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LONG TIME DYNAMICS FOR DAMPED
KLEIN-GORDON EQUATIONS

BY Nicoras BURQ, GENEVIEVE RAUGEL anD WiLHELM SCHLAG

ABSTRACT. — For general nonlinear Klein-Gordon equations with dissipation we show that any
finite energy radial solution either blows up in finite time or asymptotically approaches a stationary
solutionin H ! x 2. In particular, any global in positive times solution is bounded in positive times. The
result applies to standard energy subcritical focusing nonlinearities [u|P~1u, 1 < p < (d +2)/(d —2)
as well as to any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz
type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems
(invariant manifold theory in Banach spaces and convergence theorems).

REsUME. — Nous démontrons que toute solution radiale d’énergie finie d’une classe générale
d’équations de Klein-Gordon amorties ou bien explose en temps positif fini ou bien converge en temps
positif vers une solution stationnaire dans H! x L2. En particulier, toute solution globale en temps
positif est bornée en temps positif. Ce résultat s’applique aux non-linéarités focalisantes, sous-critiques
pour I'énergie, [u|?~lu, 1 < p < (d +2)/(d — 2), comme & toute non-linéarité, sous-critique pour
I’énergie, remplissant une condition de signe de type Ambrosetti-Rabinowitz. La preuve fait appel, a
la fois, a des techniques propres aux équations non linéaires dispersives et a des arguments de systémes
dynamiques (variétés invariantes dans des espaces de Banach et théorémes de convergence).

1. Introduction

Nonlinear dispersive evolution equations such as the wave and Schrodinger equations
have been investigated for decades. For defocusing power-type energy subcritical or critical
nonlinearities the theory is developed, while the energy supercritical powers are wide open.
For semilinear focusing equations the picture is less complete for long-term dynamics. These
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1448 N. BURQ, G. RAUGEL AND W. SCHLAG

equations exhibit finite-time blowup, small data global existence and scattering, as well as
time-independent solutions (solitons). For the energy critical wave equation
Ou = u°, (t,x) € RT3,
(u(0).3,u(0)) € H'(R®) x L*(R?),
in the radial setting, Duyckaerts, Kenig, and Merle [16] achieved a breakthrough by showing
that all global trajectories can be described as a superposition of a finite number of rescalings

of the ground state W(r) = (1 +r2/ 3)_% plus a radiation term which is asymptotic to a free
wave. This work introduces the novel exterior energy estimates.

The subcritical case appears to require different techniques, however. The focusing
subcritical Klein-Gordon equation in R?, 1 < d < 6 (for the case d > 7, see [7]), takes the
form

%u— Au+u— |u|0_1u =0,
(u(0), 9,u(0)) = (po, p1) € &,
where % = H'(R?) x L2(R%), « > 0 and

(1.1)

(1.2) 1 <6 <0* with9* = T
We will limit our study to the case of radial functions

Fheag = HEGRY) x L2 (RY).

rad

The energy functional EY below plays an important role in the analysis of the behavior of
the solutions of (1.1). This energy functional is given by

1 1 1 1
1.3 E@ , — v/ 2 -2 Z 02 6+1 dx.
(13) oo = [ (51900 + 503 + 308 = g plol®*1) dx

For the Klein-Gordon Equation (1.1), it is known (see [35], [3], [14], [29] and [10] for example)
that (1.1) admits a unique positive radial stationary solution (Q, 0) (the ground state solu-
tion), which minimizes the energy E?(.,0) in the class of all nonzero stationary solutions

(0,0) in ¢/, that s,
0< Ee(Qg»O) =min{E(Q.0)| 0 € HI(R“J)7 0 +#0,-A0+0Q — |Q|0—1Q -0}

The behavior of solutions of (1.1) with initial data (¢o, ¢1) € & with energy E? (9o, ¢1) <
E®(Q,,0) is rather well understood since these solutions remain in the so-called Payne-
Sattinger sets (see [32]) for all positive times. In these Payne-Sattinger domains, the solutions
either blow-up in finite time or globally exist and scatter to 0 (for a description of this
phenomenon, we refer for example to the book [30]).

Nakanishi and the third author [30] described the asymptotics of solutions provided
the energy E?(¢o,¢1) is only slightly larger than the ground state energy. They showed
the following trichotomy in forward time of (i) blowup in finite time (ii) global existence
and scattering to zero (iii) global existence and scattering to the ground state. They formu-
lated this trichotomy in terms of the center-stable manifold associated with the ground

state (Q,0).
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LONG TIME DYNAMICS FOR DAMPED KLEIN-GORDON EQUATIONS 1449

It is also well-known that this equation has an infinite number of radial equilibrium
points (eg, 0) with a prescribed number £ > 1 of zeros (these are called nodal solutions,
see for example [4]). Unfortunately, one knows almost nothing about the uniqueness and
the hyperbolicity of those nodal solutions (In [15] the authors obtain uniqueness results
for nodal solutions but for sub-linear nonlinearities). This lack of information prevents the
description of the behavior of the solutions (z) of (1.1) whose initial data (¢o, ¢1) have an
energy E?(¢o, ¢1) much larger than the one of the ground state (Q 2. 0).

In 1985 Cazenave [9] established the following dichotomy: solutions of (1.1) either blow
up in finite time or are global and bounded in &#, provided 1 < 6 < 4o0,if d = 1,2 with
0 <5ifd =2and1 <0 < ;L ifd > 3.

In view of these previous results, a natural conjecture is that any global, radial, finite
energy solution of (1.1) should scatter toward an equilibrium. However, this result seems to
be presently out of reach of the usual approaches. A more accessible model is the focusing
subcritical damped Klein-Gordon equation

%u — Au +u + 20d,u — |u|9_1u =0,
((0),9,u(0)) = (0. ¢1) € K.

In 1998 Feireisl [18], for the dissipative case ¢ > 0, gave an independent proof of the
boundedness of the global solutions of (1.4), when d > 3and 1 < 6 < 1 4 min(z3%5, 3)
(for the case d = 1, see his earlier paper [17]). On the other hand, the results of Cazenave
should extend to the damped case. However, the proofs of Cazenave [9] and of Feireisl [18]
do not seem to extend to nonlinearities satisfying dde <6 < %, when d > 3, where
one needs to use Strichartz estimates in the various a priori estimates rather than Gagliardo-

Nirenberg-Sobolev inequalities.

(1.4)

Another motivation for studying the damped equation is that, by playing on the
damping term and considering the damping 2«(¢, x)d,u or even the nonlinear damping
20|0;u|*~19,u, one should be able to exhibit much richer behaviors (from the dynamics
point of view). In this paper, we develop a robust approach to the problem of long-term
asymptotics of the general radial energy subcritical Klein-Gordon equations with (arbitrarily
small) dissipation. Our main result is the following dichotomy.

THEOREM 1.1. — Leta > 0andd < 6. Then,

1. either the solutions of (1.4) in Hyaq blow up in finite positive time,
2. or they are global in positive time and converge to an equilibrium point.

In particular, all global in positive time solutions are bounded for positive time.

We notice that this theorem is a particular case of Theorem 1.2 below. In [7], we will partly
generalize this dichotomy to non-radial solutions.

Actually the above dichotomy holds for some more general nonlinearities and, in this
paper, we consider the damped Klein-Gordon equation in R?, d < 6 (for the case d > 7, see

(7D,
afu 4+ 200;u — Au+u— f(u) =0,

(KG)o
((0), 9:u(0)) = (90, ¢1) € Hrad-

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1450 N. BURQ, G. RAUGEL AND W. SCHLAG

where f :y € R~ f(y) € Risan odd C'-function, f/(0) = 0, which satisfies the following
Ambrosetti-Rabinowitz type condition: there exists a constant y > 0 such that

)y [ RO E@ - ew @) dr <0, Ve e H R,

where F(y) = [ f(s)ds.
We also need to impose a growth condition on f, when d > 2. We assume that,

|f/(»)] < Cmax (Jy|?. [y°""), V¥yeR,
1/ G) = £/ 2] < Clyr =y P (L4 101177772 + (92°717F), Yy, p2 €R,

where 1 <0 <0*,0< B <0—1,6<1,0"=2*—1and where 2* = coifd = 1,2 and

2% = dz—fz if d > 3. We notice that, when d > 3, 6* = %.

In other words, the growth of f is energy subcritical for large y = 0, and we also assume
that f’ is B-Holder continuous. For sake of simplicity in the proofs below, we may assume,
without loss of generality, that 0 < § < min(1,0 — 1, %).

(H2)f

We remark that our argument does not depend on the existence or uniqueness of a
ground state solution. Note that Hypothesis (H.1)s alone does not imply the existence and
uniqueness of a ground state solution. We further note that Hypothesis (H.1) r may actually
be replaced by the following weaker one:

(H.1bis)s /Rd (2(1 + y)F(p) — (x) f(@(x)))dx <0, for ||¢]z: large enough.

But, for sake of simplicity, we assume (H.1) s throughout. A classical example of a function f
satisfying hypotheses (H.1)r and (H.2)y is as follows:

mi my d +2
) ) = "aiul? =Y biful¥ T with 1 < g; < p; < 5 VirJ
: i=1 j=1

and a;,b; > 0,a,, > 0.

In Section 2, we shall prove that the Equation (KG), generates a local dynamical system
on ¢/ aswell ason &g, for o > 0. We denote S, (), o > 0, this local dynamical system. As
in the particular case of the Klein-Gordon Equation (1.4), we introduce the energy functional
(also called Lyapunov functional in the case of positive damping & > 0) on S#:

(16 Bono) = [ (51902 + 303 + 501 - Fign)) d.
ra \ 2 2 2

The natural first step in the study of the dynamics of the Equation (KG), consists in
studying the boundedness or unboundedness of its global (in positive times) solutions.
As already mentioned above, under restrictions on the growth rate of the nonlinearity,
Cazenave [9] and Feireisl [18] established this boundedness. In this paper, taking advantage
of the fact that all the functions are radial, we will show the boundedness of the global
solutions of (KG)g, for « > 0, by using “dynamical systems” arguments. Indeed, we will
show that each global solution 1 (z) converges to an equilibrium point as 7 goes to +oo.

4¢ SERIE - TOME 50 — 2017 — N° 6



LONG TIME DYNAMICS FOR DAMPED KLEIN-GORDON EQUATIONS 1451

If the Equation (KG), admits a ground state solution and is Hamiltonian, the functional
Ko: ¢ € H'(R?) — Ko(¢) € R defined as

(17) Ko) = [ (V6P +¢> = uf@) dx.

has played a decisive role in the description of the dynamics of the solutions with initial
energy smaller or slightly larger than the one of the ground state (see [32], [30] for example).
It will also be important in our situation. First we shall prove in Lemma 2.7, that if

Uu(t) = Sa(t)(@o. @1) = (u(t), d,u(t))
satisfies Ko(u(¢)) < —§ (where § > 0), on the maximal interval of existence, the solution
blows up in finite time. On the other hand, we will see that, if Ko(u(¢)) > 7 for some finite n
on the maximal interval of existence, the solution exists and is bounded for all positive times.
In order to prove that each global solution () = S, (¢)(@o. ¢1) converges to an equilib-
rium point as ¢ goes to +o00, we argue by contradiction. We first show that, for any global
solution in forward time, there exists a sequence of times ¢, t, m 400, such that

Ko (u(tn)) P 0.

Then, using this sequence of times ¢, we show in Theorem 3.3, that the w-limit set (g, ¢1)
of (¢o, ¢1) is non-empty and contains at least one equilibrium point (Q*, 0) of the Equa-
tion (KG)y. We recall that the w-limit set w(@y, ¢1) of (¢, ¢1) is defined as follows:

(o, 91) = {W € Hyaq |3 a sequence 7, > 0, so that 7, ——— +o0,

n—+00

(49 and S () (@o. 1) ——> i},

n—>+o00
Then, in Section 3.2, taking advantage of the fact that the linearized Klein-Gordon equation
around (Q*, 0) in the space ¢/,,4 has a kernel which is at most one-dimensional, we show, by
using classical convergence arguments based on invariant manifold theory, that the trajectory

converges to this equilibrium point in positive infinite time, and is therefore bounded.

THEOREM 1.2. — Let o > 0. Assume that 1 < d < 6 and that [ satisfies the conditions
(H.1)f and (H.2)s. Let (9o, ¢1) € Hrag, then
1. either Sy (t)(@o, 1) blows up in finite time,
2. or Su(t) (o, 1) exists globally and converges to an equilibrium point (Q*,0) of (KG)y,
ast — +oo.

For the case d > 7, we refer the reader to [7].

To place this result into context, we now briefly recall various related convergence theo-
rems. Since we are considering the Equation (KG), in the radial setting, the linearized Klein-
Gordon operator around the equilibrium (Q*, 0) has a kernel of dimension less than or equal
to 1, that is, either 0 does not belong to the spectrum of the elliptic selfadjoint operator

=-A+1- 110"

or 0 is a simple eigenvalue of Z (see Section 2, Lemma 2.10). If 0 is a simple eigenvalue
of Z, then the dynamical system S, (¢) admits a C! local center manifold W¢((Q*,0)) of
dimension 1 at (Q*,0). Since the w-limit set of any element (¢o, ¢1) € #raq belongs to the

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1452 N. BURQ, G. RAUGEL AND W. SCHLAG

set of equilibria, if the trajectory of S, (¢) (o, ¢1) = u(t) were precompact in §#,,4, we could
directly conclude by using the convergence results contained in [5] or in [20] for example
that the whole trajectory Sy (z)(¢o, ¢1) converges to (Q*,0), when ¢ goes to infinity. Unfor-
tunately, we do not know that the trajectory S, (¢)(¢o, ¢1) is bounded and thus we do not
even know that the w-limit set of (¢g, ¢1) is bounded and connected. However, adapting the
proof of [5, Lemma 1] and using the asymptotic phase property of the local center unstable
and local center manifolds around (Q*, 0) (see Appendix A for these concepts), we easily
obtain that the entire trajectory Sy (¢)(¢o, ¢1) converges to (Q*,0) as ¢ goes to infinity. An
alternative way for showing the convergence of the trajectory Sq (¢)(¢o, ¢1) towards (Q*, 0)
would be to prove a Lojasiewicz-Simon’s type inequality (see Sections 3.2 and 3.3 in the
monograph of L. Simon [34] and also [22, Theorem 2.1]) and combine it with functional
arguments as in Jendoubi and Haraux (see [21] or [22]). The proof of the t.ojasiewicz-Simon
inequality in [34] uses a Lyapunov-Schmidt decomposition. In the special case where the
kernel of Z is one-dimensional, this proof also shows that the set of equilibria of (KG),
passing through (Q*,0) is a C'-curve. Using this Lojasiewicz-Simon’s type inequality and
introducing an appropriate functional like in [22], we could show that the w-limit set of
every precompact trajectory converges to an equilibrium point. Unfortunately, the trajec-
tory Sy (t)(¢o, 1) is not a priori bounded and it seems difficult to adapt the functional
part of the proof of [22, Theorem 3.1]. Moreover, there is an additional difficulty in the
construction of such an appropriate functional coming from the fact that we need to use
Strichartz estimates. So we have not been able to follow this route.

The plan of this paper is as follows. Section 2 is devoted to basic properties of the Klein-
Gordon Equation (KG),. In particular, we recall the local existence and uniqueness of mild
solutions of the Equation (KG),,. In Section 2.2, we introduce the functional Ky, which not
only plays an important role in the proof of Theorem 1.2 but also defines the well-known
Nehari manifold ¢/ as the locus of the radial zeros of the functional K. In Lemma 2.7, we
give a sufficient condition on Ky for blow-up in finite time of the solutions of (KG),. We
end this section by describing the spectral properties of the linearized Klein-Gordon equa-
tion around a (radial) equilibrium point. Section 3 is the core of this paper. In Section 3.1
(see Theorem 3.3) we show that if a solution #(r) does not blow up in finite positive time,
then the w-limit set w(u(0)) contains at least one equilibrium point. In Section 3.2 we show
that the whole trajectory i(z) converges to this equilibrium point and is therefore bounded.
In Section 4, we apply the classical invariant manifold theory, recalled in Appendix A, in
order to construct the local unstable, center unstable and center manifolds about equilib-
rium points of the Klein-Gordon Equation (KG), and the unstable, center unstable and
center manifolds about equilibrium points of the localized Klein-Gordon Equation (4.7). In
Appendix A, we recall the existence theorems for local center-stable, local center-unstable
and local center manifolds together with their foliations and exponential attraction proper-
ties with asymptotic phase in the formulation of Chen, Hale and Tan (see [11]). Finally, in
Appendix B, we recall the classical convergence theorem (see [1], [19] or [20]) in the general-
ized form given by Brunovsky and Polacik in [5].

