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The telescope conjecture at height 2 and the tmf resolution

Agnès Beaudry, Mark Behrens, Prasit Bhattacharya, Dominic Culver and Zhouli Xu

Abstract

Mahowald proved the height 1 telescope conjecture at the prime 2 as an application of his
seminal work on bo-resolutions. In this paper, we study the height 2 telescope conjecture at
the prime 2 through the lens of tmf-resolutions. To this end, we compute the structure of the
tmf-resolution for a specific type 2 complex Z. We find that, analogous to the height 1 case, the
E1-page of the tmf-resolution possesses a decomposition into a v2-periodic summand, and an
Eilenberg–MacLane summand which consists of bounded v2-torsion. However, unlike the height
1 case, the E2-page of the tmf-resolution exhibits unbounded v2-torsion. We compare this to the
work of Mahowald–Ravenel–Shick, and discuss how the validity of the telescope conjecture is
connected to the fate of this unbounded v2-torsion: either the unbounded v2-torsion kills itself off
in the spectral sequence, and the telescope conjecture is true, or it persists to form v2-parabolas
and the telescope conjecture is false. We also study how to use the tmf-resolution to effectively
give low-dimensional computations of the homotopy groups of Z. These computations allow us
to prove a conjecture of the second author and Egger: the E(2)-local Adams–Novikov spectral
sequence for Z collapses.
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1. Introduction

The telescope conjecture

Fix a prime p and let X be a finite spectrum. The perspective of chromatic homotopy theory
is to understand X(p) through the study of its chromatic tower [3; 43, Section 7.5]

· · · → XE(n) → XE(n−1) → · · · → XE(0) = XQ.
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Here, XE(n) denotes the Bousfield localization of X with respect to the Johnson–Wilson
spectrum E(n) with

π∗E(n) = Z(p)[v1, . . . , vn, v
−1
n ],

where |vn| = 2(pn − 1). The chromatic convergence theorem of Hopkins and Ravenel [23] states
that X(p) is recovered as the inverse limit of the tower. Thus the E(n)-localizations interpolate
between the rationalization and the p-localization of X. The monochromatic layers of the
chromatic tower are defined to be the fibers

MnX → XE(n) → XE(n−1).

Applying π∗ to the chromatic tower yields the chromatic spectral sequence

cssEn,∗
1 (X) = π∗MnX ⇒ π∗X.

The efficacy of the chromatic approach is established by Morava’s change of rings theorem [39],
which states that the Adams–Novikov spectral sequence for MnX takes the form

anssEs,t
2 (MnX) = Hs

c (Gn, (En)tMnX) ⇒ πt−sMnX,

where En is the height n Morava E-theory spectrum and Gn is the height n Morava stabilizer
group. For a given height n, anssE∗,∗

2 (MnX) (and in fact the entire Adams–Novikov spectral
sequence) is in principle completely computable.

In reality, the complexity of these computations increases significantly as a function of n,
and therefore these computations have only been carried out successfully for small values of
n. It is thus desirable to have a means of directly relating the homotopy groups of each of the
monochromatic layers MnX to the homotopy groups of X itself, without having to resort to
needing to compute the entire chromatic spectral sequence.

There is a variant of the chromatic tower which does have this property. Let Xf
E(n) denote

the finite E(n)-localization, obtained by killing only finite E(n)-acyclic spectra (instead of all
E(n) acyclic spectra). The finite localizations also form a tower, with finite monochromatic
layers defined to be the fibers

Mf
nX → Xf

E(n) → Xf
E(n−1).

The advantage of this variant of the chromatic tower is that the elements of the homotopy
groups of these finite monochromatic layers have a concrete relationship to the homotopy groups
of X itself: elements of π∗MnX correspond to vn-periodic families in π∗X [43, Section 2.5].

In [41], Ravenel proposed the following Panglossian conjecture.

Telescope Conjecture. For any spectrum X, prime p, and height n, the natural map

Xf
E(n) → XE(n)

is an equivalence.

The Hopkins–Smith thick subcategory theorem [24] implies that the telescope conjecture
is true if and only if it is true for a single type n spectrum (a p-local finite spectrum which
is E(n− 1)-acyclic, but not E(n)-acyclic). In this case where X is type n � 1, the Hopkins–
Smith periodicity theorem [24] implies there is an asymptotically unique vn-self map, that is,
an E(n)-self equivalence

v : ΣNX → X

where N > 0. The telescope of X is defined as the homotopy colimit

X̂ := X
v−→ Σ−NX

v−→ Σ−2NX → . . .
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and we have

Xf
E(n) � X̂.

Thus, for any p-local spectrum X of type n, the natural map

X̂ → XE(n) (1.0.1)

is an equivalence if and only if the p-primary height n telescope conjecture is true.

The height 1 case

The telescope conjecture was in large part motivated by the case of height n = 1, where the
conjecture was already proven by Mahowald for p = 2 [32; 33, Theorem 1.2], and Miller for
p > 2 [38]. In both of these cases, the proof is computational, in the sense that the authors
compute the homotopy groups of the source and target of (1.0.1) and show that the map is an
isomorphism on these homotopy groups. The methods used in each of these cases, though, are
somewhat different.

In the p > 2 case of [38], Miller considered the mod p Moore spectrum M(p), which is type
1, with v1-self map

v : Σ2(p−1)M(p) → M(p) (1.0.2)

having the property that it is given by multiplication by v1 in E(1)-homology. We will call
such a self-map a v1

1-self map. Miller computes the localized Adams spectral sequence

v−1
1

assEs,t
2 = v−1

1 Exts,tA∗(Fp, H∗M(p)) ⇒ πt−sM̂(p)

where A∗ denotes the p-primary dual Steenrod algebra, and H∗ denotes mod p homology. To
do this, he completely computes the E2-page, and then gives a delicate lifting argument which
computes the d2 Adams differentials from the d1 Adams–Novikov differentials. He then shows
the localized Adams spectral sequence collapses at E3 to the known values of π∗M(p)E(1).

In the case of p = 2, the situation is more complicated as the mod 2 Moore spectrum only
has a v4

1-self map

v4
1 : Σ8M(2) → M(2),

having the property that it is given by multiplication by v4
1 on E(1)-homology. For this reason,

in [33], Mahowald considers the 2-local type 1-spectrum

Y := M(2) ∧ C(η),

where C(η) denotes the cofiber of the Hopf map η : S1 → S0. In contrast with the case of the
mod 2 Moore spectrum, the spectrum Y possesses a v1

1-self map:

v1
1 : Σ2Y → Y.

Mahowald analyzed the bo-based Adams spectral sequence (aka the ‘bo-resolution’) for Y :
boEs,t

1 (Y ) = πtbo∧s+1 ∧ Y ⇒ πt−sY.

Here bo denotes the connective real K-theory spectrum. This spectral sequence is significantly
simplified by the fact that we have an equivalence

bo ∧ Y � k(1),

where k(1) denotes the height 1 connective Morava K-theory spectrum. Unfortunately, the v1-
localized bo-resolution converges to the E(1)-local homotopy groups of Y (rather than those
of Ŷ ):

v−1
1

boEs,t
1 (Y ) ⇒ πt−sYE(1).
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Nevertheless, Mahowald was able to deduce the height 1 telescope conjecture at the prime 2
by establishing the following key results:

Collapse theorem: The v1-localized bo-resolution for Y collapses at its E2-page.
Bounded torsion theorem: If x ∈ boE∗,∗

2 is v1-torsion, then v2
1x = 0.

Vanishing line theorem: There is a c so that boEs,t
2 (Y ) = 0 for s > t−s

5 + c.

The idea is to use these key results to prove the map

π∗Ŷ → π∗YE(1) (1.0.3)

is surjective and injective. The map (1.0.3) is surjective because if y ∈ π∗YE(1) is detected by an
element y′ ∈ v−1

1
boE∗,∗

2 (Y ) in the v1-localized bo-resolution, then the bounded torsion theorem
implies that the targets of the differentials supported by the family v2i

1 y′ in the unlocalized bo-
resolution lie above a line of slope 1/4, and thus will eventually surpass the 1/5 vanishing line.
Hence for i � 0, the element v2i

1 y′ detects a v1-periodic family mapping to that of y under
(1.0.3). The map (1.0.3) is injective because the collapse theorem implies that any element
x ∈ π∗Y which maps to zero in π∗YE(1) must be detected by a v1-torsion element of boE∗,∗

2 (Y ),
and the bounded torsion theorem then implies that the family of elements v2i

1 x are detected in
the bo resolution above a line of slope 1/4, and thus will eventually surpass the 1/5 vanishing
line. Hence x must be v1-torsion.

Attempts to disprove the telescope conjecture

Less than a decade after his 1984 paper, Ravenel’s optimistic beliefs concerning the telescope
conjecture took a decidedly Orwellian turn. In [44], Ravenel studied the height 2 telescope
conjecture at primes p � 5 by considering the analog of Miller’s argument for the Smith–Toda
complex V (1) (the cofiber of (1.0.2)). The Adams–Novikov spectral sequence

anssE∗,∗
2 (V (1)E(2)) = H∗

c (G2, (E2)∗V (1)) ⇒ π∗V (1)E(2)

collapses for dimensional reasons. Ravenel computed the E2-term of the localized Adams
spectral sequence

v−1
2

assE∗,∗
2 (V (1)) = v−1

2 ExtA∗(Fp, H∗V (1)) ⇒ π∗V̂ (1),

and found that the Adams–Novikov differentials lifted to differentials of unbounded length in
the localized Adams spectral sequence. He then observed that a power operation argument
gave rise to Toda-type differentials which preceeded the lifted Adams–Novikov differentials,
potentially causing π∗V̂ (1) to differ from π∗V (1)E(2). Although he initially thought he had a
counterexample to the telescope conjecture, it eventually became clear that it was impossible
to rule out the possibility that a bizarre pattern of other differentials might subsequently ‘fix’
the havoc caused by these Toda-type differentials, allowing the telescope conjecture to hold.
Mahowald, Ravenel, and Shick summarized the uncertain state of affairs in [34].

Main results. The purpose of this paper is to carry out the height 2 analog of Mahowald’s
analysis of the height 1 telescope conjecture at the prime 2.

To this end, we replace the bo-resolution of Mahowald with the tmf-based Adams spectral
sequence (aka the tmf-resolution),

tmfEs,t
1 (X) = πt(tmf∧s+1 ∧X) ⇒ πt−sX,

where tmf denotes the spectrum of connective topological modular forms [18]. The role that
was played by Mahowald’s spectrum Y will now be reprised by Z, a 2-local finite spectrum of
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type 2 constructed by the third author and Egger [11], with the distinguished property that
it possesses a v1

2-self map

v1
2 : Σ6Z → Z,

and that there is an equivalence

tmf ∧ Z � k(2). (1.0.4)

Here k(2) is the height 2 connective Morava K-theory spectrum.
We find that, similar to the height 1 case, the E1 term of the tmf-resolution for Z fits into

a short exact sequence

0 → V ∗,∗(Z) → tmfE∗,∗
1 (Z) → C∗,∗(Z) → 0 (1.0.5)

where the groups C∗,∗(Z) are v2-torsion free and completely computable and the groups V ∗,∗(Z)
are v1

2-torsion and essentially incomputable. We will refer to C∗,∗(Z) as the good complex and
V ∗,∗(Z) as the evil complex.

We will show that the good complex C∗,∗(Z) is an explicit connective subcomplex of the
cobar complex for computing the E2-term of the Adams–Novikov spectral sequence

anssE∗,∗
2 (ZE(2)) = H∗

c (G2; (E2)∗Z) ⇒ π∗ZE(2) (1.0.6)

and the localized tmf resolution

v−1
2

tmfE∗,∗
2 = v−1

2 H∗,∗(C(Z)) ⇒ π∗ZE(2)

is isomorphic to the spectral sequence (1.0.6).† The groups
anssE∗,∗

2 (ZE(2))

were computed by the third author and Egger [12]. It turned out that, unlike the situation for
large primes, the spectral sequence (1.0.6) cannot be shown to collapse at its E2-page simply
for dimensional reasons, but the third author and Egger conjectured that it does collapse. One
major result of this paper is a proof of this conjecture.

Collapse Theorem (Theorem 8.5.1). The v2-localized tmf-resolution for Z collapses at
its E2-page.

The height 2 story begins to diverge in the context of the bounded torsion theorem. We
construct an analog of the May filtration on the good complex C∗,∗(Z), and we will refer to
the associated spectral sequence

MRE∗,∗,∗
1 = H∗,∗(E0

∗C(Z)) ⇒ H∗,∗(C(Z))

as the May–Ravenel spectral sequence. We will completely compute the E1-term of the May–
Ravenel spectral sequence, and will observe the following:

Unbounded torsion theorem (Theorem 6.4.3). The May–Ravenel E1-page has
unbounded v2-torsion: there are elements which are vi2-torsion for i arbitrarily large.

Unfortunately, we are unable to deduce the same unbounded torsion statement for
H∗,∗(C(Z)) (which is equivalent to unbounded torsion in tmfE∗,∗

2 (Z)) because we do not know
if the May–Ravenel spectral sequence collapses at E1, and we do not know if there are hidden v2

extensions in this spectral sequence. Nevertheless, the computation of the unbounded torsion
allows us to understand exactly how the telescope conjecture could fail at height 2.

†In general, for a bigraded cochain complex C∗,∗, we shall denote its cohomology by H∗,∗(C).
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We now turn our attention to the final component of Mahowald’s work on bo-resolutions: the
vanishing line. Clearly, a vanishing line for the cohomology of the good complex H∗,∗(C(Z))
can be read off of our computation of the May–Ravenel E1-term. In order to lift this vanishing
line to one for tmfE∗,∗

2 (Z), we need a vanishing line for the cohomology of the evil complex
H∗,∗(V (Z)).

In [7], we developed a technique (the agathakakological† spectral sequence) for computing
the cohomology of the evil complex associated to the bo-resolution by relating it to ExtA∗ and
the good complex. We will construct an agathokakological spectral sequence in our present
setting of the tmf-resolution. This will allow us to use a vanishing line in ExtA∗ to establish a
vanishing line for the cohomology of the evil complex H∗,∗(V (Z)), thus establishing a vanishing
line for tmfE∗,∗

2 (Z).

Vanishing line theorem (Theorem 9.4.1). In the tmf-resolution for Z, we have
tmfEs,t

2 (Z) = 0 for

s >
t− s + 12

11
.

The slope of this line cannot be improved at E2; 1/11 is the slope of the non-nilpotent
element

g2 ∈ Ext4,48A∗ (F2,F2),

and it turns out g2 lifts to tmfE4,48
2 (Z). We conjecture that for some r > 2, the Er-page has a

slope 1/13 vanishing line (Conjecture 9.4.2).
The agathokakological spectral sequence allows us to combine our computations of the

cohomology of the good complex H∗,∗(C(Z)) with low-dimensional computer computations
of ExtA∗ to obtain low-dimensional computations of the tmf-resolution E2-page tmfE∗,∗

2 (Z).
Using this technique, we compute the tmf-resolution of Z through the 40-stem. This is not
just an academic exercise — rather it is the means by which we prove the collapse theorem. In
this range, we are able to locate unlocalized elements which map to the generators of the E2-
term of the Adams–Novikov spectral sequence for ZE(2). By observing that the corresponding
unlocalized elements are permanent cycles in the tmf-resolution, we deduce that their images
in the Adams–Novikov spectral sequence for ZE(2) are permanent cycles.

The unbounded torsion theorem allows us to identify the possible ways the map

π∗Ẑ → π∗ZE(2)

can fail to be an isomorphism. The last section of this paper is a detailed discussion giving a
precise conjecture for what π∗Ẑ is (the parabola conjecture), and how this conjectural answer
differs from π∗ZE(2). The parabola conjecture is essentially an adaptation of the conjectures
of Mahowald, Ravenel, and Shick [34, 45] to our context.

Future directions

It is probably clear to the reader that the authors hoped that adapting Mahowald’s approach to
the 2-primary height 1 telescope conjecture to the height 2 context would yield new information
that would lead to a computational proof or disproof of the telescope conjecture at chromatic
height 2. The results of this paper are as such inconclusive, and the telescope conjecture remains
one of the great unlocked mysteries of the subject.

†agathokakological (ag-uh-thuh-kak-uh-LAHJ-uh-kuhl) adjective: Made up of both good and evil.
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The seasoned expert will recognize, however, that if this was the authors’ only goal, then we
would have been better off studying the BP 〈2〉-resolution of the Smith–Toda complex V (1)
for primes p � 5. Indeed, that would have simplified many parts of this paper.

However, the authors had other motivations for undertaking this particular endeavor at the
prime 2. We wanted to complete the computation of π∗ZE(2) initiated by the third author and
Egger in [12]. Not only does our analysis show that the structure of the homotopy groups of
ZE(2) mirrors the structure of the homotopy groups of V (1)E(2) at primes p � 5, despite the fact
that the E(2)-local Adams-Novikov spectral sequence is no longer sparse, it also represents the
first non-trivial complete computation of the homotopy groups of any E(2)-local finite complex
at the prime 2.

The prime 2 represents the last computational frontier for chromatic height 2, where
computations are elaborate but straightforward for primes p � 5 (see, for example, [9]),
and downright difficult, but possible, the prime p = 3 (see, for example, [19]). In fact, the
duality resolution of [19] is a minimal tmf-resolution of the sphere in the K(2)-local stable
homotopy category.

Besides the fact that the 2-torsion in tmf is an order of magnitude more complicated than
the 3-torsion, there is a fundamental unsolved difficulty at p = 2: Bobkova and Goerss have
successfully constructed a duality resolution for the maximal cyclotomic extension of the K(2)-
local sphere [13], but constructing resolutions of the K(2)-local sphere itself is much more
subtle. Our analysis links the tmf-resolution explicitly to the Morava stabilizer group through
the good complex. We are hopeful that this will allow us to one day use the tmf-resolution to
help us understand finite resolutions for the K(2)-local sphere itself.

We also plan to develop the tmf-resolution as a valuable tool for low dimensional 2-primary
computations of stable homotopy groups. Our use of the tmf-resolution to compute the first
40 stems of Z required very little effort — the computation could probably be pushed to much
higher degrees if we had a good reason to do so. In the case of the sphere, there is such a
motivation: the Kervaire invariant one problem in dimension 126 [21]. The work of Isaksen,
Wang, and the fifth author [28] shows that complex motivic homotopy theory can be used to
effectively compute the 2-primary Adams spectral sequence for the sphere, and they have used
their machinery to carry out this computation up to the 90 stem. It is unclear whether their
techniques alone will suffice to get up to dimension 126. The tmf-resolution could provide a
valuable tool for analyzing Adams differentials between v2-periodic elements in ExtA∗ . The
computations of this paper provide the starting point for the analysis of the tmf-resolution of
the sphere.

Conventions

We will use the following notation throughout this paper.

• ASS = classical Adams spectral sequence.
• tmf-ASS = the tmf-based ASS (aka the tmf-resolution).
• ANSS = Adams–Novikov spectral sequence (aka the BP -based ASS).
• AKSS = agathokakological spectral sequence.
• H∗(−)/H∗(−) denotes homology/cohomology with F2-coefficients.
• H denotes the mod 2 Eilenberg–MacLane spectrum.
• A denotes the mod 2 Steenrod algebra, and A∗ is its dual.

For X any 2-complete spectrum, we shall let
assEs,t

2 (X) = Exts,tA∗(F2, H∗X) ⇒ πt−sX

denote its ASS. Assuming this spectral sequence converges, we shall say an element of π∗X
has Adams filtration s if it is detected in the ASS by a class in assEs,∗

2 (X).
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Finally, in [11], the third author and Egger show that there is a class of spectra Z̃, each
of whose cohomology is isomorphic as A(2)-modules, and each of which admits a v1

2-self map.
For concreteness, the spectrum we call Z in this paper is always taken to be a particular fixed
member of this class for which the cofiber of its v2-self map has cohomology as described in
the Appendix.

Organization of the paper

In Section 2, we recall some basic facts about the spectrum tmf, its cohomology, and its
relationship to Morava E-theory. We will also review some facts about the spectrum Z.

In Section 3, we begin our analysis of the tmf-ASS {tmfEn,t
r (Z)}. The E1-term is given by

tmfEn,t
1 (Z) = πt(tmf∧n+1 ∧ Z).

We will compute this E1-term using the Adams spectral sequences
assEs,t

2 (tmf∧n+1 ∧ Z) ⇒ πt−s(tmf∧n+1 ∧ Z).

We will explain how to use Margolis homology to compute the E2-terms of these Adams spectral
sequences, and we show these Adams spectral sequences collapse to give a short exact sequence
of chain complexes (1.0.5) (the good/evil decomposition). The goal is to use the short exact
sequence (1.0.5) to compute tmfE∗,∗

2 from H∗,∗(C(Z)) and H∗,∗(V (Z)). It will turn out that
H∗,∗(V (Z)) is computable despite the incomputability of V ∗,∗(Z) itself.

In Section 4, we both recall the structure of the Morava stabilizer group and Morava stabilizer
algebra associated to the Honda height 2 formal group, and relate these to the corresponding
groups and algebras for the formal group coming from the unique supersingular elliptic curve
C in characteristic 2. We compute the action of the group of automorphisms Aut(C) on the
Morava E-homology of the complex Z.

In Section 5, we compute the differentials in the good complex C∗,∗(Z). This is accomplished
by showing that the good complex is actually isomorphic to the cobar complex of an explicit
sub-Hopf algebra σ̃(2) of a quotient of the Morava stabilizer algebra.

At this point, the number of different Hopf algebras important for our purposes has become
significant, so we give a list in Table 1 to help the reader keep track.

In Section 6, we embark on the computation of

H∗,∗(C(Z)) ∼= Ext∗,∗σ̃(2)(k(2)∗, k(2)∗).

The cohomology of the Morava stabilizer algebra was computed by Ravenel [40] using a
modification of the May spectral sequence which we will call the May–Ravenel spectral
sequence. We adapt the May–Ravenel spectral sequence to compute the cohomology of σ̃(2).
We completely compute the E1-term of this spectral sequence (Theorem 6.4.3), thus proving
the unbounded torsion theorem.

Having dealt with the good complex, in Section 7 we turn to the problem of computing
the cohomology of the evil complex. Following the techniques introduced in [7], we introduce
a refinement of the tmf-ASS called the topological agathokakological spectral sequence
(topological AKSS)

H∗,∗(C(Z)) ⊕H∗,∗(V (Z)) ⇒ π∗Z.

