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CHARACTERIZATION OF LARGE ENERGY SOLUTIONS OF
THE EQUIVARIANT WAVE MAP PROBLEM: 11

By R. COTE, C. E. KENIG, A. LAWRIE, and W. SCHLAG

Abstract. We consider 1-equivariant wave maps from R!*2 — S? of finite energy. We establish a
classification of all degree one global solutions whose energies are less than three times the energy
of the harmonic map Q. In particular, for each global energy solution of topological degree one, we
show that the solution asymptotically decouples into a rescaled harmonic map plus a radiation term.
Together with a companion article (Part I), where we consider the case of finite-time blow up, this gives
a characterization of all 1-equivariant, degree 1 wave maps in the energy regime [E(Q),3E(Q)).

1. Introduction. This paper is the companion article to [7]. Here we con-
tinue our study of the equivariant wave maps problem from 1+ 2 dimensional
Minkowski space to 2-dimensional surfaces of revolution. In local coordinates on
the target manifold, (M, g), the Cauchy problem for wave maps is given by

OU* = —*PT,(U)0.U' 9507
(U,0,U)]s=0 = (U, Uy),

(1.1)

where Ffj are the Christoffel symbols on T'M. As in [7] we will, for simplicity,

restrict our attention to the case when the target (M, g) = (S?, g) with g the round

metric on the 2-sphere, S2. Our results here apply to more general compact surfaces

of revolution as well, and we refer the reader to [7, Appendix A] for more details.
In spherical coordinates,

(,w) — (sinypcosw,sinsinw,cos 1)),

on S?, the metric, g, is given by the matrix g = diag(1,sin?(z/)). In the case of
1-equivariant wave maps, we require our wave map, U, to have the form

U(t,r,w) = (Y(t,r),w) — (siny(t,r)cosw, sinty(t,r)sinw, cosp(t,r)),

where (r,w) are polar coordinates on R?. In this case, the Cauchy problem (1.1)
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reduces to

1 sin(29))
¢tt - 1[)7"7" - ;7/}7“ + 27“2

(¥, 9¢)li=0 = (0, %1).

Wave maps exhibit a conserved energy, which in this equivariant setting is given
by

=0

(1.2)

sin? (1))

r2

EU,0U)(t) = E(Y, ) (t) = /O°° (ﬂltz + 2+ > rdr = const.,

and they are invariant under the scaling

—

1/1(’577“) = (T/J(tar)a?ﬁt(t’"”)) — (TZJ(At?Ar)?)‘T/}t(At)‘T))’

The conserved energy is also invariant under this scaling which means that the
Cauchy problem under consideration is energy critical.

We refer the reader to [7] for a more detailed introduction and history of the
equivariant wave maps problem.

As in [7], we note that any wave map 1/7 (t,7) with finite energy and continuous
dependence on t € [ satisfies ¢(t,0) = mm and (¢, o) = nm for all ¢ € [ for fixed
integers m,n. This determines a disjoint set of energy classes

(1.3)  Humn = {(0,91) | E(o, 1) < oo and 1(0) = m, 1)p(e) = n7}.

We will mainly consider the spaces H , and we denote these by H,, := Ho . In
this case we refer to n as the degree of the map. We also define H = J,,c;, Hn to
be the full energy space.

In our analysis, an important role is played by the unique (up to scaling) non-
trivial harmonic map, Q(r) = 2arctan(r), given by stereographic projection. We
note that () solves

sin(2Q) '

1
(1.4) er + ;QT = 272

Observe in addition that ((),0) € H; and in fact (@,0) has minimal energy in #;
with £(Q) := £(Q,0) = 4. Note the slight abuse of notation above in that we will
denote the energy of the element (Q,0) € H; by £(Q) rather than £(Q,0).

—

Recall that in [7] we showed that for any data ¢)(0) in the zero topological
class, Ho, with energy £(1) < 2€(Q) there is a corresponding unique global wave
map evolution (¢, 7) that scatters to zero in the sense that the energy of 1(¢) on
any arbitrary, but fixed compact region vanishes as ¢ — oo, see [7, Theorem 1.1]. An

equivalent way to view this scattering property is that there exists a decomposition

(1.5) U(t) = Br(t) +op(l) ast— oo
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where Jr,(t) € Hy solves the linearized version of (1.2):

1 1
(1.6) o1t — prr — —pr + 59 =0.
T T

This result was proved via the concentration-compactness/rigidity method which
was developed by the second author and Merle in [17, 18], and it provides a com-
plete classification of all solutions in H with energy below 2£(Q), namely, they
all exist globally and scatter to zero. We note that this theorem is also a conse-
quence of the work by Sterbenz and Tataru in [34] if one considers their results in
the equivariant setting.

In [7] we also study degree one wave maps, 1 (t) € H;, with energy & () =
E(Q) +n < 3£(Q) that blow up in finite time. Because we are working in the
equivariant, energy critical setting, blow-up can only occur at the origin in R? and
in an energy concentration scenario. We show that if blow-up does occur, say at
t = 1, then there exists a scaling parameter \(t) = o(1 —t), a degree zero map
@ € Hg and a decomposition

—

(1.7) P(t,r)=3r)+(Q(r/A(t)),0)+oxy(l) ast—1.

Here we complete our study of degree one solutions to (1.2), i.e., solutions that
lie in H, with energy below 3€(Q), by providing a classification of such solutions
with this energy constraint. Since the degree of the map is preserved for all time,
scattering to zero is not possible for a degree one solution. However, we show that a
decomposition of the form (1.7) holds in the global case. In particular we establish
the following theorem:

THEOREM 1.1. (Classification of solutions in #; with energies below 3£(Q))
Let 1(0) € H; and denote by 1 (t) € H, the corresponding wave map evolution.
Suppose that 1 satisfies

—,

E(W) = E(Q)+n<3E(Q).

Then, one of the following two scenarios occurs:

(1) Finite time blow-up: The solution 15 (t) blows up in finite time, say att = 1,
and there exists a continuous function, X : [0,1) — (0,00) with A(t) = o(1 —t), a
map @ = (vo,¢1) € Ho with E(F) =n, and a decomposition

(1.8) D(t) = G+ (Q(-/A\1)),0) +&t)

such that €(t) € Ho and €(t) — 0in Hypas t — 1.
(2) Global Solution: The solution 1)(t) € H, exists globally in time and there
exists a continuous function, X : [0,00) — (0,00) with \(t) = o(t) as t — o, a
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solution Jr,(t) € Ho to the linear wave equation (1.6), and a decomposition

—

(1.9) ¥(t) =GL(t)+(Q(/A®)),0) +€t)
such that €(t) € Ho and €(t) — 0in Hy as t — oo.

Remark 1. One should note that the requirement A(t) = o(t) as t — o in part
(2) above leaves open many possibilities for the asymptotic behavior of global
degree one solutions to (1.2) with energy below 3€(Q). If A(t) — Ao € (0,0) then
our theorem says that the solution 1 (¢) asymptotically decouples into a soliton,
(), plus a purely dispersive term, and one can call this scattering to Q,. If A\(t) —
0 as t — oo then this means that the solution is concentrating £(Q) worth of energy
at the origin as t — oo and we refer to this phenomenon as infinite time blow-up.
Finally, if A(¢) — oo as ¢ — oo then the solution can be thought of as concentrating
€(Q) worth of energy at spacial infinity as ¢ — o and we call this infinite time
flattening.

We also would like to highlight the fact that global solutions of the type men-
tioned above, i.e., infinite time blow-up and flattening, have been constructed in
the case of the 3d semi-linear focusing energy critical wave equation by Donninger
and Krieger in [10]. No constructions of this type are known at this point for the en-
ergy critical wave maps studied here. In addition, a classification of all the possible
dynamics for maps in #; at energy levels > 3£(Q)) remains open.

Remark 2. We emphasize that [7] goes hand-in-hand with this article and the
two papers are intended to be read together. In fact, part (1) of Theorem 1.1 was
established in [7, Theorem 1.3]. Therefore, in order to complete the proof of Theo-
rem 1.1 we need to prove only part (2) and the rest of this paper will be devoted to
that goal. The broad outline of the proof of Theorem 1.1 (2) is similar in nature to
the proof of part (1). With this is mind we will often refer the reader to [7] where
the details are nearly identical instead of repeating the same arguments here.

Remark 3. We remark that Theorem 1.1 is reminiscent of the recent works of
Duyckaerts, the second author, and Merle in [11, 13, 12, 14] for the energy critical
semi-linear focusing wave equation in 3 spacial dimensions and again we refer
the reader to [7] for a more detailed description of the similarities and differences
between these papers.

Remark 4. Finally, we would like to note that the same observations in [7,
Appendix A] regarding 1-equivariant wave maps to more general targets, higher
equivariance classes and the 4d equivariant Yang-Mills system hold in the context
of the global statement in Theorem 1.1.

