ENHANCED DISSIPATION, HYPOELLIPTICITY FOR PASSIVE SCALAR
EQUATIONS WITH FRACTIONAL DISSIPATION

SIMING HE

Dedicated to Yijun He

ABSTRACT. We consider the passive scalar equations subject to shear flow advection and fractional
dissipation. The enhanced dissipation estimates are derived. For the classical passive scalar equation
(y=1), our result agrees with the sharp one obtained in [46].

1. INTRODUCTION

We consider the passive scalar equations subject to shear advection and fractional dissipation:
(1.1) o +u(y)oyn = —v(=Ay)"n —v(=4Ay)n,
n(t =0,z,y) =no(z,y), (z,y) € T> = [-m,x]*
Their hypoelliptic counterparts read as follows
(1.2) O +u(y)0um = — v(=Ay) 7,
n(t =0,2,y) =m(z,y), (z,y) €T
Here n, n denote the densities transported by the flow. The fractional dissipation order  takes

value in (0, 2]. The viscosity v is small, i.e., v € (0,1). Since the dynamics (1.1), (1.2) preserve the
average of solutions, one can subtract the average and assume without loss of generality that ([18])

(1.3) / no(z,y)dx =0, / no(x,y)de =0, VyeT.
T T

Assume the shear flow profiles u(y) have finitely many critical points {y} i]\il. The vanishing order
Ji associated with each critical point y} is defined as the smallest integer such that

(1.4) u(yp) =0, wUt(yr) #£0, VI <L<j, LN

The mazimal vanishing order jy, of the shear flow profile u(y) is j,, := max},{j;}. Since any
smooth shear flow profiles on the torus T have at least one critical point, the maximal vanishing
orders j,, are greater than 1. If the maximal vanishing order is 1, the shear flow is nondegenerate.

The enhanced dissipation effect of the classical passive scalar equations (7 = 1) subject to shear
flow has attracted much attentions from the mathematical fluid mechanics community in the recent
years. In the paper [6], J. Bedrossian and M. Coti-Zelati applied hypocoercivity functional ([44, 3])
to show that if v is smaller than a universal threshold vy, the following enhanced dissipation estimate
holds for some universal constants C' > 1, dgp € (0,1),

_Jmt1

(1.5) 17(8)]| 2 < Cljmo|| 2e~0rpdtIosrI >t = gy £ 37

vt € [0, 00).
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Their result was later improved by D. Wei [46]. Combining the resolvent estimates and a
Gearhart-Priiss type theorem, D. Wei removed the logarithmic correction in the dissipation rate.
Later, M. Coti Zelati and T. Drivas showed that the enhanced dissipation rate d(v) appeared in
(1.5) is sharp ([20]). The underlying mechanism of the enhanced dissipation effect is that the shear
flow advection triggers the phase mixing phenomenon ([39, 49, 12]), which amplifies the damping
effect of the dissipation operators (see, e.g., [14, 18]). Similar phase mixing phenomena play a
fundamental role in Landau damping, see, e.g., [39, 13, 5]. Enhanced dissipation effect of the rough
shear flows, and its relation to mixing are explored in [46, 16].

The shear flows’ enhanced dissipation effect has found applications in various problems in fluid
mechanics, plasma physics, and biology. First of all, the shear flows’ enhanced dissipation is one
of the stabilizing mechanisms in hydrodynamic stability. We refer the interested readers to the
study of stability of the Couette flows ([41, 14, 9, 7, 8, 15, 10]), the Poiseuille flows ([21, 22]), and
the Kolmogorov flows ([47, 30, 37]). In plasma physics, the enhanced collision effect, equivalent to
the enhanced dissipation effect, stabilizes the plasma and prevents the echo-chain instability ([4]).
In biology, the enhanced dissipation effect of the ambient shear flows suppresses the chemotactic
blow-ups ([11, 27]).

The enhanced dissipation effect of the shear flow is heterogeneous. If the initial data ng of
the passive scalar equation depends only on y-variables, n(t,y) solves the heat equation, and no
enhanced dissipation is possible. Hence the zero-average constraint (1.3) is enforced. However,
there exist fluid flows inducing the enhanced dissipation effect in all directions. These are the
relaxation-enhancing flows. The concept is first introduced by P. Constantin et al., [17]. In the
papers [18, 25], the authors prove that flows with mixing properties are relaxation enhancing.
Explicit constructions of mixing flows have attracted much attention in the dynamical system and
fluid mechanics community, see, e.g., [45, 35, 42, 31, 1, 2, 48, 23], and the references therein. The
relaxation enhancing flows find applications in various problems, see, e.g., [33, 28, 32, 24].

Much less is known for the systems (1.1) and (1.2). The enhanced dissipation result for the
passive scalar equation (1.1) is obtained in [18]. However, the enhanced dissipation rate obtained
is not sharp in general. Recently, an enhanced dissipation estimate for the v = 2 case is derived in
[19].

By taking the Fourier transform in the x-variable, one obtains the equations for each Fourier
mode:

(1.6) Oy, + iu(y)kig = — v|k[P Ry —v(=Ay) 0k, Mt = 0,y) = T (y);
(1.7) O, + iu(y) ki = — v(=Ay) Nk, Mkt = 0,y) = Mok (y)-
The first main theorem of the paper is the following
Theorem 1. Consider the equation (1.2) subject to initial condition ng € L?(T?). Assume that the

shear flow profile u(-) € C>(T) has finitely many critical points {y*}I., and the mazimal vanishing

order ju, > 1 is finite. Further assume that there exist R; € (0, {5), i € {1,2,...N} such that in the
neighborhood B(y}; R;) C T, the following estimate holds for some universal constant Cy(u) > 1,

(1.8) ly —yr P < W (y)| < Cr(u)ly — i, Vy € By Ry).

1
C1(u)
Then there exists a viscosity threshold vy = vo(u) such that if v < vy, the following enhanced
dissipation estimate holds,

- im + 1
1.9 t)ll2 < CllnollaeEPa@Iosr ="t gy > 0, d(y) = T
(1.9) |In@®ll2 < Climoll2 > (v) 1ty
Here the constants C > 1, dgp > 0 depend only on the shear profile u. The parameter 8 = [(7)
depends on the fractional dissipation order vy and vanishes for v € [1,2]. The explicit form of B is
B(y) = 8y(1 - 7)176(1/2,1)~

v e (1/2,2).
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For the k-by-k system (1.7), the following enhanced dissipation estimate holds

_Jm+1 2y _ _
(110)||ﬁk(t>”2 S CHﬁO;k‘|26—6ED1/.777L+1+2’Y|k|]'m+1+2’Y|]Og(U|k‘ 1)| B(V)t, Vt 2 O’ k # O, v e (1/272]

Remark 1.1. The k-by-k estimate (1.10) implies that the solution to the hypoelliptic equation (1.2)
gain Gevrey regularity in x-direction instantly. This gain in reqularity is related to Hormander’s
hypoellipticity theorem, see, e.qg., [34, 29, 40, 38].

