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Abstract: Consider a finite energy radial solution to the focusing energy critical semilin-
earwave equation in 1+4 dimensions.Assume that this solution exhibits type-II behavior,
by which we mean that the critical Sobolev norm of the evolution stays bounded on the
maximal interval of existence. We prove that along a sequence of times tending to the
maximal forward time of existence, the solution decomposes into a sum of dynamically
rescaled solitons, a free radiation term, and an error tending to zero in the energy space.
If, in addition, we assume that the critical norm of the evolution localized to the light
cone (the forward light cone in the case of global solutions and the backwards cone in
the case of finite time blow-up) is less than 2 times the critical norm of the ground state
solution W , then the decomposition holds without a restriction to a subsequence.

1. Introduction

1.1. History and setting of the problem. Consider the Cauchy problem for the energy-
critical, focusing wave equation in R

1+4, namely

utt − �u − u3 = 0,

�u(0) = (u0, u1),
(1.1)

restricted to the radial setting. We study solutions �u(t) to (1.1) in the energy space

�u(t) := (u(t), ut (t)) ∈ H := Ḣ1 × L2(R4). (1.2)
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The conserved energy for solutions to (1.1) is given by

E(�u)(t) :=
∫
R3

[
1

2
(|ut (t)|2 + |∇u(t)|2) − 1

4
|u(t)|4

]
dx = constant.

As we will only be considering radial solutions to (1.1), we will slightly abuse notation
by writing u(t, x) = u(t, r) where here (r, ω) are polar coordinates on R

4, i.e. x = rω,
r = |x |, ω ∈ S

3. In this setting we can rewrite the Eq. (1.1) as

utt − urr − 3

r
ur − u3 = 0,

�u(0) = (u0, u1),
(1.3)

and the conserved energy (up to a constant multiple) by

E(�u)(t) =
∫ ∞

0

[
1

2
(u2t (t) + u2r (t)) − 1

4
u4(t)

]
r3 dr. (1.4)

We also define the local energy and localized H-norm by

Eb
a (�u(t)) :=

∫ b

a

[
1

2
(u2t (t) + u2r (t)) − 1

4
u4(t)

]
r3 dr,

‖�u(t)‖2H(a<r<b) :=
∫ b

a

[
u2t (t) + u2r (t)

]
r3 dr.

(1.5)

The Cauchy problem (1.3) is invariant under the scaling

�u(t, r) �→ �uλ(t) := (λ−1u(t/λ, r/λ), λ−2ut (t/λ, r/λ)). (1.6)

One can also check that this scaling leaves unchanged the energy E(�u), as well as the
H-norm of the initial data. It is for this reason that (1.3) is called energy-critical.

This equation is locally well-posed in H = Ḣ1 × L2(R3), which means that for
all initial data, �u(0) = (u0, u1) ∈ H there exists a unique solution �u(t) ∈ H to (1.3)
defined on a maximal interval of existence, 0 ∈ Imax = Imax(�u) := (T−(�u), T+(�u)),
with �u ∈ C(Imax;H) and for every compact J ⊂ Imax we have u ∈ L3

t (J ; L6
x (R

3)).
The Strichartz norm

S(I ) := L3
t (I ; L6

x (R
4)) (1.7)

determines a criteria for both scattering and finite time blow-up. In particular, a solution
�u(t) globally defined for t ∈ [0,∞) scatters as t → ∞ to a free wave, i.e., a solution
�uL(t) ∈ H of

�uL = 0

if and only if ‖u‖S([0,∞)) < ∞. The local well-posedness theory gives the existence of
a constant δ > 0 so that

‖�u(0)‖H < δ 
⇒ ‖u‖S(R) � ‖�u(0)‖H � δ (1.8)
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and hence �u(t) scatters to free waves as t → ±∞. Moreover, we have the standard finite
time blow-up criterion:

T+(�u) < ∞ 
⇒ ‖u‖S([0,T+(�u))) = +∞. (1.9)

A similar statement holds if −∞ < T−(�u). We also note that the same statements hold
with S(I ) replaced with L5

t (I ; L5
x (R

4)) as well, see for example [18].
Here we will study the dynamics of solutions to (1.3) that are bounded in theH-norm

for positive times, i.e.,

sup
t∈[0,T+(�u))

‖�u(t)‖2H := sup
t∈[0,T+(�u))

‖∇u(t)‖2L2 + ‖ut (t)‖2L2 < ∞ (1.10)

In general we will refer to such solutions as type-II, as the case with T+(�u) < ∞ is called
finite-time type-II blow-up. Type-I finite-time blow-up, also called ode blow-up, refers
to solutions with, say T+(�u) < ∞, and with the property that

lim inf
t↑T+(�u)

‖�u(t)‖H = ∞.

Both type-I and type-II blow-up solutions were constructed for (1.3) (see respectively
[12, Section 6.2] and [17,21]). In the study of long time dynamics, a crucial role is played
by the stationary Aubin–Talenti solutions defined explicitly by

Wλ(x) = λ−1W (x/λ), W (x) :=
(
1 +

|x |2
8

)−1

. (1.11)

W = W (r) is a positive radial solution to the stationary elliptic equation

−�W − |W |2 W = 0. (1.12)

W is the unique (up to sign, dilation, and translation), amongst nonnegative nontrivial (not
necessarily radial),C2 solutions to (1.12) and is unique (up to sign and dilation) amongst
radial Ḣ1 solutions. W is also the unique (up to translation and scaling) extremizer for
the Sobolev inequality

‖ f ‖L4(R4) ≤ K (4, 2)‖∇ f ‖L2(R4)

in R
4 where K (4, 2) is the best constant, see [28]. Because of this variational character-

ization, and its importance in variational estimates, (such as those found in [11,18]), W
is referred to as the “ground state."

The second author and Merle [18], gave a characterization of the possible dynamics
for (1.1) for solutionswith energy below the threshold formed by the ground state energy,
i.e.

E(�u) < E(W, 0).

For such sub-threshold solutions, the decisive factor is the size of the gradient of u0 in
L2. Indeed, the following trichotomy holds:

• If ‖∇u0‖2L2 > ‖∇W‖2
L2 then T+(�u) < ∞ and T−(�u) > −∞. In other words, �u(t)

blows up in finite time in both directions.
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• If ‖∇u0‖2L2 < ‖∇W‖2
L2 then Imax(�u) = R and ‖u‖S(R) < ∞, where S(I ) is a

suitable Strichartz norm as in (1.7). In other words, �u(t) exists globally in time and
scatters in both time directions.

• The case ‖∇u0‖2L2 = ‖∇W‖2
L2 is impossible for sub-threshold solutions.

Threshold solutions, namely those with energy E(�u) = E(W, 0) were also classified by
Duyckaerts, Merle [16], see also [19].

Let us now restrict to type-II solutions, i.e., those satisfying (1.10). It is known that
‖∇W‖2

L2 is a sharp threshold for finite time blow-up and scattering. Indeed, the following
generalization of the scattering part of the Kenig-Merle result in [18] was established
in [13] for d = 3, 4, 5: If �u(t) verifies (1.10) and

sup
0<t<T+(�u)

‖∇u(t)‖2L2 +
d − 2

2
‖∂t u(t)‖2L2 < ‖∇W‖2L2 (non-radial case)

or

sup
0<t<T+(�u)

‖∇u(t)‖2L2 < ‖∇W‖2L2 (radial case)

then T+(�u) = +∞ and �u(t) scatters forward in time.
When d = 3, the fourth author, together with Krieger and Tataru [21], showed, by

construction, that for every δ > 0 there exists a type-II radial blow-up solution �u(t) so
that

sup
t∈[0,T+(�u))

‖∇u(t)‖2L2 ≤ ‖∇W‖2L2 + δ. (1.13)

Moreover, the blow-up, say at time T+(�u) = 1, occurs via the bubbling off of an elliptic
solution W . In particular �u(t) exhibits a decomposition of the form

�u(t) = λ(t)−1/2(W (r/λ(t)), 0) + �η(t) (1.14)

with λ(t) = (1 − t)1+ν , for ν > 0 (the case 0 < ν ≤ 1/2 is due to the Krieger and the
fourth author [20]). Here the error �η(t) is a regular function whose local energy inside
the backwards light cone {r ≤ 1 − t} vanishes as t ↗ 1.

In the d = 4 case, Hillairet and Raphael [17], exhibit C∞ type-II blow-up solutions
�u(t) so that (1.13) holds and again the blow-up at T+(�u) = 1 occurs via the bubbling off
of a W , with the decomposition

�u(t) = λ(t)−1(W (r/λ(t)), 0) + �η(t)

where �η(t) is as above and λ(t) = (1 − t) exp(−√
log |1 − t |(1 + o(1))) as t → 1.

It is believed that this type of bubbling behavior is characteristic of all radial type-II
solutions, in the sense that all solutions �u satisfying (1.10), for which T+(�u) < ∞ or
for which T+(�u) = +∞, but �u does not scatter to zero, exhibit a decomposition of the
form (1.14) as t → T+(�u), or more precisely (1.15) or (1.22), with possibly multiple
profiles given by dynamic rescalings ofW appearing on the right-hand side. This soliton-
resolution type result was established for the radial case in 3 space dimensions in the
papers by the second author, Duykaerts, and Merle [11,12,14]. The non-radial case,
restricted to energies slightly above the ground state energy for d = 3, 5, was treated
in [13].
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1.2. Statements of the main results. In this paper, we treat the case of 4-space dimen-
sions by giving a characterization of the possible dynamics for radial type-II solutions
to (1.3). The following are the 1+4 dimensional analogs of the main results for the 1+3
dimensional energy critical wave equation in [12].

We will use the notation an � bn to mean an/bn → 0 as n → ∞, where an and bn
are two sequences of positive numbers.

Let us start with the blow up case.

Theorem 1.1 (Type-II blow-up solutions). Let �u(t) be a smooth solution to (1.3) which
satisfies (1.10), and blows-up, without loss of generality, at T+(�u) = 1. Then there exists
(v0, v1) ∈ H, a sequence of times tn → 1, an integer J0 ≥ 1, J0 sequences {λ j,n}n∈N,
j = 1, . . . J0 of positive numbers, and signs ι j ∈ {±1}, such that

�u(tn) =
J0∑
j=1

(
ι j

λ j,n
W

( ·
λ j,n

)
, 0

)
+ (v0, v1) + oH(1) as n → ∞, (1.15)

with

λ1,n � · · · � λJ0,n � 1 − tn . (1.16)

Furthermore, the local energy inside the light-cone is quantized:

lim
t→1

E1−t
0 (�u(t)) = J0E(W, 0), (1.17)

and globally in space, we have

E(�u) = J0E(W, 0) + E(v0, v1). (1.18)

Note that the above theorem holds only along a sequence of times. If we make
an additional assumption regarding the size of the local Ḣ1-norm of u(t) inside the
backwards light cone, then we can prove a classification of type-II blow-up solutions
which holds along all times t → 1.

Theorem 1.2 (Type-II blow-up below 2‖∇W‖2
L2 ). Let �u(t) be a smooth solution to (1.3)

which satisfies (1.10), and blows-up, without loss of generality, at T+(�u) = 1. Suppose
in addition that

sup
0≤t<1

‖�u(t)‖2
Ḣ1×L2(0<r<1−t)

< 2‖W‖2
Ḣ1 . (1.19)

Then there exists (v0, v1) ∈ H and a positive function λ(t) with λ(t) = o(1 − t) as
t → 1 so that

�u(t) = ±
(

1

λ(t)
W

( ·
λ(t)

)
, 0

)
+ (v0, v1) + oH(1) as t → 1. (1.20)

Next we move to the case of globally defined solutions. Here we show that at least
along a sequence of times, any global solution �u(t) satisfying (1.10), asymptotically
decouples into a sum of dynamically rescaledW ’s plus free radiation, i.e., a finite energy
solution �v(t) to the free radial wave equation

vt t − vrr − 3

r
vr = 0,

�v(0) = (v0, v1) ∈ H.

(1.21)
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Theorem 1.3 (Type-II global solutions). Let �u(t) be a smooth solution to (1.3) satisfy-
ing (1.10), and which is global in positive time, i.e., T+(�u) = +∞. Then there exists a
free wave, i.e., a solution �vL(t) ∈ H to (1.21), a sequence of times tn → ∞, an integer
J0 ≥ 0, J0 sequences {λ j,n}n∈N, j = 1, . . . J0 of positive numbers, and signs ι j ∈ {±1},
such that

�u(tn) =
J0∑
j=1

(
ι j

λ j,n
W

( ·
λ j,n

)
, 0

)
+ �vL(tn) + oH(1) as n → ∞, (1.22)

with

λ1,n � · · · � λJ0,n � tn . (1.23)

Furthermore, for all A > 0 the limit as t → ∞ of the localized energy Et−A
0 (�u(t))

exists and satisfies

lim
t→∞ Et−A

0 (�u(t)) = J0E(W, 0). (1.24)

As in the finite time blow-up case, we can prove the global-in-time decomposition
along all times t → ∞ if we assume a bound on the local Ḣ1-norm of u(t) which
prevents there from being more than one profile W in (1.22).

Theorem 1.4 (Type-II global solutions below 2‖∇W‖2
L2 ). Let �u(t) be a smooth solution

to (1.3) satisfying (1.10), and which is global in positive time, i.e., T+(�u) = +∞. Suppose
in addition that there exists an A > 0 so that

lim sup
t→∞

‖�u(t)‖2
Ḣ1×L2(0≤r≤t−A)

< 2‖W‖2
Ḣ1 . (1.25)

Then, there exists a solution �vL(t) ∈ H to (1.21) so that one of the following holds:

(i) �u(t) scatters to the free wave �vL(t) as t → ∞.
(ii) There exists a positive function λ(t) with λ(t) = o(t) as t → ∞ so that

�u(t) = ±
(

1

λ(t)
W

( ·
λ(t)

)
, 0

)
+ �vL(t) + oH(1) as t → ∞. (1.26)

1.3. Comments on the proofs. While many of the techniques introduced in the series
of papers [11–13] carry over to the even dimensional setting, several key elements of
the argument are quite different when one moves away from 3 space dimensions. In
particular, the missing ingredients in even dimensions were:

(1) Exterior energy estimates for the underlying free radial wave equation.
(2) A proof that the energy of a smooth solution cannot concentrate in the self-similar

region of the light-cone.

The first of these ingredients (1) was studied in [7]. In fact, the main argument of [12]
is the proof that (2) holds for the 3d radial energy criticalwave equation, using the exterior
energy estimates for the 3d linear, radial wave equation proved in [11]. However, in [7],
it is proved that the crucial exterior energy estimates established in [11,13] are false in
even dimensions, thus rendering the use of the channel of energy method of [11–14] in
doubt for the case of even dimensions. In [7] it is proved that the exterior energy estimate
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established in [13] fails for radial data of the form (0, g), but does hold for radial data of
the form ( f, 0). This was used for energy critical equivariant wavemaps into S

2, to prove
a classification of degree one below 3 times the energy of the harmonic map in [8,10],
and the soliton resolution along a sequence of times in [6], in the spirit of [12].

In the case of equivariant wave maps, (2) is classical and was established by Christ-
odoulou, Tahvildar-Zadeh [4,5] and Shatah, Tahvildar-Zadeh [25,26]. The classical ar-
guments rely crucially on multiplier identities, the monotonicity of the local energy, and
on the positivity of the flux—both of which appear to be absent in the semilinear wave
equation set-up. In [8,10] and later in [6], one uses (2) as in the works mentioned above
to show that, along a sequence of times, the time derivative of the solution, restricted to
a suitable cone, tends to 0, thus making it possible to apply the d = 4 exterior energy
lower bound from [7], for data of the form ( f, 0).

The main new ingredient in this paper is the proof of (2) for solutions to the 4d
Eq. (1.3). In fact, the proof uses a reduction to a 2d equation that bearsmany similarities to
a wave map type equation. This is the opposite of what is usually done, when equivariant
wave maps are transformed to look like an energy critical nonlinear wave equation.

The crucial monotonicity of the localized energy and the positivity of the flux are
established in the relevant regions after the regular part of the solution is considered
separately from the singular part. One can then follow the classical techniques for wave
maps to prove (2) for radial solutions to (1.3). With the weakened version of (1) proved
in [7] for data ( f, 0), and (2) in hand, one can then follow the arguments in [11–13], and
[8,10] to establish the main results. New refined techniques from [15] are also used to
prove Theorems 1.2 and 1.4.

The vanishing of the energy in the self-similar regions proved in the previous sections
allows one to deduce a vanishing of the L2 norm of the time derivative of the singular
part of the solution along a sequence of times. The vanishing time derivative then allows
one to conclude that all the profiles in the Bahouri–Gerard profile decomposition of
the solution along this sequence must be either 0 or ±W . The error term in the profile
decomposition is then shown to vanish in the energy space using the exterior energy
estimates for the underlying free equation as in [8,10]. One main difference with [8,10]
in the argument is that there the harmonic map must be extracted before the machinery
of profile decompositions can be applied due to the geometric nature of wave maps.
Here one can work directly with a profile decomposition for �u(tn).

In Sect. 2, we recall various preliminary results including the linear and nonlinear pro-
file decompositions from [2], the exterior linear estimates for the free equation from [7],
and the rigidity of radial compact trajectories proved in [11].

In Sect. 3, we show that no energy can concentrate in the self-similar region of the
backwards light cone for type-II solutions that blow up in finite time, i.e., we prove
(2) in the finite time blow-up case. In Sect. 4, we prove the vanishing of energy in the
self-similar region of the forward light cone for solutions that exist for all positive times,
proving (2) for global solutions. These two sections contain the main technical novelties
in this paper as the classical 2d geometric arguments from [4,5,25,26] are adapted to a
focusing 4d semilinear equation once crucial positivity properties are revealed.

In Sect. 5, we prove Theorems 1.1 and 1.3 using the arguments from [8,10], which
in turn were based on the channel of energy methods introduced in [11–13], which we
also rely on here.

Finally, in Sects. 6 and 7 we prove Theorems 1.2 and 1.4. Here the argument has
its foundations in the techniques from [11,12] but also requires new methods recently
developed in [15].
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1.4. Notation. As we are dealing strictly with radial functions, we will often abuse
notation by writing f (x) = f (|x |) = f (r). For a space-time function f (t, r) we will
sometimes use the notation

∣∣∇t,x f (t, r)
∣∣2 = f 2t (t, r)+ f 2r (t, r). For spacial integrals of

radial functions we will ignore a dimensional constant by writing
∫
R4

f (x)dx :=
∫ ∞

0
f (r) r3 dr.

2. Preliminaries

2.1. Energy trapping. We recall a few variational results from [11,18] which give a
useful characterization of the threshold energy E(W, 0). The key point here is that W
is the unique minimizer, up to translation, scaling and constant multiplication of the
Sobolev embedding:

‖ f ‖L4(R4) ≤ K (4, 2)‖∇ f ‖L2(R4),

where K (4, 2) is the optimal Aubin–Talenti constant [1,28]. Using the Eq. (1.11), one
can show that in fact,

1

4
‖∇W‖2L2 = E(W, 0), (2.1)

and a variational argument yields the following useful result from [11,13,18].

Lemma 2.1 ([11, Claim 2.3], [13, Claim 2.4]). Let f ∈ Ḣ1(R4). Then

‖∇ f ‖2L2 ≤ ‖∇W‖2L2 and E( f, 0) ≤ E(W, 0) 
⇒ 1

4
‖∇ f ‖2L2 ≤ E( f, 0). (2.2)

Moreover, there exists c > 0 such that if ‖∇ f ‖2
L2 ≤ 2‖∇W‖2

L2 then

E( f, 0) ≥ cmin{‖∇ f ‖2L2 , 2‖∇W‖2L2 − ‖∇ f ‖2L2} ≥ 0 (2.3)

2.2. Exterior energy estimates and linear theory. Exterior energy estimates for the free
radial wave equation established by the first, second, and fourth authors in [7] will play
a crucial role. In particular, we will use the fact that free radial waves �v(t) in 4 space
dimensions with zero initial velocity, i.e., with data ( f, 0), maintain a fixed percentage
of their energy on the exterior of the forward light cone emanating from the origin.

We will denote a solution �v(t) to the free wave equation (1.21), with initial data
( f, g) ∈ H, by

�v(t) = S(t)( f, g).

Proposition 2.2 ([7, Corollary 5]). There exists α0 > 0 such that for all t ∈ R we have

‖S(t)( f, 0)‖H(r≥|t |) ≥ α0‖ f ‖Ḣ1 (2.4)

for all radial data ( f, 0) ∈ H.
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Remark 1. We note that estimates (2.4) with data (0, g) or ( f, g) with g �= 0 are false,
see [7]. In fact one recovers the analog of (2.4) for data ( f, 0) in dimension d ≡ 0
mod 4 and for data (0, g) in dimensions d ≡ 2 mod 4. This is different from the odd
dimensional case, where the analog of (2.4) holds for general radial data ( f, g) for either
all positive, or all negative times, see [11].

We have the following vanishing of the energy away from the forward light cone
proved in [7].

