
ar
X

iv
:2

20
1.

10
94

7v
1

 [c
s.L

G
]

22
 Ja

n
20

22

Enabling Deep Learning on Edge Devices through Filter Pruning and

Knowledge Transfer

Kaiqi Zhao, Yitao Chen, Ming Zhao

Arizona State University

Abstract

Deep learning models have introduced various in-

telligent applications to edge devices, such as im-

age classification, speech recognition, and aug-

mented reality. There is an increasing need

of training such models on the devices in or-

der to deliver personalized, responsive, and pri-

vate learning. To address this need, this pa-

per presents a new solution for deploying and

training state-of-the-art models on the resource-

constrained devices. First, the paper proposes

a novel filter-pruning-based model compression

method to create lightweight trainable models

from large models trained in the cloud, without

much loss of accuracy. Second, it proposes a

novel knowledge transfer method to enable the

on-device model to update incrementally in real

time or near real time using incremental learn-

ing on new data and enable the on-device model

to learn the unseen categories with the help of

the in-cloud model in an unsupervised fashion.

The results show that 1) our model compression

method can remove up to 99.36% parameters of

WRN-28-10, while preserving a Top-1 accuracy

of over 90% on CIFAR-10; 2) our knowledge

transfer method enables the compressed models

to achieve more than 90% accuracy on CIFAR-

10 and retain good accuracy on old categories;

3) it allows the compressed models to converge

within real time (three to six minutes) on the

edge for incremental learning tasks; 4) it enables

the model to classify unseen categories of data

(78.92% Top-1 accuracy) that it is never trained

with.

1. Introduction

Deep neural networks (DNNs) have been applied to many

important applications on edge devices, such as image

classification, speech recognition, and augmented reality.

These deep learning models typically have millions of pa-

rameters and need to be trained for hours or even days

on powerful cloud servers to achieve a good performance.

However, a serious drawback of this cloud-only approach

is that the on-device tasks cannot perform well when the

cloud is overloaded or the network is unreliable. Moreover,

there are also significant benefits from training deep lean-

ing models on edge devices: 1) Customization: user- or

situation-specific requirements can be met more effectively

by training models on the devices that the users or physi-

cal environments directly interact with; 2) Responsiveness:

custom models deployed on devices for specific users or en-

vironments can better adapt to their changing behaviors us-

ing new data captured by the devices; and 3) Privacy: sensi-

tive information can be better protected if the sensitive data

and models are stored and used only on private devices, not

in the public resources shared by many.

Deploying and training complex deep learning models on

edge devices are challenging since they require millions

of parameters and large amounts of operations whereas

the devices have only limited memory and computation

resources. To deploy DNNs on resource-constrained de-

vices, there are two general approaches. The first approach

aims to compress already-trained models, using techniques

such as weights sharing (Chen et al., 2015), quantiza-

tion (Han et al., 2015; Kadetotad et al., 2016), and prun-

ing (Han et al., 2015; LeCun et al., 1990; Srinivas & Babu,

2015). However, a compressed model generated by these

approaches is useful only for inference; it cannot be re-

trained to capture user- or device-specific requirements or

new data available at runtime.

The second approach to learning on devices is based

on knowledge transfer which uses the knowledge dis-

tilled from a cloud-based deep model (termed teacher)

to improve the accuracy of a on-device small model

(termed student) (Ba & Caruana, 2014; Hinton et al., 2015;

Romero et al., 2014; Venkatesan & Li, 2016). How-

ever, these works 1) achieve limited accuracy improve-

ment (Yim et al., 2017; Zagoruyko & Komodakis, 2016);

2) do not consider the speed of training the model to a

satisfactory accuracy; and 3) assume that the all data are

available at the training time and the tasks for the student

and teacher remain exactly the same, which is often not a

http://arxiv.org/abs/2201.10947v1

realistic assumption.

The goal of our work is to provide a new solution that al-

lows deep learning models to be trained on devices with

a small number of parameters, the state-of-the-art accuracy,

and fast runtime. Further, we aim to enable on-device learn-

ing under realistic settings where the models are trained in-

crementally with only limited local input but are still able

to recognize both old and new categories of data.

In order to achieve the above goal, we propose a new com-

pression method for deploying models that are suitable

and trainable for resource-constrained devices, and a new

knowledge transfer method for improving the training ac-

curacy and the speed of these on-device models, and pro-

viding the capability for enabling the on-device models to

learn incrementally without forgetting the knowledge on

the old categories using the local data and achieve good ac-

curacy for classifying both old and new categories. Specif-

ically, our compression method can create a model that is

both shallow and thin by removing similar convolution lay-

ers and pruning filters that produce weak activation patterns

in each layer, respectively, from a large model trained in

the cloud. The resulting compressed model still shares the

same architecture as the original model, and is suited for

knowledge transfer between the two models. Our proposed

knowledge transfer method selects the best teacher/student

layer pairs for transferring knowledge from teacher’s inter-

mediate representations and enables the student to learn the

problem solving process. Our proposed method also en-

ables the student to use the distilled knowledge from the

teacher in solving the catastrophic forgetting problem.

We evaluate our solution on VGG-16 and ResNet architec-

tures using CIFAR-10, Caltech 101, and ImageNet datasets.