Remark 1.2. If the shear flow u is analytic near the critical points y?, then the condition (1.8)
holds.

Remark 1.3. Our argument does not provide the enhanced dissipation estimate in the regime
v € (0,1/2]. The main reason is that our proof requires an apriori L°°-bound of the solutions to
the resolvent equation. If v € (0,1/2], Sobolev embedding does not guarantee such L*°-estimate.
However, a recent manuscript [36] seems to suggest that the enhanced dissipation estimate with rate

jm +1
Yim i1t might still hold in the range v € (0,1/2]. We will leave that as a conjecture to pursuit in
the future.

Remark 1.4. If the shear flow profile is non-degenerate, i.e., j, = 1, then the enhanced dissipation
rate (modulo logarithmic correction) is VT When ~v = 1, we recover the classical rate v'/2.
Remark 1.5. The logarithmic loss here for v € (1/2,1) comes from the estimation of the H/?-
semi-norm of specific functions. New ideas are needed to drop the logarithmic factor or extend the
result to v € (0,1/2]. If v ranges from [1,2], the H'-norm will be applied instead and no loss of
|log(v|k|™1)|? will appear in the dissipation rate (1.10).

The second main theorem provides the enhanced dissipation for the equations (1.1) and (1.6).

Theorem 2. Consider the equation (1.1) subject to initial condition ng € L*(T?). Assume the
conditions in Theorem 1. Then there exists a viscosity threshold vy = vy(u) such that if v < vy, the
following enhanced dissipation estimate holds
—vt—8gpd(v)|logr| =AMt _ Jm+1

(1.11)  |In(t)||2 < C|noll2e , Vt>0, d(v)= R v € (1/2,2].
Here the constants C > 1, dgp > 0 depend only on the shear profile u. The parameter () =
87(1 —v)1ye(1/2,1) vanishes for v € [1,2].

For the k-by-k system (1.6) (k # 0), the following estimate holds for constant C, §gp which only
depend on u(-),

_Jm+1 _ 2y _ _
(1'12) Hﬁk(t)‘b < C”ﬁo;kH2€—V\k\27t—5EDVJm+1+2“/|k|]m+1+2w|1og(u\k\ b B(’Y)t7 Vi > 07 N e (1/272]'

Remark 1.6. It is worth noting that our method can be adapted to provide the same enhanced
dissipation estimate for passive scalar solutions subject to the classical fraction dissipation operator
—(=A) = —(|02|? + |8y|*)". Details of the adjustments are highlighted in Remark 2.1.

Remark 1.7. Similar argument yields enhanced dissipation for shear flows whose profile u are
Lipschitz. Consider profile u with finitely many critical points. Furthermore, assume that the
absolute value of the derivatives of the profile are strictly positive whenever they exist, i.e.,

minger{|v’ (y)| |« (y) exists.} > ¢ > 0. Then the enhanced dissipation estimate holds with rate

O(VTIH) (modulo logarithmic factors). The argument is similar to the proof of Theorem 4 in [26].

Our analysis combines a spectral gap estimate in the spirit of the work [6] and the Gearhart-Priiss
type theorem proven in [46]. Furthermore, detailed resolvent estimates are carried out to prove
the result. The resolvent estimate has found applications in various works in the hydrodynamics
stability, see, e.g., [15, 37, 22].
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The paper is organized as follows: in section 2, we present the proof of the main theorems; in
section 3, we prove the main resolvent estimates (Proposition 2.1).

Notation: Throughout the paper, the constant B, C' are constants independent of v, k£ and are
changing from line to line. In the section 3, the constant C can depend on a small constant § and
we will specify when it happens. The constants Cp, C1, Cgpec, ... Will be explicitly defined. The
notations 17, Ts, T3, ... denote terms in long expressions and will be recycled after the proof of each
lemma. Hence the meanings of 7|.y change from lemma to lemma. We use |A| to denote the area
of the set A.

We consider the Fourier transform only in the x variable, and denote it and its inverse as

T 0o

i) =5 [ e iewin gwi= Y et

T k=—00

If the function only depends on the y-variable, we use similar formulas to calculate the Fourier
transform/inverse transform in y. The symbol (f) represents average on the torus T, i.e., (f) =

1 _
o / f(y)dy. The symbol f denotes the complex conjugate. For any measurable function m(§),
TJT

o~

we define the Fourier multiplier m(V)f := (m(£)f(€))V. The LY-norms are defined as

oy = ([ lotwray)” . pe oo

with natural extension to p = co. The H7-seminorm and the H7-norm are defined as follows:

g%, =10y glZz = 16775, llglizy = llgll%, + llglZs-
LeL

=

2. PROOF OF THEOREM 1 AND THEOREM 2

In this section, we prove Theorem 1 and Theorem 2. The main goal is to derive the k-by-k
estimate (1.10), where k is horizontal wave number.

We make two preparations for the proof of the main theorem 1. First, we reduce the problem
for general wave number k € Z\{0} to the case kK = 1. Secondly, we present a semigroup estimate
from [46].

If the estimate (1.10) is proven for k = 1, then by changing the sign of the shear u(y), we obtain
the estimate for £ = —1. Now we consider the general case k € Z\{0} and rewrite the equation
(1.7) as follows

1 k v
O + u(y) Tl = = (= Ay) Tk
|| || k[
By rescaling in time 7 = |k|t and setting v = ﬁ, we obtain that

. k - N
Or M + W(y)mnk = —U(=Ay) "1k

Application of the enhanced dissipation estimate (1.10) for k£ = £1 yields the following estimate
17(8)ll2 = 1712 < Clfoellze—*FP AN BT — Oy (0) g 0D Mo I,

Now recalling the definition of d(-) (1.9) yields the estimate (1.10) for general k # 0. Hence in the
remaining part of the paper, we focus on the k£ = 1 case and drop the subscript k.