Proposition 2.3 ([7, Theorem 4]). Let ( f, g) ∈ (H)(Rd) be radial. Then we have the
following vanishing of the energy away from the forward light-cone {|x | = t ≥ 0}:

lim
T→+∞ lim sup

t→+∞
‖∇t,x S(t)( f, g)‖L2(||x |−t |≥T ) = 0.

2.3. Profile decomposition. Another essential tool in our analysis will be the linear
and nonlinear profile decompositions of Bahouri–Gerard [2]. We begin with a profile
decomposition for a bounded sequence �un in the energy space in terms of free waves.
The statement below was proved in 3 space dimensions in [2] and extended to other
dimensions, including 4 space dimensions in [3].

2.3.1. Linear profile decomposition.

Theorem 2.4 ([2, Main Theorem], [3, Theorem 1.1]). Consider a sequence �un =
(un,0, un,1) ∈ H := Ḣ1 × L2(R4), that is radial, and such that ‖un‖H ≤ C. Then, up

to extracting a subsequence, there exists a sequence of free radial waves �U j
L ∈ H, a

sequence of times {t j,n} ⊂ R, and sequence of scales {λ j,n} ⊂ (0,∞), and free wave
�wk
n ∈ C(R,H) (i.e., solution to (1.21)) such that

un,0(r) =
k∑
j=1

1

λ j,n
U j

L

(
− t j,n

λ j,n
,

r

λ j,n

)
+ wk

n(0, r)

un,1(r) =
k∑
j=1

1

(λ j,n)2
∂tU

j
L

(
− t j,n

λ j,n
,

r

λ j,n

)
+ ∂tw

k
n(0, r)

(2.5)

and for any j ≤ k, that

(λ j,nw
k
n(λ j,nt j,n, λ j,n ·), λ2j,n∂twk

n(λ j,nt j,n, λ j,n ·)) ⇀ 0 weakly in H. (2.6)

In addition, for any j �= k we have

λ j,n

λk,n
+

λk,n

λ j,n
+

∣∣t j,n − tk,n
∣∣

λ j,n
+

∣∣t j,n − tk,n
∣∣

λk,n
→ ∞ as n → ∞. (2.7)

Moreover, the errors �wk
n vanish asymptotically in the Strichartz space, we have

lim sup
n→∞

∥∥∥wk
n

∥∥∥
L∞
t L4

x∩S(R×R4)
→ 0 as k → ∞. (2.8)
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Finally, we have the almost-orthogonality of the free energy as well as of the nonlinear
energy (1.4) of the decomposition:

‖�un‖2H =
∑

1≤ j≤k

∥∥∥∥ �U j
L

(
− t j,n

λ j,n

)∥∥∥∥
2

H
+ ‖ �wk

n(0)‖2H + on(1), (2.9)

E(�un) =
∑

1≤ j≤k

E

(
�U j
L

(
− t j,n

λ j,n

))
+ E( �wk

n(0)) + on(1), (2.10)

as n → ∞.

Remark 2. By rescaling and time-translating each profile �U j
L appearing in (2.5), and by

extracting subsequences we can, without loss of generality, assume for each fixed j that
either we have

∀n, t j,n = 0, or lim
n→∞

t j,n
λ j,n

= ±∞. (2.11)

Moreover, we can assume that for all j the sequences {t j,n} and {λ j,n} have limits in
[−∞,+∞] and [0,+∞] respectively.

We will also need the following refinement of the almost-orthogonality of the free
energy, namely that the Pythagorean decomposition (2.9) of theH norm of the sequence
remains valid even after a spacial localization. This was proved for dimension 3 in [12]
and for even dimensions in [7].

Proposition 2.5 ([7, Corollary 8]). Consider a sequence of radial data �un ∈ H =
Ḣ1 × L2(R4) such that ‖un‖H ≤ C, and a profile decomposition of this sequence as in
Theorem 2.4. Let {rn} ⊂ (0,∞) be any sequence. Then we have

‖�un‖2H(r≥rn)
=

∑
1≤ j≤k

∥∥∥∥∥ �U j
L

(
− t jn

λ
j
n

)∥∥∥∥∥
2

H(r≥rn/λ
j
n)

+ ‖ �wk
n(0)‖2H(r≥rn)

+ on(1)

as n → ∞.

We also require the following technical lemmas for free waves proved in [11] in odd
dimensions and in [7] in even dimensions.

Lemma 2.6 ([11, Lemma 4.1], [7, Lemma 9]). Let �v(t) be a radial solution to the linear
wave equation (1.21), and {tn} ⊂ R, {λn} ⊂ R

∗
+ be two sequences. Define the sequence

vn(t, x) = 1

λn
v

(
t

λn
,
x

λn

)
. (2.12)

Assume that
tn
λn

→ � ∈ R. Then

If � ∈ {±∞}, lim sup
n→∞

‖∇x,tvn(tn)‖2L2(||x |−|tn ||≥Rλn)
→ 0 as R → +∞,

If � ∈ R, lim sup
n→∞

‖∇x,tvn(tn)‖2L2(| log(|x |/λn)|≥log R)
→ 0 as R → +∞.
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Lemma 2.7 ([11, Lemma 2.5]). Let �vn be defined as in (2.12) and assume it has a profile
decomposition as in Theorem 2.4. If

lim
R→+∞ lim sup

n→∞

∫
|x |≥Rμn

|∇v0,n|2 + |v1,n|2 = 0,

then for all j the sequences

{
λ j,n

μn

}
n
,

{
t j,n
μn

}
n
are bounded. Moreover, there exists at

most one j such that

{
λ j,n

μn

}
n
does not converge to 0.

We will also need the following result about sequences of radial free waves with
vanishing Strichartz norms established in [7] for even dimensions and which is the
analog [11, Claim 2.11], where the result was proved in odd dimensions only.

Lemma 2.8 ([7, Lemma 11], [11, Claim 2.11]). Let �wn(0) = (wn,0, wn,1) be a radial
uniformly bounded sequence in H = Ḣ1 × L2(R4) and let �wn(t) ∈ H be the corre-
sponding sequence of radial 4d free waves. Suppose that

‖wn‖S(R) → 0 as n → ∞,

where S(I ) is as in (1.7). Let χ ∈ C∞
0 (R4) be radial so that χ ≡ 1 on |x | ≤ 1 and

suppχ ⊂ {|x | ≤ 2}. Let {λn} ⊂ (0,∞) and consider the truncated data

�vn(0) := ϕ(r/λn) �wn(0),

where either ϕ = χ or ϕ = 1 − χ . Let �vn(t) be the corresponding sequence of free
waves. Then

‖vn‖S(R) → 0 as n → ∞.

2.3.2. Nonlinear profiles.

Definition 1. Let �UL be a linear solution to (1.21), and � ∈ [−∞,+∞]. We define the
nonlinear profile associated to ( �UL, �) as the unique nonlinear solution �U (t) to (1.3),
defined on a neighborhood of �, and such that

‖ �U (t) − �UL(t)‖H → 0 as t → �.

Existence and uniqueness of �U (t) are consequences of the local Cauchy theory for
(1.3) [18,22,23], and more precisely of the existence of wave operators if � is infinite. It
is important to note that in the latter case � ∈ {+ ± ∞}, the nonlinear profile �U scatters
at �: for example if � = +∞,

s0 > T−( �U ) 
⇒ ‖U‖S((s0,∞)) < ∞. (2.13)

A similar statement holds for � = −∞.
In the case of a profile decomposition as in (2.5) with profiles { �U j

L} and parameters
{t j,n, λ j,n} we will denote by { �U j } the non-linear profiles associated to
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(
�U j
L , lim

n→+∞ − t j,n
λ j,n

)
(we recall that this limit exists by assumption, as explained in

Remark 2). For convenience, we will often use the notation

U j
L ,n(t, r) := 1

λ j,n
U j

L

(
t − t j,n
λ j,n

,
r

λ j,n

)
,

U j
n (t, r) := 1

λ j,n
U j

(
t − t j,n
λ j,n

,
r

λ j,n

)
.

(2.14)

Proposition 2.9 (Nonlinear profile decomposition). [8,11] Let (un,0, un,1) ∈ H be a
bounded sequence together with its profile decomposition as in (2.5). Let { �U j }, be the
associated nonlinear profiles. Let {sn} ⊂ (0,∞) be any sequence of times so that for all
j ≥ 1,

∀n,
sn − t j,n

λ j,n
< T+( �U j ) and lim sup

n→∞
‖U j‖

S

( −t j,n
λ j,n

,
sn−t j,n

λ j,n

) < ∞, (2.15)

If �un(t) ∈ H is the solution to (1.3) with initial data �un(0) = (un,0, un,1) then �un(t) is
defined on [0, sn) and

lim sup
n→∞

‖un‖S([0,sn)) < ∞.

Moreover the following nonlinear profile decomposition holds: For ηkn defined by

�un(t, r) =
∑

1≤ j<k

�U j
n (t, r) + �wk

n(t) + �ηkn(t), (2.16)

we have

lim
k→∞ lim sup

n→∞

(
‖ηkn‖S([0,sn)) + ‖�ηkn‖L∞

t ([0,sn);H)

)
= 0.

Here wk
n(t) ∈ H is as in Proposition 2.4 and V j

n is defined as in (2.14). Also, we note
that an analogous statement holds for sn < 0.

Definition 2 (Ordering of the profiles [15]). Let { �U j
L , {t j,n, λ j,n}} be a profile decom-

position as in (2.5), and let �U j their nonlinear profiles. We introduce the following
pre-order � on the profiles as follows. For j, k ≥ 1, we say that

{ �U j
L , {t j,n, λ j,n}} � { �Uk

L, {tk,n, λk,n}} (or simply j � k if there is no ambiguity)

if one of the following holds:

(1) the nonlinear profile �Uk scatters forward in time.
(2) the nonlinear profile �U j does not scatter forward in time, and

∀ T < T+( �U j ), lim
n→+∞

λ j,nT + t j,n − tk,n
λk,n

< T+( �Uk).

(The above limit exists due to the arguments in [15, Discussion after (3.16) and
Appendix A.1].)
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We say that { �U j
L , {t j,n, λ j,n}} ≺ { �Uk

L, {tk,n, λk,n}} if

{ �U j
L , {t j,n, λ j,n}} � { �Uk

L, {tk,n, λk,n}} and { �Uk
L, {tk,n, λk,n}} �� { �U j

L , {t j,n, λ j,n}}.
Lemma 2.10 ([15, Claim 3.7]). Let (u0,n, u1,n) ⊂ H be a bounded sequence with profile

decomposition { �U j
L , λ j,n, t j,n} j∈N. Then one can assume without loss of generality that

the profiles are ordered, that is

∀i ≤ j, { �Ui
L, λi,n, ti,n} � { �U j

L , λ j,n, t j,n}.

2.4. Classification of pre-compact solutions. Finally, we recall the following classifica-
tion of finite energy solutions �u(t) ∈ H to (1.3) that have pre-compact trajectories inH
up to symmetries. In particular, we say that a solution �u(t) has the compactness property
on an interval I ⊂ R if there exists a function λ : I → (0,∞) so that the trajectory

K =
{(

1

λ(t)
u

(
t,

·
λ(t)

)
,

1

λ2(t)
∂t u

(
t,

·
λ(t)

))
| t ∈ I

}
⊂ H

is pre-compact in H. A complete classification of solution �u(t) with the compactness
property was obtained in [11]. In particular there it was shown that �u(t) is either identi-
cally 0 or is W up to a rescaling.

Theorem 2.11 ([11, Theorem 2]). Let �u(t) ∈ H be a nontrivial solution to (1.3) with
the compactness property on its maximal interval of existence Imax. Then there exists
λ0 > 0 so that

u(t, r) = ± 1

λ0
W

(
r

λ0

)
.

3. Self-Similar and Exterior Regions: Blow-Up Solutions

The goal of this section is to show that a type-II blow-up solution �u(t), with, say,
T+(�u) = 1, cannot concentrate any energy in the self similar region r ∈ [λ(1− t), 1− t]
for any fixed 0 < λ < 1.

Theorem 3.1. Let λ ∈ (0, 1). Then for any smooth solution �u(t) to (1.3) such that

sup
t∈[0,1)

‖�u(t)‖H < ∞, (3.1)

we have

lim
t↗1

∫ (1−t)

λ(1−t)

[
u2t (t, r) + u2r (t, r) +

u2(t, r)

r2

]
r3 dr = 0. (3.2)

3.1. Extraction of the regular part. First, we define the regular and singular parts of
a solution �u(t) which blows up at T+(�u) and satisfies (1.10), following the notation
in [11,12]. Indeed, by [11, Section 3], there exists �v = (v0, v1) ∈ H, so that
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�u(t) ⇀ (v0, v1) as t → 1,

weakly in H. Denote by �v(t) the solution to (1.3) with initial data at time t = 1,
�v(1) = (v0, v1), and maximal interval of existence Imax(�v) = (T−(�v), T+(�v)). Then,
(still in [11, Section 3]) for any t > max(T−(�u), T−(�v)) we have

∀r ≥ 1 − t, �u(t, r) = �v(t, r). (3.3)

We thus define the singular part of �u(t) as the difference,

�a(t) := �u(t) − �v(t), (3.4)

and we remark that �a(t) is well defined for all t > max(T−(�u), T−(�v)) and that �a(t) is
supported in the backwards light cone

{(t, r) | max(T−(�u), T−(�v)) < t < 1, 0 ≤ r ≤ 1 − t}.
We call �v(t) the regular part of �u(t).

We will require the following simple estimates for �v(t), which follow easily from the
fact that the evolution t �→ �v(t) is continuous inH at t = 1,

Lemma 3.2. Let �v(t) be the regular part of �u(t) as defined above. Then

lim
t→1

∫ 1−t

0

[
v2t (t, r) + v2r (t, r) +

v2(t, r)

r2

]
r3 dr = 0, (3.5)

sup
0≤r≤1−t

|rv(t, r)| → 0 as t → 1. (3.6)

Proof. Indeed, the continuity of t �→ �v(t) ∈ H at t = 1 gives the result for the first
two terms in the integral (3.5). The third term in (3.5) and (3.6) then follow as direct
consequences of the following technical lemma which we will also use in Sect. 4.

Lemma 3.3. Assume
∫ +∞

0
|∂rw(ρ)|2ρ3dρ < +∞ and can be approximated by C∞

functions in this norm, i.e., w ∈ Ḣ1(R4). Then rw(r) → 0 as r → 0 and as r → +∞,
and for all r ≥ 0,

|rw(r)|2 ≤ 1

2

∫ ∞

r
|wr (ρ)|2 ρ3 dr, (3.7)

∫ ∞

r
|w(ρ)|2ρ dρ ≤

∫ ∞

r
|∂rw(ρ)|2ρ3dρ. (3.8)

and for 0 < s < r we have

∣∣∣r2w2(r) − s2w2(s)
∣∣∣ ≤ 3

∫ r

s
w2(ρ) ρ dr +

∫ r

s
|wr (ρ)|2 ρ3 dρ, (3.9)

sup
0<s≤r

|sw(s)|2 ≤ 3
∫ r

0
w2(ρ) ρ dr +

∫ r

0
|∂rw(ρ)|2ρ3dρ. (3.10)
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Proof. By density, we can prove the lemma for w ∈ C∞
0 . First, we note that

|w(r)| =
∣∣∣∣−

∫ ∞

r
∂rw(ρ) dρ

∣∣∣∣ ≤
(∫ ∞

r
w2
r (ρ) ρ3 dρ

) 1
2
(∫ ∞

r
ρ−3 dρ

) 1
2

=
(∫ ∞

r
w2
r (ρ) ρ3 dρ

) 1
2 1

r
√
2

from which (3.7) follows. Next, we have

∂r (r
2w2(r)) = 2r w2(r) + 2r2w(r)wr (r). (3.11)

Thus,

r2w2(r) = −2
∫ ∞

r
w2(ρ) ρ dρ − 2

∫ ∞

r
w2
r (ρ)w(ρ)ρ2 dρ,

so that

2
∫ ∞

r
w2(ρ) ρ dρ ≤ −2

∫ ∞

r
w2
r (ρ)w(ρ)ρ2 dρ

≤ 2

(∫ ∞

r
w2
r (ρ) ρ3 dρ

) 1
2
(∫ ∞

r
w2(ρ) ρ dρ

) 1
2

which gives (3.8). To prove (3.9), we integrate (3.11) to obtain

∣∣∣r2w2(r) − s2w2(s)
∣∣∣ ≤ 2

∫ r

s
w2(ρ) ρ dρ + 2

∫ r

s
|w(r)|

∣∣∣w2
r (ρ)

∣∣∣ ρ2 dρ

≤ 3
∫ r

s
w2(ρ) ρ dρ +

∫ r

s
w2
r (ρ)ρ3 dρ

as desired. By (3.8) with r = 0 we see that
∫ ∞
0 w2(ρ) ρ dρ < ∞. Hence (3.9) implies

that there exists � ∈ R so that

lim
r→0

r2w2(r) = � (3.12)

exists. Assume, for contradiction that � �= 0. Then, there exists r0 > 0 so that

w2(r) ≥ �

2r2

for all r ≤ r0. But this contradicts the fact that
∫ ∞
0 w2(ρ)ρ dρ < ∞. Finally, (3.10)

follows from (3.9) now that we know sw(s) → 0 as s → 0. ��
This also completes the Proof of Lemma 3.2. ��

3.2. Reduction to a 2d equation. The Proof of Theorem 3.1 relies crucially on the
observation that (1.3) can be reduced to a 2d wave maps-type equation on which
the fundamental techniques introduced by Christodoulou, Tahvildar-Zadeh [4,5], and
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Shatah, Tahvildar-Zadeh [25,26] can be applied after we have localized to the light cone
and identified the regular part �v(t) of the solution �u(t). Indeed, define

�ψ(t, r) := r �u(t, r). (3.13)

Since �u(t) solves (1.3), we see that �ψ(t) solves

ψt t − ψrr − 1

r
ψr +

ψ − ψ3

r2
= 0. (3.14)

We define

f (ψ) := ψ − ψ3,

F(ψ) :=
∫ ψ

0
f (α) dα = 1

2
ψ2 − 1

4
ψ4 = 1

2
ψ2[1 − ψ2/2]. (3.15)

Similarly, for the regular part �v(t) we define

φ(t, r) := r �v(t, r). (3.16)

Using Lemma 3.2 and the fact that φr = rvr + v we obtain the following estimates for
�φ(t):

Lemma 3.4. Let �φ(t) be defined as in (3.16). Then

lim
t→1

∫ 1−t

0

[
φ2
t (t, r) + φ2

r (t, r)
]
r dr = 0, (3.17)

sup
0≤r≤1−t

|φ(t, r)| → 0 as t → 1. (3.18)

We also note that byHardy’s inequality, (3.8), and sinceψr−φr = r(ur−vr )+(u−v)

we have the uniform estimate

sup
t∈[t−,1)

∫ ∞

0

[
(ψt − φt )

2(t, r) + (ψr − φr )
2(t, r)

]
r dr ≤ B < ∞, (3.19)

where we fixed t− ∈ (max(T−(�u), T−(�v)), 1).
We can now deduce Theorem 3.1 as a consequence of the following proposition

which is phrased in terms of ψ := ru.

Proposition 3.5. Assume that there exists λ ∈ (0, 1) and t0 ∈ [t−, 1) so that for all
t ∈ [t0, 1) we have

sup
λ(1−t)≤r≤1−t

|ψ(t, r)| ≤
√
2

2
. (3.20)

Then,

lim
t↗1

∫ 1−t

λ(1−t)

[
ψ2
t (t, r) + ψ2

r (t, r) +
F(ψ(t, r))

r2

]
r dr = 0. (3.21)
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The size restriction (3.20) will guarantee the positivity of F(ψ) = 1
2ψ

2[1 − ψ2/2]
for λ(1 − t) ≤ r ≤ (1 − t), t ∈ [t0, 1). This positivity enters crucially in the methods
introduced in [4,5,25] as the F term there is of the form F = g2, and is always positive.
Thus we do not prove Theorem 3.1 directly in terms of �ψ , as is done in, say [25, Lemma
2.2], but rather deduce it as a consequence of Proposition 3.5. Then, by assuming the
smallness assumption (3.20) holds for a particular λ ∈ (0, 1) we prove Proposition 3.5
using the methods in [25].

We momentarily postpone the Proof of Proposition 3.5 and first use it to establish
Theorem 3.1.

Proof that Proposition 3.5 implies Theorem 3.1.
Step 1: The main observation is that we can get rid of the L∞ assumption in Proposi-
tion 3.5 via an inductive argument, which is the content of the following:

Claim 3.6. Let �u(t) be as in Theorem 3.1 and define �ψ(t) as in (3.13). Then for every
fixed λ ∈ (0, 1) we have

lim
t↗1

∫ 1−t

λ(1−t)

[
ψ2
t (t, r) + ψ2

r (t, r)
]
r dr = 0. (3.22)

Proof of the Claim. Consider the set I ⊂ (0, 1) to be the collection of all λ ∈ (0, 1) so
that there exists t0 = t0(λ) ∈ [t−, 1) such that

∀t ≥ t0, ∀r ∈ [λ(1 − t), (1 − t)], |ψ(t, r)| ≤
√
2

2
.

