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ABSTRACT

The proliferation of edge video analytics applications has given rise

to a new breed of streaming protocols which stream aggressively

compressed videos to remote servers for compute-intensive DNN

inference. One popular design paradigm of such protocols is to

leverage the server-side DNN to extract useful feedback (e.g., based

on a low-quality-encoded stream sent to the server) and use the

feedback to inform how the camera should encode and stream the

video in the future. In this server-driven approach, an ideal feedback

should (1) be derived from minimum information from the video

sensor (2) incur minimum bandwidth usage to obtain (3) indicate

the optimal video streaming/encoding scheme (e.g., the minimum

frames/regions that require high encoding quality). However, our

preliminary study shows that these idealized requirements are far

from being met. Using object detection as an example use case,

we demonstrate significant yet untapped room for improvement by

considering a broader design space, in terms of how the feedback

should be derived from the DNN, how often it should be extracted,

and how to determine the encoding quality of the video on which

we extract the feedback.

CCS CONCEPTS

• Networks → Application layer protocols; • Information systems

→ Data analytics; • Computing methodologies → Computer

vision problems.
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1 INTRODUCTION

Video sensors are ubiquitous, in smart cities, homes, industrial set-

tings, leading to an explosive growth of live video streams from

which valuable information can be extracted by computer-vision

models, in forms of Deep Neural Networks (DNNs). Unlike stream-

ing videos for human users to watch, when video sensors send live

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9218-1/22/03. . . $15.00
https://doi.org/10.1145/3508396.3512872

video feeds to a server for compute-intensive DNN inference in

real-time, the goal is to maximize inference accuracy under the pre-

sented camera-to-server bandwidth constraints [10, 17, 27]. This is

increasingly critical, as most video sensors are wirelessly connected

with limited bandwidth and/or pricey data plan.

To this end, many video analytics systems have been recently

proposed [6, 7, 9, 10, 12, 13, 15–17, 19, 24, 27–29], and one of the

common approaches is the server-driven paradigm (e.g., [10, 13, 15,

17, 19, 27, 29]). At a high level, the server-driven paradigm has two

phases (Figure 1): the camera first sends video frames with regions

that do not contain detected objects in low quality to the server-side

DNN; based on the DNN output on these low-quality frames, the

server sends the client a feedback that indicates which regions or

frames are important (e.g., might contain new objects of interests);

upon receiving this feedback, the camera will resend the current

frames or send future frames with only these important regions

encoded in high quality. The rationale of the server-driven paradigm

is that edge cameras, which are incapable of running expensive DNN

inference, cannot accurately determine which regions contribute

more to the inference accuracy of the compute-intensive server-side

DNN. In contrast, the server-driven paradigm uniquely allows the

server-side DNN to directly determine which regions should be

encoded and streamed in high quality.

Given the widespread adoption of systems in the server-driven

paradigm [10, 13, 15, 17, 19, 27, 29] and the numerous tuning op-

tions in these systems (e.g., quality selections, frame rates, feedback

types), we first study the performance of existing server-driven video

streaming systems for video analytics on a variety of videos using

object detection as an example application. Overall, we find that

despite the early promises of the server-driven paradigm in certain

settings as displayed by prior work in this space, existing pipelines

leave many opportunities for performance improvement on the table.

In particular, we identify that current instantiations of the server-

driven paradigm fail to extract server-side feedback that directly and

accurately models which regions are more important to inference

accuracy. This is mainly because these systems rely exclusively on

bounding boxes from the outputs or region proposals on the frames

to extract server-side feedback and determine which regions should

be encoded in high quality. Our study shows that such feedback

extraction fails to capture (1) that many pixels outside the bounding

boxes can still influence DNN inference, and (2) that many pixels

inside the bounding boxes are not as influential.

To resolve this limitation, we need to better model the relative con-

tribution of a pixel to the inference accuracy than existing bounding-

box-based heuristics. To meet this goal, we leverage the well-studied

concept of saliency in the computer vision community [8, 22, 23],

computed as the gradient of the sum of bounding box confidence

scores with regard to each pixel RGB value. In contrast to bounding

boxes or region proposals, saliency, by definition, captures how much
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Figure 1: A typical server-driven video analytics workflow. LQ

refers to low encoding quality and HQ refers to high encoding

quality.

changing each pixel value can affect the output of the server-side

DNN.

