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Abstract: Consider afinite energy radial solution to the focusing energy critical semilin-
ear wave equation in 1+4 dimensions. Assume that this solution exhibits type-II behavior,
by which we mean that the critical Sobolev norm of the evolution stays bounded on the
maximal interval of existence. We prove that along a sequence of times tending to the
maximal forward time of existence, the solution decomposes into a sum of dynamically
rescaled solitons, a free radiation term, and an error tending to zero in the energy space.
If, in addition, we assume that the critical norm of the evolution localized to the light
cone (the forward light cone in the case of global solutions and the backwards cone in
the case of finite time blow-up) is less than 2 times the critical norm of the ground state
solution W, then the decomposition holds without a restriction to a subsequence.

1. Introduction

1.1. History and setting of the problem. Consider the Cauchy problem for the energy-
critical, focusing wave equation in R'**, namely

u,t—Au—u3:O,

1.1
u(0) = (ug, uy), (a-b

restricted to the radial setting. We study solutions #(¢) to (1.1) in the energy space
(1) := (u(t), u (1)) € H:= H' x L>(R%). (1.2)
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The conserved energy for solutions to (1.1) is given by
P 1 2 2 _ 1 al oo _
Ew)() := 2(|ut(t)| +|Vu(t)|?) 1 lu(t)|” | dx = constant.
R3

As we will only be considering radial solutions to (1.1), we will slightly abuse notation
by writing u (¢, x) = u(t, r) where here (r, w) are polar coordinates on R ie. x = ro,
r = |x|, € S3. In this setting we can rewrite the Eq. (1.1) as

3
utt_urr_;ur_u =0,

(1.3)
Uu(0) = (uo, u),
and the conserved energy (up to a constant multiple) by
*r1 1
Sy 1.2 200y _ -4 3
E(u)(t) —/0 |:2(u,(t)+u,(t)) 4u (t):| rodr. (1.4)
We also define the local energy and localized H-norm by
b= PTL 2 14 3
E (u(t)) := —(u;(t) +u;(t)) — —u"(t)| r’dr,
« L2 4
b (1.5)
WO B yer ey = / [ +u2w] rar
a
The Cauchy problem (1.3) is invariant under the scaling
it r) e i (1) == W ule/a, r/a), A ug (e /h, 1), (1.6)

One can also check that this scaling leaves unchanged the energy E (i), as well as the
‘H-norm of the initial data. It is for this reason that (1.3) is called energy-critical.

This equation is locally well-posed in H = H' x L?(R?), which means that for
all initial data, iZ(0) = (ug, u;) € H there exists a unique solution #(t) € H to (1.3)
defined on a maximal interval of existence, 0 € Imax = Imax (@) := (T—(1), T+ (1)),
with 4 € C(Imax; H) and for every compact J C Ijax we have u € L;’(J; Lg (R3)).

The Strichartz norm

S(I) == L}(I; LS (RY) (1.7)
determines a criteria for both scattering and finite time blow-up. In particular, a solution
1(t) globally defined for ¢ € [0, 0co) scatters as ¢ — oo to a free wave, i.e., a solution
g (1) € Hof

DML =0

if and only if [lu| s(0,00)) < ©©. The local well-posedness theory gives the existence of
a constant § > 0 so that

£ 0) 11 < 8 = llullsw < 1Ol S8 (1.8)
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and hence i () scatters to free waves as t — Z00. Moreover, we have the standard finite
time blow-up criterion:

Ty (i) < 00 = |lullsqo.7, iy = +00. (1.9

A similar statement holds if —oo < T—(ii). We also note that the same statements hold
with S(7) replaced with L?(I; Lfc (R*)) as well, see for example [18].

Here we will study the dynamics of solutions to (1.3) that are bounded in the H-norm
for positive times, i.e.,

sup (@3 = sup  [[Vu®)|72 + ur ()72 < 00 (1.10)
t€[0,Ty (1)) tel0, Ty (it))

In general we will refer to such solutions as type-II, as the case with T, (i1) < oo is called
finite-time type-II blow-up. Type-I finite-time blow-up, also called ode blow-up, refers
to solutions with, say T, (i) < oo, and with the property that

lim inf |@(t)|l = oo.
T (i)

Both type-I and type-II blow-up solutions were constructed for (1.3) (see respectively
[12, Section 6.2] and [17,21]). In the study of long time dynamics, a crucial role is played
by the stationary Aubin—Talenti solutions defined explicitly by

5\ 1
Wi(x) = A" W(x/h), W)= (1+%> , (1.11)

W = W(r) is a positive radial solution to the stationary elliptic equation
—AW — [W|*W =0. (1.12)

W is the unique (up to sign, dilation, and translation), amongst nonnegative nontrivial (not
necessarily radial), C 2 solutions to (1.12) and is unique (up to sign and dilation) amongst
radial H! solutions. W is also the unique (up to translation and scaling) extremizer for
the Sobolev inequality

I fllpemey < K@DV fllL2mwey

in R* where K (4, 2) is the best constant, see [28]. Because of this variational character-
ization, and its importance in variational estimates, (such as those found in [11,18]), W
is referred to as the “ground state."

The second author and Merle [18], gave a characterization of the possible dynamics
for (1.1) for solutions with energy below the threshold formed by the ground state energy,
ie.

EGi) < E(W,0).

For such sub-threshold solutions, the decisive factor is the size of the gradient of ug in
L?. Indeed, the following trichotomy holds:

o If ||Vuo||22 > [VWI|7, then T:.(if) < oo and T_ (i) > —oc. In other words, &(t)
blows up in finite time in both directions.
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o If ||Vuo||i2 < ||VW||%2 then Imax (1) = R and |u|lsw) < oo, where S(I) is a
suitable Strichartz norm as in (1.7). In other words, () exists globally in time and
scatters in both time directions.

e The case ||Vu0||%2 = ||VW||%2 is impossible for sub-threshold solutions.

Threshold solutions, namely those with energy E () = E(W, 0) were also classified by
Duyckaerts, Merle [16], see also [19].

Let us now restrict to type-II solutions, i.e., those satisfying (1.10). It is known that
VW] iz is a sharp threshold for finite time blow-up and scattering. Indeed, the following
generalization of the scattering part of the Kenig-Merle result in [18] was established
in [13] ford = 3, 4, 5: If ii(¢) verifies (1.10) and

d—2 .
sup Va7, + Tllf);u(t)”%z < [VW|3, (non-radial case)
0<t<Ty (i)

or

sup  [[Vu(®)ll3, < VW3, (radial case)
0<t<Ty(i1)

then T, (1) = 4+00 and u(¢) scatters forward in time.

When d = 3, the fourth author, together with Krieger and Tataru [21], showed, by
construction, that for every § > 0 there exists a type-II radial blow-up solution i () so
that

sup Va7, < VW], +38. (1.13)
t€[0, T4 (i)

Moreover, the blow-up, say at time 7 (iZ) = 1, occurs via the bubbling off of an elliptic
solution W. In particular u(¢) exhibits a decomposition of the form

i(t) = A1) 2(W(r/a1)), 0) +7i(1) (1.14)

with () = (1 — NI forv > 0 (the case 0 < v < 1/2 is due to the Krieger and the
fourth author [20]). Here the error 7(¢) is a regular function whose local energy inside
the backwards light cone {r < 1 — ¢} vanishes as ¢t 7 1.

In the d = 4 case, Hillairet and Raphael [17], exhibit C* type-II blow-up solutions
1(t) so that (1.13) holds and again the blow-up at 7% (i) = 1 occurs via the bubbling off
of a W, with the decomposition

i(t) = M)~ (W(r/r(1)), 0) +7i(7)

where 7j(¢) is as above and A(1) = (1 — 1) exp(—~/Tog [1 — ¢[(1 + o(1))) as t — 1.

It is believed that this type of bubbling behavior is characteristic of all radial type-II
solutions, in the sense that all solutions u satisfying (1.10), for which T, () < oo or
for which Ty (1) = 400, but 1 does not scatter to zero, exhibit a decomposition of the
form (1.14) as t — T, (i), or more precisely (1.15) or (1.22), with possibly multiple
profiles given by dynamic rescalings of W appearing on the right-hand side. This soliton-
resolution type result was established for the radial case in 3 space dimensions in the
papers by the second author, Duykaerts, and Merle [11,12,14]. The non-radial case,
restricted to energies slightly above the ground state energy for d = 3, 5, was treated
in [13].
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1.2. Statements of the main results. In this paper, we treat the case of 4-space dimen-
sions by giving a characterization of the possible dynamics for radial type-II solutions
to (1.3). The following are the 1 +4 dimensional analogs of the main results for the 1 +3
dimensional energy critical wave equation in [12].

We will use the notation a,, < b, to mean a, /b, — 0 as n — oo, where a, and b,,
are two sequences of positive numbers.

Let us start with the blow up case.

Theorem 1.1 (Type-II blow-up solutions). Let it(t) be a smooth solution to (1.3) which
satisfies (1.10), and blows-up, without loss of generality, at T, (i) = 1. Then there exists
(vo, v1) € H, a sequence of times t, — 1, an integer Jy > 1, Jo sequences {A; n}nen,
J =1,...Jo of positive numbers, and signs 1; € {£1}, such that

Jo ) )
u(ty) =Z<)¥L.] W()»‘ ),0>+(v0,v1)+0H(1) as n — oo, (1.15)
Jj.n Jjn

j=1
with
AMap L L hjgn LT =1 (1.16)
Furthermore, the local energy inside the light-cone is quantized:

t11_r>nl Eéfl(ii(t)) = JoE(W,0), (1.17)

and globally in space, we have
E(u) = J)E(W,0) + E(vg, v1). (1.18)

Note that the above theorem holds only along a sequence of times. If we make
an additional assumption regarding the size of the local H'-norm of u(¢) inside the
backwards light cone, then we can prove a classification of type-II blow-up solutions
which holds along all times ¢t — 1.

Theorem 1.2 (Type-II blow-up below 2| VW ||iz). Letu(t) be a smooth solution to (1.3)
which satisfies (1.10), and blows-up, without loss of generality, at Ty (1) = 1. Suppose
in addition that
= 2 2
Oiltlgl “u(t)“HlXL2(0<r<1—t) < 2||W||Hl . (119)
Then there exists (vo, v1) € H and a positive function A(t) with A(t) = o(1 — t) as
t — 1 so that

- 1 :
u(t)=:I:<WW(M>,O>+(v0,v1)+0H(1) as t — 1. (1.20)

Next we move to the case of globally defined solutions. Here we show that at least
along a sequence of times, any global solution () satisfying (1.10), asymptotically
decouples into a sum of dynamically rescaled W’s plus free radiation, i.e., a finite energy
solution 9(¢) to the free radial wave equation

Vi — U — =0 =0,
r

(1.21)
v(0) = (vg, v1) € H.
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Theorem 1.3 (Type-II global solutions). Let ii(t) be a smooth solution to (1.3) satisfy-
ing (1.10), and which is global in positive time, i.e., Ty (1) = +00. Then there exists a
free wave, i.e., a solution vy (t) € H to (1.21), a sequence of times t,, — 00, an integer
Jo = 0, Jo sequences {Aj u}nen, j = 1, ... Jo of positive numbers, and signs 1; € {£1},
such that

Jo ) .
i)=Y (xt,j % (/\m) ,0) + 3 (tn) + 014(1) as n — oo, (1.22)

j=1
with
Mp KL L Apgn L Iy (1.23)

Furthermore, for all A > 0 the limit as t — 00 of the localized energy Eé_A(ii(t))
exists and satisfies

Jlim EL A1) = JoE(W, 0). (1.24)

As in the finite time blow-up case, we can prove the global-in-time decomposition
along all times t — oo if we assume a bound on the local H'-norm of u(r) which
prevents there from being more than one profile W in (1.22).

Theorem 1.4 (Type-II global solutions below 2| VW || iz ). Let i (t) be a smooth solution
to (1.3) satisfying (1.10), and which is global in positive time, i.e., Ty (1) = +00. Suppose
in addition that there exists an A > 0 so that

lim sup (| (1) |3 <20W|3,. (1.25)

71y 2 _
00 H'xL*(0<r<t—A)

Then, there exists a solution v (t) € H to (1.21) so that one of the following holds:

(i) u(t) scatters to the free wave vy (t) ast — 00.
(ii) There exists a positive function A(t) with A(t) = o(t) as t — o0 so that

q 1 - }
u(t) =i<mw<m>,0)+vL(l‘)+0H(l) as t — oQ. (1.26)

1.3. Comments on the proofs. While many of the techniques introduced in the series
of papers [11-13] carry over to the even dimensional setting, several key elements of
the argument are quite different when one moves away from 3 space dimensions. In
particular, the missing ingredients in even dimensions were:

(1) Exterior energy estimates for the underlying free radial wave equation.
(2) A proof that the energy of a smooth solution cannot concentrate in the self-similar
region of the light-cone.

The first of these ingredients (1) was studied in [7]. In fact, the main argument of [12]
is the proof that (2) holds for the 3d radial energy critical wave equation, using the exterior
energy estimates for the 3d linear, radial wave equation proved in [11]. However, in [7],
it is proved that the crucial exterior energy estimates established in [11,13] are false in
even dimensions, thus rendering the use of the channel of energy method of [11-14] in
doubt for the case of even dimensions. In [7] it is proved that the exterior energy estimate
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established in [13] fails for radial data of the form (0, g), but does hold for radial data of
the form (f, 0). This was used for energy critical equivariant wave maps into S2, to prove
a classification of degree one below 3 times the energy of the harmonic map in [8, 10],
and the soliton resolution along a sequence of times in [6], in the spirit of [12].

In the case of equivariant wave maps, (2) is classical and was established by Christ-
odoulou, Tahvildar-Zadeh [4,5] and Shatah, Tahvildar-Zadeh [25,26]. The classical ar-
guments rely crucially on multiplier identities, the monotonicity of the local energy, and
on the positivity of the flux—both of which appear to be absent in the semilinear wave
equation set-up. In [8, 10] and later in [6], one uses (2) as in the works mentioned above
to show that, along a sequence of times, the time derivative of the solution, restricted to
a suitable cone, tends to 0, thus making it possible to apply the d = 4 exterior energy
lower bound from [7], for data of the form (f, 0).

The main new ingredient in this paper is the proof of (2) for solutions to the 4d
Eq. (1.3). In fact, the proof uses areduction to a 2d equation that bears many similarities to
a wave map type equation. This is the opposite of what is usually done, when equivariant
wave maps are transformed to look like an energy critical nonlinear wave equation.

The crucial monotonicity of the localized energy and the positivity of the flux are
established in the relevant regions after the regular part of the solution is considered
separately from the singular part. One can then follow the classical techniques for wave
maps to prove (2) for radial solutions to (1.3). With the weakened version of (1) proved
in [7] for data (f, 0), and (2) in hand, one can then follow the arguments in [11-13], and
[8,10] to establish the main results. New refined techniques from [15] are also used to
prove Theorems 1.2 and 1.4.

The vanishing of the energy in the self-similar regions proved in the previous sections
allows one to deduce a vanishing of the L2 norm of the time derivative of the singular
part of the solution along a sequence of times. The vanishing time derivative then allows
one to conclude that all the profiles in the Bahouri-Gerard profile decomposition of
the solution along this sequence must be either O or £W. The error term in the profile
decomposition is then shown to vanish in the energy space using the exterior energy
estimates for the underlying free equation as in [8, 10]. One main difference with [8, 10]
in the argument is that there the harmonic map must be extracted before the machinery
of profile decompositions can be applied due to the geometric nature of wave maps.
Here one can work directly with a profile decomposition for u(z;).

In Sect. 2, we recall various preliminary results including the linear and nonlinear pro-
file decompositions from [2], the exterior linear estimates for the free equation from [7],
and the rigidity of radial compact trajectories proved in [11].

In Sect. 3, we show that no energy can concentrate in the self-similar region of the
backwards light cone for type-II solutions that blow up in finite time, i.e., we prove
(2) in the finite time blow-up case. In Sect. 4, we prove the vanishing of energy in the
self-similar region of the forward light cone for solutions that exist for all positive times,
proving (2) for global solutions. These two sections contain the main technical novelties
in this paper as the classical 2d geometric arguments from [4,5,25,26] are adapted to a
focusing 4d semilinear equation once crucial positivity properties are revealed.

In Sect. 5, we prove Theorems 1.1 and 1.3 using the arguments from [8,10], which
in turn were based on the channel of energy methods introduced in [11-13], which we
also rely on here.

