2201.10947v1 [cs.LG] 22 Jan 2022

arxiv

Enabling Deep Learning on Edge Devices through Filter Pruning and
Knowledge Transfer

Kaiqi Zhao, Yitao Chen, Ming Zhao
Arizona State University

Abstract

Deep learning models have introduced various in-
telligent applications to edge devices, such as im-
age classification, speech recognition, and aug-
mented reality. There is an increasing need
of training such models on the devices in or-
der to deliver personalized, responsive, and pri-
vate learning. To address this need, this pa-
per presents a new solution for deploying and
training state-of-the-art models on the resource-
constrained devices. First, the paper proposes
a novel filter-pruning-based model compression
method to create lightweight trainable models
from large models trained in the cloud, without
much loss of accuracy. Second, it proposes a
novel knowledge transfer method to enable the
on-device model to update incrementally in real
time or near real time using incremental learn-
ing on new data and enable the on-device model
to learn the unseen categories with the help of
the in-cloud model in an unsupervised fashion.
The results show that 1) our model compression
method can remove up to 99.36% parameters of
WRN-28-10, while preserving a Top-1 accuracy
of over 90% on CIFAR-10; 2) our knowledge
transfer method enables the compressed models
to achieve more than 90% accuracy on CIFAR-
10 and retain good accuracy on old categories;
3) it allows the compressed models to converge
within real time (three to six minutes) on the
edge for incremental learning tasks; 4) it enables
the model to classify unseen categories of data
(78.92% Top-1 accuracy) that it is never trained
with.

1. Introduction

Deep neural networks (DNNs) have been applied to many
important applications on edge devices, such as image
classification, speech recognition, and augmented reality.
These deep learning models typically have millions of pa-
rameters and need to be trained for hours or even days

on powerful cloud servers to achieve a good performance.
However, a serious drawback of this cloud-only approach
is that the on-device tasks cannot perform well when the
cloud is overloaded or the network is unreliable. Moreover,
there are also significant benefits from training deep lean-
ing models on edge devices: 1) Customization: user- or
situation-specific requirements can be met more effectively
by training models on the devices that the users or physi-
cal environments directly interact with; 2) Responsiveness:
custom models deployed on devices for specific users or en-
vironments can better adapt to their changing behaviors us-
ing new data captured by the devices; and 3) Privacy: sensi-
tive information can be better protected if the sensitive data
and models are stored and used only on private devices, not
in the public resources shared by many.

Deploying and training complex deep learning models on
edge devices are challenging since they require millions
of parameters and large amounts of operations whereas
the devices have only limited memory and computation
resources. To deploy DNNs on resource-constrained de-
vices, there are two general approaches. The first approach
aims to compress already-trained models, using techniques
such as weights sharing (Chenetal.,, 2015), quantiza-
tion (Han et al., 2015; Kadetotad et al., 2016), and prun-
ing (Han et al., 2015; LeCun et al., 1990; Srinivas & Babu,
2015). However, a compressed model generated by these
approaches is useful only for inference; it cannot be re-
trained to capture user- or device-specific requirements or
new data available at runtime.

The second approach to learning on devices is based
on knowledge transfer which uses the knowledge dis-
tilled from a cloud-based deep model (termed teacher)
to improve the accuracy of a on-device small model
(termed student) (Ba & Caruana, 2014; Hinton et al., 2015;
Romero et al., 2014; Venkatesan & Li, 2016). How-
ever, these works 1) achieve limited accuracy improve-
ment (Yim et al., 2017; Zagoruyko & Komodakis, 2016);
2) do not consider the speed of training the model to a
satisfactory accuracy; and 3) assume that the all data are
available at the training time and the tasks for the student
and teacher remain exactly the same, which is often not a


http://arxiv.org/abs/2201.10947v1

realistic assumption.

The goal of our work is to provide a new solution that al-
lows deep learning models to be trained on devices with
a small number of parameters, the state-of-the-art accuracy,
and fast runtime. Further, we aim to enable on-device learn-
ing under realistic settings where the models are trained in-
crementally with only limited local input but are still able
to recognize both old and new categories of data.

In order to achieve the above goal, we propose a new com-
pression method for deploying models that are suitable
and trainable for resource-constrained devices, and a new
knowledge transfer method for improving the training ac-
curacy and the speed of these on-device models, and pro-
viding the capability for enabling the on-device models to
learn incrementally without forgetting the knowledge on
the old categories using the local data and achieve good ac-
curacy for classifying both old and new categories. Specif-
ically, our compression method can create a model that is
both shallow and thin by removing similar convolution lay-
ers and pruning filters that produce weak activation patterns
in each layer, respectively, from a large model trained in
the cloud. The resulting compressed model still shares the
same architecture as the original model, and is suited for
knowledge transfer between the two models. Our proposed
knowledge transfer method selects the best teacher/student
layer pairs for transferring knowledge from teacher’s inter-
mediate representations and enables the student to learn the
problem solving process. Our proposed method also en-
ables the student to use the distilled knowledge from the
teacher in solving the catastrophic forgetting problem.