Such a convergence theorem is needed in case the dynamics near the equilibrium exhibits
a nontrivial center manifold. As a result of dissipation and the radial condition, this center
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manifold can be at most one-dimensional. For the nonlinearities (1.5), it is known that the
kernel of the linearized operator about the ground state is trivial, see [10]. But, due to the lack
of precise description of the bound states, we cannot guarantee that the local center manifold
is absent about a bound state. The local strongly unstable manifold is finite-dimensional. The
local strongly stable manifold is infinite-dimensional in stark contrast to the Hamiltonian
scenario for which the local center manifold is the largest piece. The convergence theorem
in [5] then guarantees that, if the w-limit set is not a single equilibrium point (Q*, 0), and if
(0*,0) is stable for the restriction of S, () to the local center manifold of (Q*, 0) (for this
definition of stability, see (3.40) and Appendix B), then this w-limit set must contain a point
on the unstable manifold of (Q*, 0), distinct from (Q*, 0). But this contradicts the fact that,
due to the properties of the Lyapunov functional (1.6), the w-limit set is contained in the set
of equilibrium points.

2. Basic properties

2.1. Local existence results

Consider the linear equation, with @ > 0,
QD Fut2adu—Autu=G, (du)_, = (w,u1) € H'R?) x L>R?).

Since v(7) = e u(r) satisfies

2.2) Vi — Av + (1 —a®)v = e G, (v, vi)|,_y = (o, U1 + ),
we deduce that the solution of (2.1) is given by
(2.3)
_ \/ﬁ sin(tv/—A 4+ 1—0a?)
u(t) =e [cos(t A+1—-a?)+a Ny ]uo
e sin(tv/—A + 1 —a2)u1 n /t sin((t —s)v/—A + 1 _az)e_(’_s)“G(s) ds
V=A+1-—0a? 0 V=A+1—0a?

= SraOio + SaalOur + /0 S2.alt — $)G(s) ds.

Clearly, the regimes 0 < o < 1, = 1, and @ > 1 exhibit quite different behaviors.
The dispersion relation for « < 1 is that of Klein-Gordon (the characteristic variety is a
hyperboloid), whereas for @ = 1 it is that of the wave equation (the characteristic variety is
a cone).

If X is a Banach space, then we let L7 (X) be the space with norm

If I px ey = Nl I fOlxll .k €R.
2d 11

LEMMA 2.1. — Let 0 < a < 1 and assume d > 3 for simplicity. Set p = 755, 0 = 5 — 3

and o’ = 1—o0. The solution u of (2.1) satisfies the following Strichartz-type estimates for any
0<k<aq,

Q4 Il 2w g ooy < CE[I00 w0 isaz + 16l 2 gy 4 ptoss]

where C(a) is uniform on compact intervals of [0, 1).
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1454 N. BURQ, G. RAUGEL AND W. SCHLAG

Proof. — This follows from (2.2) and the Keel-Tao endpoint for the Klein-Gordon equa-
tion, see for Example Lemma 2.46 in [30]. O

Lemma 2.1 does not hold for « > 1. Indeed, for « = 1 we would need to replace

the Strichartz estimates for Klein-Gordon in (2.4) with those for the wave equation. We set

k() =aif0 <o <1and

k@) =a—~va2—-1
if @ > 1. Exploiting the exponential decay in (2.3) we can now state the following space-time
averaged estimates.

LEmMA 2.2, — Let @ > 0. In all dimensions d > 1 the solution u of (2.1) satisfies the
following energy bounds with decay

o0
2.5) supe™ @, 3 (Ol 22 < C@)| a0 w2 + [ e |G (s) |2 ds |
t>0 0

as well as the exponentially weighted Strichartz estimates, in dimensions d > 2, and with
0 <k <«(a),

(2.6) lullpgxrp = Cles i)l (o u)llgrnr> + IIGIIL;?/.KLf’]
where 2+ 4 = 4 -1 =5 4+4-22<pj<oo2<gqqads+ Pl <L
é dz—}l < %. The constant C(«, k) is uniform on compact subsets of

{(a,k) | € (0,00), 0 < Kk < k()}.

Proof. — Taking the Fourier transform of (2.3) yields

(1. §) = ma (1. §)io(§) + ria (1. E)I1 (§) + /0 ol — 5,86 9G 5, ds.
The multipliers satisfy the estimates
M (£, 6)] + |iitg (2,§)] < Cla)e™ @
which proves (2.5). For (2.6) we introduce the Littlewood-Paley decomposition
I =Pgy+ ) Pj=Pso+ P
J

where the P; are associated to frequencies 2/ > « and P<, f = f for all Schwartz functions
with support in {|§] < 1 + 2a}. Let Kit (t) be the propagator defined by, cf. (2.3),

(K3 (0)f1x) = e~ /R eIV 6/ 0) £ (6) dg

where y is the usual Littlewood-Paley bump function supported on an annulus, and
A >« + 1 (and ignoring multiplicative constants). Then the root is smooth, and we may
apply stationary phase to conclude that

IKE@) oo < e A% (1)

d—1 , d+1

d—1
2 Sg [ )

for all t+ > 0. Proceeding as for the wave equation (see Keel-Tao [26]), and ignoring the
exponential decay for the frequencies 2 «, yields the Strichartz estimates (2.6) for P-.,u with
k = 0. On the other hand, by the same logic we can also derive Strichartz estimates for the
transformed Equation (2.2) which yields (2.6) with k = « for the piece P-4u. Interpolating
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between these two cases we obtain Strichartz inequalities for all 0 < « < « for those
frequencies. Smaller frequencies require smaller . Indeed, for the remaining piece P<qu we
use the energy bound (2.5) and Bernstein’s inequality. To be precise, the energy estimate

t
| Patt(®)ll2 = C@)[e @ ato, un)ll g1z + / e~ P, G(s) 2 ds
0

implies via Bernstein’s inequality that
t
| Pau®lly = C@)[e ™ @™o, u) g1z + / e IO P G(5)] 5 ds |
0

Taking L? norms on both sides, and applying Young’s inequality to the Duhamel integral
yields (2.6) for all frequencies. O

We now turn to the nonlinear Equation (KG),. We write # = (u, d,u). Since here we
are mainly interested in the behavior of the solutions 1 (z) of (KG), when the time ¢t > 0
goes to +o00, we will state and prove the local existence and continuity properties on time
intervals [0, T'], with T > 0. Of course, the properties 1 to 6 of Theorem 2.3 also hold on
time intervals [T, 0], with 7 > 0.

THEOREM 2.3. — Letd < 6. Let f : R — R be a C! odd function, satisfying the
assumption (H.2)y. Then for every initial data iig in $# = H L(RY) x L2(R?) (resp. in raa)
the Equation (KG)y has a unique strong solution

ueX=Xr:=C(0,T], H (R%) n C'([0, T], L>2(RY))
(resp. in C([0,T], HL,(RY)) N C1([0, T], L2 ;(R?))), where T only depends on || g.

rad
Moreover, if 3 < d < 6, the solution belongs to

LY ((0,T), L?" (R?))

where 0* = % and the estimate (2.21) below holds.

Furthermore, the following properties hold.

1. If the above solution i(t) = (u(t),0,u(t)) = So(t)ito with initial data iy € SH exists
fort € [0,T), then there exists a neighborhood %V in & such that, for every o € U, the
Equation (KG)q has a unique solution Se(t)vo = v(t) = (v(t),0;v(t)) withv € Xj.
And the solution

(t,T0) €[0,T] x V> Se(t)bo € H
is jointly continuous.

2. Forany0 <t < T, the map Vg € UV +— Sq(v)Vo € S is Lipschitz continuous on the
bounded sets of V (see (2.23)).

3. Themap Bo € V> v(t) € Xz N LY ((0,T), L2 (RY)) is a C'-map.

4. Let T* be the maximal time of existence. If T* < oo, then

limsup ||u(2)| g = +o0.
t—>T*

5. Ifiig € H*(R%) x H'(R?), then
ueC(0,T), HXRY) N C'([0,T), H (R?)).
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6. The energy (1.6) decreases: for any t, > t; > 0, we have,
t

@.7) E@mD—E@Um=r4a/2Mm@N§ds

t

and, in particular,

28 E(i(t2)) + 2 /0 : 19:u(s)|7> ds < E(i(0)).

7. If |u(0)|| ¢ < 1, then the solution exists globally, and |u(t)| sy converges exponentially
to0ast — oo.

Proof. — We first recall the main lines of the proof of the local existence and uniqueness
of the solution in the case d > 3. The cases d = 1,2 are easier and left to the reader. The
local existence is proved by using the classical strict contraction fixed point theorem with
parameters. In the fixed point argument below, we will use the Strichartz inequality (2.6)
given in Lemma 2.2. Let 6* = 2* -1 = %, (p',@) = 2,1) and (p,q) = (26*,0%). We
remark that these pairs satisfy the conditions of Lemma 2.2 and in particular g > 2ifd < 6.

Let Ko > 0 be a fixed constant. In what follows, we denote B (0, K) the ball of center 0
and radius Ky in &#. Using the notation of the previous lemma, we set
(2.9) My = My(x) = 4(C(x) + C(,0))Kp = 4C1 (@) Ko

and T > 0 will be a positive constant, to be determined later.

We introduce the following space

.10 Y =Yy = {ii € L0, T)., $¥) withu € LY ((0,T), L?*" (R?))
. | ”u||L°°(H1)les<>0(L2)mL9*(L29*) < My}.

We consider the mapping

of < (g, i) € Bg(0, Ko) X Y > F (tig. 1) = (F 1. of ) (o, 1) €Y,
defined by

(2.11) (f 1 G0, 0)(1) = S'1,a(Duo + S2,a(Dus +/0 S2,alt =) f(uls))ds.

and f,(tig, ) = 9; &F 4 (#o,u), where tig = (ug,u;) and u = (u, d,u) . Fix some iy € &/
with |||l sz < Ko. Consider the map &F (iyp,.) : i € Y +> ¢F(iip,u) € Y and simply write
of (o, 1) = Fu.

An application of Lemma 2.2 implies

2.12) nmmmm§awms%$

Applying again Lemma 2.2 and using the Hypothesis (H.2)r, we get

T
| Fii — FVlly < Cr(@)C[Tlu—vll o2y +/ 2e(5)|P " uls) — v(s)] [l 2 ds
(2.13) 0

T
+ / I[v(s)I°~ u(s) = v(s)] ll2 ds]
0
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where C = C(f). Applying the Holder inequality to the term B below, we obtain

T
(2.14) B:=/0 |||u(S)|9_1|u(S)—v(S)I||L2dS§/0 le()1528 luls) = v(s)ll 20 ds.

We set

_d+2-0(d-2)

- 4

and write 26 as 20 = 2n + 2(1 — n)8*. The condition 1 < 6§ < 8* implies 0 < n < 1. Using
the above decomposition of 6 in (2.14) together with a Holder inequality, we get

(2.16)

2.15)

0*(6—D(1—n) 0*(1—n)

(9—Dn n T o*—n)
B = 0Ly 6 = 0 Wy [ IO ) =) s

Applying again the Holder inequality to the integral term, we obtain,

T 0* @=1)(1=n) o*a—n) T o+ 1on
|1 ) =0l s <17 ([ ) w01 )
(2.17) T o (94)9(1777)
X lu ()7 20+ ds
(f, Wz as)
The estimates (2.16) and (2.17) together with the Young inequality give
S5 @*(1-n)+m)

(2.18) B<CT"My" " " [l = vllpoeqr2y + Il = vllpor 20 ]
We next choose Ty > 0 so that

* 1
(2.19) Cole)C[To + 21 M, 7 @ 0P+ 2 e
The estimates (2.13) to (2.18) imply that, for 0 < T < Ty,

0*(1-n)+ .. .
Q20) [ i~ Filly < [T +277My " I Y~y < 2~y

From the estimates (2.12) and (2.20), we deduce that ¥ is a strict contraction and thus has
a unique fixed point # = ii(ip) in Y satisfying

(2.21) i @io)lly < Cr(@)llidoll g-
The fact that u(¢z) = (u(t), 9,u(t)) also belongs to C([0, T'], ¢#) is standard and left to the

reader.

Likewise, we leave it to the reader to verify that the property (1) (in particular the joint
continuity property) holds.

We now turn to the property (2). To show that ¥y € UV — (1) = Sy (t)Vo € ¢ is Lip-
schitz continuous on the bounded sets of ), we first choose ¢ and v in the ball B (0, Ko).
Let Ty > 0 be given by (2.19) and M, be defined in (2.9). Arguing as above (see the inequality
(2.20)), we obtain the following inequality for 0 < T < Ty,

. - .. L.
(2.22) Il Gio. ) = & (Bo. D)lly, = Cr(@)liio — Vol gz + 7 llit = Vllyy.

and thus, the fixed points ii(iio) and ¥ (¥) satisfy'

(2.23) |24 (tio) — V(Do) |y, < Cl (o) ||luio — Vol -
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If the solutions i (iig) and ¥ (Vo) exist on a time interval [0, T*), where T* > Ty, we repeat the
above proof by considering now the ball in % of center 1 (iig)(To) and radius K; > 0 large
enough so that v(vy)(Tp) also belongs to this new ball and replacing the non-linearity f(.)
by f(. + u(iig)(To)) — f(u(iio)(Ty)). Repeating this process a finite number of times shows
that the map is Lipschitz continuous up to any time 7; < T* and therefore on all of [0, T*).
The above inequality also implies the uniqueness of the solution of (KG),.

We next want to show the property (3), namely that the map
o € V> (o) € X7 N LI ((0,T), L (R?))
is a C'-map. To this end, we will first go back to the mapping
of : (o, u) € Bgy(0, Ko) x Y +— F (o, U) €Y

which has been defined by (2.11), and then, for T > T,, proceed like in the proof of the
property (2). Clearly the map of (io, ) is differentiable with respect to the variable iy since
it is a linear map in 1. The differentiability with respect to the variable ## € Y is proved
as follows (we only indicate the main arguments and leave the details to the reader). Let
h = (h,k) € Y be small. Applying Lemma 2.2, one sees that the proof of the differentiability
reduces to proving that

(2.24) I+ h) = f@0) = £ @Rl ory.2) = ol ]y).

As above, using the Hypothesis (H.2)r, the fact that 0 < g < ﬁ and classical Sobolev
embeddings, we write

(2.25)  |[f(u+h)— fu) = f'@hlLio.r.L2)

T
<C / AP+ 1h()|® + [h(s) P u(s)| O~ |12 ds
0

T
< C[T Ikl + /0 RO + 17 )P Hu)P =D 2 ds].

The last term in the right-hand side of the inequality (2.25) can be estimated by using
Strichartz norms and arguing as in the inequalities (2.16) and (2.17). We thus deduce from
(2.25) that

(2.26) £ G+ R) = £@) = £/ @Al o.ry.L2) = OURIF),

where § > 0. Thus, o (i, ) is differentiable with respect to the variable & € Y. The deriva-
tive of &f (ip, i) with respect to (ig, %) is given by D &f (tig,u) = (D Fy, D &F,) (o, ),
where D of ,(tg, u) = 3; D &F(#o, i) and

(2.27) (D &f 1 (o, 1) (U0, D)) () = S1,a(1)V0 + S2,a(1)V1 +/0 2,0t —3) f'(u(s))v(s) ds.