Acknowledgments. This first author wishes to thank the University of Chicago
for its hospitality during the academic year 2011-12.
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2. Preliminaries. For the reader’s convenience, we recall a few facts and
notations from [7] that are used frequently in what follows. We define the 1-
equivariant energy space to be

H={UcH xL*(R%:S?) |Uop=pol, Vp e SO2)}.

‘H is endowed with the norm
@D ETO) = 100 ey = [, (AU +VUE) de

As noted in the introduction, by our equivariance condition we can write
U(t,r,w) = (¢¥(t,r),w) and the energy of a wave map becomes

sin’ (1))
2

22)  EU,QU)E) = EW,d)(t) = /Om<¢§+w$+ >Tdr:c0nst.

We also define the localized energy as follows: Let 71,75 € [0,00). Then

Er (1)) = / (mm szw))rdr.

Following Shatah and Struwe [29], we set

(U
(2.3) G(v) ::/0 sinp| dp.

Observe that for any (1),0) € H and for any 71,7, € [0,e0) we have

p(r2)
[ rsingl o
p(r1)

[ IsinGu) oy ar

71

G (¢ (r2)) = G4 (r1))| =

(2.4)

1
Zem
< 25“ (1,0).

We also recall from [7] the definition of the space H x L?.

2.5) (W0, )3 1o = /0 <¢1 (6o)2 %)r "

We note that for degree zero maps (1o, 11) € Ho the energy is comparable to the
H x L? norm provided the L norm of 1)y is uniformly bounded below 7. This
equivalence of norms is detailed in [7, Lemma 2.1], see also [8, Lemma 2]. The
space H x L? is not defined for maps (3/9,%1) € H1, but one can instead consider
the H x L? norm of (109 — Q,0) for A € (0,0), and Q(r) = Q(r/)). In fact, for
maps ¢ € H; such that £(¢)) — £(Q) is small, one can choose A > 0 so that

—,

(0 = Q1) 3712 = E() = £(Q).



214 R. COTE, C. E. KENIG, A. LAWRIE, AND W. SCHLAG

This amounts to the coercivity of the energy near () up to the scaling symmetry.
For more details we refer the reader to [6, Proposition 4.3], [7, Lemma 2.5], and

[2].

2.1. Properties of global wave maps. We will need a few facts about
global solutions to (1.2). The results in this section constitute slight refinements and
a few consequences of the work of Shatah and Tahvildar-Zadeh in [31, Section 3.1]
on global equivariant wave maps and originate in the work of Christodoulou and
Tahvildar-Zadeh on spherically symmetric wave maps, see [4].

PROPOSITION 2.1. Let zE(t) € H be a global wave map. Let 0 < X\ < 1. Then
we have

(2.6) limsupELA((1) — 0 as A — oo,

t—so0

In fact, we have
2.7) ELAW() — 0 ast, A—s oo for A< (1 -t

We note that Proposition 2.1 is a refinement of [31, (3.4)], see also [4, Corol-
lary 1] where the case of spherically symmetric wave maps is considered. To prove
this result, we follow [4, 31, 29] and introduce the following quantities:

-2
sin“ (¢ (t,r
eft,r) 1= 3(t,) + (e, ) + LT
m(t,r) =2 (t, 7). (L, 7).
Observe that with this notation the energy identity becomes:
1
(2.8) Oe(t,r) = =0, (rm(t,r)),
r
which we can conveniently rewrite as

2.9 Oc(re(t,r)) —Op(rm(t,r)) =0.

Using the notation in [4], we set

and we define null coordinates

u=t—r, v=t+r.
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Next, for 0 < X < 1 set

(2.10) E(u) = %i o? (u,v) dv
@.11) F (uoyur) = 1290/“' 8(u,v) du.

Also, let %pi denote the interior of the forward (resp. backward) light-cone with
vertex at (¢,7) = (p,0) for p > 0in (¢,7) coordinates.

Asin [31, Section 3.1], one can show that the integral in (2.10) and the limit in
(2.11) exist for a wave map of finite energy, see also [4, Section 2] for the details
of the argument for the spherically symmetric case.

By integrating the energy identity (2.9) over the region (¢} \¢,/ ) N€,,, where
0 < ug < u; < vy, we obtain the identity

U (%) Vo
/ ﬁz(u,v)du:/ az(uo,v)dv—/ o (uy,v) dv.
o uQ uj
Letting vg — o we see that
(2.12) OSQ(UO,’LH) :g()(’LLo)—g()(ul),
which shows that & is decreasing. Next, note that

F(u,u2) = F (u,ur) + F (ur,u2) 2 F (u,ur)

for uy > uy, and thus .# (u, u; ) is increasing in u;. % (u, u;) is also bounded above
by & (u) so

F(u) = lim Z(u,u;)

U —>o°
exists and, as in [31, 4], we have
(2.13) F(u) — 0 asu — oo,

Finally note that the argument in [4, Lemma 1] shows that for all 0 < A < 1 we
have

(2.14) E(u) — 0 asu — oo,

which is stated in [31, (3.3)]. To deduce (2.14), follow the exact argument in [4,
proof of Lemma 1] using the relevant multiplier inequalities for equivariant wave
maps established in [29, proof of Lemma 8.2] in place of [4, equation (6)]. We can
now prove Proposition 2.1.



216

R. COTE, C. E. KENIG, A. LAWRIE, AND W. SCHLAG

Figure 1. The quadrangle 2 over which the energy identity is integrated is the gray region above.

Proof of Proposition 2.1. Fix A € (0,1) and § > 0. Find Ay and Ty large

enough so that
0<A((1-A)t) <0

0< Z(A) <,

X = (4,2t — A)

forall A > Agand ¢t > Tp. In (u,v)-coordinates consider the points

X1 = ((1 - A)tv (1 +)‘)t)7
X3 = (A777)7
where © is very large. Integrating the energy identity (2.9) over the region (2

bounded by the line segments X X5, X, X3, X3X4, X4X| we obtain,
5 (1-\)t
B2 (u,0) du

SAGO) =~ [ avdot [
2t—A A
+/ o?((1=N\)t,v)dv.
(14Nt
Letting © — oo above and recalling that .% (u,w; ) is increasing in u; we have
E5 MW (1) < E((1 =N+ F(A,(1-N)1)
< E((1=Mt)+ .7 (A).

The proposition now follows from (2.14) and (2.13).
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We will also need the following corollaries of Proposition 2.1:

COROLLARY 2.2. Let 9)(t) € H be a global wave map. Then

T rt—A
(2.15) limsup — / Y (t,r)rdrdt — 0 as A — oo,
T—e 1'Ja Jo

Proof. We will use the following virial identity for solutions to (1.2):
(2.16) Oy (r*m) — B, (r*}p? 4+ r*ap? — sin® o) 4 2r1p? = 0.

Now, fix § > 0 so that § < 1/3 and find Ay, Tp so that for all A > A and t > T
we have

Then,

/ Y by dr < £(5(0)5t
0

and as long as we ensure that A < 1/3¢, we obtain

2t/3
/ e(t,r)r*dr < 6t.
6t

This implies that
2t/3 2t/3
/ e(t,r)r’dr <C6t and / e(t,r)r dr < Cot2.
0 0
Let x : R — [0,1] be a smooth cut-off function such that x(x) = 1 for |z| < 1/3,

x(z) =0 for |z| > 2/3 and x/(x) < 0. Then, using the virial identity (2.16) we
have

%/Omm(tvr)X("”/t)Tsz = /Omat(sz(t,T))X(T/t) dr—t% /()w¢t¢rT3X/(7‘/t) dr
= /m O (r* (Yf +47) — sin®(¥))x(r/t) dr
0 oo
—2/0 @7 (t,r)x(r/t)rdr+O(5)
=5 :(TW? +4p2) —sin())x (/) rdr

—2/0m¢f(t,r)x(r/t)rdr+0(5)
= —2/Omzpt2(t,r)x(r/t)rdr+0(5).
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Integrating in ¢ between O and 7" yields

T o
/ / W2t r)x(r/t)rdrdt < CST
0 0

with an absolute constant C' > 0. By the definition of x(x) this implies

T t/3
/ / Yi(t,r)rdrdt < OST.
o Jo

Next, note that we have

T rt—A
/ wtz(t,r)rdrdtg dt+/ / e(t,r)rdrdt
A Jt/3 To

—,

(To— A)E() + (T —Tp)d.

Therefore,

1 T prt—A TO .

T/A /O Vit ) rdrdt < C8+ TEW).
Hence,

1 T t—A
limsup—/ Vit r)rdrdt < C§
T—eo A JO

for all A > Ay, which proves (2.15). ]

COROLLARY 2.3. Let 1(t) € H be a smooth global wave map. Recall that
Y (t) € H implies that there exists k € Z such that for all t we have 1(t, o) = k.
Then for any A > 0 we have

(2.17) [9(t) = ¥ (t,00) | L=(rzaey —> 0 ast — eo.

Before proving Corollary 2.3, we can combine Proposition 2.1 and Corol-
lary 2.3 to immediately deduce the following result.

