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Telecystoscopy can lower the barrier to access critical urologic diagnostics for patients around the world. A major challenge for robotic
control of flexible cystoscopes and intuitive teleoperation is the pose estimation of the scope tip. We propose a novel real-time camera
localization method using video recordings from a prior cystoscopy and 3D bladder reconstruction to estimate cystoscope pose within
the bladder during follow-up telecystoscopy. We map prior video frames into a low-dimensional space as a dictionary so that a new
image can be likewise mapped to efficiently retrieve its nearest neighbor among the dictionary images. The cystoscope pose is then
estimated by the correspondence among the new image, its nearest dictionary image, and the prior model from 3D reconstruction. We
demonstrate performance of our methods using bladder phantoms with varying fidelity and a servo-controlled cystoscope to simulate
the use case of bladder surveillance through telecystoscopy. The servo-controlled cystoscope with 3 degrees of freedom (angulation,
roll, and insertion axes) was developed for collecting cystoscope videos from bladder phantoms. Cystoscope videos were acquired in a
2.5D bladder phantom (bladder-shape cross-section plus height) with a panorama of a urothelium attached to the inner surface. Scans
of the 2.5D phantom were performed in separate arc trajectories each of which is generated by actuation on the angulation with a fixed
roll and insertion length. We further included variance in moving speed, imaging distance and existence of bladder tumors. Cystoscope
videos were also acquired in a water-filled 3D silicone bladder phantom with hand-painted vasculature. Scans of the 3D phantom were
performed in separate circle trajectories each of which is generated by actuation on the roll axis under a fixed angulation and insertion
length. These videos were used to create 3D reconstructions, dictionary sets, and test data sets for evaluating the computational
efficiency and accuracy of our proposed method in comparison with a method based on global Scale-Invariant Feature Transform (SIFT)
features, named SIFT-only. Our method can retrieve the nearest dictionary image for 94–100% of test frames in under 55ms per image,
whereas the SIFT-only method can only find the image match for 56–100% of test frames in 6000–40000ms per image depending on
size of the dictionary set and richness of SIFT features in the images. Our method, with a speed of around 20Hz for the retrieval stage, is
a promising tool for real-time image-based scope localization in robotic cystoscopy when prior cystoscopy images are available.
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1. Introduction

Flexible cystoscopy is an important diagnostic procedure
performed by urologists in-office for procedures such as
evaluating blood in urine (hematuria), removing stents
after kidney stone surgery, and investigating urethral
strictures [1]. A diagnostic flexible cystoscopy usually
begins with these steps: (1) insertion of the cystoscope
into the urethra, (2) inflation and flushing of bladder
with clear, sterile fluid pressurized through the working
channel (throughout the procedure), (3) inspection of
urethral wall during scope insertion, (4) insertion
through bladder sphincters, (5) identification of common
landmark (usually left or right ureteral orifice), and (6)
inspection scan of the entire urothelium (bladder sur-
face) with detailed inspection of areas of interest. Flexi-
ble cystoscopy is the gold standard for diagnosis and
surveillance of bladder cancer, the 6th most common and
the most costly cancer in the US [2,3]. Bladder cancer has
a recurrence rate of over 50% [4], which requires that
patients return to their urologists for follow-up cystos-
copies up to 4 times per year for surveillance after initial
treatment [5], and a delay in diagnosis of muscle-invasive
tumors of 3–6 months can increase risk of death by
bladder cancer by 34% [6]. Nearly 90% of urologists in
the US practice in metropolitan areas [7], which can
burden some patients with travel costs and time offwork
[3]. Bladder cancer patients in rural and underserved
areas would benefit from a telerobotic cystoscopy system
placed in geographically distributed clinics or urgent
care facilities, set up and overseen by nurses, and oper-
ated by urologists located in their own office. Such a
telemedicine system would be useful for many diagnostic
urologic procedures, but would be especially useful for
bladder cancer patients who require frequent in-person
visits for cancer surveillance.

Although this vision of telecystoscopy is not yet in
practice, the technologies required have already been

demonstrated: the first transcontinental telesurgery was
successfully completed two decades ago [8], telerobotic
flexible endoscopes are being introduced commercially
for use with surgeons in the room [9,10], and researchers
are developing transurethral surgery robots [11–13].
Introducing teleoperation for bladder inspection is logi-
cal because the organ is pliable and not close to critical
life-sustaining functions and nurses are well experienced
with insertion of urinary catheters. Widespread adoption
of clinic-based telecystoscopy will likely begin with a
telerobotic platform that can interface with off the shelf,
and perhaps single-use cystoscopes [14] which reduces
infrastructure overhead. Thus, flexible cystoscopy may
serve well as a test case for long-distance teleoperation
by urologists in major cities and patients in clinics with
nursing and general practitioner support, reducing bar-
riers to timely specialty care.

A major challenge within the teleoperation interface is
the accurate pose estimation of the cystoscope within the
bladder, since the haptics and proprioception that urol-
ogists rely upon for localization will be difficult to sim-
ulate in an economical way. Teleoperation of clinical
catheter robots has been shown to be improved with the
integration of tip-tracking and shape estimation with
preoperative 3D anatomical models [15]. Thus, a key
feature for developing a telecystoscopy system is the
ability to estimate the position and orientation of the
cystoscope tip in order to display the pose within a pa-
tient-specific model of the bladder and highlight the
current Field Of View (FOV) for the urologist during
teleoperation (Fig. 1). However, the kinematics of flexible
endoscopes can vary widely even between endoscopes of
the same make [16] with different amounts of use, and
are also dependent on the curvature of the main scope
body [17], making accurate forward kinematics estima-
tion of clinical endoscopes difficult without a detailed
characterization for each endoscope. Magnetic field- and
electromagnetic wave-based localization strategies are

Fig. 1. Process of our localization system for telecystoscopy. (Left): Video from the 1st exam is used to create a 3D bladder model
and used image frames are mapped onto a Low-Dimensional Space (LDS) as a dictionary set. (Right): During the 2nd exam, each new
image frame is mapped into the same space and its closest neighbor is retrieved from the dictionary (Stage I). Then 3D-2D
correspondences among the new image, its retrieved dictionary image, and the 3D reconstructed model are used to recover camera
pose associated with the new image (Stage II). The video frame can then be highlighted on the 3D surface and the estimated
cystoscope pose can be used for downstream tasks.
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widely used in robotic flexible endoscopy [18–20], but
these methods require extra sensors, specialized hard-
ware, and sensitive calibration. The cost and operational
complexity associated with precise endoscope calibration
or additional sensing modalities may be disadvantageous
to the adoption of a widely distributed telediagnostic
platform. On the other hand, an image-based scope lo-
calization approach during teleoperation would not only
provide the urologist with a feedback of scope pose
within the bladder, it could also ensure thorough exam-
ination by calculating a running bladder surface coverage
metric, providing positions of areas of interest during the
current or subsequent procedure, and enabling stabili-
zation around an area of interest [21].

