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ABSTRACT

Edge video analytics is becoming the solution to many safety
and management tasks. Its wide deployment, however, must
first address the tension between inference accuracy and re-
source (compute/network) cost. This has led to the devel-
opment of video analytics pipelines (VAPs), which reduce
resource cost by combining DNN compression/speedup tech-
niques with video processing heuristics. Our measurement
study, however, shows that today’s methods for evaluating
VAPs are incomplete, often producing premature conclusions
or ambiguous results. This is because each VAP’s perfor-
mance varies substantially across videos and time, and is
sensitive to different subsets of video content characteristics.

We argue that accurate VAP evaluation must first char-
acterize the complex interaction between VAPs and video
characteristics, which we refer to as VAP performance clarity.
We design and implement Yoda, the first VAP benchmark to
achieve performance clarity. Using primitive-based profiling
and a carefully curated benchmark video set, Yoda builds a
performance clarity profile for each VAP to precisely define
its accuracy/cost tradeoff and its relationship with video char-
acteristics. We show that Yoda substantially improves VAP
evaluations by (1) providing a comprehensive, transparent as-
sessment of VAP performance and its dependencies on video
characteristics; (2) explicitly identifying fine-grained VAP
behaviors that were previously hidden by large performance
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variance; and (3) revealing strengths/weaknesses among dif-
ferent VAPs and new design opportunities.
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1 INTRODUCTION

Edge video analytics is becoming the modern solution to
many critical tasks [8]. With the ability to accurately detect,
recognize and track objects on the fly, it can quickly detect and
respond to traffic accidents and hazard events [1, 7, 10, 14, 15,
18, 19], monitor and enforce physical distance during COVID-
19 [5, 16], auto-manage retail stores and factories [12], and
perform surveillance functions to make the world safer [3, 4].

Deployment of edge video analytics at scale, however, must
address the tension between inference accuracy and resource
cost, i.e., compute cost to run inference tasks and/or band-

width cost to transfer data from cameras to servers [29, 74].
This tension continues to grow as video sources proliferate at
the network’s edge [3, 4, 9, 17, 21], separated from the heavy
compute power necessary to run large deep neural networks
(DNNs) by a bandwidth-constrained mobile network.

In response, researchers have developed numerous video

analytics pipelines (VAPs) to optimize the accuracy and cost
tradeoff [30, 37, 44, 50, 51, 53, 54, 56, 63, 76, 81, 93–95], by
combining DNN model compression/speedup techniques with



video processing heuristics such as frame sampling and image
downsizing (see Figure 1). For instance, Chameleon [54]
shows that intelligently subsampling traffic video frames at
the cameras can effectively reduce network and compute costs
without degrading inference accuracy.
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Figure 1: Illustration of a video analytics pipeline (VAP).

As edge video analytics and VAPs continue to evolve, ac-
curate and transparent evaluation of VAPs becomes critical.
For instance, operators of edge video analytics need to know
what the optimal VAP is for a given video input, how often
the network/compute usage exceeds a budget, or how often
accuracy drops below a threshold.

Evaluating VAPs: Today, VAPs are evaluated using some
corpus of past video samples that represent the target sce-
nario(s). After running VAPs on these videos, their perfor-
mance (i.e., the accuracy and cost tradeoff) is analyzed and
compared against each other. Following this method, we run
an empirical study to evaluate seven VAPs from recent papers,
using a large chunk (14.5 hours) of traffic videos. Our study
shows that today’s evaluation method is insufficient to charac-
terize VAPs, often leading to partial/premature conclusions on
the efficacy of a VAP and across VAPs. This is because VAP
performance has a strong dependency on video content – it
can vary substantially across videos even in the same scenario
(e.g., highway traffic cameras), and drift dramatically over
time when operating on the same camera. Therefore, today’s
evaluation is either biased by the use of short video clips or
produces vague results over long videos, i.e., an excessively
wide distribution of possible cost-accuracy outcomes.

Our measurement study suggests that an ideal evaluation of
VAPs must have high performance coverage and low perfor-
mance variance. Here, “high coverage” means the evaluation
reveals both good and bad performance of a VAP, whereas
“low variance” means the evaluation could accurately estimate
the VAP’s performance on individual videos. And the strong
dependency of VAP performance on video content suggests
such ideal evaluation must characterize the complex inter-
actions between video workloads and a VAP’s performance.
Doing so presents three distinct benefits for VAP design and
deployment: (1) providing a comprehensive assessment of
VAPs under diverse video characteristics; (2) understanding
how/why each VAP’s performance varies across videos; (3) re-
vealing relative strengths among VAPs under different video

content characteristics. We refer to this new evaluation re-
quirement as VAP performance clarity.

Achieving performance clarity: A direct approach would
test VAPs exhaustively on a large collection of mobile video
workloads, e.g. existing video collections developed for test-
ing DNN models [32, 33, 35, 45, 49, 61, 97]. Yet these are
designed to evaluate DNN architectures rather than VAPs,
thus lack sufficient coverage of video characteristics that will
affect VAP performance. An alternative is to build a database
of empirical workloads that covers all possible video feature
value combinations, and use them to test VAPs. This is in-
tractable, however, since it would require a large database
capturing an exponential number of video feature combina-
tions.

Instead, we propose to characterize VAP performance us-
ing a carefully curated set of videos that serve to evaluate
different aspects of VAPs. Our design is based on the observa-
tion that each VAP is inherently modular and can be broken
into a set of “global” primitives. Each primitive leverages
a distinct set of video processing heuristics to optimize the
accuracy/cost tradeoff, and thus can be profiled independently
(against its associated video features) and then (re)assembled
to profile full VAPs. This modular structure allows us to effi-
ciently profile each full VAP by combining its corresponding
primitive-specific profiles. Note that some prior works also
observe independent VAP modules but use it to refine par-
ticular VAP designs [50, 54]. In contrast, we leverage this
observation to design accurate evaluation of many VAPs.

We present Yoda, the first VAP benchmark designed to
achieve performance clarity. Using a carefully curated set
of benchmark videos (67 minutes in length), Yoda focuses
on characterizing the complex dependencies of VAP perfor-
mance on mobile video content characteristics, and does so
efficiently. For each VAP v, Yoda builds a performance clarity
profile (Pv ) by running v on a set of benchmark videos pa-
rameterized by a set of video features, both chosen based on
v’s design primitives. The resulting Pv is a lookup table that
lists v’s performance (the accuracy/cost relationship) under
different video feature values. This provides a comprehensive
and transparent assessment of v’s performance and its de-
pendencies on video features. We show Yoda’s contributions
towards VAP evaluation, in three concrete aspects.

• Performance clarity – Yoda accurately captures existing
VAPs’ performance and their dependencies on video features.
It largely outperforms existing VAP evaluations with higher
coverage (the completeness of the evaluation) and lower
variance (the ambiguity of the evaluation outcome).