We let to the reader to check that this derivative is continuous with respect to (g, 1#). Finally,
we remark that, with the choice of the time Ty made in (2.19), the mapping & (iig,.)

U € Yr — of (g, u) € Yr is a uniform contraction on Bg(0, Ko). We then apply the
uniform contraction principle as stated for example in [12, Theorem 2.2 on Page 25], which
implies that iy € B g(0, Ko) +> i (iig) € Y7 is of class C!.
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We next turn to the H? x H'-regularity question, that is, prove the regularity property (5).
Assuming this regularity for now, taking a derivative of (KG), yields

(2.28) v + 200,v — Av + v — f'(u)p =0

where v stands for any of the derivatives dx,u, 1 < j < d. The data for (2.28) belong to ¢/
by assumption. We now perform the same estimates as in (2.13)-(2.18) to conclude that

I9lly < Clluo. u)llg2xmr + Ellﬁlly,

see especially (2.18), (2.20). As above, these estimates require 7 to be sufficiently small. To
be precise, the smallness here is determined by u alone through the constant M, see (2.18).
It follows that

I1Blly < 2C|[(uo. u1) | g2xp
which is the desired regularity estimate. In order to pass from an a priori bound to a regularity
statement we follow a standard procedure involving difference quotients: letting ¢€; be the
coordinate vectors in R we define with 4 > 0

o (x) 1= 7 u(x + hej) — u(x)).
By the argument leading to the a priori estimate we obtain
~(h
151y = 2C o, un) g2

uniformly in & > 0. Passing to suitable weak limits, we obtain the H! x L? regularity of the
derivatives of u, as desired.

We now show the energy properties stated in (6). Using the density of H2(R?) x H'(R%)
in H'(R?) x L2(R%), one shows that

(2.29) E(i(t)) € C'((-=T.T)), and %E(z’i(t)) = —2a(|0,u(t)||7,.

Integrating this implies the properties (2.7) and (2.8) for the energy.

Finally, we turn to the case of small data. We will only provide a sketch of the main
argument. In the Hypothesis (H.2)r, we can choose 8 > 0 arbitrarily small. In particular,
we choose 0 < 8 < 1. We recall that, for any y € R,

(2.30) W= CUyIP + 1y DIyl < Uy + 1y17).
Proceeding as before, applying Lemma 2.2, using the inequality (2.30), one gets, for ¢ > 0,

el o= 0.0).226%) + e tillLoe 0.0y, < ClUl (o, u) | gr1xr> + el Pl L1k 0.0).L2)

+ 1l N1 0,0, 229
Applying the Holder inequality, one deduces from the above inequality that, for z > 0,

- 14
lull Lo 0.0, 220% + €Tl Low (.. < ClI 0. uD)lgixzz + 1€ 11 0.0 0

+ [lu)®

(2.31) *
L@*‘K((O,t)’Lze*)]v

where we used that ¥ > 0. For small data the method of continuity implies global existence
and smallness of the norms on the left-hand side. In particular, we have exponential conver-
gence to zero in the energy (see also [27] and Section 3.2 below). O
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In Section 3, we will linearize the Equation (KG), around an equilibrium point. More
generally, we can linearize the Klein-Gordon Equation (KG), along any solution of the
Equation (KG)g. This leads us to consider the following affine equation

(2.32)  wy + 20w, —Aw+w— @ x)w =G, (w,w)0)=w0)=w e H,

where u*(t, x) € X, N LY ((0, 1), L**" (R?)), 7o > 0, and G € L'((0, 0), L?(R?)). The
existence (and uniqueness) of a solution w = (w,d;w) € C([0, 7o), S#) is classical if the
dimension d is equal to 1,2. So we will state this existence result and the corresponding
Strichartz estimates only in the case where d > 3.

ProroSITION 2.4. — Letd > 3 and o > 0. Assume that
u*(t,x) € X¢p N LY (0. 70), L2 (RY))

and that G € L'((0,719), L2(R?)). Then the Equation (2.32) admits a unique solution
w = (w,d;w) € C([0, 70), #). Moreover, the solution W of (2.32) satisfies the following
bound, for 0 < t < 19,

(2.33) ”‘lDHLOO((O’T)’gé) + ”w”Lq((O,r),Lﬁ?) < C(a, T)[”J)O”c% + “G”Ll((o,r),L}C ]’
where

1 d d

—4+—=——1, 2<p<o0, ¢q=>2,

g p 2

andé + dz—;l < %. The constant C(a,t) = C(, T,u™) > 1 depends only on «, T and the

norm of u™* in the space X, N L9 (0, 7), L2" (RY)).

If u*, G and the initial data are radial functions, then W is a radial solution.

Proof. — This proposition can be proved in the same way as Theorem 2.3, by considering
the term f’(u*(¢,x))w + G as a non-linearity. The changes are minor in the fixed point
argument used in the proof of Theorem 2.3. Here Y and ¢f = (&f, of2) = (F 1,01 0F1)
simply become:

Y = {i € L®((0, 1), $¥) with w € L ((0, 1), L**" (RY))}

and
(F 1 (Wo, w))(t) = §1,0(wo + §2,0(H)w: +/0 S2a(t —8)(f W (s)w(s) + G(s)) ds.

We obtain estimates similar to (2.20), where now M, is replaced by the norm of u* in
X. N LY ((0,7), L2 (R?)). If the time T defined in (2.19) is larger than 7o, then we have
proved the existence (and uniqueness) of the solution w(wg) € Y and the estimates (2.33)
follow from Lemma 2.2. If Ty < 19, we repeat the above proof by taking as initial data
(w(Wg))(Ty) and by replacing
™ @, x)w(t, x) + G, x)
by
Sf'@* (@t + To. x))w(t + To.x) + G(z + To, x).

We repeat this argument a finite number of times till we reach the time 7. O
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2.2. Definition of the functional K, and the Nehari manifold
We introduce the functional Ko : ¢ € H'(R?) — Ko(¢) € R, defined by

Kotw) = [ (9P + ¢ = (o) dx,
and introduce the Nehari manifold
(2.34) N = {p € Hyy(RY)| Kolp) = 0}.
The Nehari manifold arises naturally in the study of elliptic equations. The “Ambrosetti-

Rabinowitz” hypothesis (H.1)s allows to prove the following lemmas, which will be used
along this paper. The first one is trivial.

LEMMA 2.5. — Assume that Hypothesis (H.1)y holds. Then, for any (¢, V) € H'(R?) x
L2(R?), we have

(2.35) vl + 1¥172) <21+ ) E((¢. ¥)) — Ko(p).
Proof. — We simply write
vl + 1¥ll72) = 20+ ) E(e, ¥) — Kole) — V172

(2.36) + /Rd 21+ ) Fp) — (x) f(p(x))) dx
=2(1+y)E((¢.¥)) — Ko(p).
where the integral is nonpositive by (H.1)r. O

COROLLARY 2.6. — Supposeii(t) = (u(t), d;u(t)) is a strong solution of (KG), defined on
the maximal interval 0 <t < T*. Assume

OsltIifT* Ko(u(t)) > —oo.

Then T* = oo, i.e., the solution is global.

Proof. — By Lemma 2.5, we have for some finite M and all0 <t < T*
@)l g < 2(1 + y)E(u(t), 0,u(t)) + M
<2(1 4+ y)E(u(0),d,u(0)) + M
where the second line holds by the decrease of the energy. Since finite time blowup means that

l4(2) ]| 5 goes to infinity in finite time along some subsequence, we obtain the result. O

The proof of the next lemma uses a convexity argument and follows the lines of the proof
of [32] and [30, Corollary 2.13].

LEMMA 2.7. — Assume that the hypotheses (H.1)y and (H.2)r hold. Assume that
(u(t), 0,u(?)) is a solution of (KG)y defined on [0, T*) where T* € (0, 00] is maximal. If
Ko(u(t)) < —68 (where§ > 0), fortg <t < T*, then T* < o0, i.e., the solution blows up in
finite time.

From Lemmas 2.5 and 2.7 we immediately deduce the following result.
COROLLARY 2.8. — Assume that the initial energy E(ug) is negative. Then the solution

blows-up in finite time T* < +o0.
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Proof of Lemma 2.7. — We assume without loss of generality that zo = 0. We also assume
towards a contradiction that 7* = oo. In order to show that S, (¢) (1, u1) blows up in finite
time, we use a convexity argument as in [32]. Let

1 t
Y0 = Wl +a [ IR ds

We have
Y1) = (). u@) + allu@)|},
(2.37) t
= (u(r), (1)) + «|u )7, + 201/0 (u(s),u(s)) ds
and

F() = 1 @ll72 + (), ii(r) + 200(1))
(2.38) = )72 + @), (Au—u + f(u))(?))
= i) )2> = Ko(u()).
Thus,
(239) F0) = i @))2, +8 = 8.

We deduce from (2.39) that lim;_, o, y () = +00, and therefore lim;_, y o, y(¢) = +o00.
Next, we note that

J() = i @)[72 — Ko(u(r))
(2.40) =+ PIEOIZ + @l =20+ P E@)
- [, O+ FaE) —uw fa) dx
where we have set for simplicity E(t) = E((u(z),u(z))). But, we have
E@t) = =2a]i(®)|],
and , .
E(1) = E(0) +/ E(s)ds = E(0) —za/ ()12 > ds.
0 0

Using (H.1)r, we can also write, for ¢ > 0,

241 §(1) = C+ N7 + 7 @7 =201+ y)E©) + 4 (1 + y)/o li()II7~ ds.

For the sake of illustration, assume first that « = 0. Since y(t) — oo, we infer from (2.41)
that for large ¢

(2.42) J() = @+ @)
Then [§(1)] < lu(@) 2 () > whence
2+y5°0
2y
This implies that %(y‘" (1)) < O where n = y/2. Since y~7(t) — 0 ast — oo we must
have %(y"’)(t) < 0 for some ¢ = t; > 0 whence also %(y_”)(l) < %(y_")(tl) < 0 for all

t > t1. But then y~"(#,) = 0 for some #, > #; which is a contradiction.

¥(@) =
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For @ > 0, we claim that there exists ¢ > 1 so that for large times
(2.43) J(1)y () —cy(t)* > 0.
If so, then

d2
27O =~ =1y OFOY O — (1) <0,

which leads to a contradiction as before.

It remains to verify (2.43). Using the Cauchy-Schwarz inequality we obtain

.. . 1 ?
Q) 05O =i = (Sl + o [ o) as)
t
(@ VIO + POl =200+ EO) + 401+ ) [ 1ol ds)

—c|llullg2llll 2 + 2o tIIM(S)IIiz ds ' tllll(S)Iliz ds %Jrallu(())lliz :
0 0 2

But, for any ¢ > 0, we estimate the term in brackets as follows:
t 1 t 1 2
o 2 . 2
c[nuanuuanHa(f u(s) 25 ds) (/ )12, ds) " +alu |3 ]
0 0
sc(l+s)(||u||Lz||u||Lz+2oe(/o lu(s) |25 ds) (/0 )12 ds) ")
1
+e(142)aluOlf
1 2 ! 2 2 ! 2
<ct+ o) (sl +o [ WOIE ds) (21l + da [ 16, ds)
0 0
1
+ c(l + g)clelu(O)sz.

Setting b = c(1 +¢), C = ca®(1 + é)||u(0)||22, we may replace the right-hand side of this
inequality by

t
< 302611 + 4ba [ NI, a5) +C

From the last inequality and from (2.44), we deduce that

Y50 =20 2 yOf@+y =201 + 40 +y =b) [ 1) ds + Il
—201 4 EO)} -C
(245 =yO¥@) —-C,

where W(¢) is defined by the term in braces.

We now adjust the constants ¢ > 1 ande > 0Osothat2+y —2b > 0,1+ y —b > 0. We
now pick n > 0 so small that

24y —=2b>n, y—g—an>0.
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This allows us to bound W(¢) from below:
t
VAT .
() = [(2+ y —2b— ) [i(0)]}2 + 4ol +y "’)fo 1132 ds + yVu@)]3

n .
+ (7 =3 —om) )22 + 030 =201 + Y E©)]
= 13() =201+ ) EO) +4(0),
where g(t) > 0. From (2.45), we infer that, for ¢ > 0,

(2.46) YOF () =y () = y(O)ny(@) = 2(1 + y)E©) + ¢ (1)] - C.

Since y(¢), y(t) — oo ast — oo, we are done. O

2.3. Spectral properties

Suppose we have a stationary solution gg € H'(R%) to (KG )4, namely,

—A@o + o — f(po) = 0.

By elliptic theory, see for example [3, 4], these solutions are exponentially decaying, and lie
in C3# for some B > 0. Solving (KG), for u = ¢g + v yields

(2.47) vy + 200, — Av + v — f(go)v = N(po, V),

where N(¢o,v) = f(go + v) — f(@o) — f'(wo)v.Set T = —A + I — f’'(po). Rewrite (2.47)
in the form

v 0 1 v 0
(2.48) at(l};) N (—Z —2a) (Uf> ! (N((po,v))

Denoting the matrix operator on the right-hand side by A, and setting v := (zj’t), we may
write (2.48) in the form

3,9 = AgV + N.
The spectral properties of Z stated in the following lemma are standard, see for example [25]
and the references cited there.

LEMMA 2.9. — The operator Z is self-adjoint with domain H?(R?%). The spectrum o(Z)
consists of an essential part [1, 00), which is absolutely continuous, and finitely many eigenvalues
of finite multiplicity all of which fall into (—oco, 1]. The eigenfunctions are C*# with g > 0
and the ones associated with eigenvalues below 1 are exponentially decaying. Over the radial
functions, all eigenvalues are simple.

Proof. — The essential spectrum equals [1, 0o) by the Weyl criterion. The Agmon-Kuroda
theory on asymptotic completeness guarantees that there are no imbedded eigenvalues and
no singular continuous spectrum. Thus, the spectral measure restricted to [1, co) is purely
absolutely continuous. The Birman-Schwinger criterion shows (due to the rapid decay of the
potential f’(¢g)) that there are only finitely many eigenvalues of £ which are < 1, counted
with multiplicity. The C2# property of the eigenfunctions is standard elliptic regularity
(Schauder estimates) since ¢y is smooth, and so f'(go) is Holder regular.

For the sake of completeness we remark that the threshold 1 may be an eigenvalue or a
resonance. To illustrate what this means, consider R3. Then this distinction refers to the fact
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that solutions to Zy = v either decay like |x|~2 (which means ¥ € L? is an eigenfunction)
or like |x|™!, the latter implying that ¥ ¢ LZ(R3) (this is the resonant case). We remark
that over the radial functions only the resonant case can occur. However, none of this finer
analysis at energy 1 is relevant for our purposes.

The exponential decay of the eigenfunctions with eigenvalues below 1 is known as
Agmon’s estimate. The simplicity of the radial eigenfunctions is immediate from the reduc-
tion to an ODE on (0, o) with a Dirichlet condition at r = 0. Let us elaborate on the kernel
of Z, since it is important in our construction. We set Zv = 0, v # 0 radial and in H!.
Then

—Av+v— f'(go)v = 0.

We already note that v € C2# (R9), and that v(r) decays exponentially. Set u(r) = r S (r).
Then u(0) = 0, u(r) — 0 as r — oo (exponentially in fact), and it satisfies the equation

d—1_d-3 u(r
49 ')+~ (SHETD M g =0, r>o
This ODE has a fundamental system consisting of a solution growing like ¢” and one
decaying like e ™" as r — oo. Only the latter can lie in the kernel and it does so if and only if it
satisfies the boundary condition u(0) = 0. In this case the kernel has dimension 1 otherwise
it consists only of {0}. O

We now analyze the spectral properties of the matrix operator A4,.

LEmMA 2.10. — The operator Ay, has discrete spectrum if and only if' T does. The essential
spectrum of Ay lies strictly to the left of the imaginary axis, i.e., in N(z) < —8(a) for some
8(a) > 0. The spectrum of Ay on the imaginary axis is either empty or {0}. In the latter case, 0 is
an eigenvalue of Ay and this occurs if and only if 0 is an eigenvalue of T. Then dim(Ker(Z)) = 1,
in which case 0 is a simple eigenvalue of Ay. The eigenvalues of Ay are precisely

—a+VaZ—pu
where . € o(2) is an eigenvalue.