First, our model compression method 1) reduces 99.36%

parameters of WRN-28-10, while preserving a Top-1 accu-

racy of over 90% on CIFAR-10; and 2) achieves a compres-

sion ratio of up to 139X on VGG-16, at a cost of less than

10% accuracy loss on Caltech 101. Second, our knowledge

transfer method 1) enables the compressed models not only

perform well on new category (>90% accuracy on CIFAR-

10) but also retains a good level of accuracy for classify-

ing the old categories; and 2) enables the compressed mod-

els to converge within real time (three to six minutes) on

the edge for incremental learning tasks; and 3) allows the

compressed model to reach a Top-1 accuracy of 78.92% on

CIFAR-10 for classifying unseen categories that it is never

trained with. Compared to the related works (Romero et al.,

2014; Zagoruyko & Komodakis, 2016), our method re-

duces complex networks to both shallower and thinner net-

works without much loss of accuracy, enables the models

to learn from new categories incrementally within real time

without forgetting the old categories, and allows the models

to classify unseen categories of data with both good accu-

racy and speed.

In summary, our solution enables DNNs that are not only

suitable for deployment on resource-constrained devices

but also trainable for meeting new requirements. In the rest

of the paper, we first explain the details of our proposed

solution (Section 2), then present an extensive evaluation

(Section 3), discuss the related works (Section 4), and fi-

nally conclude the paper (Section 5).

2. Background and Motivations

We envision an edge computing scenario where edge de-

vices collect various data (voice, images, videos, etc.) from

their sensors and feed it to the cloud. In the cloud, we can

utilize the abundant resources in the cloud to train a state-

of-the-art model with all the available data. On the edge,

we can deploy a small model on each device and train it

using the local data for customized, responsive, and private

learning.

In order to realize the above scenario, the cloud/edge dis-

tributed learning system needs to meet the following re-

quirements. First, the on-device model should be small

enough to fit the limited resources on the edge devices,

which are usually resources constrained due to their small

form factor. Second, the on-device models should be able

to classify new categories without forgetting old categories

since re-training the whole model on edge devices is in-

feasible due to their limited computing resources. Third,

the on-device model should be able to classify unseen cat-

egories with good accuracy, since each edge device may

only see a subset of the data that the cloud model is trained

with.

To meet the above requirements, we need to use compres-

sion techniques to produce models that are small enough

and fast enough for the edge devices with their limited re-

sources. We also need knowledge transfer techniques that

can utilize the knowledge of the in-cloud model to help

the on-device models retain the existing knowledge while

learning on new data and be able to classify categories that

they are not trained with.

But on one hand, existing model compression methods fo-

cused only on creating compressed models for efficient in-

ference without considering how to compression methods

affect the training process (Han et al., 2015; Chen et al.,

2015; Kadetotad et al., 2016; Li et al., 2016; Polino et al.,

2018), and how to reduce the accuracy loss caused by com-

pression. On the other hand, existing knowledge transfer

methods have the following limitations: 1) they still re-

quire large student models that are not fit for resources

constrained devices (Romero et al., 2014; Li et al., 2019;

Yim et al., 2017); 2) they only enable to student model to

classify the categories that the models are trained with.
2

To address these limitations and meet the aforementioned

requirements, we propose novel model compression and

knowledge transfer techniques for deploying models that

are suitable and trainable for resource-constrained devices

and improving the training accuracy and speed of these on-

device models, as detailed in the rest of the paper.

3. Filter Pruning Based Model Compression

Without loss of generality, we consider image classifi-

cation tasks and use ResNet, as an example to discuss

our proposed on-device learning solution. Image clas-

sification is important for many edge applications, and

is also the target task of the related model compres-

sion and knowledge distillation works (Hinton et al., 2015;

Han et al., 2015; Chen et al., 2015; Polino et al., 2018;

Srinivas & Babu, 2015). ResNet is a modern architecture

with streamlined convolutional layers. Specifically, we con-

sider WRN-28-10 and ResNet-34, illustrated as Teacher

in Figure 2. They have a Top-1 accuracy of 97.28% on

CIFAR-10 and 73.9% on ImageNet, respectively, which

are among the state-of-the-art results. The ResNet mod-

els consist of several groups of blocks, and each block has

two convolutional layers. Further, we also consider VGG-

16 (Simonyan & Zisserman, 2014), which is another com-

monly used neural network and has a different architecture,

including 13 convolutional layers and three fully-connected

layers.

Our goal for model compression is two-fold: 1) to reduce

the number of parameters and optimize the architecture of

the model so that it is both thin and shallow, and fit for the

limited resources on a device; 2) to maintain the architec-

ture of the original model so that it can facilitate the learn-

ing from the on-server model during knowledge transfer.

The proposed model compression method works as follows.

First, to reduce depth, it creates a shallower model that

has the same number of groups as the on-server model,

but each group only keeps the last block (illustrated as

Student in Figure 2). This way of pruning layers of a

model also resonates with the principle that higher layer

features are closer to the useful features for performing a

main task (Yim et al., 2017). Next, our method reduces the

width of the shallower model by removing filters that pro-

duce weak activation patterns. It uses one batch of images

to decide the number of filters that are safe to prune in each

convolution layer.

