
af2(a) =

1
4
‖π⊥

a (f, g)‖2
Ḣ1×L2(r>a)

where π⊥
a = Id − πa and πa is the orthogonal projection onto the line

{(cr−1, 0) | c ∈ R} ⊂ Ḣ1 × L2(r > a).

The appearance of this projection is natural, in view of the fact that the Newton
potential r−1 in R

3 yields an explicit solution to �u = 0, u(0, r) = r−1, u̇(0, r) = 0:
indeed, one has u(r, t) = r−1 in r > |t| + a for which (4.3) vanishes. Since r−1 �∈
L2(r > 1) no projection appears in the time component. In contrast, the Newton
potential in R

5, viz. r−3, does lie in H1(r > a) for any a > 0. This explains why in
R

5 we need to project away from a plane rather than a line, see (4.4) and the end
of the proof of Proposition 4.1.

Proposition 4.1. Let �u = 0 in R
1+5
t,x with radial data (f, g) ∈ Ḣ1 ×L2(R5). Then

with some absolute constant c > 0 one has for every a > 0

max± lim sup
t→±∞

∞∫

r>a+|t|
(u2

t + u2
r)(t, r)r

4 dr ≥ c‖π⊥
a (f, g)‖2

Ḣ1×L2(r>a)
(4.4)
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where πa = Id − π⊥
a is the orthogonal projection onto the plane

{(c1r−3, c2r
−3) | c1, c2 ∈ R}

in the space Ḣ1 ×L2(r > a). The left-hand side of (4.4) vanishes for all data in this
plane.

Remark 2. We note that by finite propagation speed Proposition 4.1 with a > 1
holds as well for solutions v(t) to the free radial wave equation in R × R

5∗ with a
Dirichlet boundary condition at r = 1.

vtt − vrr − 4
r
vr = 0

�v(0) = (f, g) (4.5)
v(t, 1) = 0 ∀t ∈ R.

Proof. By the basic energy estimate we may assume that f, g are compactly sup-
ported and smooth, say. We first note that it suffices to deal with data (f, 0) and
(0, g) separately. Indeed, reversing the time direction keeps the former fixed, whereas
the latter changes to (0,−g). This implies that we may choose the time-direction
so as to render the bilinear interaction term between the two respective solutions
nonnegative on the left-hand side of (4.4).

We begin with data (f, 0) and set w(t, r) := r−1(r3u(t, r))r, see [KM11]. Through-
out this proof, the singularity at r = 0 plays no role due to the fact that r ≥ a+ |t| ≥
a > 0. Then

wtt − wrr = r2∂r

(
utt − urr − 4

rur

)
+ 3r

(
utt − urr − 4

rur

)
= 0.

From the d’Alembert formula,

lim sup
t→∞

∞∫

a+t

w2(t, r) dr ≥ 1
4

∞∫

a

w2(0, r) dr

which is the same as

lim sup
t→∞

∞∫

a+t

(r2ur(t, r) + 3ru(t, r))2 dr ≥ 1
4

∞∫

a

(r2f ′(r) + 3rf(r))2 dr. (4.6)

By our assumption on the data, we have the point wise bound

|u(t, r)| ≤ Ct−2χ[R−t≤r≤R+t]

for t ≥ 1 and some large R. Hence, (4.6) equals

lim sup
t→∞

∞∫

a+t

u2
r(t, r)r

4 dr ≥ 1
4

⎛
⎝

∞∫

a

r4f ′(r)2 dr − 3a3f(a)2

⎞
⎠ (4.7)
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where we integrated by parts on the right-hand side. Finally, one checks that

f̃(r) := f(r) − a3

r3
f(a)

is the orthogonal projection perpendicular to r−3 in Ḣ1(r > a) in R
5 and that it

satisfies
∞∫

a

r4f̃ ′(r)2 dr =

∞∫

a

r4f ′(r)2 dr − 3a3f(a)2

which agrees with the right-hand side of (4.7) and concludes the proof of (4.4) for
data (f, 0).

For data (0, g) we use the new dependent variable

v(t, r) :=

∞∫

r

s∂tu(t, s) ds. (4.8)

By direct differentiation and integration by parts one verifies that v solves the 3-
dimensional radial wave equation, viz.

vtt − vrr − 2
r
vr = 0.

Moreover, vt(0, r) = 0. From the exterior energy estimate in dim = 3, i.e., (4.2),

lim sup
t→∞

∞∫

a+t

((rv)2t + (rv)2r)(t, r) dr ≥ 1
2

∞∫

a

((rv)2t + (rv)2r)(0, r) dr (4.9)

where we have used the fact that for data (v0, 0) or (0, v1) the estimate (4.2) holds
in both time directions. By our assumption on the data and stationary phase

|v(t, r)| ≤ Ct−1χ[r≤R+t], |vt(t, r)| ≤ Ct−2χ[r≤R+t].

Hence (4.9) reduces to

lim sup
t→∞

∞∫

a+t

v2
r (t, r)r

2 dr ≥ 1
2

∞∫

a

(rh′(r) + h(r))2 dr (4.10)

where h(r) :=
∫∞
r sg(s) ds. Inserting (4.8) on the left-hand side and integrating by

parts on the right-hand side yields

lim sup
t→∞

∞∫

a+t

2u2
t (t, r)r

4 dr ≥
∞∫

a

h′(r)2r2 dr − ah2(a)

=

∞∫

a

g(r)2r4 dr − a

⎛
⎝

∞∫

a

ρg(ρ) dρ

⎞
⎠

2

. (4.11)
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Finally, the right-hand side here is ‖g̃‖2
L2(r>a) where

g̃(r) := g(r) − ar−3

∞∫

a

sg(s) ds

is the orthogonal projection perpendicular to r−3 in L2(r > a) in R
5.

For data (r−3, 0) the solution equals r−3 on r > t + a ≥ a > 0 since r−3 is the
Newton potential in R

5. Similarly, data (0, r−3) produce the solution tr−3 on the
same region. In both cases, the left-hand side of (4.4) vanishes.

5 Rigidity Argument

In this section we will complete the proof of Thereom 1.1 by showing that a criti-
cal element as constructed in Section 3 does not exist. In particular, we prove the
following proposition:

Proposition 5.1 (Rigidity Property). Let �u(t) ∈ H := Ḣ1
0 × L2(R5∗) be a global

solution to (2.8) and suppose that the trajectory

K := {�u(t) | t ∈ R}
is pre-compact in H. Then �u(t) ≡ (0, 0).

First note that the pre-compactness of K immediately implies that the energy
of �u(t) on the exterior cone {r ≥ R+ |t|} vanishes as |t| → ∞.

