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The telescope conjecture at height 2 and the tmf resolution
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ABSTRACT

Mahowald proved the height 1 telescope conjecture at the prime 2 as an application of his
seminal work on bo-resolutions. In this paper, we study the height 2 telescope conjecture at
the prime 2 through the lens of tmf-resolutions. To this end, we compute the structure of the
tmf-resolution for a specific type 2 complex Z. We find that, analogous to the height 1 case, the
FE1-page of the tmf-resolution possesses a decomposition into a vs-periodic summand, and an
Eilenberg—-MacLane summand which consists of bounded vs-torsion. However, unlike the height
1 case, the Fa-page of the tmf-resolution exhibits unbounded wva-torsion. We compare this to the
work of Mahowald—Ravenel-Shick, and discuss how the validity of the telescope conjecture is
connected to the fate of this unbounded vs-torsion: either the unbounded va-torsion kills itself off
in the spectral sequence, and the telescope conjecture is true, or it persists to form vs-parabolas
and the telescope conjecture is false. We also study how to use the tmf-resolution to effectively
give low-dimensional computations of the homotopy groups of Z. These computations allow us
to prove a conjecture of the second author and Egger: the E(2)-local Adams—Novikov spectral
sequence for Z collapses.
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1. Introduction

The telescope conjecture

Fix a prime p and let X be a finite spectrum. The perspective of chromatic homotopy theory
is to understand X,y through the study of its chromatic tower [3; 43, Section 7.5]

: _>XE(n) — XE(nfl) — = XE(O) :XQ.
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Here, Xp(,) denotes the Bousfield localization of X with respect to the Johnson-Wilson
spectrum F(n) with

T E(n) = Zplvi, . . ., Un,v,;l},

where |v,| = 2(p™ — 1). The chromatic convergence theorem of Hopkins and Ravenel [23] states
that X, is recovered as the inverse limit of the tower. Thus the E(n)-localizations interpolate
between the rationalization and the p-localization of X. The monochromatic layers of the
chromatic tower are defined to be the fibers

M, X — XE(n) — XE(nfl)-
Applying 7, to the chromatic tower yields the chromatic spectral sequence
SCENN(X) =mM,X = m.X.

The efficacy of the chromatic approach is established by Morava’s change of rings theorem [39],
which states that the Adams—Novikov spectral sequence for M, X takes the form

anss Eet (M, X) = HE (G, (Bn)i M, X) = - M, X,

where F,, is the height n Morava E-theory spectrum and G,, is the height n Morava stabilizer
group. For a given height n, “***EJ"* (M, X) (and in fact the entire Adams-Novikov spectral
sequence) is in principle completely computable.

In reality, the complexity of these computations increases significantly as a function of n,
and therefore these computations have only been carried out successfully for small values of
n. It is thus desirable to have a means of directly relating the homotopy groups of each of the
monochromatic layers M, X to the homotopy groups of X itself, without having to resort to
needing to compute the entire chromatic spectral sequence.

There is a variant of the chromatic tower which does have this property. Let X é(”) denote
the finite E(n)-localization, obtained by killing only finite E(n)-acyclic spectra (instead of all
E(n) acyclic spectra). The finite localizations also form a tower, with finite monochromatic
layers defined to be the fibers

N'¢

MIX — X} L)

(n)

The advantage of this variant of the chromatic tower is that the elements of the homotopy

groups of these finite monochromatic layers have a concrete relationship to the homotopy groups

of X itself: elements of 7, M, X correspond to v,-periodic families in 7. X [43, Section 2.5].
In [41], Ravenel proposed the following Panglossian conjecture.

TELESCOPE CONJECTURE. For any spectrum X, prime p, and height n, the natural map

x/

B(n) — XE(n)

is an equivalence.

The Hopkins—Smith thick subcategory theorem [24] implies that the telescope conjecture
is true if and only if it is true for a single type n spectrum (a p-local finite spectrum which
is E(n — 1)-acyclic, but not F(n)-acyclic). In this case where X is type n > 1, the Hopkins—
Smith periodicity theorem [24] implies there is an asymptotically unique v,,-self map, that is,
an FE(n)-self equivalence

v: VX - X
where N > 0. The telescope of X is defined as the homotopy colimit
X=X52 VX Ly 2Vx .
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and we have
) = X.
Thus, for any p-local spectrum X of type n, the natural map

X = X (1.0.1)

!
X

is an equivalence if and only if the p-primary height n telescope conjecture is true.

The height 1 case

The telescope conjecture was in large part motivated by the case of height n = 1, where the
conjecture was already proven by Mahowald for p = 2 [32; 33, Theorem 1.2}, and Miller for
p > 2 [38]. In both of these cases, the proof is computational, in the sense that the authors
compute the homotopy groups of the source and target of (1.0.1) and show that the map is an
isomorphism on these homotopy groups. The methods used in each of these cases, though, are
somewhat different.

In the p > 2 case of [38], Miller considered the mod p Moore spectrum M (p), which is type
1, with v;-self map

v 22D (p) — M(p) (1.0.2)
having the property that it is given by multiplication by v; in E(1)-homology. We will call
such a self-map a v{-self map. Miller computes the localized Adams spectral sequence

vflassE;’t =yt ExtsA’i (Fp,H.M(p)) = m—sM(p)

where A, denotes the p-primary dual Steenrod algebra, and H, denotes mod p homology. To
do this, he completely computes the Fs-page, and then gives a delicate lifting argument which
computes the do Adams differentials from the d; Adams—Novikov differentials. He then shows
the localized Adams spectral sequence collapses at E3 to the known values of m. M (p)g(1).

In the case of p = 2, the situation is more complicated as the mod 2 Moore spectrum only
has a v{-self map

vl SEM(2) — M(2),

having the property that it is given by multiplication by v} on E(1)-homology. For this reason,
in [33], Mahowald considers the 2-local type 1-spectrum

Y= M(2) AC(n),

where C(n) denotes the cofiber of the Hopf map 7 : S* — S°. In contrast with the case of the
mod 2 Moore spectrum, the spectrum Y possesses a v;-self map:

v 1 XY =Y.
Mahowald analyzed the bo-based Adams spectral sequence (aka the ‘bo-resolution’) for Y
bOEigyt(Y) =mbo™ T AY = 1LY,

Here bo denotes the connective real K-theory spectrum. This spectral sequence is significantly
simplified by the fact that we have an equivalence

boAY =~ k(1),

where k(1) denotes the height 1 connective Morava K-theory spectrum. Unfortunately, the v;-
localized bo-resolution converges to the E(1)-local homotopy groups of Y (rather than those
of Y):

o " EPNY) = s Ye).
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Nevertheless, Mahowald was able to deduce the height 1 telescope conjecture at the prime 2
by establishing the following key results:

Collapse theorem: The vi-localized bo-resolution for Y collapses at its Es-page.
Bounded torsion theorem: If x € " E;" is v;-torsion, then vz = 0.
Vanishing line theorem: There is a ¢ so that *°ES*(Y) = 0 for s > =2 e

The idea is to use these key results to prove the map
Y = m.Yea (1.0.3)

is surjective and injective. The map (1.0.3) is surjective because if y € 7.Yp(1) is detected by an
element ' € vy 'P°E;* (Y) in the v;-localized bo-resolution, then the bounded torsion theorem
implies that the targets of the differentials supported by the family v?'y in the unlocalized bo-
resolution lie above a line of slope 1/4, and thus will eventually surpass the 1/5 vanishing line.
Hence for i >> 0, the element v?'y’ detects a vi-periodic family mapping to that of y under
(1.0.3). The map (1.0.3) is injective because the collapse theorem implies that any element
z € m,Y which maps to zero in 7,Yp(1) must be detected by a vi-torsion element of " E3 " (Y),
and the bounded torsion theorem then implies that the family of elements v?'z are detected in
the bo resolution above a line of slope 1/4, and thus will eventually surpass the 1/5 vanishing
line. Hence x must be v;-torsion.

Attempts to disprove the telescope conjecture

Less than a decade after his 1984 paper, Ravenel’s optimistic beliefs concerning the telescope
conjecture took a decidedly Orwellian turn. In [44], Ravenel studied the height 2 telescope
conjecture at primes p > 5 by considering the analog of Miller’s argument for the Smith—Toda
complex V(1) (the cofiber of (1.0.2)). The Adams—Novikov spectral sequence

'“LSSE;’*(V(1>E(2)) = H:(G2, (Ez)*V(l)) = W*V(l)E(Q)

collapses for dimensional reasons. Ravenel computed the Fs-term of the localized Adams
spectral sequence
vy 1950 B3 (V(1)) = vy ' Exta, (Fy, HV (1) = m.V (1),

and found that the Adams—Novikov differentials lifted to differentials of unbounded length in
the localized Adams spectral sequence. He then observed that a power operation argument
gave rise to Toda—type;di\fferentials which preceeded the lifted Adams—Novikov differentials,
potentially causing 7.V (1) to differ from 7,V (1)g (). Although he initially thought he had a
counterexample to the telescope conjecture, it eventually became clear that it was impossible
to rule out the possibility that a bizarre pattern of other differentials might subsequently ‘fix’
the havoc caused by these Toda-type differentials, allowing the telescope conjecture to hold.
Mahowald, Ravenel, and Shick summarized the uncertain state of affairs in [34].

MAIN RESULTS. The purpose of this paper is to carry out the height 2 analog of Mahowald’s
analysis of the height 1 telescope conjecture at the prime 2.

To this end, we replace the bo-resolution of Mahowald with the tmf-based Adams spectral
sequence (aka the tmf-resolution),

s (X) = o (tmf A X) = o1 X

where tmf denotes the spectrum of connective topological modular forms [18]. The role that
was played by Mahowald’s spectrum Y will now be reprised by Z, a 2-local finite spectrum of
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type 2 constructed by the third author and Egger [11], with the distinguished property that
it possesses a vi-self map

vy X7 — Z,
and that there is an equivalence

tmf A Z ~ k(2). (1.0.4)

Here k(2) is the height 2 connective Morava K-theory spectrum.
We find that, similar to the height 1 case, the E; term of the tmf-resolution for Z fits into
a short exact sequence

0=V (Z) = "™ES(Z) = (Z) =0 (1.0.5)

where the groups C**(Z) are ve-torsion free and completely computable and the groups V**(Z)
are vi-torsion and essentially incomputable. We will refer to C**(Z) as the good complex and
V**(Z) as the evil complex.

We will show that the good complex C**(Z) is an explicit connective subcomplex of the
cobar complex for computing the Es-term of the Adams—Novikov spectral sequence

B (Zpe) = H (Gas (Bx)nZ) = 7 Zpga) (1.0.6)
and the localized tmf resolution
0 S = HY(C(2)) = 7 e
is isomorphic to the spectral sequence (1.0.6)." The groups
(1,71,SSE§7* (ZE(Q))

were computed by the third author and Egger [12]. It turned out that, unlike the situation for
large primes, the spectral sequence (1.0.6) cannot be shown to collapse at its Eo-page simply
for dimensional reasons, but the third author and Egger conjectured that it does collapse. One
major result of this paper is a proof of this conjecture.

CoLLAPSE THEOREM (Theorem 8.5.1). The vy-localized tmf-resolution for Z collapses at
its E5-page.

The height 2 story begins to diverge in the context of the bounded torsion theorem. We
construct an analog of the May filtration on the good complex C**(Z), and we will refer to
the associated spectral sequence

MRE = H(BC(Z)) = H'(€(2)

as the May—Ravenel spectral sequence. We will completely compute the F;-term of the May—
Ravenel spectral sequence, and will observe the following:

UNBOUNDED TORSION THEOREM (Theorem 6.4.3). The May—Ravenel E)-page has
unbounded vs-torsion: there are elements which are vi-torsion for ¢ arbitrarily large.

Unfortunately, we are unable to deduce the same unbounded torsion statement for
H**(C(Z)) (which is equivalent to unbounded torsion in ‘™ E*(Z)) because we do not know
if the May—Ravenel spectral sequence collapses at E7, and we do not know if there are hidden v,
extensions in this spectral sequence. Nevertheless, the computation of the unbounded torsion
allows us to understand exactly how the telescope conjecture could fail at height 2.

TIn general, for a bigraded cochain complex C**, we shall denote its cohomology by H**(C).
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We now turn our attention to the final component of Mahowald’s work on bo-resolutions: the
vanishing line. Clearly, a vanishing line for the cohomology of the good complex H**(C(Z))
can be read off of our computation of the May—Ravenel F-term. In order to lift this vanishing
line to one for "™ E)*(Z), we need a vanishing line for the cohomology of the evil complex
H**(V(Z)).

In [7], we developed a technique (the agathakakological spectral sequence) for computing
the cohomology of the evil complex associated to the bo-resolution by relating it to Ext 4, and
the good complex. We will construct an agathokakological spectral sequence in our present
setting of the tmf-resolution. This will allow us to use a vanishing line in Ext4, to establish a
vanishing line for the cohomology of the evil complex H**(V (Z)), thus establishing a vanishing
line for "™ E;*(Z).

VANISHING LINE THEOREM (Theorem 9.4.1). In the tmf-resolution for Z, we have
mlpS(Z) = 0 for
2

>t—s+12
§> —— .
11

The slope of this line cannot be improved at Fs; 1/11 is the slope of the non-nilpotent
element

g2 € Exty"* (Fa, F2),

and it turns out go lifts to tr‘[‘lcE;l’%(Z). We conjecture that for some r > 2, the E,-page has a
slope 1/13 vanishing line (Conjecture 9.4.2).

The agathokakological spectral sequence allows us to combine our computations of the
cohomology of the good complex H**(C(Z)) with low-dimensional computer computations
of Exta, to obtain low-dimensional computations of the tmf-resolution Fs-page tme; (2).
Using this technique, we compute the tmf-resolution of Z through the 40-stem. This is not
just an academic exercise — rather it is the means by which we prove the collapse theorem. In
this range, we are able to locate unlocalized elements which map to the generators of the Fo-
term of the Adams-Novikov spectral sequence for Zp(2). By observing that the corresponding
unlocalized elements are permanent cycles in the tmf-resolution, we deduce that their images
in the Adams—Novikov spectral sequence for Zg(,) are permanent cycles.

The unbounded torsion theorem allows us to identify the possible ways the map

71'*2 — W*ZE(Q)

can fail to be an isomorphism. The last section of this paper is a detailed discussion giving a
precise conjecture for what 7.7 is (the parabola conjecture), and how this conjectural answer
differs from m.Zp ). The parabola conjecture is essentially an adaptation of the conjectures
of Mahowald, Ravenel, and Shick [34, 45] to our context.

Future directions

It is probably clear to the reader that the authors hoped that adapting Mahowald’s approach to
the 2-primary height 1 telescope conjecture to the height 2 context would yield new information
that would lead to a computational proof or disproof of the telescope conjecture at chromatic
height 2. The results of this paper are as such inconclusive, and the telescope conjecture remains
one of the great unlocked mysteries of the subject.

T agathokakological (ag-uh-thuh-kak-uh-LAHJ-uh-kuhl) adjective: Made up of both good and evil.
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The seasoned expert will recognize, however, that if this was the authors’ only goal, then we
would have been better off studying the BP(2)-resolution of the Smith-Toda complex V(1)
for primes p > 5. Indeed, that would have simplified many parts of this paper.

However, the authors had other motivations for undertaking this particular endeavor at the
prime 2. We wanted to complete the computation of 7. Zp(2) initiated by the third author and
Egger in [12]. Not only does our analysis show that the structure of the homotopy groups of
Z g (2) mirrors the structure of the homotopy groups of V(1) g(2) at primes p > 5, despite the fact
that the E(2)-local Adams-Novikov spectral sequence is no longer sparse, it also represents the
first non-trivial complete computation of the homotopy groups of any F(2)-local finite complex
at the prime 2.

The prime 2 represents the last computational frontier for chromatic height 2, where
computations are elaborate but straightforward for primes p > 5 (see, for example, [9]),
and downright difficult, but possible, the prime p =3 (see, for example, [19]). In fact, the
duality resolution of [19] is a minimal tmf-resolution of the sphere in the K(2)-local stable
homotopy category.

Besides the fact that the 2-torsion in tmf is an order of magnitude more complicated than
the 3-torsion, there is a fundamental unsolved difficulty at p = 2: Bobkova and Goerss have
successfully constructed a duality resolution for the maximal cyclotomic extension of the K (2)-
local sphere [13], but constructing resolutions of the K(2)-local sphere itself is much more
subtle. Our analysis links the tmf-resolution explicitly to the Morava stabilizer group through
the good complex. We are hopeful that this will allow us to one day use the tmf-resolution to
help us understand finite resolutions for the K(2)-local sphere itself.

We also plan to develop the tmf-resolution as a valuable tool for low dimensional 2-primary
computations of stable homotopy groups. Our use of the tmf-resolution to compute the first
40 stems of Z required very little effort — the computation could probably be pushed to much
higher degrees if we had a good reason to do so. In the case of the sphere, there is such a
motivation: the Kervaire invariant one problem in dimension 126 [21]. The work of Isaksen,
Wang, and the fifth author [28] shows that complex motivic homotopy theory can be used to
effectively compute the 2-primary Adams spectral sequence for the sphere, and they have used
their machinery to carry out this computation up to the 90 stem. It is unclear whether their
techniques alone will suffice to get up to dimension 126. The tmf-resolution could provide a
valuable tool for analyzing Adams differentials between wvs-periodic elements in Ext,,. The
computations of this paper provide the starting point for the analysis of the tmf-resolution of
the sphere.

Conventions

We will use the following notation throughout this paper.

ASS = classical Adams spectral sequence.

tmf-ASS = the tmf-based ASS (aka the tmf-resolution).

ANSS = Adams-Novikov spectral sequence (aka the BP-based ASS).
AKSS = agathokakological spectral sequence.

H.(—)/H*(—) denotes homology/cohomology with Fa-coefficients.

H denotes the mod 2 Eilenberg-MacLane spectrum.

A denotes the mod 2 Steenrod algebra, and A, is its dual.

For X any 2-complete spectrum, we shall let
w5 By (X) = Ext (Fo, H X) = m_ X

denote its ASS. Assuming this spectral sequence converges, we shall say an element of 7, X
has Adams filtration s if it is detected in the ASS by a class in ***E5™(X).
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Finally, in [11], the third author and Egger show that there is a class of spectra Z, each
of whose cohomology is isomorphic as A(2)-modules, and each of which admits a vi-self map.
For concreteness, the spectrum we call Z in this paper is always taken to be a particular fixed
member of this class for which the cofiber of its vs-self map has cohomology as described in
the Appendix.

Organization of the paper

In Section 2, we recall some basic facts about the spectrum tmf, its cohomology, and its
relationship to Morava E-theory. We will also review some facts about the spectrum Z.
In Section 3, we begin our analysis of the tmf-ASS {*™f E™*(Z)}. The E;-term is given by

mf gt (7)) = 7 (bt A Z).
We will compute this Fi-term using the Adams spectral sequences
ass g2t (tmf " A Z) = m (bmf A Z).

We will explain how to use Margolis homology to compute the Es-terms of these Adams spectral
sequences, and we show these Adams spectral sequences collapse to give a short exact sequence
of chain complexes (1.0.5) (the good/evil decomposition). The goal is to use the short exact
sequence (1.0.5) to compute "™ E}"" from H**(C(Z)) and H**(V(Z)). It will turn out that
H**(V(Z)) is computable despite the incomputability of V**(Z) itself.

In Section 4, we both recall the structure of the Morava stabilizer group and Morava stabilizer
algebra associated to the Honda height 2 formal group, and relate these to the corresponding
groups and algebras for the formal group coming from the unique supersingular elliptic curve
C' in characteristic 2. We compute the action of the group of automorphisms Aut(C) on the
Morava E-homology of the complex Z.

In Section 5, we compute the differentials in the good complex C**(Z). This is accomplished
by showing that the good complex is actually isomorphic to the cobar complex of an explicit
sub-Hopf algebra (2) of a quotient of the Morava stabilizer algebra.