— Ifa > 1, then the discrete spectrum of Ay lies only on the real axis.
- If0 < o < 1, in addition to real eigenvalues, there may also be eigenvalues on the line
R(z) = —a resulting from eigenvalues of T in the gap (0, 1].

— The essential spectrum of < gives rise to essential spectrum Oess(Ag) of Ag as follows:

- If0 < a < 1, 0ess(Ag) is contained in the line W(z) = —a and consists of —a £ ib,
b>1—a2.

— Ifa > 1, 0ess(Ay) consists of the entire line N(z) = —a and of the interval

[~ — Va2 —1,—a + vVaz—1].

Proof. — We need to address the solvability of the system
Uy Uy
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over the domain A2 (R?) x H] (R?) of A,. This means that
Uy = zZup
—Zu; — 20Uy = zUo,
which is the same as
Uy = zUy
(Z + 20z 4+ z%)u; = 0.
There exists a solution in the domain of A4, if and only if
20z + 22 € 0 (= 2).
Taking A € o(Z), this means that
(2.50) z=—a+va2-1 Areoa(2).

This relation establishes all the claims concerning the point spectrum of 4,. Let now 7 belong
to the resolvent set p(Ay) of Ag. Then, for any (0, v2) € Hraq, the system

2.51) (Ag — rId)(Zl) - (1?2)

has a unique solution (u1, u3) in ¢#,,q, which implies that
—Zuy — (1% + 2a0)u; = vy
has a unique solution u; and thus 2 + 2at = —A does not belong to the spectrum of —Z,

that is,
T# —axvaZ-L, Aco(2D)

and we are done. O

The discrete spectrum of A, (and therefore of Z) is important to our analysis. In fact,
the strongly unstable manifold of the linear evolution ¢4« ast — oo corresponds exactly
to spectrum of A, in the right-half plane which occurs if and only if < exhibits negative
eigenvalues. In the generality we assume here we cannot determine whether this is the case
or not, and so our arguments need to be flexible enough to account for both possibilities.

However, consider the following additional condition, where y is as in (H.1)z: for any
¢ cH,

(2.52) /Rd [6%(0) £/ (¢(x)) = (1 +2y)¢(x) [ ($(x))] dx = 0.
Let g9 # 0 be a stationary solution as before. Then it follows from (2.52) that

(Lo vo) = [ (Tl + 5 = o)} dx

@53 =2 [ reownds + [ 101+20) 7o — £ gl v

< =2y|poll3 <O

where we used that Ko(¢@g) = 0. Therefore, Z has negative eigenvalues. We leave it to the
reader to check that the class of nonlinearities f given by a sum and difference of pure powers
as in (1.5) satisfy (2.52). Hence, for such nonlinearities all nonzero stationary solutions are
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linearly unstable. In other words, under the additional condition (2.52) all nonzero equilibria
give rise to a strongly unstable manifold of e?4e

—a + (1 —a?)/?

—a — (a4 )12
—a—1(1—a?)'?

—a + (o2 4 k)12

—a 0

FIGURE 1. The spectrum of Aq for0 <« <1

3. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. To this end, given (o, ¢1) € Hrad»
we will first show that, if S, (¢)(¢o, ¢1) does not blow up in finite time, then there exists
a sequence of times 7, going to +o0o such that Sy (#,)(¢o, ¢1) converges to an equilibrium
point (u*,0).

3.1. Convergence to an equilibrium (z*, 0) along a subsequence

Denote the evolution operator of (KG)y by S (¢) and for (¢, ¢1) € Hraq, let ui(t) =
Sa(t)(¢o, 1). We have the following trichotomy for the forward evolution of (KG)g:

(FTB) () blows up in finite positive time,
(GEB) 1(r) exists globally and the trajectory {i(¢),t > 0} is bounded in ¢#,,q,
(GEU) u(r) exists globally and the trajectory {1 (z),t > 0} is unbounded in ¥ aq.

Later in Section 3.2, we shall show that (GEU) cannot occur.

REMARK 3.1. — Several remarks have to be made at this stage.

(i): From Corollary 2.8, we know that if E(gg, 1) < 0, then S, (¢)(¢o, ¢1) blows up in
finite time. Thus, in the study of the cases (GEB) and (GEU), we only need to consider
solutions 1u(¢) = S, (¢)(¢o, ¢1) such that, for any ¢ > 0,

3.1) E(u(t), 9;u(1)) > 0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1468 N. BURQ, G. RAUGEL AND W. SCHLAG

(ii): Assume now that a solution #(z) = S, (?)(¢o, 1) of (KG), satisfies the properties
(H.1)¢, (H.2)r and (3.1). Assume moreover, that the exponent 0 in (H.2) satisfies the
bound

4

2 14+ —.
3.2) 0 < +d

Then, arguing exactly as in [18, Lemma 4.2], one can prove that every global solution
Sa(t)(@o, ¢1) 1s bounded in &#. In this proof, the upper bound (3.2) of 8 plays a crucial
role.

(iii): Now, let us turn to the case where 1 + % <0< %. We consider a global solution
(u(t),0:u(t)) = Sq(t)(@o, ¢1). In this case, arguing as in [18, Page 59] by introducing
the auxiliary equation satisfied by 9,1 (r) := (3d,u(r), 9?u(t)), one shows that 9, (r)
converges to (0, 0) in L2(R?) x H~'(R?). From this convergence property, we deduce
that Ko(u(t)) converges to 0 as ¢ goes to infinity.

PROPOSITION 3.2. — Assume that the hypotheses (H.1)y and (H.2)y hold. In the cases
(GEU) and (GEB), there exist a sequence of times t, and a sequence of numbers 8, such that
t, = +ooasn — +oo and that

(3.3) Ko(u(ty)) = 8y, with lim 6, =0.
n—+oo
We remark, that, in the (GEU) case, the sequence t,, can be chosen so that §,, < 0 for every n.

Proof. — Let 1u(t) := (u(t),0,u)) = Sq()(¢o,®1). By Remark 3.1, we may assume
without loss of generality that, for any ¢t > 0,

Eu(t),9:u(t)) = 0.

To show that there exist two sequences ¢, and §, satisfying the properties of the proposition,
we will argue by contradiction. If such sequences do not exist, there exist a time 7y and a
constant k¢ > 0 such that,

(1) either Ko(u(t)) < —ko for any ¢t > Ty,
(2) or Ko(u(t)) = ko forany t > Ty.

In the case (1), Lemma 2.7 implies finite time blow—up, which contradicts the hypotheses
(GEU) or (GEB). Thus, the case (1) cannot occur. In the case (2), by Lemma 2.5 the solu-
tion #(¢) is bounded in §#,,4. In particular, the function |y (7)| defined in (2.37) is bounded.
By (2.38), we have for any ¢ > Ty,

(3.4) J() = u@)7> = Ko(u(0) < [1(t)|72 — o,

which in turn implies that, for any 7 > Ty,

T T
F()dr < / 1) ]122dt — ko(T — To)

To

WT) — $(To) =[

To
3.5)

IA

S (EGU(Ty) ~ E@T)) ~ ko(T ~ To)

IA

S EGi(To) — ko(T ~ To)
o
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which contradicts the boundedness of y(7") as T — +oc0. This proves Proposition 3.2. The
above proof also shows that, in the (GEU) case, the sequence #, can be chosen so that 6, <0
for every n. O

Next, by means of these vanishing results for Ky, we deduce the convergence to an equi-
librium along a subsequence.

THEOREM 3.3. — Leta > 0 and iy := (o, 91) € Hyraq S0 that the solution i (t) exists for
all timest > 0. Let t, be a sequence of times such that Ko(u(t,)) = 6, converges to 0, then
there exists an equilibrium point u* = (u*,0) € $Hyaq such that (after possibly extracting a
subsequence), u(t,) converges to (u*,0) in Sk.

Proof. — From Lemma 2.5 we conclude that
sup || (u(tn), :u(tn)) || g1 < oo
n>0

We recall that without loss of generality, we may assume that
E(u(t),0,u(t)) >0, Vt=>0.
Since the left-hand side is non-increasing, there exists £ > 0 such that

(3.6) i EQu(), du(1)) = £ 2 0.

In fact, from the equality valid for any #; < 15,
15}
Eu(t1), 0,u(t1)) — E(u(12), d,u(t2)) = 20!/ 131 (s)1172 ds,
n
we deduce that fttlz 10,u(s)|2, ds tends to 0, as 71, 1 — oo.
We consider the equations

Oty + 200Uy — Aup +up — f(uy) =0,

(un(0), 0,1 (0)) = (u(tn), du(tn)).
By Theorem 2.3, there exist 7 >0 and C > 0 such that, for any n, the solution
(Un (1), 0;un(t)) isin CO([-T, T], $#) and, for =T <t < T,
(3.7) [ (un (1), 0:un(@)llgx < C.

In the case d = 1 or d = 2, the inequality (3.7) implies that ||u || oo ((-7,7),27) < C, for any
2 < p < +o0. Inthecase 3 < d < 6, the estimate (2.21) in Theorem 2.3 also implies that

(KG)q

(3.8) lunllpo*((—7,1),126%) = C.
where 0* = %. By uniqueness, u,(t) = u(t, +t). Forany s,t € [T, T],
t 2
/ [un(t) — un(s)|? dx = / [ diuy(o)do| dx
R4 R4 |Js

t
slt—SI/ / 19n(0) 2 dodx
R4 Js

t+t, )
<t —s [9:u(o)> do,
s+in
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whence

t+ity
(3.9) lun (1) = un ()17 < It —S|/ 13:u(0)|7 . do
s+itn

th+T
< 2T/ ||8tu(0)||i2 do — 0 asn — 4oo0.
th—T

For s,t € [T, T], and fixed p € (2,2%), interpolation gives the existence of ¢ € (0, 1) such
that

(3.10) 1t (1) = wn () 1L < Nun (0) = ()] 2 et (1) = (5) ] 15

— 1—a
< |t —s|2" 9 2 d
St —s| [0:u(o)||; > do
th—T

2
with a uniform constant in n. We next choose 2 < pg < p; < 2* and set X := LPo(R?) N
LP1(R%). We want to emphasize that the choice of 2 < py < p1 < 2* has to be made
with care. The choice of pg, p; depends on the nonlinearity f(u) through the parameters 3, 6
in (H.2)y. With the hypotheses made on 8 (see Hypothesis (.2)r), we first remark that we

may choose r, 2 < r < 2%, so that p, = %

(3.11)() 2 < py < 2%,

satisfies the inequality

We then choose pg, p1 so that
(3.11)(b) 2 < po <min(r, pp), max(r, p2) < p1; < 2%.

These properties will be used later in the inequality (3.21).

Finally, we need to choose po > 2 very close to 2 and p; < 2* very close to 2* so that the
property (3.12) below holds.

We consider the family of functions (u,(t)), in C°([-T, T]; X). By the property (3.7),

J ua(t) C bounded set of H}4(RY).

a

neN,
te[-T,T]

Due to the compact embedding of H d(Rd ) into X, we deduce that

al

U u,(t) C compact set of X.

neN,
te[-T,T]

Moreover, by (3.10), the family (u,()), is equicontinuous in C°([-T, T]; X). Thus, by the
theorem of Ascoli, (after possibly extracting a subsequence) the sequence u, () converges
in C°([-T, T]; X) to a function u*(¢t) € C°([-T, T]; X).

Moreover, by (3.9) and (3.10), u*(¢) is constant on the time interval [—7, T']. We shall
simply write u*(¢z) = u*. Remark that we deduce from K¢ (u,(0)) — 0 and the convergence
of u, (¢) towards u* in C°([-T, T]; X) that

(3.12) Hm  [lu, (0)]17,, =/ fu*)u* dx.
n—-+4o00 R4

For this implication we need to choose pg, p; close to 2,2*, respectively, depending
on (H.2)y.
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To summarize, we know that

o u,(t) > u*asn — +ooin CO([—T,T); X) and u* := u*(¢),

e J;u,(t) > 0asn — +ooin L2((—T, T); L>(R%)),

o (u,(t),0,u,(t)), is uniformly bounded in n in L*°((—T,T); ¢#) and, in particular

in L>((<=T,T); 4.

Taking these properties into account, one shows that (u,, d,u,) converges in the sense of
distributions (i.e., &' ((=T,T) x R?)) towards (u*,0) as n — +oo and that (u*,0) is an
equilibrium point of (KG)g. Since (u,(0), d;u,(0)) is uniformly bounded in &%, with respect
to n, there exists a subsequence (that we still label by n) such that u,(0) -~ u™ asn — 400
weakly in H!(R?).

Since u* is an equilibrium point of (KG ), the following equality holds:

(3.13) / f(u*)u*dx:/ (|Vu*|*> + (u*)?) dx.
R4 R4
The equalities (3.12) and (3.13) imply that
: 2 * 12
(3.14) lim 0171 =

and thus, since u,(0) — u* asn — +oo weakly in H'(R?), the convergence of u,,(0)
towards u* takes place in the strong sense in H'(R?). Moreover, the strong convergence
of u, (0) towards u* in L2(R?) and the property (3.9) imply the strong convergence of 1, (s)
towards * in L2(R?), uniformly in s € [T, T]. In summary,

un() = u* in CO((=T, T), L*(R?Y)).
To finish the proof of Theorem 3.3 it remains to prove
(3.15) 3,un(0) = 0in L2(R?).
As a first step towards the proof of property (3.15), we consider the equation satisfied
by i, := u, —u*, namely
Opttly — Al + Uy = f(uy) — f(u*) — 200,11y,
(3.16) i,(0) = u,(0)—u* -0 asn— +oo in H'(RY),
¢ty (0) = 01y (0).
We write u, —u* = w, + v, where w, and v, are solutions of the following equations:
ditwn — Awp + Wy = f(un) — f(u*) — 2001,
(3.17) Wy (0) = u, (0) — u*,
3,wn (O) =0
and
0ttUp — Avy, + v, =0,
(3.18) v, (0) = 0,
d:vn(0) = 9;un(0).
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The classical energy estimates for the Klein-Gordon equation imply that, for =7 <t < T,

r :
I wa. rwa) (O g1 < €[ Jun(0) = w* g1 +203/2T ( / 1e1en ()17 ds)
(3.19) -T

T
[ 1706 = F0)l2 ds].

Taking into account Hypothesis (H.2)r, one has

T
/ 1 n)(s) — £ 2 ds
(3.20) -7

T
<cC / () — ™) (anl? + * 1B + el + [u*1) 2 ds.
-T

We recall that we have chosen pg, p1, r so that the properties (3.11)(a) and (3.11)(b) hold.
Applying the Holder inequality, we obtain,

T
/_ 1006 =)l )2 s

3.21
(3:21) < CTllun = u* oo,y (inlBosis 1omy + 1 1By 1)

< CTllun = u*zooir,ery (tnllf oz g1y + 101 oz )
Since u, — u* in C(I, X)), we conclude that the right-hand side of (3.21) vanishes in the limit
n — oo. We next estimate the term
r 6 )
(3.22) /T 1 un —u*)u* PNl 2 ds < 2T flun — u™* || ooy U™ 1755 o0
< Cllun —u™ | poo(r2),

which tends to 0 as n — oco. To bound the remaining term in (3.20), we argue as in the proof
of Theorem 2.3. Indeed, arguing as in the estimates (2.13) to (2.17), we deduce that

(3.23)

O—=Dn n

T
/ 100 6) = D lun ) 2 ds = T Cllunl oLy 2y on = oy 12

1-1)6* - 1-n)0*
X [ | e + @D [0,

n
= C(l + T)”Mn - u*”;joo(l,LZ)v

where, by (2.15), n = W‘ The right-hand side of the inequality (3.23) tends to 0 as
n goes to infinity.

Finally, in view of (3.19), (3.20), (3.21), (3.22) and (3.23), we conclude that
(3.24) |(wn (2), d;wn (@) ||z — 0 as n — +oo,

uniformly in -7 <t < T.