Observe that if λ ∈ I , then [λ, 1) ⊂ I . Indeed, for such a λ ∈ [λ, 1) one can take
t0(λ′) = t0(λ). Also, by Proposition 3.5, then (3.22) holds this particular λ. Therefore,
to prove the claim, it suffices to prove that I contains a sequence λn → 0 (we argue by
induction on λ, it does not seem that a connectedness argument applies).

We begin by showing that I is not empty. Fix λ0 ∈ (0, 1) to be determined below.
Observe that since ψ(t, 1− t) = φ(t, 1− t) for t ≥ t−, we have for all λ0(1− t) ≤ r ≤
1 − t that

|ψ(t, r) − φ(t, r)| =
∣∣∣∣
∫ 1−t

r
(ψr − φr )(t, ρ) dρ

∣∣∣∣

≤
(∫ 1−t

r
(ψr − φr )

2(t, ρ) ρ dρ

) 1
2
(∫ 1−t

r
ρ−1dρ

) 1
2

≤ B(log λ−1
0 )

1
2 ≤ C0B |1 − λ0| 12

(3.23)

where the constant B is fixed in (3.19) and we have chosen C0 > 0 so that for all
1/2 ≤ λ ≤ 1 we have log(λ−1) ≤ C2

0 |1 − λ|. Next, observe that by (3.18) we can find
t0 < 1 so that for all t ≥ t0 we have

|φ(t, r)| ≤ 1

3
, ∀ 0 ≤ r ≤ 1 − t. (3.24)

Hence for all t ∈ [t0, 1) we have

sup
r∈[λ0(1−t), 1−t]

|ψ(t, r)| ≤ 1

3
+ C0B |1 − λ0| 12 .
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Choosing λ0 close enough to 1 so that C0B |1 − λ0| 12 ≤ 1
3 we then guarantee that

sup
r∈[λ0(1−t), 1−t]

|ψ(t, r)| ≤ 2

3
<

√
2

2
, ∀t0 ≤ t < 1,

which proves that I is not empty, and in fact [λ0, 1) ⊂ I .
Next, we need to prove that in fact I = (0, 1). Note that it will suffice to show that

there exists a sequence λn → 0 such that λn ∈ I for all n ∈ N. We define

λn := λn0, ∀n ∈ N. (3.25)

Note that we have proved that λ1 = λ10 ∈ I . Now we argue by induction. Assume that
λn ∈ I for some n ≥ 1 and fix this λn . We seek to prove that λn+1 ∈ I . We record a
few additional consequences of our inductive hypothesis. Since λn ∈ I , Proposition 3.5
implies that

lim
t↗1

∫ 1−t

λn(1−t)

[
ψ2
t (t, r) + ψ2

r (t, r)
]
r dr = 0.

Using (3.17) we in fact have that

lim
t↗1

∫ 1−t

λn(1−t)
(ψr − φr )

2 (t, r) r dr = 0.

Thus we can argue as in (3.30) to deduce that there exists 0 < tn < 1 so that

|(ψ − φ)(t, λn(1 − t))| ≤
√
log(λ−1

n )

√∫ 1−t

λn(1−t)
(ψr − φr )

2 (t, r) r dr <
1

6
. (3.26)

for all tn ≤ t < 1. Using (3.18) we can also ensure that tn is large enough so that

|φ(t, r)| <
1

6
, ∀ 0 ≤ r ≤ 1 − t, (3.27)

for all tn ≤ t < 1. Next for all r ∈ [λn+1(1− t), λn(1− t)] we can argue as in (3.23) to
bound the term

|(ψ(t, r) − φ(t, r)) − (ψ(t, λn(1 − t)) − φ(t, λn(1 − t))| ≤

≤
√∫ λn(1−t)

λn+1(1−t)
(ψr − φr )2(t, ρ) ρ dρ

√∫ λn(1−t)

λn+1(1−t)
ρ−1 dρ

≤ B(log(λn/λn+1))
1
2 = B(log(λ−1

0 ))
1
2

≤ 1

3

where B is as in (3.19) and since λn/λn+1 = λn0/λ
n+1
0 = λ−1

0 and we have chosen
λ0 close enough to 1 so that the last line above holds. Now for each t ∈ [tn, 1) and
r ∈ [λn+1(1 − t), λn(1 − t)] write

|ψ(t, r)| ≤ |(ψ(t, r) − φ(t, r)) − (ψ(t, λn(1 − t)) − φ(t, λn(1 − t))|
+ |φ(t, r)| + |ψ(t, λn(1 − t)) − φ(t, λn(1 − t))|

<
1

3
+
1

6
+
1

6
= 2

3
≤

√
2

2
.
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As we also know that supr∈[λn(1−t),1−t] |ψ(t, r)| ≤
√
2
2 for large enough t < 1 by

assumption, we have now proved that λn+1 ∈ I as well. Thus, by induction, λn ∈ I for
all n and this completes the proof. ��

Step 2: We now transfer the result of the Claim 3.6 to �u and conclude the Proof of
Theorem 3.1. Since ψr = rur + u we see that

∫ 1−t

λ(1−t)

[
u2t (t, r) + u2r (t, r) +

u2(t, r)

r2

]
r3 dr

=
∫ 1−t

λ(1−t)

[
ψ2
t (t, r) + (ψr (t, r) − u(t, r))2(t, r) + u2(t, r)

]
r dr

≤ 2
∫ 1−t

λ(1−t)

[
ψ2
t (t, r) + ψ2

r (t, r)
]
r dr + 3

∫ 1−t

λ(1−t)
u2(t, r) r dr.

Hence it suffices to prove the vanishing of the Hardy term
∫ 1−t

λ(1−t)
u2(t, r) r dr → 0 as t → 1. (3.28)

To see this, we first note that (3.22) together with (3.17) imply that

lim
t↗1

∫ 1−t

λ(1−t)

[
(ψt − φt )

2(t, r) + (ψr − φr )
2(t, r)

]
r dr = 0. (3.29)

Next, note that (3.3) implies that ψ(t, 1− t) = φ(t, 1− t) for all t ∈ [t−, 1). From this
we see that for every r ∈ [λ(1 − t), (1 − t)] we have

|ψ(t, r) − φ(t, r)| =
∣∣∣∣
∫ 1−t

r
(ψr − φr )(t, ρ) dρ

∣∣∣∣

≤
(∫ 1−t

r
(ψr − φr )

2(t, ρ) ρ dρ

) 1
2
(∫ 1−t

r
ρ−1dρ

) 1
2

≤ (log λ−1)
1
2

(∫ 1−t

λ(1−t)
(ψr − φr )

2(t, ρ) ρ dρ

) 1
2

.

(3.30)

Using (3.22) we can then conclude that

sup
r∈[λ(1−t),(1−t)]

|ψ(t, r) − φ(t, r)| → 0 as t → 1. (3.31)

Then by the definitions (3.13), (3.16) we have

sup
r∈[λ(1−t),(1−t)]

r |u(t, r) − v(t, r)| → 0 as t → 1. (3.32)

As a direct consequence we obtain,
∫ 1−t

λ(1−t)
[u(t, r) − v(t, r)]2 r dr → 0 as t → 1. (3.33)

Combining (3.33) with (3.5) we obtain (3.28), which finishes the Proof of
Theorem 3.1. ��
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3.3. Proof of Proposition 3.5. We have thus reduced the matter of proving Theorem 3.1
to proving Proposition 3.5. This will follow from the techniques introduced by Chris-
todoulou, Tahvildar-Zadeh [4,5], and Shatah, Tahvildar-Zadeh [25,26].

Recall that �ψ(t) satisfies the wave map type equation (3.14) except that f is not of
the form gg′ for some function g (because F takes negative values). By translating in
time, we can, without loss of generality assume that T+(�u) = 0 so that T+( �ψ) = 0 in
order to adjust to the notation used in Shatah, Tahvildar-Zadeh [25, Lemma 2.2].

The conserved energy for (3.14) is given by

E( �ψ) =
∫ ∞

0

(
1

2
[ψ2

t (t, r) + ψ2
r (t, r)] + F(ψ)

r2

)
r dr,

where F(ψ) = 1
2ψ

2[1 − ψ2/2] as defined in (3.15). After translating in time so that
T+( �ψ) = 0 we see that the hypothesis of Proposition 3.5 give us a λ0 ∈ (0, 1) and a
t0 < 0 so that for all t > t0, t < 0, we have

sup
λ|t |≤r≤|t |

|ψ(t, r)| ≤
√
2

2
. (3.34)

Note also that

|ψ(t, r)| ≤
√
2

2

⇒ F(ψ(t, r)) ≥ 0. (3.35)

This leads us to reduce the Proof of Proposition 3.5 to the following lemma:

Lemma 3.7. Let λ ∈ (0, 1) be given as in Proposition 3.5 so that (3.34) and (3.35)
holds. Then

Eλ
ext(t) :=

∫ |t |

λ|t |

(
1

2
[ψ2

t (t, r) + ψ2
r (t, r)] + F(ψ)

r2

)
r dr → 0 as t ↗ 0. (3.36)

We remark that Proposition 3.5 is an immediate consequence of Lemma 3.7 since (3.35)
implies that F(ψ) ≥ 0 in the domain of integration in (3.36). To prove Lemma 3.7 we
will need a few multiplier identities

∂t

(
r

2
ψ2
t +

r

2
ψ2
r +

F(ψ)

r

)
− ∂r (rψtψr ) = 0, (3.37)

∂t

(
r2ψtψr

)
− ∂r

(
r2

2
ψ2
t +

r2

2
ψ2
r − F(ψ)

)
+ rψ2

t = 0, (3.38)

which are obtained by multiplying (3.14) by ψt and r tψt respectively. We denote the
truncated backwards light-cone emanating from (t, r) = (0, 0) and its mantel by

K (τ, ε) := {(t, r) | τ ≤ t ≤ ε < 0, 0 ≤ r ≤ |τ |}, (3.39)

C(τ, ε) := {(t, r) | τ ≤ t ≤ ε < 0, r = |τ |}. (3.40)

For τ < 0 and ε < 0 small with τ < ε < 0, we also define the local energy and the flux:

E(τ ) :=
∫ |τ |

0

(
1

2
[ψ2

t (τ, r) + ψ2
r (τ, r)] + F(ψ(τ, r))

r2

)
r dr

Flux(τ, ε) := −c0

∫ ε

τ

[
1

2
(χ ′(�))2 + F(χ(�))

�

]
� d�

(3.41)
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where χ(�) := ψ(�,−�), τ < � < ε < 0, and c0 > 0 is a universal dimensional
constant so that the following local energy identity holds:

E(τ ) = E(ε) + Flux(τ, ε). (3.42)

Note that although we don’t know that F(ψ) ≥ 0 on the entire domain of integration in
E(τ ) and E(ε) above, the hypothesis of Proposition 3.5 guarantee that F(χ) ≥ 0, for τ

small in the Flux term and hence Flux(τ, ε) ≥ 0 since τ < ε < 0. From (3.42) we can
then deduce that E(τ ) ≥ E(ε) for τ < ε < 0.

Next, since |E(τ )| ≤ A < ∞ and since E(τ ) is monotonically decreasing as τ ↗ 0,
we observe that

lim
ε↗0

E(ε) =: E(0)

exists and is finite. Using (3.42) again we see that

Flux(τ ) := lim
ε→0

Flux(τ, ε) ≤ E(τ ) − E(0)

exists by monotone convergence and that 0 ≤ Flux(τ ) < ∞ as well as Flux(τ ) → 0 as
τ → 0.We can now replicate the argument in [25, Lemma 2.2]whichwe include here for
completeness and to showwhere precisely we will use the hypothesis in Proposition 3.5.
We also refer the reader to the book [24, Proof of Lemma 8.2].

Define,

e(t, r) := 1

2
ψ2
t (t, r) +

1

2
ψ2
r (t, r) +

1

r2
F(ψ(t, r)),

m(t, r) := ψt (t, r)ψr (t, r),

L(t, r) := −1

2
ψ2
t (t, r) +

1

2
ψ2
r (t, r) +

1

r2
F(ψ(t, r)) − 2

r
f (ψ(t, r))ψr (t, r).

(3.43)

Then, using (3.37), (3.38) we see that

∂t (re) − ∂r (rm) = 0,

∂t (rm) − ∂r (re) = L .
(3.44)

We also introduce null coordinates

η = t + r, ξ = t − r

as well as the functions

A2(η, ξ) := r(e + m) = r

2
(∂tψ + ∂rψ)2 +

F(ψ)

r
,

B2(η, ξ) := r(e − m) = r

2
(∂tψ − ∂rψ)2 +

F(ψ)

r
.

(3.45)

Note that the assumptions of Proposition 3.5 ensure the positivity of F(ψ(t, r)) in the
region

K λ
ext := {(t, r) | t0 < t < 0, λ |t | ≤ r ≤ |t |}, (3.46)



964 R. Côte, C. E. Kenig, A. Lawrie, W. Schlag

and thus the interpretation of the functionsA2,B2 as squares in K λ
ext is justified. We can

rewrite (3.44) in terms of A2,B2 as

∂ξA2 = L ,

∂ηB2 = −L .
(3.47)

We next claim the bound

Claim 3.8. On K λ
ext,

L2 ≤ C
A2B2

r2
. (3.48)

Proof. Indeed, a direct computation and simple algebra yields

L2 ≤ 1

2
(ψ2

r − ψ2
t )2 +

4

r4
F2(ψ) +

16

r2
f 2(ψ)ψ2

r . (3.49)

Next we note that the assumptions of Proposition 3.5 imply that for all (t, r) ∈ K λ
ext we

have

|ψ(t, r)|2 ≤ 1

2
.

It follows then that

| f (ψ)| =
∣∣∣ψ(1 − ψ2)

∣∣∣ ≤ |ψ | ,

|F(ψ)| =
∣∣∣∣ψ

2

2

(
1 − ψ2

2

)∣∣∣∣ ≥ ψ2

4
.

Combining the above inequalities gives

f 2(ψ) ≤ |ψ |2 ≤ 4F(ψ), ∀ (t, r) ∈ K λ
ext. (3.50)

Plugging (3.50) into (3.49) we obtain

L2 ≤ 1

2
(ψ2

r − ψ2
t )2 +

4

r4
F2(ψ) +

64

r2
F(ψ)ψ2

r ,

≤ C

[
1

4
(ψ2

r − ψ2
t )2 +

1

r4
F2(ψ) +

2

r2
F(ψ)(ψ2

r + ψ2
t )

]
.

(3.51)

On the other hand,

A2B2

r2
= (e + m)(e − m) = 1

4
(ψ2

r − ψ2
t )2 +

1

r4
F2(ψ) +

2

r2
F(ψ)(ψ2

r + ψ2
t ),

which, together with the preceding inequality, establishes (3.48). ��
Now, we can combine (3.47) with (3.48) to see that

∣∣∂ξA
∣∣ ≤ C

r
B,

∣∣∂ηB
∣∣ ≤ C

r
A. (3.52)
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Now consider the rectangle

� := �(η, ξ) := [η, 0] × [ξ0, ξ ] ⊂ K λ
ext.

Integrating on � and using (3.52) we have the inequality

A(η, ξ) ≤ A(η, ξ0) + C
∫ ξ

ξ0

B(0, ξ ′)
η − ξ ′ dξ ′ + C2

∫ ξ

ξ0

∫ 0

η

A(η′, ξ ′)
(η − ξ ′)(η′ − ξ ′)

dη′ dξ ′.

(3.53)

We estimate the 2nd term on the right as follows

∫ ξ

ξ0

B(0, ξ ′)
η − ξ ′ dξ ′ ≤

(∫ ξ

ξ0

B2(0, ξ ′) dξ ′
) 1

2
(∫ ξ

ξ0

1

(η − ξ ′)2
dξ ′

) 1
2

=
(∫ ξ

ξ0

[
ψ2

ξ (0, ξ ′) + F(ψ(0, ξ ′)
(ξ ′)2

]
(−ξ ′) dξ ′

) 1
2
(

1

η − ξ
− 1

η − ξ0

) 1
2

≤ C

√
Flux(ξ0)

η − ξ
.

Now, define

h(η, ξ) := sup
η≤η′≤0

√
η′ − ξA(η′, ξ).

We then have

A(η, ξ) ≤ A(η, ξ0) + C

√
Flux(ξ0)

η − ξ
+ C2

∫ ξ

ξ0

∫ 0

η

h(η, ξ ′)
(η − ξ ′)(η′ − ξ ′) 3

2

dη′ dξ ′

≤ A(η, ξ0) +

√
Flux(ξ0)

η − ξ
+ C2

∫ ξ

ξ0

h(η, ξ ′)
(η − ξ ′)

(
1√

η − ξ ′ − 1√−ξ ′

)
dξ ′.

Using the above and the fact that � ⊂ K λ
ext we then obtain,

h(η, ξ) ≤
√−ξ√−ξ0

h(η, ξ0) + C
√
Flux(ξ0) + C

∫ ξ

ξ0

h(η, ξ ′) η

ξ ′(η − ξ ′)
dξ ′.

Next, define λ′ := (1− λ)/(1 + λ) < 1. Fix η and consider ξ ∈ [ξ0, η/λ′]. Applying the
integral form of Gronwall’s inequality gives

h(η, ξ) ≤
√−ξ√−ξ0

h(η, ξ0) + C
√
Flux(ξ0)

+ C
∫ ξ

ξ0

[√−ξ ′
√−ξ0

h(η, ξ0) + C Flux
1
2 (ξ0)

]
h(η, ξ ′) η

ξ ′(η − ξ ′)
e

(∫ ξ

ξ ′ η

ξ ′′(η−ξ ′′) dξ ′′
)
dξ ′.

Setting η = λ′ξ with ξ0 < ξ ′ < ξ we have
∫ ξ

ξ ′
η

ξ ′′(η − ξ ′′)
dξ ′′ = log

(
ξ(λ′ξ − ξ ′)
ξ ′(λ′ξ − ξ)

)
≤ log(

1

1 − λ′ ).
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Note that since ψ is regular away from (0, 0), A is bounded at (η′, ξ0) for η ≤ η′ ≤ 0
by a constant that depends on ξ0 and thus

h(η, ξ) ≤ sup
η≤η′≤0

√
η′ − ξ0 sup

η≤η′≤0
A(η′, ξ0) ≤ C(ξ0)

√−ξ0.

Let ε > 0 be given. Fix ξ0 small enough so that C
√
Flux(ξ0) ≤ ε. Then,

h(λ′ξ, ξ) ≤ C(ξ0)
√−ξ + ε + C(ξ0)

∫ ξ

ξ0

λ′ξ√−ξ0(λ′ξ − ξ ′)
dξ ′ + Cε

≤ Cε + C(ξ0)
√−ξ

≤ 2Cε

provided ξ is small enough. Therefore,

A(η, ξ) ≤ h(η, ξ)√
η − ξ

≤ Cε√
η − ξ

for (η, ξ) small inside K λ
ext. This means that

∫ 0

η

A2(η′, ξ) dη′ ≤ Cε2
∫ 0

η

dη′

η′ − ξ
= Cε2 log

( −ξ

(λ′ − 1)ξ

)
≤ Cε2. (3.54)

With the above in hand, we can now conclude by integrating (3.37) over the triangle
with vertices (η, ξ), (0, ξ), (0, η + ξ) and η = λ′ξ . We obtain

0 = −
∫ |t |

λ|t |
e(t, r) r dr −

∫ 0

η

r (e + m) dη′ +
∫ ξ

η+ξ

r(e − m) dξ ′

= I + II + III.

(3.55)

We note that III is the Fluxwhich tends to 0 as |t | → 0 and II is exactly (3.54)which tends
to 0 aswe have just shown. Thismeans that I also tends to 0which proves Proposition 3.5.

4. Self-Similar and Exterior Regions: Global Solutions

In this section, we consider a global type II solution �u(t): we assume that [0,+∞) ⊂ I
and that for some M ≥ 0,

sup
t∈[0,+∞)

‖�u(t)‖H ≤ M. (4.1)

We identify the radiation term �vL(t) and establish the analog of Theorem 3.1 for �u(t).
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4.1. Extraction of the radiation term. We begin by extracting the radiation term, that is,
we find the unique solution �vL(t) to the linear equation (1.21) which �u(t) approaches
outside the forward light cone. This is a somewhat more involved procedure than in the
finite time blow-up case where taking a weak limit suffices. In particular, we prove:

Proposition 4.1. There exists (v0, v1) ∈ H such that ‖(v0, v1)‖H ≤ M and

∀R ∈ R,

∫
|x |≥t−R

|∇t,x (u − vL)(t, x)|2dx → 0 as t → +∞,

where vL is the free wave, i.e., solution to the linear equation (1.21), with initial data
(v0, v1).

The rest of this subsection is devoted to the proof of this result, which follows closely
the proof of the corresponding result in [12]. The main technical point is the following
lemma. For δ > 0, let ϕδ : R

4 → R be a radial smooth function, such that

0 ≤ ϕδ ≤ 1, |∇ϕδ| ≤ C

δ
, ϕ(x) =

{
1 for |x | ≥ 1 − δ

0 for |x | ≤ 1 − 2δ
.