A standard, image-based approach for camera locali-
zation is Simultaneous Localization And Mapping
(SLAM). Visual SLAM is common in robotics and utilizes
images from monocular, stereo, or RGBþ Depth cameras
to simultaneously localize robot position and reconstruct
the surrounding scene in real time [22]. Visual SLAM has
been used primarily in rigid laparoscopic surgery
[23–25] and flexible endoscopies [26]. However, the
feature detection algorithm and sequential frame
matching design in the existing SLAM pipeline does not
perform well in many areas of the body due to a lack of
texture [24]. Blood vessels on the inner surface of the
bladder are a major source of feature points in cysto-
scope frames, but they are sparse. Structure from Motion
(SfM) achieves offline 3D reconstruction through feature
detection and matching, triangulation and global opti-
mization of reconstructed 3D points and estimated
camera poses, with emphasis on robustness and accu-
racy, but sacrifices speed. Thus, prior studies used SfM
for post-procedure bladder reconstruction [27–32]. SIFT
is most generally used in SfM because of the high accu-
racy for feature point extraction and matching [33], while
the computation of SIFT features in SfM is time con-
suming. Speeded Up Robust Features (SURF) was de-
veloped to further reduce the computation load involved
in SIFT and provides similar performance at faster speed
(3�) through the use of integral images [34]. SURF is
primarily applied when high-speed matching is required
[35–37], but does not work well under scale or rotation
changes, thus, inferior to SIFT for this application. On the
other hand, SIFT has limited success with medical images
because sparse features and homogeneous backgrounds
provide significantly less information for global feature
point matching. Low image quality, small FOV, and mo-
tion blur in cystoscopy can further increase the difficulty
of feature point matching. Accordingly, there will be a
high-quality requirement of the captured videos for SIFT-
based mapping and localization.

In this work, we propose a two-stage global camera
localization method for robot-assisted flexible cystoscopy
when a video from a previous procedure is available.
Recordings of previous procedures could be available for

half a million bladder cancer survivors under routine
surveillance cystoscopy, which represents a subset of the
724,000 prevalent cases of bladder cancer in the US [38].
For bladder cancer patients, the initial cystoscope video
from their first cystoscopy exam during screening will be
available. Our method utilizes the initial video for gen-
eration of a 3D bladder model and a dictionary set
composed of frames with calculated camera poses in an
off-line manner. Then during follow-up exams for surgery
or monitoring, our method can estimate camera pose for
a new image by first retrieving a prior image with known
camera pose and large overlap with the new image frame
for coarse localization, and then recovering camera pose
from the correspondence information for fine localiza-
tion in an online manner. Unlike the localization based on
continuous frames, this coarse-to-fine paradigm per-
forms a global matching, avoiding accumulated errors
and the effects of occasional failures. We investigate the
performance of our algorithm in localizing video frames
and camera pose captured by a servo-actuated cysto-
scope inserted within a 2.5D bladder phantom and 3D
bladder phantom. By changing the settings of scanning
and phantoms, we simulate the change of the bladder
condition between the first exam and the follow-up exams
which may challenge our image-based localization based
on a patient’s previous exam. For example, we attached
the artificial tumors onto the phantom to simulate the
tumor progression. We also vary imaging distance to
simulate different extents of bladder distention among
different exams. The results showed that our algorithm is
reasonably robust to these challenges as well as efficient.

2. Methods

In this section, we describe the real-time re-localization
of the cystoscope camera in the bladder with a prior 3D-
reconstructed model generated from the available cysto-
scope video acquired during screening examination, as in
the case of a bladder cancer patient returning for surveil-
lance. In the first visit (Fig. 1(Left)), the urologist collects a
cystoscope video which fully covers the complete inner
surface within the bladder. We first use an off-line 3D re-
construction pipeline [29] to generate a reconstructed 3D
model of the bladder inner surface from the video frames.
The video frames used for reconstruction are then stored
as dictionary set for subsequent re-localization. In the fol-
low-up visits (Fig. 1(Right)), we use the prior 3D-recon-
structed surface model as a prior model and estimate the
camera pose associated with newly-acquired frame with
respect to the coordinate of the prior model.

2.1. 3D reconstruction

The shape and texture of the urothelium surface within
bladder are reconstructed off-line using cystoscope video
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frames. The 3D reconstruction pipeline is composed of
the following modules:

(1) Camera calibration and image preprocessing: Intrin-
sic parameters of the cystoscope camera are first
calculated from frames imaging a calibration target
[39]. Then bladder frames are downsampled to avoid
redundancy and preprocessed with adjustment of
contrast and illumination as well as correction of
lens-induced distortion.

(2) Sparse reconstruction: An off-line SfM algorithm [40]
is used to extract and match SIFT features from
frames and then calculate the camera pose at each
frame as well as a 3D point cloud model depicting the
shape of bladder inner surface.

(3) Mesh generation: Poisson surface reconstruction [41]
uses recovered 3D point cloud model to generate a
watertight mesh model, which better represents the
shape of bladder inner surface.

(4) Texture mapping: The mesh model surface is then
mapped with texture patches cropped from pre-
processed frames to generate a textured mesh model
[42], which captures both shape and texture of the
bladder inner surface. Thus, the output of the 3D
reconstruction includes a textured mesh model that
can be used as prior 3D model for the bladder and a
dictionary set composed of frames used for 3D recon-
struction with their corresponding camera poses, all of
which are crucial components for the subsequent
camera localization step in follow-up cystoscopy visits.

2.2. Camera localization

Camera localization is a method for computing the
camera pose associated with a camera view under a
world coordinate system [43]. If we can estimate the
camera pose in the coordinate system of the patient’s
reconstructed 3D bladder model, we can display the real-
time location of camera within the model for visualiza-
tion and also estimate the camera pose under any chosen
world coordinate for robot actuation.

To estimate camera pose quickly and accurately, we
have developed a novel two-stage camera localization
pipeline (Fig. 1):

(I) Image retrieval from dictionary set with dimension
reduction: When given a newly acquired image, we
first use an efficient and accurate algorithm to re-
trieve the nearest dictionary image which has the
largest overlap with the new image. This step is a
coarse localization of the test frame. The camera
pose of the retrieved dictionary frame can be di-
rectly used as a fallback solution when speed has
higher priority than accuracy.