We also introduce an algebraic version, the algebraic KSS (algebraic AKSS)

H∗,∗,∗(Calg(Z)) ⊕H∗,∗(V (Z)) ⇒ assE∗,∗
2 (Z).

We then prove the dichotomy principle (Theorem 7.3.8), which relates evil terms in the
algebraic AKSS to v2-torsion in assE∗,∗

2 (Z). We therefore are able to recover H∗,∗(V (Z))
from H∗,∗,∗(Calg(Z)) (which we completely compute) and assE∗,∗

2 (Z) (which we compute using
Bruner’s Ext software [14]).
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In Section 8, we perform low-dimensional computations of the tmf-ASS (or equivalently, the
topological AKSS) for Z in the range t− n < 40. This proceeds by first analyzing v2-periodicity
in assE∗,∗

2 (Z) by analyzing assE∗,∗
2 (A2), where A2 is the cofiber

Σ6Z
v2−→ Z → A2

whose cohomology is isomorphic to the subalgebra A(2) ⊂ A as an A(2)-module. The Appendix
contains the Bruner module definition data used to compute the relevant Ext charts. We then
compute the algebraic AKSS in our range. From this, we extract H∗,∗(V (Z)), which we input
into the topological AKSS, and compute through this same range. We end this section with
a comparison to the computations of Bhattacharya–Egger of the Adams–Novikov spectral
sequence (ANSS) for ZE(2), and prove the collapse theorem by mapping the tmf-ASS to the
K(2)-local ANSS (Theorem 8.5.1).

In Section 9, we discuss how the analog of Mahowald’s approach to the 2-primary height 1
telescope conjecture using the bo-resolution for Y fails in the context of the tmf-resolution for
Z. Namely, assuming there are no additional differentials or extensions in the May–Ravenel
spectral sequence, and assuming a certain pattern of d3-differentials, we show that tmfE4

decomposes into a direct sum of three pieces.

(1) A summand which is v2-torsion free, and is isomorphic to π∗ZE(2) after v2 inversion.
(2) A summand which consists entirely of bounded v2

2-torsion.
(3) A summand which consists of unbounded v2-torsion, and assembles via a conjectural

sequence of hidden extensions, into an uncountable collection of v2-parabolas.†

We explain how our work in previous sections proves the vanishing line theorem (the slope
1/11 vanishing line for tmfE∗,∗

2 (Z)). We explain why one might expect to be able to improve
this to a slope 1/13 vanishing line, which would preclude infinite families of hidden extensions
among the terms in summand (2) from assembling to give v2-families in π∗Ẑ. We then describe
the analogs of conjectures of Mahowald–Ravenel–Shick [34] which describe a hypothetical
picture (the parabola conjecture) of π∗Ẑ which is assembled from a portion of the classes in
summands (1) and (3) above, and in particular is unequal to π∗ZE(2). However, just as in [34],
it is totally possible for a bizarre pattern of differentials between v2-parabolas to occur to make
the telescope conjecture true.

2. Background

2.1. Morava K-theory and E-theory

Recall [1, Part II] that a homotopy commutative ring spectrum is said to be complex orientable
if the map on reduced E-cohomology

Ẽ∗(CP∞) → Ẽ∗(CP 1)

is surjective. The cohomology Ẽ∗(CP 1) is free of rank 1 as an E∗-module, and a lift

x ∈ Ẽ∗(CP∞)

of a generator of Ẽ∗(CP 1) is called a complex orientation. We then have

E∗(CP∞) = E∗[[x]].

The H-space structure on CP∞ gives rise to a formal group law over E∗. In the case where the
spectrum E is even periodic, (πoddE = 0 and π2E contains a unit) we can take our complex

†We call them v2-parabolas because they lie on (sideways) parabolas in the (t− n, n)-plane.
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orientation to lie in Ẽ0(CP∞), and the resulting formal group law FE can actually be defined
over the ring E0.

A complex orientation of a ring spectrum E is equivalent to the structure of a map of ring
spectra

MU → E,

where MU is the complex cobordism spectrum. For a prime p, the p-localization of MU splits
as a wedge of suspensions of the Brown–Peterson spectrum BP , with

BP∗ ∼= Z(p)[v1, v2, v3, . . .]

with |vi| = 2(pi − 1). The Wilson spectrum BP 〈n〉 can be constructed as the regular quotient
of BP given by [48]

BP 〈n〉 = BP/(vn+1, vn+2, . . .).

However, these ring spectra depend on the choices of the generators vi, and as such there are
many different forms of BP 〈n〉. Associated to any such choice is the associated Johnson–Wilson
spectrum

E(n) := BP 〈n〉[v−1
n ]

and the associated Morava K-theory spectrum is the regular quotient

K(n) = E(n)/(p, v1, . . . vn−1)

with

π∗K(n) = Fp[v±1
n ].

The connective Morava K-theory k(n) is the connective cover of K(n).
The localization functors (−)E(n) and (−)K(n) are independent of the form of E(n) and

K(n), and we have [41]

(−)E(n) = (−)K(0)∨···∨K(n).

In particular, if X is a type n spectrum, then we have

XE(n) � XK(n).

The height n Morava E-theory spectrum En [3] is a K(n)-local even periodic variant of the
Johnson–Wilson spectrum E(n). Like E(n), there are many forms of En, one for each height n
formal group law F over a perfect field F of characteristic p. The formal group law associated
to En is the Lubin–Tate universal deformation of F , and we have

π∗En = W(F)[[u1, . . . , un−1]][u±1]

where W(F) denotes the Witt ring of F, |ui| = 0, and |u| = −2. Goerss, Hopkins, and Miller
showed that En admits a homotopically unique E∞-structure, and admits a natural action of
the Morava stabilizer group Aut(F). If F is obtained from a formal group law over Fp via
base change, then there is a natural action of Gal(F/Fp) on Aut(F), and the natural action of
Aut(F) on En extends to an action of the associated extended Morava stabilizer group

Gn := Aut(F) � Gal(F/Fp).

Note that Gn implicitly depends both on the formal group F , and the field F.
Morava E-theory gives rise to an associated variant of Morava K-theory, which is defined to

be the spectrum given by the regular quotient.

Kn := En/(p, u1, . . . , un−1)
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so we have

π∗Kn = F[u±1].

Again, different formal group laws F and different fields of definition F can give rise to different
forms of Kn.

2.2. Topological modular forms

We give a brief overview of some facts about the spectrum of connective topological modular
forms tmf. A more complete introduction may be found in [10, 18].

An elliptic cohomology theory consists of a triple

(E,C, α),

where E is a complex orientable even periodic ring spectrum, C is an elliptic curve over E0,
and α is an isomorphism

α : Ĉ
∼=−→ FE

between the formal group law Ĉ associated of C and the formal group law of E.
Goerss, Hopkins, and Miller constructed a sheaf of E∞-ring spectra Otop on the étale site of

the moduli stack of elliptic curves Mell, with the property that the spectrum of sections

EC := Otop(spec(R) C−→ Mell)

associated to an affine etale open classifying an elliptic curve C/R is an elliptic cohomology
theory for the elliptic curve C.

The Goerss–Hopkins–Miller sheaf is actually defined over the Deligne–Mumford compact-
ification Mell of the moduli stack Mell of elliptic curves. The spectrum of non-connective
topological modular forms is defined to be the spectrum of global sections of this sheaf

Tmf := Otop(Mell).

There is a natural map from the homotopy groups of Tmf to the ring of integral modular forms
for SL2(Z)

π2∗Tmf → MF∗(SL2(Z)) = Z[c4, c6,Δ]/(c34 − c26 = 1728Δ). (2.2.1)

Here c4 and c6 denote normalizations of the Eisenstein series of weight 4 and 6, respectively,
and Δ denotes the discriminant of weight 12. The map (2.2.1) is a rational isomorphism, but
is not an isomorphism integrally. Nevertheless the modular forms c4 and Δ24 are in the image,
we shall let c4 ∈ π8Tmf and Δ24 ∈ π576Tmf denote lifts of these modular forms to π∗Tmf.

The spectrum of connective topological modular forms is defined to be the connective cover
of this spectrum

tmf := τ�0Tmf.

The spectrum of periodic topological modular forms is defined to be the global sections of the
sheaf Otop over the non-singular locus

TMF := Otop(Mell).

We have

TMF = tmf[Δ−24]

where Δ24 ∈ π576tmf.
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Inverting Δ24 has the effect of inverting some power of v2 for every prime p, and as
such, there is a close relationship between TMF and tmfK(2). There is an equivalence [10,
Proposition 6.6.14]

tmfK(2) � TMF∧
(p,c4).

Up to isomorphism, there is a unique supersingular elliptic curve C over F4. The elliptic
curve C admits a Weierstrass presentation [47, III.1]

y2 + y = x3. (2.2.2)

Let Ĉ denote the associated height 2-formal group over F4. The automorphisms of C induce
automorphisms of Ĉ, giving rise to an inclusion

Aut(C) ↪→ G2.

The 2-primary K(2)-localization of tmf is then given by [8, Section 5]

tmfK(2) � E
hAut(C)�Gal
2 , (2.2.3)

where Gal = Gal(F4/F2). The form of connective Morava K-theory in the equivalence

tmf ∧ Z � k(2)

of (1.0.4) is the form associated to the formal group Ĉ, regarded as a formal group over F2.
Associated to the congruence subgroups Γ1(n) � SL2(Z), Hill and Lawson constructed

variants Tmf1(n) of Tmf associated to the compactified moduli stacks M1(n) of elliptic curves
with Γ1(n) structure [22]. Lawson and Naumann [30] proved that the connective cover tmf1(3)
of Tmf1(3) gives a form of BP 〈2〉 at the prime 2:

tmf1(3)(2) � BP〈2〉. (2.2.4)

We have

tmf1(3)K(2) � EhC3�Gal
2 .

Associated to the log-étale map

M1(3) → Mell

given by forgetting Γ1(3)-structures, there is a map

tmf → tmf1(3)

and hence a map

tmf → BP 〈2〉. (2.2.5)

The K(2)-localization of this map is given by the canonical inclusion

E
hAut(C)�Gal
2 → EhC3�Gal

2 .

2.3. Subalgebras and subquotients of the Steenrod algebra

Let A denote the mod 2 Steenrod algebra and let A∗ be its dual. The algebra A∗ is a polynomial
algebra on the Milnor generators ξi of degree 2i − 1. Letting ζi = ξi denote the conjugates, A∗
can also be expressed as

A∗ = F2[ζ1, ζ2, ζ3, . . .].

The coproduct on A∗ is given by

ψ(ζk) =
∑

i+j=k

ζi ⊗ ζ2i

j .
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The elements ζi are dual to the elements Qi−1 ∈ A. The elements Qn are primitive, satisfy
Q2

n = 0, and generate an exterior subalgebra

E[Q0, Q1, Q2, . . .] ⊆ A.

Let A(n) be the subalgebra generated by Sq1, . . . ,Sq2n

.
For a B subalgebra of A, we will be interested in A-modules of the form

A//B := A⊗B F2,

since we have [42, 2.1, 4.1, 4.2], [36]

H∗bo ∼= A//A(1),

H∗tmf ∼= A//A(2),

H∗BP 〈n〉 ∼= A//E[Q0, . . . , Qn],

H∗k(n) ∼= A//E[Qn].

(2.3.1)

We also have

H∗Y ∼=A(1) A(1)//E[Q1],

H∗Z ∼=A(2) A(2)//E[Q2],

where ∼=A(n) denotes an isomorphism of A(n)-modules (the case of Y is elementary, for the
case of Z see [11]).

We note that the dual of A(n) and E[Q0, . . . , Qn] are given by

A(n)∗ ∼= A∗/(ζ2n+1

1 , ζ2n

2 , . . . , ζ2
n+1, ζn+2, . . .),

E[Q0, . . . , Qn]∗ ∼= E[ζ1, . . . , ζn+1].

We will denote the dual of A//B as A//B∗. The duals of A//A(n) and A//E[Q0, . . . , Qn] are
given by

A//A(n)∗ ∼= F2[ζ2n+1

1 , ζ2n

2 , . . . , ζ2
n+1, ζn+2, . . .],

A//E[Q0, . . . , Qn]∗ ∼= F2[ζ2
1 , . . . , ζ

2
n+1, ζn+2, ζn+3, . . .].

In general, for A∗-comodules M and N , the change of rings isomorphism gives

Ext∗,∗A∗ (M,A//B∗ ⊗N) ∼= Ext∗,∗B∗ (M,N). (2.3.2)

3. The good/evil decomposition of the E1-term

The goal of this section is to analyze the E1-term of the tmf-resolution for Z. Using (1.0.4),
we have

tmfEn,t
1 (Z) = πt(tmfn+1 ∧ Z) ∼= k(2)t(tmf∧n). (3.0.3)

For this reason, we will need a tool to compute connective Morava K-theory.

3.1. Margolis homology

For a spectrum X, consider the Adams spectral sequence for k(n)∗X
assEs,t

2 = Exts,tA∗(F2, H∗k(n) ∧X) ⇒ k(n)t−s(X).



1256 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER AND Z. XU

Using (2.3.1) and the change of rings isomorphism (2.3.2), the E2-term of this Adams spectral
sequence takes the form

ExtA∗(F2, H∗k(n) ∧X) ∼= Ext∗,∗E[Qn]∗
(F2, H∗X).

Note that Ext of comodules over E[Qn]∗ is isomorphic to Ext of modules over E[Qn], using
the dual action of Qn on homology.

Ext∗,∗E[Qn]∗
(F2, H∗X) ∼= Ext∗,∗E[Qn](F2, H∗X).

Because the dual action of Qn on homology lowers degree, we will regard Qn as having degree
−2n+1 + 1.

Margolis (see [35, Part III]) introduced some general tools for computing such Ext groups
over exterior algebras.

Definition 3.1.1. Let M be a module over E[x]. Let kerx(M) be the kernel of
multiplication by x and imx(M) be its image. Define

H(M ;x) := kerx(M)/ imx(M).

Lemma 3.1.2. Let M be an E[x]-module, where x has degree k. Then there is a short exact
sequence

0 → imx(M) → Ext∗,∗E[x](F2,M) → F2[y] ⊗H(M ;x) → 0

for y in Ext1,k and imx(M) is regarded as a graded F2-vector space in cohomological degree zero.

Proof. Consider the standard free resolution of F2 as a E[x]-module, given by the differential
graded F2 algebra

E[x] ⊗ Γ[z],

where Γ denotes the divided power algebra, d(z) = x, and |z| = (−1, k) (here the first index
is the cohomological degree, which is negative because it is in positive homological degree).
Applying HomE[x](−,M), gives a cochain complex

C∗,∗(M) := F2[y] ⊗M

whose cohomology is ExtE[x](F2,M) where M has cohomological degree 0, y = z∗, |y| =
(1,−k), and

d(yn ⊗m) = yn+1 ⊗ x ·m.

We calculate

Hn,∗(C∗,∗(M)) =

{
H(M ;x){yn}, n > 0,
kerx(M), n = 0.

The result then follows from the short exact sequence:

0 → imx(M) → kerx(M) → H(M ;x) → 0. �

We will apply these results to the exterior algebra E[Qn].

Definition 3.1.3. Let M be an A(n)-module. The nth Margolis homology of M is
H(M ;Qn). If M = H∗(X), then we abbreviate H(H∗(X);Qn) as H(X;Qn).
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Since Qn is primitive, the action of Qn on the tensor product M ⊗N of A(n)-modules is
given by

Qn(a⊗ b) = Qn(a) ⊗ b + a⊗Qn(b).

From this, one can deduce the following lemma.

Lemma 3.1.4. Let M and N be A(n)-modules of finite type. Then

H(M ⊗N ;Qn) ∼= H(M ;Qn) ⊗H(N ;Qn).

Corollary 3.1.5. If M is an A(n)-module of finite type, then there is a short exact
sequence

0 → V k,∗(M) → Ext∗,∗E[Qn](F2,M
⊗k) → F2[vn] ⊗H(M ;Qn)⊗k → 0,

where

V k,∗(M) := imQn
(M⊗k).

The following result is a straightforward consequence of the fact that the action of Qn is a
derivation and

Qn(ζk) =

{
ζ2n+1

k−n−1 k � n + 1,
0 k < n + 1.

Lemma 3.1.6. There are isomorphisms

H(A//A(n)∗;Qn) ∼= F2[ζ2n

2 , ζ2n−1

3 , . . . , ζ2
n+1, ζ

2
n+2, ζ

2
n+3, . . .]/(ζ

2n+1

2 , ζ2n+1

3 , . . .)

and

H(A//E[Q0, . . . , Qn]∗;Qn) ∼= F2[ζ2
1 , ζ

2
2 , . . .]/(ζ

2n+1

1 , ζ2n+1

2 , . . .).

We end this section with a topological realization result (compare with [31, Theorem 2]).
The authors are very grateful to the referee for suggesting this streamlined formulation of the
result, and the proof is due to the referee.

Proposition 3.1.7. Let X be a connective spectrum with the property that the Margolis
homology H(X;Qn) is concentrated in even degrees. Then the Adams spectral sequence

assEs,t
2 (k(n) ∧X) = Exts,tE[Qn](F2, H∗X) ⇒ k(n)t−s(X)

collapses, and there are no exotic vn-extensions. There is a fiber sequence of k(n) modules

HVX → k(n) ∧X → KX ,

where

VX := imQn
(H∗X),

HVX is the generalized Eilenberg–MacLane spectrum associated to the graded F2-vector space
VX , and KX is a free k(n)-module with

π∗KX
∼= F2[vn] ⊗H(X;Qn).

This fiber sequence is natural in X with H∗(X;Qn) in even degrees. The fiber sequence is split,
but not naturally.
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Proof. By hypothesis, for s > 0, assEs,t
2 = 0 unless t− s is even. Thus non-zero differentials

must originate from assE0,t
2 with t odd. Since vn annihilates that vector space and assE∗,∗

2 is
vn-torsion free in positive cohomological degree, the ASS collapses.

There is an isomorphism

F2 ⊗k(n)∗ k(n)∗X ∼= assE0,∗
2

and a surjection

·vn : k(n)∗X/vn-torsion � assE1,∗
2 .

There is then a commutative diagram

The map V0 → VX is an isomorphism by a diagram chase.
This defines a natural inclusion of k(n)∗-modules

VX
∼= V0 ⊆ k(n)∗X.

A choice of basis for VX defines a map

HVX → k(n) ∧X

which, in the homotopy category of k(n)-modules, is independent of the choice. Any choice of
splitting of

VX → k(n)∗X → k(n)∗X/vn-torsion

can be realized in the category of k(n)-modules. �

3.2. The computation of the E1-term of the tmf-ASS for Z

Returning now to the computation of the E1-term tmfEn,∗
1 (Z) (3.0.1), we will compute the

classical ASS

Exts,tA∗(F2, H∗(k(2) ∧ tmf∧n)) =⇒ k(2)t−s(tmf∧n) = tmfEn,t−s
1 (Z). (3.2.1)

Defining

Cn,∗,∗
alg (Z) := F2[v2] ⊗H(A//A(2)∗, Q2)⊗n,

Lemma 3.1.2, Corollary 3.1.5, and Lemma 3.1.6 imply the following.

Proposition 3.2.2. There is a short exact sequence of F2[v2]-modules

0 → V n,∗,∗
alg (Z) → Ext∗,∗A∗ (F2, H∗k(2) ∧ tmf∧n) → Cn,∗,∗

alg (Z) → 0, (3.2.3)

where

Cn,∗,∗
alg

∼= F2[v2] ⊗
[
F2[ζ4

2 , ζ
2
3 , ζ

2
4 , . . .]/(ζ

8
2 , ζ

8
3 , . . .)

]⊗n

and V n,∗,∗
alg (Z) is a direct sum of shifted copies of functions F2 which are simple v2-torsion (that

is, v2 · x = 0 for all elements x) which are concentrated in Adams filtration zero:

V n,∗(Z) := V n,0,∗
alg (Z) = V n,∗,∗

alg (Z).

There is one subtle issue which we now must discuss: both sides of the equivalence

α : tmf ∧ Z
	−→ k(2) (3.2.4)
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have potentially different notions of v2-multiplication. The spectrum Z has a v2-self map

v2 : Σ6Z → Z

and k(2) has the multiplication-by-v2 map

·v2 : Σ6k(2) → k(2).

Since the self-map of Z is a K(2)-equivalence, and since π6(k(2)) only consists of two elements,
it is easy to see that the following diagram commutes.

That is, the two notions of ‘v2’ are the same when regarded as elements of π6. However, this
does not imply that the self map

1 ∧ v2 : Σ6tmf ∧ Z → tmf ∧ Z

is homotopic to the multiplication-by-v2 map on k(2), because the map 1 ∧ v2 does not
necessarily give a map of k(2)-modules under the equivalence (3.2.4).

However, all of our computations of tmfE∗,∗
1 (Z) will arise from the Adams spectral sequence,

and the following lemma makes it clear that on the level of the Adams spectral sequence the
two notions of v2-multiplication are the same. In particular, the ‘v2’ in Proposition 3.2.2 may
be taken to be the one coming from the v2-self map on Z.

Lemma 3.2.5. The diagram

commutes up to elements of higher Adams filtration.

Proof. The cofiber of the v2-self map on Z

Σ6Z
v2−→ Z → A2

is a spectrum whose cohomology is free of rank 1 over A(2). We therefore deduce that there is
a cofiber sequence

Σ6tmf ∧ Z
1∧v2−−−→ tmf ∧ Z → H.

Consider the following diagram of cofiber sequences

The right square in this diagram commutes, since H0(tmf ∧ Z) = F2 has no non-trivial
automorphisms. Therefore the dotted map β exists, making the diagram commute. Since
the top and bottom rows are cofiber sequences, β must be an equivalence. Since H∗k(2) is
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generated by the non-trivial element of H0k(2) as an A-module, α and β must induce the
same map on cohomology. Therefore the difference α− β is in positive Adams filtration, and
the result follows. �

Henceforth, by ‘v2’ we shall always be referring to the v2-multiplication arising from the
self-map on Z.

The following is an immediate corollary of Propositions 3.2.2 and 3.1.7.

Corollary 3.2.6. There is a short exact sequence of F2[v2]-modules

0 → V n,∗(Z) → tmfEn,∗
1 (Z) → Cn,∗(Z) → 0, (3.2.7)

where V ∗,∗(Z) is the module defined in Proposition 3.2.2, and

Cn,∗(Z) ∼= F2[v2] ⊗
[
F2[ζ4

2 , ζ
2
3 , ζ

2
4 , . . .]/(ζ

8
2 , ζ

8
3 , . . .)