Corollary 5.2. Let �u(t) be as in Proposition 5.1. Then for any R ≥ 1 we have

‖�u(t)‖H(r≥R+|t|) → 0 as |t| → ∞. (5.1)

The proof of Proposition 5.1 will proceed in several steps. The rough outline is to first
use Corollary 5.2 together with Proposition 4.1 to determine the precise asymptotic
behavior of u0(r) = u(0, r) and u1(r) = ut(0, r) as r → ∞. Namely, we show that

r3u0(r) = �o +O(r−3) as r → ∞

r

∞∫

r

u1(ρ)ρ d ρ = O(r−1) as r → ∞.
(5.2)

We will then argue by contradiction to show that �u(t, r) = (0, 0) is the only possible
solution that has both a pre-compact trajectory and initial data satisfying (5.2).

5.1 Step 1. We use the exterior estimates for the free radial wave equation in
Proposition 4.1 together with Corollary 5.2 to deduce the following inequality for
the pre-compact trajectory �u(t).
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Lemma 5.3. There exists R0 > 1 such that for every R ≥ R0 and for all t ∈ R we
have

‖π⊥
R �u(t)‖2

H(r≥R) � R−22/3‖πR �u(t)‖2
H(r≥R)

+R−11/3‖πR �u(t)‖4
H(r≥R) + ‖πR �u(t)‖6

H(r≥R) (5.3)

where again P (R) := {(k1r
−3, k2r

−3) | k1, k2 ∈ R, r > R}, πR denotes the or-
thogonal projection onto P (R) and πR

⊥ denotes the orthogonal projection onto the
orthogonal complement of the plane P (R) in H(r > R; R5∗). We note that (5.3) holds
with a constant that is uniform in t ∈ R.

In order to prove Lemma 5.3 we need a preliminary result concerning the non-
linear evolution for a modified Cauchy problem which is adapted to capture the
behavior of our solution �u(t) only on the exterior cone {(t, r) | r ≥ R+ |t|}. Since we
will only consider the evolution – and in particular the vanishing property (5.1) –
on the exterior cone we can, by finite propagation speed, alter the nonlinearity and
the potential term in (2.8) on the interior cone {1 ≤ r ≤ R + |t|} without affecting
the flow on the exterior cone. In particular, we can make the potential and the non-
linearity small on the interior of the cone so that for small initial data we can treat
the potential and nonlinearity as small perturbations.

With this in mind, for every R > 1 we define QR(t, r) by setting

QR(t, r) :=

{
Q(R+ |t|) for 1 ≤ r ≤ R+ |t|
Q(r) for r ≥ R+ |t| . (5.4)

Next, set

VR(t, r) :=

{
2(R+ |t|)−2(cos(2QR(t, r)) − 1) for 1 ≤ r ≤ R+ |t|
2r−2(cos(2Q(r)) − 1) for r ≥ R+ |t|

FR(t, r, h) :=

{
2(R+ |t|)−3 sin(2QR(t, r)) sin2((R+ |t|)h) for 1 ≤ r ≤ R+ |t|
2r−3 sin(2Q(r)) sin2(rh) for r ≥ R+ |t|

G(r, h) := r−3 cos(2Q(r))(2rh− sin(2rh)) ∀ r ≥ 1.

Note that for R large enough we have, using (2.6) and (2.11) that

|VR(t, r)| �
{

(R+ |t|)−6 for 1 ≤ r ≤ R+ |t|
r−6 for r ≥ R+ |t| (5.5)

|FR(t, r, h)| �
{

(R+ |t|)−3 |h(t, r)|2 for 1 ≤ r ≤ R+ |t|
r−3 |h(t, r)|2 for r ≥ R+ |t| (5.6)

|G(r, h)| � |h(t, r)|3 for r ≥ 1, ∀t ∈ R. (5.7)
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We consider the modified Cauchy problem in R × R
5∗:

htt − hrr − 4
r
hr = NR(t, r, h)

NR(t, r, h) := −VR(t, r)h+ FR(t, r, h) +G(r, h)
h(1, t) = 0 ∀t ∈ R

�h(0) = (h0, h1) ∈ H.

(5.8)

Lemma 5.4. There exists R0 > 0 and there exists δ0 > 0 small enough so that for
all R > R0 and all initial data �h(0) = (h0, h1) ∈ H with

‖�h(0)‖2
H ≤ δ0

there exists a unique global solution �h(t) ∈ H to (5.8). In addition �h(t) satisfies

‖h‖L3
t L6

x(R×R5∗) � ‖�h(0)‖H � δ0. (5.9)

Moreover, if we let hL(t) := S0(t)�h(0) ∈ H denote the free linear evolution, i.e.,
solution to (4.5), of the data �h(0) we have

sup
t∈R

‖�h(t) − �hL(t)‖H � R−11/3‖�h(0)‖H +R−11/6‖�h(0)‖2
H + ‖�h(0)‖3

H. (5.10)

Remark 3. Note that for each t ∈ R,

NR(t, r, h) = −V (r)h+ F (r, h) +G(r, h) ∀r ≥ R+ |t| (5.11)

where V (r), F (r, h), and G(r, h) are as in (2.8). By finite propagation speed it is
then immediate that solutions to (5.8) and (2.8) agree on the exterior cone {(t, r) |
r ≥ R+ |t|}.

Proof of Lemma 5.4. The small data well-posedness theory, including estimate (5.9),
follows from the usual contraction and continuity arguments based on the Strichartz
estimates in Proposition 3.1. To prove (5.10) we note that by the Duhamel formula
and Strichartz estimates we have

‖�h(t) − �hL(t)‖H � ‖NR(·, ·, h)‖L1
t L2

x(R×R5∗)

� ‖VRh‖L1
t L2

x(R×R5∗) + ‖FR(·, ·, h)‖L1
t L2

x(R×R5∗) + ‖G(·, h)‖L1
t L2

x(R×R5∗).

We can now estimate the three terms on the right-hand side above. First, we claim
that

‖VRh‖L1
t L2

x(R×R5∗) � ‖VR‖
L

3
2
t L3

x

‖h‖L3
t L6

x
� R−11/3‖h‖L3

t L6
x
.

To see this, we can use (5.5) to deduce that for each t ∈ R

‖VR‖3
L3

x
�

R+|t|∫

1

(R+ |t|)−18r4 dr +

∞∫

R+|t|
r−18r4 dr

� (R+ |t|)−13.
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Therefore,

‖VR‖
L

3
2
t L3

x

�

⎛
⎝
∫

R

(R+ |t|)−13/2 dt

⎞
⎠

2
3

� R−11/3

Similarly, we can show using (5.6) and (5.7) that

‖FR(·, ·, h)‖L1
t L2

x(R×R5∗) � R−11/6‖h‖2
L3

t L6
x

‖G(·, h)‖L1
t L2

x(R×R5∗) � ‖h‖3
L3

t L6
x

which proves (5.10). ��
We can now prove Lemma 5.3.

Proof of Lemma 5.3. We will first prove Lemma 5.3 for time t = 0. The fact that
(5.3) holds at all times t ∈ R for R > R0, with R0 independent of t will follow from
the pre-compactness of K.

For each R ≥ 1, define truncated initial data �uR(0) = (u0,R, u1,R) given by

u0,R(r) =

{
u0(r) for r ≥ R
u0(R)
R−1 (r − 1) for r < R,

u1,R(r) =

{
u1(r) for r ≥ R

0 for r < R.