(II) Camera pose recovery from 3D-2D correspondence:
From Sec. 2.1, we already know the correspondence

between feature points on each dictionary image
and the reconstructed 3D points on the prior 3D
model. Thus, we can use the retrieved dictionary
image as a bridge to obtain the correspondence
between 3D points on the prior model and 2D SIFT
features on the new image, in short, 3D-2D corre-
spondence. Then camera pose of the new image can
be calculated from the 3D-2D correspondence and
represented under the 3D prior map’s coordinate
system.

2.2.1. Stage I: Image retrieval from dictionary set with
dimension reduction

Sampled from continuous video frames during cystos-
copy, the dictionary images used for 3D reconstruction
have large overlap with their neighbors. Overlap between
two images contains correspondence information useful
for recovering pose of the camera views associated with
the images. Thus with a dictionary set of overlapping
images, one can retrieve a dictionary image that has the
largest overlap with the newly acquired image for its
pose localization. To perform the retrieval efficiently, we
apply dimension reduction and map each dictionary
frame into an LDS, where Euclidean distance between
frames in the LDS indicates similarity or overlap (i.e.
frames that are close to each other in a cystoscopy video
are close to each other in the LDS, as shown in Fig. 1).
Similar to our previous work on retinal images [44], we
achieve dimension reduction by Principal Component
Analysis (PCA) through Singular Value Decomposition
(SVD), which is simple, versatile, and satisfies the real-
time requirement for use in teleoperation, unlike other
nonlinear methods such as kernel PCA [45] and Isomap
[46]. Note that although PCA is known to be sensitive to
outliers, occlusions, and corruption in the data, our dic-
tionary images are acquired under expert- or robot-
control and selected from the 3D reconstruction pipeline,
resulting in good image quality and minimized number of
outlier (bad-quality) images, thus ensuring reasonable
performance of PCA.

The procedure of dictionary image retrieval is de-
scribed as follows. We resize all dictionary images to
vectors and form the matrix X 2 Rn�d . The low-dimen-
sional distribution representation of the target image
distribution is obtained by implementing PCA on X as
shown in the following equation:

Z ¼ XW; ð1Þ
where Z ¼ ½z1; z2; z3; . . . ; zN �T 2 Rn�l , W 2 Rd�l and
l � d. The image space 1 is mapped to a low-dimen-
sional space 2 with the mapping W. Z is the low-di-
mensional representation. We select the top 20 principal
components (l ¼ 20) to represent each image in low di-
mension according to the dominant singular values. For
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more details of the implementation and acceleration,
refer to our previous work [44].

We define newly acquired frames from the follow-up
cystoscopy as T, which are represented by the test
frames in our experiments. To find the nearest dictionary
image to each new frame, we use the same mapping
matrix W to map T to its low-dimension representation
zT , as shown in the following equation:

zT ¼ ~
TW; ð2Þ

where
~
T is the vectorized representation of T. Finally, we

can quickly find a representation z with the minimal
Euclidean distance to zT in the LDS, which corresponds
to the dictionary image that has the largest overlap with
the new frame.

2.2.2. Stage II: Camera pose recovery from 3D-2D
correspondence

To recover the camera pose for the test frame T, we first
extract SIFT features PT ¼ fðu 1

T ; v
1
TÞ; ðu2

T ; v
2
TÞ; . . . ; ðui

T ;

v iTÞ; . . .g from T, where ðui
T ; v

i
TÞ denotes the pixel-level

position of detected SIFT feature point on T. Then we can
match PT with the pre-extracted SIFT features PD ¼
fðu 1

D; v
1
DÞ; ðu2

D; v
2
DÞ; . . . ; ðui

D; v
i
DÞ; . . .g on the retrieved

dictionary image. From Sec. 2.1, we already know the
correspondence between SIFT feature point ðui

D; v
i
DÞ and

reconstructed 3D point ðx i; yi; z iÞ in the coordinate sys-
tem of the reconstructed 3D model. Now using the re-
trieved dictionary image as a bridge, we can get the 3D-2D
correspondence between ðui

T ; v
i
TÞ and ðx i; y i; z iÞ. Each 3D-

2D correspondence pair satisfies the projection relation in
Eq. (3), where s is a scale coefficient, K is the camera
intrinsic parameter which is known from 3D reconstruc-
tion, and the rotation matrix R 2 R3�3 and translation
vector t 2 R3�1 form the camera extrinsic parameter.

s

u i
T

v iT
1

0
B@

1
CA ¼ K½R t�

x i

y i

z i

1

0
BBB@

1
CCCA: ð3Þ

We solve this equation iteratively using Random
Sample Consensus (RANSAC) to find the camera extrinsic
parameter ½R t�. In each iteration, three 3D-2D corre-
spondence pairs are sampled randomly to form an
equation group based on the projection relation in
Eq. (3). The solution of the equation group ½~R ~t � are then
used to calculate the reprojection error in the test image
and count number of inliers based on a chosen threshold.
The final ½R t� is selected from the ½~R ~t � with the maxi-
mum number of inliers among all the iterations. Lastly,
camera pose can be represented as follows:

RT �RTt

0T 1

� �
ð4Þ

which indicates the position and orientation of the camera
in the coordinate system of the reconstructed prior 3D
model.

3. Experiments

3.1. Robotic cystoscope actuation

We built hardware systems for actuator-controlled cys-
toscope movement during acquisition of videos, which
has been shown to improve extraction of features on
bladder phantom in our prior work [47].

3.1.1. Hardware setup for 2.5D bladder phantom

A linear actuator was attached to the thumb lever of a
Karl Storz (Tuttlingen, Germany) HD-View Flexible Digi-
tal Cystoscope (Fig. 2(Top)) for servo-controlled angu-
lation of scope tip with desired bending angle. The
cystoscope FOV is 100�. The Actuonix (Saanichton, BC,
Canada) L12-P Micro Linear Actuator servo is controlled
with an Actuonix Linear Actuator Control Board via
manual control via potentiometer and digital control
from an Arduino Mega. The Control Board provides an-
alog position sensor feedback from the servo. The distal
end of the cystoscope is affixed to a raised platform on an
independent phantom plate and the cystoscope shaft is
kept straight for all experiments.

A 2.5D bladder phantom was made by 3D-printing a
bladder-shaped cross-section and then taping a high-
resolution, wide-FOV panorama of bladder urothelium
[29] to the interior surface of the 2.5D model. The
bladder contour is designed based on a bladder’s sagittal
cross-section (Fig. 2(Bottom Left)). This 2.5D phantom
serves as a simplified test case for evaluating our local-
ization algorithm with limited surface curvature distor-
tions. The size of our phantom’s cross-section
(100� 85mm) is about 3 times larger than that of un-
inflated adult bladders (83� 40mm on average). The
enlarged size guarantees the ideal imaging distance be-
tween scope tip and the phantom wall even when the
bending angle is large, thus allowing for unconstrained
angulation.