We evaluate our solution on VGG-16 and ResNet architec-
tures using CIFAR-10, Caltech 101, and ImageNet datasets.
First, our model compression method 1) reduces 99.36%
parameters of WRN-28-10, while preserving a Top-1 accu-
racy of over 90% on CIFAR-10; and 2) achieves a compres-
sion ratio of up to 139X on VGG-16, at a cost of less than
10% accuracy loss on Caltech 101. Second, our knowledge
transfer method 1) enables the compressed models not only
perform well on new category (>90% accuracy on CIFAR-
10) but also retains a good level of accuracy for classify-
ing the old categories; and 2) enables the compressed mod-
els to converge within real time (three to six minutes) on
the edge for incremental learning tasks; and 3) allows the
compressed model to reach a Top-1 accuracy of 78.92% on
CIFAR-10 for classifying unseen categories that it is never
trained with. Compared to the related works (Romero et al.,
2014; Zagoruyko & Komodakis, 2016), our method re-
duces complex networks to both shallower and thinner net-
works without much loss of accuracy, enables the models
to learn from new categories incrementally within real time
without forgetting the old categories, and allows the models
to classify unseen categories of data with both good accu-

racy and speed.

In summary, our solution enables DNNs that are not only
suitable for deployment on resource-constrained devices
but also trainable for meeting new requirements. In the rest
of the paper, we first explain the details of our proposed
solution (Section 2), then present an extensive evaluation
(Section 3), discuss the related works (Section 4), and fi-
nally conclude the paper (Section 5).

2. Background and Motivations

We envision an edge computing scenario where edge de-
vices collect various data (voice, images, videos, etc.) from
their sensors and feed it to the cloud. In the cloud, we can
utilize the abundant resources in the cloud to train a state-
of-the-art model with all the available data. On the edge,
we can deploy a small model on each device and train it
using the local data for customized, responsive, and private
learning.

In order to realize the above scenario, the cloud/edge dis-
tributed learning system needs to meet the following re-
quirements. First, the on-device model should be small
enough to fit the limited resources on the edge devices,
which are usually resources constrained due to their small
form factor. Second, the on-device models should be able
to classify new categories without forgetting old categories
since re-training the whole model on edge devices is in-
feasible due to their limited computing resources. Third,
the on-device model should be able to classify unseen cat-
egories with good accuracy, since each edge device may
only see a subset of the data that the cloud model is trained
with.

To meet the above requirements, we need to use compres-
sion techniques to produce models that are small enough
and fast enough for the edge devices with their limited re-
sources. We also need knowledge transfer techniques that
can utilize the knowledge of the in-cloud model to help
the on-device models retain the existing knowledge while
learning on new data and be able to classify categories that
they are not trained with.

But on one hand, existing model compression methods fo-
cused only on creating compressed models for efficient in-
ference without considering how to compression methods
affect the training process (Han et al., 2015; Chen et al.,
2015; Kadetotad et al., 2016; Li et al., 2016; Polino et al.,
2018), and how to reduce the accuracy loss caused by com-
pression. On the other hand, existing knowledge transfer
methods have the following limitations: 1) they still re-
quire large student models that are not fit for resources
constrained devices (Romero et al., 2014; Lietal., 2019;
Yim et al., 2017); 2) they only enable to student model to
classify the categories that the models are trained with.



To address these limitations and meet the aforementioned
requirements, we propose novel model compression and
knowledge transfer techniques for deploying models that
are suitable and trainable for resource-constrained devices
and improving the training accuracy and speed of these on-
device models, as detailed in the rest of the paper.

3. Filter Pruning Based Model Compression

Without loss of generality, we consider image classifi-
cation tasks and use ResNet, as an example to discuss
our proposed on-device learning solution. Image clas-
sification is important for many edge applications, and
is also the target task of the related model compres-
sion and knowledge distillation works (Hinton et al., 2015;
Han et al., 2015; Chenetal., 2015; Polino et al., 2018;
Srinivas & Babu, 2015). ResNet is a modern architecture
with streamlined convolutional layers. Specifically, we con-
sider WRN-28-10 and ResNet-34, illustrated as Teacher
in Figure 2. They have a Top-1 accuracy of 97.28% on
CIFAR-10 and 73.9% on ImageNet, respectively, which
are among the state-of-the-art results. The ResNet mod-
els consist of several groups of blocks, and each block has
two convolutional layers. Further, we also consider VGG-
16 (Simonyan & Zisserman, 2014), which is another com-
monly used neural network and has a different architecture,
including 13 convolutional layers and three fully-connected
layers.

Our goal for model compression is two-fold: 1) to reduce
the number of parameters and optimize the architecture of
the model so that it is both thin and shallow, and fit for the
limited resources on a device; 2) to maintain the architec-
ture of the original model so that it can facilitate the learn-
ing from the on-server model during knowledge transfer.