Finally, in Sects. 6 and 7 we prove Theorems 1.2 and 1.4. Here the argument has
its foundations in the techniques from [11,12] but also requires new methods recently
developed in [15].
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1.4. Notation. As we are dealing strictly with radial functions, we will often abuse
notation by writing f(x) = f(|x|) = f(r). For a space-time function f (¢, r) we will
sometimes use the notation |me(t, r) |2 = ft2 (t,r)+ f,2 (¢, r). For spacial integrals of
radial functions we will ignore a dimensional constant by writing

/ f(x)dx := /OO fr) r3dr.
R4 0

2. Preliminaries

2.1. Energy trapping. We recall a few variational results from [11,18] which give a
useful characterization of the threshold energy E(W, 0). The key point here is that W
is the unique minimizer, up to translation, scaling and constant multiplication of the
Sobolev embedding:

I fllLarey < K& DIV fllL2wey,
where K (4, 2) is the optimal Aubin—Talenti constant [1,28]. Using the Eq. (1.11), one

can show that in fact,

1
JIVWIE. = EW,0), 2.1)
and a variational argument yields the following useful result from [11,13,18].

Lemma 2.1 ([11, Claim 2.3], [13, Claim 2.4]). Let f € H'(R*). Then

2 2 1 2
IVFI3: < IVWIS2 and E(£.0) < EGW.0) = ZIVfI}. < E(£0).  (22)
Moreover, there exists ¢ > 0 such that if ||Vf||i2 < 2||VW||%2 then

E(£.0) = cmin{||Vf||72. 2IVWI[7, — [V £]7.} = 0 (2.3)

2.2. Exterior energy estimates and linear theory. Exterior energy estimates for the free
radial wave equation established by the first, second, and fourth authors in [7] will play
a crucial role. In particular, we will use the fact that free radial waves v(¢) in 4 space
dimensions with zero initial velocity, i.e., with data (f, 0), maintain a fixed percentage
of their energy on the exterior of the forward light cone emanating from the origin.

We will denote a solution ¥(¢) to the free wave equation (1.21), with initial data

(f.8) € H, by
u(t) = S@O)(f. &)
Proposition 2.2 ([7, Corollary 5]). There exists ag > 0 such that for all t € R we have
IS Oz = @ollfll (2.4)

for all radial data (f,0) € H.
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Remark 1. We note that estimates (2.4) with data (0, g) or (f, g) with g # 0 are false,
see [7]. In fact one recovers the analog of (2.4) for data (f,0) in dimension d = 0
mod 4 and for data (0, g) in dimensions d = 2 mod 4. This is different from the odd
dimensional case, where the analog of (2.4) holds for general radial data ( f, g) for either
all positive, or all negative times, see [11].

We have the following vanishing of the energy away from the forward light cone
proved in [7].

Proposition 2.3 ([7, Theorem 4]). Let (f, g) € (H) (R?) be radial. Then we have the
following vanishing of the energy away from the forward light-cone {|x| =t > 0}:

lim limsup [V, SO (f, @) 2(jxj—11=1) = O-

T'—+00 t—+00

2.3. Profile decomposition. Another essential tool in our analysis will be the linear
and nonlinear profile decompositions of Bahouri—Gerard [2]. We begin with a profile
decomposition for a bounded sequence i, in the energy space in terms of free waves.
The statement below was proved in 3 space dimensions in [2] and extended to other
dimensions, including 4 space dimensions in [3].

2.3.1. Linear profile decomposition.
Theorem 2.4 ([2, Main Theorem], [3, Theorem 1.1]). Consider a sequence i, =

(Un,0,Un1) € H = H' x L2(R4) that is radial, and such that ||u,| < C. Then, up

to extracting a subsequence, there exists a sequence of free radial waves U I{ e H a
sequence of times {tj ,} C R, and sequence of scales {X; ,} C (0, 00), and free wave
J},’j € C(R, H) (i.e., solution to (1.21)) such that

k

1 i tn r k
Uno(r) = U/ (— R >+w ©, r)
! Z)\,-,n AU g

j=1 J.n

. (2.5)

1 ; t; r
=y — Ul (-LE, + 9wk (0,
tn,1(r) ;(Ajyn)zt L( rybve ALY

and for any j < k, that
jnwh Mjontjins hjn)s A5 0 wh Mjontjns hjn)) = O weaklyin H. — (2.6)
In addition, for any j # k we have

A en |t = ten] [t = ]

— 00 as n — oo. 2.7
)Lk,n )Lj,n )Lj,n }Lk,n

k

Moreover, the errors W vanish asymptotically in the Strichartz space, we have

— 0 as k— oo. (2.8)

n— 00 L?OLinS(RXRZ‘)
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Finally, we have the almost-orthogonality of the free energy as well as of the nonlinear
energy (1.4) of the decomposition:

2
, N B,
linlz, = > |U] (—)j,”) + 5 ()17, + 0n (1), (2.9)
1<j<k S/ TH
, ~if 1 _
EGi,)= Y E (U[ (—f—”>> + E(@E(0)) + 0, (1), (2.10)
1<j<k Ajim

asn — OoQ.

Remark 2. By rescaling and time-translating each profile U 1{ appearing in (2.5), and by
extracting subsequences we can, without loss of generality, assume for each fixed j that
either we have

vn, tj, =0, or lim
n—00 )\j,n

= Fo0. 2.11)

Moreover, we can assume that for all j the sequences {t; ,} and {A; ,} have limits in
[—o0, +00] and [0, +00] respectively.

We will also need the following refinement of the almost-orthogonality of the free
energy, namely that the Pythagorean decomposition (2.9) of the H norm of the sequence
remains valid even after a spacial localization. This was proved for dimension 3 in [12]
and for even dimensions in [7].

Proposition 2.5 ([7, Corollary 8]). Consider a sequence of radial data u, € H =
H' x L>(R*) such that ||u, |« < C, and a profile decomposition of this sequence as in
Theorem 2.4. Let {r,} C (0, 00) be any sequence. Then we have

J
. t
- 12 n
linl3rzny = D |UL (—;)
n

1<j<k
We also require the following technical lemmas for free waves proved in [11] in odd
dimensions and in [7] in even dimensions.

2

DO g5, +0n (1)
HE>ra/A)

asn — oQ.

Lemma 2.6 ([11, Lemma 4.1], [7, Lemma 9)). Let v(¢) be a radial solution to the linear
wave equation (1.21), and {t,} C R, {X,} C R} be two sequences. Define the sequence

1 [t
(%) = v (/\—, %) (2.12)
n n n

1, —

Assume that )\—1 — £ € R. Then
n

If ¢ € {£o00}, lim sup ||VX,,vn(t,,)||iz — 0 as R — +o0,

g (lx|=ltnl1= R

IfLeR, 1im sup 1|V, 0n () 172, og(x ) |2l0g ) —> O 45 R = +00.
n—oo -
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Lemma 2.7 ([11, Lemma 2.5]). Let v,, be defined as in (2.12) and assume it has a profile
decomposition as in Theorem 2.4. If

lim lim sup/ [Vvo,nl* + [v1a* = 0,
[x|>Rup

R—+00 p—00

Aj tj
then for all j the sequences { 21 } , {ﬂ} are bounded. Moreover, there exists at
Mn ), Mn ),

jon

In

most one j such that { } does not converge to 0.
n

We will also need the following result about sequences of radial free waves with
vanishing Strichartz norms established in [7] for even dimensions and which is the
analog [11, Claim 2.11], where the result was proved in odd dimensions only.

Lemma 2.8 ([7, Lemma 11], [11, Claim 2.11]). Let w,,(0) = (w0, wy.1) be a radial
uniformly bounded sequence in H = H' x L>*(R*) and let w,(t) € H be the corre-
sponding sequence of radial 4d free waves. Suppose that

lwplls®y = 0 as n — oo,

where S(I) is as in (1.7). Let x € C(C)’O(R4) be radial so that x = 1 on |x| < 1 and
suppy C {|x| <2}. Let {A,} C (0, 00) and consider the truncated data

Un(0) 1= @(r/2n)Wn (0),

where either ¢ = x or ¢ = 1 — x. Let v,(t) be the corresponding sequence of free
waves. Then

lvalls(ry — 0 as n — oo.

2.3.2. Nonlinear profiles.

Definition 1. Let I}L be a linear solution to (1.21), and £ € [—00, +00]. We define the
nonlinear profile associated to (Ur, £) as the unique nonlinear solution U (¢) to (1.3),
defined on a neighborhood of ¢, and such that

10 — ULl — 0 as 1 — L.

Existence and uniqueness of U (t) are consequences of the local Cauchy theory for
(1.3) [18,22,23], and more precisely of the existence of wave operators if £ is Lnﬁnite. It
is important to note that in the latter case £ € {+ & oo}, the nonlinear profile U scatters
at £: for example if £ = +o0,

50> T_(U) = |U|ls(tsp.00)) < 0O (2.13)

A similar statement holds for £ = —o0. L
In the case of a profile decomposition as in (2.5) with profiles {U i} and parameters

{tjn,Ajn} we will denote by {l}f} the non-linear profiles associated to
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= B lj S . . .
U i lim ——L" ) (we recall that this limit exists by assumption, as explained in
n—+oo A\ j.n

Remark 2). For convenience, we will often use the notation

1 Uj(t—tj,,, r )
Ajm L ALn ' ALn '

1 Uj(l—tj,n’ r )
Ajn Ain  Ajn

Proposition 2.9 (Nonlinear profile decomposition). [8,11] Let (un.0, un,1) € H be a
bounded sequence together with its profile decomposition as in (2.5). Let {U7}, be the
associated nonlinear profiles. Let {s,,} C (0, 00) be any sequence of times so that for all
J=1

Ui ,(t.r) =
(2.14)

Ult,r) =

Sp— 1 S i ,
vn, S < T(07) and timsup 00 ) <2 219

/ —
Jn n—oe Ajon T Ajn

If i, (t) € H is the solution to (1.3) with initial data 1i,(0) = (un.0, un.1) then i, (1) is
defined on [0, s,,) and

lim sup [lux [l 5(10,5,)) < 00
n—o0

Moreover the following nonlinear profile decomposition holds: For n,’j defined by
n(tr) =Y Ul r) + k(o) +ijk (o), (2.16)
1<j<k

we have

lim lim sup (IlnﬁIIS([o,sn)) + ||ﬁ,l;||L$°([0,sn);H)) =0.
k=00 pn—oo

Here wﬁ (t) € H is as in Proposition 2.4 and an is defined as in (2.14). Also, we note
that an analogous statement holds for s, < O.

Definition 2 (Ordering of the profiles [15]). Let {17 J Atjn, Ajn}} be aprofile decom-

position as in (2.5), and let U/ their nonlinear profiles. We introduce the following
pre-order < on the profiles as follows. For j, k > 1, we say that

(U Atjns A jn}y < AUF Atkons Min}} (or simply j < k if there is no ambiguity)
if one of the following holds:

(1) the nonlinear profile U* scatters forward in time.
(2) the nonlinear profile U’ does not scatter forward in time, and

AjnT + i, — 1

VT < To(U7), lim < T(U5).

n—+00 Men

(The above limit exists due to the arguments in [15, Discussion after (3.16) and
Appendix A.1].)
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We say that {U;, {tj n, A j.n}} < (UK, {tkns hn}} if

(O] At 2 jnd} < ATOF Atkons diond) and (OF, (o, Aealy ZAT] (00 2jn))-

Lemma 2.10 ([15,.Claim 3.7]). Let (o n, u1,,) C H be a bounded sequence with profile

decomposition {Uﬁ, Ajnstjn)jen. Then one can assume without loss of generality that
the profiles are ordered, that is

Vi < j, UL Migs tind UL A js tin)-

2.4. Classification of pre-compact solutions. Finally, we recall the following classifica-
tion of finite energy solutions #(¢) € H to (1.3) that have pre-compact trajectories in H
up to symmetries. In particular, we say that a solution #(¢) has the compactness property
on an interval I C R if there exists a function A : I — (0, 00) so that the trajectory

1 . 1 :
“{(m”(f’m)’%a‘“(“E)) ”“}CH

is pre-compact in H. A complete classification of solution u(¢) with the compactness
property was obtained in [11]. In particular there it was shown that i (z) is either identi-
cally O or is W up to a rescaling.

Theorem 2.11 ([11, Theorem 2]). Let u(t) € H be a nontrivial solution to (1.3) with
the compactness property on its maximal interval of existence Imax. Then there exists
ro > 0 so that

1 r
u(t,r)y=x—Ww (—) .
Ao Ao

3. Self-Similar and Exterior Regions: Blow-Up Solutions

The goal of this section is to show that a type-II blow-up solution i(z), with, say,
T, (i) = 1, cannot concentrate any energy in the self similar region r € [A(1 —1), 1 —¢]
for any fixed0 < A < 1.

Theorem 3.1. Let A € (0, 1). Then for any smooth solution ii(t) to (1.3) such that

sup |lu(t)|l3 < oo,
1€[0,1) G.1
we have
(1-1) 2
lim [utz(t, r)+ uf(t, r)+ “ (2’ r)] Pdr=0. 3.2)
t/'1 A(1—1) r

3.1. Extraction of the regular part. First, we define the regular and singular parts of
a solution #(¢) which blows up at T, (i) and satisfies (1.10), following the notation
in [11,12]. Indeed, by [11, Section 3], there exists ¥ = (vg, v1) € H, so that
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u(t) = (vg,vy) as t — 1,
weakly in H. Denote by v(¢) the solution to (1.3) with initial data at time t = 1,
v(1) = (vg, v1), and maximal interval of existence Imax (V) = (T—(V), T4 (V)). Then,
(still in [11, Section 3]) for any ¢ > max(7_ (i), T_(9)) we have
Vr>1—t, u(t,r)="0v(,r). (3.3)
We thus define the singular part of u(t) as the difference,

a(t) == u(t) — v(r), (3.4)

and we remark that a(¢) is well defined for all # > max(7_(u), T—(v)) and that a(z) is
supported in the backwards light cone

(¢, r) | max(T_(u), T-(V)) <t <1, 0<r <1—1t}.

We call ¥(¢) the regular part of i(t).
We will require the following simple estimates for v(¢), which follow easily from the
fact that the evolution ¢ — v(¢) is continuous in H at t = 1,

Lemma 3.2. Let 0(t) be the regular part of ii(t) as defined above. Then

1—t 2
ly
lim [uf(t, )+ 02t ) + - (2 r)} P dr =0, (3.5)
t—1 Jo r
sup |rv(t,r)] — 0 as t — 1. (3.6)
0<r<l-—t

Proof. Indeed, the continuity of t +— v(r) € H att = 1 gives the result for the first
two terms in the integral (3.5). The third term in (3.5) and (3.6) then follow as direct
consequences of the following technical lemma which we will also use in Sect. 4.

+00
Lemma 3.3. Assume f |8rw(,0)|2,03d,0 < +00 and can be approximated by C*
0

functions in this norm, i.e., w € HI(R4). Thenrw(r) = Qasr — 0and asr — +00,
and for all r > 0,

1 o0
)P < 5 / o, () o dr, (3.7)
o 2 og 2.3
/ lw(p)2p dp 5/ 18,w(p)2p3dp. (3.8)
r r
and for 0 < s < r we have
r r
) - sPws)| < 3/ wz(mde/ e (0)I? 3 dp. (3.9)
S S

r r
sup |sw<s)|253/0 w2<p>pdr+/0 19, w(p)>p>dp. (3.10)

O<s<r
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Proof. By density, we can prove the lemma for w € Cg°. First, we note that

1

Lo 1
5(/ wf(p)p3dp) (/ p‘3dp>

1
— 2 34 )ZL
(/r wy (p) p~ dp 3

from which (3.7) follows. Next, we have

w(r)] = ’—/ 8,w(0) dp

3 (rPw?(r)) = 2r w?(r) + 2r2w(r)w, (r). (3.11)

Thus,

Py = -2 / " wp) pdp —2 f " w2 ()w(o)o? dp.

.
so that
* 2 * 2 2
2[ w(p) pdp < —2/ w; (p)w(p)p” dp
r r ] i
o0 3 b o0 2 2
§2</ w;(p) p dp) (/ w (p)pdp>
which gives (3.8). To prove (3.9), we integrate (3.11) to obtain

r2w2(r) — szw2(s)

r r
<2 [ w@pdpe2 [ 1wl |t o
N N

r r
< 3/ wz(p)pdp+/ wi(p)p® dp
S

s

as desired. By (3.8) with r = 0 we see that fooo w?(p) pdp < oo. Hence (3.9) implies
that there exists £ € R so that

lim 2wl = ¢
rl_r)r%)r w(r) (3.12)
exists. Assume, for contradiction that £ 7~ 0. Then, there exists 7o > 0 so that

20 >
wir) 2 2r2
for all r < rg. But this contradicts the fact that fooo wz(,o),o dp < oo. Finally, (3.10)
follows from (3.9) now that we know sw(s) — Oass — 0. O

This also completes the Proof of Lemma 3.2. O

3.2. Reduction to a 2d equation. The Proof of Theorem 3.1 relies crucially on the
observation that (1.3) can be reduced to a 2d wave maps-type equation on which
the fundamental techniques introduced by Christodoulou, Tahvildar-Zadeh [4,5], and
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Shatah, Tahvildar-Zadeh [25,26] can be applied after we have localized to the light cone
and identified the regular part v(r) of the solution i(¢). Indeed, define

Y(t,r) = ri(t,r). (3.13)

Since % () solves (1.3), we see that @Z(t) solves

3
Yie = Vrr — %wr WY 21/f =0. (3.14)
We define
F@) =y =y,
v 1, 1.4 1, ) (3.15)
Py = [ f@da= 397 - vt = S0t - vl
0
Similarly, for the regular part v(¢) we define
¢(t,r) :=rvt,r). (3.16)

Using Lemma 3.2 and the fact that ¢, = rv, + v we obtain the following estimates for

(1):
Lemma 3.4. Let ¢(t) be defined as in (3.16). Then

1—t

lim [¢,2(t, r) +2(t, r)] rdr =0, (3.17)
t—1 0

sup |, r)]—> 0 as t — 1. (3.18)
0<r<l-—t

We also note that by Hardy’s inequality, (3.8), and since ¥, — ¢, = r(u, — v, )+ —v)
we have the uniform estimate

sup /0 (= e+ =920 rar < B <o, (319

tefr_,1)

where we fixed r_ € (max(T_(u), T_(9)), 1).
We can now deduce Theorem 3.1 as a consequence of the following proposition
which is phrased in terms of ¢ := ru.