To acquire the ground truth angulation for recorded
videos, we modeled kinematics for the tip angulation on
our specific cystoscope. Prior research on robot-con-
trolled endoscopes [16,17,48,49] describes flexible en-
doscope angulation in free space as a linear relation
between thumb tip and angulation with two additional
factors: hysteresis and dead-band. Hysteresis, or back-
lash, is when the output of a system does not change
immediately as the input changes direction. Dead-band is
an area around the center of thumb lever travel where
angulation does not change. However, this model does
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not account for curvature of the endoscope body or
external contact with the endoscope.

The distal end of the cystoscope was attached below the
angulation section and aligned over an angulation scale
(Fig. 2(Bottom Right)). Potentiometer input to the controller
was used to step the thumb lever through 3 cycles of an-
gulation. At each step, angulation and linear sensor values
were recorded. The linear actuator itself was similarly tested
and was found to not exhibit hysteresis. Thumb lever angles
were calculated from servo position sensor data.

3.1.2. Hardware setup for 3D bladder phantom

To further study the performance of our camera locali-
zation method, we expand the previous 2.5D phantom
experiment setup to 3D phantom experiment setup
which better simulates the scenario in clinical cystosco-
py. A 3-DoF cystoscopy robot (Fig. 3(Left)) was devel-
oped to actuate the same Karl Storz cystoscope and
consists of three modules.

(A) Flexible cystoscope angulation: The cystoscope’s
distal section can be deflected from �210� to þ140�.
The flexible cystoscope shaft is 370mm long, and the
steerable distal section is 60mm long and 5.5mm in
diameter. A linear servo is used to actuate angulation at
the cystoscope’s thumb lever.

(B) Linear insertion: A ball screw provides the trans-
lation action and has a working range of 30 cm. This
module consist of a NEMA-17 stepping motor, the ball
screw, and a linear bearing, and a slider carriage, which
carries the cradle.

(C) Cradle with roll module: The cradle for the 3-DoF
robot holds the cystoscope and provides rotation along
the cystoscope’s roll axis. The cradle consists of a

3D-printed body, a small drive pulley linked to a NEMA-
17 stepping motor, a driven pulley fixed in a ball bearing,
a timing belt, and a mounting point for the angulation
servo. A removable clamping ring is mounted on the
pulley to fix the cystoscope to the robotic mechanism.

A 3D bladder phantom made by the UW Medicine
Center for Research and Education in Simulation Tech-
nologies (CREST) is used in the experiments, as shown in
Fig. 3 (center). The phantom was created by capturing
patient data through MRI and CT scanning. The bladder
is digitally recognized and isolated by segmentation
software and a digital file is created and 3D-printed as a
mold. The resulting part represents the bladder volume
as a positive form. This form is used as a mandrel to
apply layers of platinum-cured and low-durometer sili-
cone material (PlatSil silicone rubber, Polytek Develop-
ment Corp., Easton, PA) to create the bladder wall.
Attention is given to how the layers will be represented
by the lighting and imaging from the cystoscope. Many
semi-transparent layers are applied to capture depth of
the tissue, highlight topology, and represent blood ves-
sels within the phantom. The silicone form is cut and
demolded from the mandrel and sealed with adhesive to
make the cut line watertight. For simplicity of robot fix-
ation and water filling of the phantom, we kept the 3D
phantom inverted during data collection to avoid spilling
the water. The robot was fixed on a flat table top above
the phantom with some elevation. Although such posi-
tioning does not influence the performance of our
method, in the future we do plan to improve our robot
hardware and the sealing accessory of the phantom so
that we can distend the bladder to a larger size
and manipulate the scope to view the phantom in more
optimal perspectives.

Fig. 2. (Top) 2.5D bladder phantom experiment setup: A — linear actuator for cystoscope angulation, B — 2.5D bladder phantom.
The 2.5D bladder model printed model approximates surface curves that may be seen in cystoscopies. Note that the scope tip is bent
with an angulation of 90� in the picture. (Bottom Left): Simplified sketch of cystocope in male anatomy: A — Urethra, B – External
Urethral Sphincter, C — Verumontanum at Prostate, D — Anterior wall. The flexible cystoscope body is shown in red and controlled
angulation area in blue. (Bottom Right): Cystoscope angulation measurement.
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3.2. Experiments in 2.5D phantom

3.2.1. Dataset

Cystoscope videos were captured with controlled saw-
tooth-profile trajectories with constant velocity in both
directions for 3 cycles, starting and finishing in a
downward orientation. Serial data recording included a
timestamp in milliseconds, control output, and servo
sensor value. The amplitude of the trajectories was set so
that the scope tip throughout the trial was not too
close to blur bladder features. Trajectory speeds were
either slow, medium, or fast (7�/s, 25�/s, 60�/s,
respectively). Videos from the cystoscope were saved as
MP4s with a frame rate near 27Hz and a resolution of
720� 720.

We focus on testing the robustness of our method
when the video captured in the follow-up cystoscopies
differs from the dictionary set in several ways: addition
of tumors, distance changes between the cystoscope and
bladder surface, and angulation speed changes.

Added Tumors I and II: Considering there may be new
tumors emerging on the bladder surface between two
clinical exams that may interfere with matching to a prior
image, we add tumors to the test videos in two ways: (I)
attaching a bladder tumor in Ta stage [50] with tape
when collecting the test videos (Fig. 7(1st row)) and (II)
digitally adding five different types of tumors in the test
video frames (Fig. 7(2nd row)). Ta grade papillary
tumors were used to test our image matching perfor-
mance when the original image is obscured with a body
of different structure, as would be the case with papillary
tumors that grow into the bladder cavity. The tumors
were retrieved from online image searches of surveil-
lance cystoscopy and were scaled to our images based on
the relative sizes of surrounding vasculature in source

images. Digitally placed tumors were added onto test
image frames in a random position and rotation.

Imaging Distance Change: During clinical cystoscopy,
the bladder is enlarged with water and the enlarged
volume may vary between exams by as much as 30%.
The inspection distance between the cystoscope tip and
the bladder surface will also vary between any two
procedures. These factors will cause the imaged area of
the same camera location to change between exams,
which increases the difficulty of image retrieval from
dictionary set (Stage I). We simulate these changes by
localizing test frames with an FOV 30% smaller than the
dictionary set by translating the cystoscope towards the
bladder wall.