The second preparation involved in the proof is the Gearhart-Priiss type theorem proven by D.
Wei, [46]. The theorem translates spectral estimate into quantitative semigroup estimate under
suitable conditions. We recall the key concepts in the paper [46]. Let X be a complex Hilbert
space. Let H be a linear operator in X with domain D(H). Denote B(X) as the space of bounded
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linear operators on X equipped with operator norm || - || and I as the identity operator. A closed
operator H is m-accretive if the set {\|Re\ < 0} is contained in the resolvent set of H, and

(H+ M) eB(X), |(H+X)Y < (Red)™, VRel>0.

An m-accretive operator H is accretive and densely defined. The —H is a generator of a semigroup

e 1 The decay rate of the semigroup e *# is determined by the following quantity

V(H) := nf{[|(H —iM) fllx; f € D(H),A € R, [|fllx =1}
This is the content of the main theorem of the paper [46].

Theorem 3. Assume that H is an m-accretive operator in a Hilbert space X. Then the following
estimate holds:

HeftH” < eft\I/(H)+7T/2’ vt > 0.

We define the function space X to be X = L? and the differential operator to be
H = v(=A,) +iuly), 7€ (1/2,2]

The domain of the operator is D(H) = H?'(T). By testing the equation (H + AI)w = f by w and
taking the real part, we obtain that

v[110, 7 w]|2 + ReAljw]|? = Re / Jady.

Hence if the real part of the spectral parameter Re\ > 0, we have that ReA|wl|2 < || f]|2, which in

turn yields that ||(H + M)~!| < (ReX)™!, ReX > 0. Therefore, the operator H is m-accretive.
Now we are ready to prove the key estimate (1.10). To apply Theorem 3, we consider the

following resolvent equation associated with the hypoelliptic passive scalar equation (1.7)

(2.1) (H —iNw =v(=Ay)"w+i(u(y) — \)w = F.

Recall that the shear flow profile u(-) has critical values {u} = u(y?)},, which locate at critical

points {y*}X, with vanishing order {j;}2, (1.4). We present the following proposition, whose
proof is postponed to Section 3.

Proposition 2.1. Consider the resolvent equation (2.1). Assume conditions in Theorem 1. Further
assume that the spectral parameter X in (2.1) ranges on the real line R. Then the following resolvent
estimate holds if v > 0 is smaller than a threshold vy = vo(u),

Jm+1

jm+1
T 0, [l + v oy <Cu)|Fllae 7€ [1,2)

V%(H

1 jm +1 im+1
(22) w20, Pwlls + v w]ly <Cy(u)log vV Flla, 7y € (1/2,1).

Here jy, is the maximal vanishing order of all the critical points (1.4), i.e., jm = max;e(1,... N} Ji -
The constant Cy = Cy(u) > 1 depends only on the shear profile u(-).

Combining Theorem 3 and Proposition 2.1 yields the k-by-k estimate (1.10). Summing up all k-
modes yields the estimate (1.9). This concludes the proof of Theorem 1. The proof of the estimates
in Theorem 2 follows from the observation that ny(t, y)e”'k|2wt solves the equation (1.7). Therefore
the L2-norm is bounded as in (1.10), i.e.,

§ Jm+1 i 2y _ _
”ﬁk(t)ey‘katHQ S CHﬁO;kHQe_(SEDmeJrlJrTr‘k\]m+1+2ﬂ/‘]og(y|k| 1)| ﬁt’ V¢ Z 0’ ~y c (1/2’2]

By multiplying both side by eIkt , we obtain the estimate (1.12). Summing up all k-modes

yields (1.11). Hence the proof of Theorem 2 is completed.
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Remark 2.1. The above arguments can be adapted to treat the passive scalar solutions subject
to classical fractional dissipation operator (—A)Y = (|9.]* + |0,1?)7, v € (1/2,2]. One of the
adjustments is that one will not re-scale the time variable to get rid of |k|. As a result, we consider
the operator Hy, = v(|k|? + |0y]?)7 + iu(y)k and its resolvent. The constructions of augmented
functions in the next section are similar. We refer the interested readers to the appendiz of [19] for
the treatment in the bi-Laplacian case.

3. PROOF OF PROPOSITION 2.1

In this section, we prove Proposition 2.1.
Following the paper [6], we first introduce a partition of unity on the torus and localize the
solution w to (2.1) around each critical point y. To this end, we consider 2r;-neighborhood

B(yf;2r;) around each critical point y* for 0 < r; < %ﬂ'. Further assume that the dilated balls

{B(yf;4r;)}Y, are pair-wise disjoint. Next we define {¢2}¥  to be a partition of unity on the
torus such that & € C*°(T) for i € {0,1,..., N} and support(&;) = B(y};2r;) for i € {1,2,...,N}.
Moreover, for the index i ranges from 1 to N, &(y) = 1 in the neighborhood B(y};7;) and decays

to zero as y approaches dB(y};2r;). The function £ =1 — ZZ]\L 1 €2 has support away from all the

critical points and hence mingegupporte, [t/ (¥)| > ﬁ for some positive constant C'(u) > 0 which is

independent of v. At each critical point (y},u}) with vanishing order j;, by Taylor’s theorem, the

shear flow profile has the following expansion
wlHD ()

2
(7 + 1!
We choose the radius r; small enough such that on the neighborhood B(y};2r;), the first term on
the right hand side dominates, i.e.,

uy) — uf = (y =y +O0(ly — yr ™).

1 " N , ,
(3.1) m\y — P < uly) —ul| < Cou)ly — y; P, Wy € support(&;), i € {1,2,..., N}

Here the constant Cy > 1 only depends on the shear profile. Moreover, we can choose r; < %Ri in

(1.8), such that on the support of &;, i # 0, the following relation holds

1 * |7 * |7 .
(3.2) m\y — vy < (y)| < Ci(u)ly —yi)?, Yy € support(&;), i € {1,2,...,N}.

Since the above choice of r; depends only on the shear profile u, there exists a constant C'(u), which
is independent of the viscosity v, such that the following estimate holds

(33) H&JHW‘LO"(T) < C(“’)v Vi e {07 L2 7N}

Next we present some energy relations associated to the equation (2.1) and specify the interesting
range of the spectral parameter A. By testing the equation (2.1) against the conjugate w and taking
the real and imaginary part, we obtain that

(3-4) v[10y]wll3 ZRG/TFwdy <[ Fl2flwll2

(3.5) [ ) = Ny <t | Py,

Testing the equation (2.1) with gw, where g is any smooth real-valued function on T, yields the
following equation

(3.6) /T (u(y) — N)glw|2dy =Im /T Fagdy — vIm /T 10,17 w]d, " (g7)dy.