Proposition 3.5. Assume that there exists A € (0,1) and ty € [t—, 1) so that for all
t € [ty, 1) we have

sup W, )| < g (3.20)

r(1—t)<r<l—t

Then,

1—1
F(W(Zt’ r))} rdr=0. (3.21)

lim [wf(t, YRt )+ ——

t/1 A(1—1) r



Profiles for Energy Critical Waves 959

The size restriction (3.20) will guarantee the positivity of F () = %1//2[1 — wz /2]
for \(1 —¢) <r < (1 —1),t € [ty, 1). This positivity enters crucially in the methods
introduced in [4,5,25] as the F term there is of the form F = g2, and is always positive.
Thus we do not prove Theorem 3.1 directly in terms of J, as is done in, say [25, Lemma
2.2], but rather deduce it as a consequence of Proposition 3.5. Then, by assuming the
smallness assumption (3.20) holds for a particular A € (0, 1) we prove Proposition 3.5
using the methods in [25].

We momentarily postpone the Proof of Proposition 3.5 and first use it to establish
Theorem 3.1.

Proof that Proposition 3.5 implies Theorem 3.1.
Step 1: The main observation is that we can get rid of the L® assumption in Proposi-
tion 3.5 via an inductive argument, which is the content of the following:

Claim 3.6. Let ii(t) be as in Theorem 3.1 and define 1}(1‘) as in (3.13). Then for every
fixed A € (0, 1) we have

1—1
lim [wtz(z, )+ VA, r)] rdr = 0. (3.22)
171 Jo(1—1)
Proof of the Claim. Consider the set I C (0, 1) to be the collection of all » € (0, 1) so
that there exists 7o = f9(A) € [t_, 1) such that

V2

Vit >1tg, YVre[A(1 —1),(1=10)], ¥t r)| < 7.

Observe that if A € I, then [A, 1) C I. Indeed, for such a A € [A, 1) one can take
to(A") = 19(1). Also, by Proposition 3.5, then (3.22) holds this particular A. Therefore,
to prove the claim, it suffices to prove that I contains a sequence A, — 0 (we argue by
induction on 2, it does not seem that a connectedness argument applies).

We begin by showing that / is not empty. Fix A9 € (0, 1) to be determined below.
Observe that since ¥ (t, 1 —1t) = ¢ (¢, 1 —1t) fort > t_, we have forall Lg(1 —¢) <r <
1 —t that

1t
W, r)—o@ rl= f (lﬂr—fﬁr)(t,ﬂ))dﬂ’

- s T (323)
S(/ (xlfr—cbr)z(t,p)pdp) ([ ,O_ldp>

< B(log 15"} < CoB |1 — Aol

where the constant B is fixed in (3.19) and we have chosen Cy > 0 so that for all
1/2 < A <1 we have log(A™!) < Cg |1 — A|. Next, observe that by (3.18) we can find
to < 1 so that for all ¢+ > ) we have

ot 1) <=, YO<r<1-—t. (3.24)

W | =—

Hence for all ¢ € [ty, 1) we have

1
sup [Pt 1) < =+ CoB |1 — Al .
relho(1—1), 1—1] 3
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Choosing X close enough to 1 so that CoB |1 — )»0|% < % we then guarantee that

2 2
sup [y, <3< £ Vip <t <1,
relho(1—1), 1—1] 3 2
which proves that / is not empty, and in fact [Ag, 1) C 1.
Next, we need to prove that in fact I = (0, 1). Note that it will suffice to show that
there exists a sequence A,, — 0 such that 1, € I for all n € N. We define

Ap = Al Vn e N. (3.25)

Note that we have proved that A; = A(l) € I. Now we argue by induction. Assume that
An € I for some n > 1 and fix this A,,. We seek to prove that A,,41 € I. We record a
few additional consequences of our inductive hypothesis. Since A,, € I, Proposition 3.5
implies that
1—t

lim [v2a r+vden ] rar=o.

170 S (1=1)
Using (3.17) we in fact have that

1—t

lim Wy — @) (1, r)rdr =0.
1/ (1=

Thus we can argue as in (3.30) to deduce that there exists 0 < #, < 1 so that

1
(=), an(1 —1)| = 10g()»_1)\/f — ) (t,r)rdr < 3 (3.26)
n(1— l)
forall t, <t < 1. Using (3.18) we can also ensure that ¢, is large enough so that
1
lp(t,r)| < e VOo<r<1-—t, (3.27)

forallf, <t < 1.Nextforallr € [Ay4+1(1 —1), A, (1 — )] we can argue as in (3.23) to
bound the term

(Wt r) — $(t. 1) — (Wt gL — 1) — Pt in(1 — )] <
(1= z) An(1—1)

\// cbr)z(t,p)pdp\// o~ Vdp
A1 (1= l) Ans1(1=1)

B(log(xn/xn+1)>% = B(log(hy"))?

1

S_

3

where B is as in (3.19) and since A, /Ap+; = XG/ASH = Aal and we have chosen
Ao close enough to 1 so that the last line above holds. Now for each ¢ € [¢t,, 1) and
r € A1 (1 —1), Ay (1 —t)] write
W@l <@ r)—¢@,r) — @, il —1) — ¢, ky(1 —1))]
+ o, )+ 1Y@, A1 —1)) — P, An(1 —1))]
11 2 V2

+-t+-—=-<—.
6 6 3 2

IA

IA

1
<_
3
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As we also know that sup,.cy, (1—r),1—¢ 1V &, )| < 4 for large enough ¢ < 1 by
assumption, we have now proved that A, € I as well. Thus, by induction, X, € I for
all n and this completes the proof. 0O

Step 2: We now transfer the result of the Claim 3.6 to # and conclude the Proof of
Theorem 3.1. Since ¥, = ru, + u we see that

1—t 2

u=(t,r

/ |:ut2(t,r)+uf(t,r)+ (2 )j| rdr
A1) r

1—¢
= / I:I/ftz(l, ry+ (Yt r) —ul(t, r))z(t, r)+ uz(t, r)] rdr
A(1—1)
1—1¢

1—1
< 2f [I/I,Z(t,r)ﬂpf(t,r)] rdr+3/ W2t r) rdr.
A

(1-1) A(1=1)

Hence it suffices to prove the vanishing of the Hardy term

1—t
f uz(t,r)rdr — 0 as t — 1. (3.28)
r(1—1)

To see this, we first note that (3.22) together with (3.17) imply that

1—t

lim [0 =802+ Wy = 921 | rar =0 (3.29)
171 Ja1=1)

Next, note that (3.3) implies that ¥ (¢, 1 —t) = ¢ (¢, 1 —¢) forall ¢t € [t_, 1). From this
we see that for every r € [A(1 —¢), (1 — )] we have

|1//(t’r) _¢(t7r)| =

1—t¢
f wwwMLm@‘
1

1—1 % 1—t bl
S(/ (wr—cbr)z(t,p)pdp) </ pldp) (3.30)

1

| 1—1 2
s@yﬂﬁ</ (%—@fmmp@>.
r(1—1)

Using (3.22) we can then conclude that

sup Wt r)y —¢@,r)— 0 as t — 1.
relx(1-1),(1-n] (3.31)

Then by the definitions (3.13), (3.16) we have

sup rlu,r)y—v,r))—0ast— 1.
rex(1-1),(1-1)] (3.32)

As a direct consequence we obtain,

1—1
/ [ut,r) —vt,r))? rdr— 0 as t — 1. (3.33)
r(1—1)

Combining (3.33) with (3.5) we obtain (3.28), which finishes the Proof of
Theorem 3.1. 0O
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3.3. Proof of Proposition 3.5. We have thus reduced the matter of proving Theorem 3.1
to proving Proposition 3.5. This will follow from the techniques introduced by Chris-
todoulou, Tathldar-Zadeh [4,5], and Shatah, Tahvildar-Zadeh [25,26].

Recall that () satisfies the wave map type equation (3.14) except that f is not of
the form gg’ for some function g (because F takes negative values). By translating in
time, we can, without loss of generality assume that 7% (i/) = 0 so that T+(1Z) =0in
order to adjust to the notation used in Shatah, Tahvildar-Zadeh [25, Lemma 2.2].

The conserved energy for (3.14) is given by

5(@)=f0 (ww P+ 920 + “”) ar.

where F () = %W2[1 — 2/2] as defined in (3.15). After translating in time so that

T+(1Z) = 0 we see that the hypothesis of Proposition 3.5 give us a A9 € (0, 1) and a
to < 0 so that for all ¢ > 19, t < 0, we have

sup Y (7, )| < ﬁ (3.34)
Ml <r<lt| 2
Note also that
[, r)| < %E = F(y(t, 1)) > 0. (3.35)

This leads us to reduce the Proof of Proposition 3.5 to the following lemma:

Lemma 3.7. Let A € (0, 1) be given as in Proposition 3.5 so that (3.34) and (3.35)
holds. Then

(tﬂ)

[t]
Eh(t) = A ( W2 ) + 20 ] +

t]

) rdr -0 ast /0. (3.36)

We remark that Proposition 3.5 is an immediate consequence of Lemma 3.7 since (3.35)
implies that F(y) > 0 in the domain of integration in (3.36). To prove Lemma 3.7 we
will need a few multiplier identities

F@)

& (%wf —x/f + )—ar(rw,wn:o, (3.37)

2 r? 2 T 2 2 2
O \r°vir) — or Vit 31/4 —F@) ) +ry; =0, (3.38)
which are obtained by multiplying (3.14) by ¥, and rt, respectively. We denote the

truncated backwards light-cone emanating from (¢, r) = (0, 0) and its mantel by

K(t,e) ={t,r)|t<t<e<0, 0<r<|t|}, (3.39)
C(r,e) ={t,r) |t <t<e<0, r=|7|}. (3.40)

Fort < 0and e < 0 small with 7 < ¢ < 0, we also define the local energy and the flux:

IT|
£(0) :=/0 <%[1ﬁ,2(r,r)+1/fr2(1:, r)]+w> rdr

e Fy 0 (3.41)
Flux(z, &) := _CO/ I:E(X/(e))z-" (XZ( ))i| ¢ de
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where x(£) == Y (¢, —¢), T < £ < & < 0, and ¢g > 0 is a universal dimensional
constant so that the following local energy identity holds:

E(1) = E(¢) + Flux(z, ¢). (3.42)

Note that although we don’t know that F(yy) > 0 on the entire domain of integration in
&(7) and &(¢) above, the hypothesis of Proposition 3.5 guarantee that F(x) > 0, for t
small in the Flux term and hence Flux(z, ) > O since T < £ < 0. From (3.42) we can
then deduce that £(t) > E(¢) fort < & < 0.

Next, since |E(t)] < A < oo and since £(7) is monotonically decreasing as t 7 0,
we observe that

lim £(e) =: £(0
lim (&) 0
exists and is finite. Using (3.42) again we see that

Flux(7) := lin})Flux(r, g) <&(r) —£(0)

exists by monotone convergence and that 0 < Flux(t) < oo as well as Flux(r) — 0 as
7 — 0. We can now replicate the argument in [25, Lemma 2.2] which we include here for
completeness and to show where precisely we will use the hypothesis in Proposition 3.5.
We also refer the reader to the book [24, Proof of Lemma 8.2].

Define,

1, 1, 1
e(l? r) = Ewt (ts r) + zwr (tv r) + r_zF(I/f(t? r))v
m(t,r) = Y (t, r)Y,(t,r), (3.43)
1 1 1 2
L(t,r):= —Ew,z(r, ")+ 51/130, N+ S FQ @) =~ fW @Y.
Then, using (3.37), (3.38) we see that

9 (re) = 9-(rm) =0,

9;(rm) — 0, (re) = L. (3.44)
We also introduce null coordinates
n=t+r, E=t—r
as well as the functions
A 0.8) = r(e+m) = @ +0,9)" + @
(3.45)

F
B 8) = rle —m) = L@y — o)+

Note that the assumptions of Proposition 3.5 ensure the positivity of F (i (¢, r)) in the
region

K ((t,r) 1o <1t <0, At| <r <]t} (3.46)

ext * =
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and thus the interpretation of the functions A2, B2 as squares in K

S 1s justified. We can
rewrite (3.44) in terms of A2, B2 as

ag.Az =1L,
5 (3.47)
0,8 =—L.
We next claim the bound
Claim 3.8. On K2,
2132
12<c? f . (3.48)
r
Proof. Indeed, a direct computation and simple algebra yields
1 4 16
L2 < S =D’ + 3 PP + 5 )Y (3.49)

Next we note that the assumptions of Proposition 3.5 imply that for all (¢, r) € K, é‘xt we
have

¢ 1,1 —
It f()ll()WS then that

Fanl=|pa—vd| <1wl,

v v v?
F =|—(1-=)|> .
|F(y) ‘ 5 I
Combining the above inequalities gives
X)) < WP <4F@), VY (t.r) € K. (3.50)

Plugging (3.50) into (3.49) we obtain

1 4 64
L2 < Q7 =97+ P2 + S Fay?,
" d (3.51)
<C [10&2 —yHr+ in(w + 3F(¢)(w2 + wz)}
= 47 t 4 r2 r t .
On the other hand,

A2B? 1 1 2
— =(e+m)e—m) =~} — Y+ S F* ) + S FAW + ¥,
r 4 r r

which, together with the preceding inequality, establishes (3.48). O

Now, we can combine (3.47) with (3.48) to see that

|oe A| < gs, |, B| < gA. (3.52)



Profiles for Energy Critical Waves 965

Now consider the rectangle

I :=T(®. &) :=[n0] x [£.&] C KL,

Integrating on I" and using (3.52) we have the inequality

£ B0, &) 2 AURL )
o) < A C/ J c/[ _AWNE ) s
(n,8) = A, é) + - &+ oy - —en " :
(3.53)

We estimate the 2nd term on the right as follows

1 1

58(075/) / < § 2 / /)2</é 1 />2
d B~(0,&)d ——d
/EO — § < i 0,5 dg b (=82 3

¢ F(xp(o,s’)} )( 1 1 )
= 20,8+ ——>2 | (=ghag' ) | — -
(/g [%( Dr ey |U0E) T s

<c Flux(Eo)'
n—=¢§
Now, define
h(n.§):= sup /n' —EA®W.&).
n=<n'<0
‘We then have

& r0 /
A, ) = Ay ) + € | | 2 N D) gy ag
n-§ o Jn (n—EN — €2
Flux(&) /5 h(m&/)( 1 1 ) ,
A(n, ——+C — dg’.
AL L a-e G v )

Using the above and the fact that ' ¢ K2

&t Wwe then obtain,

hn, s)<;/:h<n §O)+C\/Flux(§0)+C/ h0 65

Next, define A’ := (1 —1)/(1+1) < 1. Fix n and consider & € [£y, n/1']. Applying the
integral form of Gronwall’s inequality gives

h(n, £) < £§h(n, &) + C/Flux(&)

\Y g/ j| 77 (ff/ T 4 7 dé”) /
C h CFl h — = e\VE a4 de’.
+ [50 [J_E (n, &) + C Flux? (&) (né)é( 5,)8 3

Setting n = A& with &y < &’ < & we have

§ n 1 S()"/g - 5/)>
——d&" =1 —_ 1
/5/ e —en Yt °g<s’<x/s—f;> =10

d&’.
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Note that since v is regular away from (0, 0), A is bounded at (r/, &) forn <5’ <0
by a constant that depends on &y and thus

h(n.&) < sup /' —& sup A1, &) = C(0)v/—éo-

n<n'<0 n<n'<0

Let ¢ > 0 be given. Fix &y small enough so that C/Flux(&y) < ¢. Then,

h@ss><6@w¢ﬁ5+s+C@»/ J——Q/ dg' +Ce

£—¢)
< Ce+C(&)y/—E
<2Ce¢

provided & is small enough. Therefore,

h(n. §) Ce
A, &) < =<
RN RN

for (17, £) small inside K . This means that

ext:

0 0 dn/
f A &) dn' < Csz/ —— = Cé? 10g<
n n N —&

_E 2
- 1)5) <cet. (354

With the above in hand, we can now conclude by integrating (3.37) over the triangle
with vertices (n, &), (0, &), (0, n+£&) and n = A’§. We obtain

Il 0 §
Oz—f e(t,r)rdr—/ r(e+m)d77’+/ r(e —m)dg’
Al n n+& (3.55)
=I1+1I+1IL

We note that I1I is the Flux which tends to O as |#| — 0 and Il is exactly (3.54) which tends
to 0 as we have just shown. This means that I also tends to 0 which proves Proposition 3.5.

4. Self-Similar and Exterior Regions: Global Solutions

In this section, we consider a global type 1I solution i (t): we assume that [0, +00) C [
and that for some M > 0,

sup  [ld(0)lly < M. (4.1)

t€[0,+00)

We identify the radiation term vy (z) and establish the analog of Theorem 3.1 for i (z).
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4.1. Extraction of the radiation term. We begin by extracting the radiation term, that is,
we find the unique solution ¥y () to the linear equation (1.21) which #(¢) approaches
outside the forward light cone. This is a somewhat more involved procedure than in the
finite time blow-up case where taking a weak limit suffices. In particular, we prove:

Proposition 4.1. There exists (vo, v1) € H such that ||(vo, v1)|lx < M and
VR € R, / Vi c(u —vp)(t, x)>dx — 0 as t — +00,
[x[>1—R
where vy is the free wave, i.e., solution to the linear equation (1.21), with initial data

(vo, v1).