• Performance prediction – Using Pv , Yoda can efficiently
estimate v’s performance for videos not included in the
benchmark set, without running v. This takes 2 orders of
magnitude less computation than running v on the video.
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Figure 2: Schematic illustration of some example VAPs grouped into three general types. (Differences within each general

scheme are omitted here.) Our goal is not to list all VAPs; instead, we seek to identify common techniques and their performance.

• Practical insight for VAP deployment – Yoda’s VAP pro-
files expose strengths and weaknesses among existing VAPs,
and the underlying deployment scenarios and video fea-
tures associated with these conclusions. These insights allow
us to identify previously hidden gaps and opportunities to
guide/motivate future VAP designs.
Though Yoda serves well on the seven VAPs considered

in this work, it is not without limitations. Currently, Yoda’s
content features and benchmark videos are not future-proof
(e.g.,Yoda does not support multi-stream/multi-query VAPs).
For distributed VAPs that handle bandwidth-constrained con-
nections, Yoda only evaluates reductions in average network
bandwidth usage but not the impact of bandwidth fluctuation.

Nonetheless, as the first attempt at benchmarking VAPs’
performance clarity, Yoda suggests a viable path towards
profiling the dependencies of VAPs’ performance on video
content via a modularized approach. Our goal is not to realize
an “ideal” benchmark; rather, we provide a concrete imple-
mentation of the proposed benchmark, which validates the
need for performance clarity and initial feasibility on accurate
performance evaluations of VAPs, and provides new insights
for VAP design and deployment. We release the Yoda toolkit
in https://yoda.cs.uchicago.edu and plan to expand our study
to include other VAPs and additional video features.

2 BACKGROUND

In this section, we present an overview on existing VAPs,
focusing on their design objectives and evaluations.

2.1 VAP Design

Computer-vision DNNs are generally optimized for high accu-
racy. However, the compute and network cost to achieve such
accuracy can be high1. This tension between accuracy and
cost has stimulated many ongoing efforts to develop video

1For instance, running state-of-the-art object detector at 30fps requires one
NVidia GTX Titan X GPU (>$1.1K) [49] and streaming the video at 720p

analytics pipelines (VAPs) [36, 53, 54, 56, 59, 63, 93–95].
VAPs reduce network/compute cost while maintaining high
inference accuracy, by combining DNN compression/speedup
methods and video processing heuristics such as frame sam-
pling and image downsizing.

Existing VAPs fall in three general types (Figure 2).

• Type 1: Saving network cost when the camera has low lo-

cal compute power. The camera only encodes video frames
and runs simple tracking algorithms, but does not perform
any inference that requires accelerators such as GPUs. In-
stead, a VAP saves network cost by selecting a subset of
frames/pixels to send to the server for DNN inference. For
example, AWStream [93] adapts video frame rate, resolution
and quality. Glimpse [30] and Reducto [59] send only frames
that contain new objects (e.g., identified by measuring inter-
frame difference). Similarly, EAAR [63] and DDS [36] only
encode regions that are likely relevant to the inference task.

• Type 2: Saving network cost when the camera and the

server split the inference task. Here the camera device is
equipped with some inference power (e.g., with a low-power
GPU) and thus can run a cheap DNN. For example, Vigil [95]
runs a cheap object detector on the camera to identify regions
containing most objects and sends only these regions to the
server for full DNN inference. NoScope [56] first identifies
frames with significant pixel changes and runs a cheap DNN
(fine-tuned per video stream) on these frames. Only when
the cheap DNN has low confidence will the frames be sent
to the server for further inference.

• Type 3: Saving compute cost of a resource-constrained

edge device. The third type of VAPs reduces compute cost,
when a camera device (or edge server) has moderate com-
pute power to run some inference locally. Videostorm [94]
and Chameleon [54] uniformly sample frames, downsize

(∼ 5Mbps) costs $2K/day for AT&T 4G LTE network ($50 for 30GB data
before the speed drops to a measly 128kbps [2]).
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VAP Target scenarios (sources of videos)

“YT” = YouTube, “P” = proprietary
Total duration

(# of videos)

Glimpse [30] Moving traffic cams (YT) + Face (P) 65min (30)
AWStream [93] Fixed traffic cams (MOT16) + AR (P) 6.3min (4)
Vigil [95] Campus cams + Indoor (P) 3min (3)
Reducto [59] Fixed traffic cams (YT) 250min (25)
Chameleon [54] Fixed traffic cams + Indoor (P) 525min (15)
DDS [36] Fixed & Moving traffic cams (YT) 30.7min (16)

Table 1: Today, VAPs are evaluated on videos of one or two

scenarios as a whole. For consistency, we only list object

detection datasets.

the sampled frames to a lower resolution, and process them
using a less accurate yet cheaper DNN model. We note that
Glimpse (Type 1), NoScope (Type 2) can also be applied
here to reduce compute cost, and thus fall into this type.

2.2 How Are VAPs Evaluated Today?

Today’s evaluation empirically tests and compares the VAPs’
performance (accuracy, cost) on a set of videos collected from
the target scenario(s) [50, 54, 56, 94], e.g., some traffic videos
recorded by fixed cameras in urban crossroads. Table 1 lists
the target scenarios and videos (sources and lengths) used to
evaluate some recent VAPs.

Such evaluation relies on an implicit assumption:

Today’s evaluation assumption: A VAP’s performance

under a target scenario can be represented by its perfor-

mance seen on a set of long videos of the same scenario.

Unfortunately, this is not always true. Our own measurement
study shows that a VAP’s performance can vary dramatically
among videos of the same scenario (see §3.2).

3 OUR EMPIRICAL STUDY ON VAP

EVALUATION

As video analytics and VAPs continue to evolve, accurate and
transparent evaluation of VAPs is crucial to their real-world
adoption. In this work, we are interested in understanding
whether today’s VAP evaluation methods (§2.2) can fulfill
this requirement. Since existing VAP proposals generally run
evaluation using different datasets, one cannot directly assess
and compare their performance from their reported results.
Instead, our empirical study evaluates 7 popular VAP designs
using the same video datasets (14.5 hours in total) that consist
of a much larger and more diverse collection of traffic videos.
Our analysis reveals significant VAP performance variability
across videos of the same target scenario, suggesting that
today’s evaluation method is insufficient to characterize VAPs.
We then discuss its implications for a better VAP evaluation,
which lead to the development of Yoda.

3.1 Methodology and Dataset

We start by discussing the methodology behind our measure-
ment study.

VAPs studied: We study and compare the performance of 7
recent VAPs on the task of object detection. These include
AWStream [93], Glimpse [30], Vigil [95], NoScope [56]2,
Videostorm [94], Reducto [59], and DDS [36]. They cover a
wide range of today’s VAP design techniques illustrated in
Figure 2.

