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Efficient Physics Informed Neural )
Networks Coupled with Domain S
Decomposition Methods for Solving

Coupled Multi-physics Problems

Long Nguyen, Maziar Raissi, and Padmanabhan Seshaiyer

Abstract In this work, we introduce a novel coupled methodology called PINNs-
DDM that combines a physics informed neural networks (PINNs) approach with a
domain decomposition method (DDM) approach to solve multi-physics problems.
The coupled methodology is applied to a variety of benchmark problems and vali-
dated against their exact solutions. Motivated by the need to solve coupled problems
in enclosed spaces, we consider an application of coupling scalar transport equations
to fluid dynamics equations using PINNs-DDM. While the examples and benchmark
problems used in this work are in lower dimensions, they provide the necessary insight
into the efficiency of the coupled method. It was noted that one of the key applica-
tions of the method is its performance for problems with limited training data. The
computational results suggest that the method is very robust and can be applied to
study complex real-world applications.

1 Introduction

Research in computational mathematics, which comprises modeling, analysis, simu-
lation, and computing has become the foundation for solving most multidisciplinary
problems in science and engineer. These real-world problems often involve complex
dynamic interactions of multiple physical processes which presents a significant chal-
lenge, both in representing the physics involved and in handling the resulting coupled
behavior. If the desire to predict and learn from the system is added to the picture,
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then the complexity increases even further. Hence, to capture the complete nature of
the solution to the problem, a coupled multidisciplinary approach is essential.

The efficient solution to a complex coupled system that consists of functionally
distinct components is still a challenging problem in computational sciences research.
Direct numerical solution of the highly non-linear equations governing even the most
simplified models are often challenging. The past few decades have seen significant
advances in algorithms for efficient solutions including finite element methods for
solving coupled multi-physics problems [1, 3, 4, 18, 19], domain decomposition
method (DDM) [10, 11, 29] and multi-fidelity methods and sampling methods for
Partial Differential Equations [21, 22]. Recent advances in machine learning (ML)
methods, automatic differentiation (AD) [7], and ML libraries such as TensorFlow
[20] and Pytorch [17] have made them potentially powerful tools for parameter esti-
mation and data assimilation in multi-physics problems. Recently, Physics-informed
(deep) neural networks (PINNs) were used to learn solutions and parameters in par-
tial and ordinary differential equations [24]. These methodologies have helped to
make tremendous progress in the development, testing, analysis, implementation,
and applications of computational mathematics for simulation, optimization, and
control.

Our work in this chapter is motivated by the following multi-physics application.
Over the last two years, we have been faced with an unprecedented sequence of
events due to COVID-19 that has impacted not only health but also economy, jobs,
education, and many other sectors. As emergency efforts resume and continue in the
coming weeks, thousands of personnel would need to be transported in passenger
and cargo compartments. Many of these passengers would be infected or exposed
to the virus and several agencies are already preparing to develop rapid solutions to
study the speed of the contagion by understanding the airflow inside an aircraft that
is transporting people. One of the principal dynamics involved in this process is the
interplay between the flow from the air vents inside the cabins modeled via compu-
tational fluid dynamics and the scalar transport that models the concentration of the
pathogen. This paper will attempt to create a simplistic model to simulate and predict
the mechanisms of this coupled dynamics through a spatial and temporal distribution
of airborne infection risk in an enclosed space. One of the new contributions in this
work is to re-introduce PINNs and DDM methods and then develop a framework to
solve multi-physics problems using a coupled PINNs-DDM methodology.

Our outline of the chapter is as follows. In Sect. 2, we will introduce the models,
describe the methods and background. Specifically in Sect. 2.1, we recall the Schwarz
Domain Decomposition method and apply it to the Poisson equation. Section2.2
introduces the physics informed neural networks (PINNs) approach to solving PDEs
and is applied to Burger’s equation. In Sect. 2.3, we develop a new algorithm to couple
PINNs with DDM to create a PINNs-DDM algorithm for multi-physics problems
and apply it to various benchmark equations. Finally, in Sect. 3 we present discussion
and future work.
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2 Models, Methods and Background

In this section, we describe a multi-physics model that couples fluid dynamics that
models the air velocity with scalar transport that models the concentration of a
particle in an enclosed space such as an aircraft cabin. For simplicity, we will keep
the exposition in the paper to one dimension that will help provide an insight into
higher dimensions. After a brief introduction of these equations, we introduce DDM
through a parallel Schwarz algorithm and apply it to the Poisson equation. Then, we
will introduce PINN s and apply it as a forward solver to solve the Burgers equation.