COROLLARY 2.4. Let z/_;(t) € H be a global wave map. Let 0 < \ < 1. Then
we have

(2.18) liltnsup () = (¥ (t,22),0) 3 12 rpcrcta) —> 0 as A—eo.
—>00

Proof. Say ¥(t) € Hy. Observe that Corollary 2.3 shows that for ¢ large
enough we have, say,

(t,r) — k| < oo
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for all ¢t > tg and r > At. This in turn implies that for ¢t > ¢to we can find a C' > 0
such that

l(t,r) —kr|* < Csin®((t, 7)) VE>to, > At
Now (2.18) follows directly from (2.6). U
The first step in the proof of Corollary 2.3 is the following lemma:

LEMMA 2.5. Let J(t) € H be a smooth global wave map. Let R > 0 and sup-

pose that the initial data ”(E(O) = (vo0,%1) € H; satisfies supp(0r)o),supp(¢) C
B(0, R). Then for any t > 0 and for any A <t we have

— [A+R
(2.19) [4(6) =t 20| =(r2e-) < VEW)y t_LA'

Proof. By the finite speed of propagation we note that for each ¢ > 0 we have
supp(¢(t)) C B(0, R+t). Hence, for all t > 0 we have

wlt.r) = v(t=) < [ o) dr

T

R 3/ R 3
S( Hzp?%(t,r')?‘/d?‘/) </ H%d?“/)
< Vet e (ZF).

Next observe that if » > ¢ — A then

log <¥> <log <1 + @) <log <1 + ?jj) < ?jj

This proves (2.19). O

Proof of Corollary 2.3. Say (t) € Hy, that is 1(t,e0) = kx for all ¢. First
observe that by an approximation argument, it suffices to consider wave maps
Y (t) € Hy, with initial data ¢ (0) = (vo,%1) € Hy with

supp(9-10),supp(¢1) C B(0, R)

for R > 0 arbitrary, but fixed. Now, let ¢,, — oo be any sequence and set

A, = t,.

Then, for each r > At,, we have

[P (tn, ) — k| < [Jh(tn) — k7l L=(ap<r<t,—an) + 10 (E0) = kT = (rt,— 4,0
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By Lemma 2.5 we know that

220)  |[o(tn) = k7l zo(r>t,-a,) < VEWD)

Hence it suffices to show that
|9(tn) = kTl L= (A <r<tn—A,) — 0 asn — oo.
To see this, first observe that (2.20) implies that
U(ty,tyn —Ap) — k7
as n — oo. Therefore it is enough to show that

(2.21) M’(tn) - T/J(tnatn - An)”L”(AtnSTStn*An) — 0 asn — oo

With G defined as in (2.3) we can combine (2.4) and Proposition 2.1 to deduce that
for all r > \t,, we have

GO (1) — G Wl — An)| < 588 (1)) — 0

as n — oo, This immediately implies (2.21) since G is a continuous, increasing
function. O

3. Profiles for global degree one solutions with energy below 3£(Q). In
this section we carry out the proof of Theorem 1.1(2). We start by first deducing the
conclusions along a sequence of times. To be specific, we establish the following
proposition:

PROPOSITION 3.1. Let ¢(t) € H, be a global solution to (1.2) with

—,

E(W) =E(Q)+n<3E(Q).

Then there exist a sequence of times T, — oo, a sequence of scales \,, <K Tn, a
solution J,(t) € Hy to the linear wave equation (1.6), and a decomposition

-

(3.1 ¢(Tn) = @L(Tn)"i'(Q(/)‘n)vo)_‘_g(Tn)
such that €(t,,) € Ho and &€(1,,) — 0 in H x L* as n — oo.

To prove Proposition 3.1 we proceed in several steps. We first construct the se-
quences 7, and \,, while identifying the large profile, Q(-/\;). Once we have done
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this, we extract the radiation term ¢y, . In the last step, we prove strong convergence
of the error

€(n) :== 7[;(7%) —&L(mn) = (Q(-/An),0) — 0

in the space H x L?.

3.1. The harmonic map at ¢t = +-o. Here we prove the analog of Struwe’s
result [35, Theorem 2.1] for global wave maps of degree different than zero, i.e.,
P (t) € H\Ho for all ¢ € [0,0). This will allow us to identify the sequences 7,,, A\,
and the harmonic maps Q(-/\,,) in the decomposition (3.1).

THEOREM 3.2. Let 9 (t) € H\Ho be a smooth, global solution to (1.2). Then,
there exists a sequence of times t,, — o and a sequence of scales \,, < t,, so that
the following results hold: Let

(3.2 Un(t,r) = (Y (tn + Ant, Anr), Anth (b + Ant, AnT))

be the global wave map evolutions associated to the initial data

Dn (1) 1= (Y (tny M)y AW (ts Any ).

Then, there exists Ay > 0 so that

Y — (£Q(-/20),0) in LF([0,1); H' x L?)joc.

We begin with the following lemma, which follows from Corollary 2.2 and is
the global-in-time version of [7, Corollary 2.9]. The statement and proof are also
very similar to [12, Lemma 4.4] and [11, Corollary 5.3].

LEMMA 3.3. Let ¢)(t) € H be a smooth global wave map. Let A : (0,00) —
(0,00) be any increasing function such that A(t) /e as t — oo and A(t) <t for
all t. Then, there exists a sequence of times t, — oo such that

tn+o  pl—A(t
(3.3) lim sup —/ / t r)rdrdt =0.

nﬁ°°0>0 o

Proof. The proof is analogous to the argument given in [11, Corollary 5.3]. We
argue by contradiction. The existence of a sequence of times ¢,, satisfying (3.3) is
equivalent to the statement

VA(t) A oo with A(t) < tast — o, v5>o YTy >0, 3r > T)

t—A(T
so that sup — / / t r)rdrdt <6.
o>00
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So we assume that (3.3) fails. Then,

A(t) Seowith A(t) <tast—>eo, 30 >0, 3T >0, V7 > Ty, Jo >0

(3.4) t—A(T)
so that — / / tr rdrdt > 9.

Now, by Corollary 2.2 we can find a large A; and a T} = T (A1) > Tj so that for
all T' > T} we have

1 T t—Ay .
(3.5) —/ / P2 (t,r)rdrdt < 6/100.
T Ja, Jo

Since A(t) " e we can fix T' > T large enough so that A(t) > A forall ¢t > T.
Define the set X as follows:

T+o rt—A(T
oc>0: —/ / trrdrdt>5

Then X is nonempty by (3.4). Define p := sup X. We claim that p <T'. To see this
assume that there exists o € X so that o > T'. Then we would have

T+o<2o0.

This in turn implies, using (3.5), that

T+o rt—A(T
/ t r)rdrdt <

T+o t—Ay i
/ / P2 (t,r)rdrdt <6/100
0

where we have also used the fact that A(T') > A;. This would mean that

T+o rt—A(T
/ / 2(t,r)rdrdt < 6/50,

which is impossible since we assumed that o € X. Therefore p <T'. Moreover, we
know that

T+p pT—-A(T
(3.6) / / t r)rdrdt > dp.

Now, since T'+ p > T > T} > Ty we know that there exists o > 0 so that

T+pto pt—A(T+p) |
/ / A (t,r)rdrdt > do.

T+p

T+o
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Since A(t) is increasing, we have A(T") < A(T + p) and hence the above implies
that

T+pt+o pt—A(T
3.7) / / t r)rdrdt > do.
T+p

Summing (3.6) and (3.7) we get

T+p+o pt—A(T
/ / 2(t,r)rdrdt > 6(o +p),

which means that p+ o € X. But this contradicts that fact that p = sup X. O

The rest of the proof of Theorem 3.2 will follow the same general outline of
[35, proof of Theorem 2.1]. Let 1[7 (t) € H; be a smooth global wave map.

We begin by choosing a scaling parameter. Let Jo > 0 be a small number, for
example 6y = 1 would work. For each ¢ € (0, o) choose A(t) so that

(3.8) 5o < EXD (1)) < 260,

Then using the monotonicity of the energy on interior cones we know that for each
|7| < A(t) we have

39  &VWt+7) <&t +1) <&M W(1)) < 26%.
Similarly, we have
(3.10) 5o < EXT(G(t 4 7)) < XVt +7)).

