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Abstract—The unmanned aerial vehicle (UAV) is one of the
technological breakthroughs that supports a variety of services,
including communications. UAVs can also enhance the security of
wireless networks. This paper defines the problem of eavesdrop-
ping on the link between the ground user and the UAV, which
serves as an aerial base station (ABS). The reinforcement learning
algorithms Q-learning and deep Q-network (DQN) are proposed
for optimizing the position of the ABS and the transmission power
to enhance the data rate of the ground user. This increases the
secrecy capacity without the system knowing the location of the
eavesdropper. Simulation results show fast convergence and the
highest secrecy capacity of the proposed DQN compared to Q-
learning and two baseline approaches.

Keywords: Deep reinforcement learning, Q-learning, eaves-
dropping, UAYV, security.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) support various appli-
cations in advanced cellular networks. A UAV can be an
aerial base station (ABS), aerial relay (AR), or aerial user
equipment (AUE) in the cellular network. As a network
support node, it can enhance the performance of the end users.
Steps to identify the challenges and solutions of emerging
cellular networks serving UAVs are being taken by the 3rd
Generation Partnership Project (3GPP) [1]. Major challenges
are radio frequency (RF) interference and security. Security is
increasingly important in modern wireless networks and needs
to be ensured for establishing communications links between
UAVs and terrestrial nodes [2]-[4].

Different types of attacks have been studied with the aim
of strengthening the security of wireless communications links
with trusted cellular network-connected UAVs. Eavesdropping
is a passive attack that can compromise the confidentiality
and privacy of control and user data. Early research [5], [6]
considering both hovering and moving UAVs study the perfor-
mance of an AR for safeguarding the ground communications
links between terrestrial nodes against eavesdropping attacks.
Reference [7] investigates the same problem but for multiple
ground users and multiple eavesdroppers by optimizing the
position of the AR and the transmission power. In [8], the
UAV is deployed as an ABS to serve ground users under
attack with the goal of optimizing the 3D position of the UAV
for maximizing the secrecy rate. The authors of [9] maximize

the secrecy rate of legitimate users while the ABS position is
optimized without eavesdropper location information.

In other lines of work, learning approaches have been used
for solving the above problem. Reference [10] develops model-
free reinforcement learning (RL) algorithms to maximize
the system secrecy rate by transmitting artificial noise with
optimized beamforming from the AR. A multi-agent deep RL
has been proposed in [11] to maximize the secrecy capacity by
jointly optimizing the trajectory, transmit power, and jamming
power for both relay and friendly jamming UAVs protecting
against eavesdroppers with known locations. Nevertheless,
limited study items utilized RL in secrecy rate analysis, such
as [10], [11]. These approaches assume knowledge of the
eavesdroppers and their locations. Also, learning methods
are only recently being explored for physical layer security.
To the best of our knowledge, none of recent studies have
explored the potential of RL solutions without assuming the
availability of imperfect or perfect location information of the
eavesdropper.

In this paper, we propose a RL algorithm for an ABS to
assist with the uplink transmission of ground users that are
subject to eavesdropping. Our solution is based on a deep Q-
network (DQN) that aims to maximize the secrecy capacity
by optimizing the legitimate capacity of the ground user.
This is achieved by finding the position of the ABS and the
transmission power that maximizes the data and secrecy rates
without the eavesdropper’s location information.

The rest of the paper is organized as follows. Section II
provides the system model and problem formulation. Section
IIT introduces the DQN as our learning-based physical layer
security solution to eavesdropping. Section IV presents the
numerical analysis and Section V derives the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The scenario studied in this paper is illustrated in Fig. 1.
The ground user communicates with the ABS in the presence
of a terrestrial eavesdropper. The user and eavesdropper are
independent of each other. The ABS is positioned to provide
a secure and reliable uplink (UL) for the user under attack.
It achieves this by leveraging its 3D mobility and strong line
of sight (LoS) channel that allows low power transmission.
Without loss of generality, we model and analyze the UL
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Fig. 1: The simulation scenario.

channel here. The same principles can be applied for the
downlink (DL). In the rest of this paper, we use the UAV
and ABS interchangeably.