The procedure of pruning filters from the ith convolution

layer is as follows. For a given input image m, let Xm
i−1

denote the input features of the ith convolution layer. Con-

volution operations (denoted as mapping function F) trans-

form the input Xm
i−1

into output feature maps Zm
i by ap-

plying ni three-dimensional filters fm
i,j . Then, activation

operations (denoted as mapping function G) transform Zm
i

into the activation feature maps Am
i :

Zm
i = F (Xm

i−1
), Am

i = G(Zm
i) (1)

For each filter’s activation feature map ami,j ∈ Rhi×wi

(1 ≤ j ≤ ni), our method computes the percentage of

zero elements based on the l0-norm of ami,j :

perc(ami,j) = 1−
‖ami,j‖0
hi × wi

. (2)

If the percentage is equal to or greater than Filter Pruning

Threshold P , this filter is safe to be pruned. The thresh-

old determines how aggressive the pruning is, and in the

evaluation, we set it between 0.7 and 1.0. Our method re-

peats the above procedure for M randomly selected images,

and calculates the average number (avgci) of filters that are

safe to prune. We set M equal to batch size since we find

that the value of avgci is steady even if the input features

are different. The reduced width wi of the ith convolution

layer becomes: wi = ni − avgci. The same method is ap-

plied to all the remaining layers of the shallow model. The

model is then retrained with the reduced width and depth

to generate the compressed on-device model.

We can visualize the activations of the on-server model

(WRN-28-10) on CIFAR-10 and understand why our fil-

ter pruning method is effective. Figure 1 shows the acti-

vation feature maps of each filter of the first convolutional

layer (called Conv1) using one image as the input. The

width of Conv1 is 16. The first image on the left is the

original image, and the second image is the input features

after data augmentation. We can see that some filters ex-

tract lots of representations with high activation patterns,

like the 6th and 12th filters, whereas the activation feature

maps of some filters are close to zero, such as the 2nd, 14th,

and 16th filters. Filters that generate weak activations are

safe to remove without affecting the final performance of

the model.

In this way, we can generate a compressed model that is

both shallow and thin, small enough for learning on edge

devices. The small model still shares the same architecture

of the original model, because it retains the higher layers

in each group of convolutional layers and keeps important

filters in each remaining layers. Compared to the related fil-

ter pruning work that prunes filters with the lowest absolute

weight sum (Li et al., 2016), our approach prunes insignif-

icant filters more accurately. Filters that have small abso-

lute weight sum can also produce useful non-zero activa-

tion patterns that are important for learning features during

backpropagation. As shown in Table 1 of Section 5.1, our

method enables the compressed model achieving a higher

Top-1 test accuracy than their method (93.68% vs 93.55%),

with a smaller number of parameters (1.42M vs 1.68M). So
3

original image input image filer_1 filer_2 filer_3 filer_4

filer_5 filer_6 filer_7 filer_8

filer_9 filer_10 filer_11 filer_12

filer_13 filer_14 filer_15 filer_16

Figure 1. Activation feature maps of each filter of the first convo-

lutional layer (Conv1) of the on-server model (WRN-28-10) on

CIFAR-10. In the left, the first image shows the original image

and the second image shows the input features after data augmen-

tation; the right part shows activation features of the 16 filters.

our approach directly finds and prunes the filters that gen-

erate close-to-zero activations, with minimal impact on the

performance.

4. Selective Layer-Wise Knowledge Transfer

4.1. Knowledge Transfer for Incremental Learning on

the Edge

As new local input becomes available to a device, we want

to update its local model to learn the new data. One solu-

tion is to wait for the in-cloud model to update using all

the data from the edge and then compress and download

the updated model, which however will take a significant

amount of time. In order to update the on-device model

in real time or near real time, we propose to update it in-

crementally using its new data, and use knowledge transfer

from the in-cloud model (the teacher) to preventing the on-

device model (the student) from forgetting the old data that

it is already trained with.

Different from the existing works (Kim et al., 2018;

Romero et al., 2014; Zagoruyko & Komodakis, 2016),

with our knowledge transfer method, the student does not

need to learn the specific output from the teacher, which

depends on the specific input; it instead learns the problem

solving process, which represents the intermediate layer

outputs. Learning from the teacher’s intermediate represen-

tations is better than learning from only the last layer’s out-

put (Sharma et al., 2018), which prevents the model from

losing its classification ability when facing specific ques-

tions.

Figure 2 illustrates the architecture of our knowledge trans-

fer method for ResNet and VGG-16. The student is trained

by knowledge transfer between selected teacher-student

layer pairs as the input enters batch by batch at each iter-

ation. First, given one batch of data, our method finds out

which convolutional blocks in the teacher should be used

to transfer knowledge to the student’s convolutional blocks,

using a new cosine similarity based metric. Then, multi-

ple loss functions are built using the activations from the

mapped block pairs.

In order to find best teacher-student layer pairs for knowl-

edge transfer, first, we define a cosine similarity metric

for measuring the similarity between the activation feature

maps of the teacher’s kth block and the student’s jth block:

CosineSimk,j(X) =
Qt

k ·Q
s
j

‖Qt
k‖

∥∥Qs
j

∥∥ , (3)

Qt
k =

F t
k(X)

‖F t
k(X)‖

, Qs
j =

F s
j (X)∥∥F s
j (X)

∥∥ , (4)

where,

X : one batch of data.