(5.12)

Observe that this truncated data has small energy for large R since

‖�uR(0)‖H � ‖�u(0)‖H(r≥R). (5.13)

In particular, there exists R0 ≥ 1 so that for all R ≥ R0 we have

‖�uR(0)‖H ≤ δ0

where δ0 is the small constant in Lemma 5.4. Let �uR(t) denote the solution to (5.8)
given by Lemma 5.4 with data �uR(0) as in (5.12). Note that by finite propagation
speed we have

�uR(t, r) = �u(t, r) ∀t ∈ R, ∀r ≥ R+ |t|.
Also let �uR,L(t) = S0(t)�uR(0) denote the solution to free wave equation (4.5) with
initial data �uR(0). Now, by the triangle inequality we obtain for each t ∈ R

‖�u(t)‖H(r≥R+|t|) = ‖�uR(t)‖H(r≥R+|t|) ≥ ‖�uR,L(t)‖H(r≥R+|t|)
−‖�uR(t) − �uR,L(t)‖H. (5.14)

By (5.10) and (5.13) we can deduce that

sup
t∈R

‖�uR(t) − �uR,L(t)‖H � R−11/3‖�uR(0)‖H +R−11/6‖�uR(0)‖2
H + ‖�uR(0)‖3

H

� R−11/3‖�u(0)‖H(r≥R) +R−11/6‖�u(0)‖2
H(r≥R)

+‖�u(0)‖3
H(r≥R).
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Therefore (5.14) gives

‖�u(t)‖H(r≥R+|t|) ≥ ‖�uR,L(t)‖H(r≥R+|t|) − C0R
−11/3‖�u(0)‖H(r≥R)

−C0R
−11/6‖�u(0)‖2

H(r≥R) − C0‖�u(0)‖3
H(r≥R).

Letting t tend to either ±∞—the choice determined by Proposition 4.1—we can use
Proposition 4.1 to estimate the right-hand side above and use Corollary 5.2 to see
that the left-hand side above tends to zero, which gives

‖π⊥
R �uR(0)‖2

H(r≥R) � R−22/3‖�u(0)‖2
H(r≥R) +R−11/3‖�u(0)‖4

H(r≥R) + ‖�u(0)‖6
H(r≥R)

after squaring both sides. Finally we note that by the definition of �uR(0),

‖π⊥
R �uR(0)‖2

H(r≥R) = ‖π⊥
R �u(0)‖2

H(r≥R).

Therefore,

‖π⊥
R �u(0)‖2

H(r≥R) � R−22/3
(
‖πR �u(0)‖2

H(r≥R) + ‖π⊥
R �u(0)‖2

H(r≥R)

)

+R−11/3
(
‖πR �u(0)‖2

H(r≥R) + ‖π⊥
R �u(0)‖2

H(r≥R)

)2

+
(
‖πR �u(0)‖2

H(r≥R) + ‖π⊥
R �u(0)‖2

H(r≥R)

)3

where we have used the orthogonality of the projection πR to expand the right-hand
side. To conclude the proof, simply choose R0 large enough so that we can absorb all
of the terms on the right-hand side involving π⊥ into the left-hand side and deduce
that

‖π⊥
R �u(0)‖2

H(r≥R) � R−22/3‖πR �u(0)‖2
H(r≥R)

+R−11/3‖πR �u(0)‖4
H(r≥R) + ‖πR �u(0)‖6

H(r≥R).

This proves Lemma 5.3 for t = 0. To show that this inequality holds for all t ∈ R

observe that by the pre-compactness of K we can choose R0 = R0(δ0) so that

‖�u(t)‖H(r≥R) ≤ δ0 (5.15)

uniformly in t ∈ R. Now simply repeat the argument given above with the truncated
initial data for time t = t0 and R ≥ R0 defined by

u0,R,t0(r) =

{
u(t0, r) for r ≥ R
u(t0,R)
R−1 (r − 1) for r < R,

u1,R,t0(r) =

{
ut(t0, r) for r ≥ R

0 for r < R.

This concludes the argument. ��
5.2 Step 2. In this step we will deduce the asymptotic behavior of �u(0, r) as
r → ∞ described in (5.2). In particular we will establish the following result.
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Lemma 5.5. Let �u(t) be as in Proposition 5.1 with �u(0) = (u0, u1). Then there exists
�0 ∈ R such that

r3u0(r) → �0 as r → ∞ (5.16)

r

∞∫

r

u1(ρ)ρ dρ → 0 as r → ∞. (5.17)

Moreover, we have the following estimates for the rates of convergence,∣∣r3u0(r) − �0
∣∣ = O(r−3) as r → ∞ (5.18)∣∣∣∣∣∣r

∞∫

r

u1(ρ)ρ dρ

∣∣∣∣∣∣ = O(r−1) as r → ∞. (5.19)

To begin, we define

v0(t, r) := r3u(t, r)

v1(t, r) := r

∞∫

r

ut(t, ρ)ρ dρ
(5.20)

and for simplicity we will write v0(r) := v0(0, r) and v1(r) := v1(0, r). By direct
computation one can show that

‖π⊥
R �u(t)‖2

H(r≥R) =

∞∫

R

(
1
r
∂rv0(t, r)

)2

dr +

∞∫

R

(∂rv1(t, r))2 dr (5.21)

‖πR �u(t)‖2
H(r≥R) = 3R−3v2

0(t, R) +R−1v2
1(t, R). (5.22)

For convenience, we can rewrite the conclusions of Lemma 5.3 in terms of (v0, v1):

Lemma 5.6. Let (v0, v1) be defined as in (5.20). There exists R0 > 1 so that for all
R > R0 we have

∞∫

R

(
1
r
∂rv0(t, r)

)2

dr +

∞∫

R

(∂rv1(t, r))2 dr � R− 22
3
(
3R−3v2

0(t, R) +R−1v2
1(t, R)

)

+R− 11
3
(
3R−3v2

0(t, R) +R−1v2
1(t, R)

)2
+
(
3R−3v2

0(t, R) +R−1v2
1(t, R)

)3
� R− 31

3 v2
0(t, R) +R− 29

3 v4
0(t, R) +R−9v6

0(t, R)

+R− 25
3 v2

1(t, R) +R− 17
3 v4

1(t, R) +R−3v6
1(t, R)

with the above estimates holding uniformly in t ∈ R.

We will use Lemma 5.6 to prove a difference estimate. First, let δ1 > 0 be a small
number to be determined below with δ1 ≤ δ0 where δ0 is as in Lemma 5.4. Let R1

be large enough so that for all R ≥ R1 we have
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‖�u(t)‖H(r≥R) ≤ δ1 ≤ δ0 ∀R ≥ R1, ∀t ∈ R

R
− 11

3
1 ≤ δ1. (5.23)

We note again that such an R1 = R1(δ1) exists by the pre-compactness of K.