We define the location of the ABS, the eavesdropper, and
the user in the 3D Cartesian coordinate system as (., Yu, Zu)s
(z;,Y4, %), and (x,y, 2), respectively. For practicality, time
slots are used to capture the different radio frames and
statistical channel conditions, as well as the momentarily static
position of the nodes. Therefore, the ABS coordinates in time
slot ¢ are expressed as (2y[t], yu[t], zu[t])-

A. Communications Channel

The received signal at the ABS when the ground user
equipment (UE) transmits the signal s with power P is as
follows

r =+ Phs+n, (1)

where £ is the air-to-ground (A2G) channel gain between the
UE and the ABS, and n denotes the additive white Gaussian
noise (AWGN) of zero mean and o2 variance. Based on the
measurements presented in [12], the LoS model is a good
approximation for the A2G channel in rural areas. The channel
gain has a path loss exponent of two and can be written as

hlt] = Cod,”[t]
_ Co (2
(@[t] — zult])? + Wlt] — yult)? + (2[t] — 2u[t])*”
where (j is the channel gain at the reference point dy = 1
m. Parameter (j is the same for the A2G and the ground-to-
ground (G2G) channel because of the same the antenna gains
and carrier frequency in both cases. Parameter d,[t] denotes
the distance between the ground user and the ABS.
The capacity of the channel between the UE and the ABS
in time slot ¢ is calculated as follows:
CoP[t] > e

Cy[t] = log, (1 + P[ﬁf[t]) = log, <1 + Z[f]o?

where (/02 is the signal-to-noise ratio (SNR) at the reference
point.

B. Eavesdropping Channel

Often, UEs have fewer antennas and transmit in broadcast
mode without beamforming. The eavesdropper is intercepting

the transmitted signal from the ground UE and the received
signal can be formulated as

v =VP0s+w, (4)

where w denotes the zero-mean AWGN with a variance of o2
at the eavesdropper. As a result of the G2G communications
link between the UE and the eavesdroppers, the exponent of
the path loss for this link is assumed to be four. Within the
time slot ¢, the G2G channel gain represented by ) between
the UE and eavesdropper can be modeled as

0= Cod;4[t]
Go (&)
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where d;[t] corresponds to the distance between the UE and

the eavesdropper in the tth time slot. The corresponding
capacity of the wiretap channel is
Pt
CoPlt] > ©)

C;[t] = log, (1 + P[t]@[t]) = log, <1 + o2

o2

C. Secrecy Capacity Metric

The security of the system is evaluated using the secrecy
capacity metric which is commonly employed in the literature
for analyzing eavesdropping security problems. The secrecy
capacity is the rate at which the malicious node cannot decode
any data when the legitimate channel capacity is higher than
the wiretap channel capacity [13]. The secrecy capacity over
T time slots is then obtained as

T +
_ %Z (Cu[t] e [t]) : (7)
where [w]™ £ maz(w,0).

D. Problem Formulation

The optimization problem is defined according to the fol-
lowing assumptions: First, for the sake of simplicity and
without loss of generality, we assume that an ABS flies at a
constant height that facilitates a LoS link between the ABS and
the ground UE. In general, the lower the UAV height can be,
the higher the resulting legitimate channel and secrecy capacity
in the considered context. Second, we assume that the location
of the passive eavesdropper is unknown. This scenario is of
interest in practice where it is difficult to detect the presence
and location of eavesdroppers because of their passive nature.
Thus, we consider the capacity of the legitimate user in the
above problem formulation. The eavesdropper location is used
only for the calculation of the resulting secrecy rate to evaluate
the performance of the proposed solution.

The objective of this paper is thus to maximize the legiti-
mate capacity C', by selecting the position for the ABS and
controlling transmit power for the UE.