Lemma 4.2. Let ε > 0 be given. Then there exists tn ↑ +∞, δ > 0 small such that

ϕδ

(
x

tn

)
�u(tn, x) = ϕδ

(
x

tn

)
(u(tn, x), ∂t u(tn, x))

has a profile decomposition with profiles (U j
L) and parameters (λ j,n, t j,n) such that

‖(U 1
0 ,U 1

1 )‖H ≤ ε and ∀n, t1,n = 0, and ∀ j ≥ 2, − t j,n
λ j,n

→ +∞.

Let us postpone the Proof of Lemma 4.2 and start by proving how it implies Propo-
sition 4.1.

Proof of Proposition 4.1 assuming Lemma 4.2.
Step 1. Let us prove first that for each R ∈ R, there exists a solution �vR

L of the linear
equation (1.21) such that

∫
|x |≥t−R

|∇t,x (u − vR
L )(t, x)|2dx → 0 as t → +∞.

Indeed, for each n consider the solution un to (1.3) with initial data ϕδ(x/tn)�u(tn) at
t = 0. Because of Lemma 4.2 and Proposition 2.9, un is globally defined and scatters
for positive times. Fix n large, let wL,n be the solution of the linear equation (1.21) such
that

lim
t→+∞ ‖�un(t) − �wL,n‖H = 0.

By finite speed of propagation, �u(tn + t, x) = �un(t, x) for |x | ≥ (1− δ)tn + t , and t ≥ 0.
Hence,∫

|x |≥−δtn+t
|∇t,xu(t, x) − ∇t,xwL,n(t − tn, x))|2dx → 0 as t → +∞.
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We choose n so large that δtn ≥ R, and define �vR
L (t, x) := �wL,n(t − tn, x): this step

follows.

Step 2: Choose tn as before, S(−tn)�u(tn) has weak limit (v0, v1) in H: notice that due
to (4.1), we have

‖(v0, v1)‖H ≤ M.

Let �vL be the free wave, solution to the linear equation (1.21), with initial data (v0, v1).
We also have a profile decomposition

�u(tn) = �vL(tn) +
J∑

j=2

�U j
L,n(0) + �w J

n .

(Here we choose �U 1
L = �vL, λ1,n = 1, t1,n = −tn , which is allowed by construction of a

profile decomposition, with profiles as weak limits). Also,

�u(tn) − �vR
L (tn) = �vL(tn) − �vR

L (tn) +
J∑

j=2

�U j
L,n(0) + �w J

n

is a profile decomposition. By Proposition 2.5, we have an almost orthogonality:∫
|x |≥tn−R

|∇x,t u(tn, x) − ∇x,tv
R
L (tn, x)|2dx =

∫
|x |≥tn−R

|∇t,x (vL − vR
L )(tn, x)|2dx

+
J∑

j=2

∫
|x |≥tn−R

|∇x,tU
j
L,n(0, x)|2dx +

∫
|x |≥tn−R

|∇x,tw
J
n (0, x)|2dx + on(1).

The left hand side tends to 0, and as all the terms on the right hand side are non negative,
we deduce

lim
n→+∞

∫
|x |≥tn−R

|∇t,x (vL − vR
L )(tn, x)|2dx = 0.

Since vL − vR
L is a solution to the linear wave equation (1.21), by decay of outer free

energy, we have

lim
t→+∞

∫
|x |≥t−R

|∇t,x (vL − vR
L )(t, x)|2dx = 0,

which gives our result. ��
Proof of Lemma 4.2.
Step 1: We claim that there exists δ1 > 0, sn → +∞ such that{

ϕδ1(x/sn)�u(sn)
}

has a profile decomposition with profiles { �V j
L } j and parameters {μ j,n, s j,n} such that

∀ j ≥ 2, lim
n→+∞ − s j,n

μ j,n
∈ {±∞}

and lim
n→∞ − s j,n

sn
∈ [−1, 2δ1 − 1] ∪ [1 − 2δ1, 1],

∀n ≥ 1, s1,n = 0, and ‖(V 1
0 , V 1

1 )‖H ≤ ε/2.
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First, we observe that

lim sup
t→+∞

∫
|x |≥t+R

|∇t,xu(t, x)|2dx → 0 as R → +∞. (4.2)

Indeed, let η > 0 be given. Choose R0 large enough such that

∫
|x |≥R0

|∇u0|2 + u21 ≤ η2.

Let

ũ0,R0(x) =
{
u0(R0) if |x | ≤ R0

u0(x) if |x | ≥ R0
, ũ1,R0(x) =

{
0 if |x | ≤ R0

u1(x) if |x | ≥ R0
.

Then

‖(ũ0,R0 , ũ1,R0)‖H ≤ η.

If η is small, by small data theory, the solution ũ R0 to (1.3) with data (ũ0,R0 , ũ1,R0) exists
for all time (actually scatters) and

sup
t≥0

‖(ũ R0 , ∂t ũ R0)(t)‖H ≤ Cη.

By finite speed of propagation, for |x | ≥ R + t , ũ R0(t, x) = u(t, x). The claim (4.2)
follows.

Let sn → ∞, then �u(sn) has a decomposition with profiles {Ṽ j
L } j (with initial data

(v0, j , v1, j )), parameters {μ j,n, s j,n}n , and remainder (w̃ J
0,n, w̃

J
1,n). As usual for the pro-

file decomposition, we denote

Ṽ j
L,n(t, x) := 1

μ j,n
Ṽ j
L

(
t − s j,n
μ j,n

,
x

μ j,n

)
.

Aswe can always extract subsequences without loss of generality, wewill systematically
assume that all real valued sequences converge (inR). We next recall that we can assume

either lim
n→+∞ − s j,n

μ j,n
= ±∞, or ∀n, s j,n = 0. (4.3)

Define

τ j := lim
n→+∞ − s j,n

sn
.

Claim 4.3. For all j , |τ j | ≤ 1, and lim
n→+∞

μ j,n

sn
= 0, except for at most one j , for which

the limit is finite.
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Proof. For this, consider v0,n = u(sn), v1,n = ∂t u(sn), μn = sn . By (4.2)

lim
R→+∞ lim sup

n→∞

∫
|x |≥Rsn

|∇v0,n(x)|2 + |v1,n(x)|2dx = 0.

Hence we can apply Lemma 2.7, and deduce that for all j , lim
n→+∞

μ j,n

sn
< +∞, and for

all j except at most one, the limit is 0. Moreover, |τ j | < ∞.
In the second case of (4.3), τi = 0, and we are done. Now consider the first case of

(4.3). Assume |τ j | = 1 + η, η > 0. Note first that

lim sup
n→∞

∫
|x |≥sn+R

∣∣∣∇t,x Ṽ
j
L,n(0, x)

∣∣∣2 dx → 0 as R → +∞.

This follows from the Pythagorean expansion with cutoffs, i.e., Proposition 2.5. We
combine this with Lemma 2.6: let ε > 0, there exists R and N0 such that

∀n ≥ N0,

∫
||x |−|s j,n ||≥Rμ j,n

∣∣∣∇t,x Ṽ
j
L,n(0, x)

∣∣∣2 ≤ ε.

We note that for n large and R̃ large,

{x | ||x | − |s j,n|| ≤ Rμ j,n} ⊂ {x | |x | ≥ sn + R̃}. (4.4)

Indeed, if ||x |− |s j,n|| ≤ Rμ j,n , then |x | ≥ |s j,n|− Rμ j,n . But since− s j,n
μ j,n

→ +±∞,

for any δ > 0 small, if n ≥ N1 is large enough μ j,n ≤ δ|s j,n| so that
|x | ≥ (1 − Rδ)|s j,n| ≥ (1 + δ0/2)(1 − Rδ)sn .

Fix δ small enough so that (1+ δ0/2)(1− Rδ) > 1; thus, since sn → ∞, our claim (4.4)
follows. But then

∀n ≥ N0,

∫ ∣∣∣∇t,x Ṽ
j
L,n(0, x)

∣∣∣2 dx ≤ 2ε.

By invariance of the linear energy, Ṽ j
L = 0, which is a contradiction. Hence |τ j | ≤ 1,

and this establishes our claim. ��
Next, note that if j is such that lim

n→+∞
μ j,n

sn
> 0 (and finite by Claim 4.3), we cannot

have lim
n→+∞

|s j,n|
μ j,n

= +∞, hence s j,n = 0 for all n. This happens for at most one j , by

Claim 4.3. We assume this is j = 1, and we can also assume μ1,n = sn . Now we claim
that

supp(Ṽ 1
0 , Ṽ 1

1 ) ⊂ {x | |x | ≤ 1}. (4.5)

Indeed, take �θ ∈ D(R4) such that supp(�θ) ⊂ {x | |x | > 1 + η}. Then by (4.2),

∫
�θ
(
x

sn

)
.
1

sd/2
n

∇t,xu(sn, x)dx → 0 as n → +∞.
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But since lim
n→+∞

μ j,n

sn
= 0 for j ≥ 2, by the profile decomposition and the weak

convergence to 0 of the rescaled w J
n , this gives

lim
n→+∞

∫
1

sd/2
n

�θ
(
x

sn

)
.
1

sd/2
n

(
∇x Ṽ

1
0

(
x

sn

)
, Ṽ 1

1

(
x

sn

))
dx = 0,

i.e.,
∫

�θ.(∇ Ṽ 1
0 , Ṽ 1

1 ) = 0 and (4.5) follows. Then we define the first profile

(V 1
0 , V 1

1 )(y) := ϕδ′(y).(Ṽ 1
0 (y), Ṽ 1

1 (y)), (4.6)

with parameters μ1,n = sn, s1,n = 0.

For δ′ small, (4.5) shows that ‖(V 1
0 , V 1

1 )‖H < ε/2.

Let now j ≥ 2. Then lim
n→+∞

μ j,n

sn
= 0 (recall j = 1 is the only one for which this is

possibly not true by Claim 4.3). We distinguish two cases according to (4.3). Let

J1 := { j ∈ {2, . . . , J } | ∀n, s j,n = 0} and

J2 := { j ∈ {2, . . . , J } | lim
n→+∞ − s j,n

μ j,n
= ±∞}.

If j ∈ J1, using μ j,n/sn → 0 and Lemma 2.6, we see that:

∥∥∥∇x,t Ṽ
j
L,n(0)

∥∥∥
L2(sn/2≤|x |≤sn)

→ 0 as n → +∞.

Next note that |∇ϕδ′(y)| ≤ Cδ′
ϕ(y)

|y| , from where we deduce, due to Hardy’s inequality

∥∥∥∥∇x

(
ϕδ′

(
x

sn

))
Ṽ j
L,n(0)

∥∥∥∥
L2

≤ Cδ′

∥∥∥∥ϕδ′
(
x

sn

)
1

|x | Ṽ
j
L,n(0)

∥∥∥∥
L2

≤ Cδ′ ‖ϕδ′ ‖L2

∥∥∥∥∥
Ṽ j
L,n(0, x)

|x |

∥∥∥∥∥
L2(sn/2≤|x |≤sn)

≤ Cδ′
∥∥∥∇x Ṽ

j
L,n(0, x)

∥∥∥
L2(sn/2≤|x |≤sn)

→ 0.

Combining these two limits, we get

∀ j ∈ J1, lim
n→+∞

∥∥∥∥∇x,t

(
ϕδ′

(
x

sn

)
Ṽ j
L,n(0, x)

)∥∥∥∥
L2

= 0. (4.7)

If j ∈ J2 (recall τ j := lim
n→+∞ − s j,n

sn
∈ [−1, 1]), we claim that

lim
n→∞

∥∥∥∥∇x,t

(
ϕδ′

(
x

sn

)
Ṽ j
L,n(0, x)

)
− ϕδ′(|τ j |)∇x,t Ṽ

j
L,n (0, x)

∥∥∥∥
L2

= 0. (4.8)



972 R. Côte, C. E. Kenig, A. Lawrie, W. Schlag

Keeping in mind that ϕδ′(|τ j |) − ϕδ′
(

− s j,n
sn

)
is small for n large, we rewrite

∇x,t

(
ϕδ′

(
x

sn

)
Ṽ j
L,n(0, x)

)
− ϕδ′(|τ j |)∇x,t Ṽ

j
L,n (0, x)

= 1

sn
∇xϕ

(
x

sn

)
Ṽ j
L,n(0, x) +

(
ϕδ′

(
x

sn

)
− ϕ

(
− s j,n

sn

))
∇x,t Ṽ

j
L,n(0, x)

+

(
ϕ

(
− s j,n

sn

)
− ϕ

(|τ j |)
)

∇x,t Ṽ
j
L,n(0, x).

We will show that the L2-norm of all three terms tends to 0. For the first two terms, we
use Lemma 2.6:

lim sup
n→∞

∫
||x |−|s j,n ||≥Rμ j,n

∣∣∣∇t,x Ṽ
j
L,n (0, x)

∣∣∣2 dx → 0 as R → +∞.

Now, for the first term: we use Hölder’s inequality, the Sobolev embedding
Ḣ1(R4) ↪→ L4(R4) and conservation of the linear energy for V j

L to compute

∫
||x |−|s j,n ||≤Rμ j,n

1

s2n
|∇xϕ(x/sn)|2|Ṽ j

L,n(0, x)|2dx

≤ ‖∇ϕ‖2L∞
s2n

μ({||x | − |s j,n|| ≤ Rμ j,n}) 1
2 ‖V j

L,n(0)‖2L4

≤ R2μ2
j,n

s2n
‖∇ϕ‖2L∞‖∇x,t V

j
L (0)‖2L2 → 0, (4.9)

for all R ∈ R, because μ j,n/sn → 0. For the second term, if ||x || − |s j,n|| ≤ Rμ j,n ,

then

∣∣∣∣ |x |sn − |s j,n|
sn

∣∣∣∣ ≤ R
μ j,n

sn
. As

μ j,n

sn
→ 0, we see that ϕδ′

(
x

sn

)
−ϕδ′

(
− s j,n

sn

)
→ 0

(uniformly on the interval), and

∫
||x |−|s j,n ||≤Rμ j,n

∣∣∣∣ϕδ′
(
x

sn

)
− ϕδ′

(
− s j,n

sn

)∣∣∣∣
2 ∣∣∣∇t,x Ṽ

j
L,n(0, x)

∣∣∣2 dx → 0

for all R ∈ R. Finally for the third term, ϕδ′(|τ j |) − ϕδ′
(

− s j,n
sn

)
is small for n large,

so it tends to 0. Thus the limit (4.8) holds.

In particular, if |τ j | ≤ 1 − 2δ′, ϕδ′
(
x

sn

)
∇t,x Ṽ

j
L,n(0) → 0 in L2. Thus we define

J :=
{
j ∈ {2, . . . , J }

∣∣∣∣ lim
n→+∞ − s j,n

μ j,n
= ±∞ and 1 − 2δ′ ≤ |τ | ≤ 1

}
.

We can define our new profiles

∀ j ∈ J , �V j = ϕδ′
(|τ j |) �̃V j

, with parameters {μ j,n, s j,n}n (4.10)
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Thus, using (4.6), (4.7) and (4.10)wededuce the existenceof a remainder term (w J
0,n, w

J
1,n)

such that

ϕδ′
(
x

sn

)
(u(sn), ∂t u(sn)) = �V 1

L ,n(0) +
∑
j∈J

�V j
L,n(0) + (w J

0,n, w
J
1,n),

where lim
J→+∞ lim sup

n→+∞
‖S(t)(w J

0,n, w
J
1,n)‖S(R) = 0.

This gives Step 1.

Step 2: Let un be solution to (1.3) with initial data ϕδ′
(
x

sn

)
�u(sn). Let �V j be the

nonlinear profile associated to
{ �V j

L , μ j,n, s j,n
}
, and

V j
n (s, x) = 1

μ j,n
V j

(
s − s j,n

μ j,n
,

x

μ j,n

)
.

We use Proposition 2.9 (with tn = sn/2): un is defined on [0, sn/2] and

�un(sn/2) =
J∑

j=1

�V j
n (sn/2) + �w J

n (sn/2) + �r Jn (sn/2),

where lim
n→+∞ lim sup

J→+∞

(
‖r Jn ‖S([0,sn/2]) + sup

0≤t≤sn/2
‖�r Jn (t)‖H

)
= 0.

Then
θn − s j,n

μ j,n
= sn/2 − s j,n

μ j,n
, for j = 1, s1,n = 0 and ‖(V 1

0 , V 1
1 )‖H ≤ ε/2,μ1,n = sn ;

for j ≥ 2, lim
n→∞ − s j,n

μ j,n
= ±∞ and lim

n→∞

∣∣∣∣ s j,nsn
∣∣∣∣ = |τ j | ∈ [1 − 2δ′, 1], so that

if lim
n→∞ − s j,n

μ j,n
= +∞, then lim

n→+∞
sn/2 − s j,n

μ j,n
= +∞;

and if lim
n→∞ − s j,n

μ j,n
= −∞, then lim

n→+∞
sn/2 − s j,n

μ j,n
= −∞.

The last limit follows from

sn/2 − s j,n
μ j,n

= − s j,n
μ j,n

(
− sn
2s j,n

+ 1

)
, and − sn

2s j,n
+ 1 → 1

2τ j
+ 1 > 0.

(we recall τ j ∈ [−1,−1 + 2δ′]).
Let

tn = 3

2
sn, t j,n = s j,n − sn

2
, δ = δ′

3
.

Now by definition of ϕδ′ ,

if |x | ≥ (1 − δ′)sn, then �un(0, x) = ϕδ′
(
x

sn

)
�u(sn, x) = �u(sn, x),
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so, by finite speed of propagation

if |x | ≥ (3/2 − δ′)sn = (1 − 2δ)tn, then �un(sn/2, x) = �u(tn, x).

Thus

ϕδ

(
x

tn

)
�u(tn) = ϕδ

(
x

tn

)
�u(sn/2)

=
J∑

j=1

ϕδ

(
x

tn

)
�V j
n (sn/2) + ϕδ

(
x

tn

)
�w J
n (sn/2) + ϕδ

(
x

tn

)
�r Jn (sn/2).

Next note the for n large, J large, ‖ϕδ(x/tn)�r Jn (sn/2)‖H is small, so we can ignore this
term. Also observe that ‖S(t)(w J

0,n, w
J
1,n)‖S(R) is small for J large, n large, hence the

same is true for ‖S(t)(ϕδ(x/tn) �w J
n (sn/2))‖S(R) by Lemma 2.8.

Next for j = 1, recall that supp(V 1
0 , V 1

1 ) ⊂ {x | |x | ≤ 1} and ‖(V 1
0 , V 1

1 )‖H ≤ ε/2,
so that by small data theory, ‖(V 1

n (t), ∂t V 1
n (t))‖H ≤ Cε/2 where

V 1
n (t, x) = 1

sn
V 1

(
t

sn
,
x

sn

)
, ∂t V

1
n (t, x) = 1

s2n
∂t V

1
(

t

sn
,
x

sn

)
.

Let

(U 1
0 ,U 1

1 ) =
(

ϕδ

(
x

tn

)
1

sn
V 1

(
1

2
,
x

sn

)
, ϕδ

(
x

tn

)
1

s2n
∂t V

1
(
1

2
,
x

sn

))
.

We will let t1,n = 0, λ1,n = sn (and recall tn = 3sn/2). Then ‖(U 1
0 ,U 1

1 )‖H ≤ Cε.

For j ≥ 2, consider first those j such that lim
n→+∞ − s j,n

μ j,n
= −∞. We claim that

lim
n→+∞

∥∥∥ϕδ (x/tn) �V j
n (sn/2)

∥∥∥
H

= 0. (4.11)

In fact, since
sn/2 − s j,n

μ j,n
→ −∞ and

�V j
n (sn/2, x) =

(
1

μ j,n
V j

(
sn/2 − s j,n

μ j,n
,

x

μ j,n

)
,

1

μ2
j,n

∂t V
j
(
sn/2 − s j,n

μ j,n
,

x

μ j,n

))
,

then ‖ �V j
n (sn/2) − �V j

L,n(sn/2)‖H → 0 as n → +∞. We are left to bound

‖ϕδ(x/tn) �V j
L,n(sn/2)‖H.

Recall

�V j
L,n(t, x) = 1

μ j,n

�V j
L

(
t − s j,n
μ j,n

,
x

μ j,n

)
,

so that �V j
L,n(sn/2, x) = 1

μ j,n

�V j
L

(
sn/2 − s j,n

μ j,n
,

x

μ j,n

)
.
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Recall that
sn/2 − s j,n

μ j,n
→ −∞ in this case. Let−t j,n = sn

2
−s j,n , so that− t j,n

μ j,n
→ −

∞.
Let ε > 0 be given, apply Lemma 2.6 and choose R large so that

lim sup
n→+∞

∫
||x |−|t j,n ||≥Rμ j,n

|∇t,x V
j
L,n(−t j,n, x)|2dx ≤ ε.

On the other hand, on the support of ϕδ(x/tn) we have (1 − 2δ)tn ≤ |x |. This means
that (1 − 2δ)3sn/2 ≤ |x |, which implies that

(1 − 2δ)
3

2

sn
μ j,n

≤ |x |
μ j,n

.