]⊗n
.

3.3. The good and evil complexes

We now upgrade the decomposition of Corollary 3.2.6 to a short exact sequence of chain
complexes. The first observation is the following.

Proposition 3.3.1. The subspace V ∗,∗(Z) forms a subcomplex of tmfE∗,∗
1 (Z).

Proof. This follows from the fact that the subspace V ∗,∗(Z) is the subspace of v2-torsion,
and the differentials commute with v2-multiplication. �

We will call (V ∗,∗(Z), d1) the evil complex. Since (V ∗,∗(Z), d1) forms a sub-complex of
tmfE∗,∗

1 (Z), we can define C∗,∗(Z) to be the quotient complex

0 → V ∗,∗(Z) → tmfE∗,∗
1 (Z) → C∗,∗(Z) → 0.

We will call (C∗,∗(Z), d1) the good complex.
Abbreviate H∗,∗(V ) = H(V ∗,∗(Z), d1) and H∗,∗(C) = H(C∗,∗(Z), d1). There is a long exact

sequence

· · · → H∗,∗(V ) → tmfE∗,∗
2 (Z) → H∗,∗(C) ∂−→ H∗+1,∗(V ) → · · · . (3.3.2)

We will see that H∗,∗(C) can be almost completely computed, while H∗,∗(V ) is mysterious. We
call the elements of H∗,∗(V ) evil and those of H∗,∗(C) good.

In [7], we establish a method for computing H∗,∗(V ) in a range. The idea is to use the
tmf-Mahowald spectral sequence (MSS),

tmf
alg E

n,s,t
1 = Exts,tA (H∗(tmf∧n+1 ∧ Z),F2) ⇒ Exts+n,t

A (H∗(Z),F2) (3.3.3)

with

dr : tmf
alg E

n,s,t
r → tmf

alg E
n+r,s−r+1,t
r .

The construction of this spectral sequence is identical to that of [7]. The E1-term fits into an
exact sequence of chain complexes

0 → V ∗,∗,∗
alg (Z) → tmf

alg E
∗,∗,∗
1 → C∗,∗,∗

alg (Z) → 0

(see (3.2.3)) from which we obtain a long exact sequence

· · · → H∗,∗,∗(Valg) → tmf
alg E

∗,∗,∗
2 (Z) → H∗,∗,∗(Calg) ∂alg−−→ H∗+1,∗,∗(Valg) → · · · . (3.3.4)

We will compute the cohomology H∗,∗,∗(Calg) explicitly, and the abutment of the tmf-MSS
(3.3.3) can be computed through a range, for example, using Bruner’s program. From this,
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we can inductively deduce information about H∗,∗,∗(Valg), at least through a range. Further,
Hn,s,t(Valg) is concentrated in degree s = 0 and the identification of cochain complexes

V n,t(Z) ∼= V n,0,t
alg (Z)

implies

H∗,∗(V ) ∼= H∗,0,∗(Valg).

This isomorphism allows us to transfer information from the tmf-MSS to the tmf-ASS.
In order to understand tmfE∗,∗

2 (Z) and tmf
alg E

∗,∗,∗
2 (Z), the first step is to compute H∗,∗(C)

and H∗,∗,∗(Calg) (see Theorems 6.4.3 and 6.4.1 and Remark 6.4.4).

4. Morava stabilizer groups and algebras

Our goal will be to relate the good complex to the cobar complex for a certain subquotient σ̃(2)
of a form of the Morava stabilizer algebra — this will be done in Section 5. The purpose of this
section is to prepare some computations which we will use in the next section. Of particular
importance will be Proposition 4.3.1, which gives a computation of the action of the group

G48 := Aut(C) � Gal < G2

on the E2-homology of the finite complex Z.

4.1. The Morava stabilizer algebra

Historically, the forms of Morava K-theory K(n) and Morava E-theory En were typically
taken to be those associated to the Honda height n formal group Hn. In the case of K(n), it
is regarded as a formal group over Fp, and in the case of En it is regarded as a formal group
over Fpn . The Honda height n formal group law is characterized as the unique p-typical formal
group law with p-series given by [42, A2.1]

[p]Hn
(x) = xpn

.

Its endomorphism ring is given by

End(Hn) ∼= W(Fpn)〈S〉/(Sa = aσS, Sn = p),

where W(Fpn) is the Witt ring of Fpn , and σ is the lift of Frobenius. Every endomorphism
φ ∈ End(Hn) can be written uniquely as

a0 + a1S + a2S
2 + · · ·

with ai ∈ W(Fpn) satisfying ap
n

i = ai. The associated Morava stabilizer group is given by

Sn := Aut(Hn) = {
∑
i

aiS
i ∈ End(Hn) : a0 �= 0}.

Because we are using K(2), K2, and E2 to denote the forms of Morava K- and E-theory
associated to the formal group Ĉ, we will let K(2)′, K ′

2, E
′
2 denote the forms of Morava K- and

E-theory associated to the Honda height 2 formal group H2. The associated Morava stabilizer
algebra Σ(2) is the Hopf algebra over K(2)′∗ given by [42, Section 6.1]

Σ(2) := K(2)′∗ ⊗BP∗ BP∗BP ⊗BP∗ K(2)′∗

∼= F2[v±1
2 ][t1, t2, . . .]/(t4k − v2k−1

2 tk). (4.1.1)

The 2-periodic extension K ′
2 of K(2)′ has homotopy groups

(K ′
2)∗ ∼= F4[u±1]
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with |u| = −2 and

v2 = u−3.

We let

Σ2 := (K ′
2)∗ ⊗K(2)′∗ Σ(2)

denote the associated Hopf algebra over (K ′
2)∗.

Let

S2 =

⎧⎨⎩∑
i�0

aiS
i ∈ S2 : a0 = 1

⎫⎬⎭
denote the 2-Sylow subgroup of S2. The Morava stabilizer algebra (F4[u±1],Σ2) can be regarded
as an algebra of functions on S2:

Σ2
∼= Mapc(S2, (K2)∗)

∼= F4[u±1][t1, t2, . . .]/(t4k − v2k−1
2 tk). (4.1.2)

Here, Mapc denotes the continuous functions where S2 is given its profinite topology and (K2)∗
is given the discrete topology, and the functions tk are defined as

tk(1 + a1S + a2S
2 + · · · ) = aku

1−2k

. (4.1.3)

The coproduct ψ is determined by ψ(tk) =
∑

t′k ⊗ t′′k where

tk(g′g′′) =
∑

t′k(g
′)t′′k(g′′), g′, g′′ ∈ S2.

The cohomology of Σ2 was essentially studied by Ravenel in [42, Theorem 6.3.27], and
Ravenel’s approach to this computation will be used in Section 6 to give an essential foothold
in the computation of the cohomology of the good complex.

4.2. The elliptic Morava stabilizer group

We will begin this subsection with a discussion of the extended Morava stabilizer group
associated to the unique isomorphism class of supersingular elliptic curve C defined over F2,
and its relationship with both TMF and the more traditionally studied Morava stabilizer group
associated to the Honda height 2 formal group H2. We will then introduce a certain quotient
Σ2 of Σ2 associated to an open subgroup of this extended Morava stabilizer group.

We first recall some facts about the automorphism group of the supersingular elliptic curve
C, and its associated formal group. We refer to [6, 20] for more details in this context.

Over F4, the endomorphism ring of the elliptic curve C : y2 + y = x3 is the maximal order
(the Hurwitz integers)

End(C) = Z

{
1, i, j,

1 + i + j + k

2

}
in the quaternion algebra

D = Q〈i, j〉/(i2 = −1, j2 = −1, ij = −ji).

with k := ij [16, pp. 237–239]. Define

ω = −1
2
(1 + i + j + k).

Then we have

ω3 = 1, ω2 + ω + 1 = 0,
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and

ωiω2 = j, ωjω2 = k, ωkω2 = i.

The automorphism group of C is the subgroup of D× generated by

Q8 = {±1,±i,±j,±k}
and ω, so we have

G24 := Aut(C) = Q8 � C3.

We define

T := j − k ∈ End(C)

so we have

T 2 = −2.

Then D has the alternative presentation as

Q(ω)〈T 〉/(Ta = aσT, T 2 = −2), (4.2.1)

where ωσ = ω2 is the action of the Galois group

Gal := Gal(Q(ω)/Q) ∼= Gal(F4/F2) = 〈σ〉.
For example, i ∈ D can be expressed as 1

1+2ω (1 − T ) in (4.2.1).
Since the curve C is defined over F2, the Galois group Gal also acts on End(C), and hence

on Aut(C) and D. This action is encoded in the following lemma.

Lemma 4.2.2. The Galois action on an element x ∈ D is given by

xσ = −1
2
TxT.

Proof. As discussed in Section 2, the elliptic curve C admits a Weierstrass presentation

y2 + y = x3. (4.2.3)

This means that for an F2-algebra R, the R-points of the elliptic curve C is given by

C(R) = {(x, y) ∈ R2 : y2 + y = x3} ∪ {∞}.
The F4 points of C form a group isomorphic to F3 × F3. A basis for this F3-vector space is
given in (x, y) coordinates by

P1 := (0, 0),

P2 := (1, ω).

The generators i and ω of the group G24 = Aut(C) correspond to the automorphisms

i : (x, y) �→ (x + 1, y + x + ω2),

ω : (x, y) �→ (ω2x, y).

The induced action of these automorphisms on the F4-points of the curve C, with respect to
the basis (P1, P2), induces a representation

ρ : G24 ↪→ GL2(F3)
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with

ρ(i) =
[

0 1
−1 0

]
,

ρ(ω) =
[
1 −1
0 1

]
.

The Galois action on C(F4) extends the representation ρ to an isomorphism

ρ̃ : G48 := G24 � Gal
∼=−→ GL2(F3) (4.2.4)

given by

ρ̃(σ) =
[
1 0
0 −1

]
.

One can therefore use this isomorphism to deduce that

iσ = −i,

ωσ = ω2.

One easily checks from this

T σ = (j − k)σ

= (ωiω2 − ω2iω)σ

= ω2(−i)ω − ω(−i)ω2

= T.

From the presentation (4.2.1), every element x ∈ D takes the form

x0 + x1T

with xi ∈ Q(ω). We then compute

−1
2
TxT = −1

2
T (x0 + x1T )T

= −1
2
Tx0T − 1

2
Tx1T

2

= −1
2
T 2xσ

0 + Tx1

= xσ
0 + xσ

1T

= (x0 + x1T )σ

= xσ. �

The formal group of Ĉ has −2-series

[−2]
̂C(x) = x4.

The endomorphism ring of the formal group Ĉ is the maximal order

End(Ĉ) = W(F4)〈T 〉/(Ta = aσT, T 2 = −2)

in the 2-adic division algebra

D2 := D ⊗ Q2,
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where W(F4) = Z2[ω]/(ω2 + ω + 1) is the Witt ring. The associated Morava stabilizer group

S2 := Aut(Ĉ)

is the group of units in the order End(Ĉ). Since Ĉ is defined over F2, its automorphism group
S2 also gets an action of Gal, with Galois action given by

gσ = −1
2
TgT,

and we let
G2 := S2 � Gal

denote the resulting extended Morava stabilizer group. The subgroup G48 is a maximal finite
subgroup of G2.

It is observed in [6, Section 3.1; 20] that the formal group Ĉ and the Honda formal group
H2 have isomorphic endomorphism rings. Explicitly, one gets an isomorphism

End(Ĉ) ∼= End(H2)

by mapping

T �→ αS, (4.2.5)

where

α =
1 − 2ω√−7

∈ W(F4)

(for the choice of
√−7 ∈ Z2 with

√−7 ≡ 1 (mod 4)). The essential property of α is that

αασ = −1.

This induces an isomorphism

Aut(H2) ∼= Aut(Ĉ) = S2. (4.2.6)

However, this isomorphism is not Gal-equivariant!
Thus the group S2 admits two different Galois actions, one coming from the natural Galois

action on Aut(Ĉ) and one coming from the natural Galois action on Aut(H2) using the
isomorphism (4.2.6). We shall let

Gal < Aut(S2)

denote the subgroup generated by the Galois automorphism σ coming from C, and let

Gal′ < Aut(S2)

be the subgroup generated by the Galois automorphism σ′ coming from H2. The action of σ′

is given by

gσ
′
=

1
2
SgS.

We will denote the corresponding extended Morava stabilizer group by

G′
2 := S2 � Gal′ .

Lemma 4.2.7. For g ∈ S2, we have

gσ = −αgσ
′
ασ.

Proof. We compute

gσ = −1
2
TgT
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= −1
2
αSgαS

= −α
1
2
SgSασ

= −αgσ
′
ασ. �

The inclusion of G24 in S2 gives a splitting of the short exact sequence

1 → K → S2 → G24 → 1,

where K is the open normal subgroup of S2

K = {1 + a2S
2 + a3S

3 + · · · ∈ S2 : a2 ∈ {0, ω}} (4.2.8)

discussed at length in [5, Section 2.5].
The inclusion of groups

K ↪→ S2

corresponds to a quotient of Hopf algebras

Σ2 → Σ2

where

Σ2 = Mapc(K,F4[u±])

∼= Σ2/(t1, ωv2t2 + t22)
(4.2.9)

(compare with [42, Proposition 6.3.30], but Ravenel’s choice of K is Galois conjugate to ours).

4.3. The Morava E-homology of Z

In this subsection, we will use the computations of [12] to derive the following result (where
G48 is the group (4.2.4)).

Proposition 4.3.1. There is an isomorphism of G48-modules

(E2)∗Z ∼= CoIndG48
C3�GalF4[u±1],

where C3 � Gal acts on F4[u±1] via

ω∗(λuk) = λωkuk, σ∗(λuk) = λσuk.

Corollary 4.3.2. There is an isomorphism of Q8-modules

(E2)∗Z ∼= CoIndQ8
1 F4[u±1].

The proof of Proposition 4.3.1 will require some preliminary recollections from [12]. Recall
we are using E′

2 to denote the Morava E-theory spectrum associated to the Honda height 2
formal group over F4. The spectrum E′

2 has an action of the extended Morava stabilizer group
G′

2 = S2 � Gal′ of the previous subsection.
The third author and Egger computed (E′

2)∗Z as

(E′
2)∗Z ∼= F4[u±]{x̄0, x̄2, x̄4, x̄6, ȳ6, ȳ8, ȳ10, ȳ12}, |x̄i| = |ȳi| = 0, (4.3.3)

with an explicit action of S2 [12, Table 1]. Since the generators ui/2x̄i and ui/2yi are in the
image of the map

BP∗Z → (E′
2)∗Z,
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they have trivial action of the Galois group Gal′, and therefore Gal′ acts on (4.3.3) by acting
on F4. Following the proof of [12, Theorem 4.12], we see that for any x ∈ (E′

2)0Z with

x = ȳ12 + α0x̄0 + α2x̄2 + α4x̄4 + α6x̄6, αi ∈ F4 (4.3.4)

we have†

(E′
2)0Z = F4[Q8]{x}. (4.3.5)

Proof of Proposition 4.3.1. Let Ē2 denote the Morava E-theory associated to the height 2
Honda formal group over the algebraic closure F̄2, with action of

Ḡ′
2 = S2 � Gal(F̄2/F2).

Let σ′ denote the Frobenius, regarded as a generator of Gal(F̄2/F2), acting on S2 as in the
previous subsection. Then we have

E′
2 � Ē

h〈(σ′)2〉
2 .

Since the formal group of the elliptic curve C is isomorphic to the Honda formal group over
F̄2, we deduce that the associated Morava E-theory is the same, but the action of the Galois
group is different. The calculations of the previous subsection imply that if we define

σ := ασ′ ∈ Ḡ′
2,

then the Morava E-theory associated to the formal group of C over F4 is given by

E2 � Ē
h〈(σ)2〉
2 .

Since σ4 = (σ′)4, we deduce that E2 and E′
2 have the common extension

E′′
2 := Ē

h〈σ4〉
2 .

We therefore have

(E′′
2 )0Z = F16 ⊗F4 (E′

2)0Z ∼= F16[Q8]{x}
for any x of the form (4.3.4) (with αi ∈ F16). Let ω̃ ∈ F×

16 be a generator, so that

ω̃σ4
= ω̃16 = ω̃.

Since ω̃ + ω̃4 ∈ F4, we can take ω̃ so that

ω̃ + ω̃4 = ω ∈ F4.

Define

x := ȳ12 + (1 + ω̃4 + ω̃8)x̄6 + (a + b)(ω̃ + ω̃8)x̄0

(where a, b ∈ F2 are those associated to the choice of Z ∈ Z̃ as in [12, Lemma 3.5]). Then it
follows from [12, Table 1] and

α = 1 + 2ω mod 4

that

(1) σ = ασ′ acts trivially on x;
(2) 〈ω〉 = C3 < S2 acts trivially on x;
(3) x generates (E′′

2 )0Z as a free F16[Q8]-module.

†In the notation of [12], we have x = k · c′3 + terms involving ci, where k ∈ Q8 is the unit quaternion.
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It follows that x generates

(E2)0Z ∼= [(E′′
2 )0Z]〈σ

2〉

as an F4[Q8]-module. This, together with (1) and (2) above, implies

(E2)∗Z ∼= CoIndG48
C3�GalF4[u±1] ∼= MapC3�Gal(G48,F4[u±1]). �

While Proposition 4.3.1 describes (E2)∗Z as a G48-module, it is natural to ask for a similar
description of (E2)∗Z as a G2-module. The following proposition does almost that: it computes
(E2)∗Z as an S2-module using the subgroup K (4.2.8).

Proposition 4.3.6. There is an isomorphism of S2-modules

(E2)∗Z ∼= CoIndS2
C3�KF4[u±1].

Corollary 4.3.7. There is an isomorphism of S2-modules

(E2)∗Z ∼= CoIndS2
K F4[u±1].

Remark 4.3.8. It is tempting to look for an analog of Proposition 4.3.6 which also
incorporates the Galois action, but this is complicated by the fact that the subgroup K is
not Galois invariant.

Proof. Using the notation of Proposition 4.3.1, consider the diagram

Since the generators

ui/2x̄i, u
i/2ȳi ∈ (E′

2)∗Z

of (4.3.3) come from BP∗Z, it follows that

(E2)∗Z ∼= F4[u±1]{x̄0, x̄2, x̄4, x̄6, ȳ6, ȳ8, ȳ10, ȳ12}. (4.3.9)

The action of S2 on (4.3.9) is computed in [12, Table 1]. In particular, it is easy to check that
the map

π : (E2)∗Z → F4[u±1]

given by

π(α0x̄0 · · ·α6x̄6 + β0ȳ6 + · · · + β12ȳ12) = β12

is C3 � K-equivariant. Thus it induces a S2-equivariant map

π̃ : (E2)∗Z → CoIndS2
C3�KF4[u±1].

This can be checked to be an isomorphism using (4.3.5) and the fact that the composite

Q8 → S2 → S2/(C3 � K)

is an isomorphism. �
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5. Computation of the differentials in the good complex

The main result of this section (Definition 5.2.6, Theorem 5.2.8) is that there is a sub-Hopf
algebra

(k(2)∗, σ̃(2)) ⊂ ((K2)∗,Σ2)

such that the good complex is isomorphic to the associated cobar complex [42, Defini-
tion A1.2.11]:

C∗,∗(Z) ∼= C∗
σ̃(2)(k(2)∗).

5.1. The good complex as a subcomplex of the cobar complex of Σ2

The map tmf → TMF induces a map of spectral sequences
tmfE∗,∗

r (Z) → TMFE∗,∗
r (Z). (5.1.1)

The kernel of tmfE∗,∗
1 (Z) → TMFE∗,∗

1 (Z) is V ∗,∗(Z) and the image is

C∗,∗(Z) ⊆ TMFE∗,∗
1 (Z).

We will now show the complex TMFE1(Z) can be regarded as a subcomplex of the cobar
complex for the Hopf algebra Σ2. The first step will be to express the E1-term in terms of the
Morava stabilizer group (Corollary 5.1.4).

For a profinite set T = lim←−i
Ti and an abelian group M , let

Mapc(T,M) = lim←−Map(Ti,M)

denote the abelian group of continuous maps, where T is given the profinite topology, and M
is given the discrete topology. If G is a group which acts on T and on M , then there is an
induced conjugation action on Mapc(T,M), given by

(g · f)(t) = gf(g−1t)

for g ∈ G, f ∈ Mapc(T,M), and t ∈ T .

Lemma 5.1.2. There is a G2-equivariant isomorphism

(E2)∗(TMF ∧ Z) ∼= Mapc(G2/G48, (E2)∗Z)

(where G2 acts on Mapc by the conjugation action on functions), and this leads to an
isomorphism

π∗TMF ∧ TMF ∧ Z ∼= Mapc
C3�Gal(G2/G48,F4[u±1])

where Mapc
C3�Gal(G2/G48,F4[u±1]) denotes the C3 � Gal equivariant continuous maps.

Proof. Since Z is a type 2 complex, X ∧ Z is K(2)-local for any E(2)-local spectrum X (see
proof of [25, Lem. 7.2]). In particular, (2.2.3) implies

TMF ∧ Z � EhG48
2 ∧ Z. (5.1.3)

Using the fact that for finite groups, homotopy fixed points and homotopy orbits of K(2)-local
spectra are K(2)-locally equivalent [29], we get

TMF ∧ TMF ∧ Z � EhG48
2 ∧ EhG48

2 ∧ Z � (E2 ∧ (EhG48
2 ∧ Z))hG48 .

We use the homotopy fixed point spectral sequence

Hs(G48, (E2)t(EhG48
2 ∧ Z)) =⇒ πt−sTMF ∧ TMF ∧ Z.
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By [4, Corollary 2.1],

(E2)∗(EhG48
2 ∧ Z) ∼= (E2)∗(E2 ∧ Z)hG48 ∼= Mapc(G2/G48, (E2)∗Z)

with action of G48 given by the conjugation action on functions. Since we have an isomorphism
of G48-modules

(E2)∗Z ∼= CoIndG48
C3�GalF4[u±1] ∼= MapC3�Gal(G48,F4[u±1]),

it follows that

(E2)∗(E2 ∧ Z)hG48 ∼= MapC3�Gal(G48,Mapc(G2/G48,F4[u±1])).

In particular, the E2-term of the homotopy fixed point spectral sequence is

H∗(G48, (E2)∗(E2 ∧ Z)hG48) ∼= H∗(C3 � Gal,Mapc(G2/G48,F4[u±1])).