For consistency, we configure all these VAPs to operate
on videos of (30fps, 720p) and all use the same pre-trained
DNN model as their full DNN model. To choose the full
DNN model, we experimente with several popular choices
(e.g., FasterRCNN-ResNet101 [13], Yolo [80]) and select
FasterRCNN-ResNet101 since it produces the highest accu-
racy in object detection. Later we also repeat our experiments
using Yolo, and find that while the absolute VAP performance
varies slightly, the key findings remain the same. Finally,
we consider the scenario where VAPs are “optimally config-
ured” to eliminate potential inconsistency or errors introduced
by imperfect system configuration. For each video segment
(≈30s), we configure each VAP by picking its best parameter
values (e.g., frame sampling rate of VideoStorm, or inter-
frame difference threshold of Glimpse) that minimize cost
while achieving over 0.9 inference accuracy in the first 1/3 of
the segment. We then test and report the VAP performance
on the rest of the video segment. We believe this considera-
tion helps increase the fairness and transparency of our VAP
evaluation.

Our “coverage” dataset: To show a more complete picture
of VAP performance, we compile a coverage set of public
traffic videos from a diverse video sources at a much larger
scale than existing works. We target specifically traffic videos
since they are commonly used in VAP evaluation (see Ta-
ble 1). When compiling our dataset, we seek to include public
traffic videos from diverse sources, covering different scenar-
ios (fixed or moving cameras; day or night; highway, city or
rural streets), and videos displaying a wide range of content
characteristics and dynamics, e.g., object speeds, sizes, object
arrival rate.

With these in mind, our final coverage set consists of 14.5
hours of traffic videos from multiple sources: YouTube (32
long videos, 10-47 minutes each), Waymo [83] (5 hours),
KITTI [42] (20 minutes), and MOT [70] (8 minutes). All
videos are split into 2112 segments (≈30s per segment).

Performance metrics used: We measure each VAP’s perfor-
mance using the following three metrics:

2We include NoScope in our study since it is also applicable to object
detection, although it was only evaluated on binary classification.
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Figure 3: Significant performance variability of the same VAP among videos of the same scenario. Each ellipse outlines the 1-σ

range of VAP performance across the segments of a video.
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Figure 4: Significant performance variability across video segments. Each dot shows the accuracy and cost of a segment.

• Accuracy is measured by the F1 score of a VAP’s de-
tected objects [38]. We obtain the “ground truth” results by
running the full DNN on the uncompressed video frames
(rather than the human-annotated labels). This way, any
inaccuracy will be due to VAP designs (e.g., video com-
pression, DNN distillation), rather than errors made by
the full DNN itself. This is consistent with recent work
(e.g., [54, 56, 72, 93–95]).

• Normalized network cost defines the data size sent by the
camera to the server divided by the size of the original
video. Reducing network cost is crucial when deploying
VAPs in bandwidth-constrained networks [74].

• Normalized compute cost is the average GPU usage (on a
NVidia GTX Titan Xp) per frame divided by that of the full
DNN model. Since the cost is normalized against running
the full DNN model on the same GPU, it is less dependent
on the particular choice of GPU. Note that when a VAP
(e.g., Glimpse) reduces both compute and network costs,
we will specify which is being considered.

We acknowledge that there are other aspects of VAP per-
formance beyond these metrics. Our choice of these metrics
is based on two reasons. First, these metrics are directly re-
lated to video content. For example, evaluating things like
how adaptive a VAP is to bandwidth variations is important
but deviates from our main goal of understanding the impact
of video content. Similarly, metrics like throughput, process-
ing delay or energy consumption are crucial but also highly
sensitive to the implementation details (e.g., pipelining or
parallelization) and hardware platform. Second, these metrics
can be translated into practical objectives. The feasibility of

deploying a VAP depends on whether its costs fit the provi-
sioned compute/network resources or the deployment budget.
Although we do not evaluate other performance metrics (e.g.,

throughput, latency) explicitly, we believe they are highly
correlated with the network and compute cost considered by
our study. For example, when a VAP reduces network cost
by 2x, this saving can translate into serving 2x video streams
while meeting the same inference accuracy target (i.e., 2x
throughput).

3.2 Key Findings

Finding 1: Performance of a VAP can vary dramatically

even among videos of the same scenario.

Following the traditional assumption (§2), we test each VAP’s
performance (cost vs. accuracy) in one of the four scenarios:
{fix-positioned traffic monitoring cameras, moving dashboard
cameras} × {on urban streets, or on highway}. Figure 3 sum-
marizes each VAP performance range in each video (each
over 20 minutes) in one ellipse. We see each VAP’s perfor-
mance can vary dramatically across videos in the same sce-
nario. Such performance heterogeneity is prevalent across all
7 VAPs and four scenarios considered by our study.

To reveal the full range of performance variability, Figure 4
plots the performance distributions of the 5 VAPs on all the
video segments in the coverage dataset (each dot shows the
performance on one segment). While the overall trends align
with findings of prior work (VAPs trade accuracy drop for
saving network/compute cost), we do see that each VAP has
a significant performance variability across video segments.

Even when we restrict the accuracy to a small range ([0.90,
0.95]), the relative standard deviation of cost across segments

5



Cost when acc.

is in [0.9, 0.95]

VAP type 1 VAP type 2 VAP type 3

AWStream Glimpse Vigil NoScope Glimpse VideoStorm
Mean 0.34 0.27 0.15 0.67 0.41 0.20

Relative StdDev 73% 64% 102% 48% 45% 68%

Table 2: Even when we narrow the range of accuracy in

Figure 4 to [0.90,0.95], the cost (network or compute) across

segments could vary significantly. This can be seen from the

relative standard deviation values in the table.

can be 45-102% and the gap between 5
th and 95

th percentiles
is always over 90% (shown in Table 2). Here, relative standard
deviation is defined as the ratio of the standard deviation to
the mean, which is a popular metric to measure the dispersion
of a distribution.

Finding 2: Choice of optimal VAP is content-dependent.

Performance variance does not always lead to suboptimal
choice of VAP, if one VAP always outperforms others. Un-
fortunately, that is not true for VAPs. We illustrate this by
comparing VAPs in pairs. In each pair, one VAP acts as a “ref-
erence”, and we subtract the other VAP’s cost and accuracy on
each video segment by those of the reference. Figure 5 shows
the results of three VAP pairs and marks the region where
one VAP is strictly better than the other (higher accuracy and

lower cost). Clearly, the choice of best VAP varies across
video segments and is content-dependent. Thus, it is crucial
for VAP operators and developers to understand under what

videos would one VAP perform better than others.
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Figure 5: Each VAP outperforms the other on many video seg-

ments. each dot shows the relative accuracy & cost between

two VAPs on one video segment.

Together, these findings cast doubt over the current VAP
evaluation methodology:

Key Takeaway: Empirically testing and comparing VAPs

on some specific video workloads can be incomplete.

3.3 Discussion

Our measurement has shown that if a VAP is evaluated on
only a handful of videos, the results may fail to reveal its
true performance range and variance in a target scenario. An
immediate response is “why not using a better test dataset?”

Terminology Definition

Video content
features

Features that measure content-level characteristics
of a video (e.g., avg object speed). See §5.2.

Performance
Clarity (PC)

Comprehensive performance assessment of VAPs
under different video content features. See §4.1.

