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RELAXATION OF WAVE MAPS EXTERIOR TO A BALL
TO HARMONIC MAPS FOR ALL DATA

CARLOS E. KENIG, ANDREW LAWRIE AND WILHELM SCHLAG

Abstract. In this paper we establish relaxation of an arbitrary l-equivariant
wave map from ]Rtl’f’ (R x B(0,1)) — S3 of finite energy and with a Dirichlet
condition at r = 1, to the unique stationary harmonic map in its degree class.
This settles a recent conjecture of Bizon, Chmaj, Maliborski who observed this
asymptotic behavior numerically.

1 Introduction

In this paper we describe all possible asymptotic dynamics for the l-equivariant
wave-map equation from

RiF\(R x B(0,1)) — 5°

with a Dirichlet condition on the boundary of the ball B(0,1), and data of finite
energy. To be specific, consider the Lagrangian

3
1
L(U,8,U) = / 5 | -k + 0 | deds

R1+3\(Rx B(0,1)) i=1

where ¢ is the round metric on S3, and we only consider functions for which the
boundary of the cylinder R x B(0,1) gets mapped to a fixed point on S3, say the
north pole. Under the usual 1-equivariance assumption the Euler-Lagrange equation
associated with this Lagrangian becomes

¢tt_1/}rr_12n¢r+8in7(§w) =0 (11)
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where 9(t,7) measures the angle from the north-pole on S3. The imposed Dirich-
let boundary condition is then ¥ (¢,1) = 0 for all ¢ € R. In other words, we are
considering the Cauchy problem

Vit — Yrr — %wr + Slnﬁgw) =0, r=>1,
bt 1) =0, V1, (1-2)
1/}(07 7’) = 7/10(7’)7 wt(ov 7’) = 1/}1 (7’)
The conserved energy is
o0 . 9
e = [ 5 (w22 ) o (1)

1

Any (t,r) of finite energy and continuous dependence on t € I := (tp,¢1) must
satisfy 1(t,00) = nm for all ¢ € I where n € Z is fixed. We can restrict to the case
n > 0 since this covers the entire range n € Z by the symmetry ¢ — —. We call
n the degree, and dengte by &, the connected component of the metric space of all

¥ = (vo,11) with £(1) < oo and fixed degree n (of course obeying the boundary
condition at r = 1), i.e.,

En = {0, 1) | €W, 1) < 00, Po(1) = 0, lim 4o (r) = nm}. (1.4)

The advantage of this model lies with the fact that removing the unit ball elimi-
nates the scaling symmetry and also renders the equation subcritical relative to the
energy. This subcriticality immediately implies global wellposedness in the energy
class. Both of these features are in stark contrast to the same equation on 1 + 3-
dimensional Minkowski space, which is known to be super-critical and to develop
singularities in finite time, see Shatah [S88] and also Shatah and Struwe [SS98].

Another striking feature of this model, which fails for the 1+ 2-dimensional ana-
logue, lies with the fact that it admits infinitely many stationary solutions (Qn(r),0)
which satisfy @ (1) = 0 and lim,_,oc @Qn(r) = nm, for each n > 1. These solutions
have minimal energy in the degree class &,, and they are the unique stationary
solutions in that class.

The natural space to place the solution into for n = 0 is the energy space Ho :=
(H} x L?)(R3) with norm

[e.o]

9180 = [ WR0) + 0 = () (1.5
1
Here, R? := R3\B(0,1) and H}(R?) is the completion under the first norm on the
right-hand side of (1.5) of the smooth radial functions on {z € R? | |x| > 1} with
compact support. For n > 1, we denote H,, := &, — (Qn,0) with “norm”

19112, == 19 = (Qns )24,
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The point of this notation is that the boundary condition at r =00 is J—(Qn, 0)(r) —
0 asr — oc.

The exterior equation (1.2) was proposed by Bizon et al. [BCM12] as a model in
which to study the problem of relaxation to the ground states given by the various
equivariant harmonic maps. In the physics literature, this model was introduced
in [BSS92| as an easier alternative to the Skyrmion equation. Moreover, [BSS92]
stresses the analogy with the damped pendulum which plays an important role
in our analysis. Both [BCM12,BSS92] obtain the existence and uniqueness of the
ground state harmonic maps via the phase-plane of the damped pendulum, and
they also observed stability of the linearized equation around the harmonic maps.
Numerical simulations described in [BCM12] indicated that in each equivariance
class and topological class given by the boundary value nm at r = 0o every solution
scatters to the unique harmonic map ), that lies in this class. In this paper we
verify this conjecture in the l-equivariant setting, for all degrees and all data.

Our main result is as follows. It should be viewed as a verification of the soliton
resolution conjecture for this particular case.

Theorem 1.1.  For any smooth energy data in &, there exists a unique global
and smooth solution to (1.2) which scatters to the harmonic map (Qy,0).

Scattering here means that on compact regions in space one has (1, ¢;)(t) —
(Qn,0) — (0,0) in the energy topology, or alternatively

(¥, 1) (t) = (@n, 0) + (0, 01) (£) + 0m,, (1) £ — 00 (1.6)
where (¢, @) € Ho solves the linearized version of (1.2), i.e.,
2 2
Ot — Prr — ;Lpr—{—ﬁgozo, r>1, o(t 1) =0. (1.7)

We would like to emphasize that only the scattering part of Theorem 1.1 is difficult.

In [LS13] the second and third authors established this theorem for degree zero,
and also proved asymptotic stability of the @, for n > 1. Here we are able to treat
data of all sizes in the higher degree case. As in [LS13] we employ the method of
concentration compactness from [KM06, KMO8]. The main difference from [LS13] lies
with the rigidity argument. While the virial identity was the key to rigidity in [LS13]
for degree zero (which seems to be impossible for n > 1), here we follow an alternate
route which was developed in a very different context in [DKM13, DKM12] for the
three-dimensional energy critical nonlinear focusing wave equation. To be specific we
rely on the exterior asymptotic energy arguments developed there. A novel feature of
our work is that we elucidate the role of the Newton potential as an obstruction to
linear energy estimates exterior to a cone in odd dimensions; in particular we do this
for dim = 5, which is what is needed for equivariant wave maps in R3. It is precisely
this feature which allows us to adapt the rigidity blueprint from [DKM13,DKM12]
to the model under consideration.

Finally, let us mention that we expect the methods of this paper to carry over
to higher equivariance classes as well.
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2 Preliminaries
In this section we discuss the harmonic maps (), as well as the reduction of the

equivariant wave maps equation to a semi-linear equation in R% := R%\ B(0, 1) with
a Dirichlet condition at r = 1.

2.1 Exterior harmonic maps. In each energy class, &, there is a unique finite
energy exterior harmonic map, (@,0) = (Qy,0). In fact (Q,,0) can be seen to have
minimal energy in &,. An exterior harmonic map is a stationary solution of (1.2), i.e.,

QT’T + 2@1" = Sln(zQ)
r r

Q1) =0, Tlirgo Q(r) = nm. (2.2)

LEMMA 2.1. For all a € R there exists a unique solution Q, € H'(R3) to (2.1) with
Qu(r) =nm —ar 2+ 0 °).

The O(+) is determined by «, and vanishes for c = 0. Moreover, there exists a unique
a such that Q4 (1) = 0, which we denote by ag. One has ag > 0.

The proof of Lemma 2.1 is standard so we just sketch an outline below. In order
to study solutions to (2.1) it is convenient to introduce new variables s = log(r) and
#(s) = Q(r). With this change of variables we obtain an autonomous differential
equation for ¢, viz.,

b+ ¢ = sin(2¢) (2.3)

which is the equation for a damped pendulum. We can thus reduce matters to the
phase portrait associated to (2.3). Setting z(s) = ¢(s), y(s) = ¢(s) we rewrite (2.3)

as the system
@) N (—y+§in(2x)> = X(z,y) (2.4)

and we denote by ®, the flow associated to X. The equilibria of (2.4) occur at
points vy, = (52,0) where k € Z. For each £ = n € Z the flow has a saddle
with eigenvalues Ay = 1, A_ = —2, and the corresponding unstable and stable
invariant subspaces for the linearized flow are given by the spans of (1, ;) = (1, 1),
respectively (1,A_) = (1, —2). In a neighborhood V' 3 v, = (nm,0) one can define
the 1-dimensional invariant unstable manifold

Wi ={(z,y) € V| ®s(z,y) — v, as s — —o0}

n

and the 1-dimensional invariant stable manifold

Wit ={(z,y) €V | ®5(z,y) — v, as s — oo}
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which are tangent at v, to the invariant subspaces of the linearized flow. In partic-
ular, for each n one can parameterize the stable manifold W2t by

Pn.al(s) = nT — e + O(e” )

with the parameter o determining all the coefficients of higher order. This proves
the existence of the (), in Lemma 2.1. One can show that if the parameter « satisfies
a > 0 then ¢, o(s) lies on the branch of the stable manifold which stays below nr
for all s € R, i.e., ¢pa(s) < nm for all s € R. If & = 0 then ¢y, o(s) = nr for all s.
Finally, if e < 0 then ¢y, o(s) > nr for all s € R. Different choices of o correspond
to translations in s along the respective branches of the stable manifold, which is
what we mean by uniqueness in the statement of Lemma 2.1.