Direct application of these energy equalities ensures the estimate (2.2) given that the spectral
parameter \ is away from the range of u(-). This is the content of the next lemma.
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Lemma 3.1. Assume that the spectral parameter A\ € R is away from the range of shear profile
u(+) in the sense that

_
(3.7) min |\ — u(y)| > Su e
yeT

Here the small parameter ¢ € (0, 1) is independent of the viscosity v and j, is the mazimal vanishing
order of the shear u. Then following estimate holds

_— jm 41
VAT |10, w3, + VP w2, < CEY|F|Z,.

Remark 3.1. The parameter § = 6(u) > 0 will be chosen in (3.17). Hence the estimate we obtain
is consistent with (2.2).

Proof. The L?-estimate is the key. Applying the relation (3.5), the fact that u(y) — A has fixed sign
under the constraint (3.7), and the Holder inequality yields the following estimate

(3.8) Svi T [wlls < C|F]s.

Combining the relation (3.4) and the L?-estimate (3.8), we have the higher regularity norm estimate
(3.9) vlle, Ml < c~tT | P,

Combining the inequalities (3.8) and (3.9) yields the result. O

Hence we focus on the case where the spectral parameter A is close to the range of the shear
profile u, i.e.,

. Jm+1
min |\ — u(y)| < ovim+1+27,
yeT
Here §(u) is chosen in (3.17). We decompose the L2-norm |Jwl|3 into N + 1 pieces with the partition
of unity &2,
N

w3 = llwéill3.

1=0

Our primary goal is to derive L?-estimate on each component wé;, Vi € {0,1,..., N},

_o9_Jitl
lw&ill3 <C(B,u, 67", i)y 75157 [log [0 P13

B

Here the universal constant B > 1 is arbitrary and will to be determined at the end of the proof
(3.55). The j;, @ # 0 is the vanishing order of the critical points (1.4). If i = 0, jo = 0. The j,, is
the maximal vanishing order. The parameter a = a(7) is

(3.11) a(y) = 176(1/2,1)(1 - 7).

In the latter part of the proof, if the constant C' depends on B or d, we will explicitly spell out.
To prove the estimate (3.10), we first consider the components ||wé; |3 with i # 0. We distinguish

between three cases based on the relative position of A and the value u} = u(y}) at each critical

point y¥, Vi € {1,2,..N}:

1 I N
(3.10) + < + C(u, (S_l’jl')ljjm+ll+27 ‘logl/|4o‘(7)> w3,

Ji+1
(3.12) a) i€ Thear: |\ —uf| < SviF
Jit1
(3.13) b) @ € Tinterm :  |A —w;| > ovatit2y o dist(y), {z|u(z) = A}) < 3ry;

(3.14) c) i€ Iy dist(y], {z]u(z) = A}) > 3.
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Here 2r; is the radius of the support of &;, Vi € {1,2,..., N}. We will prove the primary estimate
(3.10) in case a), b), and ¢) in Lemma 3.3, Lemma 3.4 and Lemma 3.5, respectively. Finally, we
estimate the component ||w&y||3 in Lemma 3.6. Once the estimate (3.10) is established, by summing
all the contributions from different components, and taking B~! and then vy small enough, we will
obtain the estimate (2.2).

Before proving the estimate (3.10) for i € Z,ear, we introduce a crucial spectral gap estimate,
which also plays a central role in [6].

Lemma 3.2. Assume condition (1.8) and let f € HY(T). Consider a critical point y; of the
shear flow profile u with vanishing order j = j; > 1 (1.4). The function f; = f& is supported in

the 2r;-neighborhood of the critical point y7. Then the following estimate holds for some constant
Cspec(u) >1,

J+1 1—j 1
@wwﬂMWﬁmmﬁu@amw@nmém+QWMWHmwwmém,we(fﬂ.

Remark 3.2. As being discussed in the paper [6] (pages 12-13), the estimate (3.15) is related to
the spectral gap of the differential operator L := (—A,)" + |z|% on R.

Proof. First, we show that the following estimate on the torus implies (3.15),

_J i
(3.16) o7 | fill2agry < Collloyl fill2acey + Cllly — w20 fill2acry-

Here the parameter o € (0,1) is any small enough number. Since f; = f¢&; is localized near the
i-th critical point y}, the last term makes sense. Combining the estimate (3.16) and the condition
(1.8), we obtain

i
o747 || fill famy < Callldyl fillFaemy + Clld' fill L2 cry-

i+
By setting o = V2771755 in the above inequality, we have (3.15).

To prove the estimate (3.16), we first consider the z € R variable. On R, the following estimate
holds

Iolfe) < [ vraaGlatPaz + O [ lota) Pl

where £ > 0 is a universal small constant. Here, 1|_s o) is a smooth cut-off function which is 1 on
[—&, €] and has support in [—2¢, 2¢]. Now we make the change of variables g(z) = fi(k ™1z +yf) =
(f&) (s tz+y?), y—yf = k12, for k > 1. In the y-coordinate, the estimate above can be rewritten
as follows :

@ém@W@smmﬁﬂméwmwaayynmﬁcw*mwfémwwwwW@

SC&HfZH%OO(’]I‘)"‘C(&1),‘£2‘7+1/R‘fz(y)’2|y_y:’2]dy

Now since f; is localized, we have that the estimate also holds with the integral domain R replaced
by the torus T. Since 7 > 1/2, the L*°-norm can be controlled through H7-norm. Now applying
the Holder inequality, Young inequality and Gagliardo-Nirenberg interpolation inequality yields
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FD/ |fil*dy
T

<Ce(llfi = (fllloomy + (fi)*) + Cle™H)¥H! /T |filly — yi [ dy

that

91 1 . .
<Conellfi = (i)l oy 10y [ fill2 +C€|T|||fi||§+C(8_1)f-€2’+1/Ifilzly—yi*l2jdy

1 _
<o hllfillizery + Cons' =20y fill 2y + CelTIIIfill; + Ce™ DR fily = i P 122y
Recalling that x > 1, choosing € small enough and reorganizing the terms yield that

K2 fillamy SCR™2 7210y fillf2(my + Cllly = vl fill T2y

. . . 2j _J_
Now we set 0 = k29727 < 1, then k=% = (k~2727)27+27 = git7. As a result, we have derived the
spectral gap estimate (3.16). This concludes the proof. O

Next we consider critical points {y] }icz,.., in case a) (3.12).