The rest of this subsection is devoted to the proof of this result, which follows closely
the proof of the corresponding result in [12]. The main technical point is the following
lemma. For § > 0, let @5 : R* — R be a radial smooth function, such that

1 for|x|>1-6

C
0< <1, \Y < —, = .
==L Vesl = 2. o) {0 for [x| < 1 — 28

Lemma 4.2. Let ¢ > 0 be given. Then there exists t, 1 +00, § > 0 small such that
X\ - X
@s | — Jultn, x) = @s | — ) wtn, x), Ou(ty, x))
tn tn

has a profile decomposition with profiles (U]{) and parameters (A, tj ) such that

t
(U, UN i < e andVn, t1, =0, and Vj > 2, —kf*" — +00.

J.n

Let us postpone the Proof of Lemma 4.2 and start by proving how it implies Propo-
sition 4.1.

Proof of Proposition 4.1 assuming Lemma 4.2.
Step 1. Let us prove first that for each R € R, there exists a solution TJf of the linear
equation (1.21) such that

/ Vi — o), x)?dx — 0 as t — +oo.
|x|=r—R

Indeed, for each n consider the solution u, to (1.3) with initial data @s(x/1,)i(t,) at
t = 0. Because of Lemma 4.2 and Proposition 2.9, u, is globally defined and scatters
for positive times. Fix n large, let wy, ,, be the solution of the linear equation (1.21) such
that

lim i, () — Wealln = 0.
—>+00

By finite speed of propagation, u(t, +1, x) = ii, (¢, x) for |x| > (1 —8)t, +¢,and t > 0.
Hence,

/ |Vixu(t,x) — Vi ywp o (t — 1y, x))|2dx — 0 as t— +oo.
|x|>—38t,+t



968 R. Cote, C. E. Kenig, A. Lawrie, W. Schlag

We choose n so large that 87, > R, and define 175 (t,x) := WL n(t — 1y, x): this step
follows.

Step 2: Choose t, as before, S(—1,)i(t,;) has weak limit (vg, v1) in H: notice that due
to (4.1), we have

l(vo, vl < M.

Let Ur, be the free wave, solution to the linear equation (1.21), with initial data (vg, v).
We also have a profile decomposition

J
ii(ty) = OL(tn) + »_ U} ,(0) + ;.

Jj=2
(Here we choose l7L1 = UL, A1y = 1, 1., = —1,, which is allowed by construction of a
profile decomposition, with profiles as weak limits). Also,
J
- -R - -R ] -
ii(tn) = Uf (1) = BL(tn) — O () + Y U}, (0) + ;)
Jj=2

is a profile decomposition. By Proposition 2.5, we have an almost orthogonality:

f |V it (t, ) — Vi 0 (1, ) 2dx = / [Vix (oL — o) (t, x)2dx
Ix|=t,—R x|t —R
J
+ Z/ Ve U (0, %) Pdx + / IV w0, x)>dx + 0,(1).
j=2 [x[=t,—R [x[=tn—R

The left hand side tends to 0, and as all the terms on the right hand side are non negative,
we deduce

lim IV, 2 (ur, — v, x)?dx = 0.
n—+00 |x|>tn—R

Since vy, — vf is a solution to the linear wave equation (1.21), by decay of outer free

energy, we have

lim Vi (oL — vf) (¢, x)Pdx = 0,
t—+00 |x|>t—R

which gives our result. 0O

Proof of Lemma 4.2.
Step 1: We claim that there exists §; > 0, s, — +00 such that

{%1 (x/sn)ﬁ(sn)}
has a profile decomposition with profiles {\7L] }; and parameters {/t , S; } such that

. . sj,n
Vj>2, lim — € {400}

n—+00 I’LJ n

. Sj.n
and lim — e[-1,281 — 1JU[I — 26, 1],

n— 0o Sp

Vn=1, s1,=0, and [(V), V)l <e/2.
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First, we observe that

lim sup/ |V, xu(t, x)>dx — 0 as R — +00. 4.2)
|x|>r+R

—>+00

Indeed, let n > 0 be given. Choose Ry large enough such that

/ |Vu0|2+u%§n2.
[x|>Ro

Let

up(Ro) if |x| < Ro
uo(x) if [x| = Ro’

0 if |x| < Ro
uy(x) if x| > Ry’

ﬁO,R()(x) = { ﬁl,Ro(x) = !

Then

||(120,R0, ﬁl,Ro)”'H =n.

If n is small, by small data theory, the solution it g, to (1.3) with data (itg, g, , i1, r,) €XiSts
for all time (actually scatters) and

sup [[ (i Ry, 0t ry) (DllH = Cn.
>0

By finite speed of propagation, for |x| > R +1t, iig, (¢, x) = u(t, x). The claim (4.2)
follows. .

Let s, — 00, then i(s,) has a decomposition with profiles {VIf }; (with initial data
(vo,j, v1,;)), parameters {iLj », S, }n, and remainder (II)OJ’n, ﬁ){,n). As usual for the pro-
file decomposition, we denote

~ 1 ~ift—s; X
i nrim L (),
Mjn Mjn  MHjn

As we can always extract subsequences without loss of generality, we will systematically
assume that all real valued sequences converge (in R). We next recall that we can assume

§
either lim ——2% = 400, or Vn, sin=0. 4.3)
n—+0o Mj,n
Define
§
;= lim —-2%.

n—+oo Sp

Claim 4.3. Forall j, |tj| < 1, and lim Bin _ 0, except for at most one j, for which

n—>+00 g,

the limit is finite.
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Proof. For this, consider v , = u(sy), V1., = 0:u(Sy), bn = Sy. By (4.2)

lim lim sup/ V0,001 + [01.2(x)[Pdx = 0.
[x|=Rs,

R—+00 n—o0o

Hence we can apply Lemma 2.7, and deduce that for all j, lim Hjn < +00, and for

n—+00 sn
all j except at most one, the limit is 0. Moreover, |7;| < 00.
In the second case of (4.3), ; = 0, and we are done. Now consider the first case of
(4.3). Assume |1;| = 1 +n,n > 0. Note first that

~ 2
limsup/ ‘VMVLjn(O,x)’ dx — 0 as R — +o0.
|x|>s,+R ’

n—o00

This follows from the Pythagorean expansion with cutoffs, i.e., Proposition 2.5. We
combine this with Lemma 2.6: let ¢ > 0, there exists R and Ny such that

~ 2
Vn > No, f Vi ,0.0] <
Hxl_lsj,nHZRUvj,n

We note that for n large and R large,
(L 11e] = Isjnll < Rpejn} © (x| 1x] = 50+ R). 4.4)

5
Indeed, if ||x| — |sj,|| < Ritjn,then |x| > |s; | — Ritj . Butsince ——"

MHj.n
for any § > O small, if n» > Nj is large enough p; , < 8ls; | so that

— +300,

x| = (I = R&)Isjnl = (1+380/2)(1 — RS)sp.

Fix § small enough so that (1+8¢/2)(1 — R§) > 1; thus, since s,, — 00, our claim (4.4)
follows. But then

~ 2
Vn > No, / ViV, 0.0 dx <26

By invariance of the linear energy, Vlf = 0, which is a contradiction. Hence |7;| < 1,
and this establishes our claim. O

Next, note that if j is such that lim K

n—+o00 s,

> 0 (and finite by Claim 4.3), we cannot

. 8.0
have lim —LX%

n—=+00 L p
Claim 4.3. We assume this is j = 1, and we can also assume @1 , = s,. Now we claim

that

= +00, hence s; , = 0 for all n. This happens for at most one j, by

supp(Vg, Vi) € {x | x| < 1. (4.5)
Indeed, take 8 € D(R*) such that supp(§) C {x | |x| > 1 + n}. Then by (4.2),

_ 1
fe <ﬁ> 173 Vit (s, X)dx = 0 a5 n = +00.
s/ sf



Profiles for Energy Critical Waves 971

Wj.n
But since lim ="
n—+00 Sl’l

convergence to 0 of the rescaled w , this gives

I La(2) L (v, vi(Z))ax=0
nioo | a7\, ) an 0;’15 =0

ie., / 5.(V \701, \711) = 0 and (4.5) follows. Then we define the first profile

= 0 for j > 2, by the profile decomposition and the weak

Vg, VHO) == 05 (0).(Vy (), VL (0), (4.6)
with parameters (1, = s, s, =0.

For &' small, (4.5) shows that |(V, V) lln < &/2.
Letnow j > 2. Then lim Bin _ 0 (recall j = 1 is the only one for which this is
n—>+00 §,

possibly not true by Claim 4.3). We distinguish two cases according to (4.3). Let

={je{2,....J}|Vn, s, =0} and
. . Sj.n
JD={{ye{2,....J}| lim —

n—+o0o I’Lj n

= Z£00}.
If j € J1,using /s, — 0 and Lemma 2.6, we see that:

— 0 as n — +oo.

v,V © ‘
H Ve O oo

Next note that |[Veg (v)| < Cys M, from where we deduce, due to Hardy’s inequality

Iyl

X ~ X 1

Vilos | — VL,n <Cs oy | — VLn
Sn L2 | |

V{ (0, x)

< Cyligsllp2 | —"——

ER P
(sn /2= x| <50)
< Cys 2 0, ‘
< Co [V Vin @0 i cieizon

Combining these two limits, we get

o o (2) )

e [—1, 1]), we claim that

Vjed, lim =0. 4.7

L2

Sjn
If j € > (recall 7; ;= lim —
n—+00 Sn

. N B
Tim_ H Vi (wa/ (s—> VL’,,,<o,x>) oItV W, 00 =0 @)
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5
Keeping in mind that @y (|7;]) — @s <—]—n) is small for n large, we rewrite
s

n

N L B
Vi (goy (—) v{,n<0,x>) — oy (17D Vet Vi, (0, %)

Sn

= Lo ()0 0+ (s (2) =0 (<22} ) v ¥ 0.3
S X S L.a\Y S S x,t L,n\Y>
,n> —y (|fj|)> Ve Vi, (0, 5).
n

(o~

We will show that the L2-norm of all three terms tends to 0. For the first two terms, we
use Lemma 2.6:

o 2
limsupf ‘VMVL/" (O,x)‘ dx — 0 as R — +oo.
Hxl_lsj.nHZRﬂj,n ’

n—o0

Now, for the first term: we use Holder’s inequality, the Sobolev embedding
H'(R*) > L*(R*) and conservation of the linear energy for V;’ to compute

! 2177 2
= Ve /s) PV, (0, ) dx
[lxI=lsjnl|l=Rpjn °n
IVell7 o [
= 3 ullxl = Isjall < Rpjah 2IVE, OIZs
n
R2'u,2. .
<~ IVl IV VO — 0, 4.9)
n
for all R € R, because /s, — 0. For the second term, if ||x|| — [s; || < Rujn,
X 5 . . X 5
then u — 5.0 < RM]’".AS Bin — 0, we see that ¢y <—> — s/ (— ]’n> -0
Sn Sn S Sn Sn Sn

(uniformly on the interval), and

2
X S - 2
/ 2 <—> — Qs (— “l)’ ‘V,,XVI;/’”(O, x)‘ dx - 0
[lx|=Isjnl|<Rwjn

Sn Sn
for all R € R. Finally for the third term, @5 (|7;|) — ¢s <—Sj n) is small for n large,
S

n

so it tends to 0. Thus the limit (4.8) holds.
In particular, if [7;| < 1 — 28/, ¢y <i
s

) Vix f/]in(O) — 0in L2. Thus we define

n

J = {je{Z,...,J}

. Sj.n /
lim — =4doocand 1 — 2§ §|r|§1}.

n—+o0o I‘Lj n

We can define our new profiles

o 2]
VjieJ, VI =gy (Irjl)V ., withparameters {i;n,5;jn}n (4.10)
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Thus, using (4.6), (4.7) and (4.10) we deduce the existence of aremainder term (w({’ . w{’ )
such that

X - -
s (?) (u(sn), du(sn)) =V} )+ Y V! )+ wi,. wi,).
n .
jeJ

where  lim limsup | S(t)(wg ., wi,)ls®) = 0.
J—>+00 n—+o00 ’ ’

This gives Step 1.
Step 2: Let u, be solution to (1.3) with initial data ¢ (£> u(sy). Let VJ/ be the
s

n

nonlinear profile associated to { \75, MinsSjn }, and

1 Vj<s_sj’n x)
Hijn MKjn MKj.n

We use Proposition 2.9 (with #, = s,,/2): u, is defined on [0, s, /2] and

Vi (s, x) =

J
fin(50/2) = Y Vi (50/2) + B (50/2) + 7 (50/2).
j=1

where nEIP lim sup <||i’nj||S([0,s,,/2]) + sup ||7n](t)||H> =0.

J—+00 0<t<s,/2

en_sjn sn/z_sj,n

Then " = Jfor j = 1,51, = 0and [|(Vy, VDlln < €/2, 10 = sn;
Mijn Mjn
. . Sjn . Sjn /
for j > 2, lim — =zooand lim |—| =|t;| € [1 — 24, 1], so that
n—>00  [jn n—oo | s,
. k¥, . Sp/2 —5;
if lim ——Z2% =400, then lim u = +00;
n—00  [Ljn n—+00 Hin
. . Sjn . sn/2 — Sjn
and if lim — = —-00, then lim —— = —o0.
n— 00 l"l‘j,n n—+00 l’l’j,n

The last limit follows from

Sn/2 = Sjn _ _ Sjm. (— Sn +1>, and — —" +1—>L+1>O.
MKj.n MKjn 2sj,n 2Sj,n 2Tj
(werecall tj € [—1, —1 +28')).
Let
Sn 8
tnzzsn’ tj,n:Sj,n_37 823
Now by definition of ¢/,

if |x|> (1 —=28)s,, then i,(0,x)= ¢y <£> U(Sp, x) = i(sy, x),

Sn
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s0, by finite speed of propagation
if |x|>@G/2—8)s, =1 —28t,, then i,(s,/2,x) = u(t,, x).

Thus

X\ - X\ -
@s <t—> utn) = ¢s <t—> u(sn/2)

J
=Y 9 < )v (Sn/2)+¢3( )w (sn/2)+gos< )rn (50/2).

j=1

Next note the for n large, J large les (x / tn)r] (sn/2)||% is small, so we can ignore this
term. Also observe that ||S(t)(w0 e Wi n)”S(R) is small for J large, n large, hence the
same is true for || S(¢) (¢s (x/tn)wj(sn/Z))HS(R) by Lemma 2.8.

Next for j = 1, recall that supp(VO, V1 ) C {x] |x| <1} and ||(V01, V11)||H <¢/2,
so that by small data theory, ||(Vn1 (1), 0¢ an )l < Ce/2 where

1 t X 1 t X
v, (t,x) = —V! <—, —>, 0V, (1, %) = =3, V' (—, —).
Sn Sn Sn S5 Sn Sn

x\ 1 1 x x\ 1 1 x
ul,uh = Z)=vi(=, =), Z)=avi(= =) ).
Wo. U1 (('0‘S (t,,)sn 2 s, s tn) s? ! 27 s,

We will let 1 , = 0, A1, = s, (and recall 7, = 3s,,/2). Then ||(U}, U})|l3 < Ce.

. . . s .v
For j > 2, consider first those j such that lim — o1
n—+o0o Mj,n

Let

= —o00. We claim that

lim Hm c/tn) Vi (5n/2) H —0. 4.11)
n—+00 H
2 — .
In fact, since M — —o0 and

Hj.n

g 1 . 2—5; 1 . 2—5;
an(sn/Z,x) — v/ (S”/ Sjn i X ) .= atvj <M’ L) ,
Mjn Mj.n Mjn Hin Mjn Hjn

then || \7,{ (sn/2) — \7]1,1 (0 /2)lx — 0asn — +o0o. We are left to bound

s (/1) Vi, G5/ 2) 134

Recall

S 1 -:/t—s; X
V@ x) = va< ’—)

1 - Ly
sothat Vi (s0/2,%) = —V; (S/—S’L>
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/Z—Sj

s o s
Recall that — L —oointhis case. Let —tjn = —n—s,‘,n,so that —

Kijn 2 Kijn
0

tjin

—_ -

Let & > 0 be given, apply Lemma 2.6 and choose R large so that

n—+o0

lim supf [Vix Vﬁn(—tj,,,,x)|2dx <e.
[ =1tj,n 1= R4,

On the other hand, on the support of ¢s(x/f,) we have (1 — 28)t, < |x|. This means
that (1 — 268)3s,/2 < |x|, which implies that

x|

3 sp
(1-28)——— < .
2Mj,n MKijn

We claim that for n large,
{x | (1 —=28)3s,/2 < x|} 0 {x] |lx| = |tjull < Rptjn} = 2.
Indeed, if x lies in the intersection

n

3s 1 Sjn
(1 —25)7 S x| < Rpjn+1tjnl = Rujn +sp 5 |

Sn

Sin
As —-L

1
— 1j €[—1,28 —1],if § is small, =s, < Rej,, but lim
Sn 2 ’ n=+00 L] »

contradiction. This shows that our claim holds, and hence

=400, a

tim sup [lgs (x/t) Vi, (50 /D) l13¢ < e

n—+0o0

This establishes (4.11).