LEMMA 3.4. Let )(t) € H\Ho and A(t) be defined as above. Then we have
At) < tast— oo

Proof. Suppose 1/7 € Hy, for k > 1. It suffices to show that for all A > 0 we have
A(t) < At for all ¢ large enough. Fix A > 0. By Corollary 2.3 we have

(3.11) |9(t) = k|| L=(r=aey — 0

as t — oo. For the sake of finding a contradiction, suppose that there exists a se-
quence t,, — oo with \(¢,,) > At,, for all n € N. By (2.4) and (3.11) we would then
have that

E N (B(tn)) = 3 (8 (tn) > 2G((tn, M) — 2G (k) > 4 > 200,
which contradicts (3.8) as long as we ensure that gy < 2. O

We can now complete the proof of Theorem 3.2.
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Proof of Theorem 3.2. Let \(t) be defined as in (3.8). Choose another scaling
parameter A(t) so that A(t) — eo and () < A(t) < t for t — oo, for example one
could take A(t) := max{\(t),t'/?} where A(t) := supg.,; A(s). By Lemma 3.3
we can find a sequence t,, — oo so that by setting \,, := )\_(t;) and A, := A(t,) we

have
1 tn+An t—A, .
lim —/ / P2 (t,r)rdrdt = 0.
tn 0

n—e \p,
Now define a sequence of global wave maps zﬁn(t) € H\Ho by
Qﬁn (t,’l") = (1[)(25” + Ant, Anr)a Anw(tn + Ant, )\nr))

and write the full wave maps in coordinates on S? as U, (t,r,w) := (1 (t,7),w).
Observe that we have

1 oo
(3.12) / / Y2 (t,r)rdrdt — 0 asn — oo
0 Jo
where 7, := (t,, — Ay)/An — o0 as n — oo by our choice of A,,. Also note that
E@Wn(t)) = EW(tn+Ant)) = E() = C.

This implies that the sequence Jn is uniformly bounded in L‘;"(H !'x L?). Note
that (2.4) implies that 1), is uniformly bounded in L7 L:;. Hence we can extract a
further subsequence so that

U — o weakly in L2(H" x L?)joc
and, in fact, locally uniformly on [0, 1) X (0,e0). By (3.12), the limit
Gu(tyr) = (Ve(r),0) V(t,7) €[0,1) x (0,)

and is thus a time-independent weak solution to (1.2) on [0, 1) x (0, ). This means
that the corresponding full, weak wave map U..(t,7,w) = U (1,w) 1= (1 (r),w) is
a time-independent weak solution to (1.1) on [0, 1) x R?\ {0}. By Hélein’s theorem
[16, Theorem 2],

U.:R*\ {0} — §?

is a smooth finite energy, co-rotational harmonic map. By Sacks-Uhlenbeck [27],
we can then extend UL, to a smooth finite energy, co-rotational harmonic map U :
R? — S2. Writing U (r,w) = (¢ (r),w), we have either 1. = 0 or Y. = +Q(-/\o)
for some \g > 0.

Following Struwe, we can also establish strong local convergence

(3.13) U — (1, 0)  in L2([0,1); H' x L?)10c
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using the equation (1.1) and the local energy constraints from (3.9):

which hold uniformly in 7 for |¢| < 1. For the details of this argument we refer
the reader to [35, Proof of Theorem 2.1(ii)]. Finally we note that the strong local
convergence in (3.13) shows that indeed .. Z O since by (3.10) we have

80 < & (Pu (1))

uniformly in n for each |¢| < 1. Therefore we can conclude that there exists Ao > 0
80 that Ve (1) = +Q(r /o). O

As in [7], the following consequences of Theorem 3.2, which hold for global
degree one wave maps with energy below 3£ (@), will be essential in what follows.

COROLLARY 3.5. Let 1(t) € Hy be a smooth global wave map such that

-,

E(Y) <3E(Q). Then we have
(3.14) U —Q(-/N) — 0 asn — eoin L7([0,1); H)ic,
with ¥, (t,7), {tn}, {\n}, and \g as in Theorem 3.2.

Corollary 3.5 is the global-in-time analog of [7, Corollary 2.13]. For the details,
we refer the reader to [7, Proof of Lemma 2.11, Lemma 2.12, and Corollary 2.13].
At this point we note that we can, after a suitable rescaling, assume, without loss
of generality, that \g in Theorem 3.2, and Corollary 3.5, satisfies A\g = 1.

Arguing as in [7, Proof of Proposition 5.4] we can also deduce the following
consequence of Theorem 3.2.

PROPOSITION 3.6. Let ¥(t) € Hy be a smooth global wave map such that
E() < 3E(Q). Then, there exists a sequence ., — oo, a sequence of times T, — oo,
and a sequence of scales \,, < 1, with c, Ay, << Ty, SO that

(a) As n — oo we have

Tn—An

(3.15) lim (1, r)rdr — 0,
n—e Jo
where A,, — oo satisfies A\, < Ay, < Th.
(b) As n — oo we have

(3.16)
im [T (r/An)
n—es [

¢T(Tn7r) - Cr Iy

r2

* ) _wan)f) rdr=0.
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Remark 5. Proposition 3.6 follows directly from Lemma 3.3, Corollary 3.5
and a diagonalization argument. As mentioned above, we refer the reader to [7,
Proposition 5.4(a), (b)] for the details. Also note that 7,, € [t,,,t,, + \,,] Where t,, —
o is the sequence in Proposition 3.6. Finally A, := A(t,) is the sequence that
appears in the proof of Theorem 3.2.

As in [7] we will also need the following simple consequence of Proposi-
tion 3.6.

COROLLARY 3.7. Let au,, A\, and T, be defined as in Proposition 3.6. Let
Bn — o be any sequence such that 5, < coay, for some cy < 1. Then, for every
0 < ¢1 < Cy such that Crcy < 1 there exists By, with c1 8, < Bn < C28,, such that

(3.17) U(Th, Budn) — T asn — oo,

3.2. Extraction of the radiation term. In this section we construct what
we will refer to as the radiation term, ¢y, (t) € Ho in the decomposition (3.1).

—,

PROPOSITION 3.8. Let 1)(t) € H, be a global wave map with E(v) = E(Q) +
1 < 3E(Q). Then there exists a solution ¢r,(t) € Hy to the linear wave equation
(1.6) so that for all A > 0 we have

G18)  [[9() = (1.0) = BL() | ur2por-a) —> 0 ast — oo,
Moreover, for n large enough we have
(3.19) E(PrL(mn)) < C <2£(Q).

Proof. To begin we pick any «,, — oo and find 7,,, A,, as in Proposition 3.6.
Now let 3,, — < be any other sequence such that 3,, < «,. By Corollary 3.7 we
can assume that

(3.20) Y(Tns BnAn) —> T

as n — oo. We make the following definition:

T — ™= 1/}(7-717/871)%) r
(T, ) if B <7 <o

WT):{O if0 <7< By

(3.22)

V(Tp,m)  if Bpdp <7 <oo.
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We claim that ¢, := (¢2,4)) € H11 and £($,) < C < 2€(Q). Clearly ¢ (0) =7
and ¢? (so) = 7. We claim that

(3.23) E5a, (D) =E5 5 (V(T0)) < n+0n(1).

Indeed, since 1 (7p, BaAn) — 7 we have G(¢)(7, BAn)) — 2= 3E(Q) as n — oo
Therefore, by (2.4) we have

EPM ((7),0) = 2G (T, Budn)) = E(Q) — 0,(1)

for large n which proves (3.23) since £5 , (¥()) = &5 (1(7)) — €5 (1 (7).
We can also directly compute E(’? nAn (¢2,0). Indeed,

BnAn _ 2
5(?”)\”(525270):/0 <7T ﬂ)é:z)\,fn)\n)) rdr

(70 BnAn) T)
d

)
BrnAn SIN ( B
+\/

0 T

,
< Clm—1(Tn, BpAn)|? — 0 asn — oo,

Hence &£(¢y) < 1+ 0,(1). This means that for large enough n we have the uniform
estimates &(¢,) < C < 2£(Q). Therefore, by [7, Theorem 1.1], (which holds with
exactly the same statement in ;1 as in Ho = Ho ), we have that the wave map
evolution $n(t) € H;,1 with initial data an is global in time and scatters to 7 as
t — =eo. The scattering statement means that for each n we can find initial data
5n, 1, so that the solution, S (t)¢_>'n L, to the linear wave equation (1.6) satisfies

16 (1) = (7,0) = S()bp Ll sz — 0 ast — oo,
Abusing notation, we set
G (t) == S(t—T3)fn,1-
By the definition of q_ﬁ'n and the finite speed of propagation observe that we have
On(t —Tn,m) =0, 1) Vr>t—Tp+ Bpin.
Therefore, for all fixed m we have
324)  [[P(t) — (m,0) - 5m7L(t)HHxL%QHmwmAm) — 0 ast— oo,
and, in particular

(325) ‘|$ﬂ - (71',0) - %m,L(Tn)‘|H><L2(r27n—7—m+6m)\m) — 0 asn— oo
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Now set QBn = (90%7 90711) = (¢%7 ¢711) - (71', 0) € Ho. We have g(&n) <C< 25(@) by
construction. Therefore the sequence S(—7,), is uniformly bounded in H x L?.
Let 31, = (¢%,¢} ) € Ho be the weak limit of S(—7,,)3, in H x L? as n — o, i.e.,

S(—7p)Pn — F weakly in H x L?

as n — oo. Denote by J,(t) := S(t)@L, the linear evolution of 7, at time ¢. Follow-
ing the construction in [1, Main Theorem] we have the following profile decompo-
sition for &,