Movement Speed Change: During bladder screening
and tumor inspection, there may be overly fast move-
ment of the cystoscope leading to motion blur in the
frames, which makes traditional tracking difficult. To test
our performance during fast movement, we conducted
an experiment with test videos with medium and fast
movement speed, where the dictionary set is formed
from slow speed video.

3.2.2. Evaluation

Quantitative evaluation and comparison with SIFT-only
matching: We quantitatively show the performance of
the test frame localization by evaluating the success rate
of the coarse localization in Stage I and the registration
accuracy based on SIFT feature matching between the
test frame and the retrieved dictionary frame. The per-
formance of image pair registration is determined by the
overlap size and the SIFT feature extraction and match-
ing (influenced by image quality), the former is an indi-
cator of the image retrieval performance and the latter is

Fig. 3. 3D bladder phantom experiment setup. (Left) The 3 DoF cystoscope robot with three actuation modules: A — cystoscope
angulation control, B — cystoscope insertion control, and C — cystoscope roll control. (Center) The cystoscope inserted into the 3D
bladder phantom. During data collection, the phantom was filled with water and placed in a container among bags of rice to preserve
position and shape. (Right) Data collection process for 3D phantom. I—The bend angle is adjusted to a sufficiently overlapping view
(> 20%) with the previous scan. II — The roll axis is actuated through one revolution clockwise and immediately counterclockwise
while a video is recorded. The dashed lines represent the trajectory of the cystoscope tip during video recording. III — When the
cystoscope hits the walls during a scan, the insertion length is changed and a new set of dictionary and test videos is collected.
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a crucial step in the 3D-2D correspondence in Stage II of
our camera localization method. Since we do not have a
ground truth to directly evaluate the camera pose re-
covery of test videos yet, we use the registration accu-
racy to partially evaluate our pipeline. Since cystoscope
frames have relatively small size and large inter-frame
overlap, they are unlikely to be significantly affected by
the nonlinear deformation due to the nonplanar bladder
surface, which allows for modeling the geometrical re-
lationship between each test frame and its retrieved
dictionary frame as a homography transformation for
registration.

For comparison, we also present the registration
performance with SIFT-only method without our coarse
localization. The SIFT-only matching method extracts
SIFT feature points from each test video frame to try to
match them to features from all of the dictionary images
with homography transformation. It takes OðnÞ time for
each test frame to register with an overlapped dictionary
frame globally, where n is the number of dictionary
frames. A k-d tree can be used to accelerate the matching
process with a time complexity OðlogðnÞÞ [51]. With the
coarse localization in our pipeline, the computation time
of the global registration is reduced to Oð1Þ.

We selected 25 test video frames in each test case,
sampled randomly and distributed uniformly. To mea-
sure the registration accuracy between the test and dic-
tionary frame, we use Target Registration Error (TRE)
for comparison. Unlike entropy-based or similarity
measures, TRE measures the result intuitively in pixels
and is independent of different regularization methods
[44,52]. For each test frame, five corresponding land-
marks were selected by a trained observer. Two trained
observers independently selected the corresponding
landmarks from the test frame and the retrieved dictio-
nary image. To obtain TRE for each image pair, we first
calculate the homography transformation between the
test frame and the retrieved dictionary image from
matched SIFT features. Then we use the calculated
homography to transform the landmark on retrieved
dictionary image to the test frame. Lastly, we compute
the distance between the transformed landmark points
and local landmark points on the test frame. The root
mean square of distances for all landmarks and test
frames is calculated as the final TRE. A smaller TRE
indicates a more accurate homography, which is usually
caused by larger overlap and smaller perspective change
between the image pair.

Angulation recovery based on image retrieval: To de-
termine the accuracy of our angulation recovery without
precisely aligning sensor and video data in each dictio-
nary set, we compare the pixel distance from each test
image to its correctly matched image. We then use a
linear approximation to determine the tip angulation
error from this pixel distance, or the scale between the
increment of pixels in localization Δd and angulation Δ�.

Taking the arc length as the distance between frames
when Δ� is small (1�), we get a linear relationship be-
tween Δ� and Δd: Δd ¼ K � Δ�, where K ¼ 20 pixels
per degree.

To fully demonstrate our localization algorithm, we
temporally aligned the video frames of the 1st cystos-
copy exam video and the medium speed trial with the
hysteresis-compensated sensor data corresponding to
each video. The test frame’s angulation was interpolated
between the angles associated with its two nearest dic-
tionary images. Since there is large overlap between
close dictionary frames, we assume linear movement
between continuous dictionary frames and interpolate
accordingly.

3.3. Experiments in 3D phantom

3.3.1. Dataset

The same Karl Storz cystoscope was inserted into the
water-filled 3D bladder phantom during the experiment,
thus camera intrinsic parameters and other camera-re-
lated parameters are assumed to be unchanged from
those in the 2.5D phantom data, except camera trajectory.
Figure 10 shows several examples of the video frames
collected from the inner surface of the 3D bladder
phantom. The vessel features are much denser and
thicker than the printed clinical bladder images shown in
Fig. 7, and extra features are included, such as fixed
bubbles, seams, shadows from surface topology, and
floating particles.

Scanning of the 3D bladder phantom was performed
in a series of circle trajectories enabled by rotating the
cystoscope along its roll axis. Each circle trajectory has a
fixed bend angle and the bend angles of different circles
increase in the series, as sketched in Fig. 3(Right). The
scanning is performed in a slow and constant moving
speed of one circle per minute. The cystoscope was
only able to image about half of the bladder surface with
this simple trajectory before the distance from the
bladder wall became too small. Full imaging of the
bladder during cystoscopies requires larger distension of
the bladder through pressurized fluid filling and precise,
coordinated actuation of the cystoscope with respect to
the anatomy that our current robotic platform is not yet
capable of.

To further test the robustness of our method in the 3D
phantom, two parameters are varied during data collec-
tion for two groups of experiments.

Tip Bending Angle Change: The first group of experi-
ments aim to evaluate the performance when there is
limited overlap between the dictionary images and
the test images. Since our scanning is performed layer
by layer, we control the view overlap by changing
the bending angle of the cystoscope tip. Test scans
are recorded at bending angles between those of the
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dictionary scans at the same insertion depth within
the bladder. The test images have 10–25% vertical
shifting with the dictionary images, and they are divided
into levels of tip bending I and II. Note that these test
videos still contain perspective changes and other
potential local deformations because they are separate
scans.