Lemma 3.3. Assume the conditions in Theorem 1. Assume that both of the following conditions
hold:
a) the parameter § € (0,1) is small, i.e.,

(3.17) 0 < 6(u) < ~C(u) Cpec(u),

Nej

where C is defined in (1.8) and Cspec s defined in (3.15);
b) the threshold vy > 0 is smaller than a constant depending only on u and J.
Then the estimate (3.10) holds for i € Tpear (3.12).

Proof. We focus on one critical point y;* and drop the subscript ¢ in the vanishing order j;. There
are three main steps. In the first step, we introduce suitable cut-off functions and estimate their
Sobolev norms. In the second and third step, we carry out the main estimates of the L?-norm.
Throughout the proof, we will choose the viscosity threshold vy(u,d) small in several occasions,
and the final viscosity threshold will be chosen as the minimum of all.
Step #1: Cut-off functions and their Sobolev norms.

We define a smooth partition of unity on the domain T, i.e., 1 = 1Y + @bf +1; . First we choose

1
the viscosity threshold vp(u) small so that 44/Cord ™" < 2—107*1-, where Cy and r; are defined in
(3.1) and (3.2). The function 1 has the following properties:

support (1) = B(yf; 4+/Co(u)d7+1 i3 );
W) =1, Yy e Bly::2y/Colw)diiviFien ),
[u(y) — Al = 51/%, Yy € support(&)\B(yi*;QW&ﬁVm)-

Here Cy(u) > 11is defined in (3.1). We check the last property as follows. By the condition (3.1), the
1 1
assumption (3.12), and j = j; > 1, we observe that for y € support(&;)\B(y}; 21/ Co(u)d i+ vititay),

1

[\

)
)
3)

* * 1 Jj+1 R -
A —u()] >[|uly) — v = [A—uf] > Colu )Iy Y| Sy ity

Jjt+1

. J+1
> <23+1C’02 00*1 — 1) 5ya+1+2v > Syititey
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The supports of the functions 1/11* and 1), are adjacent to the support of w?. Since the support

1 1
of the functions ¢;°¢? are included in support(&;)\B(yz; 21/Co(u)§7+1 v771727 ), previous argument
yields that

j+1
(3.18) lu(y) — Al > 51/J'+Jl++27, Yy € support(w;tﬁf).

Ne;ct Welestimate the Sobolev norms. Since all three functions transition on interval of size
O(§7+1y 711427 ), their H', H?-seminorms are bounded as follows

(3.19)10,05 ]2 < C(u)d™T0F0y " Tm7= | [|02¢5|| < C(u)d TF0 1 TFF, Vs € {0, +,—}.

To estimate the H7-seminorm for 4 € (1/2,1), the H'?-norm of the partition functions 17 are
required:

151l /2 < Clu, 671 llog ()], s € {0,+, ).

1 1
The explicit estimate is as follows. Denote A := 2,/Cydi+1vi+1+27. Recall the Fourier characteriza-

tion of the H Z-seminorm: H@/}f—(z/Jf)Hipm =C Z#O ](ﬂ\f( 0)12|¢|, where ws = f Py ’Mydy.
Now we have the following two relations which are consequences of the mtegratlon by parts and
the relation e~ = —1 4 o—ity.

i dy

~ 1 1
G0l < /T 0,05y < O £ £0;

I
e 1 5 [
B(0) SW/T\ayywiuyg T

Now we estimate the H'/2-seminorm as follows

~ 1
15120, =C | > + > |l@P<c Y W*C Z <ClogA +C.

0<|[l|]<A~1 |¢>A-1 0<|¢|<A—L g >A-1

As a result, we have that [|[¢f]| ;12 < C(u, 671, )| log(v)|.
Finally, we apply Gagliardo-Nirenberg interpolation inequality to derive the H” semi-norm,

2-9 2y—1 . _ s ol S
195 | v <Canllg 75315 115" < Clu, 671, 4) log v|* 2T 20520, 5 € (1/2,1);
1971 g <Conll5 115, 145 11" < Cu, 671 )™ G, ye 1,2,

We combine these two estimates with the parameter () (3.11):
5|l “1 N, TG 2a(7)
(3:20) 191l gy < Clu, 677, gi)v 207520 [log v ",y € (1/2,2].
We apply the Minkowski inequality to decompose the L?-norm as follows

(3.21) [w&i|13 < 3|lwyf&l|3 + 3llwe &5 + 3llwi; &ll3-

This concludes step #1.
Step #2: Estimation of the L?norm [|wy{&;]|3. We apply the following product rule for f, g €
H7Y N L*:

(3.22) N0y (f Dl Lzery < Cl Nl mymyllgllnge )y + Cllf gy gl ary ey

The proof of the product rule on R can be found in various textbooks (see, e.g., appendix of [43].)
and a small modification yields (3.22). Application of the spectral gap (3.15) and the product rule
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yields that
J+1 1—j
v lwf €13 < Copec(u)v[||8y]7 (WP &) |13 + Copec (w)v 7527 [[u'wipii 3
< Cw)r([[19y w3 + w3965 + Cu)vllwl3 (1185 (2613 + [1WP&13)
1—j
+ Copec (Wr 7577 [[u'wipi &3

(3.23) =:T1+ 15 +1T5.

Combining the fact that [|&;]|c, [[#0]|c are bounded by 1, and the estimate (3.4), we obtain that
the first term is bounded, i.e.,

(3.24) Ty < Clu(l9, w3 + [wl3) < C)|Fl2llw]lz + C(u)v|lwl3.

To estimate the T, term, we first estimate the quantity [/|9,|7(¢¥Y&;)||2 with the product rule (3.22),
the &;-estimate (3.3), the L®-bounds [|&illeo + [|¥Y|lc < 2, and the H7-estimate of ¥ (3.20) as
follows

1-2
(325) 18y (P& 12 <C(u, &l ) (1011 o + 1) < Clu, 67, )] log(v) 2w 2055

Now we combine (3.25) with the L>®-bounds [|;]|oc + [|%?]|cc < 2, and apply Holder inequality,

Young inequality and Gagliardo-Nirenberg interpolation inequality to derive the following
1 ST 2\ Ak 4a(y)
Ty <C(u, 67", 3)v | 110y wlig [lwlly ™ + [[wllz ) vaF1527 [log(v)]
-1 8va(v) 2 Lo g+l -1 5 da(y) 2
<C(B,u, 67, j)v|log [T VN[0 [Mwlz + | o7 + C(u, 677, j)vavt2y [log "7 ) Jlwllz

Now we apply the relation (3.4) to obtain the following
(3.26)
g+1 (1 1
Ty < C(B,0.071 ) logs Ol + v 755 (5 + Clu,d ™355 log ] 20 ol