To show the potential improvement (in accuracy and bandwidth

savings) of using saliency as the feedback, we first make an ide-

alized assumption that the camera can access the saliency of the

uncompressed frames, which means how much a slight change on

each pixel RGB value can have on the DNN output (§3.3). Based

on the saliency information, the camera then encodes 10% (16x16)

macroblocks with highest saliency sum in high quality and the re-

maining regions in low quality. Compared to existing server-driven

designs (DDS [10], Liu et. al [17], etc.), we found that this idealized

design reduces bandwidth usage by 18% and confidence drop by

76% compared to DDS [10], and reduces bandwidth usage by 40%

and confidence drop by 56% compared to Liu et. al [17] on the DDS

videos (Figure 3).

Yet, realizing the potential improvements in practice can be hard,

since it requires sending the high-quality video frames to the server

in the first place. Surprisingly, we found that the potential improve-

ments can be largely attained by selecting an appropriate encoding

quality and frame rate of the low-quality frames that the server-side

DNN uses to extract saliency (§4.2). In contrast, previous work in

this space manually picks these values, without exploring the full

space of possible values. Our empirical study, over a variety of

videos, shows that a realistic server-driven design can still achieve

43% bandwidth saving and 12% less accuracy drop as compared

to DDS [10], or 57% bandwidth saving without degrading DNN

inference accuracy as compared to Liu et. al [17].

In short, by changing key design choices (the format of feedback,

and the video quality and frame rate at which the feedback should be

extracted) of server-driven video analytics systems, we demonstrate

significant yet untapped improvement over the latest server-driven

designs with a simple yet efficient alternative. In doing so and out-

lining unanswered questions (§5 and §6), we hope to encourage

more research in the larger community towards the optimal design

of server-driven video analytics systems.

2 SERVER-DRIVEN VIDEO ANALYTICS

Edge video analytics seeks to run accurate but compute-intensive

DNN inference on massive video feeds from cheap cameras. To

leverage the abundant server-side compute to optimize the trade-off

between inference accuracy and various types of cost (like bandwidth

consumption [10, 17, 29], server-side compute cost [29] and end-

to-end latency [17, 29]), many proposals in this space follow the

server-driven approach. In an ideal server-driven video analytics

system, the server-side DNN extracts some feedback that indicates

the minimum regions in each frame that must be encoded in high

quality in order for the DNN to maximize accuracy, and then sends

Feedback format Feedback

frequency

Base video quality

DDS [10] Region proposals

(subset)

Every frame Low (QP=36)

Liu et. al [17] Region proposals Every frame Hybrid (QP=35)

Elf [29] Region proposals Every 7 frames Low (Res=760x432)

Table 1: Existing designs of server-driven video analytics sys-

tems and their design choices along three dimensions. We will

show significant potential improvement by exploring alternative

choices along these dimensions. 2

this feedback back to the camera which then encodes and streams

the video frames to the server based on the feedback.

Performance objectives: An ideal server-driven approach should

meet the following two requirements.1 (1) High accuracy: We de-

fine accuracy as the average drop of the confidence at each object,

between the inference output on the highest-quality video and that

on the actually streamed video. Though it is not the true inference

accuracy, we choose to use this definition because it captures any

adverse impact of streaming low quality videos on the inference out-

put: in practice, if the confidence of an object is dropped below the

threshold manually picked by the DNN operator, the object will not

be returned. (2) Low bandwidth usage: We measure the bandwidth

by the video file size over its duration.

Current server-driven designs: Existing proposals [10, 13, 15, 17,

19, 27, 29] of server-driven approach make different design choices

along three dimensions:

• The format of the server-extracted feedback sent from the server

to the camera,

• The frequency at which the feedback is updated by the server-side

DNN, and

• The quality of the video on which the server-side DNN extracts

the feedback. This is measured either by quantization parameter

(QP) in video codecs like H.264 [25] or by resolution. In our

experiments, we will use QP.