At this point, the number of different Hopf algebras important for our purposes has become
significant, so we give a list in Table 1 to help the reader keep track.

In Section 6, we embark on the computation of

H"*(C(2)) = Ext;(g)(k:(Z)*, E(2).).
The cohomology of the Morava stabilizer algebra was computed by Ravenel [40] using a
modification of the May spectral sequence which we will call the May—Ravenel spectral
sequence. We adapt the May—Ravenel spectral sequence to compute the cohomology of 7 (2).
We completely compute the Ej-term of this spectral sequence (Theorem 6.4.3), thus proving
the unbounded torsion theorem.

Having dealt with the good complex, in Section 7 we turn to the problem of computing
the cohomology of the evil complex. Following the techniques introduced in [7], we introduce
a refinement of the tmf-ASS called the topological agathokakological spectral sequence
(topological AKSS)

H>*(C(Z)® H**(V(Z)) = m.Z.
We also introduce an algebraic version, the algebraic KSS (algebraic AKSS)
H™""(Caig(2)) ® H™"(V(Z)) = “* By (Z).

We then prove the dichotomy principle (Theorem 7.3.8), which relates evil terms in the
algebraic AKSS to wvs-torsion in ***E}*(Z). We therefore are able to recover H**(V(Z))
from H***(Cy14(Z)) (which we completely compute) and ***E3"*(Z) (which we compute using
Bruner’s Ext software [14]).
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In Section 8, we perform low-dimensional computations of the tmf-ASS (or equivalently, the
topological AKSS) for Z in the range ¢t — n < 40. This proceeds by first analyzing ve-periodicity
in ***E;*(Z) by analyzing “**F;""(As), where A, is the cofiber

20z 2z A,

whose cohomology is isomorphic to the subalgebra A(2) C A as an A(2)-module. The Appendix
contains the Bruner module definition data used to compute the relevant Ext charts. We then
compute the algebraic AKSS in our range. From this, we extract H**(V(Z)), which we input
into the topological AKSS, and compute through this same range. We end this section with
a comparison to the computations of Bhattacharya-Egger of the Adams-Novikov spectral
sequence (ANSS) for Zg(s), and prove the collapse theorem by mapping the tmf-ASS to the
K (2)-local ANSS (Theorem 8.5.1).

In Section 9, we discuss how the analog of Mahowald’s approach to the 2-primary height 1
telescope conjecture using the bo-resolution for Y fails in the context of the tmf-resolution for
Z. Namely, assuming there are no additional differentials or extensions in the May—Ravenel
spectral sequence, and assuming a certain pattern of ds-differentials, we show that "™ [,
decomposes into a direct sum of three pieces.

(1) A summand which is vo-torsion free, and is isomorphic to 7. Zp ) after vy inversion.

(2) A summand which consists entirely of bounded v3-torsion.

(3) A summand which consists of unbounded wvs-torsion, and assembles via a conjectural
sequence of hidden extensions, into an uncountable collection of vo-parabolas.t

We explain how our work in previous sections proves the vanishing line theorem (the slope
1/11 vanishing line for "™ E;*(Z)). We explain why one might expect to be able to improve
this to a slope 1/13 vanishing line, which would preclude infinite families of hidden extensions
among the terms in summand (2) from assembling to give vo-families in 7.Z. We then describe
the analogs of conjectures of Mahowald—Ravenel-Shick [34] which describe a hypothetical
picture (the parabola conjecture) of 7.7 which is assembled from a portion of the classes in
summands (1) and (3) above, and in particular is unequal to 7. Zg(s). However, just as in [34],
it is totally possible for a bizarre pattern of differentials between vo-parabolas to occur to make
the telescope conjecture true.

2. Background

2.1. Morava K-theory and E-theory

Recall [1, Part IT] that a homotopy commutative ring spectrum is said to be complex orientable
if the map on reduced E-cohomology

E*(CP>™) — E*(CP")
is surjective. The cohomology E*(CPl) is free of rank 1 as an F,-module, and a lift
z € E*(CP>)
of a generator of E*((CPl) is called a complex orientation. We then have
E*(CP*>) = E*[[z]].

The H-space structure on CP*° gives rise to a formal group law over E*. In the case where the
spectrum E is even periodic, (moqaE = 0 and moFE contains a unit) we can take our complex

TWe call them we-parabolas because they lie on (sideways) parabolas in the (t — n,n)-plane.
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orientation to lie in E°(CP>), and the resulting formal group law Fj can actually be defined
over the ring Ej.

A complex orientation of a ring spectrum E is equivalent to the structure of a map of ring
spectra

MU — F,

where MU is the complex cobordism spectrum. For a prime p, the p-localization of MU splits
as a wedge of suspensions of the Brown—Peterson spectrum BP, with

BP, = Z(p) [’Ul,’l}g,vg, .. ]

with |v;| = 2(p® — 1). The Wilson spectrum BP(n) can be constructed as the regular quotient
of BP given by [48]

BP{n) = BP/(Vn+t1,Vn+2,...).

However, these ring spectra depend on the choices of the generators v;, and as such there are
many different forms of BP(n). Associated to any such choice is the associated Johnson-Wilson
spectrum

E(n) :== BP(n)[v; "]
and the associated Morava K-theory spectrum is the regular quotient

K(TL) = E(n)/(pa VU1, .- 'Unfl)
with
T K(n) = F v

n

The connective Morava K-theory k(n) is the connective cover of K(n).
The localization functors (—)g(,) and (—)x(n) are independent of the form of E(n) and
K(n), and we have [41]

(7)E(n) = (7)K(0)\/---\/K(n)'

In particular, if X is a type n spectrum, then we have

The height n Morava E-theory spectrum E,, [3] is a K (n)-local even periodic variant of the
Johnson-Wilson spectrum E(n). Like E(n), there are many forms of E,,, one for each height n

formal group law F over a perfect field F of characteristic p. The formal group law associated
to F,, is the Lubin—Tate universal deformation of F, and we have

T By = W(F)[[ulv s ’un—l]”uil]

where W(F) denotes the Witt ring of F, |u;| = 0, and |u| = —2. Goerss, Hopkins, and Miller
showed that F, admits a homotopically unique F..-structure, and admits a natural action of
the Morava stabilizer group Aut(F). If F is obtained from a formal group law over F, via
base change, then there is a natural action of Gal(F/F,) on Aut(F), and the natural action of
Aut(F) on E,, extends to an action of the associated extended Morava stabilizer group

Gy, := Aut(F) x Gal(F/F)).

Note that G,, implicitly depends both on the formal group F, and the field F.
Morava E-theory gives rise to an associated variant of Morava K-theory, which is defined to
be the spectrum given by the regular quotient.

K, = En/(p7u17 o 7un71)
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so we have
. K, = Fu*"].
Again, different formal group laws F and different fields of definition F can give rise to different
forms of K,,.
2.2. Topological modular forms

We give a brief overview of some facts about the spectrum of connective topological modular
forms tmf. A more complete introduction may be found in [10, 18].
An elliptic cohomology theory consists of a triple

(E’ C? a)?

where F is a complex orientable even periodic ring spectrum, C is an elliptic curve over Fj,
and « is an isomorphism

a:éi)FE

between the formal group law C associated of C' and the formal group law of E.
Goerss, Hopkins, and Miller constructed a sheaf of E..-ring spectra O'P on the étale site of
the moduli stack of elliptic curves My, with the property that the spectrum of sections

Ec = 0P (spec(R) =N M)

associated to an affine etale open classifying an elliptic curve C/R is an elliptic cohomology
theory for the elliptic curve C.

The Goerss—Hopkins—Miller sheaf is actually defined over the Deligne-Mumford compact-
ification M,y of the moduli stack M,y of elliptic curves. The spectrum of non-connective
topological modular forms is defined to be the spectrum of global sections of this sheaf

Tmf := OtOp(ﬂe”).

There is a natural map from the homotopy groups of Tmf to the ring of integral modular forms
for SL2(Z)

mo. Tmf — MF,(SLo(Z)) = Zlca, cs, A]/ (¢} — ci = 1728A). (2.2.1)

Here ¢4 and ¢g denote normalizations of the Eisenstein series of weight 4 and 6, respectively,
and A denotes the discriminant of weight 12. The map (2.2.1) is a rational isomorphism, but
is not an isomorphism integrally. Nevertheless the modular forms ¢4 and A?* are in the image,
we shall let ¢4 € mgTmf and A?* € 7576Tmf denote lifts of these modular forms to 7, Tmf.

The spectrum of connective topological modular forms is defined to be the connective cover
of this spectrum

tmf := 7> Tmf.

The spectrum of periodic topological modular forms is defined to be the global sections of the
sheaf OP over the non-singular locus

TMF := O"P(M,y).
‘We have
TMF = tmf[A~%]

where A%* € m576tmf.
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Inverting A?* has the effect of inverting some power of vy for every prime p, and as
such, there is a close relationship between TMF and tmfx(2). There is an equivalence [10,
Proposition 6.6.14]

A
tme(2) >~ TMF(p,C4) .

Up to isomorphism, there is a unique supersingular elliptic curve C' over F4. The elliptic
curve C' admits a Weierstrass presentation [47, I11.1]

Y’ +y=a". (2.2.2)

Let C denote the associated height 2-formal group over F,. The automorphisms of C induce
automorphisms of C, giving rise to an inclusion

Aut(C) = Go.
The 2-primary K (2)-localization of tmf is then given by [8, Section 5]
tmf gy = By AU (2.2.3)
where Gal = Gal(F4/Fs). The form of connective Morava K-theory in the equivalence
tmf A Z ~ k(2)

of (1.0.4) is the form associated to the formal group 6, regarded as a formal group over Fs.

Associated to the congruence subgroups I'y(n) < SLy(Z), Hill and Lawson constructed
variants Tmf (n) of Tmf associated to the compactified moduli stacks M (n) of elliptic curves
with T'; (n) structure [22]. Lawson and Naumann [30] proved that the connective cover tmf; (3)
of Tmf;(3) gives a form of BP(2) at the prime 2:

tmf; (3)(2) ~ BP(2). (2.2.4)
We have
tmfy (3) g (2) ~ By
Associated to the log-étale map
Mi(3) = My
given by forgetting I'; (3)-structures, there is a map
tmf — tmf;(3)
and hence a map
tmf — BP(2). (2.2.5)

The K (2)-localization of this map is given by the canonical inclusion

E;z,Aut(C)xGal%EQLngGal.

2.3. Subalgebras and subquotients of the Steenrod algebra
Let A denote the mod 2 Steenrod algebra and let A, be its dual. The algebra A, is a polynomial

algebra on the Milnor generators &; of degree 2 — 1. Letting (; = £, denote the conjugates, A,
can also be expressed as

A* = IFQ[Clv C2a <3a .. ]
The coproduct on A, is given by

PG =Y. e

i+j=k
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The elements (; are dual to the elements ;-1 € A. The elements (), are primitive, satisfy
Q? = 0, and generate an exterior subalgebra

E[Qo, Q1,Q2,...] C A.

Let A(n) be the subalgebra generated by Sq', ..., Sq?".
For a B subalgebra of A, we will be interested in A-modules of the form

AJ/B = A®pg Fo,
since we have [42, 2.1, 4.1, 4.2], [36]
H'bo=x= AJJAQ1),
H*tmf =~ AJJA(2),
H*BP(n) = AJJE[Qq, . .., Qnl,
H*k(n) = AJE[Q.).

(2.3.1)

We also have
HY 2,0y AQ1) JE[Q1],
H*Z = 42) A(2)//E[Q2],

where 2,y denotes an isomorphism of A(n)-modules (the case of Y is elementary, for the
case of Z see [11]).
We note that the dual of A(n) and E[Qy,...,Q,] are given by

2n+l

A(n)* = A*/( 1 ’ 2271’7"-3C72L+17<7L+27"')7

ElQo, ..., Qunls 2 E[G, ..., (asa]-

We will denote the dual of A)/B as AJ/B.. The duals of AJA(n) and AJE|[Qo,...,Q,] are
given by

gn+1

A//A(n)*g]F2[ 1 7(2”’"'7§72),+1’Cn+25"']7

A//E[Q07 D) Q’!L]* = F2[<127 DRI 727,4,-17 <n+27 Cn-‘r?n .. ]

In general, for A,-comodules M and N, the change of rings isomorphism gives

Ext’*(M,A//B, ® N) 2 Ext*(M,N). (2.3.2)

3. The good/evil decomposition of the E;-term

The goal of this section is to analyze the Fj-term of the tmf-resolution for Z. Using (1.0.4),
we have

mf et (7) = 7 (bmf ™A Z) 22 k(2), (bmf ). (3.0.3)
For this reason, we will need a tool to compute connective Morava K-theory.
3.1. Margolis homology

For a spectrum X, consider the Adams spectral sequence for k(n).X

w5 Byt = Ext’ (Fy, Hok(n) A X) = k(n)—(X).
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Using (2.3.1) and the change of rings isomorphism (2.3.2), the Ea-term of this Adams spectral
sequence takes the form

Ext a, (Fs, H.k(n) A X) = Exty, | (Fy, H.X).

Note that Ext of comodules over E[Q,]. is isomorphic to Ext of modules over E[Q,], using
the dual action of ), on homology.

Extyl, | (Fo, H.X) 2 Exty, (Fy, H.X).

Because the dual action of Q),, on homology lowers degree, we will regard @Q,, as having degree
_2n+1 + 1.

Margolis (see [35, Part III]) introduced some general tools for computing such Ext groups
over exterior algebras.

DEFINITION 3.1.1. Let M be a module over E[z]. Let ker,(M) be the kernel of
multiplication by x and im, (M) be its image. Define

H(M;z) :=ker,(M)/im, (M).
LEMMA 3.1.2. Let M be an E[z]-module, where x has degree k. Then there is a short exact
sequence

0 — imy (M) = Exty (F2, M) = Fo[y] ® H(M;2) — 0

fory in Ext"* and im, (M) is regarded as a graded Fa-vector space in cohomological degree zero.

Proof. Cousider the standard free resolution of Fy as a E[z]-module, given by the differential
graded [y algebra

Elz] ® T'[z],

where I' denotes the divided power algebra, d(z) = z, and |z| = (—1,k) (here the first index
is the cohomological degree, which is negative because it is in positive homological degree).
Applying Hom g, (—, M), gives a cochain complex

C** (M) = Faly] @ M

whose cohomology is Extpp,)(Fa, M) where M has cohomological degree 0, y = z*, |y| =
(1,—k), and

diy" @m) =y" " @z -m.
We calculate

H(M;x){y"}, n>0,

H™H(C (M) = {ker (M) n=0.

The result then follows from the short exact sequence:
0 — im, (M) — ker, (M) — H(M;x) — 0. O
We will apply these results to the exterior algebra E[Q)].

DEFINITION 3.1.3. Let M be an A(n)-module. The nth Margolis homology of M is
H(M;Q,). If M = H,(X), then we abbreviate H(H,.(X);Q,) as H(X; Q).
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Since @, is primitive, the action of @, on the tensor product M ® N of A(n)-modules is
given by

Qn(a®b) = Qu(a) ®b+a® Qn(b).

From this, one can deduce the following lemma.

LEMMA 3.1.4. Let M and N be A(n)-modules of finite type. Then
H(M & N;Qn) = H(M; Qn) © H(N; Qn).

COROLLARY 3.1.5. If M is an A(n)-module of finite type, then there is a short exact
sequence

0 — VR (M) = Exty,  (Fa, M®*) = Falo,] @ H(M; Q) 0,

where
VEH(M) := img, (M®F).

The following result is a straightforward consequence of the fact that the action of @,, is a
derivation and

2n+1
o1 kZ2n+1,
Qn(Ck) = ot
0 k<n+1.
LEMMA 3.1.6. There are isomorphisms
n n—1 n41 n41
H(A//A(n)*erb)g]FQ[ 22 ) ?? a'--aC72L+17<’r21,+27<’r2L+37"']/( 22 7<§ a)

and
27L+1 271+1

H(AJE[Qo, .., Qnls; Qn) = Fo[¢2,¢2,.. /(7,27 .00,

We end this section with a topological realization result (compare with [31, Theorem 2]).
The authors are very grateful to the referee for suggesting this streamlined formulation of the
result, and the proof is due to the referee.

ProrosITION 3.1.7. Let X be a connective spectrum with the property that the Margolis
homology H(X;Q,) is concentrated in even degrees. Then the Adams spectral sequence
“ By (k(n) A X) = Extyio (Fa, HoX) = k(n)i—s(X)
collapses, and there are no exotic v,-extensions. There is a fiber sequence of k(n) modules
HVy = k(n) AN X — Kx,
where

VX = ian (H*X),

HVx is the generalized Eilenberg—MacLane spectrum associated to the graded Fo-vector space
Vx, and Kx is a free k(n)-module with

7T*I(X = FQ[Un] ® H(Xv Qn)~

This fiber sequence is natural in X with H,(X;Q,,) in even degrees. The fiber sequence is split,
but not naturally.
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Proof. By hypothesis, for s > 0, ***E; "= 0 unless t — s is even. Thus non-zero differentials
must originate from "’SsEg’t with ¢ odd. Since v,, annihilates that vector space and ***FE;"" is
vp-torsion free in positive cohomological degree, the ASS collapses.

There is an isomorphism

~ ass 0,*
s ©(r). bn). X 70
and a surjection
Wy 1 k(). X /v,-torsion — “*E)*,
There is then a commutative diagram

0 ——= Vo ——=k(n)« X —— k(n).X/vy-torsion — 0

| |

1
0 Vy assEg,* assEQV* =0

Uy

The map Vy — Vx is an isomorphism by a diagram chase.
This defines a natural inclusion of k(n).-modules

Vx 2V C k(n)*X
A choice of basis for Vx defines a map
HVy = k(n) AN X

which, in the homotopy category of k(n)-modules, is independent of the choice. Any choice of
splitting of

Vx = k(n).X — k(n).X/v,-torsion

can be realized in the category of k(n)-modules. O

3.2. The computation of the Ei-term of the tmf-ASS for Z

Returning now to the computation of the Ej-term "™ E"*(Z) (3.0.1), we will compute the
classical ASS

Ext}y (Fo, Ha (k(2) Atmf"")) = k(2);—(tmf"") = "B 73(Z). (3.2.1)
Defining
Cn,*7*(Z) =T, [02} ® H(A//A(2)*a Q2)®n7

alg
Lemma 3.1.2, Corollary 3.1.5, and Lemma 3.1.6 imply the following.

PROPOSITION 3.2.2. There is a short exact sequence of Fa[vs]-modules
0= Vo (Z) — Bxty"(Fa, Hok(2) Atmf™") — C1"7 (Z) — 0, (3.2.3)

alg alg
where

Cha™ =2 Folos] @ [FalG3, G, ¢3, - /(6. G5, 0]

and V""" (Z) is a direct sum of shifted copies of functions Fy which are simple va-torsion (that

is, vo - x = 0 for all elements x) which are concentrated in Adams filtration zero:

Vn’*(Z) = Vn,O,*(Z) — V"’*’*(Z).

alg alg

There is one subtle issue which we now must discuss: both sides of the equivalence

a:tmf A Z = k(2) (3.2.4)
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have potentially different notions of vo-multiplication. The spectrum Z has a vs-self map
v 1397 = Z
and k(2) has the multiplication-by-ve map
g DOk(2) — k(2).
Since the self-map of Z is a K (2)-equivalence, and since mg(k(2)) only consists of two elements,

it is easy to see that the following diagram commutes.

S5 o 6tmf A Z 22 tmf A Z

¥0k(2) ——— k(2)

V2

That is, the two notions of ‘vs’ are the same when regarded as elements of mg. However, this

does not imply that the self map
LAvy: S%mf A Z — tmf A Z

is homotopic to the multiplication-by-vo map on k(2), because the map 1 Awvy does not
necessarily give a map of k(2)-modules under the equivalence (3.2.4).