The proposed model compression method works as follows.
First, to reduce depth, it creates a shallower model that
has the same number of groups as the on-server model,
but each group only keeps the last block (illustrated as
Student in Figure 2). This way of pruning layers of a
model also resonates with the principle that higher layer
features are closer to the useful features for performing a
main task (Yim et al., 2017). Next, our method reduces the
width of the shallower model by removing filters that pro-
duce weak activation patterns. It uses one batch of images
to decide the number of filters that are safe to prune in each
convolution layer.

The procedure of pruning filters from the ith convolution
layer is as follows. For a given input image m, let X"
denote the input features of the :th convolution layer. Con-
volution operations (denoted as mapping function F') trans-
form the input X", into output feature maps Z;" by ap-

plying n; three-dimensional filters f;”:. Then, activation

operations (denoted as mapping function ) transform Z"
into the activation feature maps A}":

Zi" = F(X"y), Al'=G(Z") M

2

For each filter’s activation feature map a;"; € Rhixwi
(1 < j < n?), our method computes the percentage of

zero elements based on the [g-norm of a;”j:

[l
»J 10 (2)

my—1_ L%l
perc(aw) Ty

If the percentage is equal to or greater than Filter Pruning
Threshold P, this filter is safe to be pruned. The thresh-
old determines how aggressive the pruning is, and in the
evaluation, we set it between 0.7 and 1.0. Our method re-
peats the above procedure for M randomly selected images,
and calculates the average number (avgc;) of filters that are
safe to prune. We set M equal to batch size since we find
that the value of avgc; is steady even if the input features
are different. The reduced width w' of the ith convolution
layer becomes: w' = n’ — avge;. The same method is ap-
plied to all the remaining layers of the shallow model. The
model is then retrained with the reduced width and depth
to generate the compressed on-device model.

We can visualize the activations of the on-server model
(WRN-28-10) on CIFAR-10 and understand why our fil-
ter pruning method is effective. Figure 1 shows the acti-
vation feature maps of each filter of the first convolutional
layer (called Convl) using one image as the input. The
width of Convl is 16. The first image on the left is the
original image, and the second image is the input features
after data augmentation. We can see that some filters ex-
tract lots of representations with high activation patterns,
like the 6th and 12th filters, whereas the activation feature
maps of some filters are close to zero, such as the 2nd, 14th,
and 16th filters. Filters that generate weak activations are
safe to remove without affecting the final performance of
the model.

In this way, we can generate a compressed model that is
both shallow and thin, small enough for learning on edge
devices. The small model still shares the same architecture
of the original model, because it retains the higher layers
in each group of convolutional layers and keeps important
filters in each remaining layers. Compared to the related fil-
ter pruning work that prunes filters with the lowest absolute
weight sum (Li et al., 2016), our approach prunes insignif-
icant filters more accurately. Filters that have small abso-
lute weight sum can also produce useful non-zero activa-
tion patterns that are important for learning features during
backpropagation. As shown in Table 1 of Section 5.1, our
method enables the compressed model achieving a higher
Top-1 test accuracy than their method (93.68% vs 93.55%),

3 with a smaller number of parameters (1.42M vs 1.68M). So



original image input image filer_1 filer_2 filer_3 filer_a

(L -j:u i
[

- ]

L
filer_5

filer_16

Figure 1. Activation feature maps of each filter of the first convo-
lutional layer (Convl) of the on-server model (WRN-28-10) on
CIFAR-10. In the left, the first image shows the original image
and the second image shows the input features after data augmen-
tation; the right part shows activation features of the 16 filters.

our approach directly finds and prunes the filters that gen-
erate close-to-zero activations, with minimal impact on the
performance.

4. Selective Layer-Wise Knowledge Transfer

4.1. Knowledge Transfer for Incremental Learning on
the Edge

As new local input becomes available to a device, we want
to update its local model to learn the new data. One solu-
tion is to wait for the in-cloud model to update using all
the data from the edge and then compress and download
the updated model, which however will take a significant
amount of time. In order to update the on-device model
in real time or near real time, we propose to update it in-
crementally using its new data, and use knowledge transfer
from the in-cloud model (the teacher) to preventing the on-
device model (the student) from forgetting the old data that
it is already trained with.

Different from the existing works (Kimetal.,, 2018;
Romero et al., 2014; Zagoruyko & Komodakis, 2016),
with our knowledge transfer method, the student does not
need to learn the specific output from the teacher, which
depends on the specific input; it instead learns the problem
solving process, which represents the intermediate layer
outputs. Learning from the teacher’s intermediate represen-
tations is better than learning from only the last layer’s out-
put (Sharma et al., 2018), which prevents the model from
losing its classification ability when facing specific ques-
tions.

Figure 2 illustrates the architecture of our knowledge trans-
fer method for ResNet and VGG-16. The student is trained
by knowledge transfer between selected teacher-student

layer pairs as the input enters batch by batch at each iter-
ation. First, given one batch of data, our method finds out
which convolutional blocks in the teacher should be used
to transfer knowledge to the student’s convolutional blocks,
using a new cosine similarity based metric. Then, multi-
ple loss functions are built using the activations from the
mapped block pairs.