The particle transport that models the concentration of a pathogen [12] that is
guided by the air velocity may be modeled using the equation:

560 s (r 10
3 + a_xi(WU") = <F¢ 8x,~) + Sy (D

where ¢ is contaminant concentration (for example, droplets from infected or exposed
COVID-19 individuals), ¢ is time, x; is coordinate, p is air density, U; is air velocity,
Iy is the diffusion coefficient, and Sy is the mass flow rate of source per unit volume.
In this work, we will consider a one-dimensional problem with the following equation
for describing the ,

%—Y+U§—Z=av(x)%+5v 2)
where y and Sy are the respective diffusion coefficient and external source term.
Applications of fluid dynamics in studying airflow in ventilated enclosed spaces have
been studied over last several decades [5, 14, 15]. While turbulence models building
on three-dimensional Navier-Stokes equations are typically used to evaluate and
design various air distributions, we will use the following one-dimensional viscous
Burger’s equation in this work for simplicity. This is given by

2

Yo —a S sy )
Here, oy and Sy correspond to the viscocity of the flow and external source term,
respectively. Often these partial differential equations (2) and (3) are discretized using
appropriate numerical methods (such as, e.g., finite difference, finite elements, finite
volumes) that involves solving a non-linear system of equations. Next, we describe
a framework that can be used with any of these discretization methods to make the
algebraic solution more efficient on parallel computer platforms.
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2.1 Domain Decomposition Method (DDM)

Domain decomposition methods were introduced in the nineteenth century by Ger-
man analyst Herman Schwarz as a way to reformulate and solve any given boundary-
value problem on a computational domain that is partitioned into multiple subdo-
mains [27]. This convenient framework and several variations over the past decades
has allowed for efficient techniques for solving multi-physics problems that are gov-
erned by differential equations of various types in different subregions of the com-
putational domain [2, 6, 8, 9, 26, 30].

To illustrate, DDM, let us consider the Poisson equation —Au = f defined on
the computational domain €2 with # = g on the boundary 2. Let 2 be the union of
adisk (€21) and a rectangle (£2,) as shown in Fig. 1. The key idea behind the classical
Schwarz algorithm is to iteratively solve alternating sub-problems in the domains
2 and 2, until the algorithm converges as follows:

—Au;’“ =f in

it =g on Q2 NIN\ QN Qs

u:”'l =u4_;, on 3% N Qs
for i = 1,2. Schwarz proved the convergence of the algorithm and thus the well-
posedness of the Poisson problem in complex geometries. If the algorithm converges,
the solutions #{° = u5° in the intersection of the subdomains.

We can extend the Schwarz method to a general differential operator£(u) = f in

2 with boundary condition B(u) = g on 92 as follows:

Algorithm 1: A parallel Domain Decomposition Method for Two Sub-domains
Ql 5 QZ

Result: Give initial guess u on 32y N €2, and uJ on Q2 N Qy

initialization;

for n =1 to maxlter do

Solve for uf (i=1,2):
L) =f in
Bul) =g on I NI\ IR N Q3
ul! = ugj on 3 N Qs
if 1lu? —u%_;|| < Tol then
| STOP;
end
end

To demonstrate the performance of the Schwarz DDM, we consider the Poisson
2

equation in 1-dimension —d—lz = 2 on the domain (¢, ) withu = -2 at o = —1
X

and B = 1. The exact solution is u(x) = —x? — 1 which is plotted as the bold line
in Fig. 2 which shows the convergence of solutions in the two subdomains 2y, 2.
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Fig.2 Computational domain decomposed into two overlapping subdomains (left) and the Schwarz
convergence of the computational solution (right)

Next we introduce a framework around probabilistic machine learning to discover
governing equations expressed by parametric linear operators.

2.2 Physics Informed Neural Network (PINNs)

Physics informed neural networks (PINNs) are deep learning-based techniques [22—
24] for solving equations describing multi-physics including ordinary and partial
differential, integro-differential and fractional order operators. One of the tools that
makes these deep learning methods successful is the use of neural networks which
is a system of decisions modeled after the human brain [16].