PC Profile
(Pv )

A lookup table that maps video content features to
performance of VAP v (e.g., Figure 6)

Cost-saving
Strategy

A particular heuristic to save computer/network
cost. See §5.1.

VAP
Primitives

A set of cost-saving strategies that seek to reduce
same type of redundancies. See §5.1.

Table 3: Definition of terminologies used in Yoda.

Why not using a representative dataset? Intuitively, with
a set of “representative” videos per scenario, we can get the
most common VAP performance by testing VAPs on these
videos. Unfortunately, this solution is impractical for two rea-
sons. First, cameras deployed at different locations or future
locations will likely generate video workloads with different
content characteristics beyond those captured by the empirical
tests. Second, since video analytics applications are contin-
uously evolving, representative workloads do not yet exist.
Thus, these tests might overestimate/underestimate the VAP
performance and lead to wrong choice of VAP in deployment.

Why not using a larger dataset? Testing a VAP on a larger
number of videos might offer a more complete view of its
performance range and variance. Yet a “just adding data” ap-
proach will provide little insight on performance distribution
on videos outside of the test dataset, and why a VAP’s perfor-
mance varies across videos.

4 ACHIEVING PERFORMANCE CLARITY

Different from prior work that evaluates VAPs using only
empirical tests, we propose a new methodology for VAP
evaluation: achieving performance clarity. The goal of per-
formance clarity is to not only identify a VAP’s performance
under a wide range of video content, but also characterize
how video content characteristics affect its performance. This
produces a comprehensive and transparent assessment of VAP
performance. In the following, we first present the key con-
cept behind performance clarity and its benefits, and then
discuss potential solutions to achieve performance clarity.

To facilitate the discussion below, Table 3 summarizes the
key terminologies and notations used by our work.

4.1 Defining Performance Clarity (PC)

The performance clarity (PC) of a VAP defines how video

content features affect the VAP’s performance3. Formally, PC

3While performance clarity reveals correlations between content features
and VAP performance, it does not equal to interpretation of DNNs or VAPs.
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Figure 6: An abstract illustration of a VAP v’s performance

clarity (PC) profile. Compared to either testing a VAP on few

videos or reporting its performance distribution over many

videos, this profile provides a more complete picture of the

VAP’s performance by describing its relationship with video

content features, which drastically reduces the ambiguity of

performance compared to those in Figure 4.

of a VAP v is a lookup table Pv that maps from a point x
in the space of video content features to v’s performance (in
cost and accuracy) on videos that match x . This is illustrated
by Figure 6. Compared to existing evaluations that are either
incomplete (e.g., single-scenario tests in Figure 3) and/or
ambiguous (e.g., high performance variability in Figure 4),
PC offers a comprehensive and clear characterization of VAP
performance and its variation.

The key insight behind PC is the following. It is the VAP

performance’s dependencies on video content features that
cause the VAP performance variabilities. As these content
features vary across videos (in the same scenario), so does
VAP performance. To illustrate this, we featurize each video
in our coverage dataset along four content features (more
features discussed later in §5.2), and plot in Figure 7 the
Pearson’s correlation coefficients between individual features
and cost of VAPs when keeping accuracy between 0.9 and
0.95 (to avoid cost variance caused by accuracy variance).
We single out the impact of each feature by restricting other
features to a small range less than 50% of their respective
value ranges. The results show a strong correlation between
each VAP’s performance and the content features.

Benefits of PC: A VAP v’s performance variation and its
content dependency come from the v’s design, i.e. they are in-

herent to v. Thus v’s PC profile (Pv ) can offer useful insights
on its design and deployment. Below are two usage cases.

1. To estimatev’s performance on any target video, we can
directly combine Pv with the content feature distribution
of the video, which can be quickly obtained by scanning
through the video. The computation cost is significantly
less than running v on the video (verified in §6).

2. To identify when one VAP outperforms another, we can
directly compare two VAPs’ PC profiles to identify in which
parts of the content feature space is one VAP better. Again
there is no need to run VAPs on any video.

Later in §6 we use these two tasks to evaluate the accuracy
and benefits of our PC profiler Yoda.

4.2 Feature-based Profiling: Why It Fails

Building an accurate PC profile is challenging. A straight-
forward solution is to create a corpus of videos that span
all combinations of relevant content feature values, and test
VAPs on these videos. Unfortunately, this can be prohibitively
expensive due to the complex relationship between VAP per-
formance and content features. Specifically, our measurement
study (e.g. Figure 7) lead to two observations.

• Heterogeneity impact of features: Different VAPs are af-
fected by different sets of features. For example, VideoStorm
is sensitive to average object speed (f1) but not per-object
area (f3); yet NoScope is highly sensitive to f3 but not f1.

• Combinatorial impact of features: A VAP can be affected
by multiple features. For instance, Glimpse is highly corre-
lated with the features of object speed (f1) and fraction of
frames with objects (f2), and AWStream is sensitive to f1
and f3. Therefore, it is insufficient to test VAPs on videos

that vary along only one feature at a time.

Thus, to cover all possible feature value combinations, we
need O(n |F |) videos, where F is the list of content features
and n is the number of possible values per feature. To put it
into perspective, let us assume that there are 7 content fea-
tures, each having 4 distinct value buckets (e.g., low, median,
high and very high), and we need three 30-second videos to
measure VAP performance for each of the 4

7 feature value
combinations. These are not overestimation: there are at least
7 content features that might affect DNN accuracy or VAP per-
formance (see §5.2), and in our dataset we split each feature in
four buckets as well. The resulting dataset would be over 400

hours, much longer than any VAP test datasets ever created.
Since many VAPs do not reduce compute cost, evaluating
their performance on this hypothetical dataset would take 400
hours even when using one NVidia GTX Titan X GPU card
running the state-of-the-art object detector at 30fps [49].

4.3 Proposed: Primitive-based Profiling

Instead of profiling a VAP as a monolithic entity, we modu-
larize it into multiple primitives (§5.1), each of which can be
profiled separately. The rationale is two-fold.

1. A primitive is affected by fewer features than a VAP.

Each primitive only leverages, and is thus affected by, a
particular set of video content characteristics. For example,
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Figure 7: Strong correlation between video content features

and VAP performance. The four features are: (f1) avg. object

speed, (f2) % of frames with objects, (f3) 10%ile of per-object

area, and (f4) avg. confidence score per object.

many VAPs reduce video frame rates to save cost, and its ef-
ficacy depends only on temporal-related features like object
speeds. Yet these features have little impact on “orthogonal”
techniques like image downsizing or model compression.

2. Primitives have independent impacts on a VAP’s per-

formance. As we will show in §5.1, the performance of a
VAP can be approximated by multiplying the performance
of each primitive when other primitives are set to their cor-
responding most accurate, expensive strategies. In other
words, these primitives can be profiled individually, based
on which the full VAP performance can be constructed.