In order to find best teacher-student layer pairs for knowl-
edge transfer, first, we define a cosine similarity metric
for measuring the similarity between the activation feature
maps of the teacher’s kth block and the student’s jth block:

t.0s
CosineSimy, ;(X) = %, (3)
J
t_ F,E(X) L - LX) 4
Uemoor G e @

where,
X one batch of data.
F{(X): activation feature maps of the teacher’s kth block.

F?(X): activation feature maps of the student’s jth block.

As shown above, the cosine similarity is calculated using lo-
normalized feature maps, which helps the student’s learn-
ing by normalizing activations of the teacher and student
into a similar scope. In addition, our method does zero
padding on the activation features maps of the student mod-
els before normalization, since the width of convolution
layers of compressed student models is different from that
of the teacher. It calculates the cosine similarity between
each pair of teacher/student blocks in the same group, and
the pairs (k*, j*) that produce the largest cosine similarity
value are mapped together for knowledge transfer.

Then the loss function is built by adding all the loss terms
from intermediate layers (Jp), the fully-connected layers
(J1), and the cross entropy loss (.J3) with true labels of the
dataset together, defined as follows:

9
C=MJi+ X Y T+ dads

m=1

JU(FC'FC*) = |y (FC! - FC;)?;

i=1

n

Z( Zi_ ;i)Q’

i=1

Jb(QZ7Q;): b:172a37-'-7g;

Js =Y [Vilog¥y + (1 Yi)log(1 - Y}")]

i=1



Thput g
Teacher (ResNet) Student Teacher (VGG-16) Student

L L ﬁmg G
Block Cosine Block Conv 2 Ll Conv 1

Conv 1 —( Similarity J=—]| Conv 1 |,
Conv 2 [X™M| Conv 2

- Group 1 @ Group onv 3 Slmllam Com, >
—— —t
Block Cosine Block
Conv 1 > similarity | <] | Conv 1 foup Conv 5 osme Group3
conv2 JXN 7 conv 2 [ Conv 6 Slmllam Conv 3
Conv 7
Group 2 @ Group 2
v r°“P Conv 8 oslne Group4
Slmllanty cOm, 4

" —t
Block Cosine Block Conv 9
Conv 1| |7 Similarity J= Conv 1 |yp COHV 10
Group 3) [Group 5 Conv 1 os,ne Group 5
——FJ
Conv 12 | Slmllanty Conv 5
/_*— Conv 13

N

Conv 2 v Conv 2

Group 3 @
v

—
Block Cosine Block
Conv 1 xp | Similarity |<"|| conv 1 [x2]
Conv 2 v Conv 2
ooy <@ Group 4, Fc2

v
(. S SO G | -y WO O )
(a) Techer-Student ResNet (b) Techer-Student VGG-16

Figure 2. Schematics of the proposed knowledge transfer method
for ResNet models (on the left) and VGG-16 models (on the
right).

where,
A1, A2, A3 hyper-parameters to balance the weights of
different loss terms
c: the number of classes of the datasets
g: the number of groups of the teacher/student
n: the number of feature maps of the teacher/student
FC': output of teacher’s last fully-connected layer
FC?: output of student’s last fully-connected layer
t : ly-normalized output of teacher’s kth block

Qj: l2-normalized output of student’s jth block

Vs predicted softmax output of the student
Y': true labels of the datasets

Note that, as the input changes batch by batch, the mapped
block pairs also change according to the cosine similar-
ity, in order to ensure knowledge transfer is always done
with the best teacher-student pairs. During backpropaga-
tion, our method only updates the weights of the last con-
volutional layer in each group of the student model while
minimizing the loss function. This form of updating is rea-
sonable since: 1) freezing some of the layers correspond-
ing to the original model can help limit its adaptability to
new data(Jung et al., 2016; Castro et al., 2018); 2) higher
layer features are closer to the useful features for perform-
ing a main task (Yim et al., 2017); and 3) updating less
layers allows the training to complete sooner on resource-
constrained devices.

4.2. Knowledge Transfer for Classifying Unseen
Categories on the Edge

As the in-cloud model improves over time from the data fed
by the edge, there are unseen categories for the on-device

models since each edge has seen only a subset of that data s

that the cloud is trained with. Given the data belonging
to the unseen categories, the on-device model cannot clas-
sify it but the in-cloud model can. One way to solve this
problem is to compress the in-cloud model and download
it again to the device. Alternatively, we propose to also use
the aforementioned knowledge transfer method to enable
the existing model (the student) on the device to learn the
unseen categories, with the help from the in-cloud model
(the teacher), but without relying on data labels which may
not be available to this device.

First, mapped blocks are selected in the same way as the
knowledge transfer for classifying unseen categories dis-
cussed in the previous section. Next, the loss function is
built by using only the mapped block pairs of all the groups
(Jp) and the last fully-connected layer of the teacher and
student models (J;) from Eq. ??.