However, all of our computations of "™ E}"*(Z) will arise from the Adams spectral sequence,
and the following lemma makes it clear that on the level of the Adams spectral sequence the
two notions of vo-multiplication are the same. In particular, the ‘vs’ in Proposition 3.2.2 may
be taken to be the one coming from the vs-self map on Z.

LEMMA 3.2.5. The diagram

S6tmf A Z 225 tmf A Z

YOk(2) ———=k(2)

“Vg

commutes up to elements of higher Adams filtration.

Proof. The cofiber of the vs-self map on Z
Y07 2 7 - Ay

is a spectrum whose cohomology is free of rank 1 over A(2). We therefore deduce that there is

a cofiber sequence
S0tmf A Z 2222 tmf A Z — H.

Consider the following diagram of cofiber sequences

SStmf A Z 2 tmf A Z —> H

B: Nla
\t

30k(2) —— k(2) H

The right square in this diagram commutes, since H°(tmf A Z) = F5 has no non-trivial
automorphisms. Therefore the dotted map § exists, making the diagram commute. Since
the top and bottom rows are cofiber sequences, 8 must be an equivalence. Since H*k(2) is
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generated by the non-trivial element of H'k(2) as an A-module, @ and 8 must induce the
same map on cohomology. Therefore the difference o — 3 is in positive Adams filtration, and
the result follows. 0

Henceforth, by ‘ve’ we shall always be referring to the vo-multiplication arising from the
self-map on Z.
The following is an immediate corollary of Propositions 3.2.2 and 3.1.7.

COROLLARY 3.2.6. There is a short exact sequence of Fa[va]-modules
0— V™ (Z) = "™ E}"(Z) = C"*(Z) — 0, (3.2.7)
where V**(Z) is the module defined in Proposition 3.2.2, and

C"*(Z) = Falvs] @ [Falcd, 2, ¢2,.. /(5. ¢, .. )] 7"

3.3. The good and evil complexes

We now upgrade the decomposition of Corollary 3.2.6 to a short exact sequence of chain
complexes. The first observation is the following.

PROPOSITION 3.3.1. The subspace V**(Z) forms a subcomplex of "™ E}""(Z).

Proof. This follows from the fact that the subspace V**(Z) is the subspace of vs-torsion,
and the differentials commute with vo-multiplication. O

We will call (V**(Z),d;) the evil complex. Since (V**(Z),d;) forms a sub-complex of
tmf (7)), we can define C**(Z) to be the quotient complex

0— V™ (Z) = "™ E™*(Z) = (Z) = 0.
We will call (C**(Z),d;) the good complex.

Abbreviate H**(V) = H(V**(Z),dy) and H**(C) = H(C**(Z),d;). There is a long exact
sequence

s HY(V) = B (Z) —» B (C) S H (V) — - (3.3.2)

We will see that H**(C) can be almost completely computed, while H**(V') is mysterious. We
call the elements of H**(V') evil and those of H**(C) good.

In [7], we establish a method for computing H**(V) in a range. The idea is to use the
tmf-Mahowald spectral sequence (MSS),

il prest — Ext (H* (tmf"" A Z),Fy) = Ext ™ (H*(Z),F2) (3.3.3)

alg
with

. tmf pn,s,t tmf pn+4r,s—r+41,t
drt i ;77" = 41 E7 .

The construction of this spectral sequence is identical to that of [7]. The E;-term fits into an
exact sequence of chain complexes

0= Vi (2) = BB € (2) >0

(see (3.2.3)) from which we obtain a long exact sequence

%k % % Oa * %%
N H*7*7*(Valg) - tmeQ, s (Z) — H%% (Calg) i} H +1,%, (Valg) —5 e, (334)

alg

We will compute the cohomology H***(Cq4) explicitly, and the abutment of the tmf-MSS
(3.3.3) can be computed through a range, for example, using Bruner’s program. From this,
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we can inductively deduce information about H***(V,,), at least through a range. Further,
H™!(Vy4) is concentrated in degree s = 0 and the identification of cochain complexes

Vei(Z) =V (2)
implies
H™* (V) 2 H*0% (V).
This isomorphism allows us to transfer information from the tmf-MSS to the tmf-ASS.

In order to understand "™ E3*(Z) and [P E;™"(Z), the first step is to compute H**(C)

and H***(Cy4) (see Theorems 6.4.3 and 6.4.1 and Remark 6.4.4).

4. Morava stabilizer groups and algebras

Our goal will be to relate the good complex to the cobar complex for a certain subquotient & (2)
of a form of the Morava stabilizer algebra — this will be done in Section 5. The purpose of this
section is to prepare some computations which we will use in the next section. Of particular
importance will be Proposition 4.3.1, which gives a computation of the action of the group

G4g = Aut(C) x Gal < Gy
on the Es-homology of the finite complex Z.

4.1. The Morava stabilizer algebra

Historically, the forms of Morava K-theory K(n) and Morava E-theory FE, were typically
taken to be those associated to the Honda height n formal group H,,. In the case of K(n), it
is regarded as a formal group over F,, and in the case of E,, it is regarded as a formal group
over F,». The Honda height n formal group law is characterized as the unique p-typical formal
group law with p-series given by [42, A2.1]

[Pl (x) = 2"
Its endomorphism ring is given by
End(H,) = W(F,»)(S)/(Sa = a” S, S" = p),

where W(F,») is the Witt ring of F,», and o is the lift of Frobenius. Every endomorphism
¢ € End(H,,) can be written uniquely as

a0+a15+a252+--~
with a; € W(F,») satisfying a? "= a;. The associated Morava stabilizer group is given by

S, = Aut(H,) = {Z a;S" € End(H,,) : ag # 0}.

Because we are using K(2), K», and Es to denote the forms of Morava K- and E-theory
associated to the formal group C , we will let K (2)', K}, E} denote the forms of Morava K- and
E-theory associated to the Honda height 2 formal group Hs. The associated Morava stabilizer
algebra Y.(2) is the Hopf algebra over K(2), given by [42, Section 6.1]

%(2) := K(2), ®pp, BP.BP ®@pp, K(2),

*

k
= Fy[vi[t1, ta, .. .|/ (th — v2 ~tp). (4.1.1)
The 2-periodic extension K of K(2)' has homotopy groups
(K3)« & Fafu™]



1262 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER AND Z. XU
with |u| = —2 and
We let

denote the associated Hopf algebra over (KJ)..
Let

Sy = Zaj,SiGSg:aozl

i>0
denote the 2-Sylow subgroup of Sy. The Morava stabilizer algebra (F4[u™!], ¥5) can be regarded

as an algebra of functions on Ss:

Yo = Map“(Ss, (K2)+)

= Ty [t t, .. ]/ — 02 ). (4.1.2)
Here, Map® denotes the continuous functions where S is given its profinite topology and (K>).
is given the discrete topology, and the functions t; are defined as
tk;(1+a15+(1252 +.0)= aku172k. (4.1.3)
The coproduct 1 is determined by ¥ (t) = >t} ® ¢/ where
te(g'g") =Y (@) (d"),  d.9" €S
The cohomology of ¥y was essentially studied by Ravenel in [42, Theorem 6.3.27], and

Ravenel’s approach to this computation will be used in Section 6 to give an essential foothold
in the computation of the cohomology of the good complex.

4.2. The elliptic Morava stabilizer group

We will begin this subsection with a discussion of the extended Morava stabilizer group
associated to the unique isomorphism class of supersingular elliptic curve C' defined over F,
and its relationship with both TMF and the more traditionally studied Morava stabilizer group
associated to the Honda height 2 formal group H,. We will then introduce a certain quotient
3, of 3y associated to an open subgroup of this extended Morava stabilizer group.

We first recall some facts about the automorphism group of the supersingular elliptic curve
C, and its associated formal group. We refer to [6, 20] for more details in this context.

Over Fy4, the endomorphism ring of the elliptic curve C : y? +y = 2 is the maximal order
(the Hurwitz integers)

End(C) = Z{l,z’,j, W;jﬂc}

in the quaternion algebra
D = Qi j)/(i* = 1, j* = —1, ij = =ji).
with k :=4j [16, pp. 237-239]. Define
w:—%(1+i+j+k).
Then we have

Wwi=1, w4+w+1=0,
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and
wiw? = j, wjw?® =k, wkw? = 1.

The automorphism group of C is the subgroup of D* generated by

Qs = {£1, £i,+j, £k}
and w, so we have

Goy := Aut(C) = Qs x Cs.
We define

T:=j—k € End(C)

so we have
T? = -2.
Then D has the alternative presentation as
Q)T /(Ta = a’T, T? = —-2), (4.2.1)
where w? = w? is the action of the Galois group
Gal := Gal(Q(w)/Q) = Gal(F,/Fs2) = (o).

For example, ¢ € D can be expressed as 1+%(1 —T)in (4.2.1).

Since the curve C' is defined over Fy, the Galois group Gal also acts on End(C), and hence
on Aut(C) and D. This action is encoded in the following lemma.

LEMMA 4.2.2. The Galois action on an element x € D is given by

1
7 = —iTxT.

Proof. As discussed in Section 2, the elliptic curve C' admits a Weierstrass presentation
Y’ +y=a". (4.2.3)
This means that for an Fy-algebra R, the R-points of the elliptic curve C' is given by
C(R) = {(z,y) € R* : y* +y =2’} U{o0}.

The F, points of C' form a group isomorphic to F3 x F3. A basis for this F3-vector space is
given in (z,y) coordinates by

The generators ¢ and w of the group Go4 = Aut(C) correspond to the automorphisms
i (z,y) = (2 + 1y + o +w?),
w: (2,y) = (Wx,y).

The induced action of these automorphisms on the F4-points of the curve C, with respect to
the basis (P;, P»), induces a representation

p: G24 — GL2 (Fg)
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with
TR L

o =lo 7

The Galois action on C(F4) extends the representation p to an isomorphism

ﬁ: G48 = G24 x Gal %—) GLQ(F;;)

G

One can therefore use this isomorphism to deduce that

given by

One easily checks from this

=T
From the presentation (4.2.1), every element « € D takes the form
To + 1T
with z; € Q(w). We then compute

1 1
—iTxT = —§T($O +x,T)T

1 1
= —TzoT — =Tx,T?
2 2

1
= _iTng + T‘rl
=zq + 27T
= (xo+x1T)°

=T .

The formal group of C has —2-series
[72}5@) = z*.
The endomorphism ring of the formal group C is the maximal order
End(C) = W(F4)(T)/(Ta = a°T, T? = —2)
in the 2-adic division algebra

D2 ::D®Q27

(4.2.4)
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where W(F,) = Zs[w]/(w? + w + 1) is the Witt ring. The associated Morava stabilizer group

S, := Aut(C)
is the group of units in the order End(a). Since C is defined over Fs, its automorphism group
Sy also gets an action of Gal, with Galois action given by
1
7 =—-=TgT
g B g4,

and we let
GQ = SQ x Gal

denote the resulting extended Morava stabilizer group. The subgroup G,s is a maximal finite
subgroup of Gs. R
It is observed in [6, Section 3.1; 20] that the formal group C and the Honda formal group
‘Ho have isomorphic endomorphism rings. Explicitly, one gets an isomorphism
End(C) = End(#H>)
by mapping
T — aS, (4.2.5)

where
1—2w
V=T
(for the choice of /—7 € Zs with /—7=1 (mod 4)). The essential property of « is that

€ W(F,)

o =

aa’ = —1.

This induces an isomorphism

~

Aut(H) = Aut(C) = S,. (4.2.6)

However, this isomorphism is not Gal-equivariant!

Thus the group S, admits two different Galois actions, one coming from the natural Galois
action on Aut(C) and one coming from the natural Galois action on Aut(H:) using the
isomorphism (4.2.6). We shall let

Gal < Aut(S,)
denote the subgroup generated by the Galois automorphism ¢ coming from C, and let
Gal’ < Aut(S,)
be the subgroup generated by the Galois automorphism ¢’ coming from H>. The action of ¢’
is given by
|
7 =-5¢8S.
g 9 g
We will denote the corresponding extended Morava stabilizer group by
Gy =Sy x Gal'.

LEMMA 4.2.7. For g € Sy, we have

9% = —ag’ a.

Proof. We compute

1
7= -2TgT
g 579
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1
—EaSgaS

= —a%SgSa”
= —ozg”,a". 0
The inclusion of G24 in Sy gives a splitting of the short exact sequence
1= K — Sy — Goy — 1,
where K is the open normal subgroup of So
K={1+aS*+a3S*+-- €Sy : ap € {0,w}} (4.2.8)

discussed at length in [5, Section 2.5].
The inclusion of groups

K — SQ
corresponds to a quotient of Hopf algebras
22 — ig

where

£y = Map® (K, Fy[u™])
(4.2.9)
& Ny /(ty, wuaty + 13)

(compare with [42, Proposition 6.3.30], but Ravenel’s choice of K is Galois conjugate to ours).

4.3. The Morava E-homology of Z
In this subsection, we will use the computations of [12] to derive the following result (where
Gag is the group (4.2.4)).
PROPOSITION 4.3.1. There is an isomorphism of G4g-modules
(E»).Z = Colndgs, ¢, Falu™],
where C3 x Gal acts on Fy[u™!] via

we (M) = Ao, o (M) = ATu”.

COROLLARY 4.3.2. There is an isomorphism of QQs-modules
(B»). Z = ColndP5F, [u*].

The proof of Proposition 4.3.1 will require some preliminary recollections from [12]. Recall
we are using F to denote the Morava E-theory spectrum associated to the Honda height 2
formal group over Fy. The spectrum FE) has an action of the extended Morava stabilizer group
G =Sy x Gal’ of the previous subsection.

The third author and Egger computed (E).Z as

(E5).Z = Fy[u*{Zo, T2, T4, T6, Us, Us, J10, G121}, |Zi| = |7:] = 0, (4.3.3)

with an explicit action of Sy [12, Table 1]. Since the generators u’/?Z; and u*/?y; are in the
image of the map

BP.Z = (E}).Z,
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they have trivial action of the Galois group Gal’, and therefore Gal’ acts on (4.3.3) by acting
on Fy. Following the proof of [12, Theorem 4.12], we see that for any x € (E})oZ with

T = Y12 + apTo + aolo + auTy + aTg, «; € Fy (4.34)
we have!
(E3)0Z = TF4[Qs]{z}. (4.3.5)
Proof of Proposition 4.3.1. Let E5 denote the Morava E-theory associated to the height 2
Honda formal group over the algebraic closure Fsy, with action of
GY =Sy x Gal(Fy/Fy).

Let o’ denote the Frobenius, regarded as a generator of Gal(I_Fg /F2), acting on Sy as in the
previous subsection. Then we have

E} ~ E;I((U/)z).

Since the formal group of the elliptic curve C' is isomorphic to the Honda formal group over
F5, we deduce that the associated Morava E-theory is the same, but the action of the Galois
group is different. The calculations of the previous subsection imply that if we define

o= aoc’ € G,
then the Morava E-theory associated to the formal group of C' over Fy is given by
By ~ EMOP.
Since 0% = (¢/)*, we deduce that E; and E) have the common extension
EY = E§<g4>.
We therefore have
(E3)oZ = Fi6 @r, (E3)0Z = Fi6Qs]{z}
for any x of the form (4.3.4) (with «; € Fy6). Let @ € Fj be a generator, so that
W =o' =4,
Since @ + w* € Fy, we can take @ so that
O+t =wel,.
Define
=g + (1 + 0" + 3% 6 + (a+b)(@ + &%)z

(where a,b € Fy are those associated to the choice of Z € Z as in [12, Lemma 3.5]). Then it
follows from [12, Table 1] and

a=1+2w mod4
that

(1) 0 = ac’ acts trivially on z;
(2) (w) = C5 < Sy acts trivially on z;
(3) z generates (EY)oZ as a free Fi5[@s]-module.

TIn the notation of [12], we have z = k - ¢ + terms involving ¢;, where k € Qg is the unit quaternion.
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It follows that x generates
2
(E2)oZ = [(EY)o2)"”
as an Fy[Qs]-module. This, together with (1) and (2) above, implies
(E»).Z = ColndgS, . Falu™'] 2 Mapc, o (Gas, Falu™]). O
While Proposition 4.3.1 describes (E3).Z as a Gag-module, it is natural to ask for a similar
description of (E2).Z as a Go-module. The following proposition does almost that: it computes
(E2)«Z as an Sy-module using the subgroup K (4.2.8).
PRrOPOSITION 4.3.6. There is an isomorphism of So-modules

(E»).Z = Colnd,,  Fa[u™'].

COROLLARY 4.3.7. There is an isomorphism of Sy-modules
(E).Z = Colnd;2F 4 [u™!].
REMARK 4.3.8. It is tempting to look for an analog of Proposition 4.3.6 which also

incorporates the Galois action, but this is complicated by the fact that the subgroup K is
not Galois invariant.

Proof. Using the notation of Proposition 4.3.1, consider the diagram

(E3)-Z

BP, (EY). Z

Z/ \
\(EQ)*Z/
Since the generators
w2z, ut g € (BY).Z
of (4.3.3) come from BP,Z, it follows that
(E2)iZ = Fy[u™"{Zo, T2, a4, Ts, Yo, Us Y10, 12 }- (4.3.9)

The action of So on (4.3.9) is computed in [12, Table 1]. In particular, it is easy to check that
the map

7 (B2 Z — Fyfut]
given by
m(aoZo -+ asTe + Bole + - + Pi2b12) = Pi2
is C3 x K-equivariant. Thus it induces a S-equivariant map
7 (E2) Z — CoInd%wKI&[uil].
This can be checked to be an isomorphism using (4.3.5) and the fact that the composite
Qs = Sy = S2/(C3 x K)

is an isomorphism. (Il



THE TELESCOPE CONJECTURE AT HEIGHT 2 AND THE TMF RESOLUTION 1269

5. Computation of the differentials in the good complex

The main result of this section (Definition 5.2.6, Theorem 5.2.8) is that there is a sub-Hopf
algebra

(k(2)+,5(2)) C ((K2)«, X2)

such that the good complex is isomorphic to the associated cobar complex [42, Defini-
tion A1.2.11]:

€™ (2) = i) (h(2).).

5.1. The good complex as a subcomplex of the cobar complex of ¥y
The map tmf — TMF induces a map of spectral sequences
ER(Z) —» ™Y ER(Z). (5.1.1)
The kernel of "™ E*(Z) — T™MFE™(Z) is V**(Z) and the image is
C**(Z) C TMF g (7).

We will now show the complex ™¥E;(Z) can be regarded as a subcomplex of the cobar
complex for the Hopf algebra Yo. The first step will be to express the E;-term in terms of the
Morava stabilizer group (Corollary 5.1.4).

For a profinite set T' = 1£1L T; and an abelian group M, let

Map“(T, M) = m Map(T;, M)

denote the abelian group of continuous maps, where T is given the profinite topology, and M
is given the discrete topology. If G is a group which acts on 7' and on M, then there is an
induced conjugation action on Map®(T, M), given by

(9-F)&)=gf(g™")
forg e G, f € Map®(T, M), and t € T

LEMMA 5.1.2. There is a Go-equivariant isomorphism
(EQ)*(TMF AN Z) = 1\/1214)(:((@!2/(;’487 (EQ)*Z)

(where Gy acts on Map® by the conjugation action on functions), and this leads to an
isomorphism

7. TMF A TMF A Z 2= Map{,, o (G2/Gas, Fa[u™])
where Map¢., a1 (G2/Gas, Fa[u™!]) denotes the C3 x Gal equivariant continuous maps.
Proof. Since Z is a type 2 complex, X A Z is K(2)-local for any F(2)-local spectrum X (see
proof of [25, Lem. 7.2]). In particular, (2.2.3) implies
TMF A Z ~ ENCs A 7. (5.1.3)

Using the fact that for finite groups, homotopy fixed points and homotopy orbits of K (2)-local
spectra are K(2)-locally equivalent [29], we get

TMF A TMF A Z o~ EJ9s A EJ94s A Z ~ (By A\ (EYSs A Z))hCas,
We use the homotopy fixed point spectral sequence

H*(Gus, (E2) (B9 A Z)) = 7, J,TMF A TMF A Z.
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By [4, Corollary 2.1],
(Ey). (B394 A Z) 2 (By) . (By A Z)"%1s = Map®(Gy/Gas, (Fa).Z)

with action of G4g given by the conjugation action on functions. Since we have an isomorphism
of G4s-modules

(Bs).Z = Colndls, o Fa[ut!] 2 Mape, o (Gas, Falu™]),
it follows that
(B2)«(Bz A Z)"1 = Mapc, ga(Gas, Map® (G2 /Glas, Fa[u™])).
In particular, the FEs-term of the homotopy fixed point spectral sequence is
H*(Gag, (E2).(Ey A Z)"C18) = H*(C3 x Gal, Map®(Ga/Gas, Fa[u™1])).