Iy
The third case is when j > 2, lim — S0
n—=>+00 Uijn

o (5) 7 (3) -0 (5+50) % (3)

We proceed similarly to (4.8):

= +00. We claim that in this case, we

have

lim
n—+00

' =0. 4.12)
H

Vi (0 /) Vil 650/2) = 05 (% ' %,) v, (%)

1 .
= t—V(p,;(x/t,,)V]in (sn/2)

n

+(Lvgsasm + 1) ) Vs (Vi (50/2) = Vi, (50/2)
" @s(x/1n) + @5 (x/1n) x,t(n(sn/) L.n Sn/ )

n

_ Lj.n j
+ <§05 (x/tn) — s <M )) Vx,tVL’n(sn/z)

j-n

ti 1 2 i
+ <(p5 < . ) — s (‘ + _T‘>> Vx,lvﬂn(sn/z)
Hjn 33 ’
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We now show that each of the four terms in the right hand-side tends to 0 as n — +o0.
Let ¢ > 0. Lemma 2.6 provides us with R so that

j 2
/ Vi Vi (/2. %) 7dx < e.
Hx‘_ltj,nHZR,uj,n

Proceeding as in (4.9), as u; ,/t, — 0, we see that

1 , 2
VR e R, / —Vos(x/t)V], (s1/2,x)| dx — 0.
1|1t || <Rpjn |0 '

n

Hence the first term tends to 0. For the third term, it also suffices to consider the case
when ||x| — [tj ,|| < Ruj ,, but then

()= ()
o5 | =) —os | ===
tn til

Hence the third term tends to 0. For the second term, as we saw before

< CéR,ulj,n _ 68 Mijn

n Sn

— 0 as n — +oo,

Sn/2 —Sjn
MKijn

— 0

in this case (and #,, — +00)), so that by the definition of nonlinear profiles

1 - (sp/2—Sjn X I =i (su/2—=58jn x .
1/2V./< o , — — 1/2VL _ » — — 0 in H.
j.n Mj.n Mjn MHj.n

Jsn jin

This shows that the second term tends to 0. Finally, note that

thus the fourth term also tends to 0. Claim 4.12 follows.
Thus, it only remains to check the pseudo-orthogonality of {1t} ., tj,} for j > 2 of
the second class (t; > 0). But

Pjn  Pkn [tj.n — tinl _ Min Mk [Sjn — Sk,nl
Mkn  Mjn Mj.n Mkn Mjn Mj.n

— +00.

This finishes the Proof of Lemma 4.2. O

4.2. Vanishing energy in the self similar region for global solutions. In this subsection
we prove the analog of Theorem 3.1 for smooth global solutions to (1.3).

Theorem 4.4. Assume that u(t) is a smooth finite energy solution to (1.3). Let 1. € (0, 1).
Then

—R 2
ta
lim sup/ <|V,,ru(t, r)|2 + M) r3dr — 0 as R — +00.
A r

—>+00 1

We will also require the following simple consequence of Theorem 4.4.
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Corollary 4.5. Let . € (0, 1). Then ast — +00
IVeru(®) = VoL Ol 2200y = 0 and |lru(t, r)llpe=x) — 0.
Proof of Corollary 4.5. From Theorem 4.4 and Proposition 2.3,

lim sup ||V ,u(f) — Vt,rvL(t)||L2(re[)»t,t7R])
t—>+00

< lim sup ||Vt,ru(f)||L2(rg[xz,z_R]) + ||Vt,rUL(f)||L2(re[m,;_R])
t—+00

— 0 as R — +o0.
Now, we use Proposition 4.1 on the interval [r — R, +00), and this gives the convergence

Ve u(®) = Ve oL (Ol 2520 = 0.

Then it follows from Lemma 3.3 that

x| (e(t, x) — oL (t, X))l oo (|x|=ar) — O.

But as v, is a linear solution, ||rvy(¢, r)||Lgo — 0 ast — +oo. Indeed, if v (0) is
smooth with compact support, we have the well-known dispersive estimate

3

Vt >0, Vr >0, |vp(t,r)|<Ct 2. (4.13)

Combined with finite speed of propagation yields the result in this case. It follows in the
general case via a density argument. This gives the second convergence. 0O

We use the linear solution vy (¢) constructed in the previous section, and rely on our
assumption of spherical symmetry. As in the finite time blow-up case we pass to a 2d
formulation by introducing the functions

w(t,r) =ru(t,r), ¢, r)=rvL(t,r).

Claim 4.6. We have the convergences

t—R 2
v (7,
lim sup/ <|V,’rvL(t, r)|2 + M) r3dr - 0 as R — +00,
0

t—+00 r2

I—R
lim sup/ Vi (2, r)|2rdr — 0 as R — +o0,
0

—+00
limsup sup |¢(t,r)| —> 0 as R — +oo.
t—+00 rel0,t—R)]
o

VR >0, lim Ve, r) = Ve, W (e, )| rdr — 0,
R

t—>+00 f,_

and the bounds, for some constant C(M) depending only on the constant M (defined
in (4.1)), and all t > 0:

00 2
/ <|v,,u/f(r, NI + '””i—f') rdr < C(M),
0

[} 2
/ <|Vt,r¢(t, nP+ Wi—;”) rdr < C(M)>.
0
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Proof. Proposition 2.3 yields that

t—R
lim sup/ IV; oLt P)?r3dr — 0 as R — +oo.
t—+00 JO

By (3.8) in Lemma 3.3, with r = 0, we sees that by density and preservation of the
linear energy, it suffices to establish the convergence for v, with initial data that is C§°
(and radial).

We now use (4.13) and (3.11) and the fact that by Lemma 3.3 we know that s |vy (¢, s)|
— 0 ass — 0, to integrate (3.11) between r = 0 and r = ¢t — R to obtain

t—R =R
2/ vi(r,r)rdr:(r—R)zui(r,,t—R)—zf v (t, 1) dyvp(t, r) r2dr
0 0

t—R t—R
< (=Rt —R) +f v} (e, r)rdr +/ 18,022, )2 P dr.
0 0

Hence,

t—R (f _ R)Z t—R
/ v%(t,r)rdrfCt—3+/. |8rvL(t,r)|2 r3dr,
0 0

which combined with Proposition 2.3 gives the first statement. Now, d,¢ = ra,vp + v,
and the second statement follows. The third statement is then a consequence of (3.10)
in Lemma 3.3. The fourth and last convergence is a reformulation of the extraction of
the linear term Proposition 4.1, in light of Lemma 3.3, (3.8).

Finally, the first bound is a consequence of the type-II bound (4.1) combined with
Lemma 3.3, (3.8) with r = 0. For the second bound we also use (3.8), Proposition 4.1
and conservation of the linear energy. O

The Proof of Theorem 4.4 follows the same general outline as for the finite time
blow-up case. First, we prove desired vanishing of the energy for a particular A € (0, 1),
conditional to an L°° bound which guarantees the positivity of the flux. We then prove
that this implies the general case of the theorem via an inductive argument.

Proposition 4.7. Assume that there exist . € (0, 1)and A > 0and T > A/(1 —A) such
that

Vi>T, Vreli,t—Al, ¥, r)| < ? (4.14)

Then

rdr - 0 as R — oo.

—R
limsup/}\ <|a,1//(t,r)|2+|8r10(t nI*+

t—+00 t

Fy(, r)))

Let us postpone the Proof of Proposition 4.7 and use it to prove Theorem 4.4.

Proof that Proposition 4.7 implies Theorem 4.4. The proof follows in two steps.

Step 1: We begin by establishing the following claim which establishes the desired
vanishing in terms of .
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Claim 4.8. Forall ) € (0, 1),

I—R
lim sup/ (|8ﬂ,h(t, r)|2 + |0,y (2, r)|2> rdr - 0 as R — oo. 4.15)
A

—>+00 1

Proof of Claim 4.8. Consider the collection I of the A € (0, 1) such that there exist
R(A) > 0and T(A) > R(A)/(1 — ) such that

J2
Yt > T(), Vr € [At,t — RV, |¢¥(t,r)| < -5 (4.16)

Observe that if A € I then [A, 1) C I (forany A" € [A, 1), notice that R(\") = R(})
and T(A") = max(R(A)/(1 — 1), T(A)) work, because A'r > Ar). Also, in view of
Proposition 4.7, if A € I, then (4.15) holds for this particular X.

Hence it is enough to prove that / contains a sequence {A,} C (0, 1) which converges
to O: this is our goal from now on.

Let us first show that 7 is non empty. First observe that there exists Ry > 0 and
To > 0 such that for all t > Ty,

l¢(,t — Ro) — ¥ (t,t — Ro)| < 1/6, and sup |o(t,r)| < 1/6.
ref[0,t—Ro]

Indeed, we invoke Claim 4.6 (and (3.7)).

Let Ao € (0, 1) to be determined later. Let t > Ty and r € [Agt,t — Ro]. Then,
(assuming that 7o > R/ (1 — Ag), using Claim 4.6 repeatedly,

V(. r) =, r)l

t—Ro dr’
<¥(t, 1= Ro) —¢(t,t — Ro)| +/ Vgt r) = dep(t, 1)
: 7

1/2 1/2

t—Ro dr/
t—R
< 1/6+2C(M),/log ——2 < 1/3+2C(M)y/|Tog A
r

Thus, for t > Ty, r € [Lot, t — Rop], and provided that Tp > Rp/(1 — Xo)

1 t—Ro
6" (/ 0.1 = 3,9 (1, r/)lzr’dr/)

[V, r)| <@, rl+[y . r) — ¢, r)| < 1/3+2C(M)y/[log rol.

Choose now Ao € (1/2, 1) such that |Ag — 1| < 1/(144C(M)?)) and use the fact that
for such Ay we have | log Ag| < 2|Ag — 1|. Now define T (Ap) := max(7p, Ro/(1 — Ap)):
fort > T (Xg), the interval [Af, t — Rp] is never empty. From the definition of A, we get

sup [(t,r)| <2/3 < ?

t>To, re[rot,t—Ro]

Hence condition (4.16) is fulfilled with R(1g) := Rg, and A9 € I.
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Denote A, := Ag, and let us now prove by induction that A, € I, with R(A;,) = Ry.
We just proved that A € I (with R(A;) = Rp). Assume thatn > 1 and 1, € I with
R(A;) = Rp. First, forall R > Oandt > R/(1 — Ap)

/ \Verd(t, 1) = Ve, (e, r)Prdr < / IVerd(t, 1) — Ve, (e, r)Prdr
R

Ant t—

—R =R
+2/ |V,7r¢(t,r)|2rdr+2f |V,,r1ﬂ(t,r)|2rdr.
A

nt Ant
As A, € I, (4.15) holds; using Claim 4.6, and after taking the limsup in t — +o00 and
letting R — +00, we infer
o0
/ \Virp(t,r) — Vi (e, r)Prdr — 0 ast — +oc.
At
Using (3.7), there exists T, such that for all t > T,
(2, Ant) — Y (2, Ant)| < 1/6.

Then define T (A;+1) = max(T,, T(1,)). Fort > T (A,+1) and r € [A 411, Ayt] (notice
that A, <t — Rp), there holds

W, r) =, r)l

Ant dr/
= W, Ant) — (1, nt)| + N, 1) — 9t V/)|W

1 Ant 1/2 Ant dr/ 1/2
<+ (/ 19,9 (t, 1) — 8, (2 r/)|2r/dr/) (/ —>
— r ’ r ’ /

6 r PR &

Ant
< 1/6+2C(M),/log 2= < 1/6 +2C(M)y/|Tog ko] < 1/2.
r

Thus, by our choice of Ag, we have for all ¢t > T (A,41),

V2

sup [, )| < 5
re[Aps1t,Ant]

As wu, € I with R(A,) = Ry by assumption, we see that

sup [, r)| <

t>T (A1), r€[An+11,1—Ro]

’

S

so that A,4+1 € I with R(A,4+1) = Rp. This completes the induction.
Finally as A,, — 0, and A,, € I for all n > 1, we conclude that / = (0, 1) and for all
A € (0, 1), (4.15) holds, as desired. O

Step 2: To complete the proof we now transfer these results to u#(¢). Let & € (0, 1).
Claim 4.8 combined with the second and fourth statements of Claim 4.6 show that

/00 <|8,(1// — )t )+ [0- (¥ — @), r)|2) rdr - 0 as t — 4oo.

At
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This already gives that
o
/ |,u(t, r) — doL(t, r)|>r3dr — 0.
A

t

From the fact that

/oo 19, (¥ — @) (t, > rdr — 0,

At

we see that for At < r <t — R, we have

1—R
Y. r)=¢.r)=vt.t—R)—¢( 1t —K) —/ (V=) (t, p)dp,

so that
—R

W, r)—¢@, N <[yt —R)—¢,t—R)| +/ (¥ — @) (2, p)| dp

At
t—R

% t—R dp %
slw(t,t—R)—¢(t,t—R)|+</ |(w—¢)r(t’p)|2'0dp> (/ _> '
Py Moo P

Hence, using also (3.7), Proposition 4.1, we obtain that

lim limsup sup |¥(¢,7) —¢(t, )| =0.

R—00 t—00 rear,i—R]

Therefore, using that
t—R 5 o dr 1 R
lu@, r) —vp(t, )| r"— =< sup |¥(t,r) =@, )llog| - —— |,
At I re[iti—R] AM

we see that,

t—R
lim lim sup/ lu(t,r) —vp(t,r)| rdr =0,
R—00 t—o00 At
and hence,

t—R
lim lim sup/ luy (t,r) — vy (t,7)|? r3dr =0,
A

R—>0o0 (—o00 '

which combined with the second and third statements in Claim 4.6, gives Theorem 4.4.
Note that using Lemma 3.3, (3.8), and Proposition 4.1, we in fact have

o0 _ 2
lim {‘Vz,x(u—vL)(t,r)|2+—|(u sz)(t,r)I Pdr=0

t—00 At r
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4.3. Proof of Proposition 4.7. We now turn to the Proof of Proposition 4.7. We recall
the fact that v satisfies a 2d equation as in (3.14).

et — it — oy + LV — 0, where )= ¢ @.17)
Again we let
v P 4 P
F(y) = /0 fodp =" -y,

so that if || < +/2, then F () > 0.

As in the finite time blow-up case the crux of the argument will be that hypoth-
esis (4.14) will guarantee the positivity of the flux so that the methods in [4] can be
applied. We will need refinements of their results, which were developed in [10] and
required in order to establish Theorems 1.3 and 1.4. The proof below actually combines
ideas of [4] and [25].

We re-introduce the following quantities:

1 F )
e(t,r) = E(Iﬁf(t,r)+1/fr2(l‘,"))+ w

m(t,r) =y (t, )Y, r).

And recall again for convenience the identities

0;(re) — 9y(rm) =0, (4.18)
1 F 2
3 (rm) — 0, (re) = —wa l/f (1//) fr(w)w, =L, (4.19)
We define the null coordinates
n=t+r, £§€=t—r.
Let A = =2 , and denote
1+ A
A2, &) == r(e(t,r) +m(t,r)) = ;(3Hﬁ +3,9)% + F(W)
BX01.€) 1= r(e(t.r) —m(t.r) = S(@v —8,y) + @

Step 1: Vanishing of the flux. First integrate the energy identity (4.18) on the
truncated cone

C(T, &) :={(n.&) In=§& =&, n+& <2T},
where t > &) > A (see Fig. 1). We see that

0= // (0;(re) — 0, (rm))drdt
C(T.&o)
T—%&o 2T &
_ / o(T, yrdr — / A2y, Eydn,
0

0
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Fig. 1. The cone C(T, &p) in gray

which implies that

2T —&) T—-&
/ A2 (n, £0)dn = / e(T, ryrdr.
0

&o

983

Due to the type-II bound (4.1), the term on the right-hand side is bounded by a constant

o/

depending on M only as T — +00. Now, as ¥ is smooth, / A% (n, &)dn is well

&o

defined. Also recall that for & > A:if n > &/A/, then .Az(n, &) > 0. Hence, by
o
boundedness, / Az(n, &o)dn converges. For all ng > &y > A, we can thus define the
&o

flux

Flux(no, &) 1= / ./42(7], §o0)dn.

1o

Then for fixed &y, Flux(ng, &) > 0 as soon as A'ng > & and
Flux(ng, £&9) > 0 as ny — +oo.
Also, there exists a constant C (M) such that
Vo =% = A, [Flux(no, )| = C(M).
Next, let n1 > & > &y > A. Integrating on the quadrangle
Q60,6 ={n,. &) 10<=n=m, & =§ <&, n=§}

with vertices (§0, £0), (60, 1), (61, n1) and (&1, &1) (see Fig. 2), we get

0= f/ 0;(re) — 9,(rm)
0(1:0.61)

N ) &1 5 N )
_ A(n,éo)dn+/s B(mf)azs—/xs A2(n, £1)dn

&o 0

(4.20)
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t §=& §=6&,/ 1

Fig. 2. The quadrangle Q(n1; &y, &1) in gray

Letting n1 — +00, we can define, for any &1 > &y > A,

3
Flgo.61) 1= lim /5 B2n1, )d = Flux(o, &) — Flux(§1, &), (421)
0

Now fix such (£, £1): for 11 large enough, B2 > 0 on [£, £1] x {11} . This proves that
V& =& >0, F(,&) =0,

and so, £ — Flux(&, &) is non increasing. As it is bounded due to (4.20), there exists a
limit as & — 400, which we denote &:

£ := lim Flux(§,§&).
E—+00

Notice that we also have for & > & > &

F (0, 2) = F (6o, §1) + F (81, &2) = F (%o, &1)- (4.22)

Let us show that the map (&g, &1) — F (&, &1) is bounded on the set {(£g, &1) | &1 >
& > A}.Indeed, consider such (&y, &1) and ng is so large that A'ng > &}, and the triangle
with vertices (10, §0), (170, §1) and (&0, o + &1 — 0):

T(no.&.51)={n.&) | no<n, & <&, n+& <no+&}.