Corollary 5.7. Let R1 be as above. The for all r, r′ with R1 ≤ r ≤ r′ ≤ 2r and
for all t ∈ R we have

∣∣v0(t, r) − v0(t, r′)
∣∣ � r− 11

3 |v0(t, r)| + r− 10
3 |v0(t, r)|2 + r−3 |v0(t, r)|3

+r− 8
3 |v1(t, r)| + r− 4

3 |v1(t, r)|2 + |v1(t, r)|3 (5.24)

and
∣∣v1(t, r) − v1(t, r′)

∣∣ � r− 14
3 |v0(t, r)| + r− 13

3 |v0(t, r)|2 + r−4 |v0(t, r)|3

+r− 11
3 |v1(t, r)|+r− 7

3 |v1(t, r)|2+r−1 |v1(t, r)|3 (5.25)

with the above estimates holding uniformly in t ∈ R.

We will also need a trivial consequence of the preceding result which we state as
another corollary for convenience.

Corollary 5.8. Let R1 be as above. The for all r, r′ with R1 ≤ r ≤ r′ ≤ 2r and
for all t ∈ R we have

∣∣v0(t, r) − v0(t, r′)
∣∣ � δ1 |v0(t, r)| + rδ1 |v1(t, r)| (5.26)

and
∣∣v1(t, r) − v1(t, r′)

∣∣ � r−1δ1 |v0(t, r)| + δ1 |v1(t, r)| (5.27)

with the above estimates holding uniformly in t ∈ R.

We remark that Corollary 5.8 follows immediately from Corollary 5.7 in light of
(5.22) and (5.23).

Proof of Corollary 5.7. This is a simple consequence of Lemma 5.6. Indeed, for
r ≥ R1 and r′ ∈ [r, 2r] we use Lemma 5.6 to see that

∣∣v0(t, r) − v0(t, r′)
∣∣2 ≤

⎛
⎝

r′∫

r

|∂rv0(t, ρ)| dρ
⎞
⎠

2

≤
⎛
⎝

r′∫

r

ρ2 dρ

⎞
⎠
⎛
⎝

r′∫

r

∣∣∣∣1ρ∂rv0(t, ρ)
∣∣∣∣
2

dρ

⎞
⎠

� r3
(
r− 31

3 v2
0(t, r) + r− 29

3 v4
0(t, r) + r−9v6

0(t, r)
)

+r3
(
r− 25

3 v2
1(t, r) + r− 17

3 v4
1(t, r) + r−3v6

1(t, r)
)
.



634 C. E. KENIG ET AL. GAFA

Similarly,

∣∣v1(t, r) − v1(t, r′)
∣∣2 ≤

⎛
⎝

r′∫

r

|∂rv1(t, ρ)| dρ
⎞
⎠

2

≤
⎛
⎝

r′∫

r

dρ

⎞
⎠
⎛
⎝

r′∫

r

|∂rv1(t, ρ)|2 dρ
⎞
⎠

� r
(
r− 31

3 v2
0(t, r) + r− 29

3 v4
0(t, r) + r−9v6

0(t, r)
)

+r
(
r− 25

3 v2
1(t, r) + r− 17

3 v4
1(t, r) + r−3v6

1(t, r)
)

as claimed. ��
The next step towards establishing Lemma 5.5 is to provide an upper bound on

the growth rates of v0(t, r) and v1(t, r).

Claim 5.9. Let v0(t, r), v1(t, r) be as in (5.20). Then,

|v0(t, r)| � r
1
6 (5.28)

|v1(t, r)| � r
1
18 (5.29)

uniformly in t ∈ R.

Proof. First, note that it suffices to prove Claim 5.9 only for t = 0 since the ensuing
argument relies exclusively on results in this section that hold uniformly in t ∈ R.
Fix r0 ≥ R1 and observe that by (5.26), (5.27)

∣∣v0(2n+1r0)
∣∣ ≤ (1 + C1δ1) |v0(2nr0)| + (2nr0)C1δ1 |v1(2nr0)| (5.30)∣∣v1(2n+1r0)
∣∣ ≤ (1 + C1δ1) |v1(2nr0)| + (2nr0)−1C1δ1 |v0(2nr0)| . (5.31)

To simply the exposition, we introduce the notation

an := |v1(2nr0)| (5.32)

bn := (2nr0)−1 |v0(2nr0)| . (5.33)

Then, combining (5.30) and (5.31) gives

an+1 + bn+1 ≤
(

1 +
3
2
C1δ1

)
an +

(
1
2

+
3
2
C1δ1

)
bn

≤
(

1 +
3
2
C1δ1

)
(an + bn).

Arguing inductively we then see that for each n we have

(an + bn) ≤
(

1 +
3
2
C1δ1

)n

(a0 + b0).
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Choosing δ1 small enough so that (1 + 3
2C1δ1) ≤ 2

1
18 allows us to conclude that

an ≤ C(2nr0)
1
18 (5.34)

where the constant C > 0 above depends on r0 which is fixed. In light of (5.32) we
have thus proved (5.29) for all r = 2nr0. Now define

cn := |v0(2nr0)|. (5.35)

By (5.22), (5.23), (5.24), and (5.34) we have

cn+1 ≤ (1 + C1δ1)cn + C(2nr0)
1
6

Inductively, we can deduce that

cn ≤ (1 + C1δ1)nc0 + Cr
1
6
0

n∑
k=1

(1 + C1δ1)n−k2
k−1
6

≤ C(2nr0)
1
6

where we have used that (1 + C1δ1) ≤ 2
1
18 , and again the constant C > 0 depends

on r0, which is fixed. This proves (5.28) for r = 2nr0. The general estimates (5.28)
and (5.29) follow from the difference estimates (5.24) and (5.25). ��
Claim 5.10. For each t ∈ R there exists a number �1(t) ∈ R such that

|v1(t, r) − �1(t)| = O(r−1) as r → ∞ (5.36)

where the O(·) is uniform in t.

Proof. Again, it suffices to show this for t = 0. Let r0 ≥ R1 where R1 > 1 is as in
(5.23). By (5.25) and Claim 5.9 we have

∣∣v1(2n+1r0) − v1(2nr0)
∣∣ � (2nr0)− 9

2 + (2nr0)−4 + (2nr0)− 7
2

+(2nr0)− 65
18 + (2nr0)− 20

9 + (2nr0)− 5
6

� (2nr0)− 5
6 .

This implies that the series∑
n

∣∣v1(2n+1r0) − v1(2nr0)
∣∣ < ∞

which in turn implies that there exists �1 ∈ R such that

lim
n→∞ v1(2nr0) = �1.

The fact that limr→∞ v1(r) = �1 follows from the difference estimates (5.24), (5.25),
and the growth estimates (5.28), (5.29). To establish the estimates on the rate of
convergence in (5.36) we note that by the difference estimate (5.25) and the fact
that we now know that |v1(r)| is bounded, for large enough r we have
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∣∣v1(2n+1r) − v1(2nr)
∣∣ � (2nr)−1.

Hence,

|v1(r) − �1| =

∣∣∣∣∣∣
∑
n≥0

(v1(2n+1r) − v1(2nr))

∣∣∣∣∣∣ � r−1
∑
n≥0

2−n � r−1

as desired. ��
Next we show that the limit �1(t) is actually independent of t.