To prove the existence and uniqueness of g, we note that an analysis of the
phase portrait shows that any trajectory with @ > 0 must have crossed the y-axis
at some finite time sg, and once it has crossed can never do so again. Note that if
the parameter « satisfies a < 0 then the trajectory can never cross the y-axis since
in this case ¢y o(s) > nm for all s € R.

Now, fix any ay > 0 and a_ < 0. Passing back to the original variables we have
three trajectories

Qn,ai (7') =nm — OéiT‘_Q + O(T‘_6)
Qn,O(T) =nm

where Qyq, (1) is a trajectory on the branch of W' that increases to nm as r — oo,
and Q.o (r) is a trajectory on the branch of W that decreases to nr as r — oo.
Since the trajectory Qp o, satisfies Qp o, (r0) = 0 for some 79 > 0, we can obtain
our solution @, () to (2.1) which satisfies (2.2) by rescaling Qp o, () by Ao > 0, i.e.,
we set

(2.5)

Qn(r) = QF (r/Mo) = nm — Aayr2 4+ 0(r°)

where we note that A\g > 0 is uniquely chosen to ensure that the boundary condition
Qn(1) = 0 is satisfied. Note that such rescalings amount to a translation in the
s-variable above. Setting ag := A, the unique harmonic map (Q,(r),0) € &,
therefore satisfies

Qn(r) =nm — apr—? + O(Tﬁ6) (2.6)
as claimed above.

2.2 5d reduction. In the higher topological classes, &, for n > 1, we linearize
about @) = @Q,, by writing

v=Q+¢

where (Q = @Q,, is the unique harmonic map and energy minimizer in &,. If 1E €&,
is a wave map, then J € H,, satisfies
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2 2 cos(2Q)
Pt = Prr = —pr + Tg)so = Z(r,¢)

c0s(2Q)(2p — sin(2¢)) + 2sin(2Q) sin?(yp)

Zr) = 2 27
p(t,1) =0, ¢(t,00) =0 VL, F0) = (Yo — Q1)
The standard 5d reduction is given by setting ru := ¢ and then # solves
Ut — Upy — %ur +V(r)u=F(r,u) + G(r,u), r>1
u(t,1) =0 Vt, u(0)= (ug,uy)
Vi) = 2(cos(i§2) —1) 2.8

sin?(ru
F(ryu) = ZSin(QQ)Tg)

2ru — sin(2ru))

G(r,u) := cos(2Q) (

3
We will consider radial initial data (ug,u;) € H := H} x L*(R3) where R? =
R\B(0, 1),

(w0, wr) 17, = /((5ruo(7’))2 +ui(r))rtdr (2.9)
1

where H& (R2) is the completion under the first norm on the right-hand side above of
all smooth radial compactly supported functions on {z € R® | |z| > 1}. We remark
that the potential

cos(2Q) — 1)

Vi) = 2 = (2.10)

is real-valued, radial, bounded, smooth and by (2.6) satisfies
V(r)=0(@r"% as r— oo. (2.11)
Also, by (2.6) we can deduce that
|E(r,u)| S v Jul®
3 (2.12)
|G(ru)| S Jul”.

For the remainder of the paper we deal exclusively with u(¢,7) in R? rather than the
equivariant wave map angle (¢, 7). In fact, one can check that the Cauchy prob-
lem (1.2) with data (10, v1) € &, is equivalent to (2.8). To see this let ¢ € &£, and set

rii(r) = (Yo(r) — Qn(r), ¥1(r)). (2.13)
We claim that
[]l7¢, == ||l (2.14)
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Indeed, setting o(r) := 1o(r) — Qn(r) we see that

o0 o0

/go,%(r)rz dr ~ /u%(r)r4 dr (2.15)
1 1
via Hardy’s inequality and the relations

cp,,:rur—i—u:rur—i—%.

Therefore for each topological class &, the map

F o (Wolr) = @ulr), ()

is an isomorphism between the spaces &,, and H respectively.

In particular, we will prove the analogous formulation of Theorem 1.1 in the
u-setting rather than the original one. Scattering in this context will mean that we
approach a solution of (2.8) but with V =F =G = 0.

3 Small Data Theory and Concentration Compactness

3.1 Global existence and scattering for data with small energy. Here
we give a brief review of the small data well-posedness theory for (2.8) that was
developed in [LS13]. As usual the small data theory rests on Strichartz estimates for
the inhomogeneous linear, radial exterior wave equation with the potential V,

U — Upp — ;ur +V(r)u=nh
u(t,1)=0 WVt (3.1)
u(0) = (ug,u1) € H
where V(r) is as in (2.10). We define Sy (t) to be the exterior linear propagator
associated to (3.1). The conserved energy associated to (3.1) with ~ = 0 is given by

o0

/(uf +u? 4+ V(r)u?) v dr.
1

N |

Er(u,uy) =

This energy has an important positive definiteness property: one has
1
Er(u,u) = §(Hut||§ + (Hulu)), H=-A+V. (3.2)

It is shown in [BCM12,L.S13] that H is a nonnegative self-adjoint operator in L?(R?)
(with a Dirichlet condition at r = 1), and moreover, that the threshold energy zero is
regular; in other words, if H f = 0 where f € H? N H& then f = 0. It is now standard
to conclude from this spectral information that for some constants 0 < ¢ < C,

el £, < (HfIf) < ClflG, v feH(RD). (3.3)
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We sometimes write ||@||% := £ (#@), which satisfies
ldlle ~ |ldlln Vi €H. (3.4)
In what follows we say a triple (p, q,~) is admissible if

p>2,q2>2

L0
g 2 "

1

p

1 2
-+ -<1

P q

For the free exterior 5d wave, i.e., the case V' = 0 in (3.1), Strichartz estimates
were established in [HMSSZ10]. Although the estimates in [HMSSZ10] hold in more
general exterior settings, we state only the specific example of these estimates that
we need here.

ProposITION 3.1 ([HMSSZ10]). Let (p, q,y) and (r, s, p) be admissible triples. Then
any solution U(t) to

Utt — Upp — %UT =h
7(0) = (f,9) € H(RY) (3.5)

v(t,1) =0 VteR
with radial initial data satisfies
VI Vollpere SN+ VIRl g (3.6)

In [LS13], the second and third authors showed that in fact the same family of
Strichartz estimates hold for (3.1).

PROPOSITION 3.2 ([LS13, Proposition 5.1]). Let (p,q,~) and (r, s, p) be admissible
triples. Then any solution (t) to (3.1) with radial initial data satisfies

VI Vallzere S 1EO) 17 + VIRl Ly - (3.7)

With these Strichartz estimates the following small data, global well-posedness
theory for (2.8) follows from the standard contraction argument.

PropOSITION 3.3 ([LS13, Theorem 1.2]). The exterior Cauchy problem for (2.8) is
globally well-posed in H := H} x L*(R2). Moreover, a solution u scatters as t — 0o
to a free wave, i.e., a solution iu;, € H of

Oup =0, r > 1, ug(t,1) =0, Vt >0 (3.8)

if and only if ||lu|s < oo where S = L}([0,00); L(R?)). In particular, there exists
a constant 0 > 0 small so that if ||@(0)|[ < d, then u scatters to free waves as
t — £oo.
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REMARK 1. We remark that in [LS13, Theorem 1.2], the conclusions of Proposi-
tion 3.3 were phrased in terms of the original wave map angle 1) where here the
result is phased in terms of u(t,r) == L(¥(t,r) — Qn(r)). As we saw in Section 2

this passage to the u—formulation is allowed since the map U= 7(1/1 Qn, ) is an

isomorphism between the energy class &, and H := Ho x L?(R?), respectively.

We refer the reader to [LS13] for the details regarding Proposition 3.2 and Proposi-
tion 3.3. For convenience, we recall how the scattering norm L?LS is obtained. By
Proposition 3.2, solutions to (3.1) satisfy

[l S [[a@(0) ]l + ([l (3.9)

w0

L3R *(R2)) Liz4LiLl
As in [LS13], we claim the embedding W7’3 « LS for radial functions in 7 > 1 in
R5 Indeed, one checks via the fundamental theorem of calculus that I/V1 3 L3P,

More precisely,

LF)] <75 fllypas- (3.10)

Interpolating this with the embedding L? < L? we obtain the claim. From (3.9) we
infer the weaker Strichartz estimate

sR.Lo(R5)) S ||@(0 h 30 3.11
Julamney S NGO+ Il Qe g (@D
which suffices for our purposes. Indeed, using (3.11) on the nonlinear equation (2.8)
gives

||u||L?(R§Lg(Ri)) L1L2+L2L17

S [[a(0)]l+ + H?“_?’UQIILE g+ 1l
t

S [la(o IIH+HT’3H @HUQII s +||u||L3LG

L L,”

where we have estimated the size of the nonlinearity h = F(r,u) + G(r,u) using
(2.12). Thus for small initial data, ||%(0)|% < J, we obtain the global a priori estimate

1wl Lo rire rsy) S 1E(0)[l2 S 6 (3.12)
from which the small data scattering statement in Proposition 3.3 follows.