Consider the illustration shown in Fig. 3. The first layer of perceptrons first weighs
and biases the input x. The next layer then will make more complex decisions based
on those inputs, until the final decision layer is reached which generates the outputs
u. The left part of the figure visualizes a standard neural network parameterized by
6. The middle part in the figure applies the given physical laws to the network. £
and B are the differential and the boundary operators, respectively. The ODE/PDE
data (f, g) are obtained from random sample points. The loss function is computed
by evaluating L[u] and B[u] on the sample points, which can be done efficiently
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Fig. 3 Illustration of the physics informed neural network approach [24, 28]

through automatic differentiation. Minimizing the loss with respect to the network’s
parameters 6 produces a PINNs u(x; 6*), which serves as an approximation to the
solution to the ODE/PDE.

In this paper, we implement a physics informed neural network-based approach
(PINNs) which makes decisions based on appropriate activation functions depending
on the computed bias and weights. The network then seeks to minimize the mean
squared error of the regression with respect to the weights and biases by utilizing
gradient descent type methods used in conjunction with software such as tensorflow.
To demonstrate the performance of the PINNs method, we consider Burger’s equation
given by for x € [0, 7] and 7 € [0, 10],

u, = %u” —uux—i—e_% sinxcosx u(t,0)=u(t,7) =0 u(0,x)=-sinx
In order to create data for our simulation, we use exact solution given by u (¢, x) =
e~ 5 sin x. For our PINNs implementation, we consider 3 hidden layers with size 50
for the neural network. We first choose 200 random data points N, to estimate u
by neural network denoted as u,,.q. We also choose 200 random data points N, to
estimate PINNs residual. Defining this by,

1 2@,
fx,t) =u, — guxx + uu, — e 5 sinx CoS x

we create a Loss function defined by
Ny

N,
1 «— 1
Loss = F E (Wtrain — upred)2 + N_f E (f(-X, t))z (4)
“oi=1 i=1

We train the model via 30,000 iterations using Adam [13] to minimize the Loss given
by Eq. (4). Figure 4 shows that the solutions from PINNs taken at various times match
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Fig. 4 Comparison of PINNs versus exact solution at different times (left) and for all times and
space (right)

very well with the exact solution. The actual relative error in this case is 2 x 1074,
and the value of the Loss function is 5 x 1077

2.3 A Novel PINNS-DDM Approach

In this section, we will discuss how one can efficiently combine PINNs with DDM
which is the novelty of this work, to improve accuracy in the solution methodology.

As described, PINNSs is an effective method to solve multi-physics real-world
applications modeled via ODE/PDE especially with good amount of training data.
However in real-world applications, we often get limited data and DDM combined
with PINNs can be an efficient way to solve such problems. The algorithm that will
be described next was applied to the benchmark Poisson equation in 1-dimension
—Uy, = 2 on the domain (—1, 1) with u(—1) = u(1) = —2 (See Fig. 5).

The result illustrated in Fig.6 was generated using the following PINNs-DDM
algorithm. Specifically, both Neural Networks were chosen to have 3 hidden layers
with size of 50 nodes. Choosing random training data points N,, = N; = 50 fori =
1, 2 as well as N1, = 50 input points in overlap for training. Running the algorithm
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Fig. 5 Performance of PINNs-DDM algorithm
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Fig. 6 Training data limited to each sub-domain (left); Approximation using PINNs (middle);
Approximation using PINNs-DDM (right)

for maximum number of iterations of 30, 000, we obtained an error in sub-domain
one to be 8.1 x 107 and in sub-domain two to be 3.8 x 107>. Note that the PINNs-
DDM is able to reproduce the same solution as in Fig. 2.
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Algorithm 2: A novel PINNS-DDM Method for Sub-domains €2;,i = 1,2

Result: Give data and the PDE L(u) = f with boundary conditions B(u) = g
1 Initialize to create Neural Networks Nj in €; \ §21 N £

2 Input the training Data uljt J=1.Ny;

3 Predict the solution ”:j,p’ J = 1..Ny; using the Neural Network N; on ; \ 1 N Q2
4 Define the residuals fij =fi — L(ul!) for j =1.Ny,
5

while n <= maxiter do

— Define the loss functions Loss| and Loss) as follows:

P PR TS L Ay
Loss| = Nu, 2 (”l,t 7“1,p) + Tﬂ;(.f] )
L _ 1 %( Jjn j,n>2+i%( j,n)z
ossy = Ny Z uyy, —uy, N & /3