In this paper, we focus on three instantiations of server-driven ap-

proach: DDS [10], Liu et. al [17] and Elf [29] that have state-of-

the-art bandwidth-accuracy trade-off.3 Table 1 summarizes three

representative designs from recent papers. Note that in Liu et. al [17]

and Elf [29], the server-driven streaming of video frames is only part

of the overall system, and to make our discussion more focused, the

table only includes their design choices of server-driven streaming.

Performance advantages of server-driven paradigm: These in-

stantiations show promising performance gains over camera-side

frame dropping or quality downsizing, on their perspective datasets.

DDS [10], for instance, maintains same or higher accuracy while re-

ducing bandwidth usage by upto 59% or improves accuracy by upto

9% with no additional bandwidth usage; Liu et. al [17] improves

the detection accuracy by 20.2%-34.8% on two applications with

1We do not explicitly evaluate server-side compute cost and end-to-end inference delay,
but reducing bandwidth usage also helps reduce the end-to-end inference delay, and our
optimization does not affect server-side compute cost of server-driven designs.
2The QP of DDS refers to the quantization parameter of H.264 video codec, while the
QP of Liu et. al refers to the quantization parameter of JPEG image codec. We obtain
the resolution of Elf by timing the resolution of Elf’s input (1920x1280) by 0.4 along
width and height.
3Compared to these three works, Pakha et. al [19] extracts feedback from the low-
quality inference results and thus cannot identify the objects that do not appear in the
low-quality inference results, resulting in low accuracy; and other approaches stream
the objects and the background in the same quality and thus waste bandwidth to encode
the background.
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Figure 2: The comparison of regions selected to be encoded in

high quality between using region-proposal results as feedback

and using saliency values as feedback.

only 2.24ms latency for object tracking on the Augmented Reality

device; and Elf [29] saves bandwidth by 52.6%, while with less than

1% application accuracy sacrifice.

3 BETTER SERVER-DRIVEN FEEDBACK

We begin with the question: what should be the format of server

feedback? We first show that existing designs extract server feedback

that fails to directly capture the importance of different regions

(§3.1), and then propose (§3.2) and evaluate (§3.3) an alternative

design based on the well-studied concept of saliency in the computer

vision community.

3.1 Need for better server feedback

Previous work uses bounding boxes returned by some region pro-

posal networks (such as RCNN in object detection DNNs [20])

and picks some or all of the bounding boxes as the feedback. Such

region-proposal-based feedback, however, suffers from two issues.

First, many pixels outside the region proposals can be crucial

to high inference accuracy and thus need to be encoded in high

quality. For instance, in Figure 2(b), the region proposal fails to

mark the pixels to the right of the car’s bounding box as important

to inference accuracy. The observation that some pixels outside the

object bounding box are important to inference accuracy can be intu-

itively explained as follows. These pixels, if encoded in high quality,

might provide crucial contextual information about the object and

its boundary that helps the DNN to separate the object from the

background with high confidence. Some work [29] also enlarges

bounding boxes in all directions to encode more environmental pix-

els in high quality, but it will significantly increase the high-quality

regions.

Second, many pixels inside the region proposal can have little

impact on inference accuracy, and thus do not need to be encoded

in high quality. For instance, in Figure 2(b), the region proposal

feedback will fail to mark some pixels in the car bounding box

as unimportant to inference accuracy. Since existing solutions en-

code entire bounding boxes in high quality, it will lead to higher

bandwidth usage than necessary.

The fundamental issue is that the region-proposal-based feedback

fails to directly capture the regions whose encoding quality is crucial

to the inference accuracy. Essentially, region proposals (or bounding

boxes that might contain objects) seek to identify the pixels whose

absence or presence will affect the inference results, whereas what

we seek to identify the pixels whose changes of values (due to video

compression) will affect the inference results.

3.2 Saliency as a more meaningful feedback

Ideally, the server feedback should directly measure the relative

contribution of each pixel to the server-side DNN inference accuracy

and indicate which quality level should be used to encode each pixel.

To meet this goal, we introduce the well-studied concept of saliency

from the computer vision community [2, 4]. Mathematically, it is

computed as the gradient of the sum of the bounding box confidence

scores with regard to the pixel RGB values. So why does saliency,

as a server feedback, better indicate the regions whose encoding

qualities are more important to inference accuracy?

Saliency, by definition, measures the impact of any local changes

on a pixel value (e.g., due to video encoding) on the DNN output.