5. Evaluation

We implemented our solution on TensorFlow version rl.3,
and elvaluated the cloud model on a Nvidia Tesla K40 GPU,
hosted on a server equipped with dual Intel Xeon E5-2630
processors and 64GB of main memory. We evaluate our
edge model on a commercialized device, Google Pixel 2,
which has an eight-core, Qualcomm Kryo 280 CPU and
4GB of main memory. In our experiments of ResNet mod-
els, we used SGD with Nesterov momentum for optimiza-
tion. Dampening was set to 0, momentum to 0.9, initial
learning rate to 0.1, and mini-batch size to 128. On CIFAR-
10, weight decay was set to to 0.0005, and learning rate
decayed each epoch with the cosine annealing schedule,
training for total 200 epochs; On ImageNet, weight decay
was set to to 0.0001, and learning rate dropped by 0.1 at
30, 60, and 90 epochs, training for total 100 epochs. In
the experiments of VGG-16 models, we used Adam for
optimization. Initial learning rate was set to 0.01 for the
original on-server model and 0.001 for compressed mod-
els. They decayed exponentially each epoch with a factor
of 0.98. Validation and test accuracy of all the models were
calculated at each epoch. Final accuracy of the model was
reported as the test accuracy attained at the epoch with the
highest validation accuracy.

We conducted experiments on three important datasets:

CIFAR-10 consists of 60,000 (32X32) RGB natural im-
ages, belonging to 10 classes with 6000 images per
class (Krizhevsky et al., 2009). Each image is 32X32 pix-
els in 3 color channels.

Caltech 101 consists of 9145 (224X224) RGB images
from 101 classes. Each class has 40 to 800 images. We
divide the dataset into three parts: the training set consists
of 5853 images (64% of the total dataset), the testing set
consists of 1829 images (20%), and the validation set con-



Table 1. Model compression results of WRN-28-10, VGG-16, and
ResNet-34 on CIFAR-10, Caltech 101, and ImageNet, respec-
tively. P denotes pruning threshold.

Data Model P Accuracy Param- Comp.
Set Name eters (M) Ratio
WRN-28-10 97.28%  36.22

ResNet 1 1.0 9437%  2.00 18x
CIFA- ResNet 2 0.9 93.68% 1.42 25%
R10 ResNet 3 0.8 92.62% 0.60 60x

ResNet 4 0.7 90.09%  0.23 160x

ResNet-34 73.23% 21.6

ResNet 5 1.0 69.76%  9.79 2x
Image- ResNet 6 0.9 68.14% 7.22 3x
Net ResNet 7 0.8 66.07% 5.09 4%

ResNet 8 0.7 63.16% 3.34 6x

VGG-16 7710% 134

VGG-16 1 1.0 6285% 5.55 24x
Calt- VGG-16 2 0.9 60.55% 3.78 36X
ech 101 VGG-163 0.8 59.51% 3.11 43x

VGG-16 4 0.7 56.77%  0.97 139 %

sists of 1463 images (16%) (Fei-Fei et al., 2007).

ImageNet consists of over 14 million RGB images orga-
nized into 21,841 classes. Each class has over 500 images.
We use the subset of images with SIFT features, which be-
long to 1000 classes (Deng et al., 2009).

We preprocess all data by subtracting the mean and divid-
ing by the standard deviation of each image vector. For
experiments on CIFAR-10 and Caltech 101, all training im-
ages are padded 4 pixels on each side, and a 32X32 crop
is randomly sampled from the padded image. Then the im-
ages are flipped left-right randomly with a probability of
0.5 and masked out randomly with a cutout size of 16X16
pixels (Lee et al., 2015). For experiments on ImageNet, all
training images are first cropped randomly with a size of
224X224, and then horizontally flipped randomly with a
given probability of 0.5.

5.1. Results for Model Compression

We first experiment on CIFAR-10 dataset with ResNet
(WRN-28-10) as the on-server model. By changing the
pruning threshold P, our method can flexibly generate four
compressed models, ResNet 1-4, offering different trade-
offs between size and accuracy, shown in Table 1. The
results show that all the compressed models can achieve
good compression ratios without losing much accuracy. In
particular, compressed ResNet 4, the size of which is only
0.64% of the origin model WRN-28-10, still remains a Top-
1 accuracy of over 90%. ResNet 7 achieves a compression
ratio of 4X at the cost of 7.16% loss in accuracy. The com-
pressed model VGG-16 4 achieves a compression ratio of
up to 139X at the cost of less than only 10% loss in accu-
racy.

Table 2 shows the comparison of the proposed model com- 6

Table 2. Comparison of the proposed model compression method
on CIFAR-10.