(Tn,7)
k

(3.26) £y (%(ﬁé/k /), )\i I (N r/AZ;)> +7n(r)
j=2 "

S

Pn(r) =

where if we label ¢, =: !, 7, =:t}, and A, = 1 this is exactly a profile decom-
position as in [7, Corollary 2.15]. Now observe that for each fixed m we can write

Pn(r) — mL(Tn’T)

(Tm ) (Em,L(Tm T)

k R T .
3 (AN N Sy P /) 4350

j=2

(3.27)

and (3.27) is still a profile decomposition in the sense of [7, Corollary 2.15] for
the sequence &, (r) — (Em 1.(Tn,7). Since the pseudo-orthogonality of the H x L?
norm is preserved after sharp cut-offs, see [9, Corollary 8] or [7, Proposition 2.19],
we then have

= e 2
H@n - ¢m,L(Tn) ”HXLZ(TETn*TmJFBm)‘m)

= ||QBL (Tn) —&m L(Tn)||%{><L2(r27n77m+,3m>\m)
+ZH /Nt 12002 8oy I Vi 2002 B O (1)

Note that (3.25) implies that the left-hand side above tends to zero as n — oo.
Therefore, since all of the terms on right-hand side are nonnegative we can deduce
that

1BL(7) = ST a2y — 0 57— o,

Since,

—

Pr(Tn) — am,L(Tn) = S(ta) (¢ = S(~=Tim)m,L)
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is a solution to the linear wave equation, we can use the monotonicity of the energy
on exterior cones to deduce that

Combining the above with (3.24) we can conclude that

1(8) = (7.0) = GL(O) By 12(rmt s pny —> 0 25T,

The above holds for each m € N and for any sequence 3,, — o with 3,,, < co,.
Taking 3,, < o, and recalling that 7,,, — o0 and )\, are such that a,;, A\, < Ty
we have that 7,,, — 5, Ay, — o0 as m — oo, Therefore, for any A > 0 we can find m
large enough so that 7,,, — B Am > A, which proves (3.18) in light of the above.

It remains to show (3.19). But this follows immediately from the decomposi-
tion (3.26) and the almost orthogonality of the nonlinear wave map energy for such
a decomposition, see [7, Lemma 2.16], since we know that the left-hand side of
(3.26) satisfies

E(Pn) <C<28(Q)
for large enough n. U

Now that we have constructed the radiation term 7, () we denote by ¢(t) € Hy
the global wave map that scatters to the linear wave Jy,(t), i.e., F(t) € Ho is the
global solution to (1.2) such that

(3.28) |8(t) —Brt)||gxr: — 0 ast — oo.

The existence of such a ¢(t) € Hy locally around ¢ = +eo follows immediately
from the existence of wave operators for the corresponding 4d semi-linear equa-
tion. The fact that (¢) is global-in-time follows from [7, Theorem 1] since (3.19)
and (3.28) together imply that £(F) < 2£(Q).

We will need a few facts about the degree zero wave map (t) which we collect
in the following lemma.

LEMMA 3.9. Let () be defined as above. Then we have

(3.29) liItl'lSLlp ”Q(t)”HXLZ(Vft\zA) —0 as A—> oo,
oo
(3.30) lim £° 4(§(t)) — E(@) as A —> .

Proof. First we prove (3.29). We have

H‘ﬁ(t)H%{Xm(\riqu) < [|&(t) —QL(t)H%[xLz + ||90L(t)‘|%fo2(|r7t\2A)-
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By (3.28) the first term on the right-hand side above tends to 0 as ¢ — oo so it
suffices to show that

, 2
lim sup oL O 2(jr—tjza) —> 0 as A—eo.
.

Since ¢y (t) is a solution to (1.6) the above follows from [9, Theorem 4] by passing
to the analogous statement for the corresponding 4d free wave vy, () given by

rur(t,r) == or(t,r).

To prove (3.30) we note that the limit as ¢ — e exists for any fixed A due to the
monotonicity of the energy on exterior cones. Next observe that we have

(3.31) lim EEMBR)) < lim IGENFrxr2(reray —+ 0 as A— o0
by (3.29) and then (3.30) follows immediately from the conservation of energy. [

Now, observe that we can combine Proposition 3.8 and (3.28) to conclude that
for all A > 0 we have

(33D B0~ (1.0) = FOmerzpar gy — 0 ast—s e

With this in mind we define a(t) as follows:

—

(3.33) a(t) == (t) — @(t)
and we aggregate some preliminary information about a in the following lemma:

LEMMA 3.10. Let @(t) be defined as in (3.33). Then a(t) € H, for all t. More-
over,
e forall X > 0 we have

(3.34) [a@(t) = (7, 0) [ rxr2roae) —> 0 ast — oo,
o the quantity £(d(t)) has a limit as t — o and
(3.35) lim £(a(t)) = £($) ~ ().
Proof. By definition we have a(t) € H, for all ¢ since
a(t,0) =0, a(t,oo)=m.
To prove (3.34) observe that for every A < (1 — \)t we have
lla(t) — (7770)H%IXL2(7~2>¢) < ”1;(’5) - (WaO)H%{xU(Atgrgth)

+ H@(ﬂ ”%{xLZ(Atgrgth)
@) = (m,0)Fr 2(rsa)-
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Then (3.34) follows by combining (3.32), (3.29), and (2.18). To prove (3.35) we
first claim that

(3.36) lim 1im & 4 (¢(t)) = £().

A—oot—poo

Indeed, we have

oo

7 A(P()) = / [(e(t) = (1) +0e())* + (r(t) — @i (t) + o0 (1)) rdr

t—A
[ ST vl ,
t—A r
= &7 A(B®) + 19(t) = (m,0) = B() 7 K L2(r>t—A)

+0 (160 = (7.0) = BV 12051 |EO i1 21-0))
s Si(Y(t) = 7 — p(t) + £(1)) — sin’(p(t)

r

= &7 4(#(1) +0 (I8(8) — (m,0) = B(1) 250
+0 (VE@II®) ~ (7,0) = ZW)ll r2r21-a) ) s

which proves (3.36) in light of (3.30) and (3.32). In the third equality above we
have used the simple trigonometric inequality:

|sin® (2 —y+y) —sin’(y)| <2[sin(y)| |z —y|+ 2|z -y

Now, fix § > 0. By (3.29), (3.36), and (3.32) we can choose A, Ty large enough so
that for all ¢ > Ty we have

|G N e x 2(r<t—a) < 6,
&4 - £@)| <6,
“ﬁ(t) - (7770)”%{xL2(r2t—A) <90
Then for all t > Tj and A as above we can argue as before to obtain
E(d(t)) = & (@) + o) — (07 2p>r—a))
=& 450)+0 (VEDIAD sz

+O(H@;(t)H%{><L2(r§th)) +O(“6(t) - (WJO)H%{xLz(TEth))
=E() — &7 A1) +O(5)
=E(W) —E() +0(5),

which proves (3.35). U
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We will also need the following technical lemma in the next section.

LEMMA 3.11. For any sequence o, > 0 with A\, < 0, < T, we have

Tn+0n
(3.37) lim —/ / (t,r)rdrdt =

n—roo O'n

Proof. Fix 0 < A < 1. For each n we have

Tn+on 1 Tn+on At
/ (t,7) rdrdt<— / a2 (t,r)rdrdt
Tn Tn 0

1 Tn+0n oo
+— / a?(t,r)rdrdt.
Tn At

On

By (3.34) we can conclude that

lim sup/ a2(t,r)rdr=0.
At

n—roo t>7,

Hence it suffices to show that

Tn+on At
hm—/ / (t,r)rdrdt=0.
n—e oy Jo

Observe that for every n we have

Tn+on At 1 Tn+on At .
—/ / (t,r) rdrdt< — A (t,r)rdrdt
Tn 0

1 Tnt+0on At
+ — / gbz(t,r)rdrdt.
Tn 0

On

(3.38)

We first estimate the first integral on the right-hand side above. Let A,, — oo be the
sequence in Proposition 3.6, see also Remark 5, and let £,, — oo be the sequence in
Theorem 3.2. Recall that we have 7, € [t,,t, + Ay] and A\, < A, < 1.

Observe that for n large enough we have that for each ¢ € [7,,,7,, + 0, we have
M <t—A,,. Hence,

1 Tn+on A Tnton t—An |
— YA (t,r)rdrdt < —/ / P2 (t,r)rdrdt.
n 0

On Jr, 0
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Next, note that since A\, < o, we can ensure that for n large enough we have
A+ opn < 20,. Therefore,

1 Tnt+on

t-A,
— / 2 (t,r)rdrdt
0

() Tn

2 tnt+An+on t—Ap .