We use a simple example to contrast saliency with region proposals.

Consider a two-class classifier with a logistic function as the final

layer. A logistic function is an S-shaped curve between 0 and 1,

where the output value changes slowly when it approaches 0 or 1. If

an object has a very high confidence score, i.e., a larger output of the

logistic function, the function value remains relatively stable with

a slight change on the input pixel values, and all pixels will tend to

have low saliency values, because the confidence sits on the “plateau”

of the logistic function (i.e., it is unlikely to leave the plateau by any

local pixel changes). In contrast, all pixels related to the object will

firmly belong to a region proposal.

For the advantage of saliency as a direct indicator of important

regions, we use it as the server-side feedback. Figure 2(b) shows an

example saliency map (with high-saliency pixels labeled in bright).

Given a saliency map, we first compute for each pixel the product of

the saliency and pixel value difference between high quality and low

quality, then compute the sum of the product in each macroblock

(16×16), and finally encode the top 10% macroblocks with the

highest sum in high quality. By multiplying the saliency with the

low-quality pixel distortion, we can winnow out pixels whose values

change only marginally when encoded in a low quality. This is not

the only way to assign quality based on saliency, but this simple

encoding scheme (of which an example is shown in Figure 2(c))

already addresses the aforementioned two issues of region-proposal-

based feedback (§3.1).

3.3 Potential gains of saliency-based feedback

Before we design a system to extract saliency as server feedback,

it is natural to ask: if we have access to the saliency map, how

much can we improve the performance, in accuracy and bandwidth

usage? To show the full potential improvements that saliency as

server-side feedback could bring along, we assume access to the

original saliency derived from the uncompressed frames, i.e., how

much lowering the quality of each pixel from its original values will

change the DNN output. We will remove this assumption in the next

section.

Here, we compare the performance in accuracy-bandwidth trade-

offs of this idealized design with existing server-driven designs

(DDS [10], Liu et. al [17] and Elf [29]). We use object detection

as the task, and FasterRCNN [20] from the PyTorch model zoo as

the server-side DNN model. In this test, we use five traffic camera

videos randomly selected from the test videos of DDS [1] and an-

other four camera videos randomly selected from the test videos of

Boggart [5] (the videos are downloaded from YouTube by keywords

like “cityscape” and “street view"), and from each video, we select

the first 300 frames each having at least one object. We label the

two sets of test videos as DDS and Boggart. Although these videos

are relatively short, their content varies from small objects to large

objects and from fast-moving objects to relatively static objects, thus

allowing us to test performance over a variety of content: the DDS

videos include vehicles on highways and in intersections, whereas

10



HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA Qizheng Zhang, Kuntai Du, Neil Agarwal, Ravi Netravali, and Junchen Jiang

the Boggart videos include people walking in college campuses

and town squares. To compute the original saliency values, we run

the backward propagation operation from the DNN output (sum of

bounding box confidence scores) to the input uncompressed frame,

which produces the per-pixel saliency (gradients with regard to the

pixel RGB values). Given the original saliency per pixel, we select

the 10% (16x16) macroblocks in the manner described in §3.2. We

use QP of 2 (a high quality) to encode these macroblocks and a

varying low quality for the remaining macroblocks. The encoding is

done with H.264 [25]. Finally, we send the encoded video frame to

the server-side DNN for inference.

Figure 3 compares the performance trade-offs between existing

server-driven video streaming systems and our idealized design

based on original saliency. Note that we assume that Elf [29] and

Liu et. al [17] know the region proposals on all frames based on

high quality video (this makes their performance strictly better).

Thus, they lie on the same bandwidth-accuracy trade-off since they

leverage the same technique (region-of-interest encoding) to encode

the video based on the same feedback (the region proposals). We

can see that under the assumption that we have accurate saliency

values that models the real contribution of each pixel to the infer-

ence accuracy, on the DDS videos, using saliency as the server-side

feedback reduces bandwidth usage by 18% and confidence drop by

76% compared to DDS [10], and reduces bandwidth by 40% and

confidence drop by 56% compared to Liu et. al [17]; on the Boggart

videos, it reduces accuracy drop by 87% compared to DDS [10] and

by 84% compared to Liu et. al [17] without incurring substantially

more bandwidth. We conclude that the potential of performance

improvement of using saliency as the server-side feedback is signifi-

cantly large. Note that this improvement is achieved by specifying

encoding quality at a finer granularity (macroblocks) than prior work

(region proposals).