3.2 Concentration compactness. We now formulate the concentration com-
pactness principle relative to the linear wave equation with a potential, see (3.1)
with h = 0. This is what we mean by “free” in Lemma 3.4. Note that this is a
different meaning of “free” than the one used in Proposition 3.3. However, observe
that any solution to (3.1) with h = 0, which is in L$ LS must scatter to “free” waves,
where “free” is in the sense of Proposition 3.3.



GAFA RELAXATION TO HARMONIC MAPS 619

LEMMA 3.4. Let {u,} be a sequence of free radial waves bounded in H = H} x
L?(R2). Then after replacing it by a subsequence, there exist a sequence of free
solutions v/ bounded in H, and sequences of times t}, € R such that for v¥ defined

by

un(t) = Y VI(t+th) + k(L) (3.13)
1<j<k
we have for any j < k,
Tn(=t}) =0 (3.14)

weakly in ‘H as n — oo, as well as
lim [t} — %] = oo (3.15)
n—oo
and the errors ’yf{ vanish asymptotically in the sense that
lim Timsup [|[vE[| (15 rzazszs)mxrs) =0 V5 < p < o0. (3.16)
k—o0 n—o0o
Finally, one has orthogonality of the free energy with a potential, cf. (3.4),

a2 = D 1#1F + 175117 + o(1) (3.17)
1<j<k

as n — oQ.

The proof is essentially identical with that of Lemma 3.2 in [LS13]. In fact,
instead of the Strichartz estimates for O in R we use those from Proposition 3.2
above.

Applying this decomposition to the nonlinear equation requires a perturbation
lemma which we now formulate. All spatial norms are understood to be on R2. The
exterior propagator Sy (t) is as above.

LEMMA 3.5. There are continuous functions €9, Cy : (0,00) — (0,00) such that
the following holds: Let I C R be an open interval (possibly unbounded), u,v €
C(I; HY) N CY(I; L?) radial functions satisfying for some A > 0
]l o= (1) + 10l e (174) + 10l 23 (100) < A
lea(w)llLy .2y + llea(v)l i z.r2) + llwollLzr;0) < € < €0(A),

where eq(u) := (O 4+ V)u — F(r,u) — G(r,u) in the sense of distributions, and
Wo(t) := Sy (t —to)(d — ¥)(to) with to € I arbitrary but fixed. Then

@ — ¥ = Woll L= 10y + llu = vll L3 (r;00) < Co(A)e.
In particular, ||ul|rs(r,zs) < 0o

The proof of this lemma is essentially identical with that of [LS13, Lemma 3.3].
The only difference is that we use the propagator Sy instead of Sp.



620 C. E. KENIG ET AL. GAFA

3.3 Ciritical element. We now turn to the proof of Theorem 1.1 following the
concentration compactness methodology from [KM06,KMO08]. We begin by noting
that Theorem 1.1 was proved in the regime of all energies slightly above the ground
state energy £(Qp,0) in [LS13, Theorem 1.2], see also Proposition 3.3 above. As
usual, we assume that Theorem 1.1 fails and construct a critical element which is
a non-scattering solution of minimal energy, E.,, which is necessarily strictly bigger
than £(Qy, 0). This is done in the following proposition on the level of the semi-linear
formulation given by (2.8).

PRrOPOSITION 3.6. Suppose that Theorem 1.1 fails. Then there exists a nonzero
energy solution to (2.8) (referred to as a critical element) ii,(t) for t € R with the
property that the trajectory

K:={u.(t) |t eR} (3.18)
is pre-compact in H(R?).

Proof. Suppose that the theorem fails. Then there exists a bounded sequence of

Vj = (Yo,5,%1,5) € En with
E(j) = B >0 (3.19)

and a bounded sequence i@; := (uqj,u1;) € H where @;(r) = 2(¢;(r) — (Q(r),0))
with

|ujlls — oo

where u,, denotes the global evolution of i, of (2.8). We may assume that E, is
minimal with this property. Applying Lemma 3.4 to the free evolutions Sy of ;(0)
yields free waves v’ and times t; as in (3.13). Let U’ be the nonlinear profiles of
(v*, t;), i.e., those energy solutions of (2.8) which satisfy

lim |5 (t) = T (t)| — 0

i
t—tt

where lim;_, t; =t! € [~00,00]. The U’ exist locally around t = t!_ by the local
existence and scattering theory, see Proposition 3.3. Note that here and throughout
we are using the equivalence of norms in (3.4). Locally around ¢t = 0 one has the
following nonlinear profile decomposition

ug(t) =D Ut +15) + 75 (1) +nf(t) (3.20)
i<k
where HT_]?:(O) |l — 0 as j — oco. Now suppose that either there are two non-vanishing

v, say v',v?, or that

lim sup lim sup Hﬁf”g > 0. (3.21)

k—oo  j—oo
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Note that the left-hand side does not depend on time since ’yf is a free wave. By the
minimality of F, and the orthogonality of the nonlinear energy—which follows from
(3.15) and (3.14)-each U’ is a global solution and scatters with [[U*|| 376 < oc.

We now apply Lemma 3.5 on [ = R with v = u; and

(t) =Y U'(t+1t)). (3.22)
i<k
That [leq(v)||piz2 is small for large n follows from (3.15). To see this, note that with
N(v) := F(r,v) + G(r,v),

eq(v) = (O +V)v—F(r,v) - G(r,v)
=Y N(U(t+t})) - N (Z Uit + t;i)> .
i<k i<k
The difference on the right-hand side here only consists of terms which involve at

least one pair of distinct 4,7. But then [leq(v)|fiz2 — 0 as j — oo by (3.15). In
order to apply Lemma 3.5 it is essential that

S U+t <A<oo (3.23)

i<k

lim sup
Jj—00

LILS

uniformly in k, which follows from (3.15), (3.17), and Proposition 3.3. The point here
is that the sum can be split into one over 1 < ¢ < 79 and another over ig < ¢ < k.
This splitting is performed in terms of the energy, with ¢y being chosen such that
for all k£ > ig

lim sup Z H(j’z(t;)]\%gag (3.24)
T o <i<k

where € is fixed such that the small data result of Proposition 3.3 applies. Clearly,
(3.24) follows from (3.17). Using (3.15) as well as the small data scattering theory
one now obtains

3
. . . . 3
lim sup Z U'(-+t3) = z HUZ(-)}LS,L2
I700 lip<i<k 3L i0<i<k '
o 3
< Climsup | Y [T ()% (3.25)
J—=eo i0<i<k

with an absolute constant C'. This implies (3.23), uniformly in k.
Hence one can take k and j so large that Lemma 3.5 applies to (3.20) whence

limsup ||u;|sps < 00
J—00 '
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which is a contradiction. Thus, there can be only one nonvanishing v*, say v!, and
moreover

lim sup |77l = 0. (3.26)

J—00
Thus, if we let Jl be the wave map angle associated to U then we have 8(1;1) = F..
By the preceding, necessarily
1U 1318 = oo. (3.27)
Therefore, U! =: u, is the desired critical element. Suppose that
|l 22 ([0,00);28) = 0©- (3.28)
Then we claim that
Ky =A{u.(t) [t >0}

is precompact in H. If not, then there exists § > 0 so that for some infinite sequence
t, — oo one has

1T (tn) — Tultm)|le >0 ¥V >m. (3.29)

Applying Lemma 3.4 to U'(t,,) one concludes via the same argument as before based
on the minimality of E, and (3.27) that

ﬁ*(tn) = ﬁ(Tn) + %(0) (3'30)

where ¥, 7, are free waves in H, and 7, is some sequence in R. Moreover, ||7,|x — 0
asn — o0o. If 7, — 7o € R, then (3.30) and (3.29) lead to a contradiction. If 7,, — oo,
then

(- + Tn)”L%([opo);Lg) —0 as n — 00

implies via the local wellposedness theory that [[u.(- + tn) |l £3([0,00);26) < oo for all
large n, which is a contradiction to (3.28). If 7, — —oo, then

[v(- + 7o)l L3 ((~0,01:28) — 0 as n — oo

implies that [|w.(- + tn)| 23 ((—00,0;18) < C < 0o for all large n where C' is some fixed
constant. Passing to the limit yields a contradiction to (3.27) and (3.29) is seen to
be false, concluding the proof of compactness of K.