To estimate the last term T3 in (3.23), we apply the condition (3.2) that [v'(y)| < C1(u)|y — yr <
Ch (u)&jjﬁwﬂjﬁv on the support of ¥Y¢; and choice of §(u) (3.17) to obtain

2 2L L 0¢.|I2
T3 <Cspec(u)CT (u)d i+ T viT1+27 |lwip; &5

1+7

3.07 < (Capee () C2(w)8) 705 w0613 < L0795 w6 3.
P 7 9 7

Here the crucial point is that the coefficients in the bound of T3 only depends on the shear profile.
By taking § to be small compared to Cspec(u)C%(u), we have that the T3 term can be absorbed
by the left hand side of (3.23). Therefore, by combining the estimates (3.23), (3.24), (3.26), and
(3.27), we obtain

lwpP&i|2 <C(B,u, 671, j)v 27157 | log (1)1 || F |13

1 1
(3.28) + (B + C(u, 67", jviFie | 1ogy\4a<'v)> lw]l3.
This concludes the step #2.

Step #3: Estimation of the ||wy||3 terms in (3.21). Since |u(y) — A| has quantitative positive
lower bound (3.18) on the domain of integration, we apply the relation (3.6), Holder inequality and
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the product rule (3.22) to obtain the following estimate,

_Ji
w2 = \ [ |2 |w 2624 \<5—1u

/ w|2<u—A>|wf|25?dy‘

§C5’177”1+2” <|!F||2Hw||2\¢?[&||§o + 10y w2110y " wll2 + [[wll2) 145ill

+ 10y w2l wlloo (10,7 (7€) [12 + II(WQ)QHz))

(329) =:Ty+T5+ Tg.

The Ty can be estimated using the relation (3.4), the fact that ||&;|lec, ||¢]lcc < 1, and the Young
inequality as follows

o+l 1
(3.30) Ty < O(B,6 v 755 |3 + w3

Next we estimate T5 term in (3.29). Application of the relation (3.4), Holder inequality and Young
inequality yields that

1
B

To estimate term T in (3.29), we recall the quantitative estimates of v; (3.19) and & —estimate
(3.3), and apply a similar argument to (3.25) to obtain that

110,17 (WEED2 12 <C(u, 671, §)v 7175 | log ()22

Now we apply the relation (3.4), Young inequality, Gagliardo-Nirenberg interpolation inequality to
obtain

4 i+l 145 1-L
Ty <C37y J“”””(H@MHQ ] 2”+||\6wa|12\\sz> 10,17 (i &)1l + 1)

i+1
(3.31) T5sC(B,é‘l,j)v‘zﬂ‘fr”vHFH%+( Lo >w+l+2v)uwué.

8ya(y)

-1 _% 27+1 1+2 da(y Y| l 2
<C(B,67%,j) (v 7157 |log(v)| 71 + w7777 [logu[20) ) vy wlz + Fllwllz

(332)  <O(B.6~" ) 55 1og(v) | FI3 + £ w3
Combining the estimates (3.29), (3.30), (3.31) and (3.32) , we obtain that
w6l
B3RO, 57w 5 1o O P + (5 + O 6wt log] ) ) ful,
for any B > 1. Now combining the decomposition (3.21), the estimates (3.28) and (3.33), we obtain
the estimate (3.10) for i € Zpear (3.12). O
Next we treat the case where i € Zipterm (3.13).

Lemma 3.4. Assume the condition in Theorem 1. For i € Linterm (3.13) and for vo(u) small
enough, the estimate (3.10) holds.

Proof. Here we drop the subscript ¢ in the vanishing order j;. We organize the proof into three
steps.

Step #1: Before estimating the L2-norm ||wé&;|| 2(T), several definitions are introduced. First, we
consider the set F; and its compliment Ef associated with each critical point:

(3.34) E; = {y

1. i+
u(y) — Al < §5w’+]1++27, Y€ support(g,?)} , Ef=T\E,.
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I
| u()h

o > u(yp)=h

FIGURE 1. Function ¢;(y) for j odd(left). Function ¢;(y) for j even (right).

Next, we define functions ¢; which change sign near the spectral parameter )\, and have transition
layer adapted to the set E;. Given the shear profile u(y), we first define the y;.\ such that u(y;\) =
A, yix € B(yr,4r;), support(£2) = B(yf,2r;). If the vanishing order j of the critical point is
odd, then there are two points y;., such that u(y;x) = A. In this case, we use Y;.n and y;r/\
to represent them and use y;;\ to denote the set {y;,,y;,}. Since the balls {B(y},4r;)}Y, are
mutually disjoint, the ;. associated with different critical points are distinct. We define the
function {¢;}N, € (C°°(T))":

-
sign(u(y) — A), luly) — Al > Yovmem | dist(y, yf) < 4r;
_ j+1
a) ¢ = monotone, lu(y) — A < éél/ﬁJH?W, dist(y, yF) < 4ry;
smooth, dist (y, y) > 4r; = diameter(support(&;));

b) ||0ydillr2 < 05_2<;‘1+1>V_2(j+i+2v>, Hazqsi”m < C§5 TG y_2(j+?+2v>;
1-2
11,1264l 2 < CO, Dlog)l, 19,761l z2 < C(G, 5) log(v)[* Py a6520,
o) i(yin) = ¢i(yin) =0, illz= < 1;

d)  di(y) = di(win) + Gi(Win) W — vin), |y — yinl < L)

1
$i(y) = di(Yiny) + Gi(Uin) (¥ — via)s 1y — gl < T

Since the function ¢; is very similar to the function %] in the proof of Lemma 3.3, the regularity
estimates are similar to those of 7. Here the universal constant L(u) is chosen such that if

I S S
ly — yliA| < L(lu)éjH vi+1+2y then |u(y) — Al < %6uj+j1+27. By the estimate of u on the support of

0T yi+i+2v . if j is even;

0iFtyi+i+2y - if j is odd.

& (3.1), the existence of this universal constant L(u), which is independent of v, is guaranteed.
Now we estimate the area of the set F;. Based on the relative position between A and w}, we
distinguish between two cases:

(3.35) (b1)  yin —yi| <y (b2) 7 <y —yi| < 3.