4 PRACTICAL DESIGN FOR

SALIENCY-BASED FEEDBACK

While the potential improvements shown in Figure 3 are impres-

sive, fully realizing them in practice is hard, since obtaining the

original saliency requires sending the uncompressed video frames

to the server DNN in the first place. To make it practical, we use an

empirical study to test whether the server-side DNN can still extract

near-original saliency values on a relatively low video quality and

frame rate (sent in Phase 1 shown in Figure 1). Our preliminary

results on a variety of videos have been encouraging—lowering the

video quality and frame rate in phase 1 can still unleash most of the

potential improvements of saliency-based feedback.

4.1 Key parameters of feedback extraction

Any implementation of a feedback extraction process has to set two

parameters: (1) the video quality � (2) the frame rate � at which the

client sends (in the first phase) to the server-side DNN to extract

feedback. Existing designs of server-driven video analytics systems

use certain static values for these parameters (see Table 1 for some

examples), but as we will see shortly, these values often are not

optimal.

Impact on performance: These parameters affect the trade-offs

between the fidelity of the saliency information and the bandwidth

usage to get the saliency. Sending uncompressed or high-quality

frames to the server will use too much bandwidth, but if the saliency

is derived from very low-quality frames, the low-quality pixel values

can be so distorted from the original value that the inference output’s

(a) DDS videos

(b) Boggart videos

Figure 3: Performance trade-off comparison between existing

server-driven video streaming systems and our idealized design

(based on original saliency) on two video datasets featuring

different contents. Each ellipse describes the 1-� distribution of

the performance across our test videos. � next to each ellipse

represents the QP value used to encode the low-quality regions.

gradients on these distorted pixel values will no longer indicate

the original saliency of the pixels. A similar trade-off can be made

by choosing the frequency (the frame rate of the video) at which

DNN extracts saliency. A natural question, therefore, is whether

it is possible to choose “sweet spots” for these parameters, i.e.,

significantly lower the quality and frame rate of the video frames

(in phase 1 of Figure 1) while still allowing the server-side DNN

to extract near-original saliency to save bandwidth and improve

accuracy.

Rationale of “sweet spots”: We believe these sweet spots exist

(which corroborates with the empirical results shown shortly). In-

tuitively, lowering the video quality � does change the pixel-level

saliency, but these changes will not significantly alter the relative

ordering between higher-saliency pixels and lower-saliency ones.

This is because the saliency values empirically follow log-linear

distribution (largely hold in our test videos), which means high and

low saliency values have substantial gaps. Similarly, nearby frames

have different yet similar pixel values, so if we lower the frequency

of saliency feedback extraction � (i.e., reusing the saliency extracted

from recent frames), the relative order of high-saliency pixels and

low-saliency pixels will be largely preserved.

4.2 Empirical impact of first-phase frame quality

and frame rate on performance

To confirm the intuitions, we empirically compare the accuracy-

bandwidth trade-offs of using the original saliency with the per-

formance under different frame qualities (measured in QP � ∈

{28, 32, 36, 40, 44}) and frame rates (calculating saliency every � ∈

{2, 3, 5, 10} frames) in the first phase of Figure 1. We follow the same
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Figure 4: Accuracy-bandwidth trade-off comparison of our ap-

proaches with different first-iteration frame quality on the DDS

videos.

experiment setting (e.g., DNN models, video encoders) as described

in §3.3 and use the five DDS videos.

Frame quality for saliency extraction: Figure 4 shows that confi-

dence drop increases approximately exponentially as the quality of

the frames in the first phase degrades (i.e., increasing �). More im-

portantly, the performance of � = 28 and � = 32 show that saliency

values derived from mildly compressed images yield a sufficiently

accurate estimate on which regions in a frame should be encoded

with high quality. The resulting performance is close to the idealized

design.