Since C'3 has order coprime to 2 and Gal acts freely on F4, the Fs-term is concentrated in
degree s = 0, and is given by

MapC(Gz/G4g7 ]F4[ui1})03>4Ga1'

The spectral sequence collapses, giving the result. (Il

COROLLARY 5.1.4. For s > 1, there is a Gs-equivariant isomorphism
(E).(TMF"* A Z) 2 Map®((G2/Gug)**, (E2). Z)

with the diagonal action on (Go/Gg)”® and action on Map® the conjugation action on
functions. This leads to an isomorphism

TMEES(Z) 2, TMF T A Z 2 Mapf,, (G2 Xy« Xy Go /Gas, Fa[u™)).

S

The left action of Cs x Gal on
G2 X@Gus X G2/Gas

is via by left multiplication on the first factor of Gs.

Proof. We proceed by induction on s. The case of s =1 is Lemma 5.1.2. Suppose that the
claim holds for s — 1. Then

E2 A TMFAS A\ 7 ~ E2 A E;lG48 A TMF/\(S_l) A 7
= (E2 A Es A TMFA(S_l) A Z)}”Gzls’

where G4g acts on the second copy of Es. The Fs-page of the homotopy fixed point spectral
sequence is given by

H*(Gus, (E2)+(Ey A TMFAC™D A 7)),
Furthermore,
(Es)«(Ey A TMF ™D A Z) = Map®(Gy, (Ey). TMF C~1 A 7)

= Map®(Ga, Map®((G2/Gas)* ™Y, (B2)..2)).
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It follows that
H*(Gus, (E2)+(Ea ATMF G~ A 7)) 2 H(Gys, (E2)+ (B2 A TMF G~ A 7))
= Mape((Gz/G48)X57 (E2)+Z),

which proves the first claim.
Next,

TMF D A Z ~ (Ey A TME A Z)"Cas,
We use the homotopy fixed point spectral sequence again, together with the fact that
(E>)«(TMF"* A Z) = Map®((G2/Gus)**, (E2). Z)
= Map®((G2/Gas)**, Mapc, yay(Gas, Fa[u™]))

~ Mapc,, al (Gas, Map®((G2/Gus) **, Fa[u™'])).

The proof of the first isomorphism is finished in a way analogous to that of Lemma 5.1.2.
For a group G, a subgroup H < G, and a G-set X, the shearing isomorphism is the
isomorphism

GxyX = G/Hx X,

(9,7) — (g, 9).

Note that the shearing isomorphism is G-equivariant, where G acts on the source through its
action on the left factor, and G acts on the target through the diagonal action.
Tterating the shearing isomorphism yields a Gy-equivariant isomorphism

Ga XGuy - Xus G2 /Gas = (G2 /Gas) ™,

S

and we therefore have an isomorphism

Mapg, . qar((G2/Gas) ** Falu™']) = Mapg, qa1(G2 X -+ X s G2 /Gas, Fa[u™]).

S

O

It is not immediately clear how the groups
Ma‘cha NGal(G; G48$/G487 Fy [uil})

in Corollary 5.1.4 form a cochain complex. We will now address this by showing that they are
a subcomplex of the Fs-based Adams spectral sequence for Z.

The map of spectra TMF — E5 induces a map of Adams spectral sequences. The induced
map on F;-terms

™MEE(Z) = P2 B(2)
is given by the canonical inclusion
Map{, (G 77 /Gas, Fa[u™]) = Map, (G, “*°/Gus, Colnd '3, ¢ Falut!])
C Map®(G3, CoIndgs, ¢, Fa[u™']),
where, by Proposition 4.3.1, the latter is the cobar complex for Gy acting on (Es).Z:
Ct,(B2).Z) = P EY™(Z).
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In particular, the differential in the cobar complex for G restricts to give the differential on
the subcomplex

Map(, wcal(Gs 7" /Guas, Fa[u™']) € Map®(G5, (E2). Z).
We now have the following lemma.

LEMMA 5.1.5. There is an embedding of cochain complexes
™NEB,(2) € O (Ka).),

where 0%2(([(2)*) is the cobar complex of the Hopf algebra ((K2)«, X2) of (4.2.9).

Proof. The injection comes from the map (x) in the following diagram

N3 () Cx ((Ka2).)
H |
M Gys G F +17) .. (*)>M Ks F +1
angxGal( / 48, 4[ ]) ap®( 4[ ])

o 8l

Map® (G, “*** /G s, Fylu* ])(—ﬁ> Map®(G3, (E2).Z),

where « is the natural inclusion, g is the composite coming from the isomorphism of
Corollary 4.3.2:
B : Map®(G, “*° /Gas, Fa[u™']) = Map§), (G, “° /Gas, Colnd P* Fy[u™])

= Map§), (G, “**°/Gas, (E2). Z)
< Map®(G, " /Gus, (E2).Z),

and « is the composite coming from the isomorphism of Corollary 4.3.7:

7 : Map®(G3, (E2). Z) — Map®(S53, (E2).Z)

=~ Map®(.S5, CoInd%IF;L [ut1))

— Map®(K*, Colnd 2 [u™])

L Map®(K*, Fafu*)).
Here, (ev1). is the map induced by the evaluation at 1 € S map:
v = Colnd2F,[ut!] = Map ¢ (Sa, Fa[u™]) — Fylut].

The map <y is easily seen to be a map of cochain complexes. The discussion prior to the
statement of this lemma implies that the composite 3 o a is a map of cochain complexes. This
implies that (%) is a map of cochain complexes. It follows from the fact that the composite

K — (GQ — GQ/G48 (516)

is a homeomorphism that the composite 7y o 8 is an isomorphism. Since « is injective, we deduce
that (x) is injective. O
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5.2. The sub-Hopf algebra $(2) C T,

We shall now study a sub-Hopf algebra (K (2)., $(2)) of the Hopf algebra ((K3)., %2) of (4.2.9)
such that the image of TMF E|(Z) in the cobar complex for 3 is the cobar complex for ¥(2).
Define Hopf algebras

2(2) CcX(2) C Xy
by letting $(2) be the image of the map
Mapg, cal(Ga/Gas, Falu™']) < Map®(K, Fy[u™']) = %
and letting ¥(2) be the image of the map
Map{,, (Ga/Gas, Fa[u™']) = Map®(K,F4[u™']) = .
Under the isomorphism
Map®(Ga/Gas, Fu[u™]) = Map® (K, Fu[u™]) = =,

coming from the homeomorphism (5.1.6), the conjugation action of C3x Gal on
Map®(Go/Gyug, F4[u™]) induces an action of C3 x Gal on ¥y such that

S(2) =5,

$(2) = £(2)C = 5557,

We now compute this action of C'5 x Gal on
S = Fu[u s, B, . . /(B + woots, 2 + 02 71E). (5.2.1)

Here we use # to denote the image of t;, € X5 (see 4.1.3) in 3. Let o be the generator of Gal,
and we will denote the generator of C3 C Gy by w, our fixed choice of third root of unity.
Recall [5] that elements z € K can be written as

r=14asS% +a3S® +---
with as € {0,w} and a; € {0,1,w,w?} for i > 2. The function

ti € ¥y = Map® (K, Fy[u™"])
is given on elements = as above by the formula

ti(z) = a;u' =%,
Under the isomorphism
Map®(K, F4[u™']) = Map®(Ga/Gus, F4[u™1]),
the function ¢; is given on a coset gGus by
t;(gGag) = t;(x), (5.2.2)

where x is the unique element of K so that xG4s = gGas.-
Note that C3 acts on Fy[u™!] through F,-algebra maps by the formula

W-u=wu
and Gal acts through the Galois action on Fy, so

F4[ui1]03><1Ga1 _ ]F2 [véﬂ].
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LEMMA 5.2.3. The functions t, € 3o are Cs equivariant, so the conjugation action of Cs
on 1y, is trivial.

Proof. We have (for az € {0,w}):
fk(w(l + (1252 + CL3S3 + .- )G48) = fk((w + (JJCLQS2 + wa353 + - )G48)

te((w 4 waoS? + wazS® 4 - )w?Gyg)

fk((l + GQSQ =+ w2a38’3 4+ )G4g)

k
apul=2", k even,
k
wapul—2 k odd

)

__ 9ok
=w-apu'"?

:w~fk((1+a232+a353+~~)G48). 0

COROLLARY 5.2.4. The sub-Hopf algebra (2) C X5 is given by
$(2) = Fafv[ta, Bs, . . ]/ (B + wools, 2 + 02 711).
LEMMA 5.2.5. We have
g - EQ = OJEQ

and the element t, := w?t, € X(2) is Galois invariant.

Proof. For as € {0,w}, we compute the conjugation action on #3 (5.2.2) using the fact that
o0~ ! =0, Lemma 4.2.7, and the fact that « =1 (mod 2):

(0’ . 7?2)((1 + CLQSQ —+ - )G4g) = 0'[7?2(0’(1 + CLQSQ =+ )G4g)}
= olto(—a(l +a35% +---)a” Gus)]

olt2(1 4+ agS5% 4 - )Gus)]

_ 0'[52((1—"-052 +~'~)G4g)], as =0,
0'[{2((1+w252+"')G48)], Ay = W

Now if as = 0, it follows
olt2(o(1 405 + -+ )Gus)] =0
= wh((14+08% +---)Gas).
However, if as = w, the element
(1+w?S*+--)
is not in K, and we have to rectify this by adjusting it by right multiplication with
~1=1+8"+85"+.-€Gy
to get it into K. We have
olt2((1+w?S? +--)Gas)] = oft2((1 + w?S* + -+ )(~1)Gls)]

= ofta((1 +w?S? +---)(=1))]
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:wfg((1+w52+~~-)G4g). O

DEFINITION 5.2.6. Define o(2) to be the image of the composite
m.tmf Atmf A Z — 7, TMF A TMF A Z < %(2).

LEMMA 5.2.7. The Hopf algebra structure on (F4[vy'],%(2)) restricts to a Hopf algebra

structure on (k(2).,5(2)).

Proof. The only thing which is not obvious is that the coproduct of ¥(2) restricts to a
coproduct on (2). Using the fact that tmf A Z ~ k(2), it suffices to consider the diagram,
where ¢ is the unit:

k(2).(S A tmf) K(2).(S A TMF) 3(2)

(ZAl)*i (E/\l)*l
k(2), (tmf A tmf) —— o K(2),(TMF A TMF) "

; |

E(2).(tmf) ®g(2), k(2).tmf = K (2),.(TMF) Qg (2, K(2). TMF — ¥(2) O, v 3(2).

1R

Since (%) is an isomorphism after inverting vs, it follows that maps (1) and (2) have isomorphic
images. The result follows. O

We will now explain how & (2) has a decreasing ‘Adams filtration’. Recall that we have
ass B2 (tmf A tmf A Z) 22 @ E3" (k(2) A tmf)
= FQ[’U2HC§>C§a 44%7 s ]/(CZS)

@ simple vo-torsion in the s = 0 line.

Here the generators lie in (¢ — s, s) bidegrees:

G5l = (12,0),
¢ = (2(2" - 1),0),
lva| = (6,1).

The Adams spectral sequence collapses, and endows k(2),.tmf with its Adams filtration.
The vo-Bockstein filtration on k(2).tmf is the decreasing filtration given by

{(oh)(2). tmf}.
The Adams filtrations and vo-Bockstein filtrations on k(2).tmf agree. This implies that if we

endow X(2) with a decreasing multiplicative Adams filtration where we declare that v has
Adams filtration 1 and that ¢; has Adams filtration 0, then the map

k(2).tmf — 5(2)

preserves Adams filtration, and therefore the image of this map o(2) inherits an Adams
filtration which is compatible with that of k(2),tmf and »(2).
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THEOREM 5.2.8. The Hopf algebra ¢(2) C ¥(2) has the form

c(2) =Fq [vzﬂ}[té,fg, L)N((#3)? = v%té, ty = terms with Adams filtration > 0),
where té = (w?t2)? and for k >3
ti =t + terms of higher Adams filtration.

There is an isomorphism of cochain complexes

O™ (2) 2 Cia (K(2).).

Proof. By Lemma 5.1.5, it suffices to establish that the image of the map

mtmf A Z 5 ™M R (7)) S (K(2)0)

is what we claim it is. We focus on the case of n = 2; it will be apparent that the general case
is essentially the same. By Lemma 3.1.6 and Proposition 3.1.7, the ASS

wss p2t(k(2) A BP(2)) = k(2);_.BP(2)
has F5 term
"By (k(2) A tmf) 2 Fafuo] (67, 63, ¢G5, ]/(C)
@ simple vs-torsion in the s = 0 line.
The images of the elements t; € BP,BP under the map
BP,BP — k(2).BP{2) (5.2.9)

(where BP(2) is the Wilson spectrum of (2.2.4)) are detected by ¢? in the ASS for k(2), BP(2).
In particular, the elements ¢; € k(2).BP(2) have Adams filtration 0.

Since the Adams filtration and ve-Bockstein filtration on k(2).tmf agree, an element in
K (2).tmf = K(2).TMF is in the image of the map

il (Z) 2 k(2)tmf — vy 'k(2).tmf = K(2), TMF = T™™MFpl*(7)

if and only if it is detected (in the localized Adams spectral sequence) by an element in the
image of the map

@55 By (k(2) wtmf) — vy M*%% By (k(2).tmf).
Consider the commutative diagram coming from the map (2.2.5)
k(2)stmf —— K (2), TMFC— Map®(Gy/Gys, F4[ut!])

(1)i l &?ﬂ (5.2.10)
k(2),BP(2) K(2). Es"——— Map®(Gy, F4[u*'])

(2)

We wish to determine which v, multiple of ¢; is in positive Adams filtration. To that end, we
must compute the image of £, under map (3) in (5.2.10). This is tantamount to computing, for
g € Go, the value %vg(gG48). Since we have already established ty is C5 x Gal-equivariant, we
may assume

g:1+a15+a252—|—~~~.



THE TELESCOPE CONJECTURE AT HEIGHT 2 AND THE TMF RESOLUTION 1277

Write a1 = aw + Bw? with «, 8 € Fs. Using the fact that the elements j and k in Gyg are given
by

j=1+w?S+ws?+---
k=1+wS+wS*+--
(see [5]) we compute:
t2(9Gas) = t2((1 + (ow + Bw?)S + a28% + -+ )Gag)

2((1 + (aw + Bw?)S 4 a2 S? + - - )k®§7 Gug)

to((1 4 (a2 + (a + B) + afw?®)S?* + - - )Gag).

Let
TI', N: IF4 — ]FQ

be the trace and norm, respectively, so that Tr(a) = a + a” and N(a) = aa”. From the definition
of t5, we find

to((1 4 aoS? + ---)Gysg) = Tr(as)u>.
It follows from the above calculation that
t2((1+a1S + asS* + -+ )Gus) = (Tr(az) + N(ar))u ™.
Thus the image of t, under map (3) in (5.2.10) is the image of
ty +tovy L+ 1}

under map (2). Since the elements t; € k(2)..BP(2) all have Adams filtration 0, it follows that
voty = t3 € K(2), TMF lifts to an element

13 = vgty + 13 + vt} (5.2.11)

of k(2).tmf.

For k > 3, we define t;, € 5(2) to be the image of an element of k(2).tmf detected by (7.
Since in the Adams spectral sequence for k(2).BP(2) the element (7 detects t;, we deduce
that the image of t, under (1) satisfies

t) =t + terms of positive Adams filtration.

The result for n = 2 follows.
Similar reasoning shows that the image of

mEE(Z) 2 k(2).4mf" — K(2), TMFY" = 5(2)®x@.n = TMF s (7)

is 7(2)@r@x", O

REMARK 5.2.12. Note that while we do not know the full structure of ¢(2) because of the
complicated action of Gal on ¥(2), we do completely know the structure of 7(2) := 5(2) ® Fy C
3(2):

- = - N = k —
7(2) = Fylvo][t3,t3,.. ] /(t3)? + v3td, £ + 02 ~'#y). (5.2.13)
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6. The cohomology of the good complex

In the previous section, we established that
C(Z) = CF o) (k(2)).

In this section, we will compute the Fi-term of a spectral sequence which computes the
cohomology

H*(0(2)) = H™(C55)(k(2).)) = H(C™"(Z)) =: H""(C).

In our low-dimensional range, it will turn out that there are no possible differentials in this
spectral sequence.

6.1. Overview of the strategy

Recall from the previous section that we really only have a complete understanding of the base
change

7(2) == 5(2) @ F, (6.1.1)

and we only know the generators of (2) in 7(2) modulo terms of higher Adams filtration. Our
approach to understanding H*(5(2)) will be to understand aspects of the cohomology of 7(2),
and then to infer results about the cohomology of 5(2).

Our method of computing the cohomology of 7(2), and comparing it with the cohomology
of 7(2), will be to adapt a filtration employed by Ravenel to compute the cohomology of the
Morava stabilizer algebras. This filtration will result in a pair of May-type spectral sequences,
which we refer to as May—Ravenel spectral sequences:

MEE(6(2)) = H* (B} (2)) == H"(5(2))

| |

MEE(3(2)) = H* (B)'"5(2)) == H"(7(2))-

The Ej-terms MEE; will be computed by endowing E}'75(2) and E}75(2) with Adams
filtrations, resulting in a pair of Adams filtration spectral sequences (AFSS)

TABLE 1. List of Hopf algebras and where
to find them. Our convention is to use the
bar to remind the reader that we have taken
a quotient. A symbol with a tilde denotes
a sub-algebra of the same symbol with a
bar. The lowercase denotes the respective
connective versions.

Name Location
3(2) (4.1.1)
o (4.1.2)
3o (4.2.9) & (5.2.1)
3(2) Corollary 5.2.4
$(2) Section 5.2
o(2) (6.2.1)
7(2) (5.2.13)

(2)

Definition 5.2.6 & Theorem 5.2.8
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AE(6(2)) == H"(By""'5(2))

| |

B (a(2)) == H"(By'"'7(2))

_ The May-Ravenel Ei-term M#E, (5(2)) is the cohomology of a certain restricted Lie algebra
{(2). This cohomology may be computed by a Chevallay—Eilenberg complex, whose differentials
were explicitly computed by Ravenel. The key observations which we employ are:

(1) the Chevallay-Eilenberg complex for [(2) is isomorphic to 4% Ey(5(2));

(2) the differentials in the Adams filtration spectral sequence {4 F,.(5(2))} are determined
by the differentials in the Chevallay—Eilenberg complex;

(3) the image of A" F;(5(2)) in A" E1(7(2)) can be computed precisely, since we know the
generators of 7(2) modulo terms of higher Adams filtration. This allows us to completely
compute the differentials in the Adams filtration spectral sequence {4 E,.(5(2))}.

Even with knowing the differentials, the combinatorics for computing the spectral sequence
{AFE.(5(2))} is complicated. The computation of the spectral sequence {*¥ E,.((2))} will be
facilitated by refining the Adams filtration with a lexicographical filtration. This results in a
lexicographical filtration spectral sequence (LFSS)

B (a(2)) = M Eo(3(2) = M EL(5(2)).