4¢ SERIE - TOME 50 — 2017 — N° 6



LONG TIME DYNAMICS FOR DAMPED KLEIN-GORDON EQUATIONS 1473

By construction, v, = (4, —u*)—w, and, in particular, d;v, = d;u, — 9, w,. From (3.24)
and the properties of ||0sun || 12(7.1.2(ra)), We infer that

(3.25)
19cvnll 21,722y = 19cunllL2(1,1);L2Ray) + V2T 0 wnllcoq—7,r1;22®4a)) = 0
asn — oQ.

In the final step of the proof we shall turn this L? averaged vanishing of [, v, ()| 12
as n — oo into vanishing in the uniform sense in ¢. The main tool for this is the following
“observation inequality” for Equation (3.18).

LEMMA 3.4. — Forany Ty > 0, there exists a positive constant ¢(Ty) > 0, independent of n,
such that

To
(3.26) 10:0n (0) 122 gy < c(TO)/ / 10;val? dxds.
—To R4

Proof. — For sake of simplicity, we set:
0:vn(0) = 9,uu(0) = vp1.
If U,, denotes the Fourier transform of v,,, we have
sin (r\/|§|2 ¥ 1) )
——"0u ()
VIER+1

100000132 = [ [eos (1 IEP )| im @ ag

On(1.8) =

and therefore

as well as

To To 2
[, voineoade = [ ] Jeos (1IEE Tl 60 dgar
TO 2
(3.27) - /Rd (/_TO cos (z\/|§|2 n 1)‘ dt) |91 (6)]2 d
=) [ 1@ ds
where ¢(Ty) > 0, since Ty > 0. Indeed

/_ZO cos(t\/mﬂz dt =/

7 2

sin (2To,/|§|2 ¥ 1)
2VIEP+1

One easily sees that, for any 7o > 0, there exists ¢(7p) > 0 such that, for any |£|,

sin <2T0 VIE? + 1)
2VIEP +1
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The estimate (3.26) is then a direct consequence of (3.27), (3.28) and Plancherel’s theorem.
O

From the property (3.26) and the estimate (3.25), one deduces that
(3.29)

[0:un (0|12 < c(T) [||3tun||L2((—T,T);L2) + v ZT”atwﬂ||C0([—T,T];L2(]Rd))] -0
asn — +oo

and the theorem is proved. O

3.2. Convergence property

Let tig = (@0, 91) € Hyraq be so that the solution u(t) = Sy (1)t = (u(z), d,u(t)) exists
globally and may be unbounded. Theorem 3.3 asserts that there exists a sequence of times
tn — +oosuchthati(t,) — (Q*,0) stronglyin $#,,q, where O * is an equilibrium of (KG),.
We shall now show by contradiction that then necessarily i () — (Q*, 0) strongly in $#,.q
ast — oo and hence the trajectory is bounded. In other words, Theorem 3.3 implies that the
w-limit set w(ilo) is not empty and contains an equilibrium point (Q*,0) € Hyaq. We recall
that the w-limit set of i is defined as

@(tig) = {0 € Hyaq | I @ sequence s, > 0, so that s, —— 400,
n——+o00

and S, (s,)tig —— W}.
n——+o0o

Below we will show that the w-limit set w (1) reduces to the singleton (Q*, 0), and that the

entire trajectory converges to this point in the strong sense. And this concludes the proof of
Theorem 1.2.

Before proving that the entire trajectory ii(t) = S, (f)uo converges to (Q*,0), we will
emphasize that the w-limit set w (i) is contained in the set ;.4 of radial equilibrium points
of (KG)y.

LEMMA 3.5. — The w-limit set w(ily) satisfies the property
(3.30) @(ip) C Eraa.

Proof. — Let Up = (vg,v1) € w(iig). Then, there exists a sequence s, = +00 such
n—-1+00
that Sy (sp)1g = u(s,) ——> Vp.
n—-+o00
On the one hand, we know by (3.6) that the energy satisfies
E(i(sp)) —> £ = E((Q".,0))
asn — +oo, and
E(ii(sn)) — E (Vo).

If ¥y is not an equilibrium point, then for some time ¢ > 0,
(3.31) E(Sq(0)0g) < E(Wg) —8=4£—-6

where § > 0. Since
E@(sy, +0)) —> L
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and
E(i(sn + 0)) = E(Sa(0)vo),
we arrive at a contradiction and (3.30) holds. O

REMARK 3.6. — Let us fix a positive time T > 0 and introduce the w-limit set w;(iig) of the
discrete dynamical system defined by the iterates Sy ()™, m € N, that is,

@ (o) = {W € Hyaq |3 a sequence k,, > 0, so that k, ——— +0o0,
n——+o00
and Sy (t)*1iig ——> W}.
n—+oo

Obviously, w, (tig) C w(ilg). Using the fact that w(ilg) is contained in € aq and that the Lipschitz
property of Su(t) : Vg € SH — Sa()Vg € SH, which is uniform with respect to t € |0, 7] (see
the arguments in Step 1 of Section 4 and especially the estimates (4.11), (4.12), and (4.13)),
one can show that

(3.32) w: (ilg) = w(ilo).

To prove that the w-limit w(iig) is a singleton and that the entire trajectory converges to
this point, we will apply a generalization of the classical convergence theorem of Aulbach [1],
Hale-Massat [19] and Hale-Raugel [20], due to Brunovsky and P. Polacik [5], which uses
local invariant manifold theory. For more details on these convergence theorems, we refer the
reader to Appendix B and especially to Lemma B.3 that we shall apply below. The behavior
of S, (t)iip = (¢) heavily depends on the spectral properties of the linearized operator Z
about Q* and the linearized operator £4(r) = e«? about (Q*, 0) (see the Definitions (2.47),
(2.48) or (4.3) with g = O™*). Lemma 2.10 describes the spectrum of the operator A4,.

Before proving this convergence result, we need to recall some notation given in Section 4.

There we introduce the modified (localized) Klein-Gordon Equation (4.7) and show that
this localized equation defines a globally defined flow Sy (¢) on $Fyaq. such that,

(3.33) U(t) = Se(t)((Q*,0) + vg) = (Q*,0) + Su(t)vo, aslong asii(t) € By,,

where B,, = B((Q*,0),r;) is the open ball of center (Q*,0) and radius r; > 0, with
r1 < (8C(a, 79)) 'ro (see Remark 4.2). In other terms, if we set

Sa (Dilo = (Q*,0) + Sa (1) (o — (%, 0)),
then S ()uo and S (1) coincide as long as Sy (¢)io € By,.
In Section 4, we define the (global) stable, unstable, center stable, center unstable, and
center manifolds Wi*((Q*,0)) of Sk (t) about (Q*,0), where i = s, u, cs, cu, ¢ respectively.
Since S (1)ug and Sg (¢)io coincide as long as Sy (7)o € By, we may define the local stable,

unstable, center stable, center unstable, and center manifolds W, ((Q*,0)) of S, (¢) about
((Q*,0)) as follows:

(3.34) WL .((Q*,0)) = W™*(Q*,0) N B,,, i =s,u,cs, cu,c.

We begin our proof with the particular case where (Q*,0) is the (hyperbolic) trivial
equilibrium (0, 0) of (KG),. We remark that in that case £ = —A + I and the entire
spectrum of A, lies in a half-plane of the form Rz < —§ < 0. In the terminology of
Section 4 and of Appendix A, this means that the local stable manifold W} ((0,0)) is a

s
oc
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whole neighborhood of (0,0) and that then necessarily (0,0) is an isolated equilibrium,
and the perturbative Equation (2.47) around (0, 0) exhibits exponential decay of solutions
in &/#.aq for small data. Actually, this exponential decay to zero had already been proved in
Theorem 2.3. In particular, #(¢) — (0, 0) in that case as t — oo.

Let us come back to the general case. If O* # 0, then Lemma 2.10 states that 4, has
either a trivial kernel, or a one-dimensional kernel. The former case means that the dynamics
near (Q*,0) is hyperbolic, whereas in the latter case it is not. In the hyperbolic scenario, we
have no central part, which means that the invariant manifolds constructed in Section 4 and
in Appendix A only involve stable and unstable manifolds W} ((Q*,0)) and Wz ((Q*,0)).
In both cases, the (local) unstable manifold W} (Q*, 0) is finite-dimensional since < has only
finitely many eigenvalues (and thus only finitely many eigenvalues with positive real part).

In the non-hyperbolic case, the kernel of A, is one-dimensional, the local center manifold
W ((07,0)) is a C!-curve containing (Q*, 0). We notice that we can also choose r; > 0
small enough so that WS ((Q*,0)) = WS ((Q*,0)) = W (Q*,0)) N B,, is a connected
curve. Moreover, as remarked above, the (local) unstable manifold W% (Q*,0) is finite-
dimensional. In order to prove the convergence to (Q*, 0), we would like to directly apply the
classical convergence theorem of [5] or [20], which is the case (1) of Theorem B.4. However,
we do not know that the trajectory i(¢) is bounded and thus we also cannot ascertain that the
w-limit set w(iig) is connected. So we will apply the more general convergence Theorem B.2
of Brunovsky and Polacik, and more precisely their local Lemma B.3, which are recalled in
Appendix B. To this end, we need to show that (Q*, 0) is stable for S, (¢) restricted to the local
center manifold (see the Definition (3.40) below). In order to prove this stability, we shall use
the same arguments as Brunovsky and Polacik in the proof of Lemma B.3. Like them, we will
make use of the attraction of the center unstable manifold with asymptotic phase of Section 4
(see also Appendix A). Notice that the hyperbolic case can be considered as a special case,
where the local center unstable (respectively, center) manifold reduces to the local unstable
manifold (respectively, to (Q*, 0)). In the non-hyperbolic case, the center manifold is present
and the dynamics is more delicate to analyze.

We proceed by contradiction and assume that ii(r) 4 (Q*,0). Since i(r) does not
converge to (Q*,0), there exists By > 0, fo < 75 with the following property: for
any 0 < B < By, if u(ty) € Bg((Q*, 0),p), there exists a first time 7o > 0 such that
u(to + v) € Bg, for 0 < v < 19, and u(t9 + 10) & Bg. In other words, u(fy + 7o) belongs to
the sphere S((Q*,0), B).

We first fix B > 0, B < Bo. By Theorem 3.3, there exists n(8) such that, for n > n(8),
u(ty) € Bg. Moreover, there exists a first time z,(8) > 0 such that

u(ty + 7)€ Bg  for0 <1 < 1,(B).

u(ty + 1) € Bg  for v = 1,(B).

Since u(t,) — (Q*,0) asn — oo, we remark that t,(f) — +ooasn — +oo. We
now invoke the attraction with asymptotic phase property of the center-unstable manifold,

see (A.9) (or also (4.29) in Theorem 4.1). Thus, there exists &, := £(u(t,)) € WS4 ((Q*.0))
such that, fort > 0,

(3.36) 1S5 ()i (t) — Sg ()&l g1 < coppllii (ta) — Enll 2.

(3.35)
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where 0 < pg < 1. And, by continuity of the map &(-),
£, —> (0*,0) asn — +oo.
In particular, (3.36) implies that
(3.37) [Se (zn (BN (1n) — Sg (tn(B)Enll sy — 0 asn — +oo.

Since W**((Q*,0)) is finite-dimensional and by (3.37), S;(t»(B))&, is bounded, the
sequence Sy (t,(B))é,, n € N, contains a convergent subsequence. We conclude that up to
passing to a subsequence one has

27i(l‘n + 2 (B)) = Sot(fn(ﬁ))ﬁ(tn) — (Uo,u1) € Bﬂ asn — +o00.
By the invariance property of W<**((Q*,0)) and by (3.37),

(3.38) (tio, 111) € Wige ((2%,0)).
We remark that, by (3.30) and (3.35),
(3.39)

(iio, 1) is an equilibrium point (0,0) = (Q(8).0) and [(Q(B).0) —(Q*.0)| 5 = B.
If (0*,0) is an isolated equilibrium point, then (3.39) with 8 < Z- leads to a contradiction.

We remark that, in the hyperbolic case, (Q*, 0) is necessarily an isolated equilibrium which
ends the proof in this case.

Let us now focus on the case where (Q*, 0) is not isolated. Before completing the proof
in this case, we recall a definition of Brunovsky and Polacik, see Appendix B. We say that
(Q*,0) is stable for S, (t)|W12c((Q*=0)) if, Ve > 0,360 > O such that, for any 1o € W[S_((Q*,0)),

[vo — (Q*.0)|l gz < 0
implies that, for r > 0,

(3.40) 1Sa ()00 — (@7, 0)[l g =< €.

We now complete our proof. By construction and (3.38), the element (Q(f),0) belongs
to We((Q*,0)). Since ( 0(p),0) is an equilibrium point, it necessarily belongs to the local
center manifold W _((Q*, 0)) (see Section 4 and Appendix A for more explanations), which,
as we saw earlier, is a C! one-dimensional embedded manifold passing through (Q*,0).

Since (3.39) holds for any small 8 > 0, we see that this curve segment contains equilibria
in the omega-limit set w(iiy) which are arbitrarily close to, but distinct from, (Q*,0). In
fact, we can say even more than that. First, we place an order on the curve WS ((Q*,0)) if
r1 > 01is small enough. We adopt the notation v~ < (Q*,0) < v* if v~ (respectively v)
is to the “left” (resp. “right”) of (Q*, 0) on the curve segment W5 ((Q*, 0)). By intersecting
the tangent line to this curve at (Q*, 0) with the spheres of radius 8 for all small 8, we see
that there are two possibilities:

1. Either there exist two families of equilibria (Q,,,0) and (Q;},0) with (Q;,,0) <
(0*,0) < (Q,F,0) such that

(3.41) (0£,0) > (0*.0) asm — +oc.

A simple dynamical argument based on (3.41) implies that Sa(t)|ch)c((Q*’0)) is in
fact stable. We can now directly apply Lemma B.3 of Brunovsky and Polacik to the
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time 1 map S, (1), which implies that the w-limit set w; (i) and thus the w-limit set
w(iip) contain an element of W ((Q*,0))\(Q*.0). This contradicts the fact that
@(tig) € Craq. Instead of directly applying Lemma B.3 to the map S, (1), we can also
argue for the flow S, (¢) as at the end of the proof of [5, Lemma 1] of Brunovsky and
Polacik and directly show that (Q(B),0) € W  ((Q*,0)\(Q*,0), where Q(B) is as
in (3.39). But this contradicts the fact that (Q(8), 0) is an equilibrium and so we again
obtain the desired convergence.

2. Or there exists B, > 0 such that there is no equilibrium point from the family (O (8), 0)
on the “left” (say) of (Q*,0) in W{$_((Q*.0)) N Byg,. But then, the above arguments
(and in particular the properties (3.39)) imply that, for every 0 < 8 < B,, there exists
an equilibrium (O (B),0) in w(iiy) satisfying the properties (3.39). This implies that
on the right of (Q*,0), W$_((Q*,0)) consists only of equilibria and that the w-limit
set w(up) contains a curve C of equilibria with end point (Q*, 0) (as for an interval).
We then choose an equilibrium (O 1 (8), 0) in the interior of € and close to (Q*, 0). We
repeat the above proof with (Q*, 0) replaced by (O (B),0). And we again obtain the
same contradiction as in Case (1).

REMARK 3.7. — In the particular case of a wave type or reaction-diffusion equation,
the proof of the Lojasiewicz-Simon inequality (see Sections 3.2 and 3.3 in the monograph
of L. Simon [34] and also [22, Theorem 2.1]) shows that, when the kernel of Z is one-
dimensional, the set of equilibria of (KG), passing through (Q*,0) isa C!-curve. Adapting
this approach, we could have avoided the last arguments and applied Theorem B.2. However,
in view of possible further extensions, we chose not to follow this path.