Frame rate for saliency extraction: Next, we test if one can fur-

ther reduce bandwidth usage without hurting accuracy by extracting

server feedback less frequently. We use � = 32 as the QP value of the

frame for feedback extraction as part of the findings in the previous

experiment. Figure 5 compares the accuracy-bandwidth trade-offs

under different frequencies of server-side feedback extraction with

the trade-offs and with the potential gains when using the original

saliency values derived from the uncompressed frames. We can see

that extracting saliency values once every 3 frames can provide suffi-

ciently low accuracy drop and 29% reduction in network bandwidth

as compared to extracting saliency values for every frame on the

DDS videos.

Improvement of the realistic design: Finally, we show that the po-

tential gain displayed in §3.3 can be largely attained in practice. We

use the values identified above (� = 32, � = 3) to set the frame rate

and encoding quality based on which saliency feedback is extracted.

Figure 6 compares the resulting performance with that of several

alternative server-driven design as shown in Table 1. We can see

that even when we relax the assumption that the client has access

to saliency values derived from the uncompressed video frames,

on the DDS videos, we still achieve 43% more bandwidth saving

and 12% less accuracy drop compared to DDS [10], or 57% more

bandwidth saving compared to Liu et. al [17] without compromising

inference accuracy greatly; on the Boggart videos, we achieve 21%

more bandwidth saving and 68% less accuracy drop compared to

DDS [10], or 15% more bandwidth saving and 60% less accuracy

drop compared to Liu et. al [17]. In short, our system, despite featur-

ing simple and preliminary design choices, already shows significant

performance improvement as compared to latest systems that take

the server-driven approach, which demonstrates the untapped yet

large potential of server-driven designs.

We acknowledge that the best parameters for our test videos do

not necessarily apply to all videos. Our goal here is not to design

the optimal parameters settings; instead, we want to illustrate that

choosing appropriate values for these key parameters can lead to

favorable performance tradeoffs.

Figure 5: Accuracy-bandwidth trade-off comparison of our ap-

proaches with different saliency extraction frequency on the

DDS videos. � next to each ellipse represents the frame rate of

the first phase, i.e., extract saliency once every � frames.

5 LIMITATIONS AND DISCUSSION

More vision tasks: In this short paper, we use object detection as an

example application to demonstrate the potential performance gain

brought by the idea of saliency. The concept of saliency is compatible

with all vision DNNs and thus our approach could be applied to

other computer vision tasks. However, there is no guarantee that our

approach would yield substantial performance gain on these tasks as

compared to existing baselines.

Other camera/network settings: In this paper, we make the assump-

tion that the cameras have very limited local compute resources and

are only able to encode and stream video frames. If the camera could

support more expensive operations such as running DNN inference,

we could support more designs, e.g., running a cheap client-side

model to identify pixels important to inference accuracy. Also, our

current design can support parameter tuning to adapt to dynamic

network bandwidth. For example, under bandwidth-constrained con-

ditions, we could decrease the frequency at which saliency is ex-

tracted in order to reduce bandwidth usage. The logic of tuning these

parameters for different network settings is part of our future work.

System usage and overhead: Saliency computation involves back-

propagation operations and is expected to incur substantial server-

side GPU memory usage. Our measurement with FasterRCNN [20]

shows that as compared to forward inference, saliency computation

incurs 82% more GPU memory usage. However, our measurement

shows that it would not involve substantial overhead in terms of

CPU usage and main memory: as compared to forward inference,

saliency computation incurs approximately the same CPU usage and

main memory usage.

Limitations of current datasets: We collect all videos from the

highway traffic camera dataset used by the DDS paper [10] and the

videos used by the Boggart paper [5]. It is possible that individual

videos contain biases due to camera positions and road conditions.

For example, if the camera is positioned such that a large proportion

of the video frames contain no object or very few vehicles on the

road, then the room for improvement would be relatively small as

there are few objects of interests for which we can improve inference

accuracy. However, the datasets we selected contain videos featuring

a variety of contents, which help reduce the biases of individual

videos.

6 POSSIBLE EXTENSIONS

So far, we have only scratched the surface of server-driven video

analytics systems. Though our initial design (described in §4) al-

ready shows impressive improvement, it is by no means optimal;

instead, we hope that it would inspire more research to explore the
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broader design space of server-driven video analytics systems. In

particular, our design can be extended along at least five dimensions,

which gives rise to new challenges for the mobile and networking

communities.