F t
k(X): activation feature maps of the teacher’s kth block.

F s
j (X): activation feature maps of the student’s jth block.

As shown above, the cosine similarity is calculated using l2-

normalized feature maps, which helps the student’s learn-

ing by normalizing activations of the teacher and student

into a similar scope. In addition, our method does zero

padding on the activation features maps of the student mod-

els before normalization, since the width of convolution

layers of compressed student models is different from that

of the teacher. It calculates the cosine similarity between

each pair of teacher/student blocks in the same group, and

the pairs (k∗, j∗) that produce the largest cosine similarity

value are mapped together for knowledge transfer.

Then the loss function is built by adding all the loss terms

from intermediate layers (Jb), the fully-connected layers

(J1), and the cross entropy loss (J3) with true labels of the

dataset together, defined as follows:

ℓ = λ1J1 + λ2

g∑

m=1

Jb + λ3J3

J1(FCt, FCs) =

√√√√
n∑

i=1

(FCt
i − FCs

i)
2;

Jb(Q
t
k, Q

s
j) =

√√√√
n∑

i=1

(Qt
ki −Qs

ji)
2, b = 1, 2, 3, ..., g;

J3 =

c∑

i=1

[YilogŶ
s
i + (1− Yi)log(1− Ŷ s

i)]

4

Conv 1
Conv 2

Block

Group 4

x p

FC

Conv 1
Conv 2

Block

Group 3

x o

Conv 1
Conv 2

Block

Group 2

x n

Conv 1
Conv 2

Block

Group 1

x m

Cosine
Similarity

RMSE

Cosine
Similarity

RMSE

Cosine
Similarity

RMSE

Cosine
Similarity

RMSE

Conv 1
Conv 2

Block

x 2

Group 2

Conv 1
Conv 2

Block

x 2

Group 1

Conv 1
Conv 2

Block

x 2

Group 4

Conv 1
Conv 2

Block

x 2

Group 3

FCRMSE

Teacher (ResNet) Student
Input

(a) Techer-Student ResNet

FC 1

Conv 1
Conv 2

Group 1 Cosine
Similarity

RMSE

Conv 1

Group 1

FC 1

Teacher (VGG-16) Student
Input

FC 2

FC 3

Conv 3
Conv 4

Group 2

Conv 2

Group 2

Conv 5
Conv 6
Conv 7

Conv 3

Group 3

Conv 4

Group 4

Conv 5

Group 5

Cosine
Similarity

RMSE

Cosine
Similarity

RMSE

Cosine
Similarity

RMSE

Cosine
Similarity

RMSE

RMSE

Group 3

Group 4

Group 5

Conv 8
Conv 9

Conv 10

Conv 11
Conv 12
Conv 13

(b) Techer-Student VGG-16

Figure 2. Schematics of the proposed knowledge transfer method

for ResNet models (on the left) and VGG-16 models (on the

right).

where,

λ1, λ2, λ3: hyper-parameters to balance the weights of

different loss terms

c: the number of classes of the datasets

g: the number of groups of the teacher/student

n: the number of feature maps of the teacher/student

FCt: output of teacher’s last fully-connected layer

FCs: output of student’s last fully-connected layer

Qt
k: l2-normalized output of teacher’s kth block

Qs
j : l2-normalized output of student’s jth block

Ŷ s: predicted softmax output of the student

Y : true labels of the datasets

Note that, as the input changes batch by batch, the mapped

block pairs also change according to the cosine similar-

ity, in order to ensure knowledge transfer is always done

with the best teacher-student pairs. During backpropaga-

tion, our method only updates the weights of the last con-

volutional layer in each group of the student model while

minimizing the loss function. This form of updating is rea-

sonable since: 1) freezing some of the layers correspond-

ing to the original model can help limit its adaptability to

new data(Jung et al., 2016; Castro et al., 2018); 2) higher

layer features are closer to the useful features for perform-

ing a main task (Yim et al., 2017); and 3) updating less

layers allows the training to complete sooner on resource-

constrained devices.

4.2. Knowledge Transfer for Classifying Unseen

Categories on the Edge

As the in-cloud model improves over time from the data fed

by the edge, there are unseen categories for the on-device

models since each edge has seen only a subset of that data

that the cloud is trained with. Given the data belonging

to the unseen categories, the on-device model cannot clas-

sify it but the in-cloud model can. One way to solve this

problem is to compress the in-cloud model and download

it again to the device. Alternatively, we propose to also use

the aforementioned knowledge transfer method to enable

the existing model (the student) on the device to learn the

unseen categories, with the help from the in-cloud model

(the teacher), but without relying on data labels which may

not be available to this device.

First, mapped blocks are selected in the same way as the

knowledge transfer for classifying unseen categories dis-

cussed in the previous section. Next, the loss function is

built by using only the mapped block pairs of all the groups

(Jb) and the last fully-connected layer of the teacher and

student models (J1) from Eq. ??.