Finally, we need to make sure that w.(t) is precompact with respect to both
t — +o0 and t — —o0, see (3.18). To achieve the latter, we extract another critical
element from the sequence

{t.(n)};Zs CH.

Indeed, by the compactness that we have already established we can pass to a strong
limit %, — s in H, which has the same energy F,. By construction, the nonlin-
ear evolution (2.8) with data i has infinite L3 LS-norm in both time directions.
Therefore, the same compactness argument as above concludes the proof. Indeed,
the solution given by i, is now our desired critical element. O
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In Section 5 we will show that u, cannot exist. In order to do so, we need to
develop another tool for the linear evolution.

4 The Linear External Energy Estimates in R®

We now turn to our main new ingredient from the linear theory, which is Proposi-
tion 4.1. In order to motivate this result, we first review the analogous statements
in dimensions d =1 and d = 3.

Suppose wy — Wy, = 0 with smooth energy data (w(0),w(0)) = (f,g). Then by
local energy conservation

T
1 1 1
/2(wt+w)(0 x)dr — / i(wfth 2/wt+wx (t,t+a)dt
T>a z>T4a 0
for any 7' > 0 and a € R. Since (0; — 9;)(wt + wy) = 0, we have that
1 i 1 i
3 /(wt 4w, )2 (t, t +a) dt = 3 /(wt + w2 )% (0, a + 2t) dt
0 0
a+2T a+2T
1 2 1 2
=1 (w + wg)?(0,x) dz = 1 (fe +9)"(x)dx.
Consequently,
1 1
/2(wt + w?2)(0, x)dx—Thm / 2(wt—l-w)(Ta:)d
T>a x>T+a
~ 2 [(fo+ 02w da

whence
I L v o) (T2)de > [0+ @) (4.1)
max lim 5w +w z)dr > o -+ 97)(x)dx. .
z>|T|+a a

Here we used that ¢t — —t leaves f unchanged, but turns g into —g.
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Given Ou = 0 radial in three dimensions, w(t,r) = ru(t,r) solves wy — wy, = 0.
Consequently, (4.1) gives the following estimate from [DKM11, Lemma 4.2], see also
[DKM12,DKM13,DKM12]: for any a > 0 one has

. 1
max lim / 5((7“11)% + (rug)?) (T, r) dr

+ T—otoo
r>|T|+a

>3 [ eondr (1.2

r>a

where u(0) = f, 4(0) = g. The left-hand side of (4.2) equals

. 1
max Tgrjr:loo / §(u% +u?)(T,r) ridr (4.3)

r>|T|+a
by the standard dispersive properties of the wave equation. The right-hand side, on
the other hand, exhibits the following dichotomy: if a = 0, then it equals half of the
full energy

1 =

/f2+g ) ridr.
0

However, if a > 0, then integration by parts shows that it equals (ignoring the
constant from the spherical measure in R?)

1 1 1
3 [P0 dr = 100 = 1D By

r>a

where 71 = Id — 7, and 7, is the orthogonal projection onto the line
{(er™1,0) | c€R} € H' x L*(r > a).

The appearance of this projection is natural, in view of the fact that the Newton
potential 7~1 in R3 yields an explicit solution to Ou = 0, u(0,7) = r~1,4(0,7) = 0:
indeed, one has u(r,t) = r~! in 7 > |t| + a for which (4.3) vanishes. Since r~! ¢
L?(r > 1) no projection appears in the time component. In contrast, the Newton
potential in R?, viz. r~3, does lie in H'(r > a) for any a > 0. This explains why in
R® we need to project away from a plane rather than a line, see (4.4) and the end
of the proof of Proposition 4.1.

PROPOSITION 4.1. Let Ou = 0 in R;t° with radial data (f,g) € H' x L?(R®). Then
with some absolute constant ¢ > 0 one has for every a > 0
o
max limsup / (u +ud) ()t dr > el (£ )3y (44)

t—+too
r>a+|t|
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where 7, = Id — 7} is the orthogonal projection onto the plane
{(clr_g, 027"_3) | c1,c20 € R}

in the space H' x L*(r > a). The left-hand side of (4.4) vanishes for all data in this
plane.

REMARK 2. We note that by finite propagation speed Proposition 4.1 with a > 1
holds as well for solutions v(t) to the free radial wave equation in R x R with a
Dirichlet boundary condition at r = 1.

4
Utt — Upp — ;UT =0
v(0) = (f,9) (4.5)

v(t,1) =0 VteR.

Proof. By the basic energy estimate we may assume that f,g are compactly sup-
ported and smooth, say. We first note that it suffices to deal with data (f,0) and
(0, g) separately. Indeed, reversing the time direction keeps the former fixed, whereas
the latter changes to (0,—g). This implies that we may choose the time-direction
so as to render the bilinear interaction term between the two respective solutions
nonnegative on the left-hand side of (4.4).

We begin with data (f,0) and set w(t,r) := r~1(r3u(t,)),, see [KM11]. Through-
out this proof, the singularity at » = 0 plays no role due to the fact that r > a+|t| >
a > 0. Then

Wy — Wy = 1720 (wgg — Uy — up) + 37 (uge — Uy — Jur) = 0.

From the d’Alembert formula,

o0 o0

lim sup / w(t,r)dr > /UJQ(O,T) dr

t—o00
a+t a

| =

which is the same as

o0 o0

i s / (r2uy (£, 7) + 3ru(t, r)2 dr > i / ((2F (1) + 3rf()2dr. (46)

a-+t a

By our assumption on the data, we have the point wise bound

lu(t,r)] < Ct_2X[R—t§r§R+t]
for t > 1 and some large R. Hence, (4.6) equals

o0 o0

lim sup / ul(t,r)yrt dr > i /r4f’(r)2 dr — 3a®f(a)? (4.7)

t—o0
a+t a
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where we integrated by parts on the right-hand side. Finally, one checks that
- 3

Fr) = £() = %5 £(a)

is the orthogonal projection perpendicular to 73 in H*! (r > a) in R® and that it
satisfies

/7’4f'(7')2 dr = /7’4f'(7')2 dr — 3a3f(a)?
which agrees with the right-hand side of (4.7) and concludes the proof of (4.4) for

data (f,0).
For data (0, g) we use the new dependent variable

o0

v(t,r) = /s&gu(t, s)ds. (4.8)

By direct differentiation and integration by parts one verifies that v solves the 3-
dimensional radial wave equation, viz.

Vit — Upp — ;UT =0.

Moreover, v¢(0,7) = 0. From the exterior energy estimate in dim = 3, i.e., (4.2),

Ii?iigp /((rv)? + (ro)3)(t, r) dr > ;/((rv)? + (rv)3)(0,r) dr (4.9)
a+t a

where we have used the fact that for data (vg,0) or (0,v1) the estimate (4.2) holds
in both time directions. By our assumption on the data and stationary phase

o(t,7)] < Ot Xp<ryg, vt 7)] < C2Xp<pey-
Hence (4.9) reduces to
o0 oo

lim sup / v2(t, ) dr > ;/(rh’(r) + h(r))*dr (4.10)

t—o0
a+t a

where h(r) := [7° sg(s)ds. Inserting (4.8) on the left-hand side and integrating by
parts on the right-hand side yields

1imsup/2u?(t,r)r4dr > /h'(?“)Qr2 dr — ah?(a)
t—oo
a+t a

= /g(r)2T4 dr —a /pg(p) dp | . (411)
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Finally, the right-hand side here is |||, where

(r>a)

is the orthogonal projection perpendicular to r =2 in L?(r > a) in R5.

For data (r—3,0) the solution equals =3 on r >t +a > a > 0 since 72 is the
Newton potential in R3. Similarly, data (0,7~3) produce the solution #7~3 on the
same region. In both cases, the left-hand side of (4.4) vanishes.

5 Rigidity Argument

In this section we will complete the proof of Thereom 1.1 by showing that a criti-
cal element as constructed in Section 3 does not exist. In particular, we prove the
following proposition:

PROPOSITION 5.1 (Rigidity Property). Let @(t) € H := H} x L*(R2) be a global
solution to (2.8) and suppose that the trajectory

K :={u(t) |t e R}
is pre-compact in H. Then u(t) = (0,0).

First note that the pre-compactness of K immediately implies that the energy
of u(t) on the exterior cone {r > R + |t|} vanishes as |t| — oc.