We will completely compute the LFSS spectral sequence, deduce from this the AFSS for 7(2),
deduce from that the AFSS for 5(2), and thus completely compute 2 E;(5(2)). In the low-
dimensional range, we consider for our application, there will be no possible differentials in the
May—-Ravenel spectral sequence

MEp, (5(2)) = H*(5(2)).

6.2. The May—-Ravenel spectral sequence

Let (F3,5(2)) be the Hopf algebra obtained from (K (2).,3(2)) by setting vy = 1. In [42,
Chapter 3], Ravenel computed

H*(S(2)) = Extls) (F2, Fa).

The computation for (K(2).,%(2)) and ((K2)«, X2) can be done using similar methods and all
differentials follow from Ravenel’s work by reintroducing the grading. We begin by summarizing
Ravenel’s method, which we then apply to our cases.

In [42, Section 4.3], Ravenel defines a filtration of Hopf algebroids on BP,BP/Iy.
Specializing to the case of N = p = 2, this induces a filtration on (k(2)., 0(2)), where

0(2) = Folva][tr, ta, .. ] /(t: — 02" " 't0). (6.2.1)

There is a unique increasing multiplicative filtration (which we call the May—Ravenel filtration)
on o(2) such that

deg ;g (v2) =0,
degyp(ti ) =1,
dng\JR(t%;c—i-l) =3.2"1 k>0,

deg;p(t3),) = 2~
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Further, Ravenel [42, 4.3.24] proves that this is a filtration of Hopf algebroids, so that the
associated graded Ey(o(2)) is a Hopf algebra. It is given by the exterior algebra

E0(0‘<2)) = ]FQ[’UQ] (9 E[tz}j 1 0<i,5 € {0, 1}]

where ¢; ; is the image of tfj.
From this filtration, we get a May type spectral sequence, which we call the May—Ravenel
spectral sequence:

MRS (5(2)) = H*(0(2)):-

Here s is the cohomological degree, t is the internal degree, and f is the May—Ravenel filtration.
The first step is to compute M ZE; (0(2)).

Let E°(c(2)) be the Fo-linear dual of Ey(o(2)) and z; ; be the dual of ¢; ;. Since the functions
t;; form a basis of the indecomposables of Ey(0(2)), it follows that x; ; forms a basis for the
restricted Lie algebra of primitives

1(2) :== PE°(0(2))
and MRE, = H*(1(2)). Applying the methods of [37, Remark 10], we obtain a Chevallay—
Eilenberg cochain complex
CHp(1(2)) := Falvg] @ Folh;; : 0< i, 0< j < 1]

for elements h; ; of cohomological degree s = 1, internal degree t = 27121 — 1) and with May—

Ravenel filtration given by that of tfj. Here, h;; represents the dual of the element May
calls v1(z; ;). The Ej-term of the May—Ravenel spectral sequence is the cohomology of the
Chevallay—Filenberg complex:

HYW (Cg" (12)) = MPET (0(2)).

The differentials are determined by the Lie bracket and restriction of PE?(c(2)). For o(2),
these are obtained by ‘remembering the grading’ in [42, 6.3.3]. We obtain the following
differentials.

THEOREM 6.2.2. Let x2 = vaho o + ho 1. The differentials in Cf;;"(1(2)) are determined by
d(hi1,0) =d(h11) =0 and

d(hg,0) = h1,0h11 d(ha,1) = vahiohi 1
d(hs0) = hi,0X2 d(h31) = v3h11X2
d(hao) = h1ohs 1+ v3ihi1hs o+ vaxs d(ha1) = v5hiohs1 +vshi1hso +vSx3

d(hio) = v2hi 5, d(hip) = vF W2y,

where the last two identities hold for 1 > 5.

Now, we can put the same filtration on ¥, and this induces a filtration on ¥y which restricts
to a filtration on 7(2) (6.1.1) and &(2). The corresponding associated graded Hopf algebra in
the case of 7(2) is given by

EME(3(2)) = Fylvs] @ E[t~2,1, t3.0,t3,1,t4,0,ta.1,...].
As before, we have a May—Ravenel spectral sequence

]\,{REie7t,,f (5(2)) BN Hs’t(5(2)>7
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and MREf’t’f (7(2)) = H*>"/(1(2)) is the cohomology of the Chevallay—Eilenberg complex

ClLp (1(2)) = IF4[v2,E271, hs.0,h31,ha0,han,. ...

THEOREM 6.2.3. The differentials in the Chevallay—Eilenberg complex Cgiz"(1(2)) are
determined by

d(ha.1) = d(hs ) = d(hs1) = 0
and

d(hao) = v2h3 d(ha,1) = v5h3

i—1

d(hip) = v2hi 5, d(hin) =vs B oy,

where the last two identities hold for i > 5.

Proof. The element tg of (5.2.11) is given by
£2 = vaty + 12 + Vot
Therefore, since we have t; = 0 in 7(2) C Xy (4.2.9), we deduce that under the map
o(2) = 7(2),
we have
oty + 12 12,
It follows that under the map of Chevallay—Eilenberg complexes
Co(12) » Cop (),
we have
X2 — 7L2,1-

The result therefore follows from Theorem 6.2.2 (and the fact that ¢; = 0 in 7(2)). O

6.3. The lexicographical filtration spectral sequence

In order to compute the cohomology of the Chevallay—Eilenberg complex C55 " (1(2)), we place
an increasing filtration on the Chevallay—FEilenberg complex by declaring that a monomial

Uénhl?f?ohifo o El;lh?lﬁifl e
has lexicographical filtration tridegree
deg; p = (—m, 1, k),
where
L =15+ 20+ 2% + 2°lg + -,
k= ky 4 2ks + 2%k + 2%k7 + - -,
n € {0,1} is n mod 2, and

¥ 5
hai:=ha1+v5hay.
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We order these tridegrees via left lexicographical order. That is to say,
(m, 1, k) < (m/,I', k")

ifm<m/,orm=m'andl <!’,orm=m'andl =1 and k < k.

Note that the value m above is the negative of the Adams filtration (defined by declaring the
Adams filtration of vy is 1, and all other generators have Adams filtration 0), so lexicographical
filtration is a refinement of Adams filtration. The differentials of Theorem 6.2.3 decrease

lexicographical ordering, resulting in an increasing filtration on C/7z"(1(2)) and a transfinite
LFSS

O A2 mpea = LB G = MEESL (5(2)).

Transfinite spectral sequences were introduced by Hu in [26]. Hu’s indexing uses ordinals, but

to simplify matters we are repackaging the relevant ordinals as lexicographical tridegrees. In

this way, we can explain the transfinite nature of the spectral sequence in our particular case.
Namely, the lexicographical filtration spectral sequence has terms

LFEs,t,f,(m,l,k)

ryr! !’
with differentials

. . N R S
dyyr g LFES-,t-,f-,(mylyk) N LFES-I-Lt»J‘,(m—?J r'k—r"")

ror!r! ror! e’
and

St F (ML) o 1rs. .
LFES, f,(m,l,k) ~ Hs't’f’(m’l’k)(LFErm’,r”,dr,rgr”)~

ror! e +1
Because this spectral sequence is finitely generated in each multi-degree, convergence can be
explained as follows. For 7/ >> 0, we have

LF st f,(m,k) _ LF gs.t,f,(m,Lk)
Er,'r",r” - E7‘,r’+1,0 ’

and for ' > 0 we have
LF ppsit,f,(m,LE) _ LF st f,(m,l.k)
Er,W,O - Er+1,0,0 .
There is a lexicographically indexed increasing filtration {F;@tﬂ;} on MEE*H such that for
>0, '

LF st [,(mLk) ~ psitof psit,f
ET,O,O - Fm,l,k: m,l,k—1"

Because the lexicographical filtration is a multiplicative filtration on a differential graded
algebra, the lexicographical filtration spectral sequence is a spectral sequence of algebras. By
Theorem 6.2.3, the elements

ho1, h3o, ha1, and hy

are permanent cycles in the lexicographical filtration spectral sequence, and we have
d1,0,1(ha,0) = v2h3 1,
dy 0,2i-1(hi0) = vahi_o 1, (6.3.1)

_ 9itl.9
d21—1727‘,—5’0(h171) = 1)2 hi*Z,O‘

We note that the elements h?, and h7, are permanent cycles, because they correspond to
cocyles in the Chevallay-Eilenberg complex.

We now run the lexicographical filtration spectral sequence. We will run the differentials
in two rounds. The first round (Lemma 6.3.2)) will consist of those differentials of the form
dy ,r r which change Adams filtration by 1. The second round (Theorem 6.3.6) will consist of
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those differentials of the form d, , ,» with r > 1 which change Adams filtration by a quantity
greater than 1.

LEMMA 6.3.2. The E5 g, page of the LFSS obtained by running all differentials of the form
dy v has a basis given by

(D) v REohis 2t R RS -, mk; > 05 € € {0,1),

ks 7.2k 2kito g kits Teo €i—1 7 0;+27lit1 : LT, Coe
(D) hgiohis - hivoohiiSo - ho’y - Ry R TR e 0225 Kyl > 05 €5 € {0, 1},

Proof. The strategy will be to first observe that the monomials of type (I) and (II) are dy .+ v
cycles for all 7’ and r”/. We will then show that all of the other monomials are either the source
or target of a non-trivial differential in the lexicographical filtration spectral sequence.

To show that a monomial z of the form (I) or (II) of Adams filtration m is a dy , ,-cycles,
it suffices to show that the element

z € Cog (U(2))
in the Chevallay—Eilenberg complex can be completed to an element

z+y € Cop ((2),

where

(1) y has lower lexicographical filtration than z, and
(2) the Chevallay—Eilenberg differential

d°F(z +y)
has Adams filtration greater than m + 1.

In the case of the monomials of type (I), this is trivially true — the elements z of Adams
filtration m already satisfy the property that d“%(z) has Adams filtration greater than m + 1.
In the case of terms of type (II), one can check that the sum (with €; € {0,1})

l'(k37 2ky, ... 2k‘i+2, 2]{31‘+3 + €43, 362, €1, l; + 2, li+17 .. )

1 ks 12ky 2kit2q 2kiy3+€it3q 2kitat€iray 2kips+€iys ) €1 31423 lit1
T h3,0h4 0"’ 'hi+2,0hz‘+3,0 hi+4,0 hz‘+5,0 T h2,1 T hi—l,lhi,l hi+1,1 e

— ks 1. 2ky 2kiyo+1y 2ki13 2kira+€iraq 2kits+Eiqs Teo €i—1 7l pliv1i+2; 042
+ & shby b2 b s % T RNy e L e

4,0 " Mipo0 Miy30Mita0 i+5,0 L1 T2l

- k3 1.2ky 2kiyo+1y 2ki 1 3+€i 137 2kitaq 2kits5+Eiqs Teo €i—1 7l plivr 3 liga+2
+ 6z-~-4h3 oh4 0" hi+2,0 hi+3,0 hi+4,0 i+5,0 e h’2,1 e hzel,lhi,lhz‘ﬂ,l i+2,1 7

— k3 1.2ky 2kiyo+172ki13+€437 2kipa+€14q2kigs T e €i—1 11l; liva plip3+2
+ €itshsohag o hitso Rivso hiiyo hivs'o - ho?y - Ry byt RS RS T

satisfies (1) and (2) above.
We now compute the differentials of the form d; , ,~ in the lexicographical filtration spectral
sequence, using (6.3.1). The dy o1 differentials are

myks 12ka+17 ks Tlo 7l3 Tla _ o m+1lypks 12kay ks Tlot2p13 Tl
d1,0,1(v3 h3,0h4,0 h5,0 T h2,1h3,1h4,1 ) = vy h3,0h4,0 hs,o T h2,1 h3,1h4,1 .
The remaining monomials
ks 1.2k4 1 ks ~l2+2 I3 ~l4
hsiohao hslo - - hay “hghyly - s
my ks 32kay ks Tex pls Tl
vy hy'ohyohs’y e bl hgl bty -

where ez € {0,1}, are dj 9 1-cycles, and therefore constitute a basis for the E; o2 page.
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The dy 0,2 differentials are of the form

my ks 12ks 1 2ks+17 ke Tex 1z Ty _ m+41p ks 1 2ks 1 2ks 1 ke Tex 11342714
d1,0,2(”2 hs,()h4,() h5,0 hs,o T h2,1h3,1h4,1 T ) = Uy hs,()h4,() h5,0 h(i,() e h2,1h3,1 h4,1 T

The remaining monomials

k3 1 2kq1 ks Tla+2p1ls T la
hsohiohs’o - ha'y “h by - (6.3.3)
ks 12ky 1. 2ks 1. ke Teo 1134+27 14
h3,0h4,0 hs,o hﬁ,o e 2,1h3,1 h4,1 T (6-34)
m k3 2]€4 2]€5 k}e ~62 €3 ~l4
U2 h3,0h4.,0 h5,0 h6,0 T h2,1h3,1h4,1 T (6.3.5)

with €3 € {0, 1}, are dy 92 and d; .3 cycles (in the case of (6.3.3), this is because it is a cocycle
of type (II), and in the cases of (6.3.4) and (6.3.5), this follows from (6.3.1)). Thus these form
a basis of the F o 4-page.

Repeating this process, the result follows. ([l

We now run the differentials which change Adams filtration by more than 1. The idea is that
these differentials are non-trivial only on terms of type (I), and these differentials hit terms of
type (I). Terms of type (II) are going to be permanent cycles in the LFSS.

THEOREM 6.3.6. The MayRavenel Ei-term MEE,(5(2)) has a basis over F, whose
representatives in the lexicographical filtration spectral sequence are given by

(') WP'h§oh h§y hsYy, m > 0; ¢;,€ € {0, 1},

1 <2ttty 3 7 2(ki+1) 7 2kit1 g 2kiyo Tex 1 €3 J€a pE€it3 . I L=
(1) w3 3,0hi,0 hi+1,()hi+2,0 LR UENT 4,1hi+3,1 e 1235k 205 ¢,€ € {0, 14,
k3 1.2ky 2kit2q kits T e €i—1 1427 lit1 . LT, .
(D) hgohis - hivo ohiiSo he’y Ry R TR 02 25 Kyl > 05 €5 € {0, 1.

For the monomials of type (I”), the notation vy "z means monomials of the form viz for i < n.

Proof. We proceed using the strategy of the proof of Lemma 6.3.2. We start by showing
that the monomials of types (I), (I”), and (IT) are permanent cycles by showing they complete
to cocycles in the Chevallay-Eilenberg complex.

The terms (I') are simply cocycles. The terms (I”) complete to cocycles given by

&3 7 2(kit+1)y 2ki Tex p€3 Tea 1,643
€3 4 + 2 3 4 +
hs,ohq‘,,o hi+1,0 U h2,1h3,1h4,1 i+3,1° "

2it2_oitl ., ea 12k 3 2(kig1+1) 5 2kigo Teo 163 Tey €ita
+ €305 h3ohiohivi o “hiyso - hal hs hylihipo 1 hy gy - -
203 _9itl, &5 4 2k, 1 2kiva 3 2(Kita+1) Tea pe3 Tea €i+3 1 €its
+ €445 s0hi o hi+1,0 i+2,0 IRRLOR L= 4,1hi+271hi+3,1hi+5,1”'

For the terms of type (II), we observe that the Cartan-Eilenberg differential d“7 is given on
the terms x(—) appearing in the proof of Lemma 6.3.2 by

dCEIZZ(kg, 2k4, N 2k1+2, 2ki+3 + €i+3, cee3€2, 00061, ll + 2, li+17 .. ) =
4
65’0% .T(k’:), + 2, 2]64, N 2]61‘4_2, Qki+3 + €i+37 c..y€2,...,€4, 0, €6y---56—1, li + 2, li+17 .. )

+ em}%sx(kg, 2(/€4 + 1), v 2kivo,2kiys + €43, . €2, .. €4,65,0,€7, .. €1, L+ 2, L1, .. )
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+ ZiUSi71$(k3,2k4, .. .,2(]%,2 + 1)7 . .,Qki+2,2k’i+3 + Ei+3; N TR .62‘,1,11‘ -1+ 2,li+1, .. )
+ E+1’U§il‘(k‘3,2k‘4, .. .,Q(ki_l + 1), .. .,Qki+2,2k‘i+3 + Ei+3, ce.3€2,.. .Ei_l,li + 27li+1 - 1, .. )

However, also note that

CE (1 ks 2k4 2kito+1y 2kit3+€i 437 2kita+€ita Teo €i—1 it+1
d (hs h "'h1:+2,0 h11+3,0 hz+40 "'h2,1" h1—1 1h hL+11

= ’Ugl‘(kg, 2k4, PN ,2]{11‘4’_2, 2ki+3 + E,L'_;'_g, ce.3€2,0 . 61, ll + 2, li+17 .. )
We therefore find that the terms of type (II) complete to the following cocycles:

x(/@, 2k4, e 2k7;+2, 2kz+3 + €i+37 o362, 0061, ll + 2, li+17 .. )

+ 65,02 71hk3+2h2k4 . h?i5f§+1hz2i},f8+gl+3 . _~€2,?1 . Ee%lhgijl L hel 1 h
+equ R R T R R R R RS BT B R
L3 71h Wb - hz(ﬁoﬁl) : 'hffig*,é“hff?fa” hgly hfﬁ Bl h:1—111hl L
F 02 flh h2’“4 .. hf(’;’ 01+1) ) ~hff§f§+1hffgf3+€“3 .. .~§?1 .. 'ﬁfﬁl RS h?:hh hl‘ﬁfl e
+ leg” —1h h2k4 . hfjr’%ﬁl)“hfjg(ﬂ;%m . '~§2,1 . .~le ERERY Li .. 'héﬁ;l .
vy RBGREG B T R T T R RGBS R R
4o

We now will proceed by showing that the rest of the monomials of type (I) are either sources
or targets of non-trivial d, , , differentials with r > 2.
The first round of differentials in the LFSS will be of the form

m 2k3 2k4 2kr Tex 1€3 7 €q €6
di6,1,0(v5 h ohs h h "h2,1h3,1h4,1h5,1h6,1"')

+16h h2(k3+1 h2k:4h2k5 . 62 €3 7.€4 1 €6

_U2 6’1...

with m, k; € N and €;,€; € {0,1}. Of the terms of type (I), what remains are terms of the
forms

m 63 2k4 2k:5 Tex 163 7 €4 166
h h 3,174,161 7" >

16 ez 1 2(k3+1) 2k4 Tex 1€3 7 €q

hs’ohs o hig - hy’ hs* hyly

These are seen to persist to the E327270—page by (6.3.1). The next round of differentials will be
of the form

mi €3 2}64 2k5 €3 ~64 €7
d32,2,0(v3 hg ohs0 - 1h3,1h4,1h6,1h7,1 )

_ m+323é3 3 2(kat+1) 4 2ks Tea 163 7 es
=vy  hi’ohyg h5g - hy’ hs*h
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Of the terms of type (I), what remain are terms of the forms

my € p2ks Teo 163 Teq 7 €7
vy hohs g - ha? hg® byt ey (6.3.7)
<167,€3 7,2(ka+1) 12k, Tex 163 7 €4 166
L) hs,ohg,o h4,0 T h2,1h3,1h4,1h6,1 Tty (6.3.8)
<327p¢€3 2(k4+1) 2ks T e €3 Tea €7
v3 " h3’oh o h5g -« ho hs* hyl by oo (6.3.9)

The terms (6.3.8) are cocycles of type (I”), and the terms (6.3.7), (6.3.9) persist to Ega.4,0
by (6.3.1).
Continuing in this manner, we get all of the differentials in the LFSS. O

6.4. The Adams filtration spectral sequence

Ideally we would like to reproduce the analysis of the previous section by replacing the Hopf
algebra (2) with o(2). However, we do not have an analog of Theorem 6.2.3 for (2). This
would be a prerequisite to forming an LFSS, as we need to know the May—Ravenel dg-
differentials decrease lexicographical filtration. We instead will work with the coarser filtration
given by Adams filtration. The advantage of Adams filtration is that we know differentials
preserve Adams filtration for topological reasons.