Insertion Depth Change: The second group of experi-
ments aim to evaluate performance with changes in the
imaging distance during cystoscope scanning which
simulates the bladder volume variation between differ-
ent exams. We set different insertion depths of the cys-
toscope to change the distance during the test video
scanning. Three different insertion levels I, II, III are used
which are 2.5, 5 and 10mm from the insertion depth
used in the dictionary video. With the insertion depth
change, there is also trajectory shifting between the test
and dictionary scanning.

3.3.2. Evaluation

Similar to the 2.5D phantom case, we also compare our
method with SIFT-only matching by the success rate and
mean TRE. Within each level of changed tip bending
angle and insertion depth, 100 test frames are sampled
and coarse-localized with the dictionary set.

Due to lack of reliable ground truth for camera poses,
our camera pose recovery is qualitatively demonstrated.
We visualize the trajectory of recovered camera poses
(both translation and orientation) for the test video
frames in tip bending angle II with respect to the
reconstructed 3D model. Since the test videos are ac-
quired by scanning the bladder phantom in circles as in
Fig. 3 (Right), we can visually evaluate the quality of the
recovered camera poses.

4. Results

4.1. Hysteresis model in 2.5D setup

Tip angulation kinematic data (Fig. 4) shows a hysteresis
of 6.5� at the thumb lever. No discernible dead-band is
observed. The resulting parallel hysteresis model is � ¼
5� �� 16, where � is the angulation angle in degrees
and � is the thumb lever angle difference from center. The
angulation estimation looks for inflection points, at
which it maintains its estimate and either: switches
the model when the thumb lever has continued in the
new direction past the 6.5� horizontal gap; or returns
to the original model when the lever angle movement
matches the original direction and passes the initial
inflection point. The 32� vertical gap between models at
a given thumb lever angle represents the imperfect
precision of kinematic estimation when the direction
of the thumb lever movement is unknown or not
modeled.

4.2. 3D reconstruction

To evaluate the accuracy of reconstruction, we first align
the ground truth model of the phantom and the recon-
structed model in Meshlab [53]. We then use Meshlab to
calculate Hausdorff distance, which represents the upper
bound of accuracy of all reconstructed points.

4.2.1. Reconstruction of 2.5D phantom

Using 156 frames as input, the offline 3D reconstruction
takes 560 s (9.3min) on average. After the bladder
phantom reconstruction is aligned with ground truth as
in Fig. 5, the Hausdorff distance is calculated to be 0.0319
(normalized over diagonal of bounding box), i.e. the error
is bounded within 3.2% of the size of the phantom. Refer
to our prior work [32] for detailed instructions on model
alignment for evaluation of shape reconstruction.

4.2.2. Reconstruction of 3D phantom

Using 548 frames as input, the offline 3D reconstruction
of the 3D phantom takes 1928 s (32minutes) on average.
After the bladder phantom reconstruction is aligned with
ground truth, the Hausdorff distance is calculated to be is
0.0290 (normalized over diagonal of bounding box), i.e.
error is bounded within 3% of the size of the phantom.

Fig. 4. Hysteresis model of cystoscope angulation. When the
direction of the cystoscope changes, the estimated value is held
constant until the sensor value returns to the point of change or
crosses the “hysteresis gap”, the horizontal distance between
the parallel lines.

Fig. 5. Comparison between reconstructed model of cysto-
scope scanned surface and the ground truth shape of 2.5D
bladder phantom. Inset plot shows the reconstructed surface
model (red) aligned with the 3D surface ground truth surface
shape of the phantom (gray).
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Note that the ground truth shape of 3D phantom is
acquired from a 3D scan of the mold that was used to
make the 3D phantom. Since the phantom slightly
expands when filled with water, it is expected that the
reconstructed surface model is actually larger than
the original model, as shown in Fig. 6. This means that
the reconstruction may have better accuracy than what is
shown by the calculated Hausdorff distance.

4.3. Camera localization

4.3.1. Localization results on 2.5D phantom

The performance of our localization approach and SIFT-
only approach among sampled test frames is defined by
success rate, runtime, and average TRE of successful
matches, as shown in Table 1. The success rate of the
SIFT-only control method is defined as the percentage of
successful matching pairs with TRE less than 15 pixels.
The success rate of Stage I in our method is defined as
the percentage of test frames matched with a correct
dictionary image with recognizable overlap. We also
perform SIFT-based fine registration (denoted as Reg. in
Table 1) on the test frame and its retrieved dictionary
image to calculate TRE. Thus success rate of our method
followed by the fine registration is also calculated as for
the SIFT-only method.

Since we also match SIFT features in registration, the
TRE of SIFT-only among successful cases are similar with
ours over the 2.5D phantom. In every experiment, our
method has a significant improvement over SIFT-only in
success rate. Except when changing FOV via imaging
distance, our success rate is over 96%. Our method can
reach an accuracy of less than 10-pixel TRE with an av-
erage observer variability of 2:98� 1:64. When the FOV
changes, the success rate of registration is 80%, while
most test images can be matched with a correct dictio-
nary image in Stage I (96% success rate).

The coarse localization by Stage I of our method
improves the running speed of fine registration of test
images to a correct match among hundreds of dictionary
images to around 20 times faster than using a SIFT-only
global registration method. Matching the test frames in
the LDS happens at about � 20 fps, which is over 100�
faster than SIFT-only. Several success and failure exam-
ples with challenging test video conditions are shown in
Fig. 7. Failure cases of the subsequent fine registration
indicate there are insufficient matching SIFT points after
the correct image retrieval.

In the coarse localization, we select the top 20 PCA
coefficients to form the low-dimensional representation
of the dictionary frames in LDS. Figure 8 shows a dis-
tance map calculated from 200 dictionary frames (con-
tinuously sampled from a video sequence) after they are

Fig. 6. (Left): Comparison between reconstructed model of cystoscope scanned surface and the ground truth shape of 3D bladder
phantom. (Right): Side view and upward view of cropped ground truth shape and reconstructed surface model of 3D bladder phantom.

Table 1. Localization performance per image frame over 2.5D phantom.

SIFT-only Ours

Changes from dictionary Success rate Runtime Success rate (Stage I/Reg.) Average TRE (Pix) Runtime (Stage I/Reg.)

Tumor I 80% 6263ms 100/96% 5.6 53/368ms
Tumor II 84% 6482ms 100/100% 3.43 42/332ms
Distance 56% 6977ms 96/80% 8.4 51/291ms
Speed (Med) 72% 6087ms 100/100% 6.7 55/304ms
Speed (Fast) 76% 6115ms 100/100% 5.9 47/312ms
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mapped into the LDS. In the distance map, the intensity
of a square at row i and column j indicates distance be-
tween low-dimensional representations of frame i and
frame j in LDS. We can see that the shortest distance
values is gathered near the diagonal axis. It confirms that
in the LDS, each image is still closest to its adjacent
frames, which should have the largest overlap with the
image.