COROLLARY 5.2. Let i(t) be as in Proposition 5.1. Then for any R > 1 we have
@) 1r>rype) — 0 as [t] — oo. (5.1)

The proof of Proposition 5.1 will proceed in several steps. The rough outline is to first
use Corollary 5.2 together with Proposition 4.1 to determine the precise asymptotic
behavior of uy(r) = u(0,r) and ui(r) = u.(0,7) as r — oco. Namely, we show that

rug(r) = Lo+ O(r™3) as r — oo

o0

r/ul(p)pdp:O(rl) as r — oo.

r

(5.2)

We will then argue by contradiction to show that (¢, r) = (0,0) is the only possible
solution that has both a pre-compact trajectory and initial data satisfying (5.2).

5.1 Step 1. We use the exterior estimates for the free radial wave equation in
Proposition 4.1 together with Corollary 5.2 to deduce the following inequality for
the pre-compact trajectory u(t).
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LEMMA 5.3. There exists Ry > 1 such that for every R > Ry and for all t € R we
have

I @Ol3gory S B2 mr @) py

R wR O yysny + TR TOWyzn  (5:3)

where again P(R) := {(ki773,kor™3) | k1,ks € R, r > R}, mg denotes the or-
thogonal projection onto P(R) and mr+ denotes the orthogonal projection onto the
orthogonal complement of the plane P(R) in H(r > R;R2). We note that (5.3) holds
with a constant that is uniform int € R.

In order to prove Lemma 5.3 we need a preliminary result concerning the non-
linear evolution for a modified Cauchy problem which is adapted to capture the
behavior of our solution #(t) only on the exterior cone {(¢,r) | » > R+ |t|}. Since we
will only consider the evolution — and in particular the vanishing property (5.1) —
on the exterior cone we can, by finite propagation speed, alter the nonlinearity and
the potential term in (2.8) on the interior cone {1 < r < R+ |t|} without affecting
the flow on the exterior cone. In particular, we can make the potential and the non-
linearity small on the interior of the cone so that for small initial data we can treat
the potential and nonlinearity as small perturbations.

With this in mind, for every R > 1 we define Qr(t,r) by setting

_ JQER+ ) for 1<r<R+[t
nltr)= {Q(T) for 7> R+t

Next, set

2r=2(cos(2Q(r)) — 1) for r > R+ |t|
{2 + [t)) "3 sin(2Qg(t, 7)) sin?((R + [t|)h) for 1<r < R+ |t]

{2 (R + |t)~2( cos(QQR(t r)—1) for 1<r <R+t

2r=3sin(2Q(r)) sin®(rh) for r > R+ [t|
=13 cos(2Q(r))(2rh — sin(2rh)) Vr > 1.

Note that for R large enough we have, using (2.6) and (2.11) that

Vit )| < (R+1t])% for 1<r <R+t (5.5)
TN 0 for > Rt
R+ [t))=3|n(t,r)|* for 1<r<R+|t
Pty < JEF I IERP for 1<r < Ryl 56
r=3|h(t,7)|* for r> R+ |t

|G(r,h)| < |h(t,r)]* for r>1, VteR. (5.7)
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We consider the modified Cauchy problem in R x R2:

het — o — %h’r = NR(t7T7 h)
T
NR(tv T, h) = _VR(t7 T)h + FR(ta r h) + G<T7 h) (58)
h(l,t)=0 VteR
h(0) = (ho, h1) € H.

LEMMA 5.4. There exists Ry >0 and there exists g > 0 small enough so that for
all R > Ry and all initial data h(0) = (ho, h1) € H with

IR(0)1I7 < %
there exists a unique global solution h(t) € H to (5.8). In addition h(t) satisfies
1)l 2o £ (rxe) < 1R (0) 3¢ < o (5.9)

-

Moreover, if we let hy(t) := So(t)h(0) € H denote the free linear evolution, i.e.,
solution to (4.5), of the data h(0) we have

Sup IR (t) = hr (@)l S B2(R(0) 15 + RMEIRO)IF, + 1203 (5.10)

REMARK 3. Note that for each t € R,
Ng(t,r,h) ==V (r)h+ F(r,h) + G(r,h) Vr > R+ |t| (5.11)

where V(r), F(r,h), and G(r,h) are as in (2.8). By finite propagation speed it is
then immediate that solutions to (5.8) and (2.8) agree on the exterior cone {(¢,7) |
r > R+ |t|}.

Proof of Lemma 5.4. The small data well-posedness theory, including estimate (5.9),
follows from the usual contraction and continuity arguments based on the Strichartz
estimates in Proposition 3.1. To prove (5.10) we note that by the Duhamel formula
and Strichartz estimates we have

Ih(t) = ho®)lln S INR( P iz rxrs)
S VR L2 rxks) + 1FR(, 5 P) |l pz exrs) + 1G5 B[ i 22 (rxrs)-

We can now estimate the three terms on the right-hand side above. First, we claim
that

IVRAl Li 2 (Rxre) S HVRHL%LthHLng SRl a .
t x

To see this, we can use (5.5) to deduce that for each ¢t € R
Rtt] -
IValz: < / (R+[t) St dr + / =184 g
! R+lt]
S(R+[t)7F.
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Therefore,

[N

V|l

; 5 /(R—l— ‘t‘)_13/2 dt 5 R—11/3
L2 L3

R
Similarly, we can show using (5.6) and (5.7) that

IFRC, D) Lire@xre) S BVOUIRITs Lo
IGC ) lzizz®xre) S Nhll7sre

which proves (5.10). 0
We can now prove Lemma 5.3.

Proof of Lemma 5.3. We will first prove Lemma 5.3 for time ¢ = 0. The fact that
(5.3) holds at all times ¢ € R for R > Ry, with Ry independent of ¢ will follow from
the pre-compactness of K.

For each R > 1, define truncated initial data @r(0) = (uo,r, u1,gr) given by

(r) ug(r) for r> R
ug.r(r) =
0.f —UI%(_Rl) (r—1) for r <R,

r) {ul(r) for r> R (512
U,R\1) =

0 for r < R.
Observe that this truncated data has small energy for large R since
1@r(O0)I3 S [1E(0) 4> R)- (5.13)
In particular, there exists Ry > 1 so that for all R > Ry we have
[ (0)]l7 < do

where d¢ is the small constant in Lemma 5.4. Let @g(t) denote the solution to (5.8)
given by Lemma 5.4 with data @r(0) as in (5.12). Note that by finite propagation
speed we have

dg(t,r) = @(t,r) VteR, Vr> R+ [t.

Also let iR (t) = So(t)ir(0) denote the solution to free wave equation (4.5) with
initial data @r(0). Now, by the triangle inequality we obtain for each ¢t € R

()14 r>r4ie) = ITRO I He>rrp) = @R,LE) 11> Rt )
—||@r(t) — R, (t)||n- (5.14)
By (5.10) and (5.13) we can deduce that

Sup lir(t) = dr()llx S B2 (idr(0)lw + R™YOldr(0)1F + [|dr (013

< RBE(0) sy + R_H/6||17(0)H31(QR)
O 34, 1) -
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Therefore (5.14) gives
1) ez rerey = NR,LE 2> re i) — CoR™PE(0) 44> )
—COR_H/GHTI(O)H%{(QR) - CO“ﬁ(O)‘|§-{(r2R)'

Letting ¢ tend to either +0o—the choice determined by Proposition 4.1—we can use
Proposition 4.1 to estimate the right-hand side above and use Corollary 5.2 to see
that the left-hand side above tends to zero, which gives

Iz @Ry r) S B ZP1@0) 30 ry + B2 EO) 345 my + 1E0) 155 Ry
after squaring both sides. Finally we note that by the definition of @ (0),
175 @r(0) 3> k) = 7R TO)F(r> my-

Therefore,

I @3y S R2° (||7TR @(0)|3y>my + 175 ﬁ(0)||$-{(r2R))
2
+ B (|mr @(0) sy + Ik EO) o))

3
+ (IR @(0) By + 7 GO By

where we have used the orthogonality of the projection 7r to expand the right-hand
side. To conclude the proof, simply choose Ry large enough so that we can absorb all
of the terms on the right-hand side involving 7+ into the left-hand side and deduce
that
75 @O 3y S B2 Imr@(0) 305 py
+RY3 R @(0) 1345 ry + 17 GO) 5y r)-

This proves Lemma 5.3 for ¢t = 0. To show that this inequality holds for all ¢ € R
observe that by the pre-compactness of K we can choose Ry = Ry(dp) so that

@) #r>r) < do (5.15)

uniformly in ¢ € R. Now simply repeat the argument given above with the truncated
initial data for time ¢t =ty and R > Ry defined by

r) u(to,r) for r> R
U r) =
0.fto 71‘%‘2?) (r—1) for r <R,
ut(to,r) for >R
u r) =
1.Rto (7) {0 for r < R.
This concludes the argument. O