Claim 5.11. The function �1(t) in Claim 5.10 is independent of t, i.e., �1(t) = �1 for
all t ∈ R.

Proof. By the definition of v1(t, r) we have shown that

�1(t) = r

∞∫

r

ut(t, ρ)ρ dρ+O(r−1).

Fix t1, t2 ∈ R with t1 �= t2. We will show that

�1(t2) − �1(t1) = 0.

To see this observe that for each R ≥ R1 we have

�1(t2) − �1(t1) =
1
R

2R∫

R

(�1(t2) − �1(t1)) ds

=
1
R

2R∫

R

⎛
⎝s

∞∫

s

(ut(t2, r) − ut(t1, r))r dr

⎞
⎠ ds+O(R−1)

=
1
R

2R∫

R

⎛
⎝s

∞∫

s

t2∫

t1

utt(t, r) dt r dr

⎞
⎠ ds+O(R−1).

Using the fact that u is a solution to (2.8), we can rewrite the above integral as

=

t2∫

t1

1
R

2R∫

R

⎛
⎝s

∞∫

s

(rurr(t, r) + 4ur(t, r)) dr

⎞
⎠ ds dt

+

t2∫

t1

1
R

2R∫

R

⎛
⎝s

∞∫

s

(−rV (r)u(t, r) + rN(r, u(t, r))) dr

⎞
⎠ ds dt

+O(R−1)
= I + II +O(R−1). (5.37)
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To estimate I we integrate by parts:

I =

t2∫

t1

1
R

2R∫

R

⎛
⎝s

∞∫

s

1
r3
∂r(r4ur(t, r)) dr

⎞
⎠ ds dt

= 3

t2∫

t1

1
R

2R∫

R

⎛
⎝s

∞∫

s

ur(t, r) dr

⎞
⎠ ds dt−

t2∫

t1

1
R

2R∫

R

s2ur(t, s) ds dt

= −3

t2∫

t1

1
R

2R∫

R

r u(t, r) dr dt−
t2∫

t1

1
R

2R∫

R

r2 ur(t, r) dr dt

= −
t2∫

t1

1
R

2R∫

R

r u(t, r) dr dt+

t2∫

t1

(Ru(t, R) − 2Ru(t, 2R)) dt. (5.38)

Finally, we note that (5.28) and the definition of v0(t, r) give us

r3 |u(t, r)| = |v0(t, r)| � r
1
6 . (5.39)

Using this estimate for |u(t, r)| in the last line in (5.38) shows that

I = |t2 − t1|O(R− 11
6 ).

To estimate II we can use (5.39) to see that for r > R large enough

|−V (r)u(t, r) +N(r, u(t, r))| � r−6 |u(t, r)| + r−3 |u(t, r)|2 + |u(t, r)|3
� r−6− 17

6 + r−3− 17
3 + r− 17

2

� r−8.

Hence,

II �
t2∫

t1

1
R

2R∫

R

s

∞∫

s

r−8 dr ds dt = |t2 − t1|O(R−6).

Putting this together we get

|�1(t2) − �1(t1)| = O(R−1)

which implies that �1(t2) = �1(t1). ��
We next show that �1 is necessarily equal to 0.

Claim 5.12. �1 = 0.

Proof. Suppose �1 �= 0. We know that for all R ≥ R1 and for all t ∈ R we have

R

∞∫

R

ut(t, r) r dr = �1 +O(R−1)
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where O(·) is uniform in t. Hence, for R large, the left-hand side above has the same
sign as �1, for all t. Thus we can choose R ≥ R1 large enough so that for all t ∈ R,

∣∣∣R
∞∫

R

ut(t, r) r dr
∣∣∣ ≥ |�1|

2
.

Integrating from t = 0 to t = T gives∣∣∣∣∣∣
T∫

0

R

∞∫

R

ut(t, r) r dr dt

∣∣∣∣∣∣ ≥ T
|�1|
2
.

However, we integrate in t on the left-hand side and use (5.39) to obtain∣∣∣∣∣∣R
∞∫

R

T∫

0

ut(t, r) r dt dr

∣∣∣∣∣∣ =

∣∣∣∣∣∣R
∞∫

R

[u(T, r) − u(0, r)] r dr

∣∣∣∣∣∣

� R

∞∫

R

r− 11
6 dr � R

1
6 .

Therefore for fixed large R we have

T
|�1|
2

� R
1
6

which gives a contradiction by taking T large. ��
Now that we have shown that v1(r) → 0 as r → ∞, we can prove that v0(r) also
converges and complete the proof of Lemma 5.5.

Proof of Lemma 5.5. It remains to show that there exists �0 ∈ R such that

|v0(r) − �0| = O(r−3) as r → ∞. (5.40)

Using the difference estimate (5.24) as well as (5.28) and the fact that |v1(r)| � r−1

for r ≥ R1 we have for r0 ≥ R1∣∣v0(2n+1r0) − v0(2nr0)
∣∣ � (2nr0)− 11

3 (2nr0)
1
6 + (2nr0)− 10

3 (2nr0)
1
3 + (2nr0)−3(2nr0)

1
2

+(2nr0)− 8
3 (2nr0)−1 + (2nr0)− 4

3 (2nr0)−2 + (2nr0)−3

� (2nr0)− 5
2 .

Hence, ∑
n≥0

∣∣v0(2n+1r0) − v0(2nr0)
∣∣ < ∞

and therefore there exists �0 ∈ R so that

lim
n→∞ v0(2nr0) = �0.
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By the difference estimate (5.24) and the fact that v1(r) → 0 we can conclude that
in fact limr→∞ v0(r) = �0. To establish the convergence rate, we note that since we
now know that |v0(r)| is bounded we have the improved difference estimate

∣∣v0(2n+1r) − v0(2nr)
∣∣ � (2nr)−3 (5.41)

which holds for all r ≥ R. Therefore,

|v0(r) − �0| =

∣∣∣∣∣∣
∑
n≥0

(v0(2n+1r) − v0(2nr))

∣∣∣∣∣∣ � r−3
∑
n≥0

2−3n (5.42)

as claimed. ��
5.3 Step 3. Finally, we complete the proof of Proposition 5.1 by showing that
�u(t) = (0, 0). We divide this argument into two separate cases depending on whether
the number �0 found in the previous step is zero or nonzero.

Case 1: �0 = 0 implies �u(0) = (0, 0):
In this case we show that if �0 = 0, then �u(t) = (0, 0).

Lemma 5.13. Let �u(t) be as in Proposition 5.1 and let �0 be as in Lemma 5.5.
Suppose that �0 = 0. Then �u(t) = (0, 0).

We begin by showing that if �0 = 0 then (u0, u1) must be compactly supported.

Claim 5.14. Let �0 be as in Lemma 5.5. If �0 = 0 then (u0, u1) must be compactly
supported.