Reducing profiling cost: Since each primitive is profiled us-
ing only the video features relevant to its cost-saving strategy,
the VAP profiling overhead can be drastically reduced, from
O(n |F |) to O(n |F1 | + n |F2 | + · · · ) = O(nmaxi |Fi |) ≪ O(n |F |),
where Fi is the feature set related to the i th primitive. Using
primitive-based profiling, our eventual dataset consists of only
67.5 minutes of videos, more than two orders of magnitudes
less than that of feature-based profiling (400 hours)!

5 YODA: PRACTICAL VAP PROFILING

We now describe our design of Yoda, the first VAP benchmark
to achieve performance clarity. Yoda builds a PC profile for
each VAP, by applying the aforementioned primitive-based
profiling. In the following, we first present how Yoda modu-
larizes a VAP into independent primitives (§5.1) and chooses
content features and benchmark videos to profile each primi-
tive (§5.2), followed by two core functions offered by Yoda:
VAP profiler and VAP performance predictor (§5.3).

5.1 Modularizing VAPs into Primitives

A VAP may employ one or more cost-saving strategies to
reduce redundancies in video frames, pixels, and DNN param-
eters. Observing this inherent modularity, Yoda categorizes
these strategies into three primitives (see Table 4).4

4Some prior work also reduces redundancies across multiple concurrent
queries [53] or camera streams [51]. We leave them to future work.

VAP
Temporal

pruning

Spatial

pruning

Model

pruning

VideoStorm[94] ✔ (uniform sampling) ✔(quality downsize) ✔ (model selection)

NoScope[56] ✔ (diff-triggered) ✔(specialization)

AWStream[93] ✔ (uniform sampling) ✔(quality downsize)

Glimpse[30] ✔ (diff-triggered) ✔(fixed tiny model)

Vigil[95] ✔ (diff-triggered) ✔ (region cropping)

Chameleon[54] ✔ (uniform sampling) ✔(quality downsize) ✔(model selection)

VideoEdge[50] ✔(uniform sampling) ✔(quality downsize)

DDS[76] ✔ (region cropping)

EAAR[63] ✔ (diff-triggered) ✔ (region cropping)

Reducto[59] ✔ (diff-triggered)

WEG[81] ✔(specialization)

Table 4: Modularizing some example VAPs into primitives.

• Primitive #1: Temporal pruning drops frames to reduce
inter-frame redundancies using at least two strategies. Uni-

form frame selection (e.g., [93, 94]) uniformly samples a
fraction of frames for further analysis and then carries over
their detected objects to future unsampled frames (e.g., via
object tracking). It works well if neighboring frames are
similar. Trigger-based frame selection (e.g., [30, 56]) skips
frames until a heuristic (e.g., significant difference between
frames) signals potential arrivals of new objects. It works
well when most frames have few objects of interest.

• Primitive #2: Spatial pruning reencodes video to reduce
redundancies among pixels. Specifically, image quality

downsizing (e.g., [54, 93]) reduces the video quality (e.g.,

from 1080p to 360p), which still achieves high accuracy if
objects are large. Another strategy, region cropping (e.g., [76,
95]), saves bandwidth by encoding only pixels relevant to
the task. It can be very effective in, for instance, traffic
videos where most vehicles/pedestrians appear small.

• Primitive #3: Model pruning leverages the fact that videos
often have specific object classes/scenes (e.g., traffic videos
contain mostly vehicles/pedestrians with static background),
and trims the full DNN to reduce compute cost while still
achieving high accuracy. Model selection (e.g., [54, 94])
picks a simple yet accurate DNN model from a few pre-
trained models with various capacities. Model specializa-

tion (e.g., [56, 81]) trains a smaller DNN just for particular
scenes/objects and if it fails, falls back to the full DNN.

Finally, for each primitive, Yoda also defines an oracle strat-

egy that does no cost reduction: 100% frame selection (for
temporal pruning, original video quality (for spatial pruning),
and full-size DNN (for model pruning). Since the primitives
essentially trade accuracy for cost savings, these oracle strate-
gies serve as the most accurate yet most costly strategies.

Independence across primitives: As different primitives
seek to remove agnostic redundancies in video/model, we
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Figure 8: Empirical validation of the cross-primitive independence on AWStream, NoScope and Vigil: VAP performance can

be approximated by the product of individual cost-saving strategies’ performance. Each dot is a video segment in our dataset.

Table 5 validates the independence property on more strategy pairs.

Model pruning + Temporal pruning Spatial pruning + Temporal pruning Spatial pruning + Model pruning

M1 +T1 M2 +T1 M1 +T2 M2 +T2 S1 +T1 S2 +T1 S1 +T2 S2 +T2 S1 +M1 S2 +M1 S1 +M2 S2 +M2

Accuracy 0.994 0.997 0.991 0.994 0.992 0.993 0.989 0.993 0.955 0.914 0.993 0.999
Cost 1 1 1 0.999 0.996 0.987 0.999 0.996 1 1 1 1

Table 5: Independence property between any pair of strategies from model-pruning strategies (M1: model selection, M2: model

specialization), temporal-pruning strategies (T1: uniform sampling, T2: trigger-based frame selection), and spatial-pruning

strategies (S1: image downsizing, S2: region cropping). Each value shows the Pearson’s correlation coefficient between the

performance (accuracy or network cost) when the two strategies are combined and the product of the performance when each

strategy is used separately. The high correlations suggest the cross-primitive independence is common.

empirically observe that individual primitives affect VAP per-
formance independently. For instance, the efficacy of spatial-
pruning strategies is largely dependent on object sizes/shapes,
whereas the efficacy of model-pruning strategies depends on
the scene complexity or skewness in object class distributions,
both of which are agnostic to object sizes/shapes.

Figure 8 and Table 5 empirically validate the property of
cross-primitive independence on existing VAPs. For a VAP v,
we first measure performance of each individual strategy by
replacing other strategies with their respective oracle strate-
gies. For instance, we measure the performance (cost and
accuracy) of v’s spatial-pruning strategy by running it on all
video segments in the coverage set while setting v’s temporal-
pruning primitive to the oracle strategy (full frame rate). We
then compare the performance of the full VAP and the mul-

tiplication of performance of its individual primitives. We
do so using Pearson’s correlation. Using this methodology,
Table 5 shows that the independence property largely holds on
different pairs of strategies from two distinct primitives. Fig-
ure 8 shows three concrete examples (AWStream, NoScope
and Vigil), where each VAP’s performance (both accuracy
and cost) closely matches the multiplication of its primitives.

We acknowledge that the cross-primitive independence is
empirical and there can be exceptions to it. For instance, when
spatial pruning downsizes video frames to an extremely low
resolution, no object can be detected regardless of the tem-
poral pruning strategy. In this case, the efficacy of temporal

pruning is affected by spatial pruning, though this is unlikely
to occur in practice as VAPs aim to maintain a high accuracy.

Nevertheless, we believe cross-primitive independence prop-
erty is still valuable. By breaking down each VAP to individ-
ual primitives (strategies) each related to a subset of content
characteristics, we can dramatically reduce the cost of profil-
ing VAPs in an exponential feature space. Likewise, develop-
ers of new strategies can apply the same method (of Figure 8)
to verify if the independence assumption holds.