< / / A (t, ) rdrdt —s 0
)\n + On tn 0

as n — oo by Lemma 3.3.
Lastly we estimate the second integral on the right-hand side of (3.38). For each
A > 0 we can choose n large enough so that A\t < ¢ — A for each ¢ € [1,, 7, + 0]

So we have
Tn+0n At 1 Tn+0on t—A
/ G2 (t,r)rdrdt < —/ / O (t,r)rdrdt.
0 Tn 0

1
On Jr, On
Taking the limsup as n — o of both sides and then letting A — < on the right we
have by (3.29) that the left-hand side above tends to 0 as n — eo. This concludes

the proof. U

3.3. Compactness of the error. For the remainder of this section, we fix
an — oo and find 7, — e and \,, < T, as in Proposition 3.6. We define b, =
(bn,0,bn,1) € Ho as follows:

(3.39) bn,o(r)
(3.40) b

(Tn,7) = Q(r/An),

a(Tn,
a(Tp,r).

As in [7, Section 5.3], our goal in this subsection is to show that Bn — 0 in the
energy space. Indeed we prove the following result:

PROPOSITION 3.12. Define gn € Ho as in (3.39), (3.40). Then,
(3.41) 1Bnll ez — 0 asn —s oo,

Remark 6. In light of (3.28), it is clear that Proposition 3.12 implies Proposi-
tion 3.1.

Remark 7. The proof of Proposition 3.12 will follow the same strategy as [7,
Proposition 5.6] and we refer the reader to the outline given there for a general
overview of the proof.

We begin with the following consequences of the previous sections.

LEMMA 3.13. Let l_;n € Ho be defined as above. Then we have
(a) As n — o we have

(3.42) |bn. 1l — O.
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(b) As n — oo we have

(3.43) b0l z(r<anrn) — O-
(c) For any fixed A > 0 we have

(3.44) on0ll HH(r=rr,) — 0 asn — oo,
(d) There exists a C > 0 so that

(3.45) Eby) < C < 28(Q)

for n large enough.

Proof. To prove (3.42) fix 0 < A < 1 and observe that we have

ATh | ATn
/ b2 (r)rdr < wz(Tn,r)rdr—l—/ O (Tn,r) T dr
0

+ / a(Tn,r)zrdr.
ATn

Then (3.42) follows from (3.15), (3.29), and (3.34).
Next we prove (3.43). To see this, observe that for each n we have

The first term on the right-hand side tends to zero as n — e by (3.16). To estimate
the second term on the right-hand side we note that for fixed A > 0 we can find n
large enough so that o, A, < 7,, — A and so we have

lo () rranny < 100 rirr

Taking the limsup as n — oo on both sides above and then taking A — < on the
right and recalling (3.29) we see that the limit as n — o of the left-hand side above
must be zero. This proves (3.43).

To deduce (3.44) note that

16n,0[17 (277 < NalT) =Tz rm) F1QC/A0) = T2 Ar) -

The first term on the right-hand side above tends to zero as n — oo by (3.34). The
second term tends to zero since A7, /A, — o0 as n —» oo,

Finally, we establish (3.45). First observe that for any fixed A > 0, (3.44) im-
plies that

E(bn) = £ (bn) + Exr, (bn)

b,
AT (1
=& " (bn) +on(1)
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as n — oo. So it suffices to control SS‘T" (5n) Next, observe that for n large enough,
(3.31) gives that

BT £2r<am) < NS a2 (rmy— )

and the right-hand side is small for n, A large. This means that the contribution of
J(7y) is negligible on r < A7, and thus

€7 (ba) = £ (0(7) = (Q(-/An),0)) +0a(1).
Next, recall that Proposition 3.6 implies that
(3.46) £ () = Q(-/An),0) = 0n(1),
which shows in particular that

(3.47) E3 3, (0(T0)) < n+o,(1)

—,

where 1 :=E(¢) — £(Q) < 2E(Q). Also, (3.46) means that it suffices to show that

EX (4 (mn) — (Q(-/An),0)) < C < 28(Q).

Note that since o, — - we have

Eanrn (Q(/An)) = €5, (Q) = 0n(1).

Hence,

ENT (1) = (Q(-/An),0)) = £33 ($(70)) +0n(1) < n+0n(1),
which completes the proof. U

Next, we would like to show that the sequence l_;n does not contain any nonzero
profiles. This next result is the global-in-time analog of [7, Proposition 5.7] and the
proof is again, reminiscent of the arguments given in [11, Section 5].

Denote by b, (t) € Ho the wave map evolution with data b,,. By (3.45) and [7,
Theorem 1.1] we know that gn(t) € H, is global in time and scatters to zero as
1 — too,

The statements of the following proposition and its corollary are identical to
the corresponding statements [7, Proposition 5.7 and Corollary 5.8] in the finite
time blow-up case.

PROPOSITION 3.14. Let b, € Hy and the corresponding global wave map
evolution b, (t) € Ho be defined as above. Then, there exists a decomposition

(3.48) by (£,7) = by 1, (£,7) + O (£,7)
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where 5n L, satisfies the linear wave equation (1.6) with initial data l_;n £(0,7) :=
(bn,0,0). Moreover, by, 1, and 0,, satisfy

1
(3.49) H —bn.1 —0
r L3 (R:LS, (R%))
o 1
(3.50) Hen”L?(R;HXLZ)‘i‘ H—en —0
"L (RS (RY))

as n — oo,

Before beginning the proof of Proposition 3.14 we use the conclusions of the
proposition to deduce the following corollary which will be an essential ingredient
in the proof of Proposition 3.12.

COROLLARY 3.15. Let gn(t) be defined as in Proposition 3.14. Suppose that
there exists a constant 0y and a subsequence in n so that ||b, o|| i > 0. Then there
exists cg > 0 such that for all t > 0 and all n large enough along this subsequence
we have

(3.51) Hgn(t)HHxLz(rzt) > adp-

Proof. First note that since Bn 1, satisfies the linear wave equation (1.6) with
initial data l;n £(0) = (bpn,0,0) we know by [9, Corollary 5] and [7, Corollary 2.3],
that there exists a constant 3y > 0 so that for each ¢t > 0 we have

00,2 )| e £2(r>) = Bollbnoll -

On the other hand, by Proposition 3.14 we know that

160 (8) = b, ()| 112220 < 10 ()] 112 = 00 (1)

Putting these two facts together gives

150 (O |51 22ty = 1bn,2 (Ol a1 £2(r5e) — 0 (1)
> Bollbnollz — 0n(1).

This yields (3.51) by passing to a suitable subsequence and taking n large enough.
O

The proof of Proposition 3.14 is very similar to the proof of [7, Proposition
5.7]. Instead of going through the entire argument again here, we establish the
main ingredients of the proof and we refer the reader to [7] for the remainder of
the argument.
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Since b, € Ho and E(b,) < C < 2E(Q) we can, by [7, Corollary 2.15], con-
sider the following profile decomposition for b,,:

(3.52) )= &) ( Y ) +mo(r),

1<k

1 —t) r
_E : ] n k
(353) bn,l(r) )\] ( )\7]1 ’)\%> +7n,l(r)7

1<k

where each QBJL is a solution to (1.6) and where we have for each j # k:

Nk [tttk
(3.54) S+ I+ — S0 asn — oo,
An ML An N,

Moreover, if we denote by Vﬁ 1 (t) the linear evolution of "y’fi, i.e., solution to (1.6),
we have for j < k that

(3.55) (M;,L(Aﬂtﬂ M), NAE L (NN )) 0 inHxL? asn— oo

n-'nr’'n n“n’’'‘'n
1
(3.56) limsup || -~ , —0 ask —> oo,
e 1T L (RY)

Finally we have the following Pythagorean expansions:

S\ 12
Y

(3.57) bnoll7r = |47, <7> + [ oll + on(1)
J<k n H
N2

2 ] _tgl k 2

(3.58) lbnal72=>" || (—) + i all32 + on(1).

J<k An L?

As in [7], the proof of Proposition 3.14 will consist of a sequence of steps designed
to show that each of the profiles cpi must be identically zero. Arguing exactly as
in [7, Lemma 5.9] we can first deduce that the times t% can be taken to be O for
each n,j and that the initial velocities ¢ (0) must all be identically zero as well.
We summarize this conclusion in the following lemma:

LEMMA 3.16. In the decomposition (3.52), (3.53) we can assume, without loss
of generality, that t}, = 0 for every n and for every j. In addition, we then have

ngL(O,r) =0 foreveryj.