Endow 7(2) and its subalgebra &(2) with an increasing ‘Adams filtration’, by declaring
AF(vy) = 1, and giving all other generators ‘Adams filtration’ 0. Note that in the case of 7(2) =
k(2).tmf/(va-torsion), this agrees with the filtration coming from the ASS for k(2) A tmf.
Therefore, the differentials in the cobar complex for &(2) respect Adams filtration because,
by Theorem 5.2.8, they come from maps of spectra (the connecting maps in the tmf-Adams
resolution for Z). Since 7(2) = 5(2) ® F4, the same is true for the cobar complex of 7(2).

The algebra generators of

E{FT(2) = Fafvs, 3,85, L, . /(83 = 0,2 = 0)

are seen to be primitive (see, for example, [43, Prop. B.5.15]). Furthermore, Theorem 5.2.8
implies that Ej'f'G(2) is the primitively generated k(2).-subalgebra

Falvs, 13,85, Fa, .. ) /(13 = 0.} = 0) € B F5(2).
Since there is an isomorphism of cochain complexes
C:l*;:*(Z) o *§F5(2)(k(2)*)’

we immediately deduce the following important algebraic consequence.

THEOREM 6.4.1. The cohomology of the algebraic good complex for Z is given by
H*’*’*(Calg) = F2 [’Ug,?tg}l, h17] vi>03 .

7j=0,1
We may likewise endow E}?f7(2) and E}#5(2) with Adams filtration. Then Egf B} F5(2)
is given by

Falvo] ® Elt21,%,5] i
J

=0,1
S T T i AF ;7 MR~ P !
with t9 1, ¢, ; primitive, and E§'" Ey” o (2) is given by the subalgebra

]F2 [’Ug] ® E[fgﬁl,gid} 1203 .
=0,

1
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This results in a pair of Adams filtration spectral sequences

AE(6(2)) == H"(B""'5(2))

| |

B (5(2) == H*(E}'"5(2))
with
ATE(3(2)) 2 Fafvz, oo, hig) s

AP B (@(2)) 2 Fulvs, ho 1, hi ] =8

We will now compute the Adams filtration spectral sequence 4" E,.(5(2)) by relating it to
the LFSS. .
The Chevallay-Eilenberg complex C ,(1(2)) is a quotient of the cobar complex for E}/ 75 (2)

CE‘(J)”RE(Q) — Cép((2).

By endowing C¢ 5(1(2)) with an Adams filtration, we get an associated spectral sequence
AFE (1(2)) and a map of spectral sequences

AP B (7(2)) == H*(EMF7(2))

|

AP EL(1(2) == H*(E}M"F(2))

From Theorem 6.2.3, we see that all differentials in C},(1(2)) increase Adams filtration, and
thus
E(1(2)) = H* (BT Cp(1(2))

= By Cop(l(2)
= F4[U27E2,1, hi,j] 175031 .

We deduce the following.

PROPOSITION 6.4.2. The map
M E((2) = M E(1(2)
is an isomorphism, and thus there is an isomorphism of spectral sequences
{("E.@(2)) = {*E(1(2)}
Since lexicographic filtration is a refinement of Adams filtration, the differentials in the AFSS

AF B, (1(2)) are those differentials in the LFSS which change Adams filtration by r. We therefore
have

E(@(2) =" B,
and for every differential
dyg (@) =y
in the LFSS we have a corresponding differential
' () =y
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in the AFSS. Therefore, as we have determined the LFSS, we have implicitly determined the
AFSS for [(2), and therefore the AFSS for 7(2). We deduce that the AFSS for (2) is obtained
by restricting the differentials from the AFSS for 7(2). Therefore, from Theorem 6.3.6 we
deduce:

THEOREM 6.4.3. The May-Ravenel Ei-term MEE,(5(2)) has a basis over Fy whose
representatives in the Adams filtration spectral sequence have leading terms (with respect
to lexicographical filtration) given by:

(I/) 'Ugn g?ohg?lhg?lhzl’ m 2 0; €5,€5 € {07 1}7

17 <2ty &3 3 2(ki+1); 2kip1 g 2kiqo Tex 1€3 7€4 1.€i43 . L. .=
(I w3 h3,ohi,0 hi+1,0hi+2,0 "'h2,1h3,1h4,1hi+3,1 e 1235k 205 €5,€5 € {0, 14,
ks 1. 2ky 2kitoq kigs Tes €i—1 30;+27lit1 ; LT .
(H) h3,0h4,0 o 'hi+2,0hi+3,0 e h2,1 T hifl,lhi,l hi+1,1 e 122 kj7 lj 2 0; € € {O, 1}-

For the monomials of type (I”), the notation vy "x means monomials of the form viz fori < n.

REMARK 6.4.4. We do not know if there are differentials in the May-Ravenel spectral
sequence

MRE (7(2)) = H*(5(2)) = H**(C).

Even in relatively low degrees, possibilities are plentiful. For example, there could be a
differential

MR (1,2 ? 147 2
dj (hsﬁo):% h271h370-

We also do not know if there are possible hidden ve-extensions in the May—Ravenel spectral
sequence. Again, there are endless possibilities — as an example, there could be a hidden
extension

1674 7 14 2
Uy hS,O = Uy h2,1h370h3,1-

However, in the very low degrees which are relevant to the computations later in this paper,
there are no possibilities of differentials or hidden wvs-extensions.

7. The agathokakological method
In this section we will adapt the agathokakological method introduced in [7] to our present
setting, to compute the Es-term of the tmf-ASS for Z.
7.1. Overview of the method
The goal is to compute tme; (Z). The short exact sequences
0— V™ (Z) = "™E™(Z) = (Z) =0,
0= Vo, (2) = Wy BY(2) = €y ™ (Z) = 0

give rise to long exact sequences

e H*,*(V) - tme;;*(Z) N H**(C) i> H*+17*(V) — (711)
e (Vi) = S (2) 5 B ) 5 (V) 5 (112)
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In particular, (7.1.1) reduces the computation of " E5(Z) to the computation of H**(C)
and H**(V'). We have established a means to understand H**(C) (Theorem 6.4.3). We are
therefore left to compute H**(V).

By using Bruner’s Ext program to compute

Ext’y"(F2, H.Z)
through a range, we can then use the Mahowald spectral sequence

U By (Z) = Exty"(F2, H.2)

alg

to deduce Z‘;;fE; " (Z) by reverse engineering (note that this is backward from the usual direc-
tion of deduction with a spectral sequence). We have computed H***(Cq14) (Theorem 6.4.1).
We can then use (7.1.2) to deduce H**(V) = H*%* (V).

REMARK 7.1.3. Note that our only interest in Ext);"(Fs, H,Z) is to determine H**(V).
We are not investigating the classical Adams spectral sequence of Z.

7.2. The agathokakological spectral sequences

The strategy outlined in the previous subsection will be aided by the construction of a pair
of spectral sequences: the topological agathokakological spectral sequence (topological AKSS),
and the algebraic agathokakological spectral sequence (algebraic AKSS).

We begin with the topological AKSS. Consider the short exact sequence

We will now introduce a refinement of the tmf-ASS which separates the good and evil complexes
into different degrees. The good complex C™*(Z) will be regarded as being in filtration n, and
the evil complex V™*(Z) will be regarded as in filtration n + €, where € is regarded as a fixed
quantity with

n<n+e<n+l—e<n+1.
Let tmf denote the fiber of the unit
tmf — S — tmf.

The tmf-ASS for Z arises from the decreasing filtration of Z given by

7 ——TF, 2 F,
k(2) k(2) A tmf k(2) A tmf
with
F,:=tmf AZ.

By Proposition 3.1.7, there are fiber sequences
H, — k(2) Atmf” — K,

where Hy is a wedge of mod 2 Eilenberg—MacLane spectra and K is a wedge of functions k(2).
By Verdier’s axiom, we get a braid of fiber sequences
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NN

k(2) Atmf”

\ -

where Fy, . is defined to be the fiber of the map Fy — K. This results in a refinement of the
tmf-Adams filtration of Z

Z==1Iy Fe B Frie Fy Foye
T A r2
KO HO Kl H1 K2 H2

The spectral sequence associated to this filtration is the topological AKSS:

{akssE:j_rg:,t} = Wt,n(Z)

n,t € N,
a € {0,1},
g e{-1,0,1}.
The pages of this spectral sequence are ordered by
n—e<n<n+e<n+l
with differentials
dakss :akssE;Lj-:,t N akssE:j-:,t’

akss .akss pm—+ae,t akss ppn+r+4ae,t
7 A i — E; ,

akss .akss ppn,t akss TL+T’+FI‘
d7+€ . ET-’rE - E7+e

REMARK 7.2.3. The reader will notice that the AKSS could be reindexed to a more standard
format by reindexing the filtration by

n+— 2n,

n—+e—2n+ 1.

Our reason for choosing this non-standard indexing is that it displays the AKSS as a refinement
of the tmf-ASS, so that there are short exact sequences

: t .t
0— akssE:Lj-:, N tme:'L’t N akssETT'l,_E = 0.

The E;-term takes the form

akssEnJrOtEt C’nt( )7 OéZO,
Vvnt(Z), a=1.

The d;-differential
dtllkss . akssE{LJrOtQt N akssE11’7r|>1+ae,t
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is given by the differentials in the good and evil complexes:
d
d‘lkss _ {d%OO , a=0,
1 - evil
ait, a=1.
We therefore have

akssEn—i-ae,t o H™ (C)a o = 07
1+e€ - n.t o
HY(V), a=1.

The only non-zero d;,-differentials are of the form

n,t __ akss pn,t dite qkss n+l+4et _ n+1,t
H (C) - El-‘,—e E1+e =H (V)’

for which we have
d1+e = aa

where 0 is the connecting homomorphism of (7.1.1).
The algebraic AKSS is constructed by applying Exti{j (Fy, Hi(—)) to the diagram (7.2.2)
(compare with [7, Section 7]). The resulting spectral sequence takes the form

LBl (2)) = B (2)

with differentials

akss .akss rn+e,s,t akss pm—+r,s—r+1,t
dr—e ralg Er—e _>alg Er—e )

akss .akss pn+ae,s,t akss pn+r4+ae,s—r+1,t
dr ralg ET %alg Er )

dakss ,n,kssE’H/,S,t N akssE'rL-i-'r'-‘re,s—’r'—i-l,t

r+e ‘alg rte alg r4e
We have
Hn7s’t(calg)v a = Oa
akss pon—+ae,s,t _ t _ _
alg E1+5 (Z) - H”7 (V)> a = 1a8 - Ou
0, otherwise
and

akss __
d1+6 - 8alg

where 0 is the connecting homomorphism of (7.1.2).
Because for s > 0, we have

akss pn+e,s,t
alg El - 07

there are no non-trivial differentials
dripe(@) = y

with z in filtration n + € and r > 1.
The following very useful lemma shows that the d;. differentials in the topological AKSS
can be deduced from the d(fﬂfe differentials in the algebraic AKSS.

LEMMA 7.2.4. For n =0, the differentials

. akss pn,t dite gkss n+1l+e,t
d1+6 . E1+e B E1+e
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are trivial. For n > 1, they are determined by the following commutative diagram:

d
akssEn,t 1+e akssEn—‘rl—‘re,t
1+e€ 1+€

akss 7n,0,t akss on+14€,0,t
algEl—i-e W algE1+e
14e

Proof. Topologically, dy . derives from applying 7. to the composite
K, —tmf"" " A Z s tmf PN Z — Hyy (7.2.5)

The first statement follows from the fact that the only elements in H™*(C) for n =0 are

powers of vy. The second statement follows from the fact that d’fﬁ is the induced map of

Adams EJ*-terms coming from the composite (7.2.5):

n,0,* ass Jk ass % _ n 5k
Cl = s EOH(K,) — “SECY (H,, ) = VELE, 0

alg

The FEs-term of the tmf-ASS is deduced from the short exact sequence

0— ak:ssE;L-‘re,t N tme;L,t N akssE;L,t 0.

7.3. The dichotomy principle

Elements in gf;sE:lJrsﬁi(Z) are called good, and elements in gfjsE:Ig’:’t(Z) are called evil.
Non-trivial elements of “*° F5(Z) are called good (respectively, evil) if they are detected in the
AKSS by good (respectively, evil) classes.

The key to computing the algebraic AKSS is to determine which elements of *** F5(Z) are
good and which are evil. This is done by linking vs-periodicity with goodness. An element of

@55 Flo(Z) is we-periodic if its image under the homomorphism
aSSEQ(Z) N vQ—lassEQ(Z)
is non-trivial. Otherwise it is said to be wva-torsion.
The following two propositions give a practical means of determining whether an element of
ass Fio(Z) is ve-periodic.
ProrosiTioN 7.3.1. We have
vy 19 By (Z) 2 Fa[vi, ho1, hiso, his 1, haoy has - - ).

Proof. The computation is almost identical to that of [34, (2.20)]. O

COROLLARY 7.3.2. For r > 1, there are no d, differentials between good classes in the
algebraic AKSS.

Proof. Proposition 7.3.1 implies that the ve-localized algebraic AKSS collapses at Fy ;.. The
result follows from the fact that the map

akss pn+ae,s,t —lakss pn+ae,s,t
alg El—i—e (Z) — Vg alg E1+e (Z)

is an injection for a = 0 (the good part). O
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In order to state and prove the dichotomy principle, we will need to establish bounds on
vo-periodicity in Ext, and on the evil complex. Let As denote the cofiber of the vs-self map

07— Z.
We have
H*(As) = A(2)
as an A(2)-module (see [11, Section 2]).

LEMMA 7.3.3. We have
By (A2) = 0
for

(t—s)+12

>
5 11

Proof. The May spectral sequence for *** E5(As A Co) has F-term of the form
May B1(Ay A Co) =2 Falha jy s ha gy, hs D1 =452 2 2503 > 15k 2 0,k > 4], (7.3.4)

NPERAENER RN

S

= of these generators is 1—11, given by hs 2. Therefore we

One checks that the smallest slope
have

wsESH Ay AN Co) =0
for
t—s
11
It follows from the fact that hi s =0 in ***E3"(S) that the h; 3-Bockstein spectral sequence
assE;’*(AQ A CO’)[hl_yg] = assE;’*(Ag)

s >

has a horizontal vanishing line at E.., and one deduces that the translation of this %—Vanishing
line passing through (t —s,s) = (21,3) (the bidegree of h} ;) serves as a vanishing line for
(LssE;M* (A2) 0

REMARK 7.3.5. The reader will notice that the notation h;; is used both for the May
spectral sequence generators of (7.3.4) and for the May—Ravenel spectral sequence generators
in H***(Cq14(Z)). We warn the reader that these naming conventions are not consistent.

The May spectral sequence generator h; ; corresponds to the element ij € A, whereas the
May-Ravenel generator h; ; corresponds to the element tfj € BP,BP. Since under the map

BP.BP — A,,
we have
t2J N C2J+1

and the May-Ravenel generator h; ; actually corresponds to the May generator h; ;1.

PROPOSITION 7.3.6. The evil complex V™!(Z) satisfies
H™ (V**) =0
for
(t—mn)+12

>
" 11
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Proof. We explain the relationship between H**(V) and “**FE;"(A3) by constructing a
spectral sequence which relates them. We first note that because H*(Az) = A(2), we have

B (4g) = 0

alg
for s > 0. Therefore, the only possible non-trivial differentials in the tmf-MSS are d;
differentials, and

oy B3 (Ag) = Y (Aq).

The short exact sequence of A,-comodules
0> H.Z—HA - HX'Z—-0
induces a long exact sequence

0— Zx;;fEIL,O,t(Z) N ltlrlr;]fET,,O,t(AQ) N ltlrlr;]fEIL,O,t—7(Z) 7)_2> grlr;]fEIz,l,t(Z) ..

We therefore deduce that there is a short exact sequence

0— grlng{L,O,t(Z) N tIIIfE1L7O,t(A2) N Vn,t—7(z) 0.

This allows us to consider the decreasing filtration of cochain complexes, with associated
filtration quotients:
tme;L707t(A2) )tme;L’()’t(Z) )ant(Z) 0

alg alg

| |

Vt=T(7) Chi'(2) Vl(Z)

Taking cohomology, we get a strange little spectral sequence which we will dub the algebraic
AKSS for Ay as it more or less arises as a kind of mod vy version of the algebraic AKSS for
Z. If we index it as follows:T

akssEn—e,t(A2) _ Hn’t_7(V),

alg 1+e
ZﬁfsE{L-’s-te(A2> = Hn,O,t(Calg),
S B (A) = HMY(V),

then the resulting spectral sequence takes the form
BT (Ay) = B ()
with differentials

.akss pn—e,t akss pn+1,t
d1+5 alg E1+e (AQ) 4)alg E1+e (AQ)

.akss pn,t akss pn+14e,t
d1+6 alg E1+5(A2) - alg E1+e (AQ)

.akss ppn—e,t akss pn+1+e€,t
d1+26 alg E1+26 (AQ) - alg E1+25 (AQ)

and

e B0 (A) = o Bt (4).

TWith this indexing convention, the map Z — As results in a map of spectral sequences Zf;SElHrM‘S‘t(Z) —

gf;sEf"—m’t(Ag) (which one takes to be the zero map on terms with s > 0).
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The result follows for dimensional reasons (by induction on ¢ — n) using Lemma 7.3.3 and the
fact that

Hn,O,t (Calg) =0
for

t—n

>
"

(since the generator of H***(Cy,) with lowest slope is Eg)l, with slope - = L. O

ProposiTION 7.3.7. The map
ES(Z) 0y B (2)
is an isomorphism for

(t—s)+12

>
5 11

Proof. The result follows from considering the map of algebraic AKSS’s

B (2) - vy B (2)

and using Proposition 7.3.1, Corollary 7.3.2, Proposition 7.3.6, and the observation that the
map

Hn,s,t(calg) N vQ—lHn,s,t(Calg)

is an isomorphism for

n >tfnfs
n S _—.
11 O

Given a class x € “**FEy(Z), Proposition 7.3.7 gives a straightforward technique to determine
from low-dimensional computations if = is ve-periodic. Let k be chosen such that v5z lies in
the range of Proposition 7.3.7. Then z is ve-periodic if an only if v5z # 0.

The following theorem, analogous to the dichotomy principle in [7], completely determines
whether classes in ***F5 are good or evil. Note that because of Corollary 7.3.2 (which does
not have an analog in the context studied in [7]), the proof of the dichotomy principle for the
algebraic AKSS is much more straightforward in the present context.

THEOREM 7.3.8 (Dichotomy Principle). Suppose that x is a non-trivial class in ***ES"' (Z).

(1) If z is vo-torsion, it is evil.
(2) Every class in the range
(t—s)+12

- 7.3.9
s> 11 ( )

is good.

(3) Suppose x is vo-periodic, and suppose that k is taken large enough so that vkx lies in
the range (7.3.9). Suppose that v5x is detected in the algebraic AKSS by a class in Zf;SE{Te*
Then x is good if and only if

s=n.

Proof. 'We deduce (1) from Corollary 7.3.2. We deduce (2) from Proposition 7.3.6. For (3),

suppose that z is ve-periodic with v5x detected in afq“El .. We will first consider the case



1296 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER AND Z. XU

where z is evil, and then we will consider the case where z is good. For the first case, suppose
that z is detected by an evil class

~ _ akss pm’+es—n't
T < alg E1+e

in the algebraic AKSS. Then we must have
I
s=n'.