— Define the loss function Lossq, corresponding to the overlap in the domain decomposion
using predicted functions u{‘zni » for j = 1..Ny,

p N N2 p N . 2
_ Jj:n Jjin— jin— j.n
Loss|y = N Z ("12_1,;; *“12,2,;7) + N Z (“12,1.17 *”12,2,p>
ui2 j=1 ui2 j=1
1 Nip ) -
n NG
o LD+ U
f12 j=1

Compute total loss Loss = Loss| + Lossy + Loss|3
— Train the Loss function using Adam’s method [13]
— Update weights and biases
Compute the solution #17 ; in the €21 N €7 with the respective Neural Networks N;
— if ”u}ilZ,I - u'1‘272\| < Tol then
STOP;
end

end

Suppose we are only provided training data with each of the subdomains but no
datain the overlap €2; N €2;. This is shown in the left panel in Fig. 6 where the training
data set is not complete. Using PINNS, the idea would be to solve for the whole
domain by creating two different Neural Networks to solve u; in €2; \ (21 N 2,) by
PINNSs. This is shown in the middle panel in Fig. 6. Employing only PINNS, we are
able to generate a reasonable estimate of the exact solution with an L2-error of 0.42.
Finally, to improve the accuracy, we employed coupled PINNs-DDM over the entire
domain. This is shown in the last panel in Fig. 6. We noted that the coupled method
is able to approximate the exact solution very well with an L2-error of 0.042. For
generating these solutions 30,000 iterations for both PINNs and PINNs-DDM were
employed.
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Fig.7 Q=Q,UQ,

time t

To show the application of PINNs-DDM algorithm created as a part of this work
for multi-physics problems, we apply the method to the coupled system (2)—(3). Note
that we use this system for simplicity of presentation, but one can extend this to other
complex multi-physics systems as well. For this computation, we use

1 2, . 2, .
—, Sy =-e5'sinxcosx, Sy =2e"5 sinxcos2x

ay(x) = 5

ay(x) = 20
forx € [0, 7] and ¢ € [0, 10].

In order to validate our PINNs-DDM method, we evaluate the error against
the exact solution for this system given by V(x, 1) = e!=3'sin2x and U (x,t) =
e~3'sinx.

For the computational domain shown in Fig.7 where 2 = [0, =] x [0, 10], we
assume that we have data in sub-domain one (red rectangle) and in sub-domain 2
(blue rectangle), but no training data in the overlap (green rectangle). As prescribed
by Algorithm 2, we create two Neural Networks that both have both spatial and
temporal inputs (x, 7), 3 hidden layers with size of 50 nodes and 2 outputs V and U
that are coupled. Also, we choose randomly 500 training data points for each domain
as well in the overlap, along with 500 input solutions at the points (x, ¢) for training.

Figure 8 shows the plots for errors between the PINNs-DDM solution and the
exact solution in each sub-domain after 50, 000 iterations of training. The plots on
the left denote the approximation for U and on the right for V. Clearly, the errors
indicate superior performance of the PINNs-DDM method.
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Fig. 8 Performance of PINNs-DDM for a coupled multi-physics problem

3 Discussion and Future Work

In this work, we combine a physics informed neural networks (PINNs) approach
with a domain decomposition method (DDM) approach to yield a highly efficient
methodology called PINNs-DDM for solving multi-physics problems is developed.
While the examples and benchmark problems used in this work are not in higher
dimensions, they provide the necessary insight into the efficiency of the method. One
of the interesting findings from this work includes the performance of PINNs-DDM
when only limited data is available to train. Our results suggest that PINNs-DDM
is a robust candidate for solving complex system of PDEs motivated by real-world
applications.

While this work has helped us to develop and design an efficient PINNs-DDM
algorithm, there is still work that needs to be done to understand the convergence
mathematically. As motivated in the introduction, the reason for exploring the sys-
tem (2)—(3) is to understand the spread of droplet concentration (for example, from
COVID-19) in the presence of airflow in enclosed spaces (such as aircraft cabins).
Coupled with these are models that involve epidemiological equations that model
the spread of a disease such as COVID-19. We hope to apply PINNs-DD to such an
application in higher dimensions as well as equations that admit discontinuous coef-
ficients oy and oy in a forthcoming paper. Another interesting aspect is to employ
PINNs-DDM as an inverse approach to conduct parameter identification which is
another aspect that will be investigated in the future.
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