The proof of Lemma 3.16 is identical to the proof of [7, Lemma 5.9] and fol-
lows from the Pythagorean expansion (3.58), (3.42), and the asymptotic equiparti-
tion of energy for the corresponding 4d free waves. We refer the reader to [7] for
the details.
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By Lemma 3.16 we can rewrite our profile decomposition as follows:

(3.59) buo(r) = > @7 (0,7/X),) +75 o(r)
1<k
(3.60) b (r) =o0,(1)in L* asn — oo

Note that in addition to the Pythagorean expansions in (3.57) we also have the
following almost-orthogonality of the nonlinear wave map energy, which was es-
tablished in [7, Lemma 2.16]:

(3.61) )= E(#],(0),0) + (7 9,0) +0n(1).

i<k

Note that 7 ,%’j’o € Hy for every j, for every n, and for every k. Using the fact

that £(b,) < C < 26(Q), (3.61) and [7, Theorem 1.1] imply that, for every j, the
nonlinear wave map evolution of the data (7} (0,7/M,),0) given by

' St o Lt
—j o J [ — — ¢ —,—
(3.62) G (t,r) = <S0 <)\%’ )\%) ’ )\ZLSO <)\%’ )\%))

is global in time and scatters as ¢ — +oo. Moreover we have the following nonlinear
profile decomposition guaranteed by [7, Proposition 2.17]:

(3.63) bu(t,r) =Y @h(t,r) + 9% L (t,7) + 05 (t,7)
i<k

where the by, (¢,r) are the global wave map evolutions of the data by, ﬁfj’ L (tr)is

the linear evolution of (¥, 0), and the errors 6% satisfy

n—roo

1
(3.64)  limsup <H9—Z§”L;"(HxL2)+H;9£ ) — 0 ask —>oo.

L3(R:L§ (RY))

Recall that we are trying to show that all of the profiles ¢/ must be identically
equal to zero. As in [7] we can make the following crucial observations about the
scales )\j Since we have concluded that we can assume that all of the times tfl =0
for all n,j we first note that the orthogonality condition (3.54) implies that for
J#k:

YA e
V + )\—j — o0 asn —> oo,
Next, recall that by Lemma 3.13 we have

(365) an,OHH(rgan)\n) —0 asn— oo,
(3.66) om0l H(rzAm) — 0 asn — o0, YA >0 fixed.
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Combining the above two facts with [7, Proposition 2.19] we can conclude that for
each )}, corresponding to a nonzero profile ¢’ we have

(3.67) Ay KN L1, asn — oo,

Now, let kg be the index corresponding to the first nonzero profile ¢*°. We can
assume, without loss of generality that kg = 1. By (3.65), (3.67) and [11, Appendix
B] we can find a sequence \,, so that

A < app
Ap €N < A
A<M or M <A, Vi>1.

Define

>~

ﬁn:_n—>°°

n

>

and we note that 5, < ay, an~d 5\n = BpAn. Therefore, up to replacing 5, by a
sequence Bn ~ f3,, and n by Ay = Bn)\n, we have by Corollary 3.7 and a slight
abuse of notation that

(3.68) U(Tp, An) —> ™ asn — oo,
We define the set
Tt = {5 > 1] Ay <M}

Note that by construction 1 € Jex:.

The above technical ingredients are necessary for the proof of the following
lemma and its corollary. The analog in the finite-time blow-up case is [7, Lemma
5.10].

LEMMA 3.17. Let ¢!, A} be defined as above. Then for all ¢ > 0 we have

2

1 [ '
(3.69) )\—1/ / Z gbfl(t,rﬂ—ﬁﬁ@(t,r) rdrdt = of
0 S e T i<k

where limy,_,., limsup,,_,., o = 0. Also, for all j > 1 and for all € > 0 we have

1 [ = :
(3.70) NG / / (@) (t,r)rdrdt — 0 asn —s oco.
>‘n 0 el +t

Remark 8. We refer the reader to [7, Proof of Lemma 5.10] for the details
of the proof of Lemma 3.17. The proof of (3.69) is nearly identical to [7, Proof
of (5.57)] the one difference being that here we use Lemma 3.11 in place of the
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argument following [7, equation (5.66)]. The proof of (3.70) is identical to [7,
Proof of (5.58)] and we omit it here.

Note that (3.69) and (3.70) together directly imply the following result:

COROLLARY 3.18. Let ' be as in Lemma 3.17. Then for all € > 0 we have

1 A=
(3.71) — / /
>‘711 0 eAL+t

where limy,_..limsup,, ,..oF = 0.

Gn(t,r) +Ap p(t,r)| rdrdt=o]

The proof of Proposition 3.14 now follows from the exact same argument as
[7, Proof of Proposition 5.7]. We refer the reader to [7] for the details.
We can now complete the proof of Proposition 3.12.

Proof of Proposition 3.12. We argue by contradiction. Assume that Proposi-
tion 3.12 fails. Then, up to extracting a subsequence, we can find a dp > 0 so that

(3.72) 160l > do
for every n. By Corollary 3.15 we know that there exists ag > 0 so that for all ¢,

Hgn(t)HHxLz(rz\tD > ap.

We will show that the above is, in fact, impossible by constructing a sequence of
times along which the left-hand side above tends to zero. It is convenient to carry
out the argument in rescaled coordinates. Set

L = —.
Tn

Since A, < T,, as n — oo, our new scale p,, — 0 as n — oo, We next define rescaled
wave maps:
(3.73) gn(tv T) = w(Tn + Tnt,TnT),
(3.74) b (t,7) := (T, + Tnt, TnT).
Since §,(t) and hy(t) are defined by rescaling ¥ and @ we have that g, (¢) € H,
is a global-in-time wave map and the wave map ¢(t) € H, is global-in-time and
scatters to 0 as t — d-eo. We then have

a(Tp + Tty Tnr) = gn(t,7) — hy(t,7).

Similarly, we define

n,0(7) := bp o(TnT),

1 (1) := b1 (T07)

St O
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and the corresponding rescaled wave map evolutions
bn(tv T) =bp (Tnta an)>
b (t,r

After this rescaling, our decomposition becomes

O

) i = Tnbp (Tnt, Tnr).

n

(3.75) 30.0) = (0. +Q () ol
(3-76) gn(ov T) = hn (07 T) + z4)71,1 (T)
We can rephrase (3.44) and (3.43) in terms of this rescaling and we obtain:

(3.77) VA > 0 fixed, [|bnoll >y —> 0 asn —s oo,

(3.78) 1Bn0ll H (r<appin) — O asm — oo,

Also, (3.29) implies that

(3.79) Lim 1imsup ||, ()| g z2r<1- A7) = O,
A—veo n—yoo

(3.80) lim limsup |7, (0)| g1 £2(r5 15 47, = O
A—oo n—yoo

Next, we claim that for every n a decomposition of the form (3.75) is preserved up
to a small error if we replace the terms in (3.75) with their respective wave map
evolutions at some future times to be defined precisely below.

By Corollary 3.7 we can choose a sequence y,, — oo with

Tn K ap
so that
Gn(0,Ynptn) —> ™ asm —> oo
Define ¢,, — 0 by
|gn (0, Y pin) — 7| =: 6, — O.
Using (3.16) we define &,, — 0 by

||§n(0) - (Q('//Ln)vO)HHXLz(rganun) =1ep — 0.

Finally, choose 3,, — o so that

By < min{ /7, 0,1/, 12}

(3.81)
n(0,Bnpin/2) —> T asn —> oo,

As in [7], we make the following claims:
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(i) As n — o we have

(3.82) 1Gn (Brtin/2) = (Q(-/1n), )| i £2(r< By ) — O-

(ii) For each n, on the interval r € |8, 11, 0) we have

- /Bn,un > 7 </Bnﬂn > 7 </Bn,un >
dn AN 70 :hn )T +bn T +
(3.83) ( 2 (,0) 2 2

Hén”L‘;(HxLz) — 0.

1

e

Brbin .
n 2 b )

We first prove (3.82). The proof is very similar to the corresponding argument in
the finite-time blow-up case, see [7, Proof of (5.76)]. We repeat the argument here
for completeness.

First note that we have

||§n(0) - (Q('//Ln)vo)‘|H><L2(r§'ynun) <éepn —0.
Unscale the above by setting gy, (t,7) = gn (unt, tin7), Which gives

1§0(0).0:6(0) — Q). Ol 203 < €0 — 0.

Now using [7, Corollary 2.6] and the finite speed of propagation we claim that we
have

(3.84) H(gn(ﬁn/z)aatgn(ﬂn/z)) - (Q(')ao)HHxLz(TSBn) = On(l)’

To see this, we need to show that [7, Corollary 2.6] applies. Indeed define

™ if r > 2y,
A —J 07 .
Gno(r) == q 7+ %(W(T—Z}/n) if v, <7 <27,
n
gn(oar) if r § Yns
N Orgn(0,7) if r <
gna(r) = tGa(0or) AT <
0 ifr >y,

Then, by construction we have §n € H1, and since

Hgn - (7T>O)||H><L2(’yn§r§2'yn) < 0571
we then can conclude that
1Gn = (Q.0)[ w2 < 1Gn — (Q, 0 1w L2 (r <) 1190 — (T, 0) | s L2 (1, <r<2,0)

+ ||(7T>0) - (QvO)HHXLZ(TZ’yn)
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Now, given our choice of 53, (3.84) follows from [7, Corollary 2.6] and the finite
speed of propagation. Rescaling (3.84) we have

1(9n (Brtin/2),0:gn (Bntin/2)) = (Q(/tn); Ol trx 2 < fupin) — O-

This proves (3.82). Also note that by monotonicity of the energy on interior cones
and the comparability of the energy and the H x L? norm in H,, for small energies,
we see that (3.42) and (3.78) imply that

(3'85) H(En(/gnﬂn/z)?8t6n(/8nun/2))”H><L2(7"§Bn,un) —0.