The optimization of the UE capacity will result in an
improved secrecy capacity of the system. However, the UL
capacity of the ground user relies on having a short distance to



the ABS with a strong LoS link. Therefore, the ABS position
constraint is formulated as follows:

(xu[t]vyu[t]) < (anLy)thv ()

where (L., L,) represent the maximum 2D coordinates of
the UAV ground location projection. We introduce the peak
transmission power P,,,, and the UL transmission power
constraint for the legitimate UE per time slot as

0 < PJt] < Pryas, Vt. ©)

The optimization problem of the UE capacity is then given as

. Iy GPI]
(P1): max, 7 ; logs (1 - dg[t}a2> © o 0)
s.t.(8), (9).

where z,, and y, are the UAV positioning parameters and P
is the uplink transmission power controlled by the ABS.

III. PROPOSED SOLUTION

The optimization problem (10) is challenging because it
needs a joint UAV positioning and UE transmission power
adjustment in the presence of an eavesdropper. Since the
objective function is non-convex with respect to parameters
Ty, Yy, and P, and the constraints, the problem becomes NP-
hard [7] [11] [14]. Alternatively, the ABS position and the
UE transmission power will be selected through a transition
process based on the current system state. Since the next
state of the system is independent from the previous state
and action, the process can be modeled as a Markov decision
process (MDP). This allows applying a RL algorithm to a
UAV agent without requiring the knowledge of the system
model. In this regard, instead of solving the problem using
conventional optimization algorithms, we apply a RL method
that can solve the problem in an efficient and accurate way,
and thereby improve the secrecy rate in the network.

In what follows, we first describe the MDP model by
defining the settings that include states, actions, and the reward
for the UAV agent. Then, we introduce the Q-learning method
based on the defined MDP settings to solve the problem. In
order to avoid intractably high dimensionality for the high
state-action space, we propose the DQN method in which a
deep neural network (DNN) is employed to estimate the action
value function for the UAV agent.

A. MDP Settings

The MDP for the UAV agent is composed of the state space
S, the action space A, the reward space R, and the transition
probability space T, i.e., (S, A, R, T). At time slot ¢, the agent
observes the state s; € S, and based on its policy, it takes an
action a; € A. Depending on the distribution of the transition
probability 7 (s+1|s¢, ar), the agent will be transferred to
the new state s;y1. Since the transition probability is highly
dependent on a specific environment and is difficult to obtain,
we choose the Q-learning method as a model-free algorithm
to directly find the best policy for each action in each state.

This means that we do not need to know 7, but we need to
carefully define states, actions, and the reward of the agent as
follows.

State: The set of states is defined as
82{51752,... (11)

where T is the total number of time slots. Each state s; at a
time slot ¢ has three elements that are defined as

St = {A.T, Ay7 AZ}7

y Sty ooy ST}?

(12)

where Ax, Ay, and Az represent the distance difference be-
tween the UAV and UE along the z, y, and z axes, respectively.
It is worth noting that the value of each state affects the
channel gain and, hence, the SNR.

Action: The states are transited according to the defined
actions. A set of actions is defined as

A:{a1>a27“'7at7“7aT}a (13)

where each action at time ¢ consists of two parts related to
the UAV movement and one part related to the transmit power
adjustment. That is,

ay = {5x7 5y75p}a

where J, and J, represent the movement in the = and y
directions and J,, denotes the change in power. The altitude of
the UAV is assumed to be constant.

As a sample configuration, the movement in x and y, i.e.,
0, and d,, can be assumed to change by +1 unit or —1 unit,
and the power level, i.e., 5p, can be assumed to change by pq,
0, or —p;, where p; is an arbitrary number. Hence, here we
consider 4 possible directional movements and 3 power level
changes, resulting in 12 possible actions for the ABS, which
controls the UE transmission power, in any state.