5.2 Selecting Benchmark Features and Videos

Following the above discussion, Yoda profiles a VAP by first
profiling its individual primitives and assembling them to
construct the full VAP profile. To profile a primitive, Yoda

first selects its associated video features and video datasets.

Feature selection: We first create a set of 43 candidate con-
tent features based on 7 general content-level features (sum-
marized in Table 6) known in the computer vision community
to influence object detection accuracy (e.g., [38, 61]) and
potentially VAP performance. Among them, 6 features are de-
fined either per object, per frame, or per second. We pair them
with 7 statistics per video segment: mean, standard devia-
tion, and {10, 25, 50, 75, 90}th percentiles. Thereby, together
with one per-segment feature (i.e.,% frames with objects), each
video segment can be represented by 43 content features.

For each primitive, we then select the subset of features
(from the candiate set) that correlate with its strategies. Specif-
ically, we pick features that have strong correlations (over 0.3
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Video content feature Definition

Per object
object speed

the reciprocal of IoU between the
bounding boxes of the same object
detected in two consecutive frames

object area
the bounding box size of each object
divided by the frame size

confidence

score

the confidence score of each detected
object given by the full DNN

Per frame
total area of

objects

fraction of pixels covered by all object
bounding boxes in a frame

object count the number of objects per frame

Per second
object arrival

rate
# of new arrival objects per second

Per segment
% frames

with objects

percentage of frames containing
objects

Table 6: Summary of video content features

Primitives Selected features

Temporal

pruning

% of frames with objects, avg. object speed ,
avg. confidence score

Spatial

pruning

% of frames with objects, avg. total area of objects,
10%ile of per-object area

Model

pruning
10%ile of per-object area, avg. confidence score

Table 7: Yoda selects a subset of features for each of the three

primitives, from the 43 candidate video features.

absolute Pearson correlation, a threshold suggested in [71])
with at least one strategy of the four VAPs studied in §3. Here
we intentionally leave out three VAPs (AWStream, Reducto,
DDS) and use them as a holdout to test the generalizability of
Yoda (§6.2). To avoid selecting strongly correlated features
while capturing as many distinct factors as possible, we itera-
tively select a new feature only when it has a low correlation
with those already selected. Table 7 summarizes the selected
features of each primitive. These features can characterize the
PC profiles of existing VAPs at a sufficient fine granularity.
We observe only diminishing improvements with more fea-
tures. That said, Yoda can be expanded with more features as
more VAPs are developed.

Video selection: For each primitive, Yoda selects a subset of
video segments from our coverage set (§3) to cover all of its
feasible5 feature value combinations. We first evenly split the
range of values per feature into n = 4 feature value buckets

(we use feature value and feature value bucket interchange-
ably). For each combination of feature values, we pick at most
k = 4 video segments from our coverage set. n and k can be
increased if more videos are added. As a result, Yoda selects
29 minutes of videos for temporal pruning, 19 minutes for
spatial pruning, and 21 minutes for model pruning.

5Some feature value combinations may be infeasible; e.g., large per-object
area but small total area of objects.

We should stress that the goal of video selection is not to be
representative of a certain scenario (in fact it includes videos
from different scenarios); instead, it finds videos to cover each
important feature value combinations that heavily influence
VAP performance. This process enables PC profiling which
ultimately helps produce accurate performance estimation of
any particular scenario and workload (explained in §4.1). On
the other hand, Yoda meets this goal with only a small fraction
of the coverage video set, because there is a highly uneven
distribution of content features across video segments (e.g.,

highway traffic videos contain mostly fast objects).

Potential selection bias and mitigation: The features se-
lected by Yoda might be biased, since we only pick the fea-
tures relevant to the existing four VAPs. We partially examine
Yoda’s generality by showing that it can successfully profile
AWStream, the VAP held out from our feature/video selec-
tion process (§6.2). As future work, we plan to expand/refine
Yoda by applying the above feature/video selection process to
additional and future VAPs.

5.3 YODA’s Workflow

Using the proposed primitive-based profiling, Yoda offers two
key functions for its users: VAP profiler that produces a PC
profile Pv for each VAP v, and VAP performance estimator

that directly estimatesv’s performance on a target video using
Pv without the need to run v on the video.

In the following, we use v = (t , s,m) to denote a VAP, with
t , s andm being its temporal-pruning strategy, spatial-pruning
strategy, and model-pruning strategy, respectively. The PC
profile of v = (t , s,m) is a lookup table Pv (or Pt,s,m) that
maps a feature value combination x in the feature space of F
to the expected performance in accuracy and cost Pt,s,m(x).

VAP profiler: Leveraging the property of cross-primitive in-
dependence (§5.1), Yoda builds the PC profile of v = (t , s,m)

in two steps. First, we build a per-primitive profile of each of
its strategies. The temporal-pruning profile of v, for instance,
is Pt,s∗,m∗ , where t∗, s∗ and m∗ denote the oracle strategies
(see §5.1) of temporal pruning, spatial pruning and model
pruning, respectively. That is, we build Pt,s∗,m∗ by setting
v’s spatial and model pruning strategies to their oracle ones
and testing it on the benchmark videos for temporal pruning
(introduced in §5.2). Second, we build the full PC profile as

Pt,s,m(x) = Pt,s∗,m∗ (x) · Pt ∗,s,m∗ (x) · Pt ∗,s∗,m(x) (1)

VAP performance estimator: In practice, operators often
need to estimate a VAP’s performance on a new (long) video.
The challenge is that naive featurization will require anno-
tating every object (by human annotation or running a full
DNN), which can be painstakingly slow. Fortunately, obtain-
ing the distribution of feature values over an entire video does
not require accurate results on each single frame. Instead, we
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Figure 9: Yoda achieves a much higher level of performance clarity (higher coverage and lower variance), compared to existing

evaluation methods. A high coverage means Yoda reveals both good and bad performance of a VAP, whereas a low variance

means Yoda accurately estimates a VAP’s performance on new videos.

show that running a low-cost object detector (e.g., MobileNet-
SSD) on aggressively sampled frames can still yield reliable
estimate of the overall feature value distribution. For instance,
to get the distribution of per-object area, we run Mobilenet-
SSD on 10x uniformly sampled frames to get the area of
each detected object and use the distribution of these areas
as the result. This way, Yoda can quickly scan a long video
and produce reliable estimation of the distribution of each
feature value. Once the feature distribution is known, Yoda

then uses Pv to directly map the feature value distribution to
v’s performance on the video.

We implement Yoda as a ready-to-use toolkit for profiling
and evaluating VAPs, and plan to release the toolkit to the
research community. The toolkit provides a shared library
(API) for emulating and benchmarking VAPs.