5. Evaluation

We implemented our solution on TensorFlow version r1.3,

and elvaluated the cloud model on a Nvidia Tesla K40 GPU,

hosted on a server equipped with dual Intel Xeon E5-2630

processors and 64GB of main memory. We evaluate our

edge model on a commercialized device, Google Pixel 2,

which has an eight-core, Qualcomm Kryo 280 CPU and

4GB of main memory. In our experiments of ResNet mod-

els, we used SGD with Nesterov momentum for optimiza-

tion. Dampening was set to 0, momentum to 0.9, initial

learning rate to 0.1, and mini-batch size to 128. On CIFAR-

10, weight decay was set to to 0.0005, and learning rate

decayed each epoch with the cosine annealing schedule,

training for total 200 epochs; On ImageNet, weight decay

was set to to 0.0001, and learning rate dropped by 0.1 at

30, 60, and 90 epochs, training for total 100 epochs. In

the experiments of VGG-16 models, we used Adam for

optimization. Initial learning rate was set to 0.01 for the

original on-server model and 0.001 for compressed mod-

els. They decayed exponentially each epoch with a factor

of 0.98. Validation and test accuracy of all the models were

calculated at each epoch. Final accuracy of the model was

reported as the test accuracy attained at the epoch with the

highest validation accuracy.

We conducted experiments on three important datasets:

CIFAR-10 consists of 60,000 (32X32) RGB natural im-

ages, belonging to 10 classes with 6000 images per

class (Krizhevsky et al., 2009). Each image is 32X32 pix-

els in 3 color channels.

Caltech 101 consists of 9145 (224X224) RGB images

from 101 classes. Each class has 40 to 800 images. We

divide the dataset into three parts: the training set consists

of 5853 images (64% of the total dataset), the testing set

consists of 1829 images (20%), and the validation set con-
5

Table 1. Model compression results of WRN-28-10, VGG-16, and

ResNet-34 on CIFAR-10, Caltech 101, and ImageNet, respec-

tively. P denotes pruning threshold.

Data Model P Accuracy Param- Comp.
Set Name eters (M) Ratio

WRN-28-10 97.28% 36.22
ResNet 1 1.0 94.37% 2.00 18×

CIFA- ResNet 2 0.9 93.68% 1.42 25×
R10 ResNet 3 0.8 92.62% 0.60 60×

ResNet 4 0.7 90.09% 0.23 160×

ResNet-34 73.23% 21.6
ResNet 5 1.0 69.76% 9.79 2×

Image- ResNet 6 0.9 68.14% 7.22 3×

Net ResNet 7 0.8 66.07% 5.09 4×

ResNet 8 0.7 63.16% 3.34 6×

VGG-16 77.10% 134
VGG-16 1 1.0 62.85% 5.55 24×

Calt- VGG-16 2 0.9 60.55% 3.78 36×
ech 101 VGG-16 3 0.8 59.51% 3.11 43×

VGG-16 4 0.7 56.77% 0.97 139×

sists of 1463 images (16%) (Fei-Fei et al., 2007).

ImageNet consists of over 14 million RGB images orga-

nized into 21,841 classes. Each class has over 500 images.

We use the subset of images with SIFT features, which be-

long to 1000 classes (Deng et al., 2009).

We preprocess all data by subtracting the mean and divid-

ing by the standard deviation of each image vector. For

experiments on CIFAR-10 and Caltech 101, all training im-

ages are padded 4 pixels on each side, and a 32X32 crop

is randomly sampled from the padded image. Then the im-

ages are flipped left-right randomly with a probability of

0.5 and masked out randomly with a cutout size of 16X16

pixels (Lee et al., 2015). For experiments on ImageNet, all

training images are first cropped randomly with a size of

224X224, and then horizontally flipped randomly with a

given probability of 0.5.

5.1. Results for Model Compression

We first experiment on CIFAR-10 dataset with ResNet

(WRN-28-10) as the on-server model. By changing the

pruning threshold P, our method can flexibly generate four

compressed models, ResNet 1-4, offering different trade-

offs between size and accuracy, shown in Table 1. The

results show that all the compressed models can achieve

good compression ratios without losing much accuracy. In

particular, compressed ResNet 4, the size of which is only

0.64% of the origin model WRN-28-10, still remains a Top-

1 accuracy of over 90%. ResNet 7 achieves a compression

ratio of 4X at the cost of 7.16% loss in accuracy. The com-

pressed model VGG-16 4 achieves a compression ratio of

up to 139X at the cost of less than only 10% loss in accu-

racy.

Table 2 shows the comparison of the proposed model com-

Table 2. Comparison of the proposed model compression method

on CIFAR-10.

Model Name Accuracy Parameters

(M)

Comp.