5.2 Step 2. In this step we will deduce the asymptotic behavior of 4(0,7) as
r — oo described in (5.2). In particular we will establish the following result.
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LEMMA 5.5. Let u(t) be as in Proposition 5.1 with @(0) = (ug,u1). Then there exists
fo € R such that

rug(r) — oy as 7 — 00 (5.16)
o0
T/ul(p)pdp — 0 as r — oo. (5.17)
T
Moreover, we have the following estimates for the rates of convergence,
‘r3u0(7“) - 50’ =0(r™?) as r— oo (5.18)
o0
r/ul(p)pdp =00 Y as r— oo (5.19)
T
To begin, we define
vo(t,r) := riu(t,r)
oo
(5.20)
= /ut (t,p)pdp
and for simplicity we will write vo(r) := v(0,r) and vi(r) := v1(0,r). By direct

computation one can show that

) 00 1 9 o'}
I Oany = [ (Formien)) art [@u@n@ar G2
R R

I @1y my = 3RR(E B) + B~ 03, R). (5.22)
For convenience, we can rewrite the conclusions of Lemma 5.3 in terms of (vg, v1):

LEMMA 5.6. Let (vg,v1) be defined as in (5.20). There exists Ry > 1 so that for all
R > Ry we have

/ <T8Tv0(t,r)> dr+ / (Dror(t, )2 dr < R% (BR-%62(1, R) + R (1, R))
R R

+R™% (BR7%3(t, R) + R 03(t, R))?
+ (3BR™%2(t, R) + R '3(t, R))’
<R 503t R) + R 5 vl(t,R) + R™W(t, R)
+ R 50} (t,R) + R 5 vi(t,R) + R3v0(t, R)
with the above estimates holding uniformly in t € R.

We will use Lemma 5.6 to prove a difference estimate. First, let 6; > 0 be a small
number to be determined below with d; < dg where dg is as in Lemma 5.4. Let R
be large enough so that for all R > R; we have
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@)l prsr) <01 <0 VR>Ry, VteR
R, ® <6y. (5.23)
We note again that such an R; = R;(d;) exists by the pre-compactness of K.

COROLLARY 5.7. Let Ry be as above. The for all r,r" with Ry < r <1’ < 2r and
for all t € R we have

‘vo(t,r) — vo(t,r’)} < r5 lvo(t, r)| + % ]vo(t,r)IQ +r3 \vo(t,r)\?’
75 or (6, 7) | 4+ 075 Jor (8, 1)) 4 ot )P (5.24)
and
or(t,7) — v (1) S5 fuo(t ) + 179 Juo(t, )P+ fuo (8, 7)
s o (8, )4 o (G ) P o )P (5.25)
with the above estimates holding uniformly in t € R.

We will also need a trivial consequence of the preceding result which we state as
another corollary for convenience.

COROLLARY 5.8. Let Ry be as above. The for all r,r’ with Ry < r < r' < 2r and
for all t € R we have

|vo(t, r) —wvot,r")| S 01 |vo(t,r)| + réy Jvi (¢, 7)) (5.26)
and
lo1(t,r) —vi(t,r")| S 1oy Jvo(t, r)| + 61 i (¢, 7)) (5.27)
with the above estimates holding uniformly in t € R.

We remark that Corollary 5.8 follows immediately from Corollary 5.7 in light of
(5.22) and (5.23).

Proof of Corollary 5.7. This is a simple consequence of Lemma 5.6. Indeed, for
r > Ry and ' € [r,2r] we use Lemma 5.6 to see that

2

‘votr)—fuotr /\8v0tp\dp

< /‘80015[)

<3 (’I“_% 8( r) 41 3vo(t r) 4770 (t,r))

73 (r*?rvf(t, r) + rfgvil(t, r) 4 308 (t, r))

dp
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Similarly,

o 2

o1 (t,7) — wi(t,7")])? < /8rv1(t,p)\ dp

T

r’

[ o] | [12.0.002 an

T

IN

<r (r_%vg(t,r) + r_%gvé‘(t,r) +r gvg(t r))
+r (T_Q:Tsv%(t, )+ r_%vjl(t, r) + 1308 (t, r))

as claimed. 0
The next step towards establishing Lemma 5.5 is to provide an upper bound on
the growth rates of vy(¢, ) and vy (¢, 7).

CLAIM 5.9. Let vo(t,r), vi(t,r) be as in (5.20). Then,

oo (t, )| < 7
1
8

o (t, )| S rt (5.29)
uniformly in t € R.

Proof. First, note that it suffices to prove Claim 5.9 only for £ = 0 since the ensuing
argument relies exclusively on results in this section that hold uniformly in ¢ € R.
Fix o > Ry and observe that by (5.26), (5.27)

’U0(2n+1 ’ S 1 + 01(51 ”UQ( T’Q)| -+ (2”7‘0)0151 ’U1(2n7'0)’ (530)
‘1}1(2n+1 ‘ S 1 + 0151 ”Ul( 7“0)’ + (2”7“0)_10151 ’1}0(2717“0)’ . (5.31)

To simply the exposition, we introduce the notation

an = |v1(2"ro)| (5.32)
bn := (2"70) ! Juo(2™70)] - (5.33)

Then, combining (5.30) and (5.31) gives
3 1 3
apt1 + by < [ 1+ 50151 ap + B + 50151 bn

3
< (1 + 20151> (an + bp).
Arguing inductively we then see that for each n we have

3 n
(an +bp) < <1 + 20151> (ap + bo).
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Choosing 1 small enough so that (1 + 3C1d1) < 215 allows us to conclude that
an < C(2"r) s (5.34)

where the constant C' > 0 above depends on ry which is fixed. In light of (5.32) we
have thus proved (5.29) for all r = 2"ry. Now define

en = |vo(2"70)]- (5.35)
By (5.22), (5.23), (5.24), and (5.34) we have
Cni1 < (14 C161)en + C(27r0)¢

Inductively, we can deduce that

n
k—1

cn < (1+C161)"co+Crs Y (1+Cror)" F275
k=1

< C(Qn’l“o)%

where we have used that (1 + C101) < Qﬁ, and again the constant C' > 0 depends
on g, which is fixed. This proves (5.28) for » = 2"ry. The general estimates (5.28)
and (5.29) follow from the difference estimates (5.24) and (5.25). 0

CrAmm 5.10. For each t € R there exists a number ¢1(t) € R such that
loi(t,r) —£1(t)] = O(r™Y) as r — oo (5.36)
where the O(-) is uniform in t.

Proof. Again, it suffices to show this for t = 0. Let 7o > R; where Ry > 1 is as in
(5.23). By (5.25) and Claim 5.9 we have

_9

|01 (2" Lrg) — v1(2"70)| < (2M0) 2 + (270) ™A 4 (2r) 2
F(270) T8 + (2r0) T + (27rg) 6
< (2"r) 5.
This implies that the series

Z ’v1(2"+1r0) — v1(2”r0)| < 0

which in turn implies that there exists £1 € R such that
lim v (2"rg) = £;.
n—oo

The fact that lim,_,o v1(r) = ¢; follows from the difference estimates (5.24), (5.25),
and the growth estimates (5.28), (5.29). To establish the estimates on the rate of
convergence in (5.36) we note that by the difference estimate (5.25) and the fact
that we now know that |vi(r)| is bounded, for large enough r we have



636 C. E. KENIG ET AL. GAFA

!vl(2"+1r) — 1)1(2"7")! < (2"7’)_1

Hence,

or(r) = 1] = ) (012" ) — o (20)| STty o2 St

n>0 n>0
as desired. 0

Next we show that the limit ¢;(t) is actually independent of ¢.

CrAM 5.11. The function ¢1(t) in Claim 5.10 is independent of t, i.e., {1(t) = ¢ for
all't € R.

Proof. By the definition of v;(¢,r) we have shown that

(o)

0 (t) = r/ut(t,p)pdp—i— o(r™h).

T

Fix t1,t9 € R with t; 75 ta. We will show that
0(t2) — £ (t1) = 0.

To see this observe that for each R > Ry we have

2R

Or(ts) — O (1) = ;/(ﬁl(tg)—él(tl))ds

/ /ut (ta,7) — wy(tr,r))rdr | ds+O(R™)

o0 tao

R/ //utttrdtTdr ds + O(R™1Y).