Table 2 shows the percentage of robot angles com-
puted from frame localization with an error less than 5�

compared to the pixel-based linearization of the averaged
robot trajectory (i.e. within 100 pixels of the sawtooth
trajectory in each trial). Each test video is downsampled
to 370 frames. We only take the results in Stage I when
the subsequent fine registration fails. In most cases, the
robot tip position can be correctly estimated with a
success rate over 96%. Changing the test video FOV
(imaging distance) by about 30% increases the difficulty
and the success rate is only 85.1%. The angulation tra-
jectory reconstructed from the medium speed trial is
seen in Fig. 9. The RMS trajectory error over the 23-s
long trial is 9.4� and the RMS error between the coarse
and fine estimates is only 1.3�.

4.3.2. Localization results on 3D phantom

Table 3 shows the success rate, runtime, and the average
TRE of successful matches of our coarse localizationþ
fine registration approach and SIFT-only approach
among different test videos. The success rate and TRE
are defined to be the same as in the 2.5D phantom case.
Except for the Insertion Depth III test, our success rate is
over 99% in all cases. Our method reaches an accuracy of
less than 3-pixel TRE with an average observer vari-
ability of 1:32� 1:02. With sufficient distinctive feature
points, SIFT-only method in these experiments has a high
success rate, however, it is very time consuming with a
runtime of each test frame around 60–75 times slower
than our method. The coarse localization (Stage I) is over
1000� faster than SIFT-only method. In the case of in-
sertion depth III, our success rate is 4% lower than the
SIFT-only method. The SIFT-only method can sometimes
find the correct match with the overlap of selected
matched pairs less than ours, especially in insertion
depth change, thus we have a smaller TRE among success
matches in these cases.

Several success and failure examples under different
types of test videos are shown in Fig. 10.

Figure 11 visualizes an example of the camera local-
ization results. In this example, the dictionary images are

Fig. 7. Test frames and matched dictionary images of success
and failure examples of our algorithm within the 2.5D phantom.
Rows 1-2: our algorithm identified an image match with the
dictionary even with a physical tumor (1) and digitally added
tumor (2) taking up much of the frame. Rows 3-4: challenging
examples registered when FOV changes or frames exhibit mo-
tion blur. Row 5: Stage I (coarse localization) succeeds while
SIFT-based registration fails. Row 6: Stage I failures. All failure
examples are from changing FOV trial.

Fig. 8. Distance map of 200 dictionary frames in LDS. Dark
values indicate small distances in LDS and larger overlap be-
tween the image pair; light values indicate large distances in
LDS and smaller or no overlap between the image pair.

Table 2. Angulation prediction success rate.

Tumor I Tumor II FOV change Speed (Med) Speed (Fast)

96.5% 98.2% 85.1% 99.7% 97.3%
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acquired in three circles with different tip bending angles
and the same insertion length to achieve 3D recon-
struction. Figure 11(Left) shows the camera poses
(denoted by solid red frustums) of all dictionary images

the point cloud of the reconstructed 3D model (denoted
by blacks points). The test video in tip bending angle II
has a tip bending angle between the top two largest
angles used in the dictionary set. With the two-stage
camera localization pipeline, we found the subset of 3D
points from the reconstructed 3D point cloud that are
visible in test frames. This subset appears to be a ring
(Fig. 11(Right)). We then extracted 3D-2D correspon-
dence based on the matching relation among test image,
its corresponding retrieved dictionary image and the
reconstructed 3D point cloud. Finally, the camera poses
are recovered as shown in Fig. 11(Right), which appears
to be a circle trajectory with camera facing towards
the phantom wall. There is only one outlier below the
point cloud whose recovered camera pose is clearly
wrong.

Fig. 9. Angulation trajectory computed from our localization method during the medium speed trial. The dictionary images are
paired with kinematics estimates synchronized with video recording and the localized trajectory is compared to kinematics esti-
mates from the same trial.

Table 3. Localization performance per image frame over 3D phantom.

SIFT-only Ours

Changes from
dictionary

Success
rate

Average
TRE (Pix) Runtime

Success rate
(Stage I/Reg.)

Average
TRE (Pix)

Runtime
(Stage I/Reg.)

Tip bending I 100% 1.86 38,676ms 100%/100% 1.81 43ms/602ms
Tip bending II 100% 2.53 37,123ms 99%/99% 2.20 41ms/619ms
Insertion I 100% 2.56 38,965ms 100%/100% 2.37 46ms/634ms
Insertion II 99% 5.09 39,012ms 99%/99% 2.82 43ms/645ms
Insertion III 98% 5.12 37,841ms 94%/94% 1.98 42ms/622ms

Fig. 10. Test frames and retrieved dictionary images of suc-
cess and failure examples of our algorithm within the 3D
phantom. Row 1: Success examples in tip bending angle change;
Rows 2–4: Success examples in insertion depth change; Row 5:
Failure cases in insertion depth change.

Fig. 11. (Left): Visualization of reconstructed 3D point cloud
and camera poses of all dictionary images. (Right): The subset
of reconstructed 3D points that are visible in test video frames
and the therefrom recovered camera poses of test video frames.
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5. Discussion

Our two-stage camera localization method can provide
pixel-level accuracy in several clinically relevant test
cases. Compared to tracking between continuous frame
for relative pose recovery, localizing every frame globally
for absolute pose recovery avoids accumulated errors
and the effects of failure cases, which occurs more fre-
quently in surgical videos than ordinary tracking tasks.
Low-dimensional mapping in Stage I was shown to sig-
nificantly improve the efficiency of image retrieval and
can be used for coarse localization in challenging con-
ditions that might be encountered in surveillance tele-
cystoscopy. As shown in Fig. 9, our coarse localization
step has a mean error of less than 10� including the error
in the kinematic ground truth. So the coarse localization
can be independently used when high speed is required or
feature matching in Stage II fails. The coarse localization
using cystoscopes with 100� FOV should provide suffi-
cient accuracy for presenting pose estimates and maintain
sufficient overlap with the prior map to teleoperators.