We claim that for n large,

{x | (1 − 2δ)3sn/2 ≤ |x |} ∩ {x | ||x | − |t j,n|| ≤ Rμ j,n} = ∅.

Indeed, if x lies in the intersection

(1 − 2δ)
3sn
2

≤ |x | ≤ Rμ j,n + |t j,n| = Rμ j,n + sn

∣∣∣∣12 − s j,n
sn

∣∣∣∣ .

As − s j,n
sn

→ τ j ∈ [−1, 2δ′ − 1], if δ is small,
1

2
sn ≤ Rμ j,n , but lim

n→+∞
sn

μ j,n
= +∞, a

contradiction. This shows that our claim holds, and hence

lim sup
n→+∞

‖ϕδ(x/tn) �V j
L,n(sn/2)‖H ≤ ε.

This establishes (4.11).

The third case is when j ≥ 2, lim
n→+∞ − s j,n

μ j,n
= +∞. We claim that in this case, we

have

lim
n→+∞

∥∥∥∥ϕδ

(
x

tn

)
�V j
n

( sn
2

)
− ϕδ

(
1

3
+
2

3
τ j

)
�V j
L,n

( sn
2

)∥∥∥∥
H

= 0. (4.12)

We proceed similarly to (4.8):

∇t,x

(
ϕδ (x/tn) V

j
n (sn/2)

)
− ϕδ

(
1

3
+
2

3
τ j

)
∇x,t V

j
L,n

( sn
2

)

= 1

tn
∇ϕδ(x/tn)V

j
L,n (sn/2)

+

(
1

tn
∇ϕδ(x/tn) + ϕδ (x/tn)

)
∇x,t

(
V j
n (sn/2) − V j

L,n(sn/2)
)

+

(
ϕδ (x/tn) − ϕδ

(
t j,n
μ j,n

))
∇x,t V

j
L,n(sn/2)

+

(
ϕδ

(
t j,n
μ j,n

)
− ϕδ

(
1

3
+
2

3
τ j

))
∇x,t V

j
L,n(sn/2)
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We now show that each of the four terms in the right hand-side tends to 0 as n → +∞.
Let ε > 0. Lemma 2.6 provides us with R so that

∫
||x |−|t j,n ||≥Rμ j,n

|∇t,x V
j
L,n(sn/2, x)|2dx ≤ ε.

Proceeding as in (4.9), as μ j,n/tn → 0, we see that

∀R ∈ R,

∫
||x |−|t j,n ||≤Rμ j,n

∣∣∣∣ 1tn ∇ϕδ(x/tn)V
j
L,n (sn/2, x)

∣∣∣∣
2

dx → 0.

Hence the first term tends to 0. For the third term, it also suffices to consider the case
when ||x | − |t j,n|| ≤ Rμ j,n , but then

∣∣∣∣ϕδ

(
x

tn

)
− ϕδ

(
− t j,n

tn

)∣∣∣∣ ≤ CδR
μ j,n

tn
= C̃δ

μ j,n

sn
→ 0 as n → +∞,

Hence the third term tends to 0. For the second term, as we saw before

sn/2 − s j,n
μ j,n

→ ∞

in this case (and tn → +∞)), so that by the definition of nonlinear profiles

1

μ
1/2
j,n

�V j
(
sn/2 − s j,n

μ j,n
,

x

μ j,n

)
− 1

μ
1/2
j,n

�V j
L

(
sn/2 − s j,n

μ j,n
,

x

μ j,n

)
→ 0 in H.

This shows that the second term tends to 0. Finally, note that

1

3
+
2

3
τ j = lim

n→∞ − t j,n
μ j,n

,

thus the fourth term also tends to 0. Claim 4.12 follows.
Thus, it only remains to check the pseudo-orthogonality of {μ j,n, t j,n} for j ≥ 2 of

the second class (τ j > 0). But

μ j,n

μk,n
+

μk,n

μ j,n
+

|t j,n − tk,n|
μ j,n

= μ j,n

μk,n
+

μk,n

μ j,n
+

|s j,n − sk,n|
μ j,n

→ +∞.

This finishes the Proof of Lemma 4.2. ��

4.2. Vanishing energy in the self similar region for global solutions. In this subsection
we prove the analog of Theorem 3.1 for smooth global solutions to (1.3).

Theorem 4.4. Assume that �u(t) is a smooth finite energy solution to (1.3). Let λ ∈ (0, 1).
Then

lim sup
t→+∞

∫ t−R

λt

(
|∇t,r u(t, r)|2 + |u(t, r)|2

r2

)
r3dr → 0 as R → +∞.

We will also require the following simple consequence of Theorem 4.4.
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Corollary 4.5. Let λ ∈ (0, 1). Then as t → +∞
‖∇t,r u(t) − ∇t,rvL(t)‖L2(r≥λt) → 0 and ‖ru(t, r)‖L∞(r≥λt) → 0.

Proof of Corollary 4.5. From Theorem 4.4 and Proposition 2.3,

lim sup
t→+∞

‖∇t,r u(t) − ∇t,rvL(t)‖L2(r∈[λt,t−R])

≤ lim sup
t→+∞

‖∇t,r u(t)‖L2(r∈[λt,t−R]) + ‖∇t,rvL(t)‖L2(r∈[λt,t−R])

→ 0 as R → +∞.

Now, we use Proposition 4.1 on the interval [t − R,+∞), and this gives the convergence

‖∇t,r u(t) − ∇t,rvL(t)‖L2(r≥λt) → 0.

Then it follows from Lemma 3.3 that

‖|x |(u(t, x) − vL(t, x))‖L∞(|x |≥λt) → 0.

But as vL is a linear solution, ‖rvL(t, r)‖L∞
r

→ 0 as t → +∞. Indeed, if vL(0) is
smooth with compact support, we have the well-known dispersive estimate

∀t > 0, ∀r ≥ 0, |vL(t, r)| ≤ Ct−
3
2 . (4.13)

Combined with finite speed of propagation yields the result in this case. It follows in the
general case via a density argument. This gives the second convergence. ��

We use the linear solution vL(t) constructed in the previous section, and rely on our
assumption of spherical symmetry. As in the finite time blow-up case we pass to a 2d
formulation by introducing the functions

ψ(t, r) = ru(t, r), φ(t, r) = rvL(t, r).

Claim 4.6. We have the convergences

lim sup
t→+∞

∫ t−R

0

(
|∇t,rvL(t, r)|2 + |vL(t, r)|2

r2

)
r3dr → 0 as R → +∞,

lim sup
t→+∞

∫ t−R

0
|∇t,rφ(t, r)|2rdr → 0 as R → +∞,

lim sup
t→+∞

sup
r∈[0,t−R]

|φ(t, r)| → 0 as R → +∞.

∀R ≥ 0, lim
t→+∞

∫ ∞

t−R

∣∣∇t,rφ(t, r) − ∇t,rψ(t, r)
∣∣2 rdr → 0,

and the bounds, for some constant C(M) depending only on the constant M (defined
in (4.1)), and all t ≥ 0:

∫ ∞

0

(
|∇t,rψ(t, r)|2 + |ψ(t, r)|2

r2

)
rdr ≤ C(M)2,

∫ ∞

0

(
|∇t,rφ(t, r)|2 + |φ(t, r)|2

r2

)
rdr ≤ C(M)2.
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Proof. Proposition 2.3 yields that

lim sup
t→+∞

∫ t−R

0
|∇t,rvL(t, r)|2r3dr → 0 as R → +∞.

By (3.8) in Lemma 3.3, with r = 0, we sees that by density and preservation of the
linear energy, it suffices to establish the convergence for �vL with initial data that is C∞

0
(and radial).

We nowuse (4.13) and (3.11) and the fact that by Lemma 3.3we know that s |vL(t, s)|
→ 0 as s → 0, to integrate (3.11) between r = 0 and r = t − R to obtain

2
∫ t−R

0
v2L(t, r) r dr = (t − R)2v2L(t, , t − R) − 2

∫ t−R

0
vL(t, r) ∂rvL(t, r) r2 dr

≤ (t − R)2v2L(t, t − R) +
∫ t−R

0
v2L(t, r) r dr +

∫ t−R

0
|∂rvL(t, r)|2 r3 dr.

Hence,

∫ t−R

0
v2L(t, r) r dr ≤ C

(t − R)2

t3
+

∫ t−R

0
|∂rvL(t, r)|2 r3 dr,

which combined with Proposition 2.3 gives the first statement. Now, ∂rφ = r∂rvL + vL
and the second statement follows. The third statement is then a consequence of (3.10)
in Lemma 3.3. The fourth and last convergence is a reformulation of the extraction of
the linear term Proposition 4.1, in light of Lemma 3.3, (3.8).

Finally, the first bound is a consequence of the type-II bound (4.1) combined with
Lemma 3.3, (3.8) with r = 0. For the second bound we also use (3.8), Proposition 4.1
and conservation of the linear energy. ��

The Proof of Theorem 4.4 follows the same general outline as for the finite time
blow-up case. First, we prove desired vanishing of the energy for a particular λ ∈ (0, 1),
conditional to an L∞ bound which guarantees the positivity of the flux. We then prove
that this implies the general case of the theorem via an inductive argument.

Proposition 4.7. Assume that there exist λ ∈ (0, 1) and A ≥ 0 and T ≥ A/(1−λ) such
that

∀t ≥ T, ∀r ∈ [λt, t − A], |ψ(t, r)| ≤
√
2

2
. (4.14)

Then

lim sup
t→+∞

∫ t−R

λt

(
|∂tψ(t, r)|2 + |∂rψ(t, r)|2 + F(ψ(t, r))

r2

)
rdr → 0 as R → ∞.

Let us postpone the Proof of Proposition 4.7 and use it to prove Theorem 4.4.

Proof that Proposition 4.7 implies Theorem 4.4. The proof follows in two steps.

Step 1: We begin by establishing the following claim which establishes the desired
vanishing in terms of �ψ .
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Claim 4.8. For all λ ∈ (0, 1),

lim sup
t→+∞

∫ t−R

λt

(
|∂tψ(t, r)|2 + |∂rψ(t, r)|2

)
rdr → 0 as R → ∞. (4.15)

Proof of Claim 4.8. Consider the collection I of the λ ∈ (0, 1) such that there exist
R(λ) ≥ 0 and T (λ) ≥ R(λ)/(1 − λ) such that

∀t ≥ T (λ), ∀r ∈ [λt, t − R(λ)], |ψ(t, r)| ≤
√
2

2
. (4.16)

Observe that if λ ∈ I then [λ, 1) ⊂ I (for any λ′ ∈ [λ, 1), notice that R(λ′) = R(λ)

and T (λ′) = max(R(λ)/(1 − λ′), T (λ)) work, because λ′t ≥ λt). Also, in view of
Proposition 4.7, if λ ∈ I , then (4.15) holds for this particular λ.

Hence it is enough to prove that I contains a sequence {λn} ⊂ (0, 1)which converges
to 0: this is our goal from now on.

Let us first show that I is non empty. First observe that there exists R0 > 0 and
T0 > 0 such that for all t ≥ T0,

|φ(t, t − R0) − ψ(t, t − R0)| ≤ 1/6, and sup
r∈[0,t−R0]

|φ(t, r)| ≤ 1/6.

Indeed, we invoke Claim 4.6 (and (3.7)).
Let λ0 ∈ (0, 1) to be determined later. Let t ≥ T0 and r ∈ [λ0t, t − R0]. Then,

(assuming that T0 ≥ R0/(1 − λ0), using Claim 4.6 repeatedly,

|ψ(t, r) − φ(t, r)|
≤ |ψ(t, t − R0) − φ(t, t − R0)| +

∫ t−R0

r

√
r ′|∂rψ(t, r ′) − ∂rφ(t, r ′)| dr

′
√
r ′

≤ 1

6
+

(∫ t−R0

r
|∂rψ(t, r ′) − ∂rφ(t, r ′)|2r ′dr ′

)1/2 (∫ t−R0

r

dr ′

r ′

)1/2

≤ 1/6 + 2C(M)

√
log

t − R0

r
≤ 1/3 + 2C(M)

√| log λ0|

Thus, for t ≥ T0, r ∈ [λ0t, t − R0], and provided that T0 ≥ R0/(1 − λ0)

|ψ(t, r)| ≤ |φ(t, r)| + |ψ(t, r) − φ(t, r)| ≤ 1/3 + 2C(M)
√| log λ0|.

Choose now λ0 ∈ (1/2, 1) such that |λ0 − 1| ≤ 1/(144C(M)2)) and use the fact that
for such λ0 we have | log λ0| ≤ 2|λ0 − 1|. Now define T (λ0) := max(T0, R0/(1−λ0)):
for t ≥ T (λ0), the interval [λt, t − R0] is never empty. From the definition of λ0, we get

sup
t≥T0, r∈[λ0t,t−R0]

|ψ(t, r)| ≤ 2/3 ≤
√
2

2
.

Hence condition (4.16) is fulfilled with R(λ0) := R0, and λ0 ∈ I .
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Denote λn := λn0, and let us now prove by induction that λn ∈ I , with R(λn) = R0.
We just proved that λ1 ∈ I (with R(λ1) = R0). Assume that n ≥ 1 and λn ∈ I with
R(λn) = R0. First, for all R > 0 and t ≥ R/(1 − λn)∫ ∞

λn t
|∇t,rφ(t, r) − ∇t,rψ(t, r)|2rdr ≤

∫ ∞

t−R
|∇t,rφ(t, r) − ∇t,rψ(t, r)|2rdr

+ 2
∫ t−R

λn t
|∇t,rφ(t, r)|2rdr + 2

∫ t−R

λn t
|∇t,rψ(t, r)|2rdr.

As λn ∈ I , (4.15) holds; using Claim 4.6, and after taking the limsup in t → +∞ and
letting R → +∞, we infer

∫ ∞

λn t
|∇t,rφ(t, r) − ∇t,rψ(t, r)|2rdr → 0 as t → +∞.

Using (3.7), there exists Tn such that for all t ≥ Tn

|φ(t, λnt) − ψ(t, λnt)| ≤ 1/6.

Then define T (λn+1) = max(Tn, T (λn)). For t ≥ T (λn+1) and r ∈ [λn+1t, λnt] (notice
that λnt ≤ t − R0), there holds

|ψ(t, r) − φ(t, r)|
≤ |ψ(t, λnt) − φ(t, λnt)| +

∫ λn t

r

√
r ′|∂rψ(t, r ′) − ∂rφ(t, r ′)| dr

′
√
r ′

≤ 1

6
+

(∫ λn t

r
|∂rψ(t, r ′) − ∂rφ(t, r ′)|2r ′dr ′

)1/2 (∫ λn t

r

dr ′

r ′

)1/2

≤ 1/6 + 2C(M)

√
log

λnt

r
≤ 1/6 + 2C(M)

√| log λ0| ≤ 1/2.

Thus, by our choice of λ0, we have for all t ≥ T (λn+1),

sup
r∈[λn+1t,λn t]

|ψ(t, r)| ≤
√
2

2
.

As μn ∈ I with R(λn) = R0 by assumption, we see that

sup
t≥T (λn+1), r∈[λn+1t,t−R0]

|ψ(t, r)| ≤
√
2

2
,

so that λn+1 ∈ I with R(λn+1) = R0. This completes the induction.
Finally as λn → 0, and λn ∈ I for all n ≥ 1, we conclude that I = (0, 1) and for all

λ ∈ (0, 1), (4.15) holds, as desired. ��

Step 2: To complete the proof we now transfer these results to �u(t). Let λ ∈ (0, 1).
Claim 4.8 combined with the second and fourth statements of Claim 4.6 show that∫ ∞

λt

(
|∂t (ψ − φ)(t, r)|2 + |∂r (ψ − φ)(t, r)|2

)
rdr → 0 as t → +∞.
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This already gives that

∫ ∞

λt
|∂t u(t, r) − ∂tvL(t, r)|2r3dr → 0.

From the fact that
∫ ∞

λt
|∂r (ψ − φ)(t, r)|2 r dr → 0,

we see that for λt < r < t − R, we have

ψ(t, r) − φ(t, r) = ψ(t, t − R) − φ(t, t − R) −
∫ t−R

r
(ψ − φ)r (t, ρ) dρ,

so that

|ψ(t, r) − φ(t, r)| ≤ |ψ(t, t − R) − φ(t, t − R)| +
∫ t−R

λt
|(ψ − φ)r (t, ρ)| dρ

≤ |ψ(t, t − R) − φ(t, t − R)| +
(∫ t−R

λt
|(ψ − φ)r (t, ρ)|2 ρ dρ

) 1
2
(∫ t−R

λt

dρ

ρ

) 1
2

.

Hence, using also (3.7), Proposition 4.1, we obtain that

lim
R→∞ lim sup

t→∞
sup

r∈[λt,t−R]
|ψ(t, r) − φ(t, r)| = 0.

Therefore, using that

∫ t−R

λt
|u(t, r) − vL(t, r)|2 r2

dr

r
≤ sup

r∈[λt,t−R]
|ψ(t, r) − φ(t, r)| log

(
1

λ
− R

λt

)
,

we see that,

lim
R→∞ lim sup

t→∞

∫ t−R

λt
|u(t, r) − vL(t, r)| r dr = 0,

and hence,

lim
R→∞ lim sup

t→∞

∫ t−R

λt
|ur (t, r) − vr (t, r)|2 r3 dr = 0,

which combined with the second and third statements in Claim 4.6, gives Theorem 4.4.
Note that using Lemma 3.3, (3.8), and Proposition 4.1, we in fact have

lim
t→∞

∫ ∞

λt

{∣∣∇t,x (u − vL)(t, r)
∣∣2 + |(u − vL)(t, r)|2

r2

}
r3 dr = 0

��
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4.3. Proof of Proposition 4.7. We now turn to the Proof of Proposition 4.7. We recall
the fact that ψ satisfies a 2d equation as in (3.14).

∂t tψ − ∂rrψ − 1

r
∂rψ +

f (ψ)

r2
= 0, where f (ψ) = ψ − ψ3 (4.17)

Again we let

F(ψ) =
∫ ψ

0
f (ρ)dρ = ψ2

2
− ψ4

4
= ψ2

2
(1 − ψ2/2),

so that if |ψ | ≤ √
2, then F(ψ) ≥ 0.

As in the finite time blow-up case the crux of the argument will be that hypoth-
esis (4.14) will guarantee the positivity of the flux so that the methods in [4] can be
applied. We will need refinements of their results, which were developed in [10] and
required in order to establish Theorems 1.3 and 1.4. The proof below actually combines
ideas of [4] and [25].

We re-introduce the following quantities:

e(t, r) := 1

2
(ψ2

t (t, r) + ψ2
r (t, r)) +

F(ψ(t, r))

r2

m(t, r) := ψt (t, r)ψr (t, r).

And recall again for convenience the identities

∂t (re) − ∂r (rm) = 0, (4.18)

∂t (rm) − ∂r (re) = −1

2
ψ2
t +

1

2
ψ2
r +

F(ψ)

r2
− 2 f (ψ)

r
ψr =: L , (4.19)

We define the null coordinates

η = t + r, ξ = t − r.

Let λ′ = 1 − λ

1 + λ
, and denote

A2(η, ξ) := r(e(t, r) + m(t, r)) = r

2
(∂tψ + ∂rψ)2 +

F(ψ)

r
,

B2(η, ξ) := r(e(t, r) − m(t, r)) = r

2
(∂tψ − ∂rψ)2 +

F(ψ)

r
.

Step 1: Vanishing of the flux. First integrate the energy identity (4.18) on the
truncated cone

C(T, ξ0) := {(η, ξ) | η ≥ ξ ≥ ξ0, η + ξ ≤ 2T },
where t ≥ ξ0 ≥ A (see Fig. 1). We see that

0 =
∫∫

C(T,ξ0)

(∂t (re) − ∂r (rm))drdt

=
∫ T−ξ0

0
e(T, r)rdr −

∫ 2T−ξ0

ξ0

A2(η, ξ0)dη,
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t η

ξ

t = T

ξ = ξ0

Fig. 1. The cone C(T, ξ0) in gray

which implies that

∫ 2T−ξ0

ξ0

A2(η, ξ0)dη =
∫ T−ξ0

0
e(T, r)rdr.

Due to the type-II bound (4.1), the term on the right-hand side is bounded by a constant

depending on M only as T → +∞. Now, as ψ is smooth,
∫ ξ0/λ

′

ξ0

A2(η, ξ0)dη is well

defined. Also recall that for ξ0 ≥ A: if η ≥ ξ0/λ
′, then A2(η, ξ0) ≥ 0. Hence, by

boundedness,
∫ ∞

ξ0

A2(η, ξ0)dη converges. For all η0 ≥ ξ0 ≥ A, we can thus define the

flux

Flux(η0, ξ0) :=
∫ ∞

η0

A2(η, ξ0)dη.

Then for fixed ξ0, Flux(η0, ξ0) ≥ 0 as soon as λ′η0 ≥ ξ0 and

Flux(η0, ξ0) → 0 as η0 → +∞.