Reward: After taking an action a; in a state s; at time slot
t, the UAV agent will receive a reward R;(s;, a;). The UAV
should get more rewards for the actions that may lead it higher
secrecy rates. In this respect, we define the reward function of
the system based on the instantaneous SNR between the UAV
and the UE as

GoP[t]

d2[t]o?’

(14)

Rt(stv at) =

15)

B. Q-Learning Method

The UAV agent can apply the Q-learning method to find
the best policy for the state-action relationship. Q-learning
is a classical table-based RL algorithm in which the state-
action pair has the value of Q(s,a). The rows and columns
of the Q-table consist of the environmental states and possible
actions of the UAV agent, respectively. For example, for the
aforementioned sample of states and actions, the table has 3
rows and 12 columns. The Q-values in the table are initially
filled by random numbers. Then, the Bellman equation is used
to obtain the optimal state-action pairs in the table [15]:

Q*(s,a) = Ey | R(s,a) + v x max Q(s',a)|,  (16)
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Fig. 2: Block diagram of the proposed DQN architecture.

where the s’ and a’ symbolize the next state and action. The
parameter v € (0, 1) denotes the discount factor that affects
the importance of the future reward. The Bellman equation
is used through an iterative process to update the Q-values,
where a learning rate parameter « is applied to determine how
quickly an agent leaves the previous Q-value for the new Q-
value in the table. That is, Q™" (s,a) = (1 — a) Q;—1(s,a) +
a Q;(s,a), where subscript 4 indicates the i-th iteration in the
process. Finally, in each step, the Q-value is updated while
applying the e—greedy algorithm. This algorithm is used to
balance between the exploration and the exploitation of the
environment [15].

Although Q-learning provides a general framework for RL,
it requires to store the Q-values for each state-action pair in
the table. The number of state-action pairs in the table grows
quickly with the number of states and actions. As the Q-table
becomes large, the process becomes more time-consuming and
impractical. Therefore, we consider the DQN method where
a DNN is used to estimate the (Q(s,a) values, as opposed
to Q-learning, where the Q-table is used to estimate the state-
action values. This has advantages in terms of handling a large
number of states and actions and the associated processing
time.

C. Deep Q-Network Method

The DQN, initially proposed by Google Deep Mind [16],
integrates the RL and deep learning methods. This technique
uses the power of nonlinear functions, specifically DNNs,
in order to approximate the Q-values and handle highly
dimensional state-action problems.

Figure 2 shows the block diagram of the proposed DQN
method. There are two DNNs of the same structure: a training
network and a target network. The training network outputs
the Q-values associated with the actions of the UAV in each
state. The target network supervises the training network by
providing the target Q-values obtained from the Bellman
equation. The target values are compared with the outputs of
the training network to minimize the loss function described
below. Also, the target network prevents the learning model

from suffering from the noise in the environment. The inputs
to the networks are the states of the UAV agent in the
environment, see (11)-(12). The outputs of the network are
the Q-values corresponding to the actions of the UAV agent,
i.e., Q(s,a;0), where 0 denotes the weights of the DNNs.

As the UAV takes an action, the system generates a record of
experience. At time step ¢, the experience contains the current
state s;, the action a;, the reward 7, and the next state s;1,
formed as a tuple e; = (s¢, at, T, S¢+1). Each such experience
is stored in a replay memory with the capacity of N, such
that M = {ey,...,e,...,en}. The memory is a queue-like
buffer that stores the latest N experience vectors. We use a
mini-batch sample from the replay memory to feed the input
of the training network as shown in Fig. 2. The main reason
for using the mini-batch samples from the reply memory is
to break possible correlations between sequential states of the
environment, and thereby facilitate generalization.

In order to minimize the error prediction of the DNNs, a
loss function is used that is defined as

L(6) =E

;gT },
([Tt +7 x max Q(5t41,a141;0")

[Q(st,at;e)DQ], a7)

where the Q-value of the first term is obtained from the target
network and the Q-value of the second term from the training
network. Parameters A and # denote the weights of the target
network and training network, respectively. The T coefficients
are updated every few time slots in order to ensure the stability
of the target values and, hence, facilitate stable learning.