Proof. The assumption �0 = 0 means that

|v0(r)| = O(r−3) as r → ∞
|v1(r)| = O(r−1) as r → ∞.

(5.43)

Therefore, for r0 ≥ R1 we have

|v0(2nr0)| + |v1(2nr0)| � (2nr0)−3 + (2nr0)−1 � (2nr0)−1. (5.44)

On the other hand, using the difference estimates (5.24)–(5.27) as well as our as-
sumption (5.43) we obtain

∣∣v0(2n+1r0)
∣∣ ≥ (1 − C1δ1) |v0(2nr0)| − C1(2nr0)−2 |v1(2nr0)|∣∣v1(2n+1r0)
∣∣ ≥ (1 − C1δ1) |v1(2nr0)| − C1(2nr0)−4 |v0(2nr0)|.

This means that
∣∣v0(2n+1r0)

∣∣+ ∣∣v1(2n+1r0)
∣∣ ≥ (1 − C1δ1 − C1r

−2
0 ) (|v0(2nr0)| + |v1(2nr0)|).
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Choose r0 large enough and δ1 small enough so that C1(δ1 + r−2
0 ) < 1

4 . Arguing
inductively we can conclude that

|v0(2nr0)| + |v1(2nr0)| ≥
(

3
4

)n

(|v0(r0)| + |v1(r0)|).

Estimating the left hand side above using (5.44) gives
(

3
4

)n

(|v0(r0)| + |v1(r0)|) � 2−nr−1
0

which means that
(

3
2

)n

(|v0(r0)| + |v1(r0)|) � 1.

Hence �v(r0) := (v0(r0), v1(r0)) = (0, 0). But then (5.22) implies that

‖πr0�u(0)‖H(r≥r0) = 0.

Using Lemma 5.3 we can also deduce that

‖π⊥
r0
�u(0)‖H(r≥r0) = 0

and hence

‖�u(0)‖H(r≥r0) = 0

which concludes the proof since limr→∞ u0(r) = 0. ��

Proof of Lemma 5.13. Assume that �0 = 0. Then by Claim 5.14, (u0, u1) is compactly
supported. We assume that (u0, u1) �= (0, 0) and argue by contradiction. In this case
we can find ρ0 > 1 so that

ρ0 := inf{ρ : ‖�u(0)‖H(r≥ρ) = 0}.

Let ε > 0 small to be determined below and find 1 < ρ1 < ρ0, ρ1 = ρ1(ε) so that

0 < ‖�u(0)‖2
H(r≥ρ1)

≤ ε ≤ δ21

where δ1 > 0 is as in (5.23). With (v0, v1) as in (5.20) we have

∞∫

ρ1

(
1
r
∂rv0(r)

)2

dr +

∞∫

ρ1

(∂rv1(r))2 dr + 3ρ−3
1 v2

0(ρ1) + ρ−1
1 v2

1(ρ1)

= ‖π⊥
ρ1
�u(0)‖2

H(r≥ρ1)
+ ‖πρ1�u(0)‖2

H(r≥ρ1)
= ‖�u(0)‖2

H(r≥ρ1)
< ε. (5.45)
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By Lemma 5.6 we also have

∞∫

ρ1

(
1
r
∂rv0(r)

)2

dr +

∞∫

ρ1

(∂rv1(r))2 dr � ρ
− 31

3
1 v2

0(ρ1) + ρ
− 29

3
1 v4

0(ρ1) + ρ−9
1 v6

0(ρ1)

+ρ
− 25

3
1 v2

1(ρ1) + ρ
− 17

3
1 v4

1(ρ1) + ρ−3
1 v6

1(ρ1). (5.46)

Arguing as in Corollary 5.8 and using the fact that v0(ρ0) = v1(ρ0) = 0 gives

|v0(ρ1)| = |v0(ρ1) − v0(ρ0)| � ε |v0(ρ1)| + ρ1ε |v1(ρ1)| (5.47)

and

|v1(ρ1)| = |v1(ρ1) − v1(ρ0)| � ρ−1
1 ε |v0(ρ1)| + ε |v1(ρ1)|. (5.48)

Plugging (5.47) into (5.48) gives

|v1(ρ1)| � ρ−1
1 ε2 |v0(ρ1)| + ε(1 + ε) |v1(ρ1)|

which means that for ε small enough we have

|v1(ρ1)| � ρ−1
1 ε2 |v0(ρ1)|. (5.49)

Putting this estimate back into (5.47) we obtain

|v0(ρ1)| � ε |v0(ρ1)| + ε3 |v0(ρ1)| � ε(1 + ε2) |v0(ρ1)|
which implies that v0(ρ1) = 0 as long as ε is chosen small enough. By (5.49) we can
conclude that v1(ρ1) = 0 as well. By (5.46) and (5.45) we then have that

‖�u(0)‖H(r≥ρ1) = 0

which is a contradiction since ρ1 < ρ0. ��
We next consider the case �0 �= 0.

Case 2: �0 �= 0 is impossible.
In this final step we show that the case �0 �= 0 is impossible. Indeed we prove

that if �0 �= 0 then our original wave map �ψ(t) is equal to a rescaled solution Q�0

to (2.1) that does not satisfy the Dirichlet boundary condition, Q�0(1) �= 0, which is
a contradiction since ψ(t, 1) = 0 for all t ∈ R.

We have shown that

r3u0(r) = �0 +O(r−3).

Recall that ru0(r) = ϕ0(r) = ψ0(r) −Q(r) and that

Q(r) = nπ − α0

r2
+O(r−6)
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where α0 > 0 is uniquely determined by the boundary condition Q(1) = 0. Hence,

ψ0(r) = nπ − α0 − �0
r2

+O(r−5). (5.50)

By Lemma 2.1 there is a solution Qα0−� ∈ Ḣ1(R3∗) to (2.1) satisfying

Qα0−�0(r) = nπ − α0 − �0
r2

+O(r−6) (5.51)

and from here out we write Q�0 := Qα0−�0 . Note, by Lemma 2.1, �0 �= 0 implies that

Q�0(1) �= 0.

Indeed, recall from the discussion following Lemma 2.1 that if α0 − �0 > 0 then Q�0

is a nontrivial rescaling of the harmonic map Q and hence no longer satisfies the
boundary condition. If α0 − �0 = 0 then Q�0(r) = nπ for all r. Finally, we recall that
α0 − �0 < 0 implies that Q�0(r) > nπ for all r. Now set

u�0,0(r) :=
1
r
(ψ0(r) −Q�0(r))

u�0,1(r) :=
1
r
ψ1(r).

(5.52)

For each t ∈ R define u�0(t, r) := 1
r (ψ(t, r) −Q�0(r)). We record a few properties of

�u�0 := (u�0 , ∂tu�0). Note that by construction we have

v�0,0(r) := r3u�0(r) = O(r−3) as r → ∞

v�0,1(r) := r

∞∫

r

ρ u�0,1(ρ) dρ = O(r−1) as r → ∞. (5.53)

Also, �u�0(t) satisfies

∂ttu�0 − ∂rru�0 − 4
r
∂ru�0 = −V�0(r)u+N�0(r, u�0) (5.54)

where

V�0(r) :=
2(cos(2Q�0) − 1)

r2

N�0(r, u�0) := cos(2Q�0)
(2ru�0 − sin(2ru�0))

r3
+ 2 sin(2Q�0)

sin2(ru�0)
r3

.