Also, there exists a constant C(M) such that

∀ η0 ≥ ξ0 ≥ A, |Flux(η0, ξ0)| ≤ C(M). (4.20)

Next, let η1 ≥ ξ1 ≥ ξ0 ≥ A. Integrating on the quadrangle

Q(η1; ξ0, ξ1) = {(η, ξ) | 0 ≤ η ≤ η1, ξ0 ≤ ξ ≤ ξ1, η ≥ ξ}
with vertices (ξ0, ξ0), (ξ0, η1), (ξ1, η1) and (ξ1, ξ1) (see Fig. 2), we get

0 =
∫∫

Q(η1;ξ0,ξ1)
∂t (re) − ∂r (rm)

=
∫ η1

ξ0

A2(η, ξ0)dη +
∫ ξ1

ξ0

B2(η1, ξ)dξ −
∫ η1

ξ1

A2(η, ξ1)dη
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r

t η

ξ

η = η1

ξ = ξ0ξ = ξ1

Fig. 2. The quadrangle Q(η1; ξ0, ξ1) in gray

Letting η1 → +∞, we can define, for any ξ1 ≥ ξ0 ≥ A,

F(ξ0, ξ1) := lim
η1→+∞

∫ ξ1

ξ0

B2(η1, ξ)dξ = Flux(ξ0, ξ0) − Flux(ξ1, ξ1). (4.21)

Now fix such (ξ0, ξ1): for η1 large enough, B2 ≥ 0 on [ξ0, ξ1] × {η1} . This proves that
∀ξ1 ≥ ξ0 ≥ 0, F(ξ0, ξ1) ≥ 0,

and so, ξ �→ Flux(ξ, ξ) is non increasing. As it is bounded due to (4.20), there exists a
limit as ξ → +∞, which we denote E :

E := lim
ξ→+∞Flux(ξ, ξ).

Notice that we also have for ξ2 ≥ ξ1 ≥ ξ0

F(ξ0, ξ2) = F(ξ0, ξ1) + F(ξ1, ξ2) ≥ F(ξ0, ξ1). (4.22)

Let us show that the map (ξ0, ξ1) �→ F(ξ0, ξ1) is bounded on the set {(ξ0, ξ1) | ξ1 ≥
ξ0 ≥ A}. Indeed, consider such (ξ0, ξ1) and η0 is so large that λ′η0 ≥ ξ1, and the triangle
with vertices (η0, ξ0), (η0, ξ1) and (ξ0, η0 + ξ1 − ξ0):

T (η0, ξ0, ξ1) = {(η, ξ) | η0 ≤ η, ξ0 ≤ ξ, η + ξ ≤ η0 + ξ1} .

(See Fig. 3). Observe that on T (η0; ξ0, ξ1),A2 ≥ 0 and B2 ≥ 0 and integrate the energy
identity (4.18) there:

0 =
∫∫

T (η0,ξ0,ξ1)

∂t (re) − ∂r (rm)drdt

=
∫ (η0−ξ1)/2

(η0−ξ0)/2
e(η0 + ξ1, r)rdr −

∫ η0+ξ1−ξ0

η0

A2(η, ξ0)dη −
∫ ξ1

ξ0

B2(η0, ξ)dξ.

Therefore, invoking again our type-II bound (4.1) and non-negativity of A2:
∫ ξ1

ξ0

B2(η0, ξ)dξ ≤
∫ (η0−ξ1)/2

(η0−ξ0)/2
e(η0 + ξ1, r)rdr ≤ C(M),



Profiles for Energy Critical Waves 985

r

t

η

ξ

ξ = ξ1 ξ = ξ0
η = η0

Fig. 3. The triangle T (η0, ξ0, ξ1) in gray

where C(M) is independent of (η0, ξ0, ξ1). Letting η0 → +∞ shows that

∀ξ1 ≥ ξ0 ≥ A, F(ξ0, ξ1) ≤ C(M).

Hence, with the monotonicity (4.22), for ξ0 ≥ A, we can define

F(ξ0) = lim
ξ1→+∞F(ξ0, ξ1) ≥ 0.

Let ξ1 → +∞ in the definition (4.21) of F(ξ0, ξ1) and derive

F(ξ0) = Flux(ξ0, ξ0) − E .

Therefore, letting ξ0 → +∞, we finally obtain that F(ξ0) → 0 as ξ0 → +∞.

Step 2. Bound on
∫ ξ1

ξ0

B2(η0, ξ)dξ . We now work in the domain

K = {
(η, ξ)

∣∣ η ≥ 2T − A, A ≤ ξ ≤ λ′η
} ⊂ {(t, r) | t ≥ T and λt ≤ r ≤ t − A}.

Notice that when (η, ξ) ∈ K , |ψ(η, ξ)| ≤
√
2

2
≤ √

2, so that A2(η, ξ),B2(η, ξ) ≥ 0:

for such (η, ξ) we can then define

A(η, ξ) =
√
A2(η, ξ), B(η, ξ) =

√
B2(η, ξ).

We now use the identities from (4.18), (4.19): in the variables (η, ξ), they read

∂ξA2 = L , ∂ηB2 = −L .

Claim 4.9. On K , one has |L| ≤ C

r
AB.
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r

t η

ξ

η = 2T − A

t = T

ξ = Aξ = λ′η ξ0

η0

ξ1

η1

Fig. 4. The quadrangle K in gray and the rectangle of integration [η0, η1] × [ξ0, ξ1]

Proof. Recall that on K , |ψ | ≤
√
2

2
, so that F(ψ) ≥ 0 and

| f (ψ)| =
∣∣∣ψ(1 − ψ2)

∣∣∣ ≤ |ψ | , |F(ψ)| =
∣∣∣∣ψ

2

2

(
1 − ψ2

2

)∣∣∣∣ ≥ ψ2

4
.

Combining the above inequalities gives

f 2(ψ) ≤ |ψ |2 ≤ 4F(ψ), ∀ (t, r) ∈ K .

Then (using Cauchy–Schwarz inequality) and arguing as in (3.51) we have

L2 ≤ 1

2
(ψ2

r − ψ2
t )2 +

4

r4
F2(ψ) +

64

r2
F(ψ)ψ2

r

≤ C

[
1

4
(ψ2

r − ψ2
t )2 +

1

r4
F2(ψ) +

2

r2
F(ψ)(ψ2

r + ψ2
t )

]
,

which gives L2 ≤ C A2B2

r2
. The claim follows by taking the square root. ��

We can thus conclude that

|∂ξA| ≤ C
B
r

, |∂ηB| ≤ C
A
r

.

Consider a rectangle [η0, η1] × [ξ0, ξ1] ⊂ K (see Fig. 4), with η1 meant to be large). In
particular, for 0 < λ′ < 1 we have

0 ≤ ξ0 ≤ ξ1 ≤ λ′η0 ≤ λ′η1. (4.23)

Then for all (η, ξ) ∈ [η0, η1] × [ξ0, ξ1] we obtain

A(η, ξ) ≤ A(η, ξ0) + C
∫ ξ

ξ0

B(η, ξ ′)
η − ξ ′ dξ ′,

B(η, ξ) ≤ B(η1, ξ) + C
∫ η1

η

A(η′, ξ)

η′ − ξ
dη′

≤B(η1, ξ) + C
∫ η1

η

A(η′, ξ0)
η′ − ξ

dη′ + C
∫ ξ

ξ0

∫ η1

η

B(η′, ξ ′)
(η′ − ξ)(η′ − ξ ′)

dη′dξ ′

(4.24)
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Let us first evaluate the second term using the Cauchy–Schwarz inequality:

∫ η1

η

A(η′, ξ0)
η′ − ξ

dη′ ≤
(∫ η1

η

A2(η′, ξ0)dη′
)1/2 (∫ η1

η

dη′

(η′ − ξ)2

)1/2

≤
√
Flux(η, ξ0)

η − ξ
≤

√
Flux(η0, ξ0)

(1 − λ′)η
(4.25)

We now turn to the third term. It is convenient to denote

F(η; ξ0, ξ1) =
∫ ξ1

ξ0

B2(η, ξ)dξ.

Notice that on the rectangle of integration, (4.23) holds and we have

1

(η′ − ξ)(η′ − ξ ′)
≤ 1

(1 − λ′)2η′2 .

Hence

∫ ξ

ξ0

∫ η1

η

B(η′, ξ ′)
(η′ − ξ)(η′ − ξ ′)

dη′dξ ′ ≤ 1

(1 − λ′)2

∫ η1

η

1

η′2

∫ ξ

ξ0

B(η′, ξ ′)dξ ′dη′

≤
√

ξ − ξ0

(1 − λ′)2

∫ η1

η

√
F(η′; ξ0, ξ)

dη′

η′2 ≤
√

ξ

(1 − λ′2)

∫ η1

η

√
F(η′; ξ0, ξ1)

dη′

η′2 (4.26)

Plugging the last two bounds (4.25) and (4.26) in the estimate for B(η, ξ) in (4.24), we
infer that

B(η, ξ) ≤ B(η1, ξ) + C

√
Flux(η0, ξ0)

(1 − λ′)η
+

C
√

ξ

(1 − λ′2)

∫ η1

η

√
F(η′; ξ0, ξ1)

η′2 dη′.

Taking the square and integrating in ξ over [ξ0, ξ1] then yields

F(η; ξ1, ξ0) ≤ CF(η1; ξ1, ξ0) +
C

(1 − λ′)
ξ1 − ξ0

η
Flux(η0, ξ0)

+
C(ξ1 − ξ0)

2

(1 − λ′)2

(∫ η1

η

√
F(η′; ξ0, ξ1)

η′2

)2

≤ CF(η1; ξ1, ξ0) +
Cλ′

(1 − λ′)
Flux(η0, ξ0)

+
Cξ21

(1 − λ′)2

(∫ η1

η

F(η′; ξ0, ξ1)
dη′

η′2

)(∫ η1

η

dη′

η′2

)
.

We have obtained the following integral inequality for η �→ F(η; ξ1, ξ0):

F(η; ξ1, ξ0) ≤ C(λ′)
(
F(η1; ξ1, ξ0) + Flux(η0, ξ0) + ξ1

∫ η1

η

F(η′; ξ0, ξ1)
dη′

η′2

)
.
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It follows from Gronwall’s inequality (in η) that

F(η; ξ0, ξ1) ≤ C(λ′) (F(η1; ξ0, ξ1) + Flux(η0, ξ0)) exp

(
C(λ′)ξ1

∫ η1

η

dη′

η′2

)

≤ C(λ′) (F(η1; ξ0, ξ1) + Flux(η0, ξ0)) .

Letting η1 → +∞ (and ξ0, ξ1 fixed and set η = η0):

F(η0; ξ0, ξ1) ≤ C(λ′) (F(ξ0, ξ1) + Flux(η0, ξ0)) .

As F(ξ0, ξ1) ≤ F(ξ0) we conclude that∫ ξ1

ξ0

B2(η0, ξ)dξ = F(η0; ξ0, ξ1) ≤ C(λ′) (F(ξ0) + Flux(η0, ξ0)) .

Step 3: Vanishing of the energy. Let ε > 0. Let ξε ≥ A be such that 0 ≤ F(ξε) ≤ ε,
then let ηε ≥ ξε be such that Flux(ηε, ξε) ≤ ε. Define Rε = ξε and

Tε = max

(
ξε

1 + λ
,

ηε

1 − λ
, T

)
.

Let t ≥ Tε. Denote ξ = (1 + λ)t ≥ ξε and η = (1 − λ)t ≥ ηε.

We will integrate (4.18) on the triangle with vertices (η, ξε), (2t − Rε, ξε) and (ξ, η):

T = {(η′, ξ ′) | η′ ≥ η, ξ ≥ ξε, η
′ + ξ ′ ≤ ξ + η}.

Then

0 =
∫∫

T
(∂t (re) − ∂r (rm))drdt

=
∫ t−Rε

λt
e(t, r)rdr −

∫ 2t−Rε

η

A2(η′, ξε)dη′ −
∫ ξ

ξε

B2(η, ξ ′)dξ ′.

Therefore∫ t−Rε

λt
e(t, r)rdr =

∫ 2t−Rε

η

A2(η′, ξε)dη′ +
∫ ξ

ξε

B2(η, ξ ′)dξ ′

≤ Flux(η, ξε) + F(η; ξε, ξ)

≤ (C(λ′) + 1)Flux(η, ξε) + C(λ′)F(ξε) ≤ (2C(λ′) + 1)ε.

Hence,

lim sup
t→+∞

∫ t−Rε

λt
e(t, r)rdr ≤ (2C(λ′) + 1)ε.

As Rε ≥ A and Tε ≥ T , for all R ≥ Rε,

∀t ≥ Tε, r ∈ [λt, t − R], F(ψ(t, r)) ≥ 0,

and so, for all R ≥ Rε,

lim sup
t→+∞

∫ t−R

λt
(|∂tψ(t, r)|2 + |∂rψ(t, r)|2)rdr ≤ (2C(λ′) + 1)ε.

This completes the Proof of Proposition 4.7.
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5. Proofs of Theorems 1.1 and 1.3

In this section we establish Theorems 1.1 and 1.3. We remark that the details of this
argument are very similar to the arguments contained in [8, Section 5], [10, Section 3],
as well as [11, Section 5], [12, Section 4] and thus we will only present a very brief
sketch. We begin with the case of finite time blow-up.

5.1. Proof of Theorem 1.1. We assume that �u(t) ∈ H is a smooth type-II solution
to (1.3) with T+(�u) = 1 and let �v(t) be the regular part as defined in Sect. 3.1 and let
�a(t) = �u(t) − �v(t) be the singular part as defined in (3.4).

The first step in the Proof of Theorem 1.1 is to use Theorem 3.1 to show that there
exists a sequence of times {tn} → 1 so that the time derivative at (tn) = ut (tn) − vt (tn)
tends to zero in L2. We first prove this in a averaged sense for the blow-up solution �u(t).

Lemma 5.1. Let �u(t) ∈ H be a smooth type-II solution to (1.3) with T+(�u) = 1. Then

1

1 − t

∫ 1

t

∫ 1−s

0
u2t (s, r)r

3 dr → 0 as t → 1. (5.1)

Proof. This is a fairly direct and well known consequence of Theorem 3.1, or more
precisely, Proposition 3.20, since we work in the 2d formulation: recall

ψ(t, r) = ru(t, r)

and we need to prove that

1

1 − t

∫ 1

t

∫ 1−s

0
ψ2
t (s, r)r dr ds → 0 as t → 1. (5.2)

We integrate (3.38) over the region {(s, r) | t ≤ s ≤ t ′, , 0 ≤ r ≤ 1 − s} (for t ′ < 1)
∫ 1−t

0
ψt (t, r)ψr (t, r)r

2rdr −
∫ 1−t ′

0
ψt (t

′, r)ψr (t
′, r)r2rdr

+
∫ 1−t

1−t ′

(
ψ̄ ′(�) − F(ψ(�, 1 − �))

s2

)
�2d�

=
∫ t ′

t

∫ 1−s

0
ψ2
t (s, r)r dr ds, (5.3)

where ψ̄(�) := ψ(�, 1 − �). Then as F(ψ) ≥ 0 on the region of integration, we have
∫ 1−t

1−t ′

(
ψ̄ ′(�)2 − F(ψ(�, 1 − �))

s2

)
�2d�

≤ (1 − t)
∫ 1−t

0

(
ψ̄ ′(�)2 + F(ψ(�, 1 − �))

s2

)
�d� = o(1 − t).

The integral term of the second line is the flux of the energy (see (3.37)), which tends
to 0 as t → 1. On the other side, decomposing the space integral between [0, δ(1 − t)]
and [δ(1 − t), (1 − t)], we deduce from Proposition 3.20 that

∫ 1−t

0
ψt (t, r)ψr (t, r)r

2rdr = o(1 − t).
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Hence letting t ′ → 1 and then dividing by 1 − t , we get

1

1 − t

∫ 1

t

∫ 1−s

0
ψ2
t (s, r)r dr ds → 0.

We refer to [24, Corollary 8.1] and [25, Corollary 2.3] for full details in the analog wave
map context. ��

Next, one can observe that since �v(t) is regular at t = 1, (5.1) holds for a(t) as well,
namely,

1

1 − t

∫ 1

t

∫ 1−s

0
a2t (s, r)r

3 dr ds → 0 as t → 1. (5.4)

As a consequence of (5.4) (and a Vitali covering argument, see e.g., [27]), we can pick
a sequence of time tn → 1 on which at “vanishes at all scales” in some adequate L2

space-time sense, stated precisely in the following Lemma.

Lemma 5.2 ([11, Corollary 5.3]). There exists a sequence of times tn → 1 so that for
every n and for every σ ∈ (0, 1 − tn) we have

lim
n→∞

1

σ

∫ tn+σ

tn

∫ ∞

0
a2t (t, r) r

3 dr dt = 0, (5.5)

lim
n→∞

∫ ∞

0
a2t (tn, r) r

3 dr = 0. (5.6)

Proof. We refer the reader to [11, Corollary 5.3] for the proof. ��
Now consider the bounded sequence �a(tn) ∈ H. By Theorem 2.4 and (5.6) we have

a profile decomposition

�a(tn, r) =
k∑
j=1

�V j
L ,n(0, r) + �wk

n(r).

(5.5)–(5.6) morally implies that any nonzero profile must be constant in time, i.e be
either W or −W ; due to Pythagorean expansion of the energy, there can only be finitely
many of these. This is gathered in the following preliminary result

Proposition 5.3 ([11, Proposition 5.1], [12, Corollary 4.1]). There exists an integer J0 >

0, and sequences of scales λ j,n for 1 ≤ j ≤ J0 with

λ1,n � · · · � λJ0,n � 1 − tn,

and a sequence of signs ι j ∈ {+1,−1} so that

�u(tn) = (v0, v1) +
J0∑
j=1

(
ι j

λ j,n
W (·/λ j,n), 0

)
+ (wn, 0), (5.7)

where the linear evolution �wL ,n(t) = S(t)(wn, 0) satisfies

lim
n→∞ ‖wL ,n‖S(R) = 0. (5.8)
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Proof. We refer to the argument in [11, Section 5.2] for full details. ��
In order to establish Theorem 1.1 it remains to strengthen (5.8) by showing that the

error (wn, 0) tends to zero in the energy space H. This is the content of the following
proposition.

Proposition 5.4 ([8, Proposition 5.6]). Let (wn, 0) be as in (5.7), (5.8). Then,

‖(wn, 0)‖H → 0 as n → ∞. (5.9)

In the Proof of Proposition 5.4 that the exterior energy estimates for the free equation,
Proposition 2.2 enter crucially. The Proof of (5.9) is identical to the argument in [8,
Proof of Proposition 5.6] or [6, Proposition 6.1] and has its roots in the argument in [13,
Proposition 3.4].

Remark 3. We note that there is a technical error in [8, proof of Lemma 5.9] in the
published version of [8]. The error has been corrected in the newest arxiv.org version [9]
and we refer the reader to [9, Proof of Lemma 5.9 and proof of Corollary 5.10] for the
amended argument.

The argument goes by contradiction. The key idea is to use that the free wave �wn(t)
with initial data (wn, 0) actually maintains a fixed amount of energy outside the light
cone (Proposition 2.2).We prove that this forces �u to concentrate energy on the boundary
of the cone. For this, we proceed in two steps for each profile, both requiring evolving
a nonlinear profile decomposition backwards in time. First, we show that the evolutions
of �wn(t) and �u(t) remain close on an exterior region during a time-scale on which we
can control the first profiles (by means of Proposition 2.9). At this point, we focus the
analysis outside the light cone: we need to evolve the decomposition past the time-scale
on which we can control the first profile, but fortunately this large profile does not
contribute in this exterior region. In fact, we evolve the profile decomposition with the
first profile removed, exterior to the cone, up to the time scale of the second profile,
and infer that some energy remains outside the light cone. Arguing similarly for every
profile, we conclude that some energy remains outside the light cone for all times (in
fact it concentrates on the boundary). Unscaling this information, we see that �u(t) must
concentrate some energy at some point r0 > 0 and time t0 = 1 − r0 < 1, which is a
contradiction with our assumption that the blow-up time T +(�u) = 1.

We refer the reader to the previously mentioned references for the technical details of
the argument. We also note that the energy quantization follows from the orthogonality
of profiles (2.10). This completes our sketch of the Proof of Theorem 1.1.

5.2. Proof of Theorem 1.3. We assume that �u(t) ∈ H is a smooth, type-II solution to
(1.3) defined globally for positive times. We also assume that �u(t) does not scatter to
zero as t → ∞. Let �vL(t) ∈ H be the radiation term constructed in Sect. 4.1 and denote
by �v(t) the nonlinear profile associated to �vL(t) as defined in Sect. 2.3.2, i.e., �v(t) ∈ H
is the unique solution to (1.3) so that

‖�v(t) − �vL(t)‖H → 0 as t → ∞. (5.10)

We then set

�a(t) = �u(t) − �v(t).
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The Proof of Theorem 1.3 follows the same general outline as the Proof of Theo-
rem 1.1 and is in fact very similar at this point to the argument in [10, Section 3] or [12,
Section 4].

Using Theorem 4.4 one can argue as in [10, Proof of Corollary 2.2] to deduce the
following lemma.