Since 7 is vo-torsion, we deduce that the v4-multiplication must arise from a hidden extension
in the AKSS, and therefore

s=n' <n.
For the second case, suppose that x is detected by a good class
et
Then we must have
s—n'>0.
We deduce from the proof of Corollary 7.3.2 that n’ = n, and therefore s —n > 0 and

s=n. O

WARNING 7.3.10. There is no dichotomy principle in the topological AKSS.

8. Stem by stem computations

In this section, we apply the agathokakological techniques of the previous section to do low-
dimensional computations of 7, Z. Furthermore, we settle the ambiguity left in [12] regarding
the differentials in the Adams Novikov spectral sequence for Zg(2) (Theorem 8.5.1).

8.1. The algebraic AKSS
In this section, we use the algebraic AKSS

[l B0 (2)) = By (2)

to identify H*(V(Z)) in the range relevant for computing 7,7 in degrees x < 39.
More specifically, we do these computations for a specific choice of Z and ve-self map. It is
shown in [11, §2] that for any Z € Z and vi-self map f: X527 — Z, there is a cofiber sequence

sz 1.z cf) $77 (8.1.1)

where C(f) is a spectrum with the property that H*C(f) is isomorphic to A(2) as an A(2)-
module. Different choices of Z € Z and vi-self maps give rise to different A-module structures
on A(2).

We will be working with a specific choice of Z. To this end, endow the subalgebra A(2) C A
with the A-module structure given by Roth in [46, p. 30]. The Appendix gives the Bruner
module definition data that encodes this A-module structure. Following [11],7 define B(2) as

B(2) := A(2) ®p(qQ,) Fa.
The Bruner module definition data for this A-module is given in [11, Appendix 1].

TIn [11], A(2) is denoted by A and B(2) by Ba.



THE TELESCOPE CONJECTURE AT HEIGHT 2 AND THE TMF RESOLUTION 1297

For the rest of this section, we restrict our attention to those Z € Z with
H*Z = B(2)

as A-modules. By [11, Remark 5.4], there are four different homotopy types of finite spectra
realizing B(2). As explained in [11, Section 2], the cofiber of any vi-self map of our chosen Z
is a realization of the module A(2).

Since Ext%*"' (A(2), A(2)) = 0 for s > 2, it follows from [11, Proposition 5.1] that there is a
unique homotopy type of spectra realizing our chosen A-module structure on A(2). Therefore,
different choices of a vi-self map on our chosen Z will not affect the calculations that follow.
For this choice, we let

Ay = C(f).
In this section, we also define
Ext%"(Z) := Ext%' (H*(Z),F2), Ext®%"(As) := Ext' (H*(As), Fy).

Both Ext’;"(Z) and Ext’;"(As2) can be computed using Bruner’s program [14]. The results are
depicted in Figures 8.1 and 8.2 in Adams grading (z,y) = (t — s, 5).

8.2. wg-multiplication in Ext 4 (Z)

To proceed with our computations, we will need to determine which classes in Ext’;"(Z) are
detected by evil classes, and which are detected by good classes. This will be done using the
dichotomy principle (Theorem 7.3.8), and so we need to identify the wvs-periodic classes in
Ext’;"(Z). To do this, we proceed as follows.

Note that there is a long exact sequence

. —= Bxt5'(Z2) — Ext}(Ay) — Ext{(£772) 2= Ext 1 (2) — ... (8.2.1)
where the connecting homomorphism ¢ corresponds to multiplication by wva,
§ =wvy: Ext% (272) = Ext%' "7 (Z) — Ext5 V! (2).

The vo-multiplications in Ext’;"(Z) are indicated by dotted lines of slope (6,1) in Figures 8.1
and 8.2. The indicated multiplications are completely determined by the long exact sequence
(8.2.1). In Example 8.2.2, we give a sample proof deducing the existence of a vy-multiplication
from the long exact sequence. The proofs for the other wo-multiplications indicated in
Figures 8.1 and 8.2 are also straightforward, though the arguments involving classes in stems
* > 40 become more tedious due to the growing dimensions of Ext’;"(A2) and of Ext’;*(Z). The
vo-multiplication data in Figures 8.1 and 8.2 is complete in stems x < 39. In stems 40 < = < 60,
we only draw those multiplications which are necessary to apply part (3) of Theorem 7.3.8 to
do computations up to * = 39.

EXAMPLE 8.2.2. If 2 is the non-zero class in (t — s,s) = (15,1) of Ext’y"(Z), then voz # 0.
Indeed, in degree (t —s,s) = (21,2) (the target of vo-multiplication on z), Ext’;"(As) is one
dimensional over Fy. However, there are two possible contributions to Ext’;"(A) in this degree
from the long exact sequence (8.2.1). (See Figure 8.3 and its caption.) There is a class X7y
of Ext’;"(X7Z7), labeled o1 of Figure 8.3, where y is the class labeled le in degree (14,2) of
Figure 8.3. There is also a class z of Ext’y"(Z), labeled o6 in Figure 8.3. Since voy = 0 for
degree reasons, X7y is in the kernel of the connecting homomorphism 6. Therefore, the non-
zero element of Ext’;"(A2) corresponds to the class ¥7y. For degree reasons, (z) = 0, and so
there must be a class w of degree (22,1) in Ext’;"(X7Z) such that §(w) = z. The only possibility
is the class labeled by e4 of Figure 8.3. The class = corresponds to 4e in Figure 8.3, and so
w = N7z, It follows that vox = 2.
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Proposition 7.3.7.

in degrees 28 < x < 60. In Exti‘t (Z), not all vo-multiplications are drawn in the shaded area, but
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8.3. The differentials in the algebraic AKSS
We turn to the computation of the algebraic AKSS. From Theorem 6.4.1, we have that
H" " (Corg) = FQ[”Q;EQ,M hs.0,h31, ha0,han, ... (8.3.1)

We use the dichotomy principle to determine which classes of Ext4(Z) are good and which
are evil. With (8.3.1) and the results of the previous section on wvo-multiplications, this is
straightforward and result of this analysis is depicted in Figure 8.4 and 8.5.

Having determined which classes in Ext’;"(Z) are detected by good and evil, we can now
deduce H**(V) from the algebraic AKSS. We name the evil classes in the algebraic AKSS
(Figure 8.4) by

(z,y:n),

where (z,y) = (t — (s + n),s +n) is the Adams coordinate and n is the tmf-filtration. These
classes are denoted by open circles in Figure 8.4. The good classes are denoted by solid circles.
For example, the class in degree (x,y) = (7,1) in Ext4(Z) is detected by evil and denoted by
(7,1:1)¢Y in the algebraic AKSS.

In stems 0 < z < 39, the following evil classes exist for degree reasons. More precisely, these
evil classes detect a class in Exts(Z) in a degree which contains no non-zero element of
H* (Calg):

(7,1:1)° 14,2:2)°
(15,1: 1) 18,2:2)"
(31,1:1)" 20,2 : 2)<

The following evil classes exist because of the following differentials
d1+e(h§,1) =
dl—&-e(hg,O) =

di+e(hsn) = (26,2 :2)%

TABLE 2. The tmf-filtration.

n color

black
blue
red

W N = O

green
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dite(hap) = (28,2 :2)%
dote(vahs ) =
date(vaha) =
diye(hohs) =
date(v3hao) = (40,4 : 4)".
Examples of how we deduce these differentials is given in Example 8.3.2.
EXAMPLE 8.3.2. In degree (t —s,s) = (26,2), Exta(Z) is trivial. Therefore, h3 , cannot
survive the spectral sequence so must support a differential. Since the class in (25,3) of Ext 4(Z2)

is detected by a good class, the only good class in that bidegree (v3hs ) cannot be hit by a
differential. So the target of the differential on h3 ;, must be evil, and we obtain the differential

d1+6(h125,0) =

The only non-trivial class in degree (38,2) of Ext4(Z) is detected by evil. Therefore 71271h371
must support a non-trivial differential. A similar analysis as before gives the differential

d1+e(}~12,1h3,1) =

Furthermore,
d1+6(h3,0h3,1) = and d1+€(E271h4’0) = (g 5 (833)

where at least one of the coeflicients «; is non-zero. Similarly, at least one of the following
do 4 -differentials must occur

dgyc(v3hs ) = (38,4 4) or diie(h30) = (38,4 4)°

These ambiguities will be mostly settled in the next section.

8.4. The topological AKSS and the computation of the tmf-based ASS for Z
Now, we turn to our analysis of the spectral sequence
gt — o (tmf NN Z) =y (2)

and low-dimensional computations of m,Z. Our analysis of the algebraic AKSS has allowed us
to identify H**(V), together with the boundary homomorphism

H*’*’* (Calg) 8(”9 H*’* (V)

in the form of d; ;. differentials in the algebraic AKSS. Theorem 6.4.3 gives the F4-term of the
May-Ravenel SS

MER, (5(2)) = H**(C). (8:4.1)

It does not exclude the possibility of differentials, but there are no possibilities of differentials
in the range of interest.

We record the following fundamental observations regarding the d;-differential in the tmf-
ASS.

e An evil class cannot kill a good class via a dy-differential since V**(Z) is a subcomplex
of ™EET*(Z).

e The d;-differentials between evil classes are completely determined by those in the
algebraic AKSS since V**(Z) = V9% (Z).

alg
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e The d;-differentials from good classes to evil classes are determined by the differentials in
the algebraic AKSS. This is Lemma 7.2.4.

In Figure 8.6, we draw MZE;(5(2)) in the range 0 <t—n <40, together with the
information about H**(V') and differentials obtained from the algebraic AKSS.

We use the map of spectral sequences from tmf-based ASS to the classical ASS to ascertain
that, in the range ¢t — s < 39, there are no additional differentials.

PROPOSITION 8.4.2. There are no non-trivial differentials in the classical ASS for Z with
source in stem t — s < 39.

Proof. In the computations of 7, Z for 0 < * < 39, the possible differentials have source in
stems

t — s = 30,31, 36,37, 38, 40.

In stems t — s < 40, the potential sources for differentials are the image of evil classes which are
permanent cycles in the tmf-based ASS. Indeed, for degree reasons, these classes are permanent
cycles provided that they are dj-cycles. Since all d;-differentials on evil classes have been
recorded in Figure 8.6 and all of the potential sources are d;-cycles, the claim follows. O

REMARK 8.4.3. There is a potential do-differential in stem ¢ — s = 40 in the classical ASS
for Z. In fact, this problem is tied to the ambiguity in (8.3.3), as we will see in the proof of
the next proposition, where we will establish that such a non-trivial ds differential must occur
in the ASS for Z.

PROPOSITION 8.4.4. The only non-trivial differential d, for r > 1 in the tmf-based ASS
with source in the range t — n < 40 is

da(vahs 1) =

Proof. Combining degree arguments with vo-linearity, the only two possibilities are
da(v2hs1) = ,
d3(v3hs1) = (38.4:4)".

By Proposition 8.4.2, the classical ASS for Z collapses in this range. Therefore, w32 Z and w332
have order 2. For this to be the case, we must have dg(vahs 1) = in the tmf-based
ASS. This settles the first possibility.

We turn now to the second possible differential ds(v3hs,1). Recall from (8.3.3) that we were
unable to determine the coefficient o1 in

dite(hsohs i) = g

It will turn out that these two ambiguities are interrelated, and through analyzing this
relationship we will settle both.
Since hg1ha is not an element in H**(C), if oy = 0 and

diye(hsohs) =0,
then it follows from the tmf-based ASS that we must have

dg(vghg_yl) =
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and m39Z has order 4. If, however, a; = 0 and
diye(hsohs) = )

then it follows from the tmf-based ASS that w3972 has order 2.
From the structure of the tmf-ASS, we deduce that the map

vy : T33(Z) 25 T39(Z)

is zero. It is immediate from Figure 8.2 that the ASS for A, collapses in degree 39 to give

m39(A2) = 7Z/2.
It follows from the long exact sequence associated to the cofiber sequence

0z 2z A,
that we must have

mw39(Z) = Z/)2.
We therefore conclude that a; = 1, so

dite(hsohs) =

and

d3(’l}§h371) =0. |
It follows from Propositions 8.4.2 and 8.4.4 that Figure 8.6 is complete.

8.5. The E(2)-localization of Z
We end this section with one of the main goals of this paper, which is to determine the homotopy
groups of 7. Zg2).

THEOREM 8.5.1. The Adams Novikov spectral sequence for Z g3 collapses at the E>-term.

Proof. This spectral sequence is isomorphic (Es onward) to the vs-localized tmf-ASS
vy "M ENNZ) = 10 Zpa).-
Inverting vy in the short exact sequence
0— V™ (Z) = "™ ES(Z) = (Z) =0
gives an isomorphism
vy MMED(Z) =0y C(2),
and hence an isomorphism
vy " EY(Z) 2 vy PHY(C(2)). (8.5.2)
Consider the vo-localized May—Ravenel spectral sequence
vy "MEE,(5(2)) = vy ' H**(C(2)).
The E;-term is given by inverting vy in Theorem 6.4.3, and so is isomorphic to
Folv3'] ® E[h3,0ﬁ2,1, h3,1,f~l4,1]. (8.5.3)

Since the E-term of ANSS for Zp o) was computed in [12] to be isomorphic to (8.5.3), we
deduce from (8.5.2) that the wvo-localized May—Ravenel spectral sequence must collapse at
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FIGURE 8.6 (colour online). The topological AKSS computing m:—(Z) drawn in grading (z,y) =
(t — n,n), starting at the E14.-page. Gray lines are differentials. They are dashed, if our method is
inconclusive. Dotted lines are known ve-multiplications. Dashed line are known v-multiplications.
The gray line of slope 1/11 is the line of Proposition 7.3.7.
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FIGURE 8.7. The Eo.-page of the Adams Novikov spectral sequence for Zg 2y = Zk (2). The only
possible non-trivial multiplication by 2 extensions are dotted. Classes denoted by o are multiples
of (2 € 7r715'?<(2>.

E;. The vo-localized tmf-ASS for Z is displayed in Figure 8.7. All differentials are wvp-linear
since Zp () has a vi-self map. Furthermore, there is a horizontal vanishing line at Es. Indeed,
E;’t =0 for n > 5. The class labeled by 1 is the image of mpS° — m0ZE(2) SO is a permanent
cycle. For degree reasons, the only possible non-trivial differentials are functions ds with sources
v5hs1. However, since d3(v3hs,1) in the tmf-based ASS is zero, v3hs 1 maps to a ds-cycle in
Uy “me?’t. O

Next, we solve all but one exotic extension:

THEOREM 8.5.4. For k # 3 mod 6, the groups m,Zg o) are annihilated by multiplication
by 2.

Proof. The class detected by %2’1 in m1Z and hs in w132 have order 2 since there is no
room in the tmf-based ASS for exotic extensions in these degrees. Therefore, their images in
T.Zp(2) = T« LK (2) have order 2, and so do all their multiples. The class detected by v;10h471
is in the image of the bottom cell, S?(Q) — Zk(2)- Indeed, it is the image of the element

(2 € W_ls?(@) discussed in [17, Proposition 2.2.1].f So, any multiple of v2_107L471 has order
2. O

REMARK 8.5.5. In [12], the authors study the Adams Novikov spectral sequence for Zx (q),
where K (2) is the Morava K-theory whose formal group law is the Honda formal group law.
Since the homotopy type of Zg (2 is independent of the choice of K(2), Theorems 8.5.1 and
settle [12, Conjecture 1] for our particular choice of Z € z , except for the group structure of
T34+6n 2K (2)-

9. Discussion of the telescope conjecture for Z

While the telescope conjecture was initially proposed by Ravenel [41], Ravenel was also the
first to propose that it should be false for chromatic levels > 2 [44]. The method of disproof
proposed in [44] (the parameterized Adams spectral sequence) turned out to not be sufficient
to provide a counterexample to the telescope conjecture, but it laid out the blueprint for what
could go wrong.

TOur notation differs from [40, (3.4) Theorem]. In this reference, our class 1)2_10%4,1 is closely related to p2

and Ravenel’s (3 is closely related to v272ﬁ271.
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A more detailed account of this story is laid out by Mahowald-Ravenel-Shick [34], who
studied a family of Thom spectra y(n) (defined for all primes p and all n > 1) and some
conjectures about their localized Adams spectral sequences, which, if true, would provide
counterexamples to the telescope conjecture for all primes p and all n > 2. These conjectures lay
the groundwork for a concrete counter-conjecture for the homotopy of the telescopes proposed
by Ravenel in [45], which we shall call the parabola conjecture.

In this section, we outline the analog of this conjectural story for Z, and explain how
the structure of the tmf-ASS for Z described in this paper is consistent with the parabola
conjecture. Specifically, let Z denote the telescope of the wo-self map on Z. The telescope
conjecture predicts that the map

Z = Zpe (9.0.6)

is an equivalence. In Theorem 8.5.1, we have already verified (up to a potential additive
extension) that

T Zpe) 2 Folvy!] ® Elha1, ha0, hai, hal.

The parabola conjecture predicts the structure of W*Z\ , and in particular predicts that the map
(9.0.1) is neither injective nor surjective in homotopy.

9.1. The localized Adams spectral sequence for Z
Consider the localized Adams spectral sequence
vy VBN (Z) = 2. (9.1.1)
The F>-term of this spectral sequence was computed in Proposition 7.3.1:
vy MBS (Z) 2 Fofvd  hay, hao, haa, hao, hat, - .

The analog of Mahowald-Ravenel-Shick’s differentials conjecture [34, Conjecture 3.16] is the
following.

CONJECTURE 9.1.2. (Differentials Conjecture) In the localized Adams spectral sequence
(9.1.1), we have

The idea is that the do differentials in the above conjecture are lifted from the analogous
differentials in the May—Ravenel spectral sequence (Theorem 6.2.3), and that the d4 differentials
arise from these through an extended power argument [44].

_ Note that Z is not a ring spectrum, as we have already seen in the topological AKSS, where
ho1 is a permanent cycle but h%l supports a non-trivial differential. However, assuming these
are the only d,. differentials for r < 4, and that they satisfy the Leibniz rule, we would have

vy L9 ES(Z) 2 Falvi] @ Elhan, hao, ha 1, 23, T4, %5, . . ]
where
xXr; = h?,()'
In particular, we have h%,o = x3 rather than h;o =0, but this is somewhat irrelevant given

that Z is not a ring spectrum. Our choice to present v; ' E5 in this manner leads to a more
uniform discussion.
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In the discussion after [34, Conjecture 5.12] (see also [44]), Mahowald-Ravenel-Shick predict
the collapse of the localized ASS for y(n) at a finite stage. The analog of their conjecture in
our context is the following.

CONJECTURE 9.1.3 (Parabola Conjecture). The localized ASS for Z collapses at Fs, and
therefore

~

.2 =2 FovF] @ E[}Nl2,17 h30,h3,1, %3, 24, x5, .. .].

Moreover, the telescope conjecture is false, and the kernel of (9.0.1) is the ideal

~

(r3,24,...) CTZ
and the ideal
(E4,1) C T*ZE(Q)

maps isomorphically onto the cokernel of (9.0.1).

REMARK 9.1.4. Note that the element 112_10%471 is the image of the element (5 € 7T_15K(2)
(see the proof of Theorem 8.5.1), so the second part of the parabola conjecture predicts that
(2 is not in the image of the telescopic homotopy. Note that this was the basis of Ravenel’s
initial attempt to disprove the telescope conjecture [44].

We will now explain why we call Conjecture 9.1.3 the ‘parabola conjecture’.

9.2. Unbounded vs-torsion in the tmf-ASS for Z

The key to Mahowald’s proof of the telescope conjecture at chromatic level 1 was his bounded
torsion theorem [32], which states that the Es-page of the bo-ASS for the sphere decomposes
into a direct sum of vj-periodic classes, and vi-torsion classes. We will explain how the
analogous phenomenon likely fails in the context of the tmf-ASS for Z.

We have already seen (Theorem 6.4.3) that the May-Ravenel E;-page has unbounded vo-
torsion. But we must run some more differentials in the tmf-ASS to relate this unbounded
vo-torsion to the kernel of the map (9.0.1).