(5.55)

Crucially, we remark that �u�0(t) inherits the compactness property from �ψ(t). Indeed,
the trajectory

K̃ := {�u�0(t) | t ∈ R}
is pre-compact in Ḣ1 ×L2(R5∗). However, since we have assumed that �0 �= 0 we see
that

u�0(t, 1) = ψ0(t, 1) −Q�0(1) = −Q�0(1) �= 0. (5.56)

On the other hand, below we will show that �u�0 = (u�0 , ∂tu�0) = (0, 0) which contra-
dicts (5.56).
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Lemma 5.15. Suppose �0 �= 0. Let �u(t) be as in Proposition 5.1 and define �u�0 as
in (5.52). Then �u�0 = (0, 0).

The argument that we will use to prove Lemma 5.15 is nearly identical to the one
presented in the previous steps to reach the desired conclusion for �0 = 0 and we
omit many details here.

We start by showing that (∂ru�0,0, u�0,1) must be compactly supported. As be-
fore we can argue as in the proof of Lemma 5.3, by modifying (5.54) inside the
interior cone {(t, r) | 1 ≤ r ≤ R + |t|}, and using the linear exterior estimates in
Proposition 4.1 to produce the same type of inequality as (5.3).

Lemma 5.16. There exists R0 > 1 so that for all R ≥ R0 we have

‖π⊥
R �u�0‖2

H(r≥R) � R−22/3‖πR �u�0‖2
H(r≥R)

+R−11/3‖πR �u�0‖4
H(r≥R) + ‖πR �u�0‖6

H(r≥R) (5.57)

where again P (R) := {(k1r
−3, k2r

−3) | k1, k2 ∈ R, r > R}, πR denotes the or-
thogonal projection onto P (R) and πR

⊥ denotes the orthogonal projection onto the
orthogonal complement of the plane P (R) in H(r > R; R5∗).

We remark that the proof of Lemma 5.16 follows exactly as the proof of Lemma 5.3
where we simply replace Q with Q�0 and �u with �u�0 in the arguments given for
the proof of Lemma 5.3. We note that since the trajectory K̃ is pre-compact in
Ḣ1 × L2(R5∗), �u�0 satisfies the conclusions of Corollary 5.2, namely for each R > 1
we have

‖�u�0(t)‖H(r≥R+|t|) → 0 as |t| → ∞

where the condition R > 1 allows the interchange of the norms H = Ḣ1
0 × L2(R5∗)

and Ḣ1 × L2(R5∗). With (v�0,0, v�0,1) defined as in (5.53) we can then conclude that
for all R > R0 large enough we have

∞∫

R

(
1
r
∂rv�0,0(r)

)2

dr +

∞∫

R

(∂rv�0,1(r))
2 dr � R− 31

3 v2
�0,0(R) +R− 29

3 v4
�0,0(R)

+R−9v6
�0,0(R) +R− 25

3 v2
�0,1(R) +R− 17

3 v4
�0,1(R) +R−3v6

�0,1(R)

� R−7(v2
�0,0(R) + v2

�0,1(R)) (5.58)

where the first inequality follows by rewriting (5.57) in terms of �v�0 = (v�0,0, v�0,1)
and the last line following from the known decay estimates in (5.53). Next, mimicking
the proof of Corollary 5.7 we can again establish difference estimates using (5.58).
Indeed, for all R0 ≤ r ≤ r′ ≤ 2r we have

∣∣v�0,0(r) − v�0,0(r
′)
∣∣2 � r−4(v2

�0,0(r) + v2
�0,1(r))∣∣v�0,1(r) − v�0,1(r

′)
∣∣2 � r−6(v2

�0,0(r) + v2
�0,1(r)).

(5.59)
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In terms of the vector �v�0 = (v�0,0, v�0,1) we then have

|�v�0(r) − �v�0(r
′)| � r−2 |�v�0(r)|. (5.60)

Hence for fixed r0 ≥ R0 large enough we can deduce that
∣∣�v�0(2

n+1r0)
∣∣ ≥ 3

4
|�v�0(2

nr0)|.

Therefore for each n,

|�v�0(2
nr0)| ≥

(
3
4

)n

|�v�0(r0)|.

On the other hand, by (5.53) we have

|�v�0(2
nr0)| � (2nr0)−1.

Combining the last two lines we see that(
3
2

)n

|�v�0(r0)| � 1,

which implies that �v�0(r0) = (0, 0). By (5.58) we can deduce that
∞∫

r0

(
1
r
∂rv�0,0(r)

)2

dr +

∞∫

r0

(∂rv�0,1(r))
2 dr = 0.

Therefore,

‖�u�0‖2
H(r≥r0)

=

∞∫

r0

(
1
r
∂rv�0,0(r)

)2

dr+

∞∫

r0

(∂rv�0,1(r))
2 dr+3r−3

0 v2
�0,0(r0)

+ r−1
0 v2

�0,1(r0)=0

which means that (∂ru�0,0, u�0,1) is compactly supported. We conclude by showing
that �u�0 = (0, 0).

Proof of Lemma 5.15. The proof is nearly identical to the proof of Lemma 5.13.
Suppose

(∂ru�0,0, u�0,1) �= (0, 0)

and we argue by contradiction. By the preceding arguments (∂ru�0,0, u�0,1) is com-
pactly supported. Then we can define ρ0 > 1 by

ρ0 := inf{ρ : ‖�u�0‖H(r≥ρ) = 0}.
Let ε > 0 small to be determined below and find 1 < ρ1 < ρ0, ρ1 = ρ1(ε) so that

0 < ‖�u�0‖H(r≥ρ1) ≤ ε.
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We then have

∞∫

ρ1

(
1
r
∂rv�0,0(r)

)2

dr +

∞∫

ρ1

(∂rv�0,1(r))
2 dr + 3ρ−3

1 v2
�0,0(ρ1) + ρ−1

1 v2
�0,1(ρ1)

= ‖π⊥
ρ1
�u�0‖2

H(r≥ρ1)
+ ‖πρ1�u�0‖2

H(r≥ρ1)
= ‖�u�0‖2

H(r≥ρ1)
< ε (5.61)

By (5.58) we also have

∞∫

ρ1

(
1
r
∂rv�0,0(r)

)2

dr +

∞∫

ρ1

(∂rv�0,1(r))
2 dr � ρ

− 31
3

1 v2
�0,0(ρ1) + ρ

− 29
3

1 v4
�0,0(ρ1)

+ρ−9
1 v6

�0,0(ρ1) + ρ
− 25

3
1 v2

�0,1(ρ1) + ρ
− 17

3
1 v4

�0,1(ρ1) + ρ−3
1 v6

�0,1(ρ1). (5.62)