The UAV applies a gradient descent algorithm,

Vo L(0) = —E

2 VBQ(Staaﬁe)(rt + v x

I{flgaj( Q(St+1aat+1§9T) - Q(8t7flt; 9))] , (18)

to update 6 an 07 as the weights of the DNNs with the aim
of minimizing the prediction error.

Finally, we apply the e—greedy algorithm to select an
action while balancing the exploration and the exploitation
of the UAV in the environment (Fig. 2). In this algorithm,
the UAV explores the environment with the probability of
€ by choosing a random action. More precisely, the UAV
exploits the environment with the probability of 1 — € by
choosing the actions that maximize the Q-value function, i.e.,
a* = argmax,. 4 Q(s,a;0). Ahigh value of € is initially set in
the model for the UAV to spend more time for the exploration.
As the agent obtains more knowledge about the environment,
the e value is gradually decreased to leverage the experience
and choose the best actions for the UAV, rather than continuing
with the exploration.

The details of the DQN-based algorithm used by the UAV
agent for optimizing the UE SNR and calculating the secrecy



rates is presented in Algorithm 1. The brief description of the
pseudocode is as follows: The parameters of the algorithm are
initialized in lines 1 to 4. Line 5 starts the first loop for K
episodes. The environment is reset in line 6 to initialize the
starting state. The second loop begins at line 7, representing
T time slots for the UAV to adjust its trajectory and power.
Line 8 denotes the state in each time slot, and lines 9 to
13 apply the e—greedy algorithm to balance the exploration
versus exploitation. The UAV takes an action in line 14. Then
it receives the reward and goes to the new state, as denoted
in line 15. The replay memory collects the new experience in
line 16. Using the mini-batch in line 17, the training DNN
is trained in line 18. The weights of the training DNN are
updated in line 19 using the gradient descent algorithm on
the loss function of (18). Line 20 updates the weights of the
target DNN every B time slots. Once the algorithm runs out
of time slots in each episode, it updates the value of e (line
21). The rewards for each episode are stored for each episode
according to line 22.

Algorithm 1 DQN for secrecy rate optimization.

1 Initialize e€stqrt, €end, decay
2 Initialize 7 time slots, K episodes
3 Initialize replay memory M to capacity N
4 Initialize 6, 67, v, o, B
for episode = 1, 2, ..., K do

D>
6 Reset Environment
7 fort=1 2, .., T do
8 St = (A:Ut, Ayt, Azt)
9 if €> random(0, 1) then
10 | Select random a; € A
1 else
12 | at = argmax,c 4 Q(st, a;0)
13 end
14 UAV takes an action, at
15 Obtain sg+1, Tt
16 Replay Memory: M < M U {s¢,a¢, ¢, S¢4+1}
17 Minibatch from M: e; = (s;,a;, 74, Si+1)
18 Train the DNN training network
19 Update 6 in training network via eq. (18)
20 Update 07 in target network every B steps
end
21 € < updatee
22 Store reward for each episode
end

Result: Optimal Secrecy Rate in eq. (7)

IV. NUMERICAL ANALYSIS AND DISCUSSION

We numerically analyze the performance of the proposed
DQN-based UAV positioning and power control scheme in
optimizing the UL SNR of the ground user and its effect on the
secrecy capacity in the presence of an eavesdropping attack.

The simulation scenario consists of a single antenna ground
UE, an ABS mounted on the UAV, and a single antenna
malicious node that is performing a passive eavesdropping
attack on the UL transmission (Fig. 1). The UE and the
eavesdropper are randomly distributed in a 2D area that has
a L, length and a L, width. The ABS is launched at a
random location with a fixed altitude and is equipped with an
omnidirectional antenna to enable communications with UEs.