4. Invariant manifold theory for the Klein-Gordon equation

In Section 3.2, in order to prove the convergence of any global solution (in positive time)
towards an equilibrium point (¢, 0) of (KG)4, we used the properties of the local unstable,
local center unstable and local center manifolds Wli)c((goo, 0)),i = u,cu,c about (¢g,0)
for the flow Sy (¢). There, we defined these local manifolds as the intersections of the global
manifolds W*((go,0)), i = u, cu, c about (gp, 0) for the global flow S*(¢), with the ball of
center (¢op,0) and radius r; > 0, where r; > 0 is small enough. We recall that the global

flow S (¢) was defined by

Sy ()iig = (¢0.0) + Sa (1) (lo — (0.0)).
where S, () is the global flow defined by the localized Klein-Gordon Equation (4.7) below.

In this section, we construct the global invariant manifolds W ((0,0)),i = u, cu, c, for the
global flow S, (¢) and obtain the attraction property of W<*((0,0)) by applying the general
invariant manifold theory recalled in Appendix A.

Let (po,0) € Hraq be an equilibrium point of (KG),, that is, ¢o is a radial solution of
the elliptic equation

4.1 — Ao + @o — f(po) = 0.
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Solving the Equation (KG), in the neighborhood of (¢, 0) leads one to solve the equation
4.2) Vi + 200 + Dv — go(v) =0, (v,v,)(0) = V(0) € Hraa,

where

L=-A+1- f"(¢o).

go(v) = flgo +v) — f(po) — f'(wo)v.

The Equation (4.2) can be written in matrix form as follows

v 0 1 v o\ . 0
*4) O (Ut) B (—z —20{) (W) * (go(v)) = AVt <g0(v)).

We denote by $4 (1) = e4e’ the linear group generated by A, and Sy (7) the local flow defined
by the Equation (4.2). We notice that

(4.5 So(t)iio = Sa(t)((¢0.0) + Bo) = (¢0,0) + Sa(t)Vo,  Where g = iig — (g0, 0).

4.3)

When o > 0, according to Lemma 2.10, the radius p(0ess(E4(7))) of the essential spectrum
of ¢ (7) satisfies:

P(0ess(Za (7)) < 8(e, 1) < 1.
The operator A, can have a finite number of negative eigenvalues p; (o) < 0 (resp. a finite
number of positive eigenvalues ,uj+ () > 0), in which case, Aj (ta) = exp(p; (e)7r) < 1
(resp. )L;F(r, Q) = exp(u;“(a)r) > 1).

In addition, if 1 is an eigenvalue of £4(10), 79 > 0, it is a simple eigenvalue (and is a
simple eigenvalue of £, () for any ¢ > 0). Since this case plays an important role in the
proof of Section 3.2, we assume that 1 is an eigenvalue of S (19), 70 > 0. In this case, we
will construct a local center unstable manifold W$¥%((0, 0)) of the equilibrium (0, 0) of Sa(?),
a foliation of a neighborhood of (0,0) in ¢/,,q over WS¥((0,0)) as well as a local center
manifold W¢_((0,0)) by applying Theorems A.2 and A.5 to Sq(t). We choose 7o > 0 small

enough (o will be made more precise later). And we set
L= ia(‘[()).

The spectrum o (L) can be decomposed as in Hypothesis (HA.5.1) and one can define
constants C; > 1, C, > 1,7 > 0 and ¢ > 0 satisfying the estimates (A.20), (A.21), (A.22).
Unfortunately, Sq(7) is only a local flow and thus S, (z;) will not satisfy the hypotheses
(HA.2) and (HA.3). Moreover, we need to show that the Lipschitz-constant Lip(R) can
be chosen as small as needed, which is not true for S, (t). Therefore, we need to make a
localization in the following way, for instance. Let ro > 0 be a small constant, which will
be made more precise later. We introduce a smooth cut-off function y : R — [0, 1] such that

.6) (s) = 1 if]s] <1,
0 ifls| > 2.
And, we consider the modified Klein-Gordon equation,
4.7) Vi 4 200, + Tv — go(v)x(”vr”;%) =0, (0) = Vo € Hraas
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where 0 < r < ry is fixed. To simplify the notation, we set

1o ||2
h(v) = go(v)x(

).

We first show that, for any vy € ¢&#, the Equation (4.7) admits a unique solution v(z) =
Sa()vy € CO°0,4+00), $#) (we leave to the reader to show that S,(¢)Uo also belongs
to C%((—o0, 0], §#)). To this end, it is sufficient to show that, for any vy € §, the solution
U(t) = Sq(t)vg of (4.7) exists on the time interval [0, o] and remains bounded there.

We will do that in two steps. We will give the proof only in the case where d > 3, the case
d < 2 being easier. We first recall that the solution ¥(¢) of (4.7) is given by the Duhamel
formula,

- - IOIE
(4.8) 5(0) = Sa(0)i0 + / S0t — )00, go(v(s))x(” LE

and also remark that, as long as v(s) ¢ Bg(0, V/2r), the term h(9(s)) vanishes.

Step 1. — Let vy € & so that ||vg|l g < mr with (8C(a, 79)) ™! < m < 2 for example. We set:
My = My(mr) = 4C(w, 79)mr, where C(w, 19) > 1 is the constant given in Proposition 2.4.
To show the local existence of the solution v(¢) on the time interval [0, 7], we argue as in the
proof of Theorem 2.3 and introduce the space

Y = {3 € L®((0, t0), ¥) with v € L ((0, 10), L**" (R?))

ol Lo ynwroow2ynre 2oy < Mo(mr)j.

Like there we introduce the mapping of : ¥ — Y defined by

t
(F0)(t) = Zo(t)Vo +f Bo(t —5)(0, h(¥(s)))" ds.
0
The application of Proposition 2.4 implies

(49) |FOly = Claroymr = 1207

We next show that ¢ is a strict contraction from Y into Y. Using the Hypothesis (H.2) s and
the fact that ¢( belongs to L“(Rd), we may write, for vy, v, in H'! (R%),

(4.10)
(go(v1) — go(2)) ()] = | f(o(x) + v1(x)) = flgo(x) + v2(x)) = " (¢0(x)) (1 (x) = v2(x))]

1
.y /0 (/90 + v2 + 0 (01 = 12)) = f"(90))(v1 — v2)do]

< Cl([v1]® + [val® + 011771 + 2l (01 — v2)).
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where 0 < 8 < min(0 — 1, ﬁ) and C = C(f, ¢o) is a constant depending only on f and
on ¢g. For ¥; € Y, i = 1,2, Proposition 2.4 and the inequality (4.10) imply,

4.11)
| Fo1 — Foally < Claro) /0 " 1)) — h(Ga(s) |2 ds

=2
1512,

191112, 19211%,
c//)_X( H

SC(a,fo)/O I(go(v1) — go(v2)) x( )+ 2o (x(—3 5 )l2ds

72

=< C(a,fo)C[/o 0”(|U1(S)|ﬂ +[v2(9)P)[v1(s) = v2(5)| [|L2ds

T /0 1o @+ 02D 1 () — va(s)] 2

+ /0 I(or )P+ + |v1<s>|9>||Lz|(x("vjE”) (215 as]

r2
= By + B, + Bs.

Arguing as in the proof of Theorem 2.3, by using the Sobolev embeddings, the Holder
inequality and the fact that 0 < B < %5, we obtain the following inequality for By:

)
B B
) B = Cam)C [l + Poalfy)lor = vallnds

< 2C(at, 1) t0C Mo (rm)® vy — vall oo g1y
The bound of the term B; is obtained as in the proof of Theorem 2.3 (see (2.18)):
=1 (g% (]—
(4.13) B, <2C(«, to)Cztho(rm) g (6701 ")H])[Hvl —V2|[pooz2y + V1 —v2||Le*(L29*)]7
where > 01s given in the Formula (2.15). It remains to bound the term B3. We first remark

0|12
that, since y’ (”u;#) vanishes if | 0| g > V2r, we may write

(4.14)
L N2 + o (W = 772)||i%)(172 + 0 (V1 — V)

) - 2 < [

2 (U1 — V) | do

r2 r2

= 22451 - Ball
The estimate (4.14), together with the estimates (4.12) and (4.13) with v, = 0, imply that
(4.15)
B3 < 8vV2mC?C(ar, 10)*[ro Mo (rm)P +2C (a, To)TgMo(Vm)e%(e*(l_"H")] 01 —VallLoo ()
Choosing ry > 0 small enough so that
(4.16)
K(ro, 79) = 2C(a, ‘L'o)‘C()CMo(Zro)‘B + 4C(a, ro)Czr(;'MO(ZrO)%(9*(1_’7)‘“’)

+ 8/2C2C (@, 10)2[to Mo (2r0)P + 2C (o, 7o) Tl Mo (2r) 7 @ A=m+m] <

’

Bl

we deduce from the inequalities (4.11) to (4.16) that

~ ~ .. .
4.17) | Fv1 — Foally SZ”UI—UZ“Y,
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which implies with (4.9), that, for any v, € Y,
Mo(mr)
5
Therefore, ¢ is a strict contraction and admits a unique fixed point v(%y) in Y. The unique-

ness of the solution ¥ of the Equation (4.7) on the time interval [0, 7o] is proved as in the proof
of Theorem 2.3.

(4.18) I Foilly <

Let next vg;,i = 1,2, beso that ||g; || gz < mr,andlet v;,i = 1,2, be the corresponding
solutions of the Equation (4.7) on the time interval [0, 7o]; by the above proof, they belong
to Y. Applying Proposition 2.4 and repeating the above proof, we show that

I 4 - -
4.19) |[v; — valy < §C(a, 70)||Y0,1 — Vo,2|l¥-

As in the proof of Theorem 2.3, one also shows that vg € Bg(0,mr) — ¥(¥p) € Y isa
C!-function.

In the remaining part of the proof, we set m = 2.

Step 2. — We begin by showing that for every vy € &/, v(t) = Sq()v exists on [0, +00). Let
first v € S satisfying Vo] gz < 2r, then, by Step 1, ¥(z) stays in the ball Bg(0, Mo (2r))
for 0 <t < 7o. Let next 9 € &# be such that |[To|| s > 2r and let ¥(¢) = S, (t)vo be the
mild local solution of (4.7). By continuity of this solution, there exists a time #; > 0 so that
v(t) ¢ B0, V2r), for0 <t <t;. We have, for 0 <t < 1,

(4.20) (1) = Zo(t)vo,
and
(4.21) 19Ol gz + vl Le* (0.0y.120%) < C (e, T0)[|Voll g1-

If 11 > 7o, then, in particular, ¥(¢) exists on the time interval [0, 7o]. If 7; < 7o, there exists a
first time 75, 0 < £, < t1, such that ¥(f,) enters into the ball B g/(0,2r) and then, according
to Step 1, for o <t < t, + 79, U(?) exists, stays in the ball B (0, My (2r)) and satisfies the
estimates given in Step 1. We thus have proved that, for every vg € ¢&#, v(t) exists on the
time interval [0, to]. Consequently, for every vy € &/, Sa ()0 exists on [0, +00). Likewise,
one shows that S, (¢) 7 exists on (—oo, 0]). Arguing as in the proof of Theorem 2.3, one shows
the continuity properties of S, ()7 with respect to (¢, o) and the fact that, for any ¢ € R,
Vo € S+ Sq(t)g € & isa Cl-map.

We are now able to prove that S,(¢) satisfies the assumptions (HA.3), (HA.5.2), and
(HA.5.3). We first prove the last part of assumption (HA.3), namely that S, (¢) is Lipschitz
continuous, with a Lipschitz constant which is uniform in 0 < ¢ < tp. The idea is that it is
true if ¥g,; and vy > belong to B (0, 2r) by (4.19). If 9 » € B (0, 2r) and vg,1 & B (0, 2r),
we estimate the difference up to the first time ¢; < 7o when ¥ (¢) enters the ball Bg(0, 2r),
and afterwards, we apply the estimate proved in the first case up to time ty. Finally, if both
initial data are outside B g;(0, 2r), we apply the linear estimates up to the first time when
one solution enters B g(0, 2r) and afterwards, we apply the estimate of the second case. As a
consequence, to conclude, it remains to show that, if ||V 1 || s < 2r and ||Vg 2|l ¢ > 2r so that
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102(2)|| g > 2r for any ¢ > 0, then vy — ¥, satisfies the estimate (4.19). Using Proposition 2.4,
the inequalities (4.10), (4.11), and (4.15), we obtain, for 0 <t < 7,

(4.22)
- - - - 0 -
151 = Bally < Cla 0)[[1Fo.s — Foall g + / 11 (5)) 2]
0

- - T 19111%, 19211%,
< C(a. 10)[ V0,1 — Vo2 ll v + llgo(v1) (x( o ) — x( P Nliz2ds]
0
< C(a, 79)||Vo,1 — Vo,2llgz + B,

where B3 had already been defined and used in (4.11). As before, the inequality (4.14) holds.
Therefore, we deduce from the estimates (4.22), (4.15) and the condition (4.16) that, for
0=t =<1,

- - - | S,
(4.23) [v1 — V2lly < C(a, 7o) V0,1 — Vo2l % + Z||U1 —aly.

And thus the inequality (4.19) holds. From all the above results, one infers that S, (¢) is
Lipschitz continuous and that

(4.24) sup Lip (S,(1)) =D < Ec3(o¢, T0).

0<t<79 9

Likewise, one shows that this estimate also holds for —t¢ < ¢ < 0. Thus, Hypothesis
(HA.3) is satisfied.

We next show that the hypotheses (HA.5.2) and (HA.5.3) hold. To this end, we set
Su(t0) = Z4(10) + R(0) = L(0) + R(10)

Sa(—10) = Za(—70) + R(t0) = L(10)~" + R(10).

Let U9 € $# and 0(t) = Su(f)To; then, R(to) writes

(4.25)

(4.26) R(v) = /0 © ot — )0, h(v(s))) ds.

To prove that the conditions (A.23), (A.24), and (A.29) hold, we will show that Lip(R(zo))
and Lip(R (7)) go to zero as ry goes to zero (we will only show it for R(zo), since the proof
is similar for R(zo)). To show this property, we are going back to the three cases considered
above. If Ug 1 and v belong to B (0, 2r), then the estimates (4.11) to (4.19) imply that

- - 4 - -
(4.27) | R(z0)Vo,1 — R(t0)Vo,2lly < EK("O» 7o) C (e, 70)||V0,1 — Vo 2 || gz

The estimate (4.22) shows that the same property (4.27) holds if 99,; belongs to B g(0,2r)
and g is so that ||[U2(¢)]| g > 2r for any 0 < ¢ < 7. Finally, we remark that if v;(¢) ¢
Bg(0,2r),i = 1,2,for 0 < ¢ < 19, then R(t9)Vo,1 — R(t0)Vo2 = 0. Combining all the
above cases and using the estimate (4.24), we finally obtain that, in every case,

- - 16 - -
(4.28) | R(t0)Vo,1 — R(t0)Vo,2]ly < 3K(r0, ‘L’())CS((X, 70)||Y0,1 — Vo2 g1-

Since K(ro, t9) goes to zero as ro goes to zero, Lip(R(7g)) goes to zero as ry goes to zero and
the condition (A.23) is satisfied provided ry is chosen small enough. Likewise the conditions
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(A.24) and (A.29) hold, provided ry is chosen small enough. From now on, we fix ro > 0
small enough so that these conditions are satisfied and we choose r = r¢ in (4.7).

We have seen that, for ro > 0 small enough, S, (¢) satisfies the hypotheses of Theorems A.2
and A.5. We can thus state the following result concerning the invariant manifolds of S, (7).
For the notations and definitions of the different invariant manifolds, we refer the reader to
Appendix A below.

As in the assumption (HA.5.1), we denote by P; the spectral (continuous) projection
associated to the spectral set 0@ and let HHyaq; be the image Hiag; = Pi Flraa, Where
I =cu,cs,u,s,c.

THEOREM 4.1. — Let a > 0 be fixed.

1) There exists a C' globally Lipschitz continuous map gy, Hrad,eu = Hraa,s S0 that the
C! center unstable manifold W*((0,0)) of Se(t) at (0,0)

wer ((09 0)) = {5014 + &cu (6cu) | 1_jcu € gérad,cu}
satisfies all the properties given in Theorem A. 1.