Ratio

WRN-28-10 97.28% 36.22

ResNet 1 94.37% 2.00 18×
ResNet 2 93.68% 1.42 25×
ResNet-110 93.53% 1.72

ResNet-110-prune 93.55% 1.68 1×
WRN-28-20 95.74% 145

PM Quantization 81.09% 7.44 19×
Quantized Distill. 94.73% 9.66 15×

pression method and the related works on CIFAR-10. The

related filter pruning work (Li et al., 2016) ResNet-110-

prune was evaluated on ResNet-110, and the related PM

(“post-mortem”) quantilization and quantized distillation

works were evaluated on WRN-28-20. Our method allows

the compressed ResNet 2 (93.68%) to achieve a compara-

ble accuracy as that of ResNet-110-pruned (Li et al., 2016)

(93.55%), quantized distillation (94.73%), and a higher ac-

curacy than PM quantization (Polino et al., 2018) (81.09%)

while requiring much less parameters (1.42M) than all

these four compressed models (5.4M, 1.68M, 7.44M, and

9.66M). Meanwhile, the compression ratio of compressed

ResNet 2 (25X) also outperforms that of all other com-

pressed models (3X, 1X, 19X, and 15X) significantly,

achieving a much higher compression ratio and producing

a much smaller model for edge deployment.

5.2. Knowledge Transfer

We use on-server models (WRN-28-10 and VGG-16) as the

teacher model, and their corresponding compressed mod-

els as the student model. We compare the performance of

the student model that is trained with the help from the

teacher, called the dependent student, with two baselines:

the teacher model and the independent student model. The

teacher model is used as a baseline to see how much the

student represents the state-of-the-art accuracy. The inde-

pendent student model is trained directly on targets with-

out applying any form of knowledge transfer, and is used

as a baseline to see how much improvement the knowledge

transfer method brings to the dependent student.

5.2.1. INCREMENTAL LEARNING

We first evaluate on the incremental learning tasks us-

ing both CIFAR-10 and ImageNet dataset with ResNet

(WRN-28-10 and ResNet-34) as the teacher models, re-

spectively. Our goal is to allow the student model, which is

compressed from the teacher model, to learn one or mul-

tiple new, locally available categories without forgetting

those old categories that the teacher is trained with. Re-
6

Table 3. Convergence time of compressed ResNet models on

CIFAR-10, and VGG-16 models on Caltech 101.

Model

Name

Indepen.Depend.

(Our)

Depend.

(FitNet)

Speedup

(Our)

Speedup

(FitNet)

ResNet 1 70.20K 12.09K 69.42K 5.81× 1.01×
ResNet 2 69.42K 12.87K 69.03K 5.39× 1.01×
ResNet 3 69.42K 15.99K 69.03K 4.34× 1.01×
ResNet 4 70.98K 8.97K 70.20K 7.91× 1.01×
VGG-16

1

8.66K 1.87K 6.08K 4.63× 1.42×

VGG-16

2

3.98K 3.28K 3.28K 1.21× 1.21×

VGG-16

3

3.28K 1.87K 3.28K 1.75× 1.00×

VGG-16

4

3.28K 1.87K 4.45K 1.75× 0.74×

training the whole model on edge devices is infeasible due

to their limited computing resources; fine-tuning the on-

device model can significantly reduce the training time, but

its performance on old categories degrade severely. Our

proposed method allows the teacher model to provide dis-

tilled knowledge to guide the student model and prevent it

from forgetting about the old categories. In the experiment,

we first pre-trained with 9 categories of data and try to learn

a new category.

Table 4 lists the accuracy for incremental learning using

CIFAR-10. As expected, the independent student (w/o KT)

cannot classify any of the old categories any more even

though it performs well on the new category. In contract,

our dependent students (w/ KT) not only perform well

on the new category (>90% accuracy) but also retains a

good level of accuracy for classifying the old categories.

The distilled knowledge from the teacher model signifi-

cantly alleviates the catastrophic forgetting, when the stu-

dent model learns the new categories incrementally. Our

proposed method also works well for highly compressed

models. ResNet 4 (w/ KT), with a compression ratio of

160X, achieves an accuracy only 2% lower than that of the

ResNet 1 model.

We then compare our method with the related

work (Li et al., 2019) by applying its knowledge transfer

method to two models, ResNet d28w10, the original,

uncompressed model used by RILOD, which has a com-

pression ratio of 18X. On d28w10, RILOD’s accuracy is

7.66% lower than our ResNet 2 (w/ KT) even though it

has 9.58M more parameters, indicating that our proposed

method can better solve the incremental learning problem.

On ResNet 1, our accuracy improvement is even more

significant (20.84%). The results demonstrate that our

proposed knowledge transfer method can better support

incremental training on edge devices, especially for small

Table 4. Top-1 accuracy on CIFAR-10 for single-task incremental

learning using 9+1 categories of data.

Model 9 old 1 new Avg Acc

ResNet 1 w/o KT 0 100 10

ResNet 1 (w/ KT) 62.83 93.5 78.16

ResNet 2 (w/ KT) 64.12 92.3 78.21

ResNet 3 (w/ KT) 61.5 93.1 77.3

ResNet 4 (w/ KT) 57.02 95 76.01

ResNet 1 (RILOD) 38.34 76.3 57.32

d28w10 (RILOD) 83.41 57.6 70.5

Table 5. Top-1 accuracy on ImageNet for single-task incremental

learning using 9+1 categories of data.

Model 9 old 1 new Avg Accuracy

ResNet 5 w/o KT 11.1 100 19.9

ResNet 5 (w/ KT) 57.33 72 64

ResNet 5 (RILOD) 51.78 62 56.89

ResNet-18 (RILOD) 33 98 65.5

ResNet 6 (w/ KT) 62 68 65

ResNet 7 (w/ KT) 57.7 78 67.89

ResNet 8 (w/ KT) 56.4 76 66.2

models suited for edge deployment.