Model Name Accuracy Parameters Comp.
M) Ratio

WRN-28-10 97.28% 36.22

ResNet 1 94.37%  2.00 18x

ResNet 2 93.68% 1.42 25x

ResNet-110 93.53% 1.72

ResNet-110-prune  93.55%  1.68 Ix

WRN-28-20 95.74% 145

PM Quantization 81.09% 7.44 19x

Quantized Distill. ~ 94.73%  9.66 15x

pression method and the related works on CIFAR-10. The
related filter pruning work (Lietal.,, 2016) ResNet-110-
prune was evaluated on ResNet-110, and the related PM
(“post-mortem”) quantilization and quantized distillation
works were evaluated on WRN-28-20. Our method allows
the compressed ResNet 2 (93.68%) to achieve a compara-
ble accuracy as that of ResNet-110-pruned (Li et al., 2016)
(93.55%), quantized distillation (94.73%), and a higher ac-
curacy than PM quantization (Polino et al., 2018) (81.09%)
while requiring much less parameters (1.42M) than all
these four compressed models (5.4M, 1.68M, 7.44M, and
9.66M). Meanwhile, the compression ratio of compressed
ResNet 2 (25X) also outperforms that of all other com-
pressed models (3X, 1X, 19X, and 15X) significantly,
achieving a much higher compression ratio and producing
a much smaller model for edge deployment.

5.2. Knowledge Transfer

We use on-server models (WRN-28-10 and VGG-16) as the
teacher model, and their corresponding compressed mod-
els as the student model. We compare the performance of
the student model that is trained with the help from the
teacher, called the dependent student, with two baselines:
the teacher model and the independent student model. The
teacher model is used as a baseline to see how much the
student represents the state-of-the-art accuracy. The inde-
pendent student model is trained directly on targets with-
out applying any form of knowledge transfer, and is used
as a baseline to see how much improvement the knowledge
transfer method brings to the dependent student.

5.2.1. INCREMENTAL LEARNING

We first evaluate on the incremental learning tasks us-
ing both CIFAR-10 and ImageNet dataset with ResNet
(WRN-28-10 and ResNet-34) as the teacher models, re-
spectively. Our goal is to allow the student model, which is
compressed from the teacher model, to learn one or mul-
tiple new, locally available categories without forgetting
those old categories that the teacher is trained with. Re-



Table 3. Convergence time of compressed ResNet models on
CIFAR-10, and VGG-16 models on Caltech 101.

Table 4. Top-1 accuracy on CIFAR-10 for single-task incremental
learning using 9+1 categories of data.

Model Indepen. Depend. Depend.  Speedup Speedup
Name (Our) (FitNet) (Our) (FitNet)
ResNet 1 ~ 70.20K 12.09K 69.42K 5.81x 1.01x
ResNet2  69.42K 12.87K 69.03K  5.39x 1.01x
ResNet3  69.42K 15.99K 69.03K 4.34x 1.01x
ResNet4  70.98K 8.97K 70.20K 791x 1.01x
VGG-16 8.66K 1.87K 6.08K 4.63x 1.42x
1

VGG-16 398K 3.28K 3.28K 1.21x  1.21x
2

VGG-16 328K 1.87K 3.28K 1.75x  1.00x
3

VGG-16 328K 1.87K 4.45K 1.75x  0.74x
4

training the whole model on edge devices is infeasible due
to their limited computing resources; fine-tuning the on-
device model can significantly reduce the training time, but
its performance on old categories degrade severely. Our
proposed method allows the teacher model to provide dis-
tilled knowledge to guide the student model and prevent it
from forgetting about the old categories. In the experiment,
we first pre-trained with 9 categories of data and try to learn
a new category.

Table 4 lists the accuracy for incremental learning using
CIFAR-10. As expected, the independent student (w/o KT)
cannot classify any of the old categories any more even
though it performs well on the new category. In contract,
our dependent students (w/ KT) not only perform well
on the new category (>90% accuracy) but also retains a
good level of accuracy for classifying the old categories.
The distilled knowledge from the teacher model signifi-
cantly alleviates the catastrophic forgetting, when the stu-
dent model learns the new categories incrementally. Our
proposed method also works well for highly compressed
models. ResNet 4 (w/ KT), with a compression ratio of
160X, achieves an accuracy only 2% lower than that of the
ResNet 1 model.

We then compare our method with the related
work (Lietal., 2019) by applying its knowledge transfer
method to two models, ResNet d28w10, the original,
uncompressed model used by RILOD, which has a com-
pression ratio of 18X. On d28w10, RILOD’s accuracy is
7.66% lower than our ResNet 2 (w/ KT) even though it
has 9.58M more parameters, indicating that our proposed
method can better solve the incremental learning problem.
On ResNet 1, our accuracy improvement is even more
significant (20.84%). The results demonstrate that our
proposed knowledge transfer method can better support

incremental training on edge devices, especially for small -

Model 90ld 1lnew AvgAcc
ResNet 1 w/o KT 0 100 10
ResNet I (w/ KT)  62.83 935 78.16
ResNet 2 (w/ KT)  64.12 923 78.21
ResNet3 (w/ KT) 61.5 93.1 77.3
ResNet4 (w/ KT)  57.02 95 76.01
ResNet 1 (RILOD) 38.34 76.3 57.32
d28wl10 (RILOD) 83.41 57.6 70.5

Table 5. Top-1 accuracy on ImageNet for single-task incremental
learning using 9+1 categories of data.