Lemma 5.5. Let �u(t) ∈ H be a smooth, type-II solution to (1.3) defined globally for
positive times. Then

lim sup
T→∞

1

T

∫ T

0

∫ T−A

0
u2t (t, r) r

3 dr → 0 as A → ∞. (5.11)

As in the Proof of Lemma 5.1 the argument consists of rewriting (5.11) in terms of
ψ = ru and integrating (3.38) over the region of integration in (5.11) and then using
Theorem 4.4 to conclude.

As in the blow-up argument, the next step is to use Lemma 5.5 to identify a sequence
of times for which the L2 norm of at tends to zero. One begins by deducing the analog of
Lemma 5.2 for global solutions. Using Corollary 4.5 we can argue as in [12, Lemma 4.4]
or as in [10, Lemma 3.3] to prove the following result.

Lemma 5.6 ([12, Lemma 4.4]). There exists a sequence of times tn → ∞ so that

lim
t→∞ sup

σ>0

1

σ

∫ tn+σ

tn

∫ ∞

0
a2t (t, r) r

3 dr dt = 0,

lim
n→∞

∫ ∞

0
a2t (tn, r) r

3 dr = 0.

(5.12)

We note that here we have stated Lemma 5.6 in terms of �a(t) = �u(t) − �v(t) as
opposed to for �u(t) − �vL(t) as in [12]. However, due to (5.10) this distinction makes no
difference.

Next, we can establish the global analog of Proposition 5.3.

Proposition 5.7 ([12, Corollary 4.2]). There exists and integer J0 > 0, and sequences
of scales λ j,n for 1 ≤ j ≤ J0 with

λ1,n � · · · � λJ0,n � tn,

and a sequence of signs ι j ∈ {+1,−1} so that

�u(tn) = �vL(tn) +
J0∑
j=1

(
ι j

λ j,n
W (·/λ j,n), 0

)
+ (wn, 0), (5.13)

where the linear evolution �wL ,n(t) = S(t)(wn, 0) satisfies

lim
n→∞ ‖wL ,n‖S(R) = 0. (5.14)

Again, the main idea in the Proof of Proposition 5.7 is to use Lemma 5.6 to show
that any nonzero profile must be either W or −W and we refer the reader to [12, Proof
of Corollary 4.2] for the proof.

Finally, the Proof of Theorem 1.3 is completed proving the analog of Proposition 5.4
in the global setting.
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Proposition 5.8 ([10, Proposition 3.12]). Let (wn, 0) be as in (5.13), (5.14). Then

‖(wn, 0)‖H → 0 as n → ∞. (5.15)

The proof of this result follows the same scheme as in Proposition 5.4 and the exterior
linear estimates for 4d free waves (Proposition 2.2) plays a crucial role here. For the de-
tails of this compactness argument, we refer the reader to [10, Proof of Proposition 3.12].
The energy quantization again follows from the orthogonality of profiles (2.10). This
completes our sketch of the Proof of Theorem 1.3.

6. Type-II Blow-Up Below 2‖∇W‖2
L2

This section is devoted to proving Theorem 1.2 and we will assume throughout that �u(t)
is a smooth type-II solution with T+(�u) = 1. Moreover suppose that

sup
0≤t<1−t

‖�u(t)‖2
(Ḣ1×L2)(0<r<1−t)

< 2‖∇W‖2L2 = 2‖(W, 0)‖2H. (6.1)

We again denote the regular part of �u(t) by �v(t), and the singular part by �a(t) :=
�u(t) − �v(t), as defined in Sect. 3.1. We also recall that supp �a(t) ∈ B(0, 1− t) and that
�a(t) ⇀ 0 inH.

By Theorem 1.1 we know that there exists a sequence of times tn → 1, an integer
J0 ≥ 1 scales λ j,n � 1 − tn and signs ι j for 1 ≤ j ≤ J0 so that

�a(tn) =
J0∑
j=1

(
ι j

λ j,n
W

( ·
λ j,n

)
, 0

)
+ oH(1) as n → ∞,

λ1,n � · · · � λJ0,n � 1 − tn .

(6.2)

Using (6.1), Lemma 3.3, and the definition of �a(t) we have

‖�a(tn)‖2H < 2‖∇W‖2L2 (6.3)

for n large. Combining this with the orthogonality of the scales λ j,n , it is clear that there
can only be one profile above, i.e., J0 = 1. Moreover, by replacing u by −u if necessary
we can assume ι = 1. Thus, (6.2) reduces to

�a(tn) =
(

1

λn
W

( ·
λn

)
, 0

)
+ oH(1) as n → ∞,

λn � 1 − tn .
(6.4)

We break up the Proof of Theorem 1.2 into several steps.

6.1. Step 1: preliminary observations on a profile decomposition. In order to prove
Theorem 1.2 we need to show that the decomposition (6.4) holds for any sequence
τn → 1. Let τn → 1 be any such sequence. Up to passing to a sequence we can use
Theorem 2.4 to find a profile decomposition

�a(τn) =
J∑

j=1

�U j
L ,n + �w J

n , (6.5)
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where

�U j
L ,n(t, r) =

(
1

λ j,n
UL

(
t − t j,n
λ j,n

,
r

λ j,n

)
,

1

λ2j,n
∂tUL

(
t − t j,n
λ j,n

,
r

λ j,n

))
.

As usual we denote the nonlinear profile associated to �U j
L by �U j . We can also assume,

via an application of Lemma 2.10 that the profiles are pre-ordered as in Definition 2
with

∀i ≤ j, { �Ui
L, λi,n, ti,n} � { �U j

L , λ j,n, t j,n}.
Note that we can also view (6.5) as a profile decomposition for �u(τn) given the definition
of (v0, v1) as the weak limit of �u(t) inH as t → 1. Indeed we can view �v(τn), up to an
oH(1) error, as a profile �U 0

L with initial data (v0, v1) and parameters λn,0 = 1, tn,0 = 0
and nonlinear profile equal to �v(t, r) and we write

�u(τn) = �v(τn) +
J∑

j=1

�U j
L ,n + �w J

n . (6.6)

Note that given the support properties of �a(t) we must have
∣∣∣t jn

∣∣∣ ≤ C(1 − τn) and

λ j,n ≤ C(1 − τn) for all n, j , by Lemma 2.7.
We observe that given the fact that �u(t) blows up at t = 1 and that �v is regular at

t = 1, at least one of the nonlinear profiles �U j with j ≥ 1 does not scatter in forward
time. Given our pre-ordering this means that the nonlinear profile �U 1 does not scatter in
forward time. In fact, we claim that

{U 1
L , λ1,n, t1,n} ≺ {U 0

L , 1, 0}, (6.7)

where again �U 0
L is the profile with initial data (v0, v1). Indeed, since �U 1 does not scatter

in forward time we would need

T < T+(v0, v1),
⇒ lim
n→∞

T − t1,n
λ1,n

< T+( �U 1) < ∞, (6.8)

where T+(v0, v1) is computed from the evolution starting at t = 1. Since �v(t) exists
in a neighborhood of t = 1, we can simply choose any T > 0 with T < T+(v0, v1).
We know that

∣∣t1,n∣∣ ≤ C(1 − τn) → 0 and λ1,n ≤ C(1 − τn) → 0. This means that
T − t1,n > 0 for n large enough and hence

T − t1,n
λ1,n

→ ∞ as n → ∞,

which renders (6.8) impossible and proves (6.7).
Next, note that by the orthogonality of the free energy in our decomposition, i.e., (2.9),

we must have

‖ �U j
L(−t j,n/λ j,n)‖2H < 2‖(W, 0)‖2H, and ‖ �w J

n ‖2H < 2‖(W, 0)‖2H. (6.9)

for n large and j ≥ 1. By Lemma 2.1 we can then deduce that the nonlinear energies

E( �U j
L ,n(0)) ≥ 0, and E( �w J

n ) ≥ 0. (6.10)
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for n large enough. Moreover, if

E( �U j
L ,n(0)) → 0 as n → ∞, (6.11)

then

‖ �U j
L ,n(0)‖H → 0 as n → ∞,

and since the H norm is preserved by the linear flow this means that �U j
L ≡ (0, 0).

Similarly,

E( �w J
n ) → 0 
⇒ ‖ �w J

n ‖H → 0.

Finally, if �U j is the nonlinear profile associated to {U j
L , λ j,n, t j,n} then either E( �U j ) > 0

or �U j = (0, 0).
Note that since �u(τn) ⇀ (v0, v1) weakly in H ([11, Section 3]), by the construction

of the profiles in [2], (v0, v1) with parameters tn,0 = 0 for the time translations and
λn,0 = 1 for the scaling, and nonlinear profile (with evolution starting at t = 1) �v(t),
occurs in the profile decomposition of �u(τn). Thus, the previous situation is the general
one for a profile decomposition of �u(τn), just as in Claim 7.5 below.

6.2. Step 2: Minimization process and consequences. Here we use the minimization
process for profile decompositions of �u(τn) developed in [15] adapted to the current
situation. We begin by introducing some of the notation from [15, Section 4]. First let
S0 denote the set of all sequences {τn} → 1 so that �u(τn) admits a �-ordered profile
decomposition. Note that up to extracting subsequences, S0 consists of all sequences
τn → 1.

Let T = {τn}n∈N ∈ S0. Denote by

J0(T ) = # of profiles of �u(τn) that do not scatter in forward time. (6.12)

Thismeans that for j ≤ J0(T ), �U j does not scatter in forward time and for j ≥ J0(T )+1,
�U j scatters in forward time.

Since �u(t) blows up at time t = 1 we know that for any T ∈ S0 we must have
J0(T ) ≥ 1. On the other hand, by the small data theory, there is a δ0 > 0 so that if
‖ �U j

L‖H ≤ δ0 then a nonlinear profile, �U j associated to �UL must scatter in both time
directions. Since we are also assuming that �u(t) is a type-II solution, i.e.,

sup
t∈[0,1)

‖�u(t)‖H ≤ M < ∞,

we can use the almost orthogonality of the H norms of the profiles, (2.9) to conclude
that J0(T ) ≤ CM/δ20 is finite and uniformly bounded on S0.

Next, define

J1(T ) := min{ j ≥ 1 | j ≺ j + 1}, (6.13)

where≺ is the strict order introduced in Definition 2. Since we have J0(T ) ≺ J0(T )+1
we can conclude that J1(T ) ≤ J0(T ) and hence J1(T ) is uniformly bounded on S0 as
well.
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We also define

Jmax = max{J0(T ) | T ∈ S0},
S1 = {T ∈ S0 | J0(T ) = Jmax}. (6.14)

For T ∈ S1 we then define the non-scattering energy E (T ), as the sum of the energies
of the nonlinear profiles that do not scatter, in particular for T ∈ S1 we set

E (T ) =
Jmax∑
j=1

E( �U j ). (6.15)

We now recall a result proved in [15].

Claim 6.1 [15, Corollary 4.3 and Lemma 4.5]. The infimum of E (T ) is attained (and
hence is a minimum): i.e., there exists T0 ∈ S1 so that

E(T0) = inf{E(T ) | T ∈ S1} =: Emin. (6.16)

With the above claim we can define

S2 = {T ∈ S1 | E(T ) = Emin} �= ∅, (6.17)

Jmin = min{J1(T ) | T ∈ S2}, (6.18)

S3 = {T ∈ S2 | J1(T ) = Jmin} �= ∅. (6.19)

We remark that in this radial setting, we necessarily have Jmin = 1. This follows from
the following lemma proved in [15].

Lemma 6.2 [15, Lemma 4.12] There exists T0 ∈ S3 such that for all j = 1, . . . , Jmin,�U j ∈ {(±W, 0)} and hence Jmin = 1.

This above is a much simplified version of [15, Lemma 4.12]: as we are working in
the radial setting, the only stationary solutions to (1.3) are (±W, 0). The result in [15,
Lemma 4.12] states that all of the parameters λ j,n = λ1,n for 1 ≤ j ≤ Jmin, but this
forces Jmin = 1 by orthogonality of the parameters.

To proceed, we distinguish between two cases:

(a) The nonlinear profile associated to (v0, v1), namely �v(t), scatters in forward time.
(b) The nonlinear profile associated to (v0, v1), namely �v(t), does not scatter in forward

time.

Claim 6.3. In case (a) above we have Jmax = 1 and Emin ≥ E(W, 0). In case (b) we
have Jmax = 2 and Emin ≥ E(W, 0) + E(v0, v1).

Proof. Choose the sequence T0 = {τn}n∈N given by Lemma 6.2. Since Jmin = 1we have
�U 1
L = (±W, 0). We have T0 ∈ S3 ⊂ S2 ⊂ S1 and hence we have Jmax non-scattering

profiles and

Emin =
Jmax∑
j=1

E( �U j ).
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Also, recall that for the sequence {tn} given by Theorem 1.1 we have

�a(tn, r) =
(

1

λn
W

(
r

λn

)
, 0

)
+ oH(1) as n → ∞. (6.20)

Recalling that

lim
t→1

E(�a(t)) = E(�u) − E(v0, v1), (6.21)

and by considering the sequence tn → 1 we have

E(�u) = E(W, 0) + E(v0, v1). (6.22)

Nowconsider the Pythagorean expansion for the sequenceT0 = {τn} give byLemma6.2.
Using the earlier established fact (6.10) we know that all of the nonzero profiles, as well
as �w J

n have positive energy. By the definition of Emin, and the fact that �U 1 = (±W, 0),
we see that in case (a) we have Emin ≥ E(W, 0), and in case (b) we have Emin ≥
E(W, 0) + E(v0, v1). To prove the statements about Jmax we will use (6.22) and the
positivity of the energies of the profiles. Indeed,

E(�u) =
Jmax∑
j=1

E( �U j ) +
J∑

j=Jmax+1

E( �U j ) + E( �w J
n ) + on(1)

= E(W, 0) +
Jmax∑
j=2

E( �U j ) +
J∑

j=Jmax+1

E( �U j ) + E( �w J
n ) + on(1).

Using (6.22) we obtain

E(v0, v1) =
Jmax∑
j=2

E( �U j ) +
J∑

j=Jmax+1

E( �U j ) + E( �w J
n ) + on(1).

In case (a) we assume that �v(t) scatters and hence corresponds to one of the nonlinear
profiles �U j with j ≥ Jmax + 1. Canceling E(v0, v1) from both sides we have

0 =
Jmax∑
j=2

E( �U j ) +
J∑

j=Jmax+1,U j �=v

E( �U j ) + E( �w J
n ) + on(1)

≥
Jmax∑
j=2

E( �U j ) + on(1),

since all the profiles above have positive energy. Hence Jmax = 1. In case (b) one
similarly shows that Jmax = 2. ��

6.3. Step 3: Compactness of the singular part, �a(t). We prove the following result.

Lemma 6.4. For any sequence τn → 1, there exists a subsequence, still denoted by τn,
and scales λn > 0 so that (λna(τn, λnr), λ2nat (τn, λnr)) converges inH.
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Proof. Take an arbitrary sequence τn → 1 which we assume, after passing to a sub-
sequence and reordering, that {τn} ∈ S0 so that the profile decomposition for �u(τn) is
pre-ordered. We summarize what we have established in the previous subsections. We
know that (v0, v1) is a profile and that either Jmax = 1 or Jmax = 2 depending onwhether
or not, �v(t) scatters in forward time, i.e., whether we are in case (a) or (b). We also
know that the first profile �U 1

L does not scatter in forward time and that �U 1
L ≺ (v0, v1).

Further, all of the profiles other than (v0, v1) have positive nonlinear energy and so does
�w J
n .

Claim 6.5. All of the profiles that scatter in forward time must be identically 0 and the
error

�w J
n → 0 inH. (6.23)

Proof. We again rely on the positivity of the nonlinear energies. Since we know that
Jmax = 1 or Jmax = 2 we know that {τn} ∈ S1. Thus in case (a) we have

E(�u) = E(W, 0) + E(v0, v1) = E(U 1) +
J∑

j=2

E( �U j ) + E( �w J
n ) + on(1)

≥ Emin + E(v0, v1) +
J∑

j=2

E( �U j ) + E( �w J
n ) + on(1)

≥ E(W, 0) + E(v0, v1) + on(1).

This proves the claim in case (a). The same proof applies in case (b). ��
Claim 6.6. The profile �U 1 cannot scatter in backwards time.

Proof. Suppose that �U 1 scatters as t → −∞. Then, the nonlinear profile decomposition
Proposition 2.9 gives (for all t < 0 so that �v(1 + t) is defined, .i.e., for all t ∈ (−T, 0
for some fixed T > 0)) for n large

�u(τn + t) = �v(τn + t) + �U 1
n (t) + �w J

L ,n(t) + �ηJ
n (t),

where both ‖ �w J
n,L(t)‖H and ‖�ηJ

n ‖H are small for t > −T , t ≤ 0. Note that since �U 1

does not scatter in forward time, for t ∈ (−T, 0]we have ‖ �U 1(t)‖H ≥ δ0 > 0. Choosing
t0 close to 1 we then evolve the profile decomposition for time sn = t0 − τn which gives

�u(t0) − �v(t0) = �U 1
n (t0 − τn) + on(1),

which is a nontrivial profile decomposition for the fixed function �u(t0) − �v(t0). This
means that necessarily we must have t1,n = 0 and λ1,n = 1 for all n. But we have
already observed in Sect. 6.1 that we must have λ1,n → 0 as n → ∞. Hence we have
arrived at a contradiction and thus �U 1 does not scatter in backwards time. ��
Since �U 1 does not scatter backwards or forwards in time, we then have that

∣∣∣−t1,n
λ1,n

∣∣∣ ≤
C0 < ∞. Hence we can assume without loss of generality that t1,n = 0 for all n. We
now have that

�an(τn, r) =
(

1

λn
U 1

(
0,

r

λn

)
,
1

λ2n
U 1
t

(
0,

r

λn

))
+ oH(1), (6.24)

which proves the desired compactness result for �a(t). ��
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6.4. Step 4: Conclusion of the Proof of Theorem 1.2. Let {tn}n be any sequence with
tn → +∞. From Step 3, we have a function λ such that K (�a, λ) has compact closure in
H = Ḣ1 × L2. Hence, after passing to a subsequence still denoted {tn}n , the sequence

(
λ(tn)a (tn, λ(tn)·) , λ(tn)

2∂t a (tn, λ(tn)·)
)

converges inH to some (U0,U1) ∈ H; denote �U (t) the nonlinear solution to (1.3) with
initial data �U (0) = (U0,U1). By [11, Lemma 8.5], we have the following claim.

Claim 6.7. [11, Lemma 8.5]. �U has the compactness property on (T−(U ), T +(U )).

This Claim and Theorem 2.11 show that �U = (±W, 0) up to scaling. As this true for
any sequence {tn}, a diagonal argument gives that

d(�a(t),O+ ∪ O−) → 0 as t → +∞, (6.25)

where d is theH-distance to a set and

O± =
{(

±1

λ
W

( ·
λ

)
, 0

)∣∣∣∣ λ > 0

}
.

Observe that

d0 := d(O+,O−) > 0.

Indeed,

d(O+,O−) = inf
λ1>0,λ2>0

∥∥∥∥∥
1

λ21
∇W

( ·
λ1

)
+

1

λ22
∇W

( ·
λ2

)∥∥∥∥∥
L2

= inf
λ>0

d̃(λ), where d̃(λ) :=
∥∥∥∥ 1

λ2
∇W

( ·
λ

)
+ ∇W

∥∥∥∥
L2

.

Now d̃(λ) → 2‖∇W‖L2 as λ → 0 or as λ → +∞, hence its minimum either greater
or equal to 2‖∇W‖L2 and we are done; or attained at some λ0 > 0, and as ∇W �= 0,
d(λ0) > 0. Now define the sets of time

U± = {t ≥ 0 | d(�a(t),O±) < d0/2)}.
By definition of d0, U+ and U− are disjoint. We also just proved that for some T0 large,
[T0,+∞) ⊂ U+ ∪ U−, and by continuity of t �→ �a(t), both U+ and U− are open.

Now recall that t̄n ∈ U+ and t̄n → +∞. Therefore, U+ ∩ [T0,+∞) is not empty,
and by connectedness, [T0,+∞) ⊂ U+. In view of (6.25), we infer that there exists a
function λ(t) > 0 such that

(
λ(t)a (t, λ(t)·) , λ2(t)∂t a (t, λ(t)·)

)
→ (W, 0) inH as t → +∞.

As d0 > 0, we see that the assumptions of Lemma A.1 are fulfilled (with G =
((0,+∞),×) acting onH by λ.(v0, v1) = (λv0(λ·), λ2v1(λ·)) ), so that λ can be chosen
continuous. This concludes the Proof of Theorem 1.2.
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Remark 4. Note that in proving the last step (proving that the sign of (±W, 0) does not
depend on the sequence {tn}), the use of Lemma A.1 could be avoided by introducing
the explicit scaling parameter

λ(t) :=
{
μ > 0

∣∣∣∣
∫
r≤μ

a2r (t, r) + a2t (t, r) r
3 dr ≥

∫
r≤1

W 2
r (r) r3 dr

}
, (6.26)

and a continuity argument as in [11, pages 590–591, Step 3]. But we present it in this
way as Lemma A.1 may be useful in other settings.