Table 5 lists the results for incremental learning on Ima-

geNet. We sampled 10 random categories from the Ima-

geNet dataset as our experiment dataset. We can observe

similar results as the aforementioned CIFAR-10 results.

The independent student (w/o KT) achieves only 11.1% ac-

curacy on the 9 old categories after learning one new cate-

gory. Our dependent student (ResNet-5 (w/ KT)) achieves

57.33% accuracy on the 9 old categories and 72% on the

new category. Even the highly compressed model, ResNet

8, is only 2% less accurate than the ResNet 5 model.

In addition to improving accuracy, by using compressed

models for incremental training on edge devices, our ap-

proach also runs faster than the original RILDO approach

which uses a large, uncompressed model (ResNet-18) on

devices. Table 6 compares the training time and inference

time of our compressed ResNet models between these two

approaches. Training time is measured by the total runtime

required to converge, and inference time is measured by the

time needed for classifying one batch of images.

All our compressed models can converge within three to

six minutes on the edge whereas RILOD needs 20 minutes.

In addition, the inference time of our models (from 2.5s to

7.2s) is also shorter than that of RILOD (8.7s). The above

results demonstrate the importance of our model compres-

sion and knowledge transfer techniques in improving both

accuracy and runtime performance of incremental learning

on edge devices.
7

Table 6. Runtime on ImageNet for single-task incremental learn-

ing using 9+1 categories of data on the edge.

Model Name Trainable

Para.

Training

Time (s)

Inference

Time (s)

ResNet-18 (RILOD) 11.69 1200 8.7

ResNet 5 3.51 360 7.2

ResNet 6 3.07 315 5.3

ResNet 7 2.46 253 3.7

ResNet 8 1.76 181 2.5

Table 7. Top-1 accuracy of knowledge transfer methods for classi-

fying unseen categories on CIFAR-10.

Model Name Independent

(Baseline)

Dependent

(Our KT)

Dependent

(FitNet)

ResNet 1 0.00% 78.92% 0.00%

ResNet 2 0.00% 75.72% 0.00%

ResNet 3 0.00% 70.40% 0.00%

ResNet 4 0.00% 61.96% 0.00%

5.2.2. CLASSIFYING UNSEEN CATEGORIES

We then study the performance of the compressed student

models when presented with data from classes that they

are never trained with. In this experiment, we train our

compressed ResNet models only with 10,000 images from

two categories of the original training dataset (CIFAR-10),

which has ten categories and 5,000 images each. Then we

test them with 8,000 images from the other eight categories

that they are never trained with.

Table 7 shows the accuracy of the independent student and

dependent student models of classifying the unseen eight

categories of images. For all of the compressed ResNet

models, the accuracy of the independent students is all zero,

showing that they cannot classify the unseen categories.

Since they never saw those categories during training, no

features were learned. However, our proposed knowledge

transfer method allows the student models to achieve an ac-

curacy of at least 60%. ResNet 1 and ResNet 2 achieve an

accuracy of 78.92% and 75.72% respectively, even though

they are trained with only such a small dataset including

only two categories of images. FitNet cannot help in this

case and its accuracy is zero on all of its dependent stu-

dents. The reason is likely that FitNet learns the features

generated from the teacher, instead of the process of solv-

ing a problem, so its knowledge transfer works only when

the target tasks of the teacher and student models are simi-

lar.

6. Related Works

Model compression techniques can be broadly classified

into three categories, weight sharing, quantization, and

pruning techniques. Weight sharing reduces the occu-

pied memory by using the same set of weights to rep-

resent more than one transformations (Han et al., 2015;

Chen et al., 2015). Quantization reduces the size of the

model by shrinking the number of bits needed for storing

the weights (Han et al., 2015; Kadetotad et al., 2016). Prun-

ing removes redundant weights or neurons while minimiz-

ing accuracy loss. Han proposed to remove weights below

a particular threshold (Han et al., 2015). Li proposed to

prune filters with the lowest absolute weight sum (Li et al.,

2016). But the above related works focused only on cre-

ating compressed models for efficient inference, and did

not consider how the compression methods affect the train-

ing process, and how to address the accuracy loss caused

by compression. More recently, Polino et al. proposed

Quantized Distillation, which leverages quantization and

distillation jointly during the training process of the smaller

model (Polino et al., 2018).

Existing knowledge transfer techniques can be broadly

classified into three categories, including transferring hard

logits, transferring soft logits, and transferring interme-

diate representations. Ba et al. proposed hard-logits-

based knowledge transfer technique (Ba & Caruana, 2014),

which minimizes squared difference (RMSE) between the

logits of the teacher and the shallow student. Hinton et

al. introduced transferring soft logits (Hinton et al., 2015)

where the student minimizes the sum of two objective func-

tions: (1) cross entropy loss between the soft logits, and

(2) cross entropy loss between the softmax output and cor-

rect labels of the dataset. Romero et al. proposed Fit-

Net, which extended transferring soft logits by using not

only the soft outputs but also the intermediate representa-

tions learned by the teacher (Venkatesan & Li, 2016). More

recently, FSP matrix transfer (Yim et al., 2017), attention

transfer (Zagoruyko & Komodakis, 2016), and factor trans-

fer (Kim et al., 2018) were proposed, which are also based

on transferring the intermediate representations.