2) There exists a C' globally Lipschitz continuous map g, : Hradu = Hrad,cs SO that the
C! (strongly ) unstable manifold W*((0,0)) of S (¢) at (0,0)

wW*((0,0)) = {Bu + 8u (Bu) | Uy € C{%rad,u}
satisfies all the properties described in the statement (2) of Theorem A.5.

3) Moreover, there exists a continuous mapping £ : SHraa X Frada,s = Hrad.cu» Such that, for
any v € flraa, the manifold My, = {Vg 4+ £(V, Us) | Us € Hraa s} satisfies all the properties
in Theorem A.2. In particular, {Q%g | § € W ((0,0))} is a foliation of SHraq over W*((0,0)).

4) In particular, there exist ¢ > 1,0 < pg < 1, and, for any Vo € Hyaq, a unique element
£(Vg) € W((0,0)) such that, fort > 0,

(4.29) 15a(6)80 = SaE@o) | 52 < E0hl1T0 — E@o) -
Moreover, the map Vg € g = 5(60) € W ((0,0)) is continuous.

5) There exists a C' globally Lipschitz continuous map gc © Hraac = Hrads ® Hradu
with g.(0) = 0, so that the center manifold W€ (0) of S,(t) at (0, 0)

we ((0,0)) = {x¢ + ge(xe) | xc € Ccﬂrad,c} =w ((0,0) N wes ((0,0))

satisfies all the properties given in statement (4) of Theorem A.5.

Let us go back to the “actual” variable 1 = U + (¢o, 0)". We set
Sx(t)io = (¢0,0)" + Se (1) (o — (g0, 0)).
Then the invariant manifolds of S (¢) are defined by
(4.30) W™ ((¢0.0)) = (90,0)" + W' ((0,0)).i = cu,cu,s.
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REMARK 4.2. — We emphasize that the proof given in Step 1 above shows that if, for
example, r = ro, m = (8C(a, 19)) !, and ||iio|| o < mro, then, for 0 <t < 7o,

1S ()iio]ly < ro/2,

which implies that, for 0 <t < 19, Se(t)iio = Se(t)iig. In other terms, if iy belongs to the ball
Bg,..((90,0),r1) of center (¢o.0) and radius ry < (8C(a, 7)) ' ro, then Sk (t)iig = Sa(t)ilo.
This allows one to define the local invariant manifolds ngc(((po, 0)) of Sy (t) about (g, 0) as

(4.31) Wioe((¢0,0)) = W™ ((¢0,0) N Ber,y (90, 0),71),i = cu, c,u,s.

REMARK 4.3. — 1) In the above theorem, oM, coincides with the (strongly) stable mani-
fold W*((0,0)). 2) If Ker(Z) = {0}, then the center unstable manifold W°*((0, 0)) coincides
with the unstable manifold W*((0,0)) of (0,0), while ¢My coincides with the stable mani-
Jold W3((0,0)).

REMARK 4.4. — In the case where « = 0, we can also apply Theorems A.1 and A.2 below in
order to prove the existence of the strong unstable manifold and the existence of a center stable
manifold around any equilibrium point of (KG )y, as well as the existence of a foliation of $/raq
over the unstable manifold. This gives an alternative proof to the construction of a center stable
manifold, by the Hadamard method in [30] (for more details, see [7]).

Appendix A

Global invariant manifolds and foliations by the Lyapunov-Perron method

In this appendix, we recall the basic properties of invariant manifold theory that we
applied to the Equation (KG)4 in Section 4. We reproduce the theorems of Chen, Hale and
Tan about global invariant manifolds and foliations as given in [11]. For classical results on
invariant manifolds, we also refer the reader to the books [8], [23], [24], and [31] for example
as well as to [2] and to [13].

Let X be a Banach space with norm | - ||x and S(¢) : X — X be a non-linear semigroup,

satisfying the following hypotheses:

(HA.1): S(). : (t,x) € [0,400) x X +— S(t)x € X is continuous and there exists a
constant 79 > 0 such that,

sup Lip(S(?)) = D < +o0.

0<t<tp

(HA.2): There exists 7, 0 < T < 79 such that S(r) can be decomposed as
S(t) =L+ R,

where L : X — X is a bounded linear operator and R : X — X is a global Lipschitz
continuous map, satisfying the following properties.
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(HA.2.1): There are subspaces X;,i = 1,2, of X and continuous projections P; : X —
X; such that Py + P, = I, X = X; & X,, L leaves X;, i = 1,2, invariant and
L commutes with P;, i = 1,2. The restrictions L; of L to X; satisfy the following
properties. The map L has a bounded inverse and there exist constants 0 < 8, < Sy,
C; > 1,i = 1,2, such that, fork > 0,

ILT* Pillx,x) < C1BT™,
ILA PallLx,x) < C2B5.
(HA.2.2): The maps L and R satisfy the condition

(A1)

2
(A2) WG VE) Ry < 1,
B1— B2
Chen, Hale and Tan considered the following quantity, for y € (82, 1),
Cy Cy
(A.3) Aly) = + .
Br—y v—5B

A short computation shows that, under the condition (A.2), there exist y;, i = 1,2, with
B2 < y2 < y1 < B1 such that,
(A4) A(y1)Lip(R) = A(y2)Lip(R) = 1, and A(y)Lip(R) <1, Vy € (y2,71).

In the trivial case, where Lip(R) = 0, one sets y; = 1 and y, = B,.
We are now able to state the first theorem, concerning the existence of an invariant
manifold, which is a graph over X;.

THEOREM A.l. — Assume that the hypotheses (HA.1), (HA.2) hold and that R(0) = 0.
Then there exists a globally Lipschitz map g : X1 — X, with g(0) = 0, and

. , C1GLip(R)y
(A.5) L) < B = Ba) (1 — A()Lip(R))”

so that the Lipschitz submanifold
G ={x1+g(x1)[x1 € X1}

satisfies the following properties:
(i): (Invariance) The restriction to G of the semi-flow S(t), t > 0, can be extended to a
Lipschitz continuous flow on G. In particular, S(t)G = G, for any t > 0, and for any
& € G, there exists a unique negative semi-orbit u(t) € G of S(.),t <0, so that u(0) = £.
(ii): (Lyapunov exponent) If a negative semi-orbit u(t), t < 0, of S(.) is contained in G,

then,
. 1 1
(A.6) limsup — In |u(?)| < ——1Iny;.
t—>—oc0 |t T
Conversely, if a negative semi-orbit u(t), t <0, of S(.) is contained in X satisfies
1 1
(A7) limsup — In |u(t)| < ——Inys,
t—>—oco |t T

then, it is contained in G.
(iii): (Smoothness) If the map S(tv) : X — X isof class C!, then g : X1 — X, is of
class CY, that is, G isa C l-submanifold of X.
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The second theorem states the existence of a foliation of X over the invariant manifold G.

THEOREM A.2. — Assume that the hypotheses (HA.1), (HA.2) hold and that R(0) = O.
Then, there exists an invariant foliation of X over G as follows.

(i): (Invariance) There exists a continuous mapping £ : X x X, — X1 such that, for any
£ € G, UE, Py§) = Pi& and the manifold Mg = {x2 + U(E,x2) | x2 € X5} passing

through & satisfies:
(A.8) S(t)eMe C Mspye, t =0,
and
. 1 1
(A.9) Mg ={yeX| 11?151110;111 S@)y = S®E] = —Inya}.
—00

Moreover, themap £ : X x X, — X isuniformly Lipschitz continuous in the X, direction.
(ii): (Completeness) Suppose in addition that
(A.10)
. C1C,Lip(R) . C1GCLip(R)y
[ min . ]-[ min : ]
r2sv=y1 (B1 —y)(1 = A(Y)Lip(R))" “r2=v=ri f1(y — B2)(1 — A(y)Lip(R))
Then, for any x € X, M, N G consists of a single point. In particular,

(A.11) MeN My =0, VE€G VneG.E#n, X:UWS,

£eG

In other terms, { Mg | § € G} is a foliation of X over G.
Moreover, the mapping x € X + &(x) = oM, N G is a continuous map from X into
GCX.
(iii): (Smoothness) If the map S(t) : X — X is of class C!, then { : X x X5 — Xy is of
class C' in the X5 direction. Hence, oM is a C'-submanifold of X, for any § € G.

Comments on the proof of Theorems A.1 and A.2. — Theorems A.1 and A.2 are proved in [11]
by first showing the corresponding results for the map S(7) and at the end coming back to the
continuous dynamical system. This means that Theorems A.1 and A.2 still hold for iterates
of maps S(t). It suffices to replace t € R by nz, n € N. Theorems A.l and A.2 are proved
in [11] by using the Lyapunov-Perron method.

The property that the mapping x € X + &(x) = ¢#, N G is a continuous map from X
into G C X is not stated in the main Theorem 1.1 of [11]. It is merely a consequence of the
proof of [11, Lemma 3.4]. Indeed, given x € X, the intersection points £ (x) of ¢, with G
are the solutions of

(A.12) §(x) = y2 + £(x, y2) = £(x, y2) + g(L(x. y2)),

where y, € X,. This leads to study the fixed points of the map Fy(y2) = F(x,y2) =
g(€(x,y2)), depending on the parameter x € X. One can check that the condition (A.10)
implies that F, : X, — X, is a strict contraction and therefore has a unique fixed
point y;(x). The continuity property of y,(x) with respect to x € X is a direct consequence of
the continuity of F with respect to the variable x € X and of the uniform contraction principle
(see [12, Theorem 2.2 on Page 25]). It follows that £(x) = y,(x) + £(x, y2(x)) € G is also
continuous with respect to x € X.
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REMARK A.3. — If the equilibrium point 0 of S(.) is hyperbolic, then we may choose
B2 < 1 < B1. In this case, G is the classical unstable manifold W"(0) and Mg, § € G, defines
an invariant foliation of X over W*(0), with oM being the classical stable manifold W* (0).
And the solutions on oM decay exponentially to 0, as t goes to +oo.

If 0 is a non-hyperbolic equilibrium point and B, < B1 < 1 with By close to 1, then
Theorems A.1 and A.2 allow for the construction of the center-unstable manifold G = W<*(0)
of 0 and a foliation over it. If 0 is a non-hyperbolic equilibrium point and 1 < B, < 1 with 3,
close to 1, then Theorems A.1 and A.2 give the strongly unstable manifold G = W**(0) of 0 and
a foliation over it. If y, < 1, the existence of the foliation implies that each positive semi-orbit
of S(t) converges exponentially to an orbit of G and is synchronized with this orbit in time. This
property is often called “attraction of G with asymptotic phase”.

We emphasize that the construction in Theorems A.1 and A.2 is also interesting in the case
where Sy (.) depends on a parameter a and B () < 1 < B1(a) with B, («) arbitrarily close to 1
as o converges say to ag = 0.

Mutatis mutandis, repeating the arguments of the proofs of Theorems A.1 and A.2, one
can also show the existence of a Lipschitz manifold G = {x, + &(x2)| x> € X,} where
g : X, — X is a globally Lipschitz map with g(0) = 0, such that G is invariant and such
that, if a semi-orbit u(z), ¢ > 0, of S(.) is contained in G, then,

1 1
(A.13) limsup —Infu(t)| < -~ Inj;",
t—oo I T

where B2 < 75! < y7' < P is made more precise below, and also the existence of a
foliation W; (in reverse time) of X over G.

If S(¢) is a non-linear group, these properties can be proved by reversing the time in
Theorems A.1 and A.2. In Section 3, the existence of a center manifold played an important
role. We can derive this existence by defining the center manifold as the intersection of the
center stable and center unstable manifolds. The center stable manifold is constructed like
the Lipschitz manifold G = {x> + §(x2) | x2 € X,} described above. Since throughout the
paper we are only dealing with groups, we will quickly show the existence of G by reversing
the time in Theorem A.1. The constants appearing in the proof below are maybe not optimal,
but we are not looking here for optimality.

In addition to the hypothesis (HA.2), we assume now that
(HA.3): S().: (t,x) € (—o00,+0) X X + S(t)x € X is continuous and there exists a
constant 7 > 0 such that,

sup Lip(S(¢)) = D < +o0.

—T0<t=<70
(HA.4): S(—1) can be decomposed as
S(-t)=L7'"+R,

where 7 and L : X — X have been introduced in the hypothesis (HA.2) and where
R : X — X is a global Lipschitz continuous map, satisfying the following property:

(A.14) %ﬁlﬂmp@) <1
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We remark that the linear map L~! satisfies the hypothesis (HA.2.1) with P; (resp. Py)
replaced by P, (resp. P1), Cq (resp. C,) replaced by C; (resp. C1), and B; (resp. f2) replaced
by B! (resp. B71). Indeed, we have

L™ PallLxx) < C2(B51) 7,

(A.15) B B
I, PillLax.x) < CrBTHE.
‘We next set
~ C C
(A.16) P~ -

=t = -

B> '—y 78 1 !
As above, a short computation shows that, under the condition (A.14), there exist y;,i = 1,2,
with 871 < y1 < y2 < B3 ! such that,
(A1) A@)Lip(R) = A(72)Lip(R) = 1, and A(7)Lip(R) < 1. V7 € (1. 72).
We may now apply Theorem A.1 to the nonlinear semigroup S(r) = S(—t) and we obtain
the following result.

THEOREM A.4. — Assume that the hypotheses (HA.2), (HA.3), and (HA.4) hold and that
R(0) = R(0) = 0. Then there exists a globally Lipschitz map g : X» — X1 with §(0) = 0 and

C1CLip(R
(A.18) Lip(3) < _min_ 1GLPIIAS
ni=7=72 (B1 — 1/7)(1 — A(y)Lip(R))
so that the Lipschitz submanifold

G = {x2 + §(x2) | x2 € X2}

satisfies the following properties:
(): (Invariance) G is invariant under S(t), i.e., S(t)G = G, for any t > 0.
(ii): (Lyapunov exponent) If a positive semi-orbit u(t), t > 0, of S(.) is contained in G,
then,

. 1 1 1
limsup —In |u(?)] < —In —.
t—oo [ T V2

Conversely, if a positive semi-orbit u(t), t > 0, of S(.) in X, satisfies
1 1.1
(A.19) limsup —In |u(t)| < —In —.
t—oo I T "N

then, it is contained in G.
(iii): (Smoothness) If the map S(t) : X — X isof class C', then § : X, — Xi is of
class C1, that is, G is a C'-submanifold of X .

We next consider the classical case where S(.) is a non-linear group satisfying the assump-
tion (HA.3) as well as

(HA.5): The point 0 is an equilibrium point of S(.). And there exists t, 0 < t < 79 such
that S(z) and S(—7) can be decomposed as follows

S(t)=L+R, S(-1)=L"'+R,

where L : X — X is a bounded linear operator, R : X — X and R : X — X are
global Lipschitz continuous maps, satisfying the following properties.
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(HA.5.1): The spectrum o (L) of L can be written as

o(L) =0c*UcUoc¥,

where ¢°, 0¢ and o¥ are closed subsets of {A € C||A| < 1}, {A € C||A| = 1}, and
{AeCl|A| > 1}

There exists n > 0 such that

(A.20) o’ Cc{reClA|<1l—n}, o"C{reC||A|>1+n}

We set: 0 = ¢¢ U o™ and 6¢° = o¢ U ¢*. Let P; be the spectral (continuous) projector
associated to the spectral set o¢ and let X; be the image X; = P; X, wherei = cu, cs,u,s,c.
We have that P.,, + P = I = P.s+ P,. The linear map L leaves X; invariant and commutes
with P;,i = cu,cs,u,s,c.

Now we choose 0 < & < 1n/2. The restrictions L; of L to X; satisfy the following
properties. There exist constants C; > 1 and C, > 1 such that, for k > 0,

1Lk PeullLcxx) < Cr(1— )7,

(A.21)
IL* Pyl Lx.x) < C2(1 =¥,
and
A2 ILZD ™ Peslnox.x) < Ca((1+ )7 H7F,

1LY Pulliexxy < €@ +mHE.
We further assume that the maps R and R satisfy the conditions.