6 EVALUATION

We evaluate the efficacy of Yoda in achieving VAP perfor-
mance clarity. Specifically, we conduct experiments to answer
the following questions:

• Does Yoda achieve higher VAP performance clarity, com-
pared to existing solutions that emprically test VAPs on a
corpus of videos? (§6.1)

• Is Yoda’s primitive-based profiling accurate and efficient?
Can it generalize to new VAPs? (§6.2)

• Can Yoda accurately predict a VAP’s performance on new
videos at a low computation cost? (§6.3)

• Does Yoda provide new insights for VAP design and deploy-
ment? (§6.4)

6.1 Yoda’s Performance Clarity

As defined in §4.1, performance clarity aims at providing a
comprehensive characterization of VAP performance. Here,
we measure the level of achieved performance clarity by two
dimensions: coverage (the completeness of the evaluation,
the higher the better) and variance (the ambiguity of the
evaluation outcome, the lower the better). The intuition is
that an ideal VAP performance evaluation should have high
performance coverage and low variance. A high coverage
means Yoda reveals both good and bad performance of a VAP,
whereas a low variance means Yoda accurately estimates a
VAP’s performance on new videos. The specific metrics of
coverage and variance are defined as follows. Given a VAP
v’s PC profile Pv (measured from our benchmark dataset of
67-minute videos), Yoda first uses Pv to estimate v’s cost at
a specific accuracy range ([0.9,0.95]) for all videos in the
coverage dataset excluding our benchmark videos. Then, we
compute Yoda’s coverage as the observed cost value range,
normalized by the observed cost value range when testing v

on the whole coverage dataset (14.5 hours of videos). Next,
we compute the standard deviation of Yoda’s cost values as
Yoda’s variance. Figure 9 shows the results of 7 pipelines in
the blue boxes: Yoda achieves high coverage (>90%) and low
variance (<0.2). The figures show one scenario per VAP, but
the conclusion holds in other scenarios.
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Figure 10: Yoda provides more accurate estimation of VAP

performance on new videos than traditional profiling using

representative workload per scenario.

Yoda vs. existing methods: Figure 9 also compares the (cov-
erage, variance) results from the traditional evaluation method,
which tests the performance on a long video (or a set of
videos) from the target scenario (represented by the red dots).
For fairness, each test video is no shorter than our bench-
mark video. We see that the coverage fluctuates significantly
across videos and the variance per video is much higher. This
confirms that traditional evaluations lead to either incom-
plete/partial conclusions or ambiguous results (as we have
shown in §3.2). As a reference point, when the traditional
evaluation uses the entire coverage dataset (14.5 hours), the
variance exceeds 0.25, again significantly larger than Yoda.

Microscopic study on VAP performance estimation: We
take a further step to examine the benefit of elevated perfor-
mance clarity, using the task of per-video VAP performance
estimation. Given Yoda’s Pv , we directly estimate a VAP v’s
performance on any video, and compare it to the ground truth
result obtained by running v on the video. Again we keep the
accuracy to [0.9,0.95] and measure the absolute difference
between the cost value predicted by Pv and the ground truth,
which we refer to as cost “estimation error”. As reference, we
apply an “traditional profiler” to estimate v’s cost in the same
accuracy range by running v on a representative long work-
load under the same scenario of the test video, and compare
it against the ground truth.

Figure 10 plots the median estimation errors of both Yoda’s
profiler and the traditional profiler, across all the long videos
in the coverage dataset (that are not used for profiling). We see
that Yoda’s profiler is much more accurate than the traditional
profiler at estimating VAP performance on new videos.

6.2 Primitive-based Profiling: Accuracy, Cost,

and Generality

Yoda’s efficiency partly stems from its primitive-based pro-
filing, which tests a VAP on only videos that vary along the
primitive-related features. To evaluate it, we compare Yoda

with an expensive profiler built on the whole coverage set.

Accuracy: We measure the discrepancy between the PC pro-
file built on the whole coverage set and Yoda’s PC profile.
The average differences between the profiled performance

Glimpse Vigil VideoStorm AWStream NoScope Reducto DDS
Profile diff (Yoda
vs. coverage set)

0.043 0.005 0.048 0.063 0.083 0.030 0.058

Table 8: Discrepancy between the PC profile built on Yoda se-

lected videos and the PC profile built on coverage set videos.

curves (cost differences at same accuracy levels) are listed
in Table 8 for each of the seven VAPs, and are all very low.
This corroborates our intuition in §5.2 that a small subset of
videos is sufficient to profile PC, since the feature distribution
in the coverage set is highly uneven.

Profiling cost: Profiling a VAP is a one-time cost (i.e., no
need to repeat unless the VAP changes its design). The compu-
tation cost of profiling depends on the VAP design. Intuitively,
VAPs that do not optimize/reduce compute cost will incur a
higher overhead. Thus we present the result of AWStream, a
VAP that does not optimize for compute cost. To profile AW-
Stream, Yoda needs to run the VAP process on ∼72k frames
using the full DNN model for object detection, at four differ-
ent video quality levels and twelve different frame sampling
rates. When running on an Amazon EC2 machine (instance
p2.16xlarge that has 16 GPUs and costs $14.4/hr), the pro-
filing takes 8.5 minutes and cost $2. Even a VAP, such as
VideoStorm, that needs to profile all three primitives takes
only 22.2 minutes and cost $5.3.

Generality: Can Yoda accurately profile a new VAP not con-
sidered by Yoda’s feature and benchmark video selection
process? As mentioned earlier, we intentionally held out three
of the seven VAPs (AWStream, Reducto, and DDS) from the
feature/video selection process (§5.2). Nonetheless, Figures 9
& 10 and Table 8 show that Yoda achieve similar profiling
effectiveness on these holdout VAPs as on other VAPs. While
this does not prove that Yoda generalizes to all future VAPs, it
does indicates that Yoda might profile new VAPs as accurately
as the other VAPs used in its feature selection process.

6.3 Fast-yet-accurate Performance Estimation

Recall that Yoda offers a useful function of directly estimating
a VAP v’s performance on any video, without running v on
the video. We have validated the quality of performance esti-
mation in Figure 10 (§6.1), using the task of estimating cost
at a specific accuracy range ([0.9,0.95]). Below we provide
more results on its estimation accuracy and computation cost.

We consider the task to understand the variability of VAP
accuracy throughout a target video. For this we define two
metrics on accuracy variability: (1) fraction of video segments
whose accuracy is above 0.85, denoted by α ; and (2) fraction
of video segments whose accuracy is below 0.7, denoted by
β . Such metrics are useful in practice since operators often
need to maintain accuracy at an acceptable level. We use
the accuracy distribution of actually running the VAP on the
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Figure 11: Yoda estimates VAP performance faster and more

accurately than actually running VAP on the test videos.

video as the ground truth and define the estimation error by
|αest imated − αr eal | and |βest imated − βr eal |.

We also evaluate Yoda against a “resource friendly” base-
line that actually runs v on a sample set of video frames,
whose estimation accuracy and overhead depend on the sam-
pling rate. Note that as explained in §5.3, Yoda’s performance
estimator also needs to scan a sample set of video frames
to measure the video’s feature value distribution. Thus its
accuracy and overhead also vary with the sampling rate.