S t]
Using the fact that u is a solution to (2.8), we can rewrite the above integral as

t2 2R o0

:/]1%/ 5/(rurr(t,r)—|—4ur(t,r))dr ds dt

LR O\
i / 37 Ju(t,r) +rN(r,u(t,r)))dr | dsdt
+O(R )

=T+ I1T+O(R™). (5.37)
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To estimate I we integrate by parts:
to 2R %]

1 1.,
I :/R/ 8/7387«(7* ur(t,7))dr | dsdt

tl R S
:/R/ S/UT(tTT dsdt—/ /Surtsdsdt
t1 R s
to 1 2R to 1 2R
:—3/R/ru(t,r)drdt—/R/r up(t,r)drdt
21 R t1 R
to . 2R to
_ / - / rult, v) dr di + / (Ru(t, R) — 2Ru(t, 2R)) dt. (5.38)
t1 R t1

Finally, we note that (5.28) and the definition of vy(¢,r) give us
P u(t,r)] = |vo(t, )| < re. (5.39)
Using this estimate for |u(t,r)| in the last line in (5.38) shows that
I=|ty—t1]O(R™%).
To estimate 11 we can use (5.39) to see that for r > R large enough

=V (ryult,r) + Nt )| S r® ult,r) 402 Jult,r)* + fu(t, )|

17

o gt
<0 4T3

St
Hence,
to 2R oo
1
Hg/R/s/rgdrdsdt: [ta — t1| O(R™Y).
tl R S

Putting this together we get
[61(t2) — 1(t1)] = O(R™Y)
which implies that ¢1(t2) = ¢1(t1). O
We next show that ¢ is necessarily equal to 0.
Cramm 5.12. 41 = 0.
Proof. Suppose ¢ # 0. We know that for all R > Ry and for all t € R we have

o0

R/ut(t,r)rdr =06 +OR™)
R
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where O(-) is uniform in ¢. Hence, for R large, the left-hand side above has the same
sign as ¢1, for all £. Thus we can choose R > R; large enough so that for all t € R,

[e.9]

‘R/ut(t T) Td?“ > —
R
Integrating from t = 0 to t =T gives
T

r i
/R/ut(t,r)rdrdt >T‘21.
R

0

However, we integrate in ¢ on the left-hand side and use (5.39) to obtain

R/OO/Tut(t,r)rdth = R/OO[U(T, r) —u(0,r)]rdr
R 0 R
RR/ o dr

SRe

@\»—l

Therefore for fixed large R we have
Lol
2
which gives a contradiction by taking 7T large. O

Now that we have shown that vi(r) — 0 as r — oo, we can prove that vy(r) also
converges and complete the proof of Lemma 5.5.

Proof of Lemma 5.5. It remains to show that there exists £y € R such that
vo(r) — Lol = O(r~?) as r — oo, (5.40)

Using the difference estimate (5.24) as well as (5.28) and the fact that |vy(r)] < r~!
for r > R; we have for rg > R

11 10

|00 (2" r0) — vo(27r0)| < (270) 5 (270)® + (270) 5 (2%0) 5 + (2770) 3 (27r0) 2
H(2%r0) 5 (270) 7+ (270) 5 (270) 2 + (27r9) 3
< (27rg) .
Hence,
Z "U()(QnJrl?“o) — 1)0(2"7“0)‘ < 00
n>0

and therefore there exists £y € R so that

lim vo(2"rg) = £o.

n—oo
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By the difference estimate (5.24) and the fact that v1(r) — 0 we can conclude that
in fact lim, o vo(r) = £o. To establish the convergence rate, we note that since we
now know that |vg(r)| is bounded we have the improved difference estimate

|1)0(2n+17") — v0(2"7")‘ < (2"7’)_3 (5.41)

which holds for all » > R. Therefore,

wo(r) = Lol = | (002" 'r) —wp(27r))| S 2 27 (5.42)

n>0 n>0
as claimed. 0

5.3 Step 3. Finally, we complete the proof of Proposition 5.1 by showing that
i(t) = (0,0). We divide this argument into two separate cases depending on whether
the number ¢y found in the previous step is zero or nonzero.

Case 1: {y = 0 implies %(0) = (0,0):
In this case we show that if ¢y = 0, then u(t) = (0,0).

LEMMA 5.13. Let (t) be as in Proposition 5.1 and let ¢y be as in Lemma 5.5.
Suppose that ¢y = 0. Then u(t) = (0,0).

We begin by showing that if £y = 0 then (ug,u;) must be compactly supported.

CLAIM 5.14. Let ¢y be as in Lemma 5.5. If £y = 0 then (ug,u1) must be compactly
supported.

Proof. The assumption £y = 0 means that

lvo(r)| = O(r_s) as r — 00 (5.43)
lvi(r)] = O(r™Y) as 7 — oo, '
Therefore, for rg > Ry we have
[v0(2"70)| + [v1(2"70)| < (2"710) 7% + (2"r0) 7! S (27r) (5.44)

On the other hand, using the difference estimates (5.24)—(5.27) as well as our as-
sumption (5.43) we obtain

‘UO (2n+17“0)

‘Ul (2n+1T0)

(1= C161) [vo(2"r0)| = C1(2"r0) 2 |01 (2"r0)]
(1 — C161) |v1(2"r0)| — C1(2%r0) ™ v (27r0)].

This means that

‘1)0(2”+17’())‘ + ‘U1(2n+17’0)’ Z (1 - 01(51 - 017“0_2) (|Uo(2n7“0)| + ‘U1(2n7’0)‘).
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Choose ry large enough and ¢; small enough so that Cy(d1 + 7y 2) < i. Arguing
inductively we can conclude that

o)l + @)l = () (ool + (o)

Estimating the left hand side above using (5.44) gives

3

(3) (ol + o)) < 275"

which means that

3 n
(3) ol + oD 5 1.

Hence ¥(rg) := (vo(ro),v1(r9)) = (0,0). But then (5.22) implies that

17y @(O0) [ 3(r>r9) = O-
Using Lemma 5.3 we can also deduce that

75O rzre) = 0
and hence

1@(0)[|7¢(r>ry) = O

which concludes the proof since lim,_, s ug(r) = 0. O

Proof of Lemma 5.13. Assume that £y = 0. Then by Claim 5.14, (ug, u1) is compactly
supported. We assume that (ug,u1) # (0,0) and argue by contradiction. In this case
we can find pp > 1 so that

po :=nf{p : [[@(0)]|4(>p) = 0}
Let £ > 0 small to be determined below and find 1 < p1 < pg, p1 = p1(€) so that
0 < @(0)[[Fy(ysp,y < € < 07

where 6; > 0 is as in (5.23). With (vg, v1) as in (5.20) we have

[e.e] ) [e.e]
/ (i@ﬂ)g(r)> dr + /(8rv1(r))2 dr + 3p7°v3(p1) + p1 "0i(p1)

pP1 P1
= 75, @0) 345 1) + 170, WO F 50y = 1T O Fryp) <& (5.45)
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By Lemma 5.6 we also have

/ (Tarvi)(r)) dr + /(87,1)1(7“))2 dr S pp° U(Q)(Pl) +p° ”61(/)1) + 0y 97}8(01)

P1 P1
25

+py Pt (1) +py ti(en) + ol (o). (5.46)
Arguing as in Corollary 5.8 and using the fact that vo(pg) = v1(po) = 0 gives

[vo(p1)| = |vo(p1) = vo(po)l S €lvo(pr)| + pre[vi(p1)] (5.47)

and

lvi(p1)| = [v1(p1) — v1(po)| < p1 e lvo(pr)| + € vi(p1)]- (5.48)
Plugging (5.47) into (5.48) gives
lwi(p1)| S p1te? vo(pr)| +e(1+€) [vi(p1)]

which means that for € small enough we have

lvi(p1)| < p7'e? vo(pr)l- (5.49)

Putting this estimate back into (5.47) we obtain

[vo(p1)| S elvo(pr)] + € Juo(pr)| S e(1+€2) [vo(pr)|

which implies that vo(p1) = 0 as long as ¢ is chosen small enough. By (5.49) we can
conclude that vi(p1) = 0 as well. By (5.46) and (5.45) we then have that

1@(0)[l4(r>py) = 0O

which is a contradiction since p; < po. O
We next consider the case ¢y # 0.

Case 2: {y # 0 is impossible.

In this final step we show that the case ¢y # 0 is impossible. Indeed we prove
that if £y # 0 then our original wave map J(t) is equal to a rescaled solution @y,
to (2.1) that does not satisfy the Dirichlet boundary condition, (), (1) # 0, which is
a contradiction since 1 (t,1) = 0 for all ¢ € R.

We have shown that

rug(r) = o+ O(r=3).
Recall that rug(r) = @o(r) = ¥o(r) — Q(r) and that

Qr) =nm— 23 +0(~)
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where ag > 0 is uniquely determined by the boundary condition Q(1) = 0. Hence,

— 4
bolr) = nr — O‘OT2 O L o). (5.50)
By Lemma 2.1 there is a solution Qq, ¢ € H*(R?) to (2.1) satisfying
ag — 4 _
Qay—to (1) = nm = =52+ 0(r™°) (5.51)

and from here out we write @y, := Qq,—¢,- Note, by Lemma 2.1, £y # 0 implies that
Q, (1) # 0.