7. Global Type-II Solutions Below 2‖∇W‖L2

This section is devoted to proving Theorem 1.4. We assume that �u(t) does not scatter in
forward in time, so that our goal is to prove the second case of the dichotomy, namely
relaxation to W . As in the statement of Theorem 1.4, we assume that there exists an
A > 0 so that

lim sup
t→∞

‖�u(t)‖2
Ḣ1×L2(0≤r≤t−A)

< 2‖∇W‖2L2 . (7.1)

Recall that we have already obtained a convergence for at least one sequence of times:
more precisely, there exists a sequence of times (t̄n) with t̄n → +∞, an integer J̄ , scales
(λ1,n)n, . . . , (λn, J̄ )n where

0 � λ1,n � · · · � λ J̄ ,n � t̄n,

and J̄ signs ι1, . . . ι J̄ ∈ {−1,+1}, such that

�u(t̄n) =
J̄∑

j=1

(
ι j

λ j,n
W

(
x

λ j,n

)
, 0

)
+ �vL(t̄n) + oH(1) as n → +∞. (7.2)

We again divide the Proof of Theorem 1.4 into several steps.

7.1. Step 1: Preliminaries on profiles. Denote by �v(t) the nonlinear profile associated
to �vL at +∞, that is, �v is the unique solution to (1.3) such that

‖�v(t) − �vL(t)‖H → 0 as t → +∞.

Again, we let

�a(t) = �u(t) − �vL(t). (7.3)

We proved in the previous section that for all λ > 0
∫ +∞

λt

(
|∇t,xa(t, x)|2 + |a(t, x)|2

|x |2
)
dx → 0 as t → +∞.

Due to the bound (7.1) and recalling the first statement of Claim 4.6, (and making T
larger if necessary) we have

∀t ≥ T, ‖∇t,xa(t)‖2L2 ≤ 2‖∇W‖2L2 − δ/2. (7.4)
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The convergence (7.2) becomes

�a(t̄n) =
J̄∑

j=1

(
ι j

λ j,n
W

(
x

λ j,n

)
, 0

)
+ oH(1) as n → +∞. (7.5)

By orthogonality arguments, (7.4) implies J̄ ≤ 1.
First recall that E(�a(t)) has a limit as t → +∞.

Claim 7.1. As t → +∞, E(�a(t)) converges to

E(�u) − E(�v) = E(�u) − 1

2
‖�vL(0)‖2H = J̄ E(W ).

Proof. Observe that ‖∇t,xvL(t)‖L2 is constant because �vL is a linear solution. Also,

‖vL(t)‖L4 → 0. Therefore, E(�vL(t)) → 1

2
‖∇t,xvL(0)‖2L2 . Hence E(�v) = 1

2
‖∇t,xvL

(0)‖2L2 and (recalling Claim 4.6)

E(�a(t)) = E(�u(t) − �vL(t)) =
∫

|x |≤t/2

(
1

2
|∇t,xu(t, x)|2 − 1

4
|u(t, x)|4

)
dx + o(1)

+
∫
x≥t/2

(
1

2
|∇t,xu(t, x) − ∇t,x �vL(t, x)|2 − 1

4
|u(t, x) − vL(t, x)|4

)
dx

=
∫

|x |≤t/2

(
1

2
|∇t,xu(t, x)|2 − 1

4
|u(t, x)|4

)
dx + o(1)

=
∫ (

1

2
|∇t,xu(t, x)|2 − 1

4
|u(t, x)|4

)
dx

−
∫

|x |≥t/2

(
1

2
|∇t,xvL(t, x)|2 − 1

4
|vL(t, x)|4

)
dx + o(1)

= E(�u) − 1

2
‖∇t,xvL(0)‖2L2 + o(1).

Hence E(�a(t)) → E(�u) − 1
2‖∇t,xvL(0)‖2

L2 .
Now consider the sequence E(�a(t̄n)): in view of the decomposition (7.5), and or-

thogonality, E(�u(t̄n)) = J̄ E(W )+ E(�vL(t̄n))+o(1) as n → +∞. Taking the limit, there
holds E(�a(t̄n)) → J̄ E(W ). As we have seen that E(�a(t)) has a limit, it is J̄ E(W ). ��
Claim 7.2. J̄ = 1 and up to considering −u instead of u, we may also assume ι1 = +1.

Proof. Claim 7.1 and the condition (7.4) show that J̄ is 0 or 1. Assume J̄ = 0. In this
case, E(�a(t)) → 0. Now the second part of Lemma 2.1 together with (7.4) implies that
‖∇t,xa(t)‖L2 → 0. Therefore, ‖∇t,xu(t) − ∇t,xvL(t)‖L2 → 0 and �u scatters forward
in time. But this contradicts our initial assumption and hence J̄ = 1. ��

We now point out some properties of the profile decomposition for any sequence
�a(tn) for large times.

Let {tn}n be any sequence such that tn → +∞. Up to extraction, the sequence �a(tn)
admits a profile decomposition { �U j

L , λ j,n, t j,n} j≥1 ordered for � (recall Lemma 2.10).
Let us denote by �U j the associated nonlinear profiles.



1002 R. Côte, C. E. Kenig, A. Lawrie, W. Schlag

Using [2, p. 154–155], and (7.1) there exists C independent of j and n such that

λ j,n ≤ Ctn, |t j,n| ≤ Ctn .

Claim 7.3. Define �U 0
L = �vL(0), λ0,n = 1 and t0,n = tn (with nonlinear profile U 0(t) =

�v(t)). Then { �U j
L , λ j,n, t j,n} j≥0 is a profile decomposition for �u(tn).

Proof. The point is to prove the pseudo-orthogonality property: but this is a conse-
quence of the construction of a profile decomposition and S(−t)u(t) ⇀ �vL(0) weakly
inH. ��
Next, observe that since �u does not scatter in forward time, by Proposition 2.9 at least
one of the nonlinear profiles �U j does not scatter in forward time and due to the ordering,
�, this means that �U 1 does not scatter in forward time. Also, as �U 0 = �v scatters as
t → ∞ and �U 1 does not, we can conclude that 0 �� 1.

Fix J ∈ N. Due to the Pythagorean expansion of theH norm (2.9) and the bound on
�a (7.4), we have

∀ j ≥ 1, ‖∇t,xU
j (−t j,n/λ j,n)‖2L2 ≤ 2‖∇W‖2L2 − δ/2 + on(1).

and the same for w J
n (0). In particular, it follows from Lemma 2.1 that

∀ j ≥ 1, ∃ n0( j), n ≥ n0( j) ⇒ E

(
U j

(
− t j,n

λ j,n

)
,

1

λ j,n
∂tU

j
(

− t j,n
λ j,n

))
≥ 0.

and similarly,

∀ j ≥ 1, n ≥ n0( j) ⇒ E(w
j
n(0), w

j
n(0)) ≥ 0.

As

E(U j ) = lim
n→+∞ E

(
U j
L

(
− t j,n

λ j,n

)
,

1

λ j,n
∂tU

j
L

(
− t j,n

λ j,n

))
,

using again Lemma 2.1, one can prove:

Claim 7.4. For all j ≥ 1:

(1) Either E( �U j ) > 0, or �U j = �U j
L = 0.

(2) If E( �w j
n(0)) → 0 as n → +∞, then ‖∇t,xw

J
n (0)‖L2 → 0.

This situation is the general one, more precisely, as S(−tn)�u(tn) ⇀ �vL(0) as n →
+∞, and from the construction of profile decomposition (see [2]), we have

Claim 7.5. Let {tn}n be any sequence tending to +∞. The sequence �u(tn) admits a profile
decomposition { �U j

L , λ
j
n, t

j
n } j≥1 ordered for �. Then �vL appears in the decomposition:

i.e., for some JL ≥ 2,

�U jL
L = �vL, λJL

n = 1, t JLn = tn .

Also, { �U j
L , λ

j
n, t

j
n } j �=JL is a �-ordered profile decomposition of �a(tn).
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7.2. Step 2: Minimization process and consequences. As in the finite time blow-up case
we follow the scheme developed in [15]. We recall that we have assumed that �u does
not scatter.

We define S0 to be set of sequences of times {tn}n such that tn → +∞ and �u(tn)
admits a �-ordered profile decomposition { �U j

L , λ j,n, t j,n}.
Lemma 7.6. Let {tn}n ∈ S0, with �-ordered profile decomposition { �U j

L , (λ j,n, t j,n} and
nonlinear profiles �U j . Then �U 1 does not scatter forward in time and for all j ≥ 2, �U j

does scatter forward in time. Furthermore, E( �U 1) ≥ E(W, 0).

Proof. We again use many ideas from [15, Section 4], adapted to the current situation.
For T = {τn}n ∈ S0, let J0(T ) be the number of nonlinear profiles that do not scatter
forward in time. By definition, if j ≤ J0, then �U j does not scatter forward in time, and
for j ≥ J0 + 1, U j scatters forward in time.

As �u does not scatter in forward time, J0(T ) ≥ 1. On the other hand, recall that
due to the small data theory, if a linear solution �UL has small H norm (say, less that
‖ �UL‖H ≤ δ0), any nonlinear profile �U j associated to it scatters in both time directions.
Due to the Pythagorean expansion (2.9) and the bound (4.1), J0(T ) ≤ CM/δ20 is (finite
and) uniformly bounded on S0.

Similarly, let

J1(T ) = min{ j ≥ 1 | j ≺ j + 1}.
By the definition of J0(T ), we have J0(T ) ≺ J0(T ) + 1, and therefore J1(T ) ≤ J0(T ).
In particular, J1 is also uniformly bounded. Then define

Jmax = max{J0(T ) | T ∈ S0}, (7.6)

S1 = {T ∈ S0 | J0(T ) = Jmax}. (7.7)

For T ∈ S1, we define the non scattering energy E(T ) as the sum of the energies of
the nonlinear profiles that do not scatter as t → ∞: more precisely, denoting U j the
nonlinear profiles appearing in the profile decomposition derived from T , we let

E(T ) :=
J0(T )∑
j=1

E( �U j ) =
Jmax∑
j=1

E( �U j ).

We now recall the following result from [15].

Claim 7.7. ([15, Lemma 4.5 and Corollary 4.3]) The infimum of E(T ) is attained (and
hence is a minimum): i.e, there exists T̄ ∈ S1 such that

E(T̄ ) = inf{E(T ) | T ∈ S1} =: Emin.

With the above claim, we can then define

S2 = {T ∈ S1 | E(T ) = Emin} �= ∅, (7.8)

Jmin = min{J1(T ) | T ∈ S2}, (7.9)

S3 = {T ∈ S2 | J1(T ) = Jmin} �= ∅. (7.10)

We can again use Lemma 6.2 to conclude that Jmin = 1 and that there exists a
sequence T0 ∈ S3 so that �U 1 = (±W, 0). We need to also show that Jmax = 1.
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Recall that �vL must appear in the profile decomposition, at some index JL with
JL > Jmax because �vL has a scattering nonlinear profile. Now write the Pythagorean
expansion of the energy (2.10) for J = JL , denoting by { �U j } j the nonlinear profiles
associated to the profile decomposition of �u(τn):

E(�u) = E(W, 0) +
Jmax∑
j=2

E( �U j ) +
JL−1∑

j=Jmax+1

E( �U j ) + E(�v) + E( �w JL
n (0)) + on(1).

Recall that E(�u) = E(W, 0)+ E(�v). Along with Claim 7.4 this allows us to deduce that

∀ j = 2, . . . , JL − 1, �U j = 0, and �w JL
n (0) = oH(1),

so that in particular Jmax = 1, and Emin = E(T0) = E(W, 0). This proves Lemma 7.6.
Also notice that we obtained for some ι ∈ {±1},

�u(τn) =
(

ι

λ1,n
W

( ·
λ1,n

)
, 0

)
+ �vL(τn) + oH(1).

��

7.3. Step 3: Compactness of the singular part up to scaling.

Lemma 7.8. �a(t) has the compactness property on [0,+∞), meaning that there exists
a function λ : [0,∞) → [0,∞) so that the set

K (�a, λ) = {(λ(t)a(t, λ(t)·), λ2(t)at (t, λ(t)·)) | t ∈ [0,∞)} (7.11)

is pre-compact inH.

Proof. t �→ �a(t) is continuous so one only has to check compactness up to modulation
in a neighbourhood of +∞. Let {tn}n be any sequence tending to +∞. After passing to a
subsequence, still denoted by tn , we can ensure that tn ≥ 1 for all n and {tn}n ∈ S0, i.e.
�u(tn) admits a �-ordered profile decomposition { �UL, λ j,n, t j,n} with nonlinear profiles
{ �U j } j .

By Lemma 7.6, we know that �U 1 does not scatter in forward time, and that E( �U 1) ≥
E(W, 0). Also by Claim 7.5, �vL appears in the profile decomposition, say as profile
�U JL
L = �vL (we recall that its nonlinear profile is �v).
Let us first prove that all nonlinear profiles other than �U 1 and �v vanish, that is: �U j = 0

for all j ≥ 2, j �= JL . Indeed, write the Pythagorean expansion of the energy (2.10) for
J ≥ JL :

E(�u(tn)) = E(U 1) +
JL−1∑
j=2

E( �U j ) + E(�v) +
J+1∑
j=J

E( �U j ) + E( �w JL
n (0)) + on(1).

Recall again that all the profiles have positive energy or are 0 according to Claim 7.4;
in view of Claim 7.1, (and letting n → +∞) we infer that

∀ j ≥ 2, j �= JL , �U j = 0, and �w JL
n (0) = oH(1).
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From there, we see E( �U 1) = E({tn}) and that the profile decomposition for �u(tn) can
be written as

�u(tn, r) =
(

1

λ1,n
U 1
L

(
− t1,n

λ1,n
,

r

λ1,n

)
,

1

λ21,n
∂tU

1
L

(
− t1,n

λ1,n
,

r

λ1,n

))

+ �vL(tn, r) + oH(1). (7.12)

Let us now show that

Claim 7.9. t1,n = 0 for all n.

Proof. In view of Remark 2, it suffices to show that−t1,n/λ1,n does not converge to±∞.
If−t1,n/λ1,n → +∞, then �U 1 would scatter forward by definition of a nonlinear profile:
this is not the case. Let us argue by contradiction and assume that −t1,n/λ1,n → −∞.
Then again by definition of a nonlinear profile, �U 1 scatters backwards in time. Now let
t0 > 1 + T−(�v) be large enough (recall �v is the nonlinear profile of (�vL,+∞)), and
evolve the profile decomposition (7.12) with Proposition 2.9 backwards in times up to
time τn = t0 − 1 − tn (which is possible by the choice of t0, in view of the lifespans of
�U 1 and �v). As t0 ∈ (tn + τn, tn] = (t0 − 1, tn], we have

�u(t0, r) =
(

1

λ1,n
U 1
L

(
t0 − tn − t1,n

λ1,n
,

r

λ1,n

)
,

1

λ21,n
∂tU

1
L

(
t0 − tn − t1,n

λ1,n
,

r

λ1,n

))

+ �v(t0, r) + oḢ1×L2(1).

This is a non trivial profile decomposition for the fixed function �u(t0)− �v(t0), hence the
only possibility is λ1,n = 1 and t0 − tn − t1,n = c0 for all n. But then t1,n → −∞ like

−tn and − t1,n
λ1,n

→ +∞, which is a contradiction. ��

We have obtained that

�u(tn) =
(

1

λ1,n
U 1
L

(
0,

r

λ1,n

)
,

1

λ21,n
∂tU

1
L

(
0,

r

λ1,n

))
+ �vL(tn) + oH(1), (7.13)

and so,

(λ1,na(tn, λ1,n ·), λ21,n∂t a(tn, λ1,n ·)) → �U 1(0) as n → +∞.

As this is true for a subsequence of all sequences tn → ∞, we see that there exists a
function t �→ λ(t) such that K (�a, λ) has compact closure in H. ��

7.4. Step 4: Convergence to (W, 0) and conclusion of the Proof of Theorem 1.4. Here
the argument is exactly the same as in Step 4 of the Proof of Theorem 1.2, and we only
sketch it.

Given any sequence {tn} tending to +∞, by Step 3 [11, Lemma 8.5] and Theorem
2.11, we have the convergence, up to a subsequence

(
λ(tn)a (tn, λ(tn)·) , λ(tn)

2∂t a (tn, λ(tn)·)
)

→ (±W, 0).
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Then a continuity argument shows that the sign does not depend on the sequence {tn},
and so there exists a scaling parameter λ defined for all times, such that

(
λ(t)a (tn, λ(t)·) , λ(t)2∂t a (tn, λ(t)·)

)
→ (W, 0) as t → +∞.

Finally Lemma A.1 shows that λ can be chosen continuous. (As in the blow up case, we
could have used the argument in [11, pages 590–591, Step 3]).

This concludes the Proof of Theorem 1.4.

Appendix A. Continuity of scaling functions

Lemma A.1. Let (B, ‖ · ‖) be a Banach space and G be a group of isometries of B
(it is a metric space endowed by the operator norm that we still denote ‖ · ‖: ‖g‖ =
sup{‖g.v‖ | ‖v‖ ≤ 1}). We assume that G is locally path connected.

Let v ∈ C([0,+∞), B), and assume that there exists v0 ∈ B and a function g :
[0,+∞) → G such that g(t).v(t) → v0 in B as t → +∞. Also assume that G acts
properly on v0, in the sense that if gn .v0 → v0 in B, then gn → Id in G.

Then the action can be chosen to be continuous, i.e there exist γ ∈ C([0,+∞),G)

such that γ (t).v(t) → v0 in B as t → +∞.

Notice that if G is a Lie group, it is automatically locally path connected, and so only
the proper action hypothesis is to be checked.

Proof. If v0 = 0, then ‖v(t)‖ = ‖g(t).v(t)‖ → 0 and so γ (t) = Id works. Let us
assume in the following that v0 �= 0.

As G acts by isometries, we can assume without loss of generality that for all t ≥ 0,
‖v(t)‖ ≥ 1. For t ≥ 1, define an adequate modulus of continuity

d(t) = sup{δ ∈ [0, 1] | ∀τ, τ ′ ∈ [t − δ, t + δ], ‖v(τ) − v(τ ′)‖ ≤ 1/t}.
Define now by induction the sequence of times t0 = 1 and tn+1 = tn + d(tn) for n ≥ 0.
We claim that tn → +∞.

Indeed, if not, tn → t∞ ∈ [0,+∞) and tn ≤ t∞ for all n. Now observe that if
τ ∈ [t−d(t), t], then for δ = d(t)− t +τ ≥ 0, [τ −δ, τ +δ] ⊂ [t−d(t), t +d(t)] so that
d(τ ) ≥ d(t)− t +τ . Then for n large enough, tn ≥ t∞ −d(∞)/3 and d(tn) ≥ 2d(t∞)/3
and tn+1 ≥ t∞ + d(t∞)/3 > t∞, a contradiction. Hence tn → +∞.

Then

‖g(tn+1)g(tn)−1.v0 − v0‖ = ‖g(tn+1)−1.v0 − g(tn)
−1.v0‖

≤ ‖g(tn+1)−1.v0 − v(tn+1)‖ + ‖v(tn+1) − v(tn)‖ + ‖v(tn) − g(tn)
−1.v0‖

≤ ‖g(tn+1).v(tn+1) − v0‖ + d(tn) + ‖g(tn).v(tn) − v0‖ → 0.

Therefore, by proper action, g(tn+1)g(tn)−1 → Id as n → +∞.
For m ∈ N, let Vm be a path connected open set of G such that Id ∈ Vm ⊂

BG(Id, 1/m) (such a Vm exists because G is path connected). Let

m(n) =
{
max{m | g(tn+1)g(tn)−1 ∈ Vm} if g(tn+1) �= g(tn),
n if g(tn+1) = g(tn).
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This is constructed so that m(n) → +∞ as n → +∞. As Vm(n) is path connected, there
exists a path γn such that γn(0) = Id, γn(1) = g(tn+1)g(tn)−1 and γn([0, 1]) ⊂ Vm(n).

Finally define γ : [1,+∞) → G in the following way: let t ≥ 1, then there exists a
unique n ∈ N such that t ∈ [tn−1, tn) and we set

γ (t) = γn

(
t − tn

tn+1 − tn

)
g(tn).

Observe that γ is continuous; for all n ∈ N, γ (tn) = g(tn); and for t ∈ [tn, tn+1),

‖γ (t)g(tn)
−1 − Id‖ =

∥∥∥∥γn

(
t − tn

tn+1 − tn

)
− Id

∥∥∥∥ ≤ 1

m(n)
.

Therefore,

‖γ (t)v(t) − v(0)‖ = ‖v(t) − γ (t)−1.v0‖
≤ ‖v(t) − v(tn)‖ + ‖v(tn) − g(tn)

−1.v0‖ + ‖g(tn)−1.v0 − γ (t)−1.v0‖
≤ 1

tn
+ on(1) + ‖γ (t)g(tn)

−1.v0 − v0‖

≤ 1

tn
+ on(1) +

1

m(n)
‖v0‖.

As tn → +∞ and m(n) → +∞ as n → +∞, this means that γ (t)v(t) → v0
as t → +∞. ��
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