However, these knowledge transfer methods have the fol-

lowing limitations: 1) they still require large student mod-

els that are not fit for resource-constrained devices. For ex-

ample, the student model used in RILOD (Li et al., 2019)

has the same architecture with the teacher model; FitNet

is thinner but not shallower, and FSP is shallower but

not thinner. In comparison, we integrate proposed filter

based model compression method with knowledge trans-

fer method, enabling the student model both shallower and

thinner than the teacher, which is important for deployment

on resource-constrained devices; 2) they enable their stu-

dent models classifying only the categories that the models

are trained with, whereas our method also allows the stu-

dents to classify unseen categories with a good accuracy; 3)

they did not update the student incrementally in real time,

whereas our method enables the students learning new cat-

egories within 181 seconds on the edge while remaining a
8

good accuracy on the old categories.

7. Conclusions

This paper provides a novel solution to deploying and train-

ing state-of-the-art models on resourced-constrained edge

devices. Our results show that, by pruning similar layers

in a model and the filters that produce weak activation pat-

terns in each layer, complex DNNs can be reduced to both

shallower and thinner networks, suitable for deployment on

devices but without much loss of accuracy. In addition to re-

ducing the size, our solution allows our compressed models

to converge the training within three to six minutes on the

edge. Our results also show that such compressed models

can also learn incrementally on new data without forgetting

the old categories. In addition, our results show that trans-

ferring the problem solving process is much more effective

than letting the student simply mimic teacher’s intermedi-

ate results. It allows the on-device model to be trained with

both good accuracy and speed, without relying on the in-

put’s true labels, and to recognize unseen categories.

References

Ba, J. and Caruana, R. Do deep nets really need to be deep?

In Advances in neural information processing systems,

pp. 2654–2662, 2014.

Castro, F. M., Marı́n-Jiménez, M. J., Guil, N., Schmid, C.,

and Alahari, K. End-to-end incremental learning. In

Proceedings of the European Conference on Computer

Vision (ECCV), pp. 233–248, 2018.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen,

Y. Compressing neural networks with the hashing trick.

In International Conference on Machine Learning, pp.

2285–2294, 2015.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and

Fei-Fei, L. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision

and pattern recognition, pp. 248–255. Ieee, 2009.

Fei-Fei, L., Fergus, R., and Perona, P. Learning genera-

tive visual models from few training examples: An in-

cremental bayesian approach tested on 101 object cate-

gories. Computer vision and Image understanding, 106

(1):59–70, 2007.

Han, S., Mao, H., and Dally, W. J. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

Hinton, G., Vinyals, O., and Dean, J. Distilling

the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

Jung, H., Ju, J., Jung, M., and Kim, J. Less-forgetting

learning in deep neural networks. arXiv preprint

arXiv:1607.00122, 2016.

Kadetotad, D., Arunachalam, S., Chakrabarti, C., and Seo,

J.-s. Efficient memory compression in deep neural net-

works using coarse-grain sparsification for speech appli-

cations. In Proceedings of the 35th International Confer-

ence on Computer-Aided Design, pp. 78. ACM, 2016.

Kim, J., Park, S., and Kwak, N. Paraphrasing complex

network: Network compression via factor transfer. In

Advances in Neural Information Processing Systems, pp.

2760–2769, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. Technical report, Citeseer,

2009.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain

damage. In Advances in neural information processing

systems, pp. 598–605, 1990.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.

Deeply-supervised nets. In Artificial intelligence and

statistics, pp. 562–570, 2015.

Li, D., Tasci, S., Ghosh, S., Zhu, J., Zhang, J., and Heck, L.

Rilod: near real-time incremental learning for object de-

tection at the edge. In Proceedings of the 4th ACM/IEEE

Symposium on Edge Computing, pp. 113–126, 2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.

Pruning filters for efficient convnets. ICLR, 2016.

Polino, A., Pascanu, R., and Alistarh, D. Model com-

pression via distillation and quantization. arXiv preprint

arXiv:1802.05668, 2018.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,

C., and Bengio, Y. Fitnets: Hints for thin deep nets.

arXiv preprint arXiv:1412.6550, 2014.

Sharma, R., Biookaghazadeh, S., Li, B., and Zhao, M. Are

existing knowledge transfer techniques effective for deep

learning with edge devices? In 2018 IEEE Interna-

tional Conference on Edge Computing (EDGE), pp. 42–

49. IEEE, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Srinivas, S. and Babu, R. V. Data-free parameter

pruning for deep neural networks. arXiv preprint

arXiv:1507.06149, 2015.

Venkatesan, R. and Li, B. Diving deeper into mentee net-

works. arXiv preprint arXiv:1604.08220, 2016.
9

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowl-

edge distillation: Fast optimization, network minimiza-

tion and transfer learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion, pp. 4133–4141, 2017.

Zagoruyko, S. and Komodakis, N. Paying more attention to

attention: Improving the performance of convolutional

neural networks via attention transfer. arXiv preprint

arXiv:1612.03928, 2016.

10