Figure 11 shows the estimation errors of Yoda and baseline
on VideoStorm and AWStream, as a function of the estimation
overhead (amount of GPU cycles consumed), for 5 hours of
dashcam videos (not used during profiling). Here Yoda uses
MobileNet-SSD [13] as the cheap object detector to scan the
videos. For clarity, we normalize the estimation overhead
by the amount of GPU cycles consumed by running each
VAP on the full video. We see that Yoda achieves nearly
perfect estimation at a much lower cost, i.e., nearly 2 orders
of magnitude faster than running the VAP on the video.

6.4 Practical Insights for VAP Deployment

By providing a comprehensive profiling on VAP performance,
Yoda also identifies new insights for guiding VAP design and
deployment. We highlight two concrete use cases here.

Conditional correlations among features: Figure 12 shows
the performance of Glimpse’s temporal pruning strategy against
two features: x1 (% of frames with objects) and x2 (average

object speed). For better visualization, we only show the min-
imum cost while maintaining accuracy over 0.9 (i.e., a slice
of the cost-accuracy tradeoff). Figure 12(a) and (b) show that
both compute and network costs are strongly correlated with
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Figure 12: Impact of feature x1 (% of frames with objects) on

performance depends on the value of feature x2 (avg. object

speed). Each box shows the mean and 25th and 75th %iles.

(a) Temporal pruning: Uniform

vs. frame diff-triggered selection

(b) Spatial pruning: Image quality

downsizing vs. region cropping

Figure 13: In both primitives, there is no single strategy that

fits in all type of content. The coloring indicates that where

one strategy is likely better than the other.

x1 when x2 is over 1.6 (which is a typical vehicle speed in
highway videos). But when x2 is below 1.6 (Figure 12(c)),
the correlation becomes remarkably weaker.6

This result implies that when testing VAPs that use this
pruning strategy (e.g., NoScope, Glimpse), the traditional

method may either miss this correlation (if most test videos
have slow moving objects) or claim a strong correlation (if
most test videos have fast moving objects). In contrast, Yoda

reveals not only both correlation patterns, but also when they
emerge, which helps to decide if a VAP should be deployed
in certain video content.

Informed choices of VAP strategies: As a case study, let
us consider two temporal-pruning strategies (uniform frame
selection vs. frame difference-triggered frame selection) and
two spatial-pruning strategies (image quality downsizing vs.
image region cropping). Figure 13(a) shows the operating

regime of each temporal-pruning strategy: frame difference-
triggered selection is better when only a small fraction of
frames contain objects and these objects move fast (magenta).
Otherwise, uniform frame sampling is better (green). Simi-
larly, Figure 13(b) shows that image quality downsizing is
likely to be better if the objects are large and occupy more

6A closer look at the selected frames shows that frame difference-triggered
selection is no longer effective when the object speeds are so low that the
frame difference triggered by their movement can easily be confused with
pixel differences caused by noises in the background.
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space in frames (green), and otherwise the image cropping
strategy is better (magenta). These differences stem from
how various strategies interact with videos. For instance, im-
age quality downsizing eliminates redundant pixels in large
objects of interest (which can be detected with less pixels),
whereas image cropping eliminates redundant pixels outside

of objects of interest by subtracting background.
These results have significant practical implications. For in-

stance, for urban traffic videos during peak hours, AWStream
(uniform frame sampling and image downsizing) is better
than Glimpse (frame difference-triggered frame selection),
because the vehicles appear frequently and in large numbers
and move slowly and often in relatively big sizes (crossroad
cameras tend to be closer to the road than highway cameras),
so it falls in the green regions of both graphs. In contrast, for
urban traffic videos during off-peak hours, where many large-
size objects move quickly (i.e., magenta in Figure 13(a) and
green in Figure 13(b)), we should create a new VAP that com-
bines Glimpse’s temporal-pruning strategy and AWStream’s
spatial pruning strategy.

7 RELATED WORK

Video analytics pipelines: Besides the VAPs described in §2,
there are other VAPs that utilize the same three primitives:
temporal pruning (e.g., [27, 63, 73, 79, 85, 88]), spatial prun-
ing (e.g., [63, 68, 79, 89]) and model pruning (e.g., [40, 73, 79,
90, 91]). Some work also reduces the compute/communication
cost of computer-vision inference pipelines, through super
resolution (e.g., [31, 82, 87]), splitting the DNN between
camera and server (e.g., [37, 44, 47, 51, 84]), DNN-aware
cloud/edge resource scheduling (e.g., [44, 55, 62, 75, 92]),
cross-camera or cross-application correlations (e.g., [28, 52,
65, 78, 92]), scalable data management and execution frame-
works (e.g., [58, 64, 67, 77]), and DNN architectures tailored
to balance throughput and accuracy (e.g., [26, 39, 48, 53, 60,
80, 86]). Many of these techniques leverage content-level
characteristics, such as the ones we have discussed. We hope
that by revealing the importance (and feasibility) of PC, fu-
ture work can extend Yoda to support these VAPs. While a
few prior works have mentioned the issue of performance
variability on some VAPs, the results were limited and only
based on a handful of video features (e.g., object size [36]).
To the best of our knowledge, our work is the first to system-
atically study (using measurements & building benchmarks)
how video content features affect VAP performances.
Edge/video analytics benchmarks: Several benchmarks of
video analytics systems have been proposed for various fo-
cuses, including throughput of video database (e.g., [45, 77]),
video encoding efficiency (e.g., [20, 66]), and shared library
to implement video inference pipelines (e.g., [11]). More
general benchmarks catered for edge network environments
are proposed as well [24, 57, 69]. Also related to Yoda are

those benchmarking vision-task accuracies (e.g., [6, 43]) and
their tradeoffs with throughput/latency (e.g., [49]). While
most benchmarks focus on average performance across im-
ages/videos, some did observe that vision models perform
differently across content [25] and can be sensitive to video
encoding [46] or training data quality [96]. Yoda takes one
step further to systematically reveal the influence of video con-
tent features on VAP performance. Recent efforts in computer
vision similarly demonstrate that features of the test data af-
fect the performance of a classification model (e.g., [23, 41]),
though they focus on perturbing the features to improve model
robustness whereas Yoda seeks to reveal the hidden relation-
ship between VAP performance and content features.

Traditionally, the systems community has benefited from
thorough performance benchmarking of data analytics sys-
tems under a wide range of workloads (e.g., [22, 34]), and
our work is one example of this line of work in the context of
video analytics.

8 CONCLUSION

Our work is a response to the recent trend of building efficient
mobile video analytics systems, at the expense of significant
performance variability caused by video content dependency.
We present a measurement study to shed light on this issue
for the first time, and propose the first VAP benchmark that
elevates performance clarity (how video content affects per-
formance). Although Yoda only scratches the surface of VAP
performance clarity, it is shown to be effective and capable of
identifying hidden design tradeoffs.
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