PCA used in our Stage I is sensitive to outliers,
occlusions, and corruption in the data. Robust Principal
Component Analysis (RPCA) was introduced to address
this issue [54,55]. In general, RPCA is more expensive
than PCA, requiring an iterative optimization to decom-
pose the original matrix. In our pipeline, dictionary
images are selected during the 3D reconstruction algo-
rithm to be good-quality frames. With few enough out-
liers in the dictionary set, RPCA is not necessary.
However, it is important to keep RPCA as an option for
data with outliers and corruption. The distance map in
Fig. 8 shows that our dimension reduction process keeps
the position relationship of the input dictionary frames in
this near-clinical data while providing a more efficient
searching space. If this were not the case, dark areas
would appear away from the main diagonal within one
circle of scanning, indicating that the dimension reduc-
tion did not sufficiently separate disparate images within
the LDS. In such a case, new images may be mismatched
to the wrong area of the bladder.

Hysteresis modeling of our cystoscope shows that
image-based pose estimation is needed for providing a
capable and reliable teleoperation interface for robotic
cystoscopy since real time, accurate forward kinematic
estimation may be difficult. To inspect the entire uro-
thelium, urologists will deflect a flexible cystoscope
against the bladder. Although this achieves viewing
angles in retroflexion, this also introduces significant
difficulties in estimating the pose of the scope with tra-
ditional kinematic approaches. In the 2.5D phantom case,
we use cystoscope-specific kinematics to provide ground
truth angulation data for the image dictionary in Fig. 9
after alignment, and a camera pose estimate is derived
from the 3D reconstruction in the 3D phantom case.
In the next step, a reliable ground truth of camera poses

will be collected from extra sensors, for example,
attaching electromagnetic tracking sensors on the cys-
toscope tip, to quantitatively evaluate the reconstructed
camera pose trajectory.

We tested our approach in both 2.5D phantom and 3D
phantom of the bladder. The 2.5D phantom is simple in
shape so that our initial single-DOF robotic cystoscope
can cover the whole phantom while recording videos that
simulate cystoscopy. It is also rigid and open so that we
can measure the ground truth trajectory of the camera
easily and evaluate the accuracy of kinematics. The 3D
phantom is an effort to evaluate our method in an envi-
ronment with a more realistic shape (by using a 3D
phantom made of distensible and deformable material).
However, the acquisition of ground truth for camera
trajectory/poses is much harder in this case because the
phantom is close and we can’t rely on measurement from
the electromagnetic tracker due to the large error ob-
served. Also, the manually designed vessel features on it
are not realistic enough and cannot well present the
robustness of our method over image degradations.
Thus, we describe the experimental results on both the
2.5D and 3D phantoms to present the performance and
potential of our method as clearly as possible. The
scanning of 3D phantom is performed with the phantom
filled with water, which more closely simulates clinical
conditions. The captured videos therefore contain bub-
bles and floating debris. The deformable phantom ma-
terial can cause local distortions during the scanning.
Perspective changes between different scans will cause
the features and illuminations from the same region to
appear different. With homogeneous vessel features from
a larger surface in 3D phantom, there will be more local
optima interference in the global localization. The spa-
tially dense, hand-painted vessels in the 3D bladder
(Fig. 10) also provide more SIFT features than the prin-
ted human bladder image in the 2.5D phantom, thus
allowing the SIFT-only method to achieve higher
matching accuracy in the 3D tests than in the 2.5D tests.
However, the increasing runtime factor of the SIFT-only
case, from 100� to 1000� between 2.5D and 3D tests,
makes it hard to use in teleoperation where reasonable
computational complexity is important. Although the
dictionary set in the 3D case only covers a portion of the
bladder phantom, an increase in the dictionary size
should not greatly affect the runtime of our method.

For camera pose recovery in Stage II, we also
experimented with using the 2D-2D feature corre-
spondences between the test image and its retrieved
dictionary image to calculate the transformation between
the two images and then recover the camera pose of test
image. We observed that using 3D-2D correspondences
for camera pose recovery has better reliability than using
2D-2D correspondences. This is reasonable since the
global bundle adjustment in the reconstruction step
provides 3D points that are calculated to be more
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globally consistent with all collected images. Thus the
3D-2D correspondences are much more well-constrained
and less subject to noise, compared to 2D-2D corre-
spondences. The trajectory of the recovered test frame
poses shown in Fig. 11 qualitatively indicate the reli-
ability of camera pose recovery from 3D-2D corre-
spondences, as the trajectory of the source test video is a
similar circle scan at a constant tip bend angle.

Future development of image-based localization using
the 3D phantom can investigate new approaches to
maintain robust tracking. For example, multiple dictio-
nary images can be retrieved for each test frame and
their matching relationship with the test frame can be
studied to find more reliable 3D-2D correspondences.
Utility of the 3D reconstruction and real-time image
matching can provide new user interfaces in teleopera-
tion of medical robotics. Our 3D reconstruction results
demonstrate reasonably accurate reconstruction of shape
and texture of the bladder, which is crucial for accurate
display of the bladder during teleoperation. Once camera
pose of a new image is recovered, the newly acquired
image can be mapped onto the 3D surface model and
highlighted on the model for the operator. Not only will
this help situational awareness during telecystoscopy, this
could also be implemented during manual cystoscopy for
training urology residents. If examined image patches are
shown in contrast with unexamined areas, trainees can
visualize completeness during the procedures and a real-
time completeness metric can be calculated.

Additional testing is required to demonstrate efficiency
and accuracy with more realistic cystoscopy videos with a
wide range of bladder cancer tumors and natural ana-
tomical variation. The experiments conducted on these
phantoms provide higher image quality than a real
cystoscopic video from a human bladder containing urine
and water/saline. In addition, the bladder surface defor-
mation during scanning is also not considered in the
performance evaluation. When using clinical videos, the
3D reconstruction and localization performance may be
affected by image degradation. With the proposed two-
stage framework, both the coarse localization and camera
pose recovery in our pipeline may be improved with
deep-learning-based approaches [56,57]. Moreover, our
localization method could be especially useful when
combined with other estimation technologies. For in-
stance, if applying continuous frame tracking, our coarse
localization can provide a quick and accurate estimate to
regain tracking when continuous localization fails. Finally,
a Kalman filter could be used to combine our global lo-
calization with continuous frame tracking and endoscope
kinematics to make a more robust teleoperation system.

6. Conclusion

Our coarse localization algorithm is shown to be 100–1000�
faster than a SIFT-only dictionary matching approach in the

context of a two-stage camera localization pipeline that
could be used for bladder cancer surveillance where 3D
bladder models can be reconstructed after a primary
exam. In the follow-up visits, our algorithm can efficiently
estimate a flexible cystoscope’s tip pose at around 20Hz
in bladder phantoms. We believe that our algorithm will
be able to perform well in more realistic scenarios and
could help make telecystoscopy a compelling option for
urologists and their patients.
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