Since C3 has order coprime to 2 and Gal acts freely on F4, the E2-term is concentrated in
degree s = 0, and is given by

Mapc(G2/G48,F4[u±1])C3�Gal.

The spectral sequence collapses, giving the result. �

Corollary 5.1.4. For s � 1, there is a G2-equivariant isomorphism

(E2)∗(TMF∧s ∧ Z) ∼= Mapc((G2/G48)×s, (E2)∗Z)

with the diagonal action on (G2/G48)×s and action on Mapc the conjugation action on
functions. This leads to an isomorphism

TMFEs,∗
1 (Z) ∼= π∗TMF∧s+1 ∧ Z ∼= Mapc

C3�Gal(G2 ×G48 · · · ×G48 G2︸ ︷︷ ︸
s

/G48,F4[u±1]).

The left action of C3 � Gal on

G2 ×G48 · · · ×G48 G2/G48

is via by left multiplication on the first factor of G2.

Proof. We proceed by induction on s. The case of s = 1 is Lemma 5.1.2. Suppose that the
claim holds for s− 1. Then

E2 ∧ TMF∧s ∧ Z � E2 ∧ EhG48
2 ∧ TMF∧(s−1) ∧ Z

� (E2 ∧ E2 ∧ TMF∧(s−1) ∧ Z)hG48 ,

where G48 acts on the second copy of E2. The E2-page of the homotopy fixed point spectral
sequence is given by

H∗(G48, (E2)∗(E2 ∧ TMF∧(s−1) ∧ Z)).

Furthermore,

(E2)∗(E2 ∧ TMF∧(s−1) ∧ Z) ∼= Mapc(G2, (E2)∗TMF∧(s−1) ∧ Z)

∼= Mapc(G2,Mapc((G2/G48)×(s−1), (E2)∗Z)).
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It follows that

H∗(G48, (E2)∗(E2 ∧ TMF∧(s−1) ∧ Z)) ∼= H0(G48, (E2)∗(E2 ∧ TMF∧(s−1) ∧ Z))

∼= Mapc((G2/G48)×s, (E2)∗Z),

which proves the first claim.
Next,

TMF∧(s+1) ∧ Z � (E2 ∧ TMF∧s ∧ Z)hG48 .

We use the homotopy fixed point spectral sequence again, together with the fact that

(E2)∗(TMF∧s ∧ Z) ∼= Mapc((G2/G48)×s, (E2)∗Z)

∼= Mapc((G2/G48)×s,MapC3�Gal(G48,F4[u±1]))

∼= MapC3�Gal(G48,Mapc((G2/G48)×s,F4[u±1])).

The proof of the first isomorphism is finished in a way analogous to that of Lemma 5.1.2.
For a group G, a subgroup H � G, and a G-set X, the shearing isomorphism is the

isomorphism

G×H X
∼=−→ G/H ×X,

(g, x) �→ (g, gx).

Note that the shearing isomorphism is G-equivariant, where G acts on the source through its
action on the left factor, and G acts on the target through the diagonal action.

Iterating the shearing isomorphism yields a G2-equivariant isomorphism

G2 ×G48 · · · ×G48 G2︸ ︷︷ ︸
s

/G48
∼= (G2/G48)×s,

and we therefore have an isomorphism

Mapc
C3�Gal((G2/G48)×s,F4[u±1]) ∼= Mapc

C3�Gal(G2 ×G48 · · · ×G48 G2︸ ︷︷ ︸
s

/G48,F4[u±1]).
�

It is not immediately clear how the groups

Mapc
C3�Gal(G

×G48s
2 /G48,F4[u±1])

in Corollary 5.1.4 form a cochain complex. We will now address this by showing that they are
a subcomplex of the E2-based Adams spectral sequence for Z.

The map of spectra TMF → E2 induces a map of Adams spectral sequences. The induced
map on E1-terms

TMFE1(Z) → E2E1(Z)

is given by the canonical inclusion

Mapc
C3�Gal(G

×G48s
2 /G48,F4[u±1]) ∼= Mapc

G48
(G×G48s

2 /G48,CoIndG48
C3�GalF4[u±1])

⊆ Mapc(Gs
2,CoIndG48

C3�GalF4[u±1]),

where, by Proposition 4.3.1, the latter is the cobar complex for G2 acting on (E2)∗Z:

Cs
G2

((E2)∗Z) ∼= E2Es,∗
1 (Z).
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In particular, the differential in the cobar complex for G2 restricts to give the differential on
the subcomplex

Mapc
C3�Gal(G

×G48s
2 /G48,F4[u±1]) ⊆ Mapc(Gs

2, (E2)∗Z).

We now have the following lemma.

Lemma 5.1.5. There is an embedding of cochain complexes

TMFE1(Z) ⊂ C∗
Σ2

((K2)∗),

where C∗
Σ2

((K2)∗) is the cobar complex of the Hopf algebra ((K2)∗,Σ2) of (4.2.9).

Proof. The injection comes from the map (∗) in the following diagram

where α is the natural inclusion, β is the composite coming from the isomorphism of
Corollary 4.3.2:

β : Mapc(G×G48s
2 /G48,F4[u±1]) ∼= Mapc

Q8
(G×G48s

2 /G48,CoIndQ8
1 F4[u±1])

∼= Mapc
Q8

(G×G48s
2 /G48, (E2)∗Z)

↪→ Mapc(G×G48s
2 /G48, (E2)∗Z),

and γ is the composite coming from the isomorphism of Corollary 4.3.7:

γ : Mapc(Gs
2, (E2)∗Z) → Mapc(Ss

2 , (E2)∗Z)

∼= Mapc(Ss
2 ,CoIndS2

K F4[u±1])

→ Mapc(Ks,CoIndS2
K F4[u±1])

(ev1)∗−−−−→ Mapc(Ks,F4[u±1]).

Here, (ev1)∗ is the map induced by the evaluation at 1 ∈ S2 map:

ev1 : CoIndS2
K F4[u±1] = MapK(S2,F4[u±1]) → F4[u±].

The map γ is easily seen to be a map of cochain complexes. The discussion prior to the
statement of this lemma implies that the composite β ◦ α is a map of cochain complexes. This
implies that (∗) is a map of cochain complexes. It follows from the fact that the composite

K → G2 → G2/G48 (5.1.6)

is a homeomorphism that the composite γ ◦ β is an isomorphism. Since α is injective, we deduce
that (∗) is injective. �
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5.2. The sub-Hopf algebra Σ̃(2) ⊂ Σ2Σ̃(2) ⊂ Σ2Σ̃(2) ⊂ Σ2

We shall now study a sub-Hopf algebra (K(2)∗, Σ̃(2)) of the Hopf algebra ((K2)∗,Σ2) of (4.2.9)
such that the image of TMFE1(Z) in the cobar complex for Σ2 is the cobar complex for Σ̃(2).

Define Hopf algebras

Σ̃(2) ⊂ Σ(2) ⊂ Σ2

by letting Σ̃(2) be the image of the map

Mapc
C3�Gal(G2/G48,F4[u±1]) ↪→ Mapc(K,F4[u±1]) = Σ2

and letting Σ(2) be the image of the map

Mapc
C3

(G2/G48,F4[u±1]) ↪→ Mapc(K,F4[u±1]) = Σ2.

Under the isomorphism

Mapc(G2/G48,F4[u±]) ∼= Mapc(K,F4[u±]) = Σ2

coming from the homeomorphism (5.1.6), the conjugation action of C3 � Gal on
Mapc(G2/G48,F4[u±]) induces an action of C3 � Gal on Σ2 such that

Σ(2) = Σ
C3

2 ,

Σ̃(2) = Σ(2)Gal = Σ
C3�Gal

2 .

We now compute this action of C3 � Gal on

Σ2 = F4[u±1][t̄2, t̄3, . . .]/(t̄22 + ωv2t̄2, t̄
4
k + v2k−1

2 t̄k). (5.2.1)

Here we use t̄k to denote the image of tk ∈ Σ2 (see 4.1.3) in Σ2. Let σ be the generator of Gal,
and we will denote the generator of C3 ⊂ G2 by ω, our fixed choice of third root of unity.

Recall [5] that elements x ∈ K can be written as

x = 1 + a2S
2 + a3S

3 + · · ·
with a2 ∈ {0, ω} and ai ∈ {0, 1, ω, ω2} for i > 2. The function

t̄i ∈ Σ2 = Mapc(K,F4[u±1])

is given on elements x as above by the formula

t̄i(x) = aiu
1−2i

.

Under the isomorphism

Mapc(K,F4[u±1]) ∼= Mapc(G2/G48,F4[u±1]),

the function t̄i is given on a coset gG48 by

t̄i(gG48) = ti(x), (5.2.2)

where x is the unique element of K so that xG48 = gG48.
Note that C3 acts on F4[u±1] through F4-algebra maps by the formula

ω · u = ωu

and Gal acts through the Galois action on F4, so

F4[u±1]C3�Gal = F2[v±1
2 ].
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Lemma 5.2.3. The functions t̄k ∈ Σ2 are C3 equivariant, so the conjugation action of C3

on t̄k is trivial.

Proof. We have (for a2 ∈ {0, ω}):
t̄k(ω(1 + a2S

2 + a3S
3 + · · · )G48) = t̄k((ω + ωa2S

2 + ωa3S
3 + · · · )G48)

= t̄k((ω + ωa2S
2 + ωa3S

3 + · · · )ω2G48)

= t̄k((1 + a2S
2 + ω2a3S

3 + · · · )G48)

=

{
aku

1−2k

, k even,
ω2aku

1−2k

, k odd

= ω · aku1−2k

= ω · t̄k((1 + a2S
2 + a3S

3 + · · · )G48). �

Corollary 5.2.4. The sub-Hopf algebra Σ(2) ⊂ Σ2 is given by

Σ(2) = F4[v±1
2 ][t̄2, t̄3, . . .]/(t̄22 + ωv2t̄2, t̄

4
k + v2k−1

2 t̄k).

Lemma 5.2.5. We have

σ · t̄2 = ωt̄2

and the element t̃2 := ω2t̄2 ∈ Σ(2) is Galois invariant.

Proof. For a2 ∈ {0, ω}, we compute the conjugation action on t̄2 (5.2.2) using the fact that
σ−1 = σ, Lemma 4.2.7, and the fact that α ≡ 1 (mod 2):

(σ · t̄2)((1 + a2S
2 + · · · )G48) = σ[t̄2(σ(1 + a2S

2 + · · · )G48)]

= σ[t̄2(−α(1 + aσ2S
2 + · · · )ασG48)]

= σ[t̄2((1 + aσ2S
2 + · · · )G48)]

=

{
σ[t̄2((1 + 0S2 + · · · )G48)], a2 = 0,
σ[t̄2((1 + ω2S2 + · · · )G48)], a2 = ω.

Now if a2 = 0, it follows

σ[t̄2(σ(1 + 0S2 + · · · )G48)] = 0

= ωt̄2((1 + 0S2 + · · · )G48).

However, if a2 = ω, the element

(1 + ω2S2 + · · · )
is not in K, and we have to rectify this by adjusting it by right multiplication with

−1 = 1 + S2 + S4 + · · · ∈ G2

to get it into K. We have

σ[t̄2((1 + ω2S2 + · · · )G48)] = σ[t̄2((1 + ω2S2 + · · · )(−1)G48)]

= σ[t2((1 + ω2S2 + · · · )(−1))]
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= σ[ωu−3]

= ω2u−3

= ωt̄2((1 + ωS2 + · · · )G48). �

Definition 5.2.6. Define σ̃(2) to be the image of the composite

π∗tmf ∧ tmf ∧ Z → π∗TMF ∧ TMF ∧ Z ↪→ Σ(2).

Lemma 5.2.7. The Hopf algebra structure on (F4[v±1
2 ],Σ(2)) restricts to a Hopf algebra

structure on (k(2)∗, σ̃(2)).

Proof. The only thing which is not obvious is that the coproduct of Σ(2) restricts to a
coproduct on σ̃(2). Using the fact that tmf ∧ Z � k(2), it suffices to consider the diagram,
where � is the unit:

Since (∗) is an isomorphism after inverting v2, it follows that maps (1) and (2) have isomorphic
images. The result follows. �

We will now explain how σ̃(2) has a decreasing ‘Adams filtration’. Recall that we have
assEs,t

2 (tmf ∧ tmf ∧ Z) ∼= assEs,t
2 (k(2) ∧ tmf)

∼= F2[v2][ζ4
2 , ζ

2
3 , ζ

2
4 , . . .]/(ζ

8
i )

⊕ simple v2-torsion in the s = 0 line.

Here the generators lie in (t− s, s) bidegrees:

|ζ4
2 | = (12, 0),

|ζ2
i | = (2(2i − 1), 0),

|v2| = (6, 1).

The Adams spectral sequence collapses, and endows k(2)∗tmf with its Adams filtration.
The v2-Bockstein filtration on k(2)∗tmf is the decreasing filtration given by

{(vi2)k(2)∗tmf}.
The Adams filtrations and v2-Bockstein filtrations on k(2)∗tmf agree. This implies that if we
endow Σ(2) with a decreasing multiplicative Adams filtration where we declare that v2 has
Adams filtration 1 and that ti has Adams filtration 0, then the map

k(2)∗tmf → Σ(2)

preserves Adams filtration, and therefore the image of this map σ̃(2) inherits an Adams
filtration which is compatible with that of k(2)∗tmf and Σ(2).
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Theorem 5.2.8. The Hopf algebra σ̃(2) ⊂ Σ(2) has the form

σ̃(2) = F2[v±1
2 ][t̃22, t̃3, . . .]/((t̃

2
2)

2 = v2
2 t̃

2
2, t̃

4
k = terms with Adams filtration > 0),

where t̃22 = (ω2t̄2)2 and for k � 3

t̃k = t̄k + terms of higher Adams filtration.

There is an isomorphism of cochain complexes

C∗,∗(Z) ∼= C∗
σ̃(2)(k(2)∗).

Proof. By Lemma 5.1.5, it suffices to establish that the image of the map

π∗tmf∧n+1 ∧ Z → TMFE1(Z) ↪→ C∗
Σ(2)

(K(2)∗)

is what we claim it is. We focus on the case of n = 2; it will be apparent that the general case
is essentially the same. By Lemma 3.1.6 and Proposition 3.1.7, the ASS

assEs,t
2 (k(2) ∧BP 〈2〉) ⇒ k(2)t−sBP 〈2〉

has E2 term

assEs,t
2 (k(2) ∧ tmf) ∼= F2[v2][ζ2

1 , ζ
2
2 , ζ

2
3 , . . .]/(ζ

8
i )

⊕ simple v2-torsion in the s = 0 line.

The images of the elements ti ∈ BP∗BP under the map

BP∗BP → k(2)∗BP 〈2〉 (5.2.9)

(where BP 〈2〉 is the Wilson spectrum of (2.2.4)) are detected by ζ2
i in the ASS for k(2)∗BP 〈2〉.

In particular, the elements ti ∈ k(2)∗BP 〈2〉 have Adams filtration 0.
Since the Adams filtration and v2-Bockstein filtration on k(2)∗tmf agree, an element in

K(2)∗tmf ∼= K(2)∗TMF is in the image of the map

tmfE1,∗
1 (Z) ∼= k(2)∗tmf → v−1

2 k(2)∗tmf ∼= K(2)∗TMF ∼= TMFE1,∗
1 (Z)

if and only if it is detected (in the localized Adams spectral sequence) by an element in the
image of the map

assE2(k(2)∗tmf) → v−1
2

assE2(k(2)∗tmf).

Consider the commutative diagram coming from the map (2.2.5)

(5.2.10)

We wish to determine which v2 multiple of t̃2 is in positive Adams filtration. To that end, we
must compute the image of t̃2 under map (3) in (5.2.10). This is tantamount to computing, for
g ∈ G2, the value t̃2(gG48). Since we have already established t̃2 is C3 � Gal-equivariant, we
may assume

g = 1 + a1S + a2S
2 + · · · .
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Write a1 = αω + βω2 with α, β ∈ F2. Using the fact that the elements j and k in G48 are given
by

j = 1 + ω2S + ωS2 + · · ·
k = 1 + ωS + ωS2 + · · ·

(see [5]) we compute:

t̃2(gG48) = t̃2((1 + (αω + βω2)S + a2S
2 + · · · )G48)

= t̃2((1 + (αω + βω2)S + a2S
2 + · · · )kαjβG48)

= t̃2((1 + (a2 + (α + β) + αβω2)S2 + · · · )G48).

Let

Tr,N : F4 → F2

be the trace and norm, respectively, so that Tr(a) = a + aσ and N(a) = aaσ. From the definition
of t̃2, we find

t̃2((1 + a2S
2 + · · · )G48) = Tr(a2)u−3.

It follows from the above calculation that

t̃2((1 + a1S + a2S
2 + · · · )G48) = (Tr(a2) + N(a1))u−3.

Thus the image of t̃2 under map (3) in (5.2.10) is the image of

t2 + t22v
−1
2 + t31

under map (2). Since the elements ti ∈ k(2)∗BP 〈2〉 all have Adams filtration 0, it follows that
v2t̃2 = t̃22 ∈ K(2)∗TMF lifts to an element

t̃22 = v2t2 + t22 + v2t
3
1 (5.2.11)

of k(2)∗tmf.
For k � 3, we define t̃k ∈ σ̃(2) to be the image of an element of k(2)∗tmf detected by ζ2

k .
Since in the Adams spectral sequence for k(2)∗BP 〈2〉 the element ζ2

k detects tk, we deduce
that the image of t̃k under (1) satisfies

t̃k = tk + terms of positive Adams filtration.

The result for n = 2 follows.
Similar reasoning shows that the image of

tmfEn,∗
1 (Z) ∼= k(2)∗tmf∧n → K(2)∗TMF∧n = Σ̃(2)⊗K(2)∗n ∼= TMFEn,∗

1 (Z)

is σ̃(2)⊗k(2)∗n. �

Remark 5.2.12. Note that while we do not know the full structure of σ̃(2) because of the
complicated action of Gal on Σ(2), we do completely know the structure of σ(2) := σ̃(2) ⊗ F4 ⊂
Σ(2):

σ(2) = F4[v2][t̃22, t̄3, . . .]/((t̃
2
2)

2 + v2
2 t̃

2
2, t̄

4
k + v2k−1

2 t̄k). (5.2.13)
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6. The cohomology of the good complex

In the previous section, we established that

C∗,∗(Z) ∼= C∗
σ̃(2)(k(2)∗).

In this section, we will compute the E1-term of a spectral sequence which computes the
cohomology

H∗(σ̃(2)) := H∗(C∗
σ̃(2)(k(2)∗)) ∼= H(C∗,∗(Z)) =: H∗,∗(C).

In our low-dimensional range, it will turn out that there are no possible differentials in this
spectral sequence.

6.1. Overview of the strategy

Recall from the previous section that we really only have a complete understanding of the base
change

σ(2) := σ̃(2) ⊗ F4 (6.1.1)

and we only know the generators of σ̃(2) in σ(2) modulo terms of higher Adams filtration. Our
approach to understanding H∗(σ̃(2)) will be to understand aspects of the cohomology of σ(2),
and then to infer results about the cohomology of σ̃(2).

Our method of computing the cohomology of σ(2), and comparing it with the cohomology
of σ̃(2), will be to adapt a filtration employed by Ravenel to compute the cohomology of the
Morava stabilizer algebras. This filtration will result in a pair of May-type spectral sequences,
which we refer to as May–Ravenel spectral sequences:

The E1-terms MRE1 will be computed by endowing EMR
0 σ̃(2) and EMR

0 σ(2) with Adams
filtrations, resulting in a pair of Adams filtration spectral sequences (AFSS)

Table 1. List of Hopf algebras and where
to find them. Our convention is to use the
bar to remind the reader that we have taken
a quotient. A symbol with a tilde denotes
a sub-algebra of the same symbol with a
bar. The lowercase denotes the respective
connective versions.

Name Location

Σ(2) (4.1.1)
Σ2 (4.1.2)
Σ2 (4.2.9) & (5.2.1)
Σ(2) Corollary 5.2.4
˜Σ(2) Section 5.2
σ(2) (6.2.1)
σ(2) (5.2.13)
σ̃(2) Definition 5.2.6 & Theorem 5.2.8
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The May–Ravenel E1-term MRE1(σ(2)) is the cohomology of a certain restricted Lie algebra
l(2). This cohomology may be computed by a Chevallay–Eilenberg complex, whose differentials
were explicitly computed by Ravenel. The key observations which we employ are:

(1) the Chevallay–Eilenberg complex for l(2) is isomorphic to AFE1(σ(2));
(2) the differentials in the Adams filtration spectral sequence {AFEr(σ(2))} are determined

by the differentials in the Chevallay–Eilenberg complex;
(3) the image of AFE1(σ̃(2)) in AFE1(σ(2)) can be computed precisely, since we know the

generators of σ̃(2) modulo terms of higher Adams filtration. This allows us to completely
compute the differentials in the Adams filtration spectral sequence {AFEr(σ̃(2))}.

Even with knowing the differentials, the combinatorics for computing the spectral sequence
{AFEr(σ(2))} is complicated. The computation of the spectral sequence {AFEr(σ(2))} will be
facilitated by refining the Adams filtration with a lexicographical filtration. This results in a
lexicographical filtration spectral sequence (LFSS)

AFE1(σ(2)) = LFE0(σ(2)) ⇒ MRE1(σ(2)).

We will completely compute the LFSS spectral sequence, deduce from this the AFSS for σ(2),
deduce from that the AFSS for σ̃(2), and thus completely compute MRE1(σ̃(2)). In the low-
dimensional range, we consider for our application, there will be no possible differentials in the
May–Ravenel spectral sequence

MRE1(σ̃(2)) ⇒ H∗(σ̃(2)).

6.2. The May–Ravenel spectral sequence

Let (F2, S(2)) be the Hopf algebra obtained from (K(2)∗,Σ(2)) by setting v2 = 1. In [42,
Chapter 3], Ravenel computed

H∗(S(2)) = Ext∗S(2)(F2,F2).

The computation for (K(2)∗,Σ(2)) and ((K2)∗,Σ2) can be done using similar methods and all
differentials follow from Ravenel’s work by reintroducing the grading. We begin by summarizing
Ravenel’s method, which we then apply to our cases.