In case (b1) (3.35), we first consider the case where the vanishing order j is even. As a result, the
shear profile is strictly monotone near the critical point and there is a unique y;, ) such that u(y;.») =
A. We consider arbitrary y € E; (3.34). Note that in this case, the product (y — y)(yin — ;) > 0.
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Application of the mean value theorem, the w-estimates (3.1), (3.2) on the support of & and
definition of E; (3.34) yields that

uly) — ulys; u(y) — A
ly — yinl <— [uly) = ’\)|/ < ' _‘(i/i ‘\_ -
Ny g0 Uy 1) [ (2)] min{ly — y7 17, lyix — yi 1}
C(Ch(u), Co(w))6y 715
(3.36) < OO, CW)VTTE st e

* minffuy) - wf| 7T, 1A - w71
Since the estimate holds for all y € F;, we have that
(3.37) |Ei| < C(w)d7+T yivirs

If the vanishing order j is odd, then y;.y = {yi_;)\, y:r)\} Now we define Ezi =En{yl(y — yl*)(y%\ —
y¥) > 0}. Now carrying out similar argument yields (3.37). In the case (b2) (3.35), by picking
vg small enough in the definition of the set E; (3.34), we have that for y € E;, the following the
derivative lower bound of u holds,

1

min () > —— > 0.
Ze[yvyi;)\]u[yi;kvy]| ( )’ - C(u)

Combining this derivative |u/| lower bound and a similar argument to (3.36) yields that |E;| <
C(u)é YT

To conclude step #1, we estimate a specific function which will be applied later. We first consider
the case where j is even. We apply the properties of the functions ¢;, & and the mean value theorem
to estimate the following function for Vy € T,

19i(y)]
éf(y)m <& (y)15,(y)

10y @illocly — viAl
lu(y) — u(yin)|

(3.38) <€2(y) L, (1)1, 1]l o ———

min,cp, [v/(2)]

2 . —dFl
+§i (y)lEg(y)% v iti+2y
j+1
+ 5?(3/)1E5(y)95_1y_j4317+2w.

Now by the behavior of the shear profile u on the support of & (3.1), (3.2), the A constraint (3.13),
the definition of E; (3.34), we observe that

. —1 . i 1,41 _ - -
min [1/(y)| >C; (u) min [y — o7 > C7' G min [u(y) — u(y?)

J
j j+1 1 ji+1 | F+1
>0 Cy " min luf — A = Ju(y) = AT > Oy G |durmr — souren
k3

EC’(U)*léi% Y I

Combining the lower bound, the estimate (3.38) and the property b) of the function ¢;, we have
obtained the following

(3.39) f?(y)M <Cs\WwTEE, WyeT.

u(y) = Al
Here if j is odd, then we can replace the y;. above by either y,j,/\ or y,.,. Moreover, we will decompose

the domain T into the three subdomains EY, Eii, where EZjE denotes the connect component of E;
which contains y;',[)\. Application of similar estimate above yields the estimate (3.39). This concludes

step #1.
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Step #2: Estimation of ||w&| 12(ge). Direct application of the constraint (3.34) and property a)
of the function ¢; yields that

B40) Nl = [ €SSl < o7l s [ nloutay

Now we test the equation (2.1) by we;£2,
Jlu=Alsgutas = [ = nogubdy =1 [ Fooeidy—vim [ 10,7wlo, (octo)dy

Now we apply the bound (3.39), property a) and c) of the functions ¢; and the product estimate
(3.22), Holder inequality, Young’s inequality and Gagliardo-Nirenberg interpolation inequality to
get the following

/ = Alls €2l 2y

Vie=A |,

+ )10y wllallwlloo (16167 | g + H@é‘?l!m)

H\/ AV Igil&iwllz + [0y w2 ([10y[Twll2 + [[w]]2)

IV lu = M/leiléwll2 + w10y wll2 (185 wll2 + [[wll2)l|¢i€ oo

F I@ i
Viu—

1 1—L
+ v(l!l%\”w!b Tlwlly =+ 10y wllzwl2) 110y @il + 1))

c<||5i|rW1,oo><

F |¢zz

i V=

II\/ = AVleilgwll3 + Cwv|l|oy w2110y wll2 + [|wl2)

4+ L 1—-L
+ Ol (10, ]y lwlly > + 110y wll2l[wll2) (Nl g7+ + 1)-

Note that the second term on the right hand side gets absorbed by the left hand side, which implies
the following estimate

Fae|
Viu=2All,

1—L

+
+C(u)v (Ha rully ™ fwll, + 10y [Tw]2 le!2> (Nloill g +1)-

/Iu = Mlgil&F lwl*dy < C(u) H +C (v ([10y wlf3 + 10y wl|2|w]2)

Combining this relation with (3.40) and the properties of the function ¢; yields the following

Flale ||

L2

Cqy, -l
[w€il| 72 (gey <C(u, 6~ v~ 77152 H +v(l10y w3 + 1118y wll2[lwll2)

1+L 1L
+ |0y wlly * wlly =" + 110y wlzllwll2) (16l 4 + 1)>
(341) =T, + 15+ T;s.

Now we estimate each term in (3.41). Combining the estimate (3.39) and the relation (3.4), we
obtain

j+1
(3.42) T <C(u, 6w 2715 || P 3.
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Now we estimate T5 term with the relation (3.4) as follows
_g_Jtl 1
(3.43) Ty <C(B,6~ ")y 5755 | FI3 + S lwl3.

Next we estimate T3. The estimate of T3 is similar to the estimate of Ty (3.32) in the proof of
Lemma 3.3. Combining the property b) of the function ¢;, the relation (3.4), Gagliardo-Nirenberg
inequality, and Young inequality, we obtain

g+l 16ya(y) 1
(3.44) Ty <O(B,u,d™" j)v "7 log(v)] 251 |F[3 + 3.
Combining the estimates (3.42), (3.43), (3.44) and the relation (3.41), we obtain the estimate
- SR, . .= T 16va(y) 1 :
(3.45) ngiuig(,ﬂﬂ <C(B, 67, u, j)v 2755 | log(v)| = ||F|2 + Euwug, Vi € Tinterm-

This concludes step #2.

Step #3: Estimation of ||£iw\|%2(Ei) (3.34). Applying the area estimate (3.37), the relation (3.4),
Gagliardo-Nirenberg interpolation inequality and Young inequality, we estimate the L? contribution
as follows:

lwéillZ2 gy <IEilllwll7ee(r)
1

1 1 1 2— 1 1
<CHiHTyi+it ”|8y\7wH£2(T)HwHLQ(YJT) + C§iti pitity HwH%g(T)

g+l 9 1 1 9
<C(B)v 7772010y wllz2m) + | 5 + COT w27 ) fJwllgar

__ g+l 1 1 9
<C(B)v i+ 57||F|| 2 (pyllwlz2(ry + | 7 + CviF#2 | wll7z

B
(3.46) <C(B)y T 5| Fllfa(py + { 5 + CviTis | [wlla -
Combining (3.46) and estimate (3.45) implies (3.10) for i € Zinterm- O

Now we consider i € Zg,, (3.14).