Model 90ld 1new Avg Accuracy
ResNet 5 w/o KT 11.1 100 19.9

ResNet 5 (w/ KT) 5733 72 64

ResNet 5 (RILOD)  51.78 62 56.89
ResNet-18 (RILOD) 33 98 65.5

ResNet 6 (w/ KT) 62 68 65

ResNet 7 (w/ KT) 577 78 67.89

ResNet 8 (w/ KT) 564 76 66.2

models suited for edge deployment.

Table 5 lists the results for incremental learning on Ima-
geNet. We sampled 10 random categories from the Ima-
geNet dataset as our experiment dataset. We can observe
similar results as the aforementioned CIFAR-10 results.
The independent student (w/o KT) achieves only 11.1% ac-
curacy on the 9 old categories after learning one new cate-
gory. Our dependent student (ResNet-5 (w/ KT)) achieves
57.33% accuracy on the 9 old categories and 72% on the
new category. Even the highly compressed model, ResNet
8, is only 2% less accurate than the ResNet 5 model.

In addition to improving accuracy, by using compressed
models for incremental training on edge devices, our ap-
proach also runs faster than the original RILDO approach
which uses a large, uncompressed model (ResNet-18) on
devices. Table 6 compares the training time and inference
time of our compressed ResNet models between these two
approaches. Training time is measured by the total runtime
required to converge, and inference time is measured by the
time needed for classifying one batch of images.

All our compressed models can converge within three to
six minutes on the edge whereas RILOD needs 20 minutes.
In addition, the inference time of our models (from 2.5s to
7.2s) is also shorter than that of RILOD (8.7s). The above
results demonstrate the importance of our model compres-
sion and knowledge transfer techniques in improving both
accuracy and runtime performance of incremental learning
on edge devices.



Table 6. Runtime on ImageNet for single-task incremental learn-
ing using 9+1 categories of data on the edge.

Model Name Trainable Training Inference
Para. Time (s)  Time (s)
ResNet-18 (RILOD) 11.69 1200 8.7
ResNet 5 3.51 360 7.2
ResNet 6 3.07 315 5.3
ResNet 7 2.46 253 3.7
ResNet 8 1.76 181 2.5

Table 7. Top-1 accuracy of knowledge transfer methods for classi-
fying unseen categories on CIFAR-10.

Model Name  Independent Dependent Dependent
(Baseline) (Our KT) (FitNet)
ResNet 1 0.00% 78.92 % 0.00%
ResNet 2 0.00% 75.72% 0.00%
ResNet 3 0.00% 70.40% 0.00%
ResNet 4 0.00% 61.96% 0.00%

5.2.2. CLASSIFYING UNSEEN CATEGORIES

We then study the performance of the compressed student
models when presented with data from classes that they
are never trained with. In this experiment, we train our
compressed ResNet models only with 10,000 images from
two categories of the original training dataset (CIFAR-10),
which has ten categories and 5,000 images each. Then we
test them with 8,000 images from the other eight categories
that they are never trained with.

Table 7 shows the accuracy of the independent student and
dependent student models of classifying the unseen eight
categories of images. For all of the compressed ResNet
models, the accuracy of the independent students is all zero,
showing that they cannot classify the unseen categories.
Since they never saw those categories during training, no
features were learned. However, our proposed knowledge
transfer method allows the student models to achieve an ac-
curacy of at least 60%. ResNet 1 and ResNet 2 achieve an
accuracy of 78.92% and 75.72% respectively, even though
they are trained with only such a small dataset including
only two categories of images. FitNet cannot help in this
case and its accuracy is zero on all of its dependent stu-
dents. The reason is likely that FitNet learns the features
generated from the teacher, instead of the process of solv-
ing a problem, so its knowledge transfer works only when
the target tasks of the teacher and student models are simi-
lar.

6. Related Works

Model compression techniques can be broadly classified
into three categories, weight sharing, quantization, and
pruning techniques. Weight sharing reduces the occu-

pied memory by using the same set of weights to rep-
resent more than one transformations (Han et al., 2015;
Chen et al., 2015). Quantization reduces the size of the
model by shrinking the number of bits needed for storing
the weights (Han et al., 2015; Kadetotad et al., 2016). Prun-
ing removes redundant weights or neurons while minimiz-
ing accuracy loss. Han proposed to remove weights below
a particular threshold (Han et al., 2015). Li proposed to
prune filters with the lowest absolute weight sum (Li et al.,
2016). But the above related works focused only on cre-
ating compressed models for efficient inference, and did
not consider how the compression methods affect the train-
ing process, and how to address the accuracy loss caused
by compression. More recently, Polino et al. proposed
Quantized Distillation, which leverages quantization and
distillation jointly during the training process of the smaller
model (Polino et al., 2018).