In [42, Section 4.3], Ravenel defines a filtration of Hopf algebroids on BP∗BP/IN .
Specializing to the case of N = p = 2, this induces a filtration on (k(2)∗, σ(2)), where

σ(2) = F2[v2][t1, t2, . . .]/(t4k − v2k−1
2 tk). (6.2.1)

There is a unique increasing multiplicative filtration (which we call the May–Ravenel filtration)
on σ(2) such that

degMR(v2) = 0,

degMR(t2
j

1 ) = 1,

degMR(t2
j

2k+1) = 3 · 2k−1, k > 0,

degMR(t2
j

2k) = 2k.
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Further, Ravenel [42, 4.3.24] proves that this is a filtration of Hopf algebroids, so that the
associated graded E0(σ(2)) is a Hopf algebra. It is given by the exterior algebra

E0(σ(2)) ∼= F2[v2] ⊗ E[ti,j : 0 < i, j ∈ {0, 1}]
where ti,j is the image of t2

j

i .
From this filtration, we get a May type spectral sequence, which we call the May–Ravenel

spectral sequence:
MREs,t,f

1 (σ(2)) =⇒ Hs(σ(2))t.

Here s is the cohomological degree, t is the internal degree, and f is the May–Ravenel filtration.
The first step is to compute MRE1(σ(2)).

Let E0(σ(2)) be the F2-linear dual of E0(σ(2)) and xi,j be the dual of ti,j . Since the functions
ti,j form a basis of the indecomposables of E0(σ(2)), it follows that xi,j forms a basis for the
restricted Lie algebra of primitives

l(2) := PE0(σ(2))

and MRE1 = H∗(l(2)). Applying the methods of [37, Remark 10], we obtain a Chevallay–
Eilenberg cochain complex

C∗,∗,∗
CE (l(2)) := F2[v2] ⊗ F2[hi,j : 0 < i, 0 � j � 1]

for elements hi,j of cohomological degree s = 1, internal degree t = 2j+1(2i − 1) and with May–
Ravenel filtration given by that of t2

j

i . Here, hi,j represents the dual of the element May
calls γ1(xi,j). The E1-term of the May–Ravenel spectral sequence is the cohomology of the
Chevallay–Eilenberg complex:

Hs,t,f (C∗,∗,∗
CE (l(2))) = MREs,t,f

1 (σ(2)).

The differentials are determined by the Lie bracket and restriction of PE0(σ(2)). For σ(2),
these are obtained by ‘remembering the grading’ in [42, 6.3.3]. We obtain the following
differentials.

Theorem 6.2.2. Let χ2 = v2h2,0 + h2,1. The differentials in C∗,∗,∗
CE (l(2)) are determined by

d(h1,0) = d(h1,1) = 0 and

d(h2,0) = h1,0h1,1 d(h2,1) = v2h1,0h1,1

d(h3,0) = h1,0χ2 d(h3,1) = v2
2h1,1χ2

d(h4,0) = h1,0h3,1 + v2
2h1,1h3,0 + v2χ

2
2 d(h4,1) = v5

2h1,0h3,1 + v7
2h1,1h3,0 + v6

2χ
2
2

d(hi,0) = v2h
2
i−2,1 d(hi,1) = v2i−1

2 h2
i−2,0,

where the last two identities hold for i � 5.

Now, we can put the same filtration on Σ2, and this induces a filtration on Σ2 which restricts
to a filtration on σ(2) (6.1.1) and σ̃(2). The corresponding associated graded Hopf algebra in
the case of σ(2) is given by

EMR
0 (σ(2)) ∼= F4[v2] ⊗ E[t̃2,1, t̄3,0, t̄3,1, t̄4,0, t̄4,1, . . .].

As before, we have a May–Ravenel spectral sequence
MREs,t,f

1 (σ(2)) =⇒ Hs,t(σ(2)),
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and MREs,t,f
1 (σ(2)) = Hs,t,f (l(2)) is the cohomology of the Chevallay–Eilenberg complex

C∗,∗,∗
CE (l(2)) ∼= F4[v2, h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .].

Theorem 6.2.3. The differentials in the Chevallay–Eilenberg complex C∗,∗,∗
CE (l(2)) are

determined by

d(h̃2,1) = d(h3,0) = d(h3,1) = 0

and

d(h4,0) = v2h̃
2
2,1 d(h4,1) = v6

2h̃
2
2,1

d(hi,0) = v2h
2
i−2,1 d(hi,1) = v2i−1

2 h2
i−2,0,

where the last two identities hold for i � 5.

Proof. The element t̃22 of (5.2.11) is given by

t̃22 = v2t2 + t22 + v2t
3
1.

Therefore, since we have t1 ≡ 0 in σ(2) ⊂ Σ2 (4.2.9), we deduce that under the map

σ(2) → σ(2),

we have

v2t2 + t22 �→ t̃22.

It follows that under the map of Chevallay–Eilenberg complexes

C∗,∗,∗
CE (l(2)) → C∗,∗,∗

CE (l(2)),

we have

χ2 �→ h̃2,1.

The result therefore follows from Theorem 6.2.2 (and the fact that t1 ≡ 0 in σ(2)). �

6.3. The lexicographical filtration spectral sequence

In order to compute the cohomology of the Chevallay–Eilenberg complex C∗,∗,∗
CE (l(2)), we place

an increasing filtration on the Chevallay–Eilenberg complex by declaring that a monomial

vm2 hk3
3,0h

k4
4,0 · · · h̃l2

2,1h
l3
3,1h̃

l4
4,1 · · ·

has lexicographical filtration tridegree

degLF = (−m, l, k),

where

l = l̄5 + 2l̄6 + 22 l̄7 + 23 l̄8 + · · · ,
k = k̄4 + 2k̄5 + 22k̄6 + 23k̄7 + · · · ,

n̄ ∈ {0, 1} is n mod 2, and

h̃4,1 := h4,1 + v5
2h4,0.
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We order these tridegrees via left lexicographical order. That is to say,

(m, l, k) < (m′, l′, k′)

if m < m′, or m = m′ and l < l′, or m = m′ and l = l′ and k < k′.
Note that the value m above is the negative of the Adams filtration (defined by declaring the

Adams filtration of v2 is 1, and all other generators have Adams filtration 0), so lexicographical
filtration is a refinement of Adams filtration. The differentials of Theorem 6.2.3 decrease
lexicographical ordering, resulting in an increasing filtration on C∗,∗,∗

CE (l(2)) and a transfinite
LFSS

Cs,t,f
CE (l(2))m,k,l = LFE

s,t,f,(m,l,k)
1,0,0 ⇒ MREs,t,f

1 (σ(2)).

Transfinite spectral sequences were introduced by Hu in [26]. Hu’s indexing uses ordinals, but
to simplify matters we are repackaging the relevant ordinals as lexicographical tridegrees. In
this way, we can explain the transfinite nature of the spectral sequence in our particular case.

Namely, the lexicographical filtration spectral sequence has terms
LFE

s,t,f,(m,l,k)
r,r′,r′′

with differentials

dr,r′,r′′ : LFE
s,t,f,(m,l,k)
r,r′,r′′ → LFE

s+1,t,f,(m−r,l−r′,k−r′′)
r,r′,r′′

and
LFE

s,t,f,(m,l,k)
r,r′,r′′+1

∼= Hs,t,f,(m,l,k)(LFEr,r′,r′′ , dr,r′,r′′).

Because this spectral sequence is finitely generated in each multi-degree, convergence can be
explained as follows. For r′′ � 0, we have

LFE
s,t,f,(m,l,k)
r,r′,r′′ = LFE

s,t,f,(m,l,k)
r,r′+1,0 ,

and for r′ � 0 we have
LFE

s,t,f,(m,l,k)
r,r′,0 = LFE

s,t,f,(m,l,k)
r+1,0,0 .

There is a lexicographically indexed increasing filtration {F s,t,f
m,l,k} on MREs,t,f

1 such that for
r � 0,

LFE
s,t,f,(m,l,k)
r,0,0

∼= F s,t,f
m,l,k/F

s,t,f
m,l,k−1.

Because the lexicographical filtration is a multiplicative filtration on a differential graded
algebra, the lexicographical filtration spectral sequence is a spectral sequence of algebras. By
Theorem 6.2.3, the elements

h̃2,1, h3,0, h3,1, and h̃4,1

are permanent cycles in the lexicographical filtration spectral sequence, and we have

d1,0,1(h4,0) = v2h̃
2
2,1,

d1,0,2i−4(hi,0) = v2h
2
i−2,1,

d2i−1,2i−5,0(hi,1) = v2i−1

2 h2
i−2,0.

(6.3.1)

We note that the elements h2
i,0 and h2

i,1 are permanent cycles, because they correspond to
cocyles in the Chevallay–Eilenberg complex.

We now run the lexicographical filtration spectral sequence. We will run the differentials
in two rounds. The first round (Lemma 6.3.2)) will consist of those differentials of the form
d1,r′,r′′ which change Adams filtration by 1. The second round (Theorem 6.3.6) will consist of
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those differentials of the form dr,r′,r′′ with r > 1 which change Adams filtration by a quantity
greater than 1.

Lemma 6.3.2. The E2,0,0 page of the LFSS obtained by running all differentials of the form
d1,r′,r′′ has a basis given by

(I) vm2 hk3
3,0h

2k4
4,0 h

2k5
5,0 · · · h̃ε2

2,1h
ε3
3,1 · · · , m, kj � 0; εj ∈ {0, 1},

(II) hk3
3,0h

2k4
4,0 · · ·h2ki+2

i+2,0h
ki+3
i+3,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li+2
i,1 h

li+1
i+1,1 · · · , i � 2; kj , lj � 0; εj ∈ {0, 1}.

Proof. The strategy will be to first observe that the monomials of type (I) and (II) are d1,r′,r′′

cycles for all r′ and r′′. We will then show that all of the other monomials are either the source
or target of a non-trivial differential in the lexicographical filtration spectral sequence.

To show that a monomial x of the form (I) or (II) of Adams filtration m is a d1,r′,r′′-cycles,
it suffices to show that the element

x ∈ C∗,∗,∗
CE (l(2))

in the Chevallay–Eilenberg complex can be completed to an element

x + y ∈ C∗,∗,∗
CE (l(2)),

where

(1) y has lower lexicographical filtration than x, and
(2) the Chevallay–Eilenberg differential

dCE(x + y)

has Adams filtration greater than m + 1.

In the case of the monomials of type (I), this is trivially true — the elements x of Adams
filtration m already satisfy the property that dCE(x) has Adams filtration greater than m + 1.
In the case of terms of type (II), one can check that the sum (with ε̄j ∈ {0, 1})

x(k3, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .)

:= hk3
3,0h

2k4
4,0 · · ·h2ki+2

i+2,0h
2ki+3+ε̄i+3
i+3,0 h

2ki+4+ε̄i+4
i+4,0 h

2ki+5+ε̄i+5
i+5,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li+2
i,1 h

li+1
i+1,1 · · ·

+ ε̄i+3h
k3
3,0h

2k4
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3
i+3,0h

2ki+4+ε̄i+4
i+4,0 h

2ki+5+ε̄i+5
i+5,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li
i,1h

li+1+2
i+1,1 h

li+2
i+2,1 · · ·

+ ε̄i+4h
k3
3,0h

2k4
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3
i+3,0 h

2ki+4
i+4,0h

2ki+5+ε̄i+5
i+5,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li
i,1h

li+1
i+1,1h

li+2+2
i+2,1 · · ·

+ ε̄i+5h
k3
3,0h

2k4
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3
i+3,0 h

2ki+4+ε̄i+4
i+4,0 h

2ki+5
i+5,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li
i,1 · · ·hli+2

i+2,1h
li+3+2
i+3,1 · · ·

+ · · ·
satisfies (1) and (2) above.

We now compute the differentials of the form d1,r′,r′′ in the lexicographical filtration spectral
sequence, using (6.3.1). The d1,0,1 differentials are

d1,0,1(vm2 hk3
3,0h

2k4+1
4,0 hk5

5,0 · · · h̃l2
2,1h

l3
3,1h̃

l4
4,1 · · · ) = vm+1

2 hk3
3,0h

2k4
4,0 h

k5
5,0 · · · h̃l2+2

2,1 hl3
3,1h̃

l4
4,1 · · · .

The remaining monomials

hk3
3,0h

2k4
4,0 h

k5
5,0 · · · h̃l2+2

2,1 hl3
3,1h̃

l4
4,1 · · · ,

vm2 hk3
3,0h

2k4
4,0 h

k5
5,0 · · · h̃ε2

2,1h
l3
3,1h̃

l4
4,1 · · · ,

where ε2 ∈ {0, 1}, are d1,0,1-cycles, and therefore constitute a basis for the E1,0,2 page.
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The d1,0,2 differentials are of the form

d1,0,2(vm2 hk3
3,0h

2k4
4,0 h

2k5+1
5,0 hk6

6,0 · · · h̃ε2
2,1h

l3
3,1h̃

l4
4,1 · · · ) = vm+1

2 hk3
3,0h

2k4
4,0 h

2k5
5,0 h

k6
6,0 · · · h̃ε2

2,1h
l3+2
3,1 h̃l4

4,1 · · · .
The remaining monomials

hk3
3,0h

2k4
4,0 h

k5
5,0 · · · h̃l2+2

2,1 hl3
3,1h̃

l4
4,1 · · · , (6.3.3)

hk3
3,0h

2k4
4,0 h

2k5
5,0 h

k6
6,0 · · · h̃ε2

2,1h
l3+2
3,1 h̃l4

4,1 · · · , (6.3.4)

vm2 hk3
3,0h

2k4
4,0 h

2k5
5,0 h

k6
6,0 · · · h̃ε2

2,1h
ε3
3,1h̃

l4
4,1 · · · , (6.3.5)

with ε3 ∈ {0, 1}, are d1,0,2 and d1,0,3 cycles (in the case of (6.3.3), this is because it is a cocycle
of type (II), and in the cases of (6.3.4) and (6.3.5), this follows from (6.3.1)). Thus these form
a basis of the E1,0,4-page.

Repeating this process, the result follows. �

We now run the differentials which change Adams filtration by more than 1. The idea is that
these differentials are non-trivial only on terms of type (I), and these differentials hit terms of
type (I). Terms of type (II) are going to be permanent cycles in the LFSS.

Theorem 6.3.6. The May–Ravenel E1-term
MRE1(σ(2)) has a basis over F4 whose

representatives in the lexicographical filtration spectral sequence are given by

(I′) vm2 hε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1, m � 0; εj , ε̄j ∈ {0, 1},

(I′′) v<2i+1

2 hε̄3
3,0h

2(ki+1)
i,0 h

2ki+1
i+1,0h

2ki+2
i+2,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

εi+3
i+3,1 · · · . i � 3; kj � 0; εj , ε̄j ∈ {0, 1},

(II) hk3
3,0h

2k4
4,0 · · ·h2ki+2

i+2,0h
ki+3
i+3,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li+2
i,1 h

li+1
i+1,1 · · · . i � 2; kj , lj � 0; εj ∈ {0, 1}.

For the monomials of type (I”), the notation v<n
2 x means monomials of the form vi2x for i < n.

Proof. We proceed using the strategy of the proof of Lemma 6.3.2. We start by showing
that the monomials of types (I’), (I”), and (II) are permanent cycles by showing they complete
to cocycles in the Chevallay–Eilenberg complex.

The terms (I′) are simply cocycles. The terms (I′′) complete to cocycles given by

hε̄3
3,0h

2(ki+1)
i,0 h

2ki+1
i+1,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

εi+3
i+3,1 · · ·

+ εi+3v
2i+2−2i+1

2 hε̄3
3,0h

2ki
i,0 h

2(ki+1+1)
i+1,0 h

2ki+2
i+2,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1hi+2,1h

εi+4
i+4,1 · · ·

+ εi+4v
2i+3−2i+1

2 hε̄3
3,0h

2ki
i,0 h

2ki+1
i+1,0h

2(ki+2+1)
i+2,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1hi+2,1h

εi+3
i+3,1h

εi+5
i+5,1 · · ·

+ · · ·
For the terms of type (II), we observe that the Cartan–Eilenberg differential dCE is given on
the terms x(−) appearing in the proof of Lemma 6.3.2 by

dCEx(k3, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .) =

ε5v
24

2 x(k3 + 2, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . , ε4, 0, ε6, . . . , εi−1, li + 2, li+1, . . .)

+ ε6v
25

2 x(k3, 2(k4 + 1), . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . , ε4, ε5, 0, ε7, . . . , εi−1, li + 2, li+1, . . .)
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+ · · ·
+ l̄iv

2i−1

2 x(k3, 2k4, . . . , 2(ki−2 + 1), . . . , 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li − 1 + 2, li+1, . . .)

+ l̄i+1v
2i

2 x(k3, 2k4, . . . , 2(ki−1 + 1), . . . , 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1 − 1, . . .)

+ · · · .
However, also note that

dCE(hk3
3,0h

2k4
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3
i+3,0 h

2ki+4+ε̄i+4
i+4,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li
i,1h

li+1
i+1,1 · · ·

= v2x(k3, 2k4, . . . , 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .).

We therefore find that the terms of type (II) complete to the following cocycles:

x(k3, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .)

+ ε5v
24−1
2 hk3+2

3,0 h2k4
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3
i+3,0 · · · h̃ε2

2,1 · · · h̃ε4
4,1h

ε6
6,1 · · ·hεi−1

i−1,1h
li
i,1 · · ·

+ ε6v
25−1
2 hk3

3,0h
2(k4+1)
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3
i+3,0 · · · h̃ε2

2,1 · · · h̃ε4
4,1h

ε5
5,1h

ε7
7,1 · · ·hεi−1

i−1,1h
li
i,1 · · ·

+ · · ·

+ l̄iv
2i−1−1
2 hk3

3,0h
2k4
4,0 · · ·h2(ki−2+1)

i−2,0 · · ·h2ki+2+1
i+2,0 h

2ki+3+ε̄i+3
i+3,0 · · · h̃ε2

2,1 · · · h̃ε4
4,1h

ε5
5,1 · · ·hεi−1

i−1,1h
li−1
i,1 · · ·

+ l̄i+1v
2i−1
2 hk3

3,0h
2k4
4,0 · · ·h2(ki−1+1)

i−2,0 · · ·h2ki+2+1
i+2,0 h

2ki+3+ε̄i+3
i+3,0 · · · h̃ε2

2,1 · · · h̃ε4
4,1h

ε5
5,1 · · ·hεi−1

i−1,1h
li
i,1h

li+1−1
i+1,1 · · ·

+ · · ·

+ l̄i+4v
2i+3−1
2 hk3

3,0h
2k4
4,0 · · ·h2(ki+2+1)+1

i+2,0 h
2ki+3+ε̄i+3
i+3,0 · · · h̃ε2

2,1 · · · h̃ε4
4,1h

ε5
5,1 · · ·hεi−1

i−1,1h
li
i,1 · · ·hli+4−1

i+4,1 · · ·

+ l̄i+5v
2i+4−1
2 hk3

3,0h
2k4
4,0 · · ·h2ki+2+1

i+2,0 h
2(ki+3+1)+ε̄i+3
i+3,0 · · · h̃ε2

2,1 · · · h̃ε4
4,1h

ε6
6,1 · · ·hεi−1

i−1,1h
li
i,1 · · ·hli+5−1

i+5,1 · · ·
+ · · · .

We now will proceed by showing that the rest of the monomials of type (I) are either sources
or targets of non-trivial dr,r′,r′′ differentials with r � 2.

The first round of differentials in the LFSS will be of the form

d16,1,0(vm2 hε̄3
3,0h

2k3
3,0 h

2k4
4,0 h

2k5
5,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h5,1h

ε6
6,1 · · · )

= vm+16
2 hε̄3

3,0h
2(k3+1)
3,0 h2k4

4,0 h
2k5
5,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

ε6
6,1 · · ·

with m, kj ∈ N and εj , ε̄j ∈ {0, 1}. Of the terms of type (I), what remains are terms of the
forms

vm2 hε̄3
3,0h

2k4
4,0 h

2k5
5,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

ε6
6,1 · · · ,

v<16
2 hε̄3

3,0h
2(k3+1)
3,0 h2k4

4,0 · · · h̃ε2
2,1h

ε3
3,1h̃

ε4
4,1h

ε6
6,1 · · · .

These are seen to persist to the E32,2,0-page by (6.3.1). The next round of differentials will be
of the form

d32,2,0(vm2 hε̄3
3,0h

2k4
4,0 h

2k5
5,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h6,1h

ε7
7,1 · · · )

= vm+32
2 hε̄3

3,0h
2(k4+1)
4,0 h2k5

5,0 · · · h̃ε2
2,1h

ε3
3,1h̃

ε4
4,1h

ε7
7,1 · · · .
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Of the terms of type (I), what remain are terms of the forms

vm2 hε̄3
3,0h

2k5
5,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

ε7
7,1 · · · , (6.3.7)

v<16
2 hε̄3

3,0h
2(k3+1)
3,0 h2k4

4,0 · · · h̃ε2
2,1h

ε3
3,1h̃

ε4
4,1h

ε6
6,1 · · · , (6.3.8)

v<32
2 hε̄3

3,0h
2(k4+1)
4,0 h2k5

5,0 · · · h̃ε2
2,1h

ε3
3,1h̃

ε4
4,1h

ε7
7,1 · · · . (6.3.9)

The terms (6.3.8) are cocycles of type (I”), and the terms (6.3.7), (6.3.9) persist to E64,4,0

by (6.3.1).
Continuing in this manner, we get all of the differentials in the LFSS. �

6.4. The Adams filtration spectral sequence

Ideally we would like to reproduce the analysis of the previous section by replacing the Hopf
algebra σ(2) with σ̃(2). However, we do not have an analog of Theorem 6.2.3 for σ̃(2). This
would be a prerequisite to forming an LFSS, as we need to know the May–Ravenel d0-
differentials decrease lexicographical filtration. We instead will work with the coarser filtration
given by Adams filtration. The advantage of Adams filtration is that we know differentials
preserve Adams filtration for topological reasons.

Endow σ(2) and its subalgebra σ̃(2) with an increasing ‘Adams filtration’, by declaring
AF (v2) = 1, and giving all other generators ‘Adams filtration’ 0. Note that in the case of σ̃(2) =
k(2)∗tmf/(v2-torsion), this agrees with the filtration coming from the ASS for k(2) ∧ tmf.
Therefore, the differentials in the cobar complex for σ̃(2) respect Adams filtration because,
by Theorem 5.2.8, they come from maps of spectra (the connecting maps in the tmf-Adams
resolution for Z). Since σ(2) ∼= σ̃(2) ⊗ F4, the same is true for the cobar complex of σ(2).