We will assume the following optimistic conjecture in order to simplify our discussion.

CONJECTURE 9.2.1 (Torsion Conjecture). The May—Ravenel spectral sequence collapses at
FE; with no hidden vy-extensions.

Then H**(C) has basis:
(I/) Ugbhgfoﬁgfl hgflﬁfxﬁ )
m > 0; €,€ € {0,1},
(1) o5 Gl ey R R R R
1235 k; 20; ¢,€ € {0,1},
(11) hgi’ohfr:iohjrzﬁo T 33]:’:333{:4 i E?l T hzf1l,1hif1+2hii11,1 B

= 2; kjvlj = 0; €5,€; € {0,1}
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FIGURE 9.1. The vs-periodic family supported by xs.

The long exact sequence (3.3.2) implies that the unbounded vo-torsion in "™ E}"*(Z) arises
from the terms (I') and (I”) above. Since the terms (II) above, as well as H**(V) are v3-
torsion, the elements of "™ E"*(Z) not mapping to terms of the form (I') or (I”) are at most
v3-torsion.

The dy-differentials of the Differentials Conjecture 9.1.2 suggest the following analogous
conjecture for the tmf-ASS.

CONJECTURE 9.2.2 (Differentials Conjecture, v2, part 1). In the tmf-ASS for Z, there are
differentials

myés ki+1 _Kit1 €iy2 €it3 ki—1_k; Tex 163 T ey €141 7 €142
d3(vy hor; @V s wy x a "'h2,1h3,1h4,1hl,1hz+1,1hz+2,1 )
o m-41lyés ki+1_kit1 €iy2 €43 k142 K Tex 163 T €4 1 €141 7 €142
=vy hfgx ey ) Tyt e hg? Rt by 1hz+1,1hz+2,1"'

fori>3,1>i+3, m<2% —1,k; >0, and ¢;,¢; € {0,1}.

After running these ds-differentials, the only remaining classes in the tmf-ASS for Z are
either v2-torsion, or of the form

/ m1.€3 J.€2 1€3 1 €4 . =
(1) v3'hgoh? hs* by, m > 0; ¢, 6 € {0, 1},
1 <2171 1ex pe3 Tea kit+l Kit1 €42 €its . L. L=
1) w3 Shohs hit el e S s 1230 ky 205 ¢5,€5 € {0, 1}

9.3. Parabolas
In the tmf-ASS for Z, we have differentials (Theorem 6.2.3)

i+1
d1(hi+2,1) = US X

whereas in the Adams spectral sequence there are conjecturally differentials (Conjecture 9.1.2)
da(Pisan) = vami .

This suggests the following.

CONJECTURE 9.3.1 (Extension Conjecture). In the tmf-ASS, there are hidden extensions
i+1
U% €Xr; = U2$12+1.
This conjecture predicts that the wvo-torsion families of type (I'’) of Conjecture 9.2.2 in

the tmf-ASS for Z actually assemble via an infinite sequence of hidden extensions to form
vo-periodic families in 7, (Z). Figure 9.1 shows one such ve-periodic family.
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If we assign a mass to x; via

and, more generally for monomials
M(U;’L$§13$i4 o) = kg M (x3) + koM (w4) + -,

then one finds that all of the terms of the form

m_ ki+1,_kiy1_€it2 €its3
Vg Ty Ljpq LyjyoXjyz -

(fori>3,0<m <2 k; >0, and ¢ € {0,1}) lie in the same vy-periodic family if and only
if they have the same mass.
Each of these vo-periodic families begins with a term of the form
x§3$i4x§5 e
(with k3 > 0 and €; € {0,1}) with corresponding mass

.
M=2+5+

€5
8
Thus for each monomial
Te € €3 7€ T T
o hslohs’ haly € Elha,1,h3,0,h3,1,ha1]

and each mass M € Z[1/2]° there is a corresponding non-trivial monomial
eh3 el - € Folas] ® Elxy, x5, 6, - - -]

such that

Ter pex pe3 pea ks €, €5
2,11370M3 1141 X3° Ly L5 -

supports a vo-family with mass M. For each of these vo-families, the elements

Te1 160 1.€3 T €4 212 0
2,1703,013,1114 1 V2T

represent a cofinal collection of elements which lie in the family. The elements 1)21‘?721\/[ lie on

the (sideways) parabola

4
t—n= an —3n+6 (9.3.2)

in the (¢t — n,n)-plane. As such, we will refer to these vo-families as vo-parabolas.

9.4. The vanishing line
Theorem 6.4.3 and Proposition 7.3.6 imply the following.

THEOREM 9.4.1. In the tmf-ASS for Z, we have "™ E}"*(Z) = 0 for
- t—n+12
n —_—.
11

Unfortunately, Conjecture 9.2.1 only predicts the bounded wva-torsion in this Ep-term is v3-
torsion. This means that the v3-torsion could in principle assemble (via infinite sequences of
hidden extensions) to detect non-trivial vo-periodic families in 7. Z which lie along curves with
derivatives > 1/12 in the (¢ — n, n)-plane. Thus Theorem 9.4.1 is not strong enough to preclude
the bounded v3-torsion contributing to the homotopy of Z.
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This 1/11 vanishing line essentially arises from the element EQJ € H**(C)." However, the
results of [2] imply that “**FE5"*(As2) has a vanishing line of slope 1/13. Moreover, the element
h3 , in the May spectral sequence (corresponding to ﬁ‘jl € H**(C(Z))) detects the element
go € “**E5(S). The element g, is not nilpotent [27], but it detects the element &y € my4(S)
which necessarily is nilpotent by the Nishida nilpotence theorem. It seems likely this can be
used to prove the following, which would imply that the bounded v3-torsion cannot contribute

to the homotopy of Z.

CONJECTURE 9.4.2 (Vanishing Line Conjecture). There is an r so that "™ E™*(Z) has a
1/13 vanishing line.

9.5. The parabola conjecture

Assuming all of the conjectures so far are true, the homotopy of 7 can only be detected by
the vo-periodic elements or the vs-parabolas in t“mCE4(Z ). We therefore are left to consider the
possibility of differentials between these families. The only possibilities are:

(1) differentials between ve-periodic elements;
(2) differentials from ve-periodic elements to ve-parabolas;
(3) differentials from a wve-parabola of mass M to a ve-parabola of mass M’ with M’ > M.

Differentials of type (1) are ruled out by Theorem 8.5.1. Proposition 8.4.4 establishes that 712,1,
hso, and v3hs 1 are permanent cycles in the tmf-ASS. While Z is not a ring spectrum, one
might nevertheless suspect that the vo-families

’lnNEl €2 €3
Vg g 130731

cannot support differentials of type (2), and presumably this could be easily established be
extending our low-dimensional calculations a little further. _
We therefore turn to considering differentials of type (2) involving the element hy4 ;. Note

that since v, 10%4,1 detects (2 € T_1Zp(2), this is equivalent to the question of whether the

element (> € m_1Zp(9) lifts to 7_1Z (compare with Remark 9.1.4).
We first note that Conjecture 9.2.2 does not include the differential

d4(h4’1) = ’Ugl‘g

of Conjecture 9.1.2. We therefore offer this second installment to Conjecture 9.1.2 which does
include this differential, and its consequences.

CONJECTURE 9.5.1 (Differentials conjecture, v2, part 2). In the tmf-ASS, for m > 0, the
vo-families
vé”ﬁ;fl hg?o hg:?lﬁ47 1
support differentials which hit the vo-parabolas supported by
ﬁgllhffoh;flxg

and the vy-parabolas supported by

S hhS b a5 e al - -
support differentials which hit the vo-parabolas

Ter pex ez ka+2 €4 €5
21h3,0h3,1x3 Ty Ty«

TIf one replaces Z with the Thom spectrum y(2) of [34], a similar analysis to Theorem 9.4.1 easily yields a
vanishing line of slope 1/13.
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3.2
VT Ty

A
Vol
<

2
UyT3Ty / 3l 4
2 2Ly
Va3 / L
2 Y3y
15| 2
3

hyy

FIGURE 9.2. The conjectural differentials on v%"?ul,l.

Figure 9.2 shows an example of such a family of differentials. Note that the lengths of
each of the families of differentials predicted by Conjecture 9.5.1 are unbounded. However, it
could be that far enough out in the family, the differentials are all zero. This could occur, for
instance, if another parabola supporting shorter differentials kills the vo-family which is the
putative target. Such a phenomenon would be a means for (, to exist in 7, Z without violating
Conjecture 9.5.1.

The following version of the parabola conjecture offers a maximally anti-telescope point of
view, and is consistent with Conjecture 9.1.3.

CONJECTURE 9.5.2 (Parabola Conjecture, v2). The differentials of Conjecture 9.5.1 are non-
trivial, and all of the remaining vo-parabolas have elements which are permanent cycles. Thus
the vo-periodic homotopy of Z is generated by the vs-families

Uénhfi?(]ﬁgz,lhg?lv m 20, ¢; € {0,1},
and the vo-parabolas are supported by
§?0~§2,1 3‘?1@333514 oy 6,6 €{0,1}.
REMARK 9.5.3. Recent work of Carmeli-Schlank—Yanovski [15] gives some circumstantial
evidence that it could be the case that (» € 7, ZE(Q) lifts to an element of 7, Z. If this turns
out to be true, then it flies in the face of the conventional wisdom on the subject, but it does

not seem to necessarily force the telescope conjecture to be true. Rather, it is totally possible
that a weak form of the parabola conjecture is true, where the map

TI'*Z\ — W*ZE(Q)

is surjective with non-trivial kernel generated by a portion of the vo-parabolas.

Appendix. A(2) as a module over the Steenrod algebra

Here, we describe the A-module structure on A(2) resulting from [46, Chapter III, p. 30] and
present it as a definition file for Bruner’s program [14]. The definition file is a text file, where
the first line is an integer n which records the dimension of the A-module as an Fo-vector space.

We should then interpret that we are given an ordered basis go, ..., gn—1. The second line of
the text file is an ordered list of integers dy, ..., d,_1, where d; is the internal degree of g;. For
A(2), the first two lines of Bruner’s definition file reads as

64

0123344556667 77788899991010 10 10 10 11 11 11
11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17
17 18 18 19 19 20 20 21 22 23
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Every subsequent line in the text file describes a nontrivial action of some S¢* on some

generator g;. For example, if

9j, + o+ Gjis

Sq*(g:)

we would encode this fact by writing the line

Ji

ikl ...

followed by a line break. Actions which are not indicated by such data are assumed to be

trivial.

4 11 1 42
4 12 1 45

120161

0123
3445

1221 63

0 w
(@] N ™M
O NN HM ~—
<t W0 Www o o ANNMOMIT O
MO A A ANANOMOM
o oH A H
—H N —H A NN
N < O N~ 0O
— = = = — N —A NN WO 0o,
AR RS I 0 W LwWwLwLwLwLw w
~—
~— (9N}
< N~ <
o —
~ AN O —H OO N 0
N OO T 0wMmmS-S ¢ W
M O O — 1 N AN N
= N A A
— =M NN A A
O — AN < 1 ©
A N<F OO OMNOWO A A A A A A
AN AN AN AN AN ANANANANANNNNN
O =1 N MIF OO Mm
A H A A A ANN
QO - ANMIE I O~ AN
O~ A A A A+ - A N
O MOV AT ANMF D O~ A
— =+ N
©O© M~ 00 O®
O =1 N MM © N~ 00 O
WMN~OOOO A A = = = = = N

5 10 2 42 43
511 1 46

2 18 2 59 60

2191 61

0111

0212

~
N
@)}
< 0 © [To]
— N (42]
OO N OO AN M
FOWO©WO OOUwMmdId o
— —H NM MM
AN~
— N M A N
AN M O 0 o™
o o N © M~ 0o
0w wLwLw © © © © © ©
—
N
N~
<t O W o [22]
~— N AN (N
O = W 0
O NGO MOWMOMS F
00— — —H NANMmM
AN~ -
— — N OO NN -
O = N m
NN FOMN~OWO A —
N MHOMHMMONHMHONHNMNM
o
©
NN O —H o
NANOMOMmIE 1 ©
NN~
o o o~ N
o
ONMIE O
N F OO~ A A NN
O O O O O OO oo oo

6 10 2 42 43

320163

12234

(o))
<t (42]
—
© 0 AN O N M
¢ ¢ 0O W OO N O
— -
— N
AN -
— N M ©O© 0 »
o N ™M
O O W O W W ©M~IN~
w0 00 N ©
— = AN N
O M wOwWw o MmO
© 00—~ NM
~ = = ANANANAN A
— AN WO N~
SO S U U U VI
o
—
[oe] ©
O NwOWOoOMmMSS
O M~ A+ = 4 N
—
~ AN = N
N
M ¢ W O~ A
A H A H A H

74219 20
75123

491 34
4 10 1 38

1 15 1 48
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76129 11 15 1 61 16 11 1 58
77133 11 16 1 62
17 1 1 20
78 139 11 17 1 63 17 9 1 25
81110 12 2 1 19 17 4 3 32 33 35
84 3 19 21 22 12 3 1 23 17 5 2 36 39
8 5 3 23 25 26 12 4 1 28 17 6 1 41
8 6 2 29 31 12 6 2 36 37 17 8 1 51
87133 12 71 41 17 9 1 54
8 8 4 37 38 39 40 12 8 2 45 46 17 10 1 56
8 9 3 41 42 44 12 9 1 48 17 11 1 58
8 10 3 45 46 47 12 10 1 52 17 12 1 59
8 11 2 48 50 17 14 1 62
8 12 2 52 53 12 ; 1 18 17 15 1 63
Z 12 1 Zi 13 3123 18 2 2 26 27
8 15 1 59 13 4 2 29 30 18 31 31
8 18 1 63 13 56 2 33 34 18 4 2 34 35
13 6 2 38 39 18 5 1 39
91112 13 7 1 42 18 6 2 42 43
92116 13 8 2 46 47 18 7 1 46
94223 24 13 91 50 18 8 1 49
95128 13 10 1 54 18 9 1 52
9 6 2 32 33 18 12 1 59
97136 12 i i gg 2 18 14 1 62
g g i ié 42 43 14 4 3 28 29 31 18 156 1 63
14 5 1 33 19 11 23
10 4 3 23 25 26 14 6 3 36 37 39 19 4 2 37 38
10 6 2 33 35 14 7 1 41 19 5 2 41 42
10 7 1 39 14 8 2 45 46 19 6 2 45 46
10 8 3 41 42 44 14 9 1 48 19 7 1 48
10 10 4 48 49 50 51 14 10 1 52 19 8 1 53
10 11 2 52 54 19 9 1 55
10 12 2 55 56 12 ; 1 ;2 19 10 2 57 58
10 13 1 58 15 3 1 26 19 11 1 59
10 14 2 59 60 19 12 1 61
10 15 1 61 1541 30
10 16 1 62 15 51 34 20 21 29
10 17 1 63 15 6 1 38 20 3 1 33
15 7 1 42 20 4 2 36 39
1111 14 15 10 1 52 20 6 1 45
11 2 1 17 15 12 1 57 20 7 1 48
11 3 1 20 15 13 1 59 20 8 1 54
11 4 2 24 27 15 14 1 61 20 10 1 58
11 2 ; gz 2; 16 2 1 23 211125
11 7 2 36 39 16 4 2 33 34 21 21 29
11 8 2 42 43 16 6 2 42 43 21 31 33
11 9 1 46 16 7 1 46 21 4 2 37 40
11 10 1 48 16 8 2 49 50 21 5 2 41 44
11 12 1 55 16 9 1 52 21 6 2 45 47
11 14 2 59 60 16 10 1 56 21 7 2 48 50
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21
21
21
21

22
22
22
22
22
22
22
22
22
22
22

23
23
23
23
23
23
23
23

24
24
24
24
24
24
24
24
24
24
24

25
25
25
25
25
25
25
25
25
25

26
26
26
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8 2 52 53
91 55

10 1 57
11 1 59
12 1 61
1126
2131

4 3 38 39 40
5 2 42 44
6 2 46 47
7 1 50

8 1 53
9155

10 1 57
11 1 59
12 1 61

4 2 41 42
6 2 48 49
7 1 52

8 1 55

10 2 59 60
11 1 61
12 1 62
13 1 63
1128

2 2 32 33
3136

4 1 43
51 46

6 2 48 49
7 1 52

8 1 56
91 58

12 1 62
13 1 63
2133

4 2 41 44
6 3 48 50 51
7 1 54

8 2 55 56
9 1 58

10 2 59 60
11 1 61
12 1 62
13 1 63
2135
3139

4 2 42 44

26
26
26
26
26
26
26
26

27
27
27
27
27
27
27
27
27

28
28
28
28
28
28
28

29
29
29
29
29
29
29
29

30
30
30
30
30
30
30

31
31
31
31

32
32
32
32
32

© 00 N O

10 2 59 60
11 1 61
12 1 62
13 1 63

31
35
39
43
46
49
52
12 1 62
13 1 63

~N O O WN
e

36 37
41

45 46
48

52

58

12 1 63

0 O U W N
e )

33

45 47
48 50
54

57 58
59

10 1 61
12 1 63

© 00 O O -
=N = NN -

34
38 39
42
a7
50
52 54
12 1 63

DO WN -
N R B =N

21 39
4 1 46
6 1 52
12 1 63

SN W
0~ O
N
O

QO O N -
i S
(oa)
N

(o))
o

32 9161

32 10 1 62
32 11 1 63
33 4 2 48 50
33 6 1 56

33 7 158

33 8 1 59

33 10 1 62
33 11 1 63
34 2 2 42 43
34 3 146

34 4 2 49 50
34 51 52

34 6 1 56

34 7 1 58
3511 39

35 4 2 49 51
356 5 2 52 b4
35 6 1 56

35 7 1 58

35 81 60

35 91 61

35 10 1 62
35 11 1 63
36 2 1 45

36 3 148

36 4 1 52

36 8 1 61

36 10 1 63
37 1141

37 2 1 45

37 3 148

37 4 1 53

37 51 55

37 6 2 57 58
37 7 159

37 10 1 63
38 11 42

38 2 1 46

38 4 2 52 53
38 5155

38 6 2 57 58
38 7 159

38 8 1 61

39 4 2 52 54
39 6 1 58

39 8 1 61
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39

40
40
40
40
40
40
40
40

41
41
41
41
41
41

42
42
42
42
42
42
42

43
43
43
43
43

44
44
44
44
44
44

10 1 63 44 8 1 62 51 6 1 62
11 44 44 9 1 63 51 7 1 63
21 47 45 1 1 48 52 4 1 61
3150 45 4 1 57 52 6 1 63
4 1 53 45 5 1 59
51 55 45 6 1 61 22 ; ; 25 58
6 1 57 45 8 1 63
71 59 53 3 1 59
46 2 1 52 53 6 1 63
10 1 63
46 4 1 58
5 1 48 54 2 1 58
41 55 47 1 1 50 54 4 1 61
47 2 1 54 54 6 1 63
625960 47 4 2 57 58
7161 47 5 1 59 55 2 2 59 60
8 1 62 47 6 1 61 556 31 61
91 63 55 4 1 62
PERE
3152 48 7 1 63 56 1 1 58
4 1 55 56 4 1 62
6 2 59 60 49 1 1 52 56 5 1 63
7 161 49 4 1 60
8 1 62 49 5 1 61 2; ; 1 2?
91 63 49 6 1 62
57 4 1 63
49 7 1 63
1146 58 4 1 63
2 1 49 50 2 1 56
3152 50 3 1 58 59 2 1 62
4 1 56 50 4 1 59 59 3 1 63
5 150 06 1 62 %1161
2 2 50 51 60 2 1 62
3154 51 11 54 60 3 1 63
4 2 55 56 51 2 1 56
5 1 58 51 3 1 58 6121863
6 2 59 60 51 4 1 60 62 1 1 63
7161 51 51 61
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