(See Fig. 3). Observe that on T (19; &0, &1), A% > 0and B% > 0 and integrate the energy
identity (4.18) there:

0= // 0;(re) — o, (rm)drdt
T (n0.60.61)

(mo—£&1)/2 no+&1—éo 5 &1 5
:/( 6(770+§17V)Vd"—/ A (Ti,&))d'?—[g B*(no, §)d&.

no—560)/2 no 0

Therefore, invoking again our type-II bound (4.1) and non-negativity of A2

&1 5 (mo—§1)/2
/ B(no, §)dé < / e(no +&,r)rdr < C(M),
& (no—&0)/2
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t
_ §=& §=%
n="o . .

\\ // // n

N 7 e

N 7 e

K
K

RS
RN
.
.
.
.
.
.
.
3 .
.
r

Fig. 3. The triangle T (19, &, &1) in gray

where C (M) is independent of (19, &p, &1). Letting n9p — +o0o shows that
V& > & > A, F(o, &) < CM).
Hence, with the monotonicity (4.22), for £y > A, we can define

Feo) = lim_F(go, &) = 0.

Let & — +o0 in the definition (4.21) of F (&g, &1) and derive

F(§0) = Flux(éo, o) — €.

Therefore, letting £y — 400, we finally obtain that F(§y) — 0 as £y — +o0.

&
Step 2. Bound on / Bz(no, &)d&. We now work in the domain

o
K={n&|n=2T—-A, A<E<Mnp}c{t,r)|t=Tandrt <r <t—A}.

2
Notice that when (n, &) € K, |[¥(n, &)| < %_ < /2, so that A2(n, ), B2(n, &) = 0:
for such (n, &) we can then define

A, §) =/ A2(n, &), B, &) =/ B* 1. &).

We now use the identities from (4.18), (4.19): in the variables (7, &), they read

eA> =L, 9,8°=-L.

C
Claim 4.9. On K, one has |L| < —AB.
r
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t &=\ G &L =47

n=2T—A|

T

Fig. 4. The quadrangle K in gray and the rectangle of integration [ng, n1] X [£o, &11

2
Proof. Recall thaton K, || < \/7—, so that F () > 0 and

2 2
o =lwa—v3| =i =% (1- )

Combining the above inequalities gives

PO < WP <4F@). V@) eK.
Then (using Cauchy—Schwarz inequality) and arguing as in (3.51) we have
L* < %(wf — ¥+ %Fz(w) + f—fF(wwf
e [%(W — ¥+ %F%ﬂ) + %F(x/r)(x/ff + wtz)} ,
which gives L> < C # The claim follows by taking the square root. 0O

‘We can thus conclude that

B A
[0: Al < C—, [9,B] <C—.
r r

Consider a rectangle [no, n1] X [§0, 1] C K (see Fig. 4), with n; meant to be large). In
particular, for 0 < A’ < 1 we have

0<é& <& <Ano<in. (4.23)
Then for all (n, §) € [no, n11 x [&o, &1] we obtain
§B JE! ,
A, €) < A(. o) + C/ . 8) gy
& N~ §
m A /, ,
B =B+ [ 2Dy (4.24)
n

m A &) |, /f /'71 B(',&" o
C —_d C —  ~  _dnd
=B+ /n e A A TN
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Let us first evaluate the second term using the Cauchy—Schwarz inequality:

m A, &) (/ 5 )1/2 ([m dn’ )1/2
— 2 dn d —_—
fn g < A“(n', &0)dn ey

_ [Flux(n.§0) _ [Flux(mo. ) (4.25)
n—& (1—=A)n

‘We now turn to the third term. It is convenient to denote
&1 5
fW£m&)=£ B2(n, £)d.
0

Notice that on the rectangle of integration, (4.23) holds and we have

1 1
-0 —&) — (-2

Hence

§ rm B/, &) ;o 1 /"Il 1 [é o
o dn'dE = ——= | — | By, &§hdé'd
/Eo/n W -6 —&)"" 5= a-w2J, n? (', §)d& dn

— n N1 /
< YR " vFE Bl o _(l—@kz)f JEG B0 ey L )

= (1= )2

Plugging the last two bounds (4.25) and (4.26) in the estimate for B(1n, &) in (4.24), we
infer that

Flux(no. §0) CV& /’“ vf(n’;éo,él)dn/

B(n9 S) E B(nlv ‘i:) + C (1 _ )\1/)77 (1 _ )\’/2) 0 n/2

Taking the square and integrating in & over [&p, &1] then yields

&1 — %o
(1—2/)
, C& —&) ( " VFEo £ so,el>)2
(1— )\/)2 0 7]/2

Fm; &1, 80) < CF(n1; &1, 80) +

Flux(no, &0)

!

CA
< CF(n;é1,60) + m Flux(no, &o)

C52 m dn
+—(1_;/)2( FOr's &0, €1) 2)(/,] n,z).

We have obtained the following integral inequality for n — F(n; &1, &o):

n dn’
F(n; &1, &) < CO) (F(m; &1, 80) + Flux(no, §0) + &1 F(n's &, sl)n—Z) .
n
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It follows from Gronwall’s inequality (in 1) that

m dn’
F(n:€0.61) < CQY) (F(m: &o. &1) + Flux(no, &) exp <C(/\/)51/ _77)
n

7]/2
< C(V) (F(n1; &o, &1) + Flux(no, &)) -
Letting n1 — 400 (and &, &; fixed and set n = ng):
F(nos €0, &1) < CV) (F (&, &1) + Flux (o, &0)) -
As F (&, &1) < F (&) we conclude that
&
f B (10, &)d& = F(o; £0. £1) < C(V) (F(&o) + Flux(no, £)) -

o

Step 3: Vanishing of the energy. Let ¢ > 0. Let &, > A be such that 0 < F (&) < ¢,
then let n, > &, be such that Flux(n,, &) < ¢. Define R, = &, and

T, = max e ,L,T .
1+A 1—A

Lett > T,.Denote £ = (1+A)t > & andnp = (1 — L)t > n,.

We will integrate (4.18) on the triangle with vertices (1, &), (2t — R, &) and (&, n):
T={.&)In=n =& n+& <&+n).
Then

0= // (0;(re) — o, (rm))drdt
T

t—R; 2t—R, 3
_ / e(t, ryrdr — / A0 £)dn — / B2, &')dt.
A n .

1 &

Therefore

t—Re 2t—R; &
/ e(t, Prdr = f A0y edn + f B2, &')de’
At n &e
< Flux(n, &) + F(n: £, &)
< (COY) + D Flux(n, &) + CONFE) < QCO) + .

Hence,

f—Rs
lim sup/ e(t,r)rdr < (2C(\) + De.
A

t—>+00 t

AsR, > Aand T, > T, forall R > R,,
Vi>Tg, relar,t —R], F@y@,r) =0,

and so, for all R > R,,

—R
lim sup/ 10, (t, P> + 10,0 (&, P)|P)rdr < 2COV) + 1.
A

t—+00 t

This completes the Proof of Proposition 4.7.
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5. Proofs of Theorems 1.1 and 1.3

In this section we establish Theorems 1.1 and 1.3. We remark that the details of this
argument are very similar to the arguments contained in [8, Section 5], [10, Section 3],
as well as [11, Section 5], [12, Section 4] and thus we will only present a very brief
sketch. We begin with the case of finite time blow-up.

5.1. Proof of Theorem 1.1. We assume that u(r) € H is a smooth type-II solution
to (1.3) with T,.(i2) = 1 and let v(¢) be the regular part as defined in Sect. 3.1 and let
a(t) = u(t) — v(t) be the singular part as defined in (3.4).

The first step in the Proof of Theorem 1.1 is to use Theorem 3.1 to show that there
exists a sequence of times {t,} — 1 so that the time derivative a,(t,) = u;(t,) — v;(t,)
tends to zero in L>. We first prove this in a averaged sense for the blow-up solution (7).

Lemma 5.1. Let u(t) € H be a smooth type-II solution to (1.3) with T, (it) = 1. Then
1 1 1—s
ﬁ/ f ul(s,ryr¥dr — 0 as t — 1. (5.1)
- t 0

Proof. This is a fairly direct and well known consequence of Theorem 3.1, or more
precisely, Proposition 3.20, since we work in the 2d formulation: recall

Y, r)y=ru(t,r)
and we need to prove that
1 1 1—s
—/ / Y2(s,r)rdrds — 0 as t — 1. (5.2)
L=t/ Jo
We integrate (3.38) over the region {(s,r) |t <s <1, ,0<r <1—s}(fort' <1)

1—t -t

et P (t, r)rirdr — Ui, )Y, r)rPrdr
0 0

- _
+ /] t(lﬁ/(e) — —F(w(i; E)))ézdﬁ

—t
t' pl—s
= / wtz(s, ryrdrds, (5.3)
t 0

where 1/ (£) := (£, 1 — £). Then as F () > 0 on the region of integration, we have

1—t _
/ (&/(6)2 B F(llf(ﬂs,zl 5))) 22de
1

_t/
1—t _
<A —z)/ (&’(ﬁ)%W) 2de = o(1 —1).
0

The integral term of the second line is the flux of the energy (see (3.37)), which tends
to 0 as ¢t — 1. On the other side, decomposing the space integral between [0, §(1 — 1)]
and [§(1 — t), (1 — t)], we deduce from Proposition 3.20 that
1—t
Vit Pt r)rPrdr = o(1 — 1).
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Hence letting ' — 1 and then dividing by 1 — ¢, we get

1—s
7 t/ w,(s ryrdrds — 0.

We refer to [24, Corollary 8.1] and [25, Corollary 2.3] for full details in the analog wave
map context. 0O

Next, one can observe that since v(¢) is regular at ¢ = 1, (5.1) holds for a(z) as well,
namely,

1—s
1 t/ / (s,r)r3drds —0as t— 1. 5.4)

As a consequence of (5.4) (and a Vitali covering argument, see e.g., [27]), we can pick
a sequence of time #, — 1 on which a; “vanishes at all scales” in some adequate L?>
space-time sense, stated precisely in the following Lemma.

Lemma 5.2 ([11, Corollary 5.3]). There exists a sequence of times t,, — 1 so that for
every n and for every o € (0,1 — t,) we have

thto
lim —/ / 2, r)yr¥drdr =0, (5.5)
n—-o0o g
lim a; (tn, ryr 3dr=0. (5.6)
n—oo 0

Proof. We refer the reader to [11, Corollary 5.3] for the proof. O

Now consider the bounded sequence a(f,) € H. By Theorem 2.4 and (5.6) we have
a profile decomposition

aty, 1) = ngn(o r)+wk(r).

(5.5)—(5.6) morally implies that any nonzero profile must be constant in time, i.e be
either W or —W; due to Pythagorean expansion of the energy, there can only be finitely
many of these. This is gathered in the following preliminary result

Proposition 5.3 ([11, Proposition 5.1], [12, Corollary 4.1]). There exists an integer Joy >
0, and sequences of scales ., for 1 < j < Jo with

)\17)1 L - << Afjo,n << 1— tn

and a sequence of signs t; € {+1, —1} so that

Jo )
(1) = (vo. v) + Y (;—’ W (/A jn), 0) + (wn, 0), (5.7)
j.n

j=1
where the linear evolution Wy, ,,(t) = S(t)(wy, 0) satisfies

Jim flwgnllse) = 0. (5.8)
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Proof. We refer to the argument in [11, Section 5.2] for full details. O

In order to establish Theorem 1.1 it remains to strengthen (5.8) by showing that the
error (wy,, 0) tends to zero in the energy space H. This is the content of the following
proposition.

Proposition 5.4 ([8, Proposition 5.6]). Let (w,, 0) be as in (5.7), (5.8). Then,
l(wpn, O)|[x = 0 as n — oo. 5.9)

In the Proof of Proposition 5.4 that the exterior energy estimates for the free equation,
Proposition 2.2 enter crucially. The Proof of (5.9) is identical to the argument in [8,
Proof of Proposition 5.6] or [6, Proposition 6.1] and has its roots in the argument in [13,
Proposition 3.4].

Remark 3. We note that there is a technical error in [8, proof of Lemma 5.9] in the
published version of [8]. The error has been corrected in the newest arxiv.org version [9]
and we refer the reader to [9, Proof of Lemma 5.9 and proof of Corollary 5.10] for the
amended argument.

The argument goes by contradiction. The key idea is to use that the free wave wy, (¢)
with initial data (wj, 0) actually maintains a fixed amount of energy outside the light
cone (Proposition 2.2). We prove that this forces i to concentrate energy on the boundary
of the cone. For this, we proceed in two steps for each profile, both requiring evolving
a nonlinear profile decomposition backwards in time. First, we show that the evolutions
of W, (¢) and i(t) remain close on an exterior region during a time-scale on which we
can control the first profiles (by means of Proposition 2.9). At this point, we focus the
analysis outside the light cone: we need to evolve the decomposition past the time-scale
on which we can control the first profile, but fortunately this large profile does not
contribute in this exterior region. In fact, we evolve the profile decomposition with the
first profile removed, exterior to the cone, up to the time scale of the second profile,
and infer that some energy remains outside the light cone. Arguing similarly for every
profile, we conclude that some energy remains outside the light cone for all times (in
fact it concentrates on the boundary). Unscaling this information, we see that i (t) must
concentrate some energy at some point ro > 0 and time tp = 1 — r9 < 1, which is a
contradiction with our assumption that the blow-up time T (i1) = 1.

We refer the reader to the previously mentioned references for the technical details of
the argument. We also note that the energy quantization follows from the orthogonality
of profiles (2.10). This completes our sketch of the Proof of Theorem 1.1.

5.2. Proof of Theorem 1.3. We assume that i(r) € H is a smooth, type-II solution to
(1.3) defined globally for positive times. We also assume that u#(¢) does not scatter to
zeroast — oo. Let vy (t) € H be the radiation term constructed in Sect. 4.1 and denote
by ©(¢) the nonlinear profile associated to vy (t) as defined in Sect. 2.3.2, i.e., ¥(t) € H
is the unique solution to (1.3) so that

15() — o ()|lx — O as t — oo. (5.10)
‘We then set

a(t) =u(t) —v(r).
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The Proof of Theorem 1.3 follows the same general outline as the Proof of Theo-
rem 1.1 and is in fact very similar at this point to the argument in [10, Section 3] or [12,
Section 4].

Using Theorem 4.4 one can argue as in [10, Proof of Corollary 2.2] to deduce the
following lemma.

Lemma 5.5. Let ii(t) € H be a smooth, type-1I solution to (1.3) defined globally for
positive times. Then

1 (T [T-A

lim sup —f / utz(t, r) Pdr— 0 as A — oo. (5.11)
T

T—o00 0 0

As in the Proof of Lemma 5.1 the argument consists of rewriting (5.11) in terms of
¥ = ru and integrating (3.38) over the region of integration in (5.11) and then using
Theorem 4.4 to conclude.

As in the blow-up argument, the next step is to use Lemma 5.5 to identify a sequence
of times for which the L? norm of g, tends to zero. One begins by deducing the analog of
Lemma 5.2 for global solutions. Using Corollary 4.5 we can argue as in [12, Lemma 4.4]
or as in [10, Lemma 3.3] to prove the following result.

Lemma 5.6 ([12, Lemma 4.4]). There exists a sequence of times t, — 00 so that

1 th+o 9]
lim sup — / / a,z(t, r) P drdt = 0,
th 0

l—)OOG>0 o

e9]

lim a(ty,r)ridr =0.
n—od 0

(5.12)

We note that here we have stated Lemma 5.6 in terms of a(t) = u(t) — v(¢) as
opposed to for 1 (¢) — v (¢) as in [12]. However, due to (5.10) this distinction makes no
difference.

Next, we can establish the global analog of Proposition 5.3.

Proposition 5.7 ([12, Corollary 4.2]). There exists and integer Jo > 0, and sequences
of scales A for 1 < j < Jo with

Mo <L L Apn L,

and a sequence of signs t; € {+1, —1} so that

Jo
N N L
ii(ty) = VL (tn) + ; ( Aj” W C/hjn). 0) + (wy, 0), (5.13)

where the linear evolution Wy, ,(t) = S(t)(wy, 0) satisfies
dim flwg ylls@) = 0. (5.14)

Again, the main idea in the Proof of Proposition 5.7 is to use Lemma 5.6 to show
that any nonzero profile must be either W or —W and we refer the reader to [12, Proof
of Corollary 4.2] for the proof.