Indeed, recall from the discussion following Lemma 2.1 that if cg — €9 > 0 then @y,
is a nontrivial rescaling of the harmonic map @ and hence no longer satisfies the
boundary condition. If ag — ¢y = 0 then Qg (r) = nx for all r. Finally, we recall that
ap — £y < 0 implies that Qg (r) > nw for all r. Now set

utoo(r) = ~(4(r) — Qa, ()

uty1(r) = ()

For each t € R define uy, (t,7) := L(¢(t,7) — Qg (r)). We record a few properties of
Uy, = (ug,, Opuy, ). Note that by construction we have

(5.52)

Vg, 0(1) 1= 7“3ue0 (r) = O(r_3) as 7 — 00

Vg1 (1) = r/puzml(p) dp = O(T_l) as T — 0Q. (5.53)
Also, 1y, (t) satisfies
4
Oy, — Oprttg, — ;GTWD = —Vi, (r)u + Ny, (r, ug,) (5.54)

where
2(cos(2Qy,) — 1)

2
" (5.55)

2ruyg, — sin(2ru sin?(ru
N (1, ug,) = cos(2Qg,) EP =) g Gy (39, ),

Vi (r) ==

3
r
Crucially, we remark that iy, (¢) inherits the compactness property from 1; (t). Indeed,
the trajectory

K = {ii,(t) | t € R}

is pre-compact in H' x L2 (R2). However, since we have assumed that £y # 0 we see
that

gy (t,1) = tho(t, 1) — Qg (1) = —Qr, (1) # 0. (5.56)

On the other hand, below we will show that @, = (ug,, 0:us,) = (0,0) which contra-
dicts (5.56).



GAFA RELAXATION TO HARMONIC MAPS 643

LEMMA 5.15. Suppose ¢y # 0. Let wu(t) be as in Proposition 5.1 and define iy, as
in (5.52). Then t;, = (0,0).

The argument that we will use to prove Lemma 5.15 is nearly identical to the one
presented in the previous steps to reach the desired conclusion for £y = 0 and we
omit many details here.

We start by showing that (0,ug, 0, s, 1) must be compactly supported. As be-
fore we can argue as in the proof of Lemma 5.3, by modifying (5.54) inside the
interior cone {(¢,r) | 1 < r < R+ |t|}, and using the linear exterior estimates in
Proposition 4.1 to produce the same type of inequality as (5.3).

LEMMA 5.16. There exists Ry > 1 so that for all R > Ry we have

HWJ% g, ”31(@3) S R_ZQ/S”WR g, H?—t(rzR)

+ R wg i, |3y my + I1TR e 55 ) (5.57)

where again P(R) := {(kir=2,kor™3) | k1,ke € R, r > R}, mg denotes the or-
thogonal projection onto P(R) and mr + denotes the orthogonal projection onto the
orthogonal complement of the plane P(R) in H(r > R;R?).

We remark that the proof of Lemma 5.16 follows exactly as the proof of Lemma 5.3
where we simply replace @ with Q, and @ with #,, in the arguments given for
the proof of Lemma 5.3. We note that since the trajectory K is pre-compact in
H' x L*(R?), iy, satisfies the conclusions of Corollary 5.2, namely for each R > 1
we have

[, (D) e Reppepy — 0 @ [t — oo

where the condition R > 1 allows the interchange of the norms H = H} x L*(R3)
and H' x L?(R3). With (v, 0, vs,1) defined as in (5.53) we can then conclude that
for all R > Ry large enough we have

o0 (o]

1 2 o
/ (rar%,o(r)) ret [(@na () dr S B3 o) + R ¥l o(R)
R R

+R™% o(R)+ R™5 v} 1 (R) + R 5 vi (R) + R0 |(R)
S R(v7, o(R) + 7, 1(R)) (5.58)

where the first inequality follows by rewriting (5.57) in terms of ¥y, = (vg,.0,ve,,1)
and the last line following from the known decay estimates in (5.53). Next, mimicking
the proof of Corollary 5.7 we can again establish difference estimates using (5.58).
Indeed, for all Ry < r <7’ < 2r we have

2 —4
|065,0(r) = veo 0 (") |” S 77407, 0(r) + 07, 1 ()

2

12 i ) (5.59)
e 1 (1) — v 1 (F)]” S 7 (vg,,0(r) + v, 1(7))-
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In terms of the vector vy, = (vg, 0,v¢,,1) We then have
|G, (1) = Ty ()] < 772 [T, ()] (5.60)

Hence for fixed ro > Ry large enough we can deduce that

Therefore for each n,

n
@) = (3) 16l
On the other hand, by (5.53) we have
|2, (2"70)| < (2"70) .

Combining the last two lines we see that

3\" .
(3) ol 51

which implies that ¥y, (ro) = (0,0). By (5.58) we can deduce that

o0 (e 9]

1 2
/ (T(‘)Tvgmo(r)) dr + /(87,1)@0,1(7“))2 dr = 0.
Therefore,
e, 3¢5y = / <T3rwo,o(7°)> d7’+/(3rwo,1(7’))2 dr+3ry 0 (r0)

+ ralvfml (ro)=0

which means that (0,ug, 0, us,,1) is compactly supported. We conclude by showing
that iy, = (0,0).

Proof of Lemma 5.15. The proof is nearly identical to the proof of Lemma 5.13.
Suppose

(aruﬁo,Oa uﬁo,l) 7& (Oa 0)

and we argue by contradiction. By the preceding arguments (9,ug, o, te,,1) is com-
pactly supported. Then we can define pg > 1 by

PO = inf{p : Hﬁ€0||H(TZp) = 0}
Let € > 0 small to be determined below and find 1 < p; < pg, p1 = p1(€) so that

0< H?‘_[ZOHH(TZPI) <e.
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We then have

[ (Forvo) dr [@run,alr)? dr+ 35, ofon) + o1 42,000
P1 P1

1= ~ -
= H7rp1ufo‘|$-{(r2p1) + HﬂplufoH%{(TEpl) = ”ufoH%{(TEpl) <e (561)

By (5.58) we also have

) 1 9 [e%S) . e
[ (oo drt [@mnat)Par < o1 ¥ o olon) + 1 o)

P1 P1
25 _ 17

+01 705 o(p1) + p1 2 vg (1) + p1 vt 1 (p1) + P 0E, 1 (o). (5.62)
Arguing as in Corollary 5.8 and using the fact that vo(pg) = v1(po) = 0 gives
[veo,0(1)] = [ve,,0(p1) = ve5,0(p0)| S € |vey,0(p1)| + pre |vgy1 (1) (5.63)
and
(00,1 (p1)] = [020,1(p1) = 20,1 (p0)| S 1€ [020,0(p1)| + € Vg1 (o1l (5.64)
Plugging (5.63) into (5.64) gives
o, 1 (p1)] S 1'% [0, 0(p1)] + (1 + &) [vgy 1 (p1))]
which means that for € small enough we have
e, 1(p1)] S P17 E? ue0(p1)]. (5.65)
Putting this estimate back into (5.63) we obtain
ve,.0(p1)| S € lve0(p1)] + € vee 0(p1)| S e(1+ %) [vg, 0(p1)]

which implies that vy, o(p1) = 0 as long as € is chosen small enough. By (5.65) we
can conclude that vy, 1(p1) = 0 as well. By (5.62) and (5.61) we then have that

HU&J ||'H(7‘Zpl) = O

which is a contradiction since p; < pg. Therefore, (9yug, 0,ue, 1) = (0,0) Since
uy, (r) — 0 as 7 — oo we can also conclude that (ug, o, us,,1) = (0,0). 0

5.4 Proof of Proposition 5.1 and Proof of Theorem 1.1. For clarity, we
summarize what we have done in the proof of Proposition 5.1.
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Proof of Proposition 5.1. Let u(t) be a solution to (2.8) and suppose that the
trajectory
K ={u(t) |t € R}
is pre-compact in H. We recall that
rii(t,r) = 9(t,r) = (Qu(r),0)

where 1,[7(75) € H, is a degree n wave map, i.e., a solution to (1.2). By Lemma 5.5
there exists £y € R so that

|rPug(r) — Lo] = O(r~?) as r — o0 (5.66)
r/ul(p)pdp =O0(r™) as r — . (5.67)

T

If 4y # 0 then by Lemma 5.15, ¢(0,7) = Qy, where Qy, is defined in (5.51). How-
ever, this is impossible since Qy,(1) # 0, which contradicts the Dirichlet boundary
condition ¥ (¢,1) = 0 for all £ € R.

Hence, ¢y = 0. Then by Lemma 5.13 we can conclude that %(0) = (0,0), which
proves Proposition 5.1. O

The proof of Theorem 1.1 is now complete. We conclude by summarizing the
argument. Proof of Theorem 1.1 Suppose that Theorem 1.1 fails. Then by Proposi-
tion 3.6 there exists a critical element, that is, a nonzero solution @, (t) € H to (2.8)
such that the trajectory K = {u,(t) | t € R} is pre-compact in H. However, Proposi-
tion 5.1 implies that any such solution is necessarily identically equal to (0, 0), which
contradicts the fact that the critical element w,(t) is nonzero. O
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