Arguing as in Corollary 5.8 and using the fact that v0(ρ0) = v1(ρ0) = 0 gives

|v�0,0(ρ1)| = |v�0,0(ρ1) − v�0,0(ρ0)| � ε |v�0,0(ρ1)| + ρ1ε |v�0,1(ρ1)| (5.63)

and

|v�0,1(ρ1)| = |v�0,1(ρ1) − v�0,1(ρ0)| � ρ−1
1 ε |v�0,0(ρ1)| + ε |v�0,1(ρ1)|. (5.64)

Plugging (5.63) into (5.64) gives

|v�0,1(ρ1)| � ρ−1
1 ε2 |v�0,0(ρ1)| + ε(1 + ε) |v�0,1(ρ1)|

which means that for ε small enough we have

|v�0,1(ρ1)| � ρ−1
1 ε2 |v�0,0(ρ1)|. (5.65)

Putting this estimate back into (5.63) we obtain

|v�0,0(ρ1)| � ε |v�0,0(ρ1)| + ε3 |v�0,0(ρ1)| � ε(1 + ε2) |v�0,0(ρ1)|

which implies that v�0,0(ρ1) = 0 as long as ε is chosen small enough. By (5.65) we
can conclude that v�0,1(ρ1) = 0 as well. By (5.62) and (5.61) we then have that

‖�u�0‖H(r≥ρ1) = 0

which is a contradiction since ρ1 < ρ0. Therefore, (∂ru�0,0, u�0,1) = (0, 0) Since
u�0(r) → 0 as r → ∞ we can also conclude that (u�0,0, u�0,1) = (0, 0). ��

5.4 Proof of Proposition 5.1 and Proof of Theorem 1.1. For clarity, we
summarize what we have done in the proof of Proposition 5.1.
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Proof of Proposition 5.1. Let �u(t) be a solution to (2.8) and suppose that the
trajectory

K = {�u(t) | t ∈ R}
is pre-compact in H. We recall that

r�u(t, r) = �ψ(t, r) − (Qn(r), 0)

where �ψ(t) ∈ Hn is a degree n wave map, i.e., a solution to (1.2). By Lemma 5.5
there exists �0 ∈ R so that∣∣r3u0(r) − �0

∣∣ = O(r−3) as r → ∞ (5.66)∣∣∣∣∣∣r
∞∫

r

u1(ρ)ρ dρ

∣∣∣∣∣∣ = O(r−1) as r → ∞. (5.67)

If �0 �= 0 then by Lemma 5.15, ψ(0, r) = Q�0 where Q�0 is defined in (5.51). How-
ever, this is impossible since Q�0(1) �= 0, which contradicts the Dirichlet boundary
condition ψ(t, 1) = 0 for all t ∈ R.

Hence, �0 = 0. Then by Lemma 5.13 we can conclude that �u(0) = (0, 0), which
proves Proposition 5.1. ��

The proof of Theorem 1.1 is now complete. We conclude by summarizing the
argument. Proof of Theorem 1.1 Suppose that Theorem 1.1 fails. Then by Proposi-
tion 3.6 there exists a critical element, that is, a nonzero solution �u∗(t) ∈ H to (2.8)
such that the trajectory K = {�u∗(t) | t ∈ R} is pre-compact in H. However, Proposi-
tion 5.1 implies that any such solution is necessarily identically equal to (0, 0), which
contradicts the fact that the critical element �u∗(t) is nonzero. ��

References

[BSS92] B. Balakrishna, V. Sanyuk, J. Schechter, and A. Subbaraman. Cutoff
quantization and the skyrmion. Physical Review D, 45(1) (1992), 344–351

[BCM12] P. Bizoń, T. Chmaj, and M. Maliborski. Equivariant wave maps exterior to
a ball. Nonlinearity, 25(5) (2012), 1299–1309

[DKM11] T. Duyckaerts, C. Kenig, and F. Merle. Universality of the blow-up profile
for small radial type II blow-up solutions of the energy critical wave equation.
Journal of the European Mathematical Society (JEMS), 13(3) (2011), 533–599

[DKM12] T. Duyckaerts, C. Kenig, and F. Merle. Profiles of bounded radial solu-
tions of the focusing, energy-critical wave equation. Geometric and Functional
Analysis, 22(3) (2012), 639–698

[DKM13] T. Duyckaerts, C. Kenig, and F. Merle. Classification of radial solutions of
the focusing, energy critical wave equation. Cambridge Journal of Mathematics,
1(1) (2013), 74–144

[DKM12] T. Duyckaerts, C. Kenig, and F. Merle. Scattering for radial, bounded
solutions of focusing supercritical wave equations. To appear in I.M.R.N, Preprint
(2012)



GAFA RELAXATION TO HARMONIC MAPS 647

[HMSSZ10] K. Hidano, J. Metcalfe, H. Smith, C. Sogge, and Y. Zhou. On ab-
stract Strichartz estimates and the Strauss conjecture for nontrapping obstacles.
Transactions of the American Mathematical Society, 362(5) (2010), 2789–2809

[KM06] C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for
the energy-critical, focusing, non-linear Schrödinger equation in the radial case.
Inventiones Mathematicae, 166(3) (2006), 645–675

[KM08] C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for
the energy-critical focusing non-linear wave equation. Acta Mathematica 201(2)
(2008), 147–212

[KM11] C. Kenig and F. Merle. Radial solutions to energy supercritical wave equations
in odd dimensions. Discrete and Continuous Dynamical Systems, 31(4) (2011),
1365–1381

[LS13] A. Lawrie and W. Schlag. Scattering for wave maps exterior to a ball. Ad-
vances in Mathematics, 232(1) (2013), 57–97

[S88] J. Shatah. Weak solutions and development of singularities of the SU(2)σ-
model. Communications on Pure and Applied Mathematics, 41(4) (1988), 459–
469

[SS98] J. Shatah and M. Struwe. Geometric wave equations. Courant Lecture notes in
Mathematics, New York University, Courant Institute of Mathematical Sciences,
New York. American Mathematical Society, Providence (1998)

Carlos E. Kenig and Wilhelm Schlag, Department of Mathematics, The University
of Chicago, 5734 South University Avenue, Chicago, IL 60615, USA

cek@math.uchicago.edu
schlag@math.uchicago.edu

Andrew Lawrie, Department of Mathematics, The University of California, Berkeley 859
Evans Hall �3840, Berkeley, CA 94720, USA alawrie@math.berkeley.edu

Received: November 21, 2013
Accepted: December 18, 2013


	Relaxation of wave maps exterior to a ball to harmonic maps for all data
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Exterior harmonic maps.
	2.2 5d reduction.

	3 Small Data Theory and Concentration Compactness
	3.1 Global existence and scattering for data with small energy.
	3.2 Concentration compactness.
	3.3 Critical element.

	4 The Linear External Energy Estimates in R5
	5 Rigidity Argument
	5.1 Step 1.
	5.2 Step 2.
	5.3 Step 3.
	5.4 Proof of Proposition 5.1 and Proof of Theorem 1.1.

	References