(HA.5.2): The following inequalities hold

(A.23) (‘/_Cl;rfj_czzup(ze) <1,
and
(A.24) @4(1 + ¢)(1 + n)Lip(R) < 1.

(HA.5.3): We define the function A(y) as in (A.3), that is,
C1 Cz
P g
and the quantities y;,i = 1,2, with 1 —n < y5 < y; < 1 —g, satisfying (A.4). Likewise,
we define the function X()?) asin (A.16), that is,
&) Cy
(1+e)t—7p

(A.25) AY) =1

(A.26) A7) =

7T

and the quantities y;,i = 1,2, with (1+7)7! < 7, < 7» < (14+&)71, satisfying (A.17).
We next introduce the function A*(y*):

G, G

A.27 A" = + ,
(A.27) ") Tx7— Ty o1=¢

and the quantities y;*,7 = 1,2, with 1 4+ & < yJ <y <1 + n, satisfying
(A.28)  A"(y{)Lip(R) = A(y;)Lip(R) = 1, and A" (y")Lip(R) <1, Vy™ € (y3, 7).
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We finally require that the following inequality holds:
(A.29) 5
C1C,Lip(R)y . C1GLip(R)(1 +&)(1 + 1)
min X min — —
resy=y (1 —&)(y — 1+ n)(1 = A(y)Lip(R))  vi<y=<i> (1 +n—1/7)(1 — A(7)Lip(R))
Applying Theorems A.1 and A.4 to the above flow S(.), we obtain the following proper-
ties, which are used in Sections 3 and 4.

THEOREM A.5. — Assume that the hypotheses (HA.3) and (HA.S) are satisfied. Then, the
following properties hold.

1. There exists a globally Lipschitz map g¢, : Xey — Xs with g¢,(0) = 0, so that the
Lipschitz center unstable manifold W (0)

WH(0) = {xc + xXu + geul(xe + xu) | Xe € Xeoxy € Xy}

satisfies all the properties described in Theorem A.1. In particular, if S(v) is of class C1,
then gey @ Xey — Xy is of class C.

2. There exists a globally Lipschitz map g, : X, — X¢s with g,(0) = 0, so that the
Lipschitz unstable (also called strongly unstable) manifold W* (0)

WH*(0) = {x, + gu(xy) | xu € Xu}
satisfies all the properties described in Theorem A.1 with y replaced by y* and y; replaced
by y¥,i = 1,2. In particular, if S(z) is of class C*, then gy, : Xy — X5 is of class C.
And, if a negative semi-orbit u(t) t <0, of S(.) is contained in W¥(0), then,
(A.30) lim sup —
t—>—oc0 |t]

3. There exists a globally Lipschitz map g.s : Xcs — Xy with ges(0) = 0 so that the
Lipschitz center stable manifold WS (0)

1 *
L) < ——Inyj.

W(0) = {xc + X5 + ges(Xe + X5) [ xe € X, x5 € X}
satisfies all the properties described in Theorem A.4. In particular, if S(t) is of class C1,
then ges : Xes — Xy is of class C1.
4. There exists a globally Lipschitz map g. : X — X5 & Xy, with g.(0) = 0, so that the
Lipschitz center manifold W€ (0)

W) = {xc + ge(xe) | xe € Xe} = WE(0) N WE(0)

satisfies the following properties:

(1) W<€(0) is invariant under S(t), i.e., S(t)W°(0) = W€(0), for any t > 0.

(i1) The properties (ii) of Theorem A.1 and the properties (ii) of Theorem A.4 hold. In
particular, if a trajectory u(t), t € (—oo, 00) of S(.) is contained in W€(0), then

(A.3D) lim sup 1 Inju(®)| < —l Iny;, limsup ! Inju()| < 1 In é
t—>—co |1] t—oo 1 T Y2

Moreover, W€(0) contains all the equzltbrta of S(1).

(iii) If themap S(t) : X — X isof class C', then g. : X. — Xy ® Xy, is of class C1,
that is, W€(0) is a C'-submanifold of X .

5. If moreover the condition (A.10) holds with B; = 1 — e and B, = 1 — 1, then one has a

Soliation of X over W*(0) as defined in Theorem A.2.
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Proof. — (1) Statements (1) and (5) are direct consequences of Theorem A.1 and
Theorem A.2 respectively, applied to the case where 1 =1 —¢and =1 —1.

(2) Statement (2) is a direct consequence of Theorem A.1, applied to the case where
Bi=14+nand B, =1+c¢e.

(3) Statement (3) is a direct consequence of Theorem A.4, applied to the case where
Byl =(0+e andpr! =1+~

Let us next prove the statement (4). We are looking for the trajectories u(z), which satisfy
both properties of (A.31). These two properties together are satisfied only by the elements
in We¥(0) N Wes(0).

Thus, we are looking for the elements x = x, + x5 + x;, so that
(A.32)
Xe+Xu+geu(Xe+Xy) = Xe+Xs+ges(Xe +X5) = X+ geu(Xe +Xu) + ges (Xe + geu(Xo+Xu)),

or also for the elements x,, € X, satisfying

(A.33) Xy = ges(Xe + geulXe + xu)).

In other terms, given x. € X., we are looking for the fixed point of the map x,, € X;, —
F(xc,xy) = ges(xe + geu(xe + xy)) € Xy We notice that the Lipschitz constant of F(x.,.)
satisfies

Lip(F (xc..)) < Lip(ges) % Lip(gen)-

By Theorems A.1 and A.4 and the assumption (A.29), we have, for any x¢ € Xg

. . C,CLip(R)y
Lip(Flxe. ) =m0 =1+ m( = A()Lin(R)
(A.34) o _C1GLiDR)( +e)(1+n)
vi=7<2 (1 +n—1/7)(1 — A(7)Lip(R))
< 1.

Therefore, x,, € X, — F(x., xy) € Xy, 1s a strict contraction, uniformly in x.. Thus, for any
xc € X, there exists a unique fixed point h(x.) € X;, of F(x.,.). And g.(x.) is given by

ge(xe) = x¢ + h(xe) + geu(xe + h(xc)).

The regularity of the map g. is proved by using the regularity of the mappings g.,, and gcs
and by applying the uniform contraction principle of [12, Theorem 2.2 on Page 25]. O

REMARK A.6. — 1. If the equilibrium point is hyperbolic (that is, 6c¢ = @), then one can
choose ¢ = n in the hypotheses (HA.5.1) and (HA.5.2). The center unstable manifold W<*(0)
and the (strongly) unstable manifold W"(0) coincide (that is, gcy = gu). And the center
manifold W€ (0) reduces to 0.

2. In the above theorem, we have only stated those properties which are used in this paper.
We leave it to the reader to state the existence of the (strongly) stable manifold.
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Appendix B
Classical convergence results

In the study of asymptotic behavior of dynamical systems, one often encounters the
following question: knowing that the w-limit set of a relatively compact trajectory contains
an equilibrium point xg, does this w-limit set reduce to the point xy, i.e., does the trajectory
converge to xo? This question is especially interesting in the case of gradient systems (that
is, systems which admit a strict Lyapunov functional). In fact, consider a gradient system
with a hyperbolic equilibrium xg in the w-limit set of a trajectory. Then x; is isolated and
the whole trajectory converges to this point xq. If the equilibrium x, is not hyperbolic and
the spectrum of the linearized dynamical system around x¢ intersects the unit circle, then
xo could lie in a continuum of equilibria, which could be contained in the w-limit set. If xq
belongs to a normally hyperbolic manifold of equilibria, we can still have convergence to xy,
under additional hypotheses.

In the proof of Theorem 1.2, we use the convergence property to an equilibrium point in
order to prove the boundedness of the orbits, which are global in forward time. We recall
here the general convergence property in the form proved by Brunovsky and Polacik in [5],
who extended earlier convergence results, proved for example by Aulbach [1] in the finite-
dimensional frame, or by Hale and Raugel [20], who generalized the convergence property
of Aulbach to the infinite-dimensional setting (see also the paper [19] of 1982, and [33] for
applications). In the case of the one-dimensional parabolic equation with separate boundary
conditions, convergence proofs had been given before in [28] and [36].

Let X be a Banach spaceand ® : X — X be a continuous map admitting a fixed point yy.
Without loss of generality, we may choose yo = 0. Brunovsky and Polacik assumed the
following hypotheses:

— (HB.1) There exists a neighborhood U of 0 in X so that the restriction F = ®,:U—>X

is of class C!.

— (HB.2) The spectrum o (DF(0)) can be written as 6 (DF(0)) = 0% U 0¢ U 0%, where
0%, 0¢ and o* are closed subsets of {A € C||A] < 1}, {4 € C||A| = 1}, and
{AeCl|A| > 1}

As in Appendix A, we introduce the spectral projectors P; of B = DF(0) associated with
the spectral sets o/, i = s, ¢, u and the images X; = P; X. We recall that these spaces are all
B-invariant and X = X; & X, & X,,. We also denote X, = X, & X,,.

As we have seen in Appendix A, the hypotheses (HB.1) and (HB.2) allow one to construct
Lipschitz continuous local center unstable and local center manifolds W% (0), Wi¢_(0) of &
at 0 as graphs over X, and X, respectively, and also the local unstable manifold W% (0)
as a graph over X, by extending the map @ into a global Lipschitz continuous and C!
mapping @, which coincides with ® on the ball By (0, §) of center 0 and radius § > 0 (8 being
small enough), and by applying Theorems A.1 and A.5. These local invariant manifolds are

defined in the following way
(B.1) WiL.(0) = W[ (0), i=cu,c,u,

where WSC” (0), Wé.c (0) and WS" (0) are the global center stable, center and unstable manifolds
of ® around 0.
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On the other hand, Theorem A.2 in Appendix A on the invariant foliations implies that
W£¥(0) is exponentially attractive in X with asymptotic phase (see Appendix A for more
details). Likewise, one can show that W¢ (0) is exponentially attractive in backward time
in W$¥(0) with asymptotic phase. These asymptotic phase properties are among the key
arguments in the proof of the main convergence Theorem B.2 below.

REMARK B.1. — Actually, the hypothesis (HB.1) can be replaced by the weaker hypothesis:
(HB.1bis) There exists a neighborhood U of 0 in X so that the restriction F = ¢, U—>X
is Lipschitz continuous and differentiable at every fixed point contained in U .

Before stating the main convergence result of [5], we introduce the concept of stability

restricted to WS (0). We say that 0 is stable for the map d>|ngc 0’ if, for any ¢ > 0, there

exists n > 0 such that, for any y € W$_(0) with || y[x < 7, we have
(B.2) 1O"(y)|x <& ¥Yn=0.1.2....

As pointed out in [5], this stability is independent of the choice of the local center mani-
fold WS (0). The independence of this stability on the choice of the local center manifold
can be proved by using foliations as in the paper [6], which actually showed that the flows
on different local center manifolds are conjugated (under some more restrictive hypotheses,
which can be easily removed). As also remarked in [5], the fact that the stability is indepen-
dent of the choice of the local center manifold, is not needed in the proof of Theorem B.2

below.

THEOREM B.2. — Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold.
Let xo € X be such that the fixed point 0 belongs to the w-limit set w(xo) of xo. Assume that
either Xy, is finite-dimensional or that the trajectory ®"(x¢), n = 1,2, ..., of x¢ is relatively
compact. Assume, moreover, that 0 is stable for the map ® | we where Wil (0) is a local center
manifold of 0. ’

Then either ®" (xg) converges to 0 asn — 0o, or w(xg) contains a point of the local unstable
manifold W% (0) of 0, distinct from 0.

ocC

(0)

Theorem B.2 generalizes the above mentioned convergence result of [20] in two ways.
Firstly, the hypotheses do not require that w(xg) consists only of fixed points. Secondly, it
does not require that the trajectory ®"(xg), n = 1,2,..., of x¢ be relatively compact. But,
of course, it requires the additional stability property defined above.

In [5], Brunovsky and Polacik have proved the following lemma (see [5, Lemma 1]) and
have obtained Theorem B.2 as a direct consequence of it. We emphasize that Lemma B.3 is
really a local result and that Lemma B.3 will hold for any mapping ®* : y € U+ &*y € X
coinciding with ® in 9. In particular, ®* need not be well defined outside %/, which is the
case in our application in Section 3.

LEMMA B.3. — Assume that the hypotheses (HB.1) (or (HB.1bis)) and (HB.2) hold, that

8§ > 0 is small enough so that Bx(0,8) C U and that 0 is stable for the map Qe ©
loc
Let x; € X and py € N be sequences satisfying the following properties:

1. xg > 0ask — +o0.
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2. ®/(xx) € Bx(0,B) for j = 0,1,2,..., px and ®PxT1(x) ¢ Bx(0,B), where
0<pB <.

3. In the case, where dim X, = oo, the set {®/ (x;) |k € N, j = 0,..., pr} is relatively
compact.

Then ®Pk (xy) contains a subsequence converging to an element of Wi (0) \ {0}.

As an easy consequence of Theorem B.2, Brunovsky and Polacik have obtained the
following more classical theorem.

THEOREM B.4. — Assume that the hypotheses (HB.1) (or (HB.1bis) ) and (HB.2) hold. Let
xo be a point in X such that the fixed point 0 belongs to the w-limit set w(xg) of xo and such
that w(xg) is contained in the set Fix(®) of fixed points of ®. Assume that either X, is finite-
dimensional or that the trajectory ®"(x¢), n = 1,2,..., of x¢ is relatively compact. Assume
moreover that one of the following two properties holds:

1. dim X€¢ = 1 and the trajectory ®"(x¢), n = 1,2,..., of xq is relatively compact.
2. dim X¢ = m < oo and there is a submanifold M C X with dim M = m such that
0 e M C Fix(®).

Then w(xg) = {0}.

Proof. — We give the proof, because it is short.

First assume that (2) holds. Then, if § > 0is small enough, the sets M and W}%_(0) coincide
since M C W* (0), and they both have the same dimension m. The assumption M C Fix(®)

loc
thus implies that 0 is stable for the map <I>|WC Since W (0) \ {0} contains no fixed point
lo

0)" loc

if § > 0 is small enough and since w(xg) € FiCX((Zp), Theorem B.2 implies that w(x¢) = {0}.
In the case (1), we first remark that, since the trajectory ®"(xg), n = 1,2,..., of x¢ is
relatively compact and since w(xg) consists only of fixed points, the omega-limit set w(xg) is
connected (see for example [20, Lemma 2.7]). If w(x¢) contains more than one fixed point,
then all fixed points near 0 are contained in W¢ _(0) and thus 0 belongs to a curve of fixed
points. If 0 belongs to the relative interior of this curve, one applies the case (2), which leads to
a contradiction. If 0 does not belong to the relative interior of this curve, we consider a fixed
point y* near 0, contained in the relative interior of this curve of fixed points and in w(xy).
Replacing ® by ®(y* + x), we are now back to the case (2). Applying the case (2), we obtain
that w(xo) = y*, which also leads to a contradiction. O

In Section 3.2 we encountered the case of an element ug € ¢H#,,q for which we did not
know that the forward trajectory {Sq(#)u¢ | > 0} is bounded. We used there the property
that W, (0) is exponentially attractive in X with asymptotic phase together with the fact that
dim X€¢ = 1, to obtain that S, (¢) has the stability property (3.40) (or (B.2)). Then, we applied
Theorem B.2 to the time t-map ® = S, (), where t > 0 is small enough, in order to obtain
the convergence result. Since these arguments did not use the particular properties of Sy (),

this allows us to state the following general result.
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COROLLARY B.5. — Assume that the map ® = S(t) where S(t) : Rx X — X isa
continuous dynamical system and that T > 0 is a small enough positive time, so that ® = S(t)
satisfies the hypotheses (HB.1) (or (HB.1bis) ) and (HB.2). Let x¢ be a point in X such that the
equilibrium point 0 belongs to the w-limit set w(xgy) of xo and such that w(xg) is contained in
the set of equilibrium points of S(t). Assume that either X, is finite-dimensional or that the
trajectory ®" (xo),n = 1,2, ..., of xq is relatively compact. Assume moreover that dim X¢ = 1.
Then w(xg) = {0}.
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