Lemma 3.5. Assume the conditions in Theorem 1. For i € Iy, (3.14), the estimate (3.10) holds
for vy(u) > 0 small enough.

Proof. Combining the assumption dist(y}, {z|u(z) = A}) > 3r; and the fact that the derivative
u' is away from zero in the region B(yf,3r;)\support(¢?), we have that |u(y) — A| > ﬁ for

y € support(£2) = B(yr,2r;). Now we apply the relation (3.6) with g = £2, the product estimate
(3.22), the Gagliardo-Nirenberg interpolation inequality and Young inequality to obtain that

lwéi3 < C(HFllzllw&Hz + [0y [Mwlla(I[[0y [ wll2 + [[wll2) [illo

1
+ )10y M wllallwlloo (1110, 7 (€)= + HE?Hz)) .

My csupport (£2) |u(y) - )‘|

i

_ 1
< Cu, 6L BIFIE + S llwll3 + Cu, 18] m2)v (10wl + lwli3)

1
< Ol BIFB+ (5 + Cr ) ul?
for any positive constant B. This implies the estimate (3.10). O

Finally, we estimate ||£w||3.
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Lemma 3.6. Assume the condition in Theorem 1. Then the following estimate holds for any
positive constant B > 1 and vy(u) > 0 small enough,

__2 1 1
@41) oul} < C(B.87uy”Flog PO FI -+ 3+ Ol 807 ) Julface

Proof. Note that on the support of &y, the function u(y) intersects the value \ at different points
{y;rl}hM: » M < N +1, and near each intersection, the derivative of u is away from zero, i.e.,
||/ (y;rl)||Oo > ﬁ > 0. We use the transition function trick again. To this end, we consider the
following transition function vg:

a) doly) =sign(uly) — N), |y —yh| > ST,
(348)b)  [Wolloo <1, 10,0 lloo < Cu)s v T, ||l 1 < C(u)s— /2~ 750,
10,1 dollz < Clu, 5 log v, ol gz < Clu)d=/20~ 750,
¢) Near the zero points yj, C~'d,vo(y})(y — y))| < [o(y)] < ClAwo(y})(y — vh)l.

Now we focus on one intersection and comment that other intersections are similar. We test the
equation (2.1) with 13w and obtain the following relation

(3.49)
[ 1= Nnledlulay = [ (- Nvogdluly =1 [ Fogiwdy vt [ 10,01, (vusw)ds
T T T T

We further decompose the domain into the following two component:

1
a) Eo:={y|3h € {1,..., M} such that |y — yIL] < oy} b) E§. To estimate the solution on Ej,
we apply the Gagliardo-Nirenberg interpolation inequality inequality and v > 1/2 to obtain:

€owl22 ) <IBollw] 2oy
2y—1

1 Z L
<CvBT||0y"w| 75 gy Il 237y + CrFF ][y

2y " 1 1 9
<CB)= |10y wlam) + { 5 +Cv> ) [wliem)

__2 1 1
(3.50) <C(B)v™ 55 || F|[72(p) + <B + C”““) w72

Now we estimate the E{ component of the solution. To this end, we collect the relation (3.49), the

1
fact that |v/|(y) is bounded below on the set Ey, and the fact that |y — y;:] > v+ on Ef. Then
we apply the product estimate (3.22), the Gagliardo-Nirenberg interpolation inequality to estimate
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the E§ part as follows,

-t
o < O™ (min 1) w75 [ = Mol fulay
0

yEEo

71 1
<Cu)s <min |u’<y>|> il KU

y€Eo
2
- — L (1 FV %ol
<0 el = (| LD vl ol 10, wlss + ool
L2

27+1 2y—1
2 2
v (0,0l Tl + 12, Pullol ) Gl + 1)

3

(3.51)=:» T

i=1

We estimate each term in the expression (3.51). Before estimating the 77 term, we apply property
c) of the function vy, the fact that the derivative of u does not vanish in the set Ey N support (&)
to derive the following relation

[%0(y)]
u(y) = Al

1

min,e g, |v'(2)]

18,010 ly —
‘y - y;Fl‘ minzeEo ‘UI(Z”

SC(u)é_ly_ﬁ, vy e T.

51 7211
v 2+

&) <& () 1m, (y) + & (W) 1ee(y)

The estimate yields that

(3.52) Ty < C(0~ 1wy 55 | P2

Now we estimate 75 in the decomposition using Holder inequality, Young’s inequality and the
estimate (3.4), as follows

__2 1
(3.53) Ty <C(B,67  u)y™ 75 ||FI3 + w3,

Finally, we estimate T3 in (3.51). We estimate the H”-norm of 9. By the Gagliardo-Nirenberg
interpolation inequality and the regularity of 1 (3.48), we have the following estimate

2v—1
ol <C(5~Y)log w2y 2@, 4 € (1/2,2).

Combining these two estimate together with Holder inequality, Young’s inequality and the estimate
(3.4), we obtain that for v € (1/2,2],

Sya(y) 2y 1
Ty <O(B,5",u)| log | 2+ w39, w3 + O(B,5~",u)| log v[*u[|0, [ w3 + = lw]l3
2 1
(8:54) C(B,6~%,upy™ 751 [log |10 F 3 + — [l 3

Combining the estimates (3.51), (3.52), (3.53), (3.54) above and (3.50) yields the estimate (3.47).
O

Proof of Proposition 2.1. We combine Lemma 3.3, Lemma 3.4, Lemma 3.5, and Lemma 3.6, to
jm +1
obtain that if minyer A — u(y)| < 5(u)1/fvrz+1+27 for §(u) chosen in (3.17), the following estimate
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holds

N
jm +1
lwl3 =3 lwéill <C(B,671 u, N, (G}, w5552 | log(v)[1910)|| F |3
=0

1 L
#ON (5 Clund ™, G775 Hogs =) )

If we choose B~!, and then 1 small enough, then for 0 < v < 1y, the following estimate holds

3.1,

jm +1
(3.55) w3 <C(u)y 255577 | log (1) *7°0) || F||3.
Combining the L2-estimate with the relation (3.4) yields the conclusion (2.2). Recalling Lemma
this completes the proof of Proposition 2.1. O
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