The algebra generators of

EAF
0 σ(2) = F4[v2, t̃22, t̄3, t̄4, . . .]/(t̃

2
2 = 0, t̄4k = 0)

are seen to be primitive (see, for example, [43, Prop. B.5.15]). Furthermore, Theorem 5.2.8
implies that EAF

0 σ̃(2) is the primitively generated k(2)∗-subalgebra

F2[v2, t̃22, t̄3, t̄4, . . .]/(t̃
2
2 = 0, t̄4k = 0) ⊂ EAF

0 σ(2).

Since there is an isomorphism of cochain complexes

C∗,∗,∗
alg (Z) ∼= C∗

EAF
0 σ̃(2)(k(2)∗),

we immediately deduce the following important algebraic consequence.

Theorem 6.4.1. The cohomology of the algebraic good complex for Z is given by

H∗,∗,∗(Calg) ∼= F2[v2, h̃2,1, hi,j ] i�3
j=0,1

.

We may likewise endow EMR
0 σ(2) and EMR

0 σ̃(2) with Adams filtration. Then EAF
0 EMR

0 σ(2)
is given by

F4[v2] ⊗ E[t̃2,1, ti,j ] i�3
j=0,1

with t̃2,1, ti,j primitive, and EAF
0 EMR

0 σ̃(2) is given by the subalgebra

F2[v2] ⊗ E[t̃2,1, ti,j ] i�3
j=0,1

.
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This results in a pair of Adams filtration spectral sequences

with
AFE1(σ̃(2)) ∼= F2[v2, h̃2,1, hi,j ] i�3

j=0,1
,

AFE1(σ(2)) ∼= F4[v2, h̃2,1, hi,j ] i�3
j=0,1

.

We will now compute the Adams filtration spectral sequence AFEr(σ(2)) by relating it to
the LFSS.

The Chevallay-Eilenberg complex C∗
CE(l(2)) is a quotient of the cobar complex for EMR

0 σ(2)

C∗
EMR

0 σ(2) � C∗
CE(l(2)).

By endowing C∗
CE(l(2)) with an Adams filtration, we get an associated spectral sequence

AFEr(l(2)) and a map of spectral sequences

From Theorem 6.2.3, we see that all differentials in C∗
CE(l(2)) increase Adams filtration, and

thus
AFE1(l(2)) = H∗(EAF

0 C∗
CE(l(2)))

= EAF
0 C∗

CE(l(2))

= F4[v2, h̃2,1, hi,j ] i�3
j=0,1

.

We deduce the following.

Proposition 6.4.2. The map

AFE1(σ(2)) → AFE1(l(2))

is an isomorphism, and thus there is an isomorphism of spectral sequences

{AFEr(σ(2))} ∼= {AFEr(l(2))}.

Since lexicographic filtration is a refinement of Adams filtration, the differentials in the AFSS
AFEr(l(2)) are those differentials in the LFSS which change Adams filtration by r. We therefore
have

AFEr(σ(2)) = LFEr,0,0,

and for every differential

dLF
r,r′,r′′(x) = y

in the LFSS we have a corresponding differential

dAF
r (x) = y
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in the AFSS. Therefore, as we have determined the LFSS, we have implicitly determined the
AFSS for l(2), and therefore the AFSS for σ(2). We deduce that the AFSS for σ̃(2) is obtained
by restricting the differentials from the AFSS for σ(2). Therefore, from Theorem 6.3.6 we
deduce:

Theorem 6.4.3. The May–Ravenel E1-term
MRE1(σ̃(2)) has a basis over F2 whose

representatives in the Adams filtration spectral sequence have leading terms (with respect
to lexicographical filtration) given by:

(I′) vm2 hε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1, m � 0; εj , ε̄j ∈ {0, 1},

(I′′) v<2i+1

2 hε̄3
3,0h

2(ki+1)
i,0 h

2ki+1
i+1,0h

2ki+2
i+2,0 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

εi+3
i+3,1 · · · . i � 3; kj � 0; εj , ε̄j ∈ {0, 1},

(II) hk3
3,0h

2k4
4,0 · · ·h2ki+2

i+2,0h
ki+3
i+3,0 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li+2
i,1 h

li+1
i+1,1 · · · . i � 2; kj , lj � 0; εj ∈ {0, 1}.

For the monomials of type (I”), the notation v<n
2 x means monomials of the form vi2x for i < n.

Remark 6.4.4. We do not know if there are differentials in the May–Ravenel spectral
sequence

MRE1(σ̃(2)) ⇒ H∗(σ̃(2)) ∼= H∗,∗(C).

Even in relatively low degrees, possibilities are plentiful. For example, there could be a
differential

dMR
4 (h2

5,0)
?= v14

2 h̃2,1h
2
3,0.

We also do not know if there are possible hidden v2-extensions in the May–Ravenel spectral
sequence. Again, there are endless possibilities — as an example, there could be a hidden
extension

v16
2 h4

3,0
?= v14

2 h2,1h
2
3,0h3,1.

However, in the very low degrees which are relevant to the computations later in this paper,
there are no possibilities of differentials or hidden v2-extensions.

7. The agathokakological method

In this section we will adapt the agathokakological method introduced in [7] to our present
setting, to compute the E2-term of the tmf-ASS for Z.

7.1. Overview of the method

The goal is to compute tmfE∗,∗
2 (Z). The short exact sequences

0 → V ∗,∗(Z) → tmfE∗,∗
1 (Z) → C∗,∗(Z) → 0,

0 → V ∗,∗,∗
alg (Z) → tmf

alg E
∗,∗,∗
1 (Z) → C∗,∗,∗

alg (Z) → 0

give rise to long exact sequences

· · · → H∗,∗(V ) → tmfE∗,∗
2 (Z) → H∗,∗(C) ∂−→ H∗+1,∗(V ) → · · · , (7.1.1)

· · · → H∗,∗,∗(Valg) → tmf
alg E

∗,∗,∗
2 (Z) → H∗,∗,∗(Calg) ∂alg−−→ H∗+1,∗,∗(Valg) → · · · (7.1.2)
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In particular, (7.1.1) reduces the computation of tmfE2(Z) to the computation of H∗,∗(C)
and H∗,∗(V ). We have established a means to understand H∗,∗(C) (Theorem 6.4.3). We are
therefore left to compute H∗,∗(V ).

By using Bruner’s Ext program to compute

Ext∗,∗A∗ (F2, H∗Z)

through a range, we can then use the Mahowald spectral sequence

tmf
alg E

∗,∗,∗
2 (Z) ⇒ Ext∗,∗A∗ (F2, H∗Z)

to deduce tmf
alg E

∗,∗,∗
2 (Z) by reverse engineering (note that this is backward from the usual direc-

tion of deduction with a spectral sequence). We have computed H∗,∗,∗(Calg) (Theorem 6.4.1).
We can then use (7.1.2) to deduce H∗,∗(V ) = H∗,0,∗(Valg).

Remark 7.1.3. Note that our only interest in Ext∗,∗A∗ (F2, H∗Z) is to determine H∗,∗(V ).
We are not investigating the classical Adams spectral sequence of Z.

7.2. The agathokakological spectral sequences

The strategy outlined in the previous subsection will be aided by the construction of a pair
of spectral sequences: the topological agathokakological spectral sequence (topological AKSS),
and the algebraic agathokakological spectral sequence (algebraic AKSS).

We begin with the topological AKSS. Consider the short exact sequence

0 → V n,∗(Z) → tmfEn,∗
1 (Z)

g−→ Cn,∗(Z) → 0. (7.2.1)

We will now introduce a refinement of the tmf-ASS which separates the good and evil complexes
into different degrees. The good complex Cn,∗(Z) will be regarded as being in filtration n, and
the evil complex V n,∗(Z) will be regarded as in filtration n + ε, where ε is regarded as a fixed
quantity with

n < n + ε < n + 1 − ε < n + 1.

Let tmf denote the fiber of the unit

tmf → S → tmf.

The tmf-ASS for Z arises from the decreasing filtration of Z given by

with

Fs := tmf
s ∧ Z.

By Proposition 3.1.7, there are fiber sequences

Hs → k(2) ∧ tmf
s → Ks

where Hs is a wedge of mod 2 Eilenberg–MacLane spectra and Ks is a wedge of functions k(2).
By Verdier’s axiom, we get a braid of fiber sequences
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where Fs+ε is defined to be the fiber of the map Fs → Ks. This results in a refinement of the
tmf-Adams filtration of Z

(7.2.2)

The spectral sequence associated to this filtration is the topological AKSS:

{akssEn+αε,t
r+βε } ⇒ πt−n(Z)

n, t ∈ N,

α ∈ {0, 1},
β ∈ {−1, 0, 1}.

The pages of this spectral sequence are ordered by

n− ε < n < n + ε < n + 1

with differentials

dakssr−ε :akssEn+ε,t
r−ε → akssEn+r,t

r−ε ,

dakssr :akssEn+αε,t
r → akssEn+r+αε,t

r ,

dakssr+ε :akssEn,t
r+ε → akssEn+r+ε,t

r+ε .

Remark 7.2.3. The reader will notice that the AKSS could be reindexed to a more standard
format by reindexing the filtration by

n �→ 2n,

n + ε �→ 2n + 1.

Our reason for choosing this non-standard indexing is that it displays the AKSS as a refinement
of the tmf-ASS, so that there are short exact sequences

0 → akssEn+ε,t
r−ε → tmfEn,t

r → akssEn,t
r−ε → 0.

The E1-term takes the form

akssEn+αε,t
1 =

{
Cn,t(Z), α = 0,
V n,t(Z), α = 1.

The d1-differential

dakss1 : akssEn+αε,t
1 → akssEn+1+αε,t

1
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is given by the differentials in the good and evil complexes:

dakss1 =

{
dgood
1 , α = 0,

devil
1 , α = 1.

We therefore have

akssEn+αε,t
1+ε =

{
Hn,t(C), α = 0,
Hn,t(V ), α = 1.

The only non-zero d1+ε-differentials are of the form

Hn,t(C) = akssEn,t
1+ε

d1+ε−−−→ akssEn+1+ε,t
1+ε = Hn+1,t(V ),

for which we have

d1+ε = ∂,

where ∂ is the connecting homomorphism of (7.1.1).
The algebraic AKSS is constructed by applying Ext∗,∗A∗ (F2, H∗(−)) to the diagram (7.2.2)

(compare with [7, Section 7]). The resulting spectral sequence takes the form

{akssalg En+αε,s,t
r+βε (Z)} ⇒ assEn+s,t

2 (Z)

with differentials

dakssr−ε :akssalg En+ε,s,t
r−ε → akss

alg En+r,s−r+1,t
r−ε ,

dakssr :akssalg En+αε,s,t
r → akss

alg En+r+αε,s−r+1,t
r ,

dakssr+ε :akssalg En,s,t
r+ε → akss

alg En+r+ε,s−r+1,t
r+ε .

We have

akss
alg En+αε,s,t

1+ε (Z) =

⎧⎪⎨⎪⎩
Hn,s,t(Calg), α = 0,
Hn,t(V ), α = 1, s = 0,
0, otherwise

and

dakss1+ε = ∂alg

where ∂ is the connecting homomorphism of (7.1.2).
Because for s > 0, we have

akss
alg En+ε,s,t

1 = 0,

there are no non-trivial differentials

dr+βε(x) = y

with x in filtration n + ε and r > 1.
The following very useful lemma shows that the d1+ε differentials in the topological AKSS

can be deduced from the dalg1+ε differentials in the algebraic AKSS.

Lemma 7.2.4. For n = 0, the differentials

d1+ε : akssEn,t
1+ε

d1+ε−−−→ akssEn+1+ε,t
1+ε
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are trivial. For n � 1, they are determined by the following commutative diagram:

Proof. Topologically, d1+ε derives from applying π∗ to the composite

Kn → tmf∧n+1 ∧ Z → tmf∧n+2 ∧ Z → Hn+1. (7.2.5)

The first statement follows from the fact that the only elements in Hn,∗(C) for n = 0 are
powers of v2. The second statement follows from the fact that dalg1+ε is the induced map of
Adams E0,∗

2 -terms coming from the composite (7.2.5):

Cn,0,∗
alg = assE0,∗(Kn) → assE0,∗(Hn+1) = V n+1,∗. �

The E2-term of the tmf-ASS is deduced from the short exact sequence

0 → akssEn+ε,t
2 → tmfEn,t

2 → akssEn,t
2 → 0.

7.3. The dichotomy principle

Elements in akss
alg En,s,t

r+βε(Z) are called good, and elements in akss
alg En+ε,s,t

r+βε (Z) are called evil.
Non-trivial elements of assE2(Z) are called good (respectively, evil) if they are detected in the
AKSS by good (respectively, evil) classes.

The key to computing the algebraic AKSS is to determine which elements of assE2(Z) are
good and which are evil. This is done by linking v2-periodicity with goodness. An element of
assE2(Z) is v2-periodic if its image under the homomorphism

assE2(Z) → v−1
2

assE2(Z)

is non-trivial. Otherwise it is said to be v2-torsion.
The following two propositions give a practical means of determining whether an element of

assE2(Z) is v2-periodic.

Proposition 7.3.1. We have

v−1
2

assE2(Z) ∼= F2[v±2 , h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .].

Proof. The computation is almost identical to that of [34, (2.20)]. �

Corollary 7.3.2. For r > 1, there are no dr differentials between good classes in the
algebraic AKSS.

Proof. Proposition 7.3.1 implies that the v2-localized algebraic AKSS collapses at E1+ε. The
result follows from the fact that the map

akss
alg En+αε,s,t

1+ε (Z) ↪→ v−1
2

akss
alg En+αε,s,t

1+ε (Z)

is an injection for α = 0 (the good part). �
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In order to state and prove the dichotomy principle, we will need to establish bounds on
v2-periodicity in Ext, and on the evil complex. Let A2 denote the cofiber of the v2-self map

Σ6Z → Z.

We have

H∗(A2) ∼= A(2)

as an A(2)-module (see [11, Section 2]).

Lemma 7.3.3. We have

assEs,t
2 (A2) = 0

for

s >
(t− s) + 12

11
.

Proof. The May spectral sequence for assE2(A2 ∧ Cσ) has E1-term of the form
MayE∗,∗,∗

1 (A2 ∧ Cσ) ∼= F2[h1,j1 , h2,j2 , h3,j3 , . . . : j1 � 4; j2 � 2; j3 � 1; jk � 0, k � 4]. (7.3.4)

One checks that the smallest slope s
t−s of these generators is 1

11 , given by h2,2. Therefore we
have

assEs,t
2 (A2 ∧ Cσ) = 0

for

s >
t− s

11
.

It follows from the fact that h4
1,3 = 0 in assE∗,∗

2 (S) that the h1,3-Bockstein spectral sequence
assE∗,∗

2 (A2 ∧ Cσ)[h1,3] ⇒ assE∗,∗
2 (A2)

has a horizontal vanishing line at E∞, and one deduces that the translation of this 1
11 -vanishing

line passing through (t− s, s) = (21, 3) (the bidegree of h3
1,3) serves as a vanishing line for

assE∗,∗
2 (A2). �

Remark 7.3.5. The reader will notice that the notation hi,j is used both for the May
spectral sequence generators of (7.3.4) and for the May–Ravenel spectral sequence generators
in H∗,∗,∗(Calg(Z)). We warn the reader that these naming conventions are not consistent.

The May spectral sequence generator hi,j corresponds to the element ζ2j

i ∈ A∗, whereas the
May–Ravenel generator hi,j corresponds to the element t2

j

i ∈ BP∗BP . Since under the map

BP∗BP → A∗,

we have

t2
j

i �→ ζ2j+1

i ,

and the May–Ravenel generator hi,j actually corresponds to the May generator hi,j+1.

Proposition 7.3.6. The evil complex V n,t(Z) satisfies

Hn,t(V ∗,∗) = 0

for

n >
(t− n) + 12

11
.
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Proof. We explain the relationship between H∗,∗(V ) and assE∗,∗
2 (A2) by constructing a

spectral sequence which relates them. We first note that because H∗(A2) ∼= A(2), we have
tmf
alg E

n,s,t
1 (A2) = 0

for s > 0. Therefore, the only possible non-trivial differentials in the tmf-MSS are d1

differentials, and
tmf
alg E

n,0,t
2 (A2) ∼= assEn,t

2 (A2).

The short exact sequence of A∗-comodules

0 → H∗Z → H∗A2 → H∗Σ7Z → 0

induces a long exact sequence

0 → tmf
alg E

n,0,t
1 (Z) → tmf

alg E
n,0,t
1 (A2) → tmf

alg E
n,0,t−7
1 (Z) v2−→ tmf

alg E
n,1,t
1 (Z) → · · ·

We therefore deduce that there is a short exact sequence

0 → tmf
alg E

n,0,t
1 (Z) → tmfEn,0,t

1 (A2) → V n,t−7(Z) → 0.

This allows us to consider the decreasing filtration of cochain complexes, with associated
filtration quotients:

Taking cohomology, we get a strange little spectral sequence which we will dub the algebraic
AKSS for A2 as it more or less arises as a kind of mod v2 version of the algebraic AKSS for
Z. If we index it as follows:†

akss
alg En−ε,t

1+ε (A2) = Hn,t−7(V ),

akss
alg En,t

1+ε(A2) = Hn,0,t(Calg),
akss
alg En+ε,t

1+ε (A2) = Hn,t(V ),

then the resulting spectral sequence takes the form
akss
alg En+αε,t

1+ε (A2) ⇒ assEn,t
2 (A2)

with differentials

d1+ε :akssalg En−ε,t
1+ε (A2) → akss

alg En+1,t
1+ε (A2)

d1+ε :akssalg En,t
1+ε(A2) → akss

alg En+1+ε,t
1+ε (A2)

d1+2ε :akssalg En−ε,t
1+2ε (A2) → akss

alg En+1+ε,t
1+2ε (A2)

and
akss
alg En+αε,t

2 (A2) = akss
alg En+αε,t

∞ (A2).

†With this indexing convention, the map Z → A2 results in a map of spectral sequences akss
alg En+αε,s,t

∗ (Z) →
akss
alg En+αε,t

∗ (A2) (which one takes to be the zero map on terms with s > 0).
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The result follows for dimensional reasons (by induction on t− n) using Lemma 7.3.3 and the
fact that

Hn,0,t(Calg) = 0

for

n >
t− n

11

(since the generator of H∗,∗,∗(Calg) with lowest slope is h̃2,1, with slope n
t−n = 1

11 ). �

Proposition 7.3.7. The map

assEs,t
2 (Z) → v−1

2
assEs,t

2 (Z)

is an isomorphism for

s >
(t− s) + 12

11
.

Proof. The result follows from considering the map of algebraic AKSS’s
akss
alg E∗,∗,∗

∗ (Z) → v−1
2

akss
alg E∗,∗,∗

∗ (Z)

and using Proposition 7.3.1, Corollary 7.3.2, Proposition 7.3.6, and the observation that the
map

Hn,s,t(Calg) → v−1
2 Hn,s,t(Calg)

is an isomorphism for

n + s >
t− n− s

11
. �

Given a class x ∈ assE2(Z), Proposition 7.3.7 gives a straightforward technique to determine
from low-dimensional computations if x is v2-periodic. Let k be chosen such that vk2x lies in
the range of Proposition 7.3.7. Then x is v2-periodic if an only if vk2x �= 0.

The following theorem, analogous to the dichotomy principle in [7], completely determines
whether classes in assE2 are good or evil. Note that because of Corollary 7.3.2 (which does
not have an analog in the context studied in [7]), the proof of the dichotomy principle for the
algebraic AKSS is much more straightforward in the present context.

Theorem 7.3.8 (Dichotomy Principle). Suppose that x is a non-trivial class in assEs,t
2 (Z).

(1) If x is v2-torsion, it is evil.
(2) Every class in the range

s >
(t− s) + 12

11
(7.3.9)

is good.
(3) Suppose x is v2-periodic, and suppose that k is taken large enough so that vk2x lies in

the range (7.3.9). Suppose that vk2x is detected in the algebraic AKSS by a class in akss
alg En,∗,∗

1+ε .
Then x is good if and only if

s � n.

Proof. We deduce (1) from Corollary 7.3.2. We deduce (2) from Proposition 7.3.6. For (3),
suppose that x is v2-periodic with vk2x detected in akss

alg En,∗,∗
1+ε . We will first consider the case
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where x is evil, and then we will consider the case where x is good. For the first case, suppose
that x is detected by an evil class

x̃ ∈ akss
alg En′+ε,s−n′,t

1+ε

in the algebraic AKSS. Then we must have

s = n′.

Since x̃ is v2-torsion, we deduce that the vk2 -multiplication must arise from a hidden extension
in the AKSS, and therefore

s = n′ < n.

For the second case, suppose that x is detected by a good class

x̃ ∈ akss
alg En′,s−n′,t

1+ε .

Then we must have

s− n′ � 0.

We deduce from the proof of Corollary 7.3.2 that n′ = n, and therefore s− n � 0 and

s � n. �

Warning 7.3.10. There is no dichotomy principle in the topological AKSS.

8. Stem by stem computations

In this section, we apply the agathokakological techniques of the previous section to do low-
dimensional computations of π∗Z. Furthermore, we settle the ambiguity left in [12] regarding
the differentials in the Adams Novikov spectral sequence for ZE(2) (Theorem 8.5.1).

8.1. The algebraic AKSS

In this section, we use the algebraic AKSS

{akssalg En+αε,s,t
r+βε (Z)} ⇒ assEn+s,t

2 (Z)

to identify H∗(V (Z)) in the range relevant for computing π∗Z in degrees ∗ � 39.
More specifically, we do these computations for a specific choice of Z and v2-self map. It is

shown in [11, § 2] that for any Z ∈ Z̃ and v1
2-self map f : Σ6Z → Z, there is a cofiber sequence

(8.1.1)

where C(f) is a spectrum with the property that H∗C(f) is isomorphic to A(2) as an A(2)-
module. Different choices of Z ∈ Z̃ and v1

2-self maps give rise to different A-module structures
on A(2).

We will be working with a specific choice of Z. To this end, endow the subalgebra A(2) ⊂ A
with the A-module structure given by Roth in [46, p. 30]. The Appendix gives the Bruner
module definition data that encodes this A-module structure. Following [11],† define B(2) as

B(2) := A(2) ⊗E(Q2) F2.

The Bruner module definition data for this A-module is given in [11, Appendix 1].