Next we prove (3.83). First we define
—Yn\Ys MnFn 2 .
~ r—Z gl(O,uﬁ/)r if r < Bnpn/2
9n70(T) = jﬂnﬂn
gn(O,T) if r > /Bnﬂn/z

gml (T) = gn (07 T)-

Then, let x € C*([0,)) be defined so that x(r) = 1 on the interval [2,e) and
supp x C [1,0). Define

(1) = X(47/ Batin) (G (1) — (7,0))
o (1) = X (4 B pin) b (1)

1 Qq

S

and observe that we have the following decomposition

—

Go(1) = T (0,7) + b (1) + 0 (1),

where the 0,,(1) is in the sense of H x L?>—here we also have used (3.79). More-
over, the right-hand side above, without the 0, (1) term, is a profile decomposition
in the sense of [7, Corollary 2.15] because of Proposition 3.14 and [9, Lemma 11]
or [7, Lemma 2.20]. We can then consider the nonlinear profiles. Note that by con-
struction we have gn € Ho and as in [7], we can use (3.81) to show that £ (§n) <
C < 2&(Q) for large n. The corresponding wave map evolution g, (t) € H, is thus
global in time and scatters as ¢t — #oo by [7, Theorem 1.1]. We also need to check

—
v

that £(b,) < C < 2€(Q). Note that by construction and the definition of b,,, we
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have
2 = oo 2 b2 B
S(bn) < S(bn) +0 (/(; ﬁjﬁ(xl)Z(M’//@nun)M d?‘)
+/MWSm%MMW%mMmMU—mﬁ»W
Bnﬂn/z r

- Budn b2 (1)
EB)+0 O g
< &(b) + (@ﬁﬂ : r)

— &(by) +on(1) < C < 26(Q),

where the last line follows from (3.43) since 3, < a,.
Arguing as in [7], we can use Proposition 3.14, [7, Proposition 2.17] and [7,
Lemma 2.18] to obtain the following nonlinear profile decomposition

—
v

gn(t,T) =

Finally observe that by construction and the finite speed of propagation we have

n(t,

t T) = gn(t7r) -,
(6 7) = Dot 7).

forall t € R and r € [Bpn /2 + |t], ). Therefore, in particular we have

(1) + b (t7) + O (t,7),

D >

nHL;"(HxLz) — 0.

S Qq

gn (/Bn,un/27r) - (7T7 0) = Hn(ﬁnﬂn/zﬂ T) + Z:;n (/Bnﬂn/za T) + gn (/Bnﬂn/za T)

for all r € [, un, o) which proves (3.83).

We can combine (3.82), (3.83), (3.85), and (3.79) together with the monotonic-
ity of the energy on interior cones and the fact that [|Q(-/pn) — 7l fr(r=p,1m) =
on (1), to obtain the decomposition

(3.86) gn (/Bn,un/za T) = (Q(T/Nn)a 0)+ﬁn (/Bn,un/27T)+6n(/8nﬂn/2yr)+én(r)a
(3.87) 10l g7 2 — 0.

Now, let s,, — o be any sequence such that s,, > (3,1, /2 for each n. The next
step is to prove the following decomposition at time s,,:

—

(3.88)  Ful(sn1) — (1,0) = Fin (s 1) + b0, 7) + Calr) ¥ € [5m,0),

(3.89) Callrszz — 0 asn — oo,
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t Q(-/pn) B (Bedtny 43, (Buin)
‘e anun Y
o Bk«
6n2ﬂn e ’ k N 3Bn/—Ln o,
t=0 2 J, 7

R, (0) + B, (0)

(0) +bi( )/

Q(-/pn)

Figure 2. A schematic description of the evolution of the decomposition (3.75) from time
t =0 until time t = 5"2”" . Attime t = 6"2”" the decomposition (3.86) holds.

We proceed as in the proof of (3.83). By (3.82) we can argue as in Corollary 3.7
and find p,, — o= with p,, < 3, so that

(3.90) In(Bntin /2, pujin) —> T asn —> co.
Define
— 2
X _— ™ gn(ﬁnﬂn/ s pnﬂn)r i < pupin
fn,o(r) = Pnln
gn(ﬁnﬂn/LT) ifr > pppin

fn,l (T) = gn(ﬂnﬂn/zﬂ T)'

Let x € C* be as above and set

(1) 1= X(21/ ppin) (fo (1) = (,0)),
(r) = X2/ prptn )b (Bt /2,7

(=
SN

Observe that we have the following decomposition:

Folr) = Ton(Bupin/2,7) + b (r) + 0n(1),

where the o,,(1) above is in the sense of H x L2. Moreover, the right-hand side
above, without the o, (1) term, is a profile decomposition in the sense of [7, Corol-
lary 2.15] because of Proposition 3.14 and [9, Lemma 11] or [7, Lemma 2.20]. We
can then consider the nonlinear profiles. Note that by construction we have ﬁ €Ho
and, as usual, we can use (3.90) to show that £(f,,) < C < 2&£(Q) for large n. The
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t=0 r

Figure 3. A schematic depiction of the evolution of the decomposition (3.86) up to time
Sn.. On the interval [s,,, +e), the decomposition (3.88) holds.

corresponding wave map evolution f;b(t) € Ho is thus global in time and scatters
as t — zoo by [7, Theorem 1.1].

As in the proof of (3.83) it is also easy to show that £ (b,,) < C' < 2£(Q) where
here we use (3.85) instead of (3.43).

Again we can use Proposition 3.14, [7, Proposition 2.17] and [7, Lemma 2.18]
to obtain the following nonlinear profile decomposition

Fult,r) = B (Bupin/2+£,7) + by (t,7) + Cat,7),
1l L= (b £2) — O

In particular, for
VUp = Sp — /Bnlufn/z

we have

-

— —

Falvnst) = o (50,7) + b (Vs ) + o (v, 7).

By the finite speed of propagation we have that
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as long as r > p,, i, + V. Using the fact that p,, < 3,, we have that s, > ppn + vy
and hence,

—

Fu(5n7) — (1,0) = Frn (8, 7) + b (820, 7) + G, 7) V5 € [510,00).

Setting En = CNH(Vn) we obtain (3.88) and (3.89). With this decomposition we can
now complete the proof.

One the one hand observe that by rescaling, (3.34), and the fact that 27, s,, >
Tn + Tn Sy for n large we have

1 (5n) = in(5n) = (,0)
= + TnSn, ) — (T, O)HHxLz(r>sn)

(7

(7

a(mn
= [|@(7s + Tr8n) —
< [la(

Tn +7_n3n)
— 0 asn — oo,

”H><L2 (r>sn)

70) ”I{XL2 (r>7nsn)

’O)HHXL2 %(TnJrTnsn))

Combining the above with the decomposition (3.88) and (3.89) we obtain that

(3.91) 150 (50 ) | 12(r55,) —* 0 as m— oo,

On the other hand, combining our assumption (3.72) and Corollary 3.15 we
know that there exists ap > 0 so that

Hgn(sn)HHxLz(rzSn) = Hgn(Tnsn)HHxLz(rzfnsn) > .

But this contradicts (3.91). U
We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let d(t) be defined as in (3.33). Recall that by (3.35)
we have

(3.92) lim £(a@(t)) = £(¥) — E(J).

t—so0

By Proposition 3.1 we have found a sequence of times 7,, — oo so that

E(a(m)) — €(Q)

as n — oo. This then implies that

lim E(@(t)) = £(Q).

t—poo

We now use the variational characterization of ) to show that in fact ||a(¢)||;2 — 0
as t — oo. To see this observe that since a(t) € H; we can deduce by [7, (2.18)]
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that
E(Q) «— E(a(t),a(t)) > /Omaz(t,r)rdr—i—é'(@).

Next observe that the decomposition in [7, Lemma 2.5] provides us with a function
A1 (0,00) — (0,00) such that

llat,-) = Q(/AM) |z < 6(E(a(t),0) - £(Q)) — 0.
This also implies that
(3.93) £(a(t) —(Q(-/A(t)),0)) —0

as t — oo. Since t — a(t) is continuous in H for ¢t € [0,0) it follows from [7,
Lemma 2.5] that A(¢) is continuous on [0, ). Therefore we have established that

D(t) — F(t) — (Q(-/A(1)),0) —» 0in H x L2 as t — .

It remains to show that \(¢) = o(t). This follows immediately from the asymptotic
vanishing of V; ,a(t) outside the light cone and from (3.93). To see this observe
that by (3.34) with A = 1 we have that a(t,7) — (7,0) = o(1) in H x L*(r > t) as
t — oo. Therefore we have

€2 (Q)=£&7(m—Q(/M1) < £@a(t) — (Q(/A(1)),0) +o(1) — 0

as t — oo, But this then implies that ﬁ — o0 as t — oo, This completes the proof.
O
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