Finally, the Proof of Theorem 1.3 is completed proving the analog of Proposition 5.4
in the global setting.
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Proposition 5.8 ([10, Proposition 3.12]). Let (wy, 0) be as in (5.13), (5.14). Then
(W, O3 — 0 as n — oo. (5.15)

The proof of this result follows the same scheme as in Proposition 5.4 and the exterior
linear estimates for 4d free waves (Proposition 2.2) plays a crucial role here. For the de-
tails of this compactness argument, we refer the reader to [ 10, Proof of Proposition 3.12].
The energy quantization again follows from the orthogonality of profiles (2.10). This
completes our sketch of the Proof of Theorem 1.3.

6. Type-II Blow-Up Below 2|| VW |2,

This section is devoted to proving Theorem 1.2 and we will assume throughout that 7 (¢)
is a smooth type-II solution with T, (i) = 1. Moreover suppose that

sup
0<t<l—t

NI 11202 <1—py < 2IY W2 = 20, 0)]17,. 6.1)

We again denote the regular part of u(r) by v(¢), and the singular part by a(t) :=
1(t) — v(t), as defined in Sect. 3.1. We also recall that supp a(t) € B(0, 1 — ¢t) and that
a(t) = 0in H.

By Theorem 1.1 we know that there exists a sequence of times #, — 1, an integer
Jo > 1scales A;, < 1—1,andsigns; for 1 < j < Jo so that

Jo ) .
Zi(t,,):Z(A“J W()y ), O>+0H(1) as n — 00, 62)
Jsn Jsn .

j=1

)Nl,n K- KL )»JO,n <L 1- In.
Using (6.1), Lemma 3.3, and the definition of a@(¢) we have
laolz, < 21VWI3T, (6.3)

for n large. Combining this with the orthogonality of the scales A ; ,, it is clear that there
can only be one profile above, i.e., Jo = 1. Moreover, by replacing u by —u if necessary
we can assume ¢ = 1. Thus, (6.2) reduces to

aty) = (%W (/\—) 0) +op(1) as n — oo,

Iy L1 =1y

(6.4)
We break up the Proof of Theorem 1.2 into several steps.

6.1. Step 1: preliminary observations on a profile decomposition. In order to prove
Theorem 1.2 we need to show that the decomposition (6.4) holds for any sequence
7, — 1. Let 1, — 1 be any such sequence. Up to passing to a sequence we can use
Theorem 2.4 to find a profile decomposition

J
() =Y U]+, (6.5)
j=1
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where

g 1 t—tj r 1 t—tj r
Uj 0. = UL< = —), Ta,UL( = ) :
. Ajn Ajn  Ajn )‘j,n Ajn  Ajn

As usual we denote the nonlinear profile associated to U i by U/ . We can also assume,
via an application of Lemma 2.10 that the profiles are pre-ordered as in Definition 2
with

Vi < j1 {U]l_,’ )\i,n, ti,n} < {UI{, A’j,l’l! tj,n}~
Note that we can also view (6.5) as a profile decomposition for ii(t,) given the definition
of (vo, v1) as the weak limit of #(¢) in H as t — 1. Indeed we can view v(z,), up to an

o (1) error, as a profile (72 with initial data (vg, v1) and parameters 1, 0 = 1, ;0 =0
and nonlinear profile equal to v(z, r) and we write

]+ (6.6)
1

U(ty) = (1) +

J
J=

ti

Note that given the support properties of a(t) we must have < C( — 1,) and
Ajn < C( —1,) foralln, j, by Lemma 2.7.

We observe that given the fact that #(z) blows up at ¢+ = 1 and that v is regular at
t = 1, at least one of the nonlinear profiles U J with Jj > 1 does not scatter in forward

time. Given our pre-ordering this means that the nonlinear profile U! does not scatter in
forward time. In fact, we claim that

(U}, Mops t1n) < {UP, 1,0}, (6.7)

where again l}g is the profile with initial data (vg, v1). Indeed, since U! does not scatter
in forward time we would need

. T — tl,n —1
T < Ty(vp, v1),=—> lim < T (U") < o0, (6.8)

n—o0

1,n

where T, (vg, v1) is computed from the evolution starting at t = 1. Since v(f) exists
in a neighborhood of ¢+ = 1, we can simply choose any 7 > 0 with 7" < T4 (vg, v1).
We know that |t1,n| <Cl-1)—0andXr;, < C(l —1,) — 0. This means that
T —t1,» > O for n large enough and hence

T — N,
)Ll,n

— 00 as n — o0,

which renders (6.8) impossible and proves (6.7).
Next, note that by the orthogonality of the free energy in our decomposition, i.e., (2.9),
we must have

1O =ty /3 < 20W, 07, and @517, < 20(W, 07 (6.9)
for n large and j > 1. By Lemma 2.1 we can then deduce that the nonlinear energies

E(U} ,0) =0, and E(i]) > 0. (6.10)
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for n large enough. Moreover, if
E(U] ,(0)) > 0 as n — oo, (6.11)
then

107,03 — 0 as n — oo,

and since the H norm is preserved by the linear flow this means that U z = (0,0).
Similarly,

EW)) - 0= |0 |y — 0.

Finally, if U/ is the nonlinear profile associated to {U? , A jns tjn) theneither E U >0
or U/ = (0,0).

Note that since #(t,) — (vo, v1) weakly in H ([11, Section 3]), by the construction
of the profiles in [2], (vo, v1) with parameters #, 0 = O for the time translations and
X0 = 1 for the scaling, and nonlinear profile (with evolution starting at t = 1) v(¢),
occurs in the profile decomposition of i(t,). Thus, the previous situation is the general
one for a profile decomposition of i (), just as in Claim 7.5 below.

6.2. Step 2: Minimization process and consequences. Here we use the minimization
process for profile decompositions of #(t,) developed in [15] adapted to the current
situation. We begin by introducing some of the notation from [15, Section 4]. First let
8o denote the set of all sequences {t,} — 1 so that ii(z,) admits a <-ordered profile
decomposition. Note that up to extracting subsequences, Sy consists of all sequences
T, — 1.

Let 7 = {1, }nen € So. Denote by

Jo(T) = # of profiles of u(z,) that do not scatter in forward time. (6.12)

'[;his means that for j < Jo(7), U/ does not scatter in forward time and for Jj = Jo(7)+1,
U/ scatters in forward time.

Since u(t) blows up at time r = 1 we know that for any 7 € Sy we must have
Jo (T) > 1. On the other hand, by the small data theory, there is a 89 > 0 so that if
||U ¢ < 8o then a nonlinear profile, U/ associated to U 1 must scatter in both time
dlrectlons Since we are also assuming that i(¢) is a type-II solution, i.e.,

sup [li(t)[ly <M < oo,
1€[0,1)

we can use the almost orthogonality of the H norms of the profiles, (2.9) to conclude
that Jo(7) < CM/ 8(2) is finite and uniformly bounded on Sp.
Next, define

J(T) :=min{j>1]j < j+1}, (6.13)

where < is the strict order introduced in Definition 2. Since we have Jo(7) < Jo(7)+1
we can conclude that J(7) < Jo(7) and hence J;(7) is uniformly bounded on Sy as
well.
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We also define

Jmax = max{Jo(T) | T € Sp},

6.14
81 = {T € 8o | Jo(T) = Jmax). 619

For 7 € S| we then define the non-scattering energy &'(7), as the sum of the energies
of the nonlinear profiles that do not scatter, in particular for 7 € S; we set

Jmax

E(T) =Y EWU). (6.15)
j=1

We now recall a result proved in [15].

Claim 6.1 [15, Corollary 4.3 and Lemma 4.5]. The infimum of &(7T) is attained (and
hence is a minimum): i.e., there exists 1y € Sy so that

E(Ty) =inf{E(T) | T € S1} = Emin. (6.16)

With the above claim we can define

S ={T €81 | &(T) = &} # 2, (6.17)
Jmin = min{J1(T) | T € S}, (6.18)
S ={T € S | Ji(T) = Jmin} # 2. (6.19)

We remark that in this radial setting, we necessarily have Jpi, = 1. This follows from
the following lemma proved in [15].

Lemma 6.2 [15, Lemma 4.12] There exists Ty € Sz such that forall j = 1, ..., Jnin,
U’ € {((£W, 0)} and hence Jpin = 1.

This above is a much simplified version of [15, Lemma 4.12]: as we are working in
the radial setting, the only stationary solutions to (1.3) are (=W, 0). The result in [15,
Lemma 4.12] states that all of the parameters A; , = A1, for 1 < j < Juya, but this
forces Jumin = 1 by orthogonality of the parameters.

To proceed, we distinguish between two cases:

(a) The nonlinear profile associated to (vg, v1), namely U(¢), scatters in forward time.
(b) The nonlinear profile associated to (vg, v1), namely 9(¢), does not scatter in forward
time.

Claim 6.3. In case (a) above we have Jmax = 1 and &nin > E(W, 0). In case (b) we
have Jpax = 2 and Epin > E(W, 0) + E(vg, v}).

Proof. Choose the sequence 7o = {1, },en given by Lemma 6.2. Since Jpin = 1 we have
U Ll = (£W,0). We have 7y € S3 C S» C S1 and hence we have Jpy,x non-scattering
profiles and

Jmax

min = Y E(U).
j=1
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Also, recall that for the sequence {f,} given by Theorem 1.1 we have

- 1
a(ty,r) = (—W (L) ,0> +on(1) as n — oo. (6.20)
o\,
Recalling that
lim E(a(1)) = E(u) — E(vo, v1), (6.21)

and by considering the sequence #,, — 1 we have
E(u) = E(W,0)+ E(vo, v1). (6.22)

Now consider the Pythagorean expansion for the sequence 7y = {t,,} give by Lemma 6.2.
Using the earlier established fact (6.10) we know that all of the nonzero profiles, as well
as 111,{ have positive energy. By the definition of &}y, and the fact that Ul = (=W, 0),
we see that in case (a) we have &min > E(W,0), and in case (b) we have &nin >
E(W,0) + E(vo, v1). To prove the statements about Jy.x we will use (6.22) and the
positivity of the energies of the profiles. Indeed,

Jmax J
E(ii) = ZE(U/’)+ > EWU’)+ E@]) +0,(1)
j= J=Jmax+1
Jmax 7
=EW.00+ ) EWU') + > EWU’) + E@)) +0,(1).
j=2 J=Jmax+1
Using (6.22) we obtain

Jmax J
E(o,v) =Y EWUH+ Y E@)+E@])+oa(l).

Jj=2 J=Jmax+1

In case (a) we assume that v(¢) scatters and hence corresponds to one of the nonlinear
profiles U/ with Jj = Jmax + 1. Canceling E(vg, v1) from both sides we have

Jmax J
0= Y EUH+ > EUH+E@W@])+0,(1)
j=2 J=Jmax+1, Ui v
Juax
> > EU)+o,(D),
j=2

since all the profiles above have positive energy. Hence Jynax = 1. In case (b) one
similarly shows that Jpax = 2. O

6.3. Step 3: Compactness of the singular part, a(r). We prove the following result.

Lemma 6.4. For any sequence t, — 1, there exists a subsequence, still denoted by 1,
and scales A,, > 0 so that (A,a(ty,, Ayr), A%a, (T, Anr)) converges in 'H.
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Proof. Take an arbitrary sequence t, — 1 which we assume, after passing to a sub-
sequence and reordering, that {r,} € Sy so that the profile decomposition for i (t;) is
pre-ordered. We summarize what we have established in the previous subsections. We
know that (vg, v1) is a profile and that either Jjnax = 1 or Jmax = 2 depending on whether
or not, v(t) scatters in forward time, i.e., whether we are in case (a) or (b) We also
know that the first profile U i does not scatter in forward time and that U < (vg, v1).

Further, all of the profiles other than (vg, v1) have positive nonlinear energy and so does
= J
w; -

Claim 6.5. All of the profiles that scatter in forward time must be identically 0 and the
error

w) — 0 inH. (6.23)
Proof. We again rely on the positivity of the nonlinear energies. Since we know that
Jmax = 1 or Jpmax = 2 we know that {z,,} € S;. Thus in case (a) we have
J .
E(ii) = E(W.0)+ E(vo, v1) = E(U") + Y E(U7) + E(@})) + 0,(1)
Jj=2
J
> Gmin + E(o, v1) + Y E(UT) + E(}) +0,(1)
Jj=2
= E(W,0) + E(vo, v1) +op(1).
This proves the claim in case (a). The same proof applies in case (b). O
Claim 6.6. The profile U! cannot scatter in backwards time.

Proof. Suppose that U! scatters as t — —oc. Then, the nonlinear profile decomposition
Proposition 2.9 gives (for all ¢+ < 0 so that v(1 + ¢) is defined, .i.e., forall t € (—=T,0
for some fixed T > 0)) for n large

(T +1) = 0(ty + 1) + U} (1) + ], (1) + 77} (1),

where both [|@; , (1)]|7¢ and |7} || are small for # > —7, ¢ < 0. Note that since U!

does not scatter in forward time, fort € (—T, 0] we have ||l} L)l = 8o > 0. Choosing

1o close to 1 we then evolve the profile decomposition for time s, = ) — 7,, which gives
(1) — B(t0) = U, (1o — ) + 04 (1),

which is a nontrivial profile decomposition for the fixed function u(f9) — v(fp). This
means that necessarily we must have #;, = 0 and A;, = 1 for all n. But we have
already observed in Sect. 6.1 that we must have A1, — 0 as n — oo. Hence we have

arrived at a contradiction and thus U'! does not scatter in backwards time. O

Since U does not scatter backwards or forwards in time, we then have that ‘ —Ln ) <

Cp < oo. Hence we can assume without loss of generality that ¢; , = 0 for all n. We
now have that

an(Tn.r) = (lU‘ <0 i) —u) (0 r )) +op(1) (6.24)
’ An s AZ An ’

which proves the desired compactness result for a(¢). O
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6.4. Step 4: Conclusion of the Proof of Theorem 1.2. Let {t,}, be any sequence with
tn — +00. From Step 3, we have a function A such that K (@, ») has compact closure in
H = H' x L?. Hence, after passing to a subsequence still denoted {z,},, the sequence

(-0 (s 200 2000 (1, 210)1))

converges in H to some (Up, U;) € H; denote U (t) the nonlinear solution to (1.3) with
initial data U (0) = (Up, Uy). By [11, Lemma 8.5], we have the following claim.

Claim 6.7. [11, Lemma 8.5]. U has the compactness property on (T~ (U), T*(U)).

This Claim and Theorem 2.11 show that U = (£ W, 0) up to scaling. As this true for
any sequence {t,}, a diagonal argument gives that

da@),0tu07) >0 ast— +00, (6.25)
where d is the H-distance to a set and
1 .
O = {(:i:—W(—) ,o)’ A> o}.
A A
Observe that

dy :=d(O*, 07) > 0.

1 . 1 .
Low () Low(2)
A VS WY M/

- - 1 :
= inf d(3), where () := Hpvw (X)*VW

Indeed,

dO*. 0 )= inf
21>0,A2>0

L2

Now J(A) — 2|IVW]|;2 as A — 0 or as A — +00, hence its minimum either greater
or equal to 2||VW]||;2 and we are done; or attained at some A9 > 0, and as VW # 0,
d(Ag) > 0. Now define the sets of time

Uy = {t > 0| d(@@(), 0%) < dy/2)}.

By definition of dy, U and U_ are disjoint. We also just proved that for some Ty large,
[Ty, +o0) C Uy UU_, and by continuity of ¢ — a(t), both U, and U_ are open.

Now recall that 7, € Uy and f, — +oo. Therefore, Uy N [T, +00) is not empty,
and by connectedness, [Ty, +00) C Us. In view of (6.25), we infer that there exists a
function A(¢) > 0 such that

(A(t)a (A1) 221 dra (1 A(t)~)) — (W,0) inHast— +00.
As dy > 0, we see that the assumptions of Lemma A.l are fulfilled (with G =

((0, +00), x) acting on H by A.(vg, v1) = (Avg(A-), A2v1(A+))), so that A can be chosen
continuous. This concludes the Proof of Theorem 1.2.
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Remark 4. Note that in proving the last step (proving that the sign of (=W, 0) does not
depend on the sequence {t,}), the use of Lemma A.1 could be avoided by introducing
the explicit scaling parameter

At) = {,»0’/ af(z,r)+a3(z,r)r3drz/ W}(r)r3dr}, (6.26)
r<u r<Il

and a continuity argument as in [11, pages 590-591, Step 3]. But we present it in this
way as Lemma A.1 may be useful in other settings.

7. Global Type-II Solutions Below 2||VW/|| >

This section is devoted to proving Theorem 1.4. We assume that #(¢) does not scatter in
forward in time, so that our goal is to prove the second case of the dichotomy, namely
relaxation to W. As in the statement of Theorem 1.4, we assume that there exists an
A > 0 so that

lim sup || (1) | % <2|VW|3,. (7.1)

71 2 _
oo H'xL2(0<r<t—A)

Recall that we have already obtained a convergence for at least one sequence of times:
more precisely, there exists a sequence of times (7,) with 7, — +o00, an integer J, scales
()\-l,n)n» BRI ()Ln’j)n where

0 K K hj, Lipy
and J signs i, ...tj € {—1, +1}, such that
J

TAESY (A‘f W (Ax ) ,0) + L) +on (1) as n — +oo. (7.2)
Jsn J:n

J=1

We again divide the Proof of Theorem 1.4 into several steps.