†In [11], A(2) is denoted by A2 and B(2) by B2.
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For the rest of this section, we restrict our attention to those Z ∈ Z̃ with

H∗Z ∼= B(2)

as A-modules. By [11, Remark 5.4], there are four different homotopy types of finite spectra
realizing B(2). As explained in [11, Section 2], the cofiber of any v1

2-self map of our chosen Z
is a realization of the module A(2).

Since Exts,s+1
A (A(2), A(2)) = 0 for s � 2, it follows from [11, Proposition 5.1] that there is a

unique homotopy type of spectra realizing our chosen A-module structure on A(2). Therefore,
different choices of a v1

2-self map on our chosen Z will not affect the calculations that follow.
For this choice, we let

A2 := C(f).

In this section, we also define

Exts,tA (Z) := Exts,tA (H∗(Z),F2), Exts,tA (A2) := Exts,tA (H∗(A2),F2).

Both Ext∗,∗A (Z) and Ext∗,∗A (A2) can be computed using Bruner’s program [14]. The results are
depicted in Figures 8.1 and 8.2 in Adams grading (x, y) = (t− s, s).

8.2. v2-multiplication in ExtA(Z)

To proceed with our computations, we will need to determine which classes in Ext∗,∗A (Z) are
detected by evil classes, and which are detected by good classes. This will be done using the
dichotomy principle (Theorem 7.3.8), and so we need to identify the v2-periodic classes in
Ext∗,∗A (Z). To do this, we proceed as follows.

Note that there is a long exact sequence

(8.2.1)

where the connecting homomorphism δ corresponds to multiplication by v2,

δ = v2 : Exts,tA (Σ7Z) ∼= Exts,t−7
A (Z) → Exts+1,t

A (Z).

The v2-multiplications in Ext∗,∗A (Z) are indicated by dotted lines of slope (6,1) in Figures 8.1
and 8.2. The indicated multiplications are completely determined by the long exact sequence
(8.2.1). In Example 8.2.2, we give a sample proof deducing the existence of a v2-multiplication
from the long exact sequence. The proofs for the other v2-multiplications indicated in
Figures 8.1 and 8.2 are also straightforward, though the arguments involving classes in stems
∗ � 40 become more tedious due to the growing dimensions of Ext∗,∗A (A2) and of Ext∗,∗A (Z). The
v2-multiplication data in Figures 8.1 and 8.2 is complete in stems x � 39. In stems 40 � x � 60,
we only draw those multiplications which are necessary to apply part (3) of Theorem 7.3.8 to
do computations up to ∗ = 39.

Example 8.2.2. If x is the non-zero class in (t− s, s) = (15, 1) of Ext∗,∗A (Z), then v2x �= 0.
Indeed, in degree (t− s, s) = (21, 2) (the target of v2-multiplication on x), Ext∗,∗A (A2) is one
dimensional over F2. However, there are two possible contributions to Ext∗,∗A (A2) in this degree
from the long exact sequence (8.2.1). (See Figure 8.3 and its caption.) There is a class Σ7y
of Ext∗,∗A (Σ7Z), labeled •1 of Figure 8.3, where y is the class labeled 1• in degree (14,2) of
Figure 8.3. There is also a class z of Ext∗,∗A (Z), labeled •6 in Figure 8.3. Since v2y = 0 for
degree reasons, Σ7y is in the kernel of the connecting homomorphism δ. Therefore, the non-
zero element of Ext∗,∗A (A2) corresponds to the class Σ7y. For degree reasons, δ(z) = 0, and so
there must be a class w of degree (22,1) in Ext∗,∗A (Σ7Z) such that δ(w) = z. The only possibility
is the class labeled by •4 of Figure 8.3. The class x corresponds to 4• in Figure 8.3, and so
w = Σ7x. It follows that v2x = z.
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Figure 8.1. Exts,tA (Z) (left) and Exts,tA (A2) (right) drawn in Adams coordinates (x, y) = (t− s, s)
in degrees x � 32. The dotted lines of slope (6,1) denote v2-multiplication. The solid lines of
slope (1,1) denote h1 (that is, η) multiplications and those of slope (3,1) denote h2 (that is, ν)
multiplications. The gray line of slope 1/11 is the line of Proposition 7.3.7.
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Figure 8.2. Exts,tA (Z) (left) and Exts,tA (A2) (right) drawn in Adams coordinates (x, y) = (t− s, s)

in degrees 28 � x � 60. In Exts,tA (Z), not all v2-multiplications are drawn in the shaded area, but
we have included those needed for our computation. The gray line of slope 1/11 is the line of
Proposition 7.3.7.
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Figure 8.3. The connecting homomorphism Exts,tA (Σ7Z) → Exts+1,t
A (Z). The gray classes are

elements of Exts,tA (Σ7Z), the black classes are elements of Exts+1,t(Z). The gray lines of slope
(−1, 1) give the connecting homomorphism, which in turn corresponds to v2-multiplication. The
gray line of slope 1/11 is the line of Proposition 7.3.7.
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Figure 8.4 (colour online). The left chart is the E2-term of the ASS for Z in stems 0 � t− s � 21.
Classes detected by good are denoted by • and classes detected by evil by ◦. The right chart is
the algebraic AKSS for Z, starting at the E1+ε-page.
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Figure 8.5 (colour online). The left chart is the E2-term of the ASS for Z in stems 19 � t− s �
40. Classes detected by good are denoted by • and classes detected by evil by ◦. The right chart
is the algebraic AKSS for Z, starting at the E1+ε-page.
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8.3. The differentials in the algebraic AKSS

We turn to the computation of the algebraic AKSS. From Theorem 6.4.1, we have that

H∗,∗,∗(Calg) ∼= F2[v2, h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .]. (8.3.1)

We use the dichotomy principle to determine which classes of ExtA(Z) are good and which
are evil. With (8.3.1) and the results of the previous section on v2-multiplications, this is
straightforward and result of this analysis is depicted in Figure 8.4 and 8.5.

Having determined which classes in Ext∗,∗A (Z) are detected by good and evil, we can now
deduce H∗,∗(V ) from the algebraic AKSS. We name the evil classes in the algebraic AKSS
(Figure 8.4) by

(x, y : n)ev,

where (x, y) = (t− (s + n), s + n) is the Adams coordinate and n is the tmf-filtration. These
classes are denoted by open circles in Figure 8.4. The good classes are denoted by solid circles.
For example, the class in degree (x, y) = (7, 1) in ExtA(Z) is detected by evil and denoted by
(7, 1 : 1)ev in the algebraic AKSS.

In stems 0 � x � 39, the following evil classes exist for degree reasons. More precisely, these
evil classes detect a class in ExtA(Z) in a degree which contains no non-zero element of
H∗(Calg):

(7, 1 : 1)ev (14, 2 : 2)ev (27, 3 : 3)ev

(15, 1 : 1)ev (18, 2 : 2)ev (31, 3 : 3)ev

(31, 1 : 1)ev (20, 2 : 2)ev

(21, 2 : 2)ev

(30, 2 : 2)ev

(34, 2 : 2)ev

(36, 2 : 2)ev

(37, 2 : 2)ev

(38, 2 : 2)ev

The following evil classes exist because of the following differentials

d1+ε(h̃2
2,1) = (21, 3 : 3)ev

d1+ε(h2
3,0) = (25, 3 : 3)ev

d1+ε(h3,1) = (26, 2 : 2)ev

Table 2. The tmf-filtration.

n color

0 black
1 blue
2 red
3 orange
4 green
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d1+ε(h4,0) = (28, 2 : 2)ev

d2+ε(v2h3,1) = (32, 3 : 3)ev

d2+ε(v2h4,0) = (34, 3 : 3)ev

d1+ε(h̃2,1h3,1) = (37, 3 : 3)ev

d3+ε(v2
2h4,0) = (40, 4 : 4)ev.

Examples of how we deduce these differentials is given in Example 8.3.2.

Example 8.3.2. In degree (t− s, s) = (26, 2), ExtA(Z) is trivial. Therefore, h2
3,0 cannot

survive the spectral sequence so must support a differential. Since the class in (25,3) of ExtA(Z)
is detected by a good class, the only good class in that bidegree (v2

2h3,0) cannot be hit by a
differential. So the target of the differential on h2

3,0 must be evil, and we obtain the differential

d1+ε(h2
3,0) = (25, 3 : 3)ev.

The only non-trivial class in degree (38,2) of ExtA(Z) is detected by evil. Therefore h̃2,1h3,1

must support a non-trivial differential. A similar analysis as before gives the differential

d1+ε(h̃2,1h3,1) = (37, 3 : 3)ev.

Furthermore,

d1+ε(h3,0h3,1) = α1(39, 3 : 3)ev and d1+ε(h̃2,1h4,0) = α2(39, 3 : 3)ev, (8.3.3)

where at least one of the coefficients αi is non-zero. Similarly, at least one of the following
d2+ε-differentials must occur

d3+ε(v2
2h3,1) = (38, 4 : 4)ev or d1+ε(h3

3,0) = (38, 4 : 4)ev

These ambiguities will be mostly settled in the next section.

8.4. The topological AKSS and the computation of the tmf-based ASS for Z

Now, we turn to our analysis of the spectral sequence
tmfEn,t

1 = πt(tmf∧n+1 ∧ Z) =⇒ πt−n(Z)

and low-dimensional computations of π∗Z. Our analysis of the algebraic AKSS has allowed us
to identify H∗,∗(V ), together with the boundary homomorphism

H∗,∗,∗(Calg) ∂alg−−→ H∗,∗(V )

in the form of d1+ε differentials in the algebraic AKSS. Theorem 6.4.3 gives the E1-term of the
May–Ravenel SS

MRE1(σ̃(2)) ⇒ H∗,∗(C). (8.4.1)

It does not exclude the possibility of differentials, but there are no possibilities of differentials
in the range of interest.

We record the following fundamental observations regarding the d1-differential in the tmf-
ASS.

• An evil class cannot kill a good class via a d1-differential since V ∗,∗(Z) is a subcomplex
of tmfE∗,∗

1 (Z).
• The d1-differentials between evil classes are completely determined by those in the

algebraic AKSS since V ∗,∗(Z) ∼= V ∗,0,∗
alg (Z).
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• The d1-differentials from good classes to evil classes are determined by the differentials in
the algebraic AKSS. This is Lemma 7.2.4.

In Figure 8.6, we draw MRE1(σ̃(2)) in the range 0 � t− n � 40, together with the
information about H∗,∗(V ) and differentials obtained from the algebraic AKSS.

We use the map of spectral sequences from tmf-based ASS to the classical ASS to ascertain
that, in the range t− s � 39, there are no additional differentials.

Proposition 8.4.2. There are no non-trivial differentials in the classical ASS for Z with
source in stem t− s � 39.

Proof. In the computations of π∗Z for 0 � ∗ � 39, the possible differentials have source in
stems

t− s = 30, 31, 36, 37, 38, 40.

In stems t− s < 40, the potential sources for differentials are the image of evil classes which are
permanent cycles in the tmf-based ASS. Indeed, for degree reasons, these classes are permanent
cycles provided that they are d1-cycles. Since all d1-differentials on evil classes have been
recorded in Figure 8.6 and all of the potential sources are d1-cycles, the claim follows. �

Remark 8.4.3. There is a potential d2-differential in stem t− s = 40 in the classical ASS
for Z. In fact, this problem is tied to the ambiguity in (8.3.3), as we will see in the proof of
the next proposition, where we will establish that such a non-trivial d2 differential must occur
in the ASS for Z.

Proposition 8.4.4. The only non-trivial differential dr for r > 1 in the tmf-based ASS
with source in the range t− n � 40 is

d2(v2h3,1) = (32, 3 : 3)ev.

Proof. Combining degree arguments with v2-linearity, the only two possibilities are

d2(v2h3,1) = (32, 3 : 3)ev,

d3(v2
2h3,1) = (38, 4 : 4)ev.

By Proposition 8.4.2, the classical ASS for Z collapses in this range. Therefore, π32Z and π33Z
have order 2. For this to be the case, we must have d2(v2h3,1) = (32, 3 : 3)ev in the tmf-based
ASS. This settles the first possibility.

We turn now to the second possible differential d3(v2
2h3,1). Recall from (8.3.3) that we were

unable to determine the coefficient α1 in

d1+ε(h3,0h3,1) = α1(39, 3 : 3)ev.

It will turn out that these two ambiguities are interrelated, and through analyzing this
relationship we will settle both.

Since h̃2,1h4,0 is not an element in H∗,∗(C), if α1 = 0 and

d1+ε(h3,0h3,1) = 0,

then it follows from the tmf-based ASS that we must have

d3(v2
2h3,1) = (39, 3 : 3)ev



1306 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER AND Z. XU

and π39Z has order 4. If, however, α1 = 0 and

d1+ε(h3,0h3,1) = (39, 3 : 3)ev,

then it follows from the tmf-based ASS that π39Z has order 2.
From the structure of the tmf-ASS, we deduce that the map

v2 : π33(Z) v2−→ π39(Z)

is zero. It is immediate from Figure 8.2 that the ASS for A2 collapses in degree 39 to give

π39(A2) = Z/2.

It follows from the long exact sequence associated to the cofiber sequence

Σ6Z
v2−→ Z → A2

that we must have

π39(Z) = Z/2.

We therefore conclude that α1 = 1, so

d1+ε(h3,0h3,1) = (39, 3 : 3)ev

and

d3(v2
2h3,1) = 0. �

It follows from Propositions 8.4.2 and 8.4.4 that Figure 8.6 is complete.

8.5. The E(2)-localization of Z

We end this section with one of the main goals of this paper, which is to determine the homotopy
groups of π∗ZE(2).

Theorem 8.5.1. The Adams Novikov spectral sequence for ZE(2) collapses at the E2-term.

Proof. This spectral sequence is isomorphic (E2 onward) to the v2-localized tmf-ASS

v−1
2

tmfEn,t
1 (Z) =⇒ πt−nZE(2).

Inverting v2 in the short exact sequence

0 → V ∗,∗(Z) → tmfE∗,∗
1 (Z) → C∗,∗(Z) → 0

gives an isomorphism

v−1
2

tmfE∗,∗
1 (Z) ∼= v−1

2 C∗,∗(Z),

and hence an isomorphism

v−1
2

tmfE2(Z) ∼= v−1
2 H∗,∗(C(Z)). (8.5.2)

Consider the v2-localized May–Ravenel spectral sequence

v−1
2

MRE1(σ̃(2)) ⇒ v−1
2 H∗,∗(C(Z)).

The E1-term is given by inverting v2 in Theorem 6.4.3, and so is isomorphic to

F2[v±1
2 ] ⊗ E[h3,0, h̃2,1, h3,1, h̃4,1]. (8.5.3)

Since the E2-term of ANSS for ZE(2) was computed in [12] to be isomorphic to (8.5.3), we
deduce from (8.5.2) that the v2-localized May–Ravenel spectral sequence must collapse at
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Figure 8.6 (colour online). The topological AKSS computing πt−n(Z) drawn in grading (x, y) =
(t− n, n), starting at the E1+ε-page. Gray lines are differentials. They are dashed, if our method is
inconclusive. Dotted lines are known v2-multiplications. Dashed line are known ν-multiplications.
The gray line of slope 1/11 is the line of Proposition 7.3.7.
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Figure 8.7. The E∞-page of the Adams Novikov spectral sequence for ZE(2) = ZK(2). The only
possible non-trivial multiplication by 2 extensions are dotted. Classes denoted by ◦ are multiples
of ζ2 ∈ π−1S

0
K(2).

E1. The v2-localized tmf-ASS for Z is displayed in Figure 8.7. All differentials are v2-linear
since ZE(2) has a v1

2-self map. Furthermore, there is a horizontal vanishing line at E2. Indeed,
En,t

2 = 0 for n � 5. The class labeled by 1 is the image of π0S
0 → π0ZE(2) so is a permanent

cycle. For degree reasons, the only possible non-trivial differentials are functions d3 with sources
vk2h31. However, since d3(v2

2h3,1) in the tmf-based ASS is zero, v2
2h3,1 maps to a d3-cycle in

v−1
2

tmfEn,t
1 . �

Next, we solve all but one exotic extension:

Theorem 8.5.4. For k �≡ 3 mod 6, the groups πkZE(2) are annihilated by multiplication
by 2.

Proof. The class detected by h̃2,1 in π11Z and h3,0 in π13Z have order 2 since there is no
room in the tmf-based ASS for exotic extensions in these degrees. Therefore, their images in
π∗ZE(2) = π∗ZK(2) have order 2, and so do all their multiples. The class detected by v−10

2 h̃4,1

is in the image of the bottom cell, S0
K(2) → ZK(2). Indeed, it is the image of the element

ζ2 ∈ π−1S
0
K(2) discussed in [17, Proposition 2.2.1].† So, any multiple of v−10

2 h̃4,1 has order
2. �

Remark 8.5.5. In [12], the authors study the Adams Novikov spectral sequence for ZK(2),
where K(2) is the Morava K-theory whose formal group law is the Honda formal group law.
Since the homotopy type of ZK(2) is independent of the choice of K(2), Theorems 8.5.1 and
settle [12, Conjecture 1] for our particular choice of Z ∈ Z̃, except for the group structure of
π3+6nZK(2).

9. Discussion of the telescope conjecture for Z

While the telescope conjecture was initially proposed by Ravenel [41], Ravenel was also the
first to propose that it should be false for chromatic levels � 2 [44]. The method of disproof
proposed in [44] (the parameterized Adams spectral sequence) turned out to not be sufficient
to provide a counterexample to the telescope conjecture, but it laid out the blueprint for what
could go wrong.

†Our notation differs from [40, (3.4) Theorem]. In this reference, our class v−10
2

˜h4,1 is closely related to ρ2

and Ravenel’s ζ2 is closely related to v−2
2

˜h2,1.
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A more detailed account of this story is laid out by Mahowald–Ravenel–Shick [34], who
studied a family of Thom spectra y(n) (defined for all primes p and all n � 1) and some
conjectures about their localized Adams spectral sequences, which, if true, would provide
counterexamples to the telescope conjecture for all primes p and all n � 2. These conjectures lay
the groundwork for a concrete counter-conjecture for the homotopy of the telescopes proposed
by Ravenel in [45], which we shall call the parabola conjecture.

In this section, we outline the analog of this conjectural story for Z, and explain how
the structure of the tmf-ASS for Z described in this paper is consistent with the parabola
conjecture. Specifically, let Ẑ denote the telescope of the v2-self map on Z. The telescope
conjecture predicts that the map

Ẑ → ZE(2) (9.0.6)

is an equivalence. In Theorem 8.5.1, we have already verified (up to a potential additive
extension) that

π∗ZE(2)
∼= F2[v±1

2 ] ⊗ E[h̃2,1, h3,0, h3,1, h̃4,1].

The parabola conjecture predicts the structure of π∗Ẑ, and in particular predicts that the map
(9.0.1) is neither injective nor surjective in homotopy.

9.1. The localized Adams spectral sequence for Z

Consider the localized Adams spectral sequence

v−1
2

assE∗,∗
2 (Z) ⇒ π∗Ẑ. (9.1.1)

The E2-term of this spectral sequence was computed in Proposition 7.3.1:

v−1
2

assE∗,∗
2 (Z) ∼= F2[v±2 , h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .].

The analog of Mahowald–Ravenel–Shick’s differentials conjecture [34, Conjecture 3.16] is the
following.

Conjecture 9.1.2. (Differentials Conjecture) In the localized Adams spectral sequence
(9.1.1), we have

d2(h4,0) = v2h̃
2
2,1,

d2(hi,0) = v2h
2
i−2,1,

d4(hi,1) = v2h
4
i−1,0.

The idea is that the d2 differentials in the above conjecture are lifted from the analogous
differentials in the May–Ravenel spectral sequence (Theorem 6.2.3), and that the d4 differentials
arise from these through an extended power argument [44].

Note that Z is not a ring spectrum, as we have already seen in the topological AKSS, where
h̃2,1 is a permanent cycle but h̃2

2,1 supports a non-trivial differential. However, assuming these
are the only dr differentials for r � 4, and that they satisfy the Leibniz rule, we would have

v−1
2

assE∗,∗
5 (Z) ∼= F2[v±2 ] ⊗ E[h̃2,1, h3,0, h3,1, x3, x4, x5, . . .]

where

xi := h2
i,0.

In particular, we have h2
3,0 = x3 rather than h2

3,0 = 0, but this is somewhat irrelevant given
that Z is not a ring spectrum. Our choice to present v−1

2 E5 in this manner leads to a more
uniform discussion.
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In the discussion after [34, Conjecture 5.12] (see also [44]), Mahowald–Ravenel–Shick predict
the collapse of the localized ASS for y(n) at a finite stage. The analog of their conjecture in
our context is the following.

Conjecture 9.1.3 (Parabola Conjecture). The localized ASS for Z collapses at E5, and
therefore

π∗Ẑ ∼= F2[v±2 ] ⊗ E[h̃2,1, h3,0, h3,1, x3, x4, x5, . . .].

Moreover, the telescope conjecture is false, and the kernel of (9.0.1) is the ideal

(x3, x4, . . .) ⊂ π∗Ẑ

and the ideal

(h̃4,1) ⊂ π∗ZE(2)

maps isomorphically onto the cokernel of (9.0.1).

Remark 9.1.4. Note that the element v−10
2 h̃4,1 is the image of the element ζ2 ∈ π−1SK(2)

(see the proof of Theorem 8.5.1), so the second part of the parabola conjecture predicts that
ζ2 is not in the image of the telescopic homotopy. Note that this was the basis of Ravenel’s
initial attempt to disprove the telescope conjecture [44].

We will now explain why we call Conjecture 9.1.3 the ‘parabola conjecture’.

9.2. Unbounded v2-torsion in the tmf-ASS for Z

The key to Mahowald’s proof of the telescope conjecture at chromatic level 1 was his bounded
torsion theorem [32], which states that the E2-page of the bo-ASS for the sphere decomposes
into a direct sum of v1-periodic classes, and v2

1-torsion classes. We will explain how the
analogous phenomenon likely fails in the context of the tmf-ASS for Z.

We have already seen (Theorem 6.4.3) that the May–Ravenel E1-page has unbounded v2-
torsion. But we must run some more differentials in the tmf-ASS to relate this unbounded
v2-torsion to the kernel of the map (9.0.1).

We will assume the following optimistic conjecture in order to simplify our discussion.

Conjecture 9.2.1 (Torsion Conjecture). The May–Ravenel spectral sequence collapses at
E1 with no hidden v2-extensions.