Fine quality granularity: Our initial design in §4 (and other server-

driven solutions) employs only two quality levels (a high quality for

high-saliency macroblocks and a low quality for remaining pixels).

Our analysis, however, shows a log-linear distribution of the saliency

values across pixels (i.e., the saliency values are significantly dif-

ferent even among the top 10% macroblocks that are assigned with

high quality), which naturally suggests the use of multiple quality

levels to differentiate the impact of macroblocks.

Saliency-aware temporal encoding: To focus on the spatial quality

assignments driven by server-side feedback, we disabled temporal

encoding (e.g., motion vectors) in this preliminary work. Temporal

encoding, such as motion vector estimation, is complementary to

spatial encoding, and we will study it as part of the future direction.

While adding the temporal encoding (as supported in existing video

codecs) is logically straightforward, the fact that the saliency-based

feedback varies across frames means that care should be taken to

stabilize the saliency-based quality assignment across frames in

order to facilitate efficient use of motion vectors.

Efficient feedback extraction: A high-level message from this short

paper is to rely on saliency from the server-side DNN, but extracting

its values (and other fine-grained information) from the server-side

DNN involves additional compute overheads (e.g., backward prop-

agation), which might be crucial under server-side resource con-

straints. While we empirically found that lowering the frequency

of saliency computation helps, we also notice that there are sev-

eral optimizations proposed in other contexts to speed up backward

propagation and saliency inference, by exploiting sparsity of gradi-

ents [21] or approximating saliency with a cheaper model [8].

Server-driven input: Besides the particular design choices men-

tioned in section §4.2, there are a variety of designs that make clever

use of saliency in server-driven video analytics systems. In particular,

we could adapt the input to the DNN based on server-side extracted

saliency values. For example, the server could ask the client (video

source) to lower the quality of certain regions with lower saliency

values, thus allowing these regions to be encoded with lower quality

in future streaming through a closed feedback loop. Consider the

case where the location and angle of the camera is fixed. In this

scenario, this approach would enable the system to quickly identify

regions in video frames that consistently do not contain objects (e.g.,

static and fixed background) and label them as areas that should be

consistently encoded in low quality in the future.

Cheap client-side saliency extraction: The idea of using saliency

for improving video analytics can be extended beyond server-driven

video analytics systems. One way of using saliency in a different

scenario is to train a cheap quality selector on the edge clients that

quickly and cheaply estimates the saliency values for all macroblocks

in a frame and determines near-optimal quality levels for them. This

design might reduce end-to-end delay and server-side computation

load significantly as compared to systems in the server-driven para-

digm. However, there exists a trade-off between the compute cost of

the model and the accuracy of extracted saliency, and how to find a

design that optimizes this trade-off is part of our future work.

(a) DDS videos

(b) Boggart videos

Figure 6: Accuracy-bandwidth trade-off comparison between

several server-driven video streaming systems and our practical

design on two video datasets featuring different contents. � and

� are the QP value and the frame rate (in the first phase) at

which the saliency feedback is extracted.

7 RELATED WORK

Besides those based on the server-driven approach (§2), here we

briefly discuss alternative designs that optimize the trade-offs be-

tween bandwidth usage and inference accuracy.

A common approach runs certain simple logic (using the camera’s

limited local compute resource) to identify which frames are of little

contribution to the inference accuracy and thus can be discarded [6,

7, 15, 27]. However, this approach encodes the remaining frames

with uniform quality, and thus wastes bandwidth to encode the

background. Another approach deploys cheap camera-side vision

models to distinguish objects and background, and then uses low

quality to encode the background to save bandwidth [9, 28]. Due to

the limited compute resource, however, the camera-side model is

not accurate enough to detect all potential objects (especially small

or partially occluded objects), causing the server-side DNNs to miss

these objects, as observed in [10].

Another line of research extracts and compresses intermediate fea-

tures of the video by camera-side DNN and streaming the features to

the server for analytics [3, 11, 14, 18, 26]. Though it is promising for

video/image classification, it cannot efficiently compress the video

for object detection since object detection requires knowing much

more information, like the location and the size of multiple objects,

to deliver accurate object detection results while classification only

needs to generate a correct class label.
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