Existing knowledge transfer techniques can be broadly
classified into three categories, including transferring hard
logits, transferring soft logits, and transferring interme-
diate representations. Ba et al. proposed hard-logits-
based knowledge transfer technique (Ba & Caruana, 2014),
which minimizes squared difference (RMSE) between the
logits of the teacher and the shallow student. Hinton et
al. introduced transferring soft logits (Hinton et al., 2015)
where the student minimizes the sum of two objective func-
tions: (1) cross entropy loss between the soft logits, and
(2) cross entropy loss between the softmax output and cor-
rect labels of the dataset. Romero et al. proposed Fit-
Net, which extended transferring soft logits by using not
only the soft outputs but also the intermediate representa-
tions learned by the teacher (Venkatesan & Li, 2016). More
recently, FSP matrix transfer (Yim et al., 2017), attention
transfer (Zagoruyko & Komodakis, 2016), and factor trans-
fer (Kim et al., 2018) were proposed, which are also based
on transferring the intermediate representations.

However, these knowledge transfer methods have the fol-
lowing limitations: 1) they still require large student mod-
els that are not fit for resource-constrained devices. For ex-
ample, the student model used in RILOD (Li et al., 2019)
has the same architecture with the teacher model; FitNet
is thinner but not shallower, and FSP is shallower but
not thinner. In comparison, we integrate proposed filter
based model compression method with knowledge trans-
fer method, enabling the student model both shallower and
thinner than the teacher, which is important for deployment
on resource-constrained devices; 2) they enable their stu-
dent models classifying only the categories that the models
are trained with, whereas our method also allows the stu-
dents to classify unseen categories with a good accuracy; 3)
they did not update the student incrementally in real time,
whereas our method enables the students learning new cat-
egories within 181 seconds on the edge while remaining a



good accuracy on the old categories.

7. Conclusions

This paper provides a novel solution to deploying and train-
ing state-of-the-art models on resourced-constrained edge
devices. Our results show that, by pruning similar layers
in a model and the filters that produce weak activation pat-
terns in each layer, complex DNNs can be reduced to both
shallower and thinner networks, suitable for deployment on
devices but without much loss of accuracy. In addition to re-
ducing the size, our solution allows our compressed models
to converge the training within three to six minutes on the
edge. Our results also show that such compressed models
can also learn incrementally on new data without forgetting
the old categories. In addition, our results show that trans-
ferring the problem solving process is much more effective
than letting the student simply mimic teacher’s intermedi-
ate results. It allows the on-device model to be trained with
both good accuracy and speed, without relying on the in-
put’s true labels, and to recognize unseen categories.

References

Ba, J. and Caruana, R. Do deep nets really need to be deep?
In Advances in neural information processing systems,

pp. 2654-2662, 2014.

Castro, F. M., Marin-Jiménez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 233248, 2018.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen,
Y. Compressing neural networks with the hashing trick.
In International Conference on Machine Learning, pp.
2285-2294,2015.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pp. 248-255. Ieee, 2009.

Fei-Fei, L., Fergus, R., and Perona, P. Learning genera-
tive visual models from few training examples: An in-
cremental bayesian approach tested on 101 object cate-
gories. Computer vision and Image understanding, 106
(1):59-70, 2007.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149,2015.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531,2015.

Jung, H., Ju, J., Jung, M., and Kim, J. Less-forgetting
learning in deep neural networks.  arXiv preprint
arXiv:1607.00122,2016.

Kadetotad, D., Arunachalam, S., Chakrabarti, C., and Seo,
J.-s. Efficient memory compression in deep neural net-
works using coarse-grain sparsification for speech appli-
cations. In Proceedings of the 35th International Confer-
ence on Computer-Aided Design, pp. 78. ACM, 2016.

Kim, J., Park, S., and Kwak, N. Paraphrasing complex
network: Network compression via factor transfer. In
Advances in Neural Information Processing Systems, pp.

2760-2769, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
20009.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing

systems, pp. 598-605, 1990.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.
Deeply-supervised nets. In Artificial intelligence and
statistics, pp. 562-570, 2015.

Li, D., Tasci, S., Ghosh, S., Zhu, J., Zhang, J., and Heck, L.
Rilod: near real-time incremental learning for object de-
tection at the edge. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, pp. 113-126,2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. ICLR, 2016.

Polino, A., Pascanu, R., and Alistarh, D. Model com-
pression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014.

Sharma, R., Biookaghazadeh, S., Li, B., and Zhao, M. Are
existing knowledge transfer techniques effective for deep
learning with edge devices? In 2018 IEEE Interna-
tional Conference on Edge Computing (EDGE), pp. 42—
49. IEEE, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556,2014.

Srinivas, S. and Babu, R. V. Data-free parameter

pruning for deep neural networks. arXiv preprint
arXiv:1507.06149,2015.

Venkatesan, R. and Li, B. Diving deeper into mentee net-
works. arXiv preprint arXiv:1604.08220,2016.



Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowl-
edge distillation: Fast optimization, network minimiza-
tion and transfer learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 4133-4141,2017.

Zagoruyko, S. and Komodakis, N. Paying more attention to
attention: Improving the performance of convolutional
neural networks via attention transfer. arXiv preprint
arXiv:1612.03928,2016.

10