Then H∗,∗(C) has basis:

(I′) vm2 hε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1,

m � 0; εj , ε̄j ∈ {0, 1},

(I′′) v<2i+1

2 hε̄3
3,0x

ki+1
i x

ki+1
i+1 x

ki+2
i+2 · · · h̃ε2

2,1h
ε3
3,1h̃

ε4
4,1h

εi+3
i+3,1 · · · ,

i � 3; kj � 0; εj , ε̄j ∈ {0, 1},

(II) hε̄3
3,0h

ε̄i+3
i+3,0h

ε̄i+4
i+4,0 · · ·xk3

3 xk4
4 · · · h̃ε2

2,1 · · ·hεi−1
i−1,1h

li+2
i,1 h

li+1
i+1,1 · · · ,

i � 2; kj , lj � 0; εj , ε̄j ∈ {0, 1}.
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Figure 9.1. The v2-periodic family supported by x3.

The long exact sequence (3.3.2) implies that the unbounded v2-torsion in tmfE∗,∗
2 (Z) arises

from the terms (I′) and (I′′) above. Since the terms (II) above, as well as H∗,∗(V ) are v1
2-

torsion, the elements of tmfE∗,∗
2 (Z) not mapping to terms of the form (I′) or (I′′) are at most

v2
2-torsion.
The d4-differentials of the Differentials Conjecture 9.1.2 suggest the following analogous

conjecture for the tmf-ASS.

Conjecture 9.2.2 (Differentials Conjecture, v2, part 1). In the tmf-ASS for Z, there are
differentials

d3(vm2 hε̄3
3,0x

ki+1
i x

ki+1
i+1 x

εi+2
i+2 x

εi+3
i+3 · · ·xkl−1

l−1 xkl

l · · · h̃ε2
2,1h

ε3
3,1h̃

ε4
4,1hl,1h

εl+1
l+1,1h

εl+2
l+2,1 · · · )

= vm+1
2 hε̄3

3,0x
ki+1
i x

ki+1
i+1 x

εi+2
i+2 x

εi+3
i+3 · · ·xkl−1+2

l−1 xkl

l · · · h̃ε2
2,1h

ε3
3,1h̃

ε4
4,1h

εl+1
l+1,1h

εl+2
l+2,1 · · ·

+ · · ·
for i � 3, l � i + 3, m < 2i+1 − 1, kj � 0, and εj , ε̄j ∈ {0, 1}.

After running these d3-differentials, the only remaining classes in the tmf-ASS for Z are
either v2

2-torsion, or of the form

(I′) vm2 hε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1, m � 0; εj , ε̄j ∈ {0, 1},

(I′′′) v<2i+1

2 h̃ε1
2,1h

ε2
3,0h

ε3
3,1h̃

ε4
4,1x

ki+1
i x

ki+1
i+1 x

εi+2
i+2 x

εi+3
i+3 · · · , i � 3; kj � 0; εj , ε̄j ∈ {0, 1}.

9.3. Parabolas

In the tmf-ASS for Z, we have differentials (Theorem 6.2.3)

d1(hi+2,1) = v2i+1

2 xi

whereas in the Adams spectral sequence there are conjecturally differentials (Conjecture 9.1.2)

d4(hi+2,1) = v2x
2
i+1.

This suggests the following.

Conjecture 9.3.1 (Extension Conjecture). In the tmf-ASS, there are hidden extensions

v2i+1

2 xi = v2x
2
i+1.

This conjecture predicts that the v2-torsion families of type (I′′′) of Conjecture 9.2.2 in
the tmf-ASS for Z actually assemble via an infinite sequence of hidden extensions to form
v2-periodic families in π∗(Z). Figure 9.1 shows one such v2-periodic family.
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If we assign a mass to xi via

M(xi) :=
1

2i−2

and, more generally for monomials

M(vm2 xk3
3 xk4

4 · · · ) := k3M(x3) + k4M(x4) + · · · ,
then one finds that all of the terms of the form

vm2 xki+1
i x

ki+1
i+1 x

ε̄i+2
i+2 x

ε̄i+3
i+3 · · ·

(for i � 3, 0 < m < 2i+1, kj � 0, and ε̄j ∈ {0, 1}) lie in the same v2-periodic family if and only
if they have the same mass.

Each of these v2-periodic families begins with a term of the form

xk3
3 xε̄4

4 xε̄5
5 · · ·

(with k3 � 0 and ε̄j ∈ {0, 1}) with corresponding mass

M =
k3

2
+

ε̄4
4

+
ε̄5
8

+ · · · .
Thus for each monomial

h̃ε1
2,1h

ε2
3,0h

ε3
3,1h̃

ε4
4,1 ∈ E[h̃2,1, h3,0, h3,1, h̃4,1]

and each mass M ∈ Z[1/2]>0 there is a corresponding non-trivial monomial

xk3
3 xε̄4

4 xε̄5
5 · · · ∈ F2[x3] ⊗ E[x4, x5, x6, . . .]

such that

h̃ε1
2,1h

ε2
3,0h

ε3
3,1h̃

ε4
4,1x

k3
3 xε̄4

4 xε̄5
5 · · ·

supports a v2-family with mass M . For each of these v2-families, the elements

h̃ε1
2,1h

ε2
3,0h

ε3
3,1h̃

ε4
4,1v2x

2i−2M
i

represent a cofinal collection of elements which lie in the family. The elements v2x
2i−2M
i lie on

the (sideways) parabola

t− n =
4
M

n2 − 3n + 6 (9.3.2)

in the (t− n, n)-plane. As such, we will refer to these v2-families as v2-parabolas.

9.4. The vanishing line

Theorem 6.4.3 and Proposition 7.3.6 imply the following.

Theorem 9.4.1. In the tmf-ASS for Z, we have tmfEn,t
2 (Z) = 0 for

n >
t− n + 12

11
.

Unfortunately, Conjecture 9.2.1 only predicts the bounded v2-torsion in this E2-term is v2
2-

torsion. This means that the v2
2-torsion could in principle assemble (via infinite sequences of

hidden extensions) to detect non-trivial v2-periodic families in π∗Z which lie along curves with
derivatives � 1/12 in the (t− n, n)-plane. Thus Theorem 9.4.1 is not strong enough to preclude
the bounded v2

2-torsion contributing to the homotopy of Ẑ.
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This 1/11 vanishing line essentially arises from the element h̃2,1 ∈ H∗,∗(C).† However, the
results of [2] imply that assE∗,∗

2 (A2) has a vanishing line of slope 1/13. Moreover, the element
h4

2,2 in the May spectral sequence (corresponding to h̃4
2,1 ∈ H∗,∗(C(Z))) detects the element

g2 ∈ assE2(S). The element g2 is not nilpotent [27], but it detects the element κ̄2 ∈ π44(S)
which necessarily is nilpotent by the Nishida nilpotence theorem. It seems likely this can be
used to prove the following, which would imply that the bounded v2

2-torsion cannot contribute
to the homotopy of Ẑ.

Conjecture 9.4.2 (Vanishing Line Conjecture). There is an r so that tmfEn,t
r (Z) has a

1/13 vanishing line.

9.5. The parabola conjecture

Assuming all of the conjectures so far are true, the homotopy of Ẑ can only be detected by
the v2-periodic elements or the v2-parabolas in tmfE4(Z). We therefore are left to consider the
possibility of differentials between these families. The only possibilities are:

(1) differentials between v2-periodic elements;
(2) differentials from v2-periodic elements to v2-parabolas;
(3) differentials from a v2-parabola of mass M to a v2-parabola of mass M ′ with M ′ > M .

Differentials of type (1) are ruled out by Theorem 8.5.1. Proposition 8.4.4 establishes that h̃2,1,
h3,0, and v2

2h3,1 are permanent cycles in the tmf-ASS. While Z is not a ring spectrum, one
might nevertheless suspect that the v2-families

vm2 h̃ε1
2,1h

ε2
3,0h

ε3
3,1

cannot support differentials of type (2), and presumably this could be easily established be
extending our low-dimensional calculations a little further.

We therefore turn to considering differentials of type (2) involving the element h̃4,1. Note
that since v−10

2 h̃4,1 detects ζ2 ∈ π−1ZE(2), this is equivalent to the question of whether the
element ζ2 ∈ π−1ZE(2) lifts to π−1Ẑ (compare with Remark 9.1.4).

We first note that Conjecture 9.2.2 does not include the differential

d4(h4,1) = v2x
2
3

of Conjecture 9.1.2. We therefore offer this second installment to Conjecture 9.1.2 which does
include this differential, and its consequences.

Conjecture 9.5.1 (Differentials conjecture, v2, part 2). In the tmf-ASS, for m � 0, the
v2-families

vm2 h̃ε1
2,1h

ε2
3,0h

ε3
3,1h̃4,1

support differentials which hit the v2-parabolas supported by

h̃ε1
2,1h

ε2
3,0h

ε3
3,1x

2
3

and the v2-parabolas supported by

h̃ε1
2,1h

ε2
3,0h

ε3
3,1h̃4,1x

k3
3 xε̄4

4 xε̄5
5 · · ·

support differentials which hit the v2-parabolas

h̃ε1
2,1h

ε2
3,0h

ε3
3,1x

k3+2
3 xε̄4

4 xε̄5
5 · · · .

†If one replaces Z with the Thom spectrum y(2) of [34], a similar analysis to Theorem 9.4.1 easily yields a
vanishing line of slope 1/13.
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Figure 9.2. The conjectural differentials on vm2 ˜h4,1.

Figure 9.2 shows an example of such a family of differentials. Note that the lengths of
each of the families of differentials predicted by Conjecture 9.5.1 are unbounded. However, it
could be that far enough out in the family, the differentials are all zero. This could occur, for
instance, if another parabola supporting shorter differentials kills the v2-family which is the
putative target. Such a phenomenon would be a means for ζ2 to exist in π∗Ẑ without violating
Conjecture 9.5.1.

The following version of the parabola conjecture offers a maximally anti-telescope point of
view, and is consistent with Conjecture 9.1.3.

Conjecture 9.5.2 (Parabola Conjecture, v2). The differentials of Conjecture 9.5.1 are non-
trivial, and all of the remaining v2-parabolas have elements which are permanent cycles. Thus
the v2-periodic homotopy of Z is generated by the v2-families

vm2 hε̄3
3,0h̃

ε2
2,1h

ε3
3,1, m � 0, εj ∈ {0, 1},

and the v2-parabolas are supported by

hε̄3
3,0h̃

ε2
2,1h

ε3
3,1x

ε̄3
3 xε̄4

4 · · · , εj , ε̄j ∈ {0, 1}.

Remark 9.5.3. Recent work of Carmeli–Schlank–Yanovski [15] gives some circumstantial
evidence that it could be the case that ζ2 ∈ π∗ZE(2) lifts to an element of π∗Ẑ. If this turns
out to be true, then it flies in the face of the conventional wisdom on the subject, but it does
not seem to necessarily force the telescope conjecture to be true. Rather, it is totally possible
that a weak form of the parabola conjecture is true, where the map

π∗Ẑ → π∗ZE(2)

is surjective with non-trivial kernel generated by a portion of the v2-parabolas.

Appendix. A(2) as a module over the Steenrod algebra

Here, we describe the A-module structure on A(2) resulting from [46, Chapter III, p. 30] and
present it as a definition file for Bruner’s program [14]. The definition file is a text file, where
the first line is an integer n which records the dimension of the A-module as an F2-vector space.
We should then interpret that we are given an ordered basis g0, . . . , gn−1. The second line of
the text file is an ordered list of integers d0, . . . , dn−1, where di is the internal degree of gi. For
A(2), the first two lines of Bruner’s definition file reads as

64

0 1 2 3 3 4 4 5 5 6 6 6 7 7 7 7 8 8 8 9 9 9 9 10 10 10 10 10 11 11 11
11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17
17 18 18 19 19 20 20 21 22 23
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Every subsequent line in the text file describes a nontrivial action of some Sqk on some
generator gi. For example, if

Sqk(gi) = gj1 + · · · + gjl ,

we would encode this fact by writing the line

i k l j1 . . . jl

followed by a line break. Actions which are not indicated by such data are assumed to be
trivial.

0 1 2 3
3 4 4 5
5 6 6 6
7 7 7 7
8 8 8 9
9 9 9 10
10 10 10 10
11 11 11 11
12 12 12 12
13 13 13 13
13 14 14 14
14 15 15 15
16 16 16 16
17 17 17 18
18 19 19 20
20 21 22 23

0 1 1 1
0 2 1 2
0 3 1 3
0 4 1 5
0 5 1 7
0 6 1 9
0 7 1 12
0 10 1 23
0 12 1 32
0 13 1 36
0 14 1 41
0 20 2 59 60
0 21 1 61

1 2 2 3 4
1 3 1 6
1 4 2 7 8
1 5 1 10
1 6 2 12 13
1 7 1 16
1 8 1 19
1 9 1 23
1 12 1 36
1 14 1 45
1 15 1 48

1 20 1 61
1 22 1 63

2 1 1 3
2 2 1 6
2 4 3 9 10 11
2 5 2 12 14
2 6 2 16 17
2 7 1 20
2 8 1 24
2 9 1 28
2 10 1 32
2 11 1 36
2 12 2 41 42
2 14 1 49
2 15 1 52
2 16 1 55
2 18 2 59 60
2 19 1 61

3 2 1 8
3 3 1 10
3 4 2 12 14
3 6 3 19 20 21
3 7 2 23 25
3 8 2 28 29
3 9 1 33
3 10 2 36 37
3 11 1 41
3 12 1 45
3 13 1 48
3 20 1 63

4 1 1 6
4 2 1 8
4 3 1 10
4 4 2 13 15
4 5 2 16 18
4 6 2 19 22
4 7 2 23 26
4 8 1 30
4 9 1 34
4 10 1 38

4 11 1 42
4 12 1 45
4 13 1 48
4 14 1 52
4 16 1 57
4 17 1 59
4 18 1 61
4 20 1 63

5 1 1 7
5 2 2 9 10
5 3 1 12
5 4 1 17
5 5 1 20
5 6 2 23 25
5 8 2 34 35
5 9 1 39
5 10 2 42 43
5 11 1 46
5 12 2 48 49
5 13 1 52
5 16 1 59
5 18 1 62
5 19 1 63

6 2 1 10
6 4 2 16 18
6 6 3 23 26 27
6 7 1 31
6 8 2 34 35
6 9 1 39
6 10 2 42 43
6 11 1 46
6 12 2 48 49
6 13 1 52
6 16 1 59
6 18 1 62
6 19 1 63

7 2 2 12 13
7 3 1 16
7 4 2 19 20
7 5 1 23
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7 6 1 29
7 7 1 33
7 8 1 39

8 1 1 10
8 4 3 19 21 22
8 5 3 23 25 26
8 6 2 29 31
8 7 1 33
8 8 4 37 38 39 40
8 9 3 41 42 44
8 10 3 45 46 47
8 11 2 48 50
8 12 2 52 53
8 13 1 55
8 14 1 57
8 15 1 59
8 18 1 63

9 1 1 12
9 2 1 16
9 4 2 23 24
9 5 1 28
9 6 2 32 33
9 7 1 36
9 8 3 41 42 43
9 9 1 46

10 4 3 23 25 26
10 6 2 33 35
10 7 1 39
10 8 3 41 42 44
10 10 4 48 49 50 51
10 11 2 52 54
10 12 2 55 56
10 13 1 58
10 14 2 59 60
10 15 1 61
10 16 1 62
10 17 1 63

11 1 1 14
11 2 1 17
11 3 1 20
11 4 2 24 27
11 5 2 28 31
11 6 2 32 35
11 7 2 36 39
11 8 2 42 43
11 9 1 46
11 10 1 48
11 12 1 55
11 14 2 59 60

11 15 1 61
11 16 1 62
11 17 1 63

12 2 1 19
12 3 1 23
12 4 1 28
12 6 2 36 37
12 7 1 41
12 8 2 45 46
12 9 1 48
12 10 1 52

13 1 1 16
13 2 1 19
13 3 1 23
13 4 2 29 30
13 5 2 33 34
13 6 2 38 39
13 7 1 42
13 8 2 46 47
13 9 1 50
13 10 1 54

14 2 2 20 21
14 3 1 25
14 4 3 28 29 31
14 5 1 33
14 6 3 36 37 39
14 7 1 41
14 8 2 45 46
14 9 1 48
14 10 1 52

15 1 1 18
15 2 1 22
15 3 1 26
15 4 1 30
15 5 1 34
15 6 1 38
15 7 1 42
15 10 1 52
15 12 1 57
15 13 1 59
15 14 1 61

16 2 1 23
16 4 2 33 34
16 6 2 42 43
16 7 1 46
16 8 2 49 50
16 9 1 52
16 10 1 56

16 11 1 58

17 1 1 20
17 2 1 25
17 4 3 32 33 35
17 5 2 36 39
17 6 1 41
17 8 1 51
17 9 1 54
17 10 1 56
17 11 1 58
17 12 1 59
17 14 1 62
17 15 1 63

18 2 2 26 27
18 3 1 31
18 4 2 34 35
18 5 1 39
18 6 2 42 43
18 7 1 46
18 8 1 49
18 9 1 52
18 12 1 59
18 14 1 62
18 15 1 63

19 1 1 23
19 4 2 37 38
19 5 2 41 42
19 6 2 45 46
19 7 1 48
19 8 1 53
19 9 1 55
19 10 2 57 58
19 11 1 59
19 12 1 61

20 2 1 29
20 3 1 33
20 4 2 36 39
20 6 1 45
20 7 1 48
20 8 1 54
20 10 1 58

21 1 1 25
21 2 1 29
21 3 1 33
21 4 2 37 40
21 5 2 41 44
21 6 2 45 47
21 7 2 48 50
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21 8 2 52 53
21 9 1 55
21 10 1 57
21 11 1 59
21 12 1 61

22 1 1 26
22 2 1 31
22 4 3 38 39 40
22 5 2 42 44
22 6 2 46 47
22 7 1 50
22 8 1 53
22 9 1 55
22 10 1 57
22 11 1 59
22 12 1 61

23 4 2 41 42
23 6 2 48 49
23 7 1 52
23 8 1 55
23 10 2 59 60
23 11 1 61
23 12 1 62
23 13 1 63

24 1 1 28
24 2 2 32 33
24 3 1 36
24 4 1 43
24 5 1 46
24 6 2 48 49
24 7 1 52
24 8 1 56
24 9 1 58
24 12 1 62
24 13 1 63

25 2 1 33
25 4 2 41 44
25 6 3 48 50 51
25 7 1 54
25 8 2 55 56
25 9 1 58
25 10 2 59 60
25 11 1 61
25 12 1 62
25 13 1 63

26 2 1 35
26 3 1 39
26 4 2 42 44

26 6 3 49 50 51
26 7 2 52 54
26 8 2 55 56
26 9 1 58
26 10 2 59 60
26 11 1 61
26 12 1 62
26 13 1 63

27 1 1 31
27 2 1 35
27 3 1 39
27 4 1 43
27 5 1 46
27 6 1 49
27 7 1 52
27 12 1 62
27 13 1 63

28 2 2 36 37
28 3 1 41
28 4 2 45 46
28 5 1 48
28 6 1 52
28 8 1 58
28 12 1 63

29 1 1 33
29 4 2 45 47
29 5 2 48 50
29 6 1 54
29 8 2 57 58
29 9 1 59
29 10 1 61
29 12 1 63

30 1 1 34
30 2 2 38 39
30 3 1 42
30 4 1 47
30 5 1 50
30 6 2 52 54
30 12 1 63

31 2 1 39
31 4 1 46
31 6 1 52
31 12 1 63

32 1 1 36
32 2 1 41
32 4 2 48 49
32 5 1 52
32 8 1 60

32 9 1 61
32 10 1 62
32 11 1 63

33 4 2 48 50
33 6 1 56
33 7 1 58
33 8 1 59
33 10 1 62
33 11 1 63

34 2 2 42 43
34 3 1 46
34 4 2 49 50
34 5 1 52
34 6 1 56
34 7 1 58

35 1 1 39
35 4 2 49 51
35 5 2 52 54
35 6 1 56
35 7 1 58
35 8 1 60
35 9 1 61
35 10 1 62
35 11 1 63

36 2 1 45
36 3 1 48
36 4 1 52
36 8 1 61
36 10 1 63

37 1 1 41
37 2 1 45
37 3 1 48
37 4 1 53
37 5 1 55
37 6 2 57 58
37 7 1 59
37 10 1 63

38 1 1 42
38 2 1 46
38 4 2 52 53
38 5 1 55
38 6 2 57 58
38 7 1 59
38 8 1 61

39 4 2 52 54
39 6 1 58
39 8 1 61
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39 10 1 63

40 1 1 44
40 2 1 47
40 3 1 50
40 4 1 53
40 5 1 55
40 6 1 57
40 7 1 59
40 10 1 63

41 2 1 48
41 4 1 55
41 6 2 59 60
41 7 1 61
41 8 1 62
41 9 1 63

42 2 1 49
42 3 1 52
42 4 1 55
42 6 2 59 60
42 7 1 61
42 8 1 62
42 9 1 63

43 1 1 46
43 2 1 49
43 3 1 52
43 4 1 56
43 5 1 58

44 2 2 50 51
44 3 1 54
44 4 2 55 56
44 5 1 58
44 6 2 59 60
44 7 1 61

44 8 1 62
44 9 1 63

45 1 1 48
45 4 1 57
45 5 1 59
45 6 1 61
45 8 1 63

46 2 1 52
46 4 1 58

47 1 1 50
47 2 1 54
47 4 2 57 58
47 5 1 59
47 6 1 61

48 4 1 59
48 6 1 62
48 7 1 63

49 1 1 52
49 4 1 60
49 5 1 61
49 6 1 62
49 7 1 63

50 2 1 56
50 3 1 58
50 4 1 59
50 6 1 62
50 7 1 63

51 1 1 54
51 2 1 56
51 3 1 58
51 4 1 60
51 5 1 61

51 6 1 62
51 7 1 63

52 4 1 61
52 6 1 63

53 1 1 55
53 2 2 57 58
53 3 1 59
53 6 1 63

54 2 1 58
54 4 1 61
54 6 1 63

55 2 2 59 60
55 3 1 61
55 4 1 62
55 5 1 63

56 1 1 58
56 4 1 62
56 5 1 63

57 1 1 59
57 2 1 61
57 4 1 63

58 4 1 63

59 2 1 62
59 3 1 63

60 1 1 61
60 2 1 62
60 3 1 63

61 2 1 63

62 1 1 63
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