Table I provides the simulation parameters and the hyper-
parameters for the proposed DQN solution. The training and

TABLE I: Simulation Parameters

Parameter Value Parameter Value
(Ll-, Ly) (10m,10m) Discount factor,~y 0.9
# of episodes, K 9 x 10% Replay memory, N 500
# of time slots, T 200 Batch size 50
Learning rate, 1076 Update of target network, B 10

target DNN networks consist of 4 layers where each DNN
contains two fully connected hidden layers, one with 24 and
the other with 32 neurons. Each DNN has 3 neurons at the
input layer and 12 neurons at the output layer, corresponding to
the number of states and possible actions defined in (12) and
(14), respectively. The simulator is implemented in Python,
using PyTorch to train the DQN.

For the performance evaluation of the proposed DQN al-
gorithm, we compare the resulting secrecy capacity of the
DQN against the values resulting from employing Q-learning,
a greedy policy, and a random state selection scheme. The
random scheme selects the next position and power action at
each time slot randomly, whereas the greedy policy assigns
the next action based on the highest Q-value.

Figure 3(a) shows our accumulative reward function over
the total number of episodes that is defined as the legitimate
UL SNR of the ground UE for the proposed DQN and for
the other techniques. The illustration of rewards informs that
the proposed solution has the fastest convergence rate to the
highest SNR. The SNR performance of the Q-learning is
similar, but takes longer to converge because of the nature
of the problem that has a large number of states and actions.

Since the optimization problem in (10) relies on the location
of the ABS and the transmission power, it is critical to
study the convergence of these two parameters. Figures 3(b)
and 3(c) illustrate the convergence of the UAV position and the
transmission power over the number of episodes. Comparing
the converged position of the ABS and the transmission power
for the DQN and Q-learning, we observe that both techniques
reach the same ABS position; however, there is a slight
increase of the converged transmission power of the DQN over
the converged Q-learning transmission power. This difference
is the main explanation behind the difference in the optimized
legitimate SNR levels presented in Fig. 3(a). The low SNR of
the random approach results from low the transmission power
value of Fig. 3(c). Note that the ABS position of the random
scheme converges to the same value as the greedy algorithm.

Figure 4 shows the secrecy capacity of the DQN compared
to the other techniques over the number of episodes. The se-
crecy capacity is calculated using the optimized ABS position
and transmission power level after finalizing the learning. The
proposed DQN algorithm improves the secrecy capacity by as
much as 40%, 10%, and 5% when compared to the random,
greedy, and the Q-learning solutions, respectively. The DQN
reaches a relatively stable secrecy capacity value already after
2 x 104 episodes. On the other hand, the convergence of
Q-learning occurs after 5 x 10* episodes. This proves the
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superiority of the DQN regarding the speed of convergence.

V. CONCLUSIONS

This paper has presented a novel positioning and UL trans-
mission power control approach for ABSs that serve a ground
user. We consider the legitimate user capacity as the metric
to optimize in eavesdropping scenarios without knowledge of
the eavesdropper location. This contributes to improving the
secrecy capacity of the ground user under attack. We have
provided detailed information about the designed DQN and
the Q-learning algorithms. The obtained results show that
the highest capacity and secrecy capacity are achieved with
the proposed DQN when compared with Q-learning and two
baseline techniques.

In future research, we will extend the simulation envi-
ronment to cover multiple legitimate and malicious nodes,
analyze the performance of using a multi-antenna systems,
and consider both the uplink and the downlink. Moreover, the
presented technique can be implemented into a testbed, such
as AERPAW [17], which provides robust drones with modular
software radio hardware and software, collocated computers,
and an experimental license for RF radiation, enabling A2G
wireless experiments. An AERPAW experiment can deploy
ground users and UAVs, where the UAV can implement an
ABS that uses the proposed method to position itself for
serving a legitimate user and control the transmission power
in such a way to maximize the user rate in the presence of an
eavesdropper.
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