7.1. Step 1: Preliminaries on profiles. Denote by v(t) the nonlinear profile associated
to U at +0o, that is, ¥ is the unique solution to (1.3) such that

[9(t) =Ll — 0 as t — +oo.
Again, we let
a(t) =u(t) — vp(). (7.3)
We proved in the previous section that for all A > 0
+00 [, 2
/ <|Vt,xa(ts 0+ %) dx — 0 as t — +oo.
At X

Due to the bound (7.1) and recalling the first statement of Claim 4.6, (and making T
larger if necessary) we have

Vi =T, |[Vixa®)]7, <2[VW|7, —8/2. (7.4)
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The convergence (7.2) becomes

J

aty) = Z (;j w <Ax ) ,0) +op(1) as n — +00. (7.5)
J.n J.n

j=1

By orthogonality arguments, (7.4) implies J < 1.
First recall that E(a(t)) has a limit as t — +00.

Claim 7.1. As t — +oo, E(a(t)) converges to
- - IR -
E(u) — E() = E(u) — §||UL(0)||%{ = JEW).

Proof. Observe that ||V, xvL(¢)||;2 is constant because UL is a linear solution. Also,

- 1 . 1
lvL()||;+ — O. Therefore, E(vL(t)) — E||V,’)CUL(O)||i2. Hence E(v) = §||V,,XUL
(0)[17, and (recalling Claim 4.6)

E@()) = Ei(t) — i(1)) = /

1 » 1 4
=V u(t, x)|” — =u(t, x)|* ) dx +o(1)
Ix|<t/2 \ 2 4

1 R 1
+/ (—W,,xu(t, X) = Vi Ot X)F — —Ju(t, x) — vt x)|4) dx
x>t/2 2 4

1 2 1 4
= S Vexu(t, )17 — —|u(t, x)|* | dx +o(1)
el<i/2 \2 4

_ 1 2 1 4
—/(zm,xu(r,xn Jlutt, ) )dx

1 1
- f <—|v,,va<r,x>|2 - —|vL<t,x>|4) dx +o(1)
[x|>1/2 2 4
N 1
= E(i) — §||v,,va(0>||iz +o(1).

Hence E(a(1)) — E(i) — (Vi v (0)]12,.

Now consider the sequence E(a(z,)): in view of the decomposition (7.5), and or-
thogonality, E (ii(1,)) = JE(W)+E(L(f,)) +0(1) asn — +00. Taking the limit, there
holds E(d(t,)) — JE(W). As we have seen that E(a(¢)) has a limit, itis JE(W). O

Claim 7.2. J = 1 and up to considering —u instead of u, we may also assume 1| = +1.

Proof. Claim 7.1 and the condition (7.4) show that J is 0 or 1. Assume J = 0. In this
case, E(a(t)) — 0. Now the second part of Lemma 2.1 together with (7.4) implies that
Vi xa(®)|l;2 — 0. Therefore, ||V, cu(t) — V; yvL(#)||,2 — 0 and u scatters forward
in time. But this contradicts our initial assumption and hence J = 1. O

We now point out some properties of the profile decomposition for any sequence
a(ty,) for large times.
Let {t,}, be any sequence such that #, — +oo. Up to extraction, the sequence a(t,)

admits a profile decomposition {UI{, Ajnstjn}j=1 ordered for < (recall Lemma 2.10).
Let us denote by U/ the associated nonlinear profiles.
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Using [2, p. 154-155], and (7.1) there exists C independent of j and n such that
Ajn = Cty, tjul < Cty.

Claim 7.3. Deﬁne UL = v1.(0), Ao, = | and 1y, = t, (with nonlinear profile Uo(t) =
v(t)). Then {UL, jns Ljn}j=0 is a profile decomposition for u(ty).

Proof. The point is to prove the pseudo-orthogonality property: but this is a conse-
quence of the construction of a profile decomposition and S(—#)u(t) — vr(0) weakly
inH. O

Next, observe that since u does not scatter in forward time, by Proposition 2.9 at least
one of the nonlinear proﬁles U/ does not scatter in forward time and due to the ordering,
<, this means that U! does not scatter in forward time. Also, as U 70 — § scatters as
t — ooand U! does not, we can conclude that 0 £ 1.

Fix J € N. Due to the Pythagorean expansion of the H norm (2.9) and the bound on
a (7.4), we have

Vi1, IVexU (=tjn/hjm)l72 < 20VWI3, = 8/2+0x(1).

and the same for w,{ (0). In particular, it follows from Lemma 2.1 that

. ti 1 . ti
Vji>1,3n0(j), n>no(j)=E (Uf (— L ) , — U’ (—ﬂ)) > 0.

jn/)  Ajn Ajon

and similarly,

Vi =1, n=no(j)= Ew)0), w)0) > 0.

. . t; 1 . t:
EW) = lim E(U] (-L%), —aU] (-2 ),
n—+00 Ajn Ajn Ajn

using again Lemma 2.1, one can prove:

As

Claim 7.4. Forall j > 1:

(1) Either E(UY) > 0, or U = U = 0.
(2) If E(w; (0)) — 0 as n — +oo, then I|V,,xw,{(0)|le — 0.

This situation is the general one, more precisely, as S(—t,)i(t,) — vL(0) as n —
+00, and from the construction of profile decomposition (see [2]), we have

Claim 7.5. Let {tn },, be any sequence tending to +00. The sequence u(t,) admits a profile

decomposition {UL, A,,, ) j=1 ordered for <. Then vy, appears in the decomposition:
i.e., for some Ji, > 2,

Ut =3, AME=1, ]t =1,

Also, {UL, . tn }j#4, 1S a X-ordered profile decomposition of a(ty).
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7.2. Step 2: Minimization process and consequences. As in the finite time blow-up case
we follow the scheme developed in [15]. We recall that we have assumed that # does
not scatter.

We define Sy to be set of sequences of tlmes {t,}, such that t, — 400 and u(z,)

admits a <-ordered profile decomposition {UL, Ajnstjn}

Lemma 7.6. Let {t,},, € So, with <-ordered profile decomposition {(}]{, (Ajn,tjn}and
nonlinear profiles UJ. Then U does not scatter forward in time and for all j > 2, U/
does scatter forward in time. Furthermore, EWWUY > E(W,0).

Proof. We again use many ideas from [15, Section 4], adapted to the current situation.
For 7T = {1,}, € So, let Jo(7) be the number of nonlinear profiles that do not scatter
forward in time. By definition, if j < Jy, then U/ does not scatter forward in time, and
forj > Jo+1,U J scatters forward in time.

As it does not scatter in forward time, Jo(7) > 1. On the other hand, recall that
due to the small data theory, if a lmear solution UL has small H norm (say, less that
| UL l¢ < 80), any nonlinear profile U/ associated to it scatters in both time directions.
Due to the Pythagorean expansion (2.9) and the bound (4.1), Jo(7) < CM/ 82 is (finite
and) uniformly bounded on Sp.

Similarly, let

JI(T)=min{j > 1| j < j+1}.

By the definition of Jo(7"), we have Jo(7) < Jo(7) + 1, and therefore J1(7) < Jo(7).
In particular, Jj is also uniformly bounded. Then define

Jmax = max{Jo(7) | T € Sop}, (7.6)
S1={T € 8o | Jo(T) = Jmax} (1.7)
For T € &1, we define the non scattering energy £(7°) as the sum of the energies of

the nonlinear profiles that do not scatter as  — oo: more precisely, denoting U/ the
nonlinear profiles appearing in the profile decomposition derived from 7, we let

«IO(T) N Jmax N
E(T) := Z EU/Y = ZE(Uj).
j=1 j=1

We now recall the following result from [15].

Claim 7.7. ([15, Lemma 4.5 and Corollary 4.3]) The infimum of £(T) is attained (and
hence is a minimum): i.e, there exists T € S such that

ET) =inf{E(T) | T € S1} =: Emin.

With the above claim, we can then define

S ={T € 81 | E&(T) = &nin} # 2, (7.8)
Jmin = min{J1(T) | T € Sy}, (7.9)
S ={T € S | Ji(T) = Jmin} # 2. (7.10)

We can again use Lemma 6.2 to conclude that Jy,;, = 1 and that there exists a
sequence 7y € S3 so that U! = (£W, 0). We need to also show that Jyax = 1.
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Recall that ¥y, must appear in the profile decomposition, at some index J; with
Ji > Jmax because vp, has a scattering nonlinear profile. Now write the Pythagorean
expansion of the energy (2.10) for J = Jr, denoting by {(7 7} ;j the nonlinear profiles
associated to the profile decomposition of i (t,):

Jmax Ji—1
E@)=EW.00+Y EWU)+ Y EU))+E®)+E(;:0) +0a(1).
Jj=2 J=Jmax+1

Recall that E (ii) = E(W, 0) + E (V). Along with Claim 7.4 this allows us to deduce that
Vi=2,....Jp—1, U/=0, and w)t(0) = op(l),

so that in particular Jyox = 1, and Epin = £(7y) = E(W, 0). This proves Lemma 7.6.
Also notice that we obtained for some ¢ € {1},

(1) = (A: W (M) ,0) + 5L () + 0p4(1).

7.3. Step 3: Compactness of the singular part up to scaling.

Lemma 7.8. a(t) has the compactness property on [0, +00), meaning that there exists
a function X : [0, 00) — [0, 00) so that the set

K@@, 2) = {(M0)at, A(1)), A2 (D)ar (t, A(1))) | t € [0, 00)} (7.11)
is pre-compact in 'H.

Proof. t — a(t) is continuous so one only has to check compactness up to modulation
in a neighbourhood of +00. Let {t,,},, be any sequence tending to +00. After passing to a
subsequence, still denoted by #,,, we can ensure that t, > 1 foralln and {z,}, € Sp, i.e.
u(tn) admits a <-ordered profile decomposition {UL, j.n»> tj.n} with nonlinear profiles
{U/ }. ) )

By Lemma 7.6, we know that U does not scatter in forward time, and that E(U") >
E (W 0). Also by Claim 7.5, v appears in the profile decomposition, say as profile
UL = v (we recall that its nonlinear profile is v).

Let us first prove that all nonlinear profiles other than U'and vanish, thatis: U/i=0
forall j > 2, j # Jr.Indeed, write the Pythagorean expansion of the energy (2.10) for
J>Jr:

Ji—1 J+1
E(ii(ty)) = EUY+ Y EW)+E@)+ Y _ EU') + E@@;(0)) +04(1).
j=2 i=J

Recall again that all the profiles have positive energy or are 0 according to Claim 7.4;
in view of Claim 7.1, (and letting n — +00) we infer that

Vj>2 j#J, U/=0, and ©]H(0) =ox(1).
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From there, we see E (ﬁ h=¢ ({t,}) and that the profile decomposition for i (#,) can
be written as

R 1 t r 1 t r
u(ty,r) = Uﬁ <— L , )»TatUﬁ <— 1’n, )
)Ll,n )\l,n )Ll,n )Ll,n )Ll,n )Ll,n

+ 0L (ty, 1) + o (1). (7.12)

Let us now show that
Claim 7.9. t, , = 0 for all n.

Proof. Inview of Remark 2, it suffices to show that —¢#; ,, /A1 , does not converge to +00.
If —t1 p/A1 0 — +00,then U ! would scatter forward by definition of a nonlinear profile:
this is not the case. Let us argue by contradiction and assume that —¢1 , /A1, — —oo.

Then again by definition of a nonlinear profile, U' scatters backwards in time. Now let
to > 1+ T~ (V) be large enough (recall ¥ is the nonlinear profile of (vr, +00)), and
evolve the profile decomposition (7.12) with Proposition 2.9 backwards in times up to
time T, =ty — 1 — ¢, (which is possible by the choice of 7, in view of the lifespans of
Uland 9). Astg € (t, + Ty, ty] = (to — 1, 1,], we have

. 1 to—t, —t r 1 to—1t, —t r
ii(to,r) = | — U (—0 - 1’”,—>,—2 o,UL (—0 - 1—)
)"l,n )\l,n )\l,n )\1’” )Ml,n )"l,n

+ 17(t0, 7‘) +OI_'11><L2(1).

This is a non trivial profile decomposition for the fixed function i (fy) — v(ty), hence the
only possibility is A1, = 1 and t9p — ¢, — 1, = cp for all n. But then #; , — —oo like

1, C ..
—t, and — " s +oo, which is a contradiction. O
1,n
We have obtained that

1 r 1 r
i(t,) = u (0, — ,—BUl(O, ) +01(ty) + 04 (1), 7.13
(tn) (/\m L( M,n> e U0 L(ta) +0x (1) (7.13)

and so,
()\l,na(lns )\l,n')a )\inala(tnv )\l,n')) - [}1(0) as n — +00.

As this is true for a subsequence of all sequences 7, — 00, we see that there exists a
function ¢ — A(t) such that K (a, A) has compact closure in H. O

7.4. Step 4: Convergence to (W, 0) and conclusion of the Proof of Theorem 1.4. Here
the argument is exactly the same as in Step 4 of the Proof of Theorem 1.2, and we only
sketch it.

Given any sequence {#,} tending to +oo, by Step 3 [11, Lemma 8.5] and Theorem
2.11, we have the convergence, up to a subsequence

(-0 (. 200)) 202010 11, 212)) ) = (EW. 0).
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Then a continuity argument shows that the sign does not depend on the sequence {#,},
and so there exists a scaling parameter A defined for all times, such that

(x(r)a (0, M(0)) , M(0)20ra (tn,k(t)-)> — (W.0) as f— +oo.

Finally Lemma A.1 shows that A can be chosen continuous. (As in the blow up case, we
could have used the argument in [11, pages 590-591, Step 3]).
This concludes the Proof of Theorem 1.4.

Appendix A. Continuity of scaling functions

Lemma A.1. Let (B, || - ||) be a Banach space and G be a group of isometries of B
(it is a metric space endowed by the operator norm that we still denote || - ||: ||g|l =
sup{llg.v|l | lv]] < 1}). We assume that G is locally path connected.

Let v € C([0, +00), B), and assume that there exists vo € B and a function g :
[0, +00) — G such that g(t).v(t) — vo in B ast — +00. Also assume that G acts
properly on vy, in the sense that if g,.vo — vg in B, then g, — Id in G.

Then the action can be chosen to be continuous, i.e there exist y € C([0, +00), G)
such that y (t).v(t) — vg in B ast — +0o0.

Notice that if G is a Lie group, it is automatically locally path connected, and so only
the proper action hypothesis is to be checked.

Proof. If vg = 0, then [[v(@)|| = |lg(®).v(¢)]] — 0 and so y(r) = Id works. Let us
assume in the following that vy # 0.

As G acts by isometries, we can assume without loss of generality that for all t > 0,
lv@)|l = 1. For ¢t > 1, define an adequate modulus of continuity

d(t) =sup{d € [0,1] |V, 7' €[t = 8,1 +8], |[v(z) —v(x")|| < 1/t}.

Define now by induction the sequence of times fyp = 1 and t,,41 = 1, + d(t,) forn > 0.
We claim that t,, — +o0.

Indeed, if not, 1, — f5 € [0, +00) and 1, < to for all n. Now observe that if
T e[t—d(t),t],thenford =d(t)—t+t >0,[t—6, t+8] C[t—d(),t+d(t)] so that
d(t) > d(t) —t+t. Then for n large enough, t, > toc —d(00)/3 and d(t,) > 2d(ts0)/3
and 1,41 > foo + d(ts0)/3 > tso, a contradiction. Hence f, — +00.

Then

llg(tas1)g (t) " 00 — voll = llg(tus1) ™ ovo — g (1) " w0l
< llg(tnr1) " 00 — V(s )| + [0(tas1) — V(@) | + 0(t0) — g ()~ w0l
< 1lg(tas1)-V(tns1) — voll +d (1) + g (tn).v(tz) — voll — O.

Therefore, by proper action, g(t,Hl)g(tn)*1 — Id asn — +o0.
For m € N, let V,, be a path connected open set of G such that Id € V,, C
Bg(d, 1/m) (such a V), exists because G is path connected). Let
mn) = max{m | g(tn+l)g(tn)_l € Vi) if gltys1) # g(tn),
n if g(tn41) = g(tn).
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This is constructed so that m(n) — +00 as n — +00. As V() is path connected, there
exists a path y, such that y,(0) = 1d, y,, (1) = g(t+1)g(t,) " and 1, ([0, 11) C Vin(n)-

Finally define y : [1, +00) — G in the following way: let # > 1, then there exists a
unique n € N such that ¢ € [t,_1, t,,) and we set

t—t,
v() =u <—) g(ty).

Inyl — In

Observe that y is continuous; foralln € N, y(t,) = g(t,); and for ¢t € [t,, t;41),
t—t,
Y| ——— ) —1d
" (tn+1 - tn)
Therefore,

ly (D) — v(O)|| = [[v(t) — y (&)~ vl
< v(t) — v(E)Il + [v(t) — g(ta) ™ voll + g (1)~ v — ¥ (1) Lol

1
<

—1 o _
Iy (1)g (1) Id|| = <

A

1 _
= —+ou(D+ly (gt Lvg — ol
n

1
< —+ 1)+ .
= on(1) oy llvoll

As t, — 400 and m(n) — +o0 as n — +00, this means that y(t)v(t) — wvg
ast — +00. O
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