

www.acsnano.org

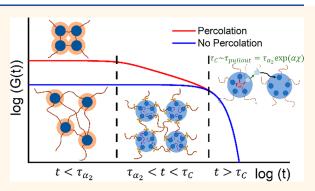
# Unravelling the Mechanism of Viscoelasticity in Polymers with Phase-Separated Dynamic Bonds

4 Sirui Ge, Subarna Samanta,\* Bingrui Li, G. Peyton Carden, Peng-Fei Cao, and Alexei P. Sokolov\*



Cite This: https://doi.org/10.1021/acsnano.2c00046




**ACCESS** 

Metrics & More

Article Recommendations

s Supporting Information

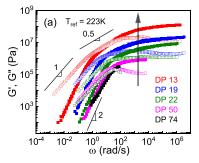
5 ABSTRACT: Incorporation of dynamic (reversible) bonds within 6 polymer structure enables properties such as self-healing, shape 7 transformation, and recyclability. These dynamic bonds, sometimes 8 refer as stickers, can form clusters by phase-segregation from the 9 polymer matrix. These systems can exhibit interesting viscoelastic 10 properties with an unusually high and extremely long rubbery 11 plateau. Understanding how viscoelastic properties of these materials 12 are controlled by the hierarchical structure is crucial for engineering 13 of recyclable materials for various future applications. Here we 14 studied such systems made from short telechelic polydimethyl-15 siloxane chains by employing a broad range of experimental 16 techniques. We demonstrate that formation of a percolated network



of interfacial layers surrounding clusters enhances mechanical modulus in these phase-separated systems, whereas single chain hopping between the clusters results in macroscopic flow. On the basis of the results, we formulated a general scenario describing viscoelastic properties of phase-separated dynamic polymers, which will foster development of recyclable materials with tunable rheological properties.

21 KEYWORDS: associating polymers, network rearrangement, phase separation, interfacial layer, mechanical reinforcement, dynamic bonds

## 22 INTRODUCTION


23 Polymers with dynamic bonds constitute an increasingly 24 promising class of functional materials, where polymer chains 25 are bonded together by reversible covalent  $^{1-3}$  (e.g., vitrimers) 26 or noncovalent (e.g., hydrogen and ionic bonds) interac-27 tions.<sup>4–8</sup> Because of the reversible nature of these transient 28 interactions, it helps not only for developing functional 29 materials such as self-healing ability and extreme stretch-30 ability, 9,10 shape memory, 11,12 and controlled stress relaxation 31 but also makes them easy-to-process/recyclable. 13,14 The 32 common interaction type is binary in nature, where two 33 complementary groups form reversible bonds. The important 34 parameter regarding this bond is the binding/dissociation 35 energy along with the lifetime of the transient bonds, 15 which 36 can be tuned based on the chemistry of the functional groups. 37 At shorter time scale, material with these sticky bonds behaves 38 as a network, whereas at time scale longer than that of the 39 bond dissociation, the restriction to material flow is removed. 40 However, this simple picture gets increasingly complicated in 41 the presence of hierarchical structures within the material. 42 Spider silk is one such example from the natural world, where 43 H-bonds between adjacent  $\beta$ -strands of repetitive alanine/ 44 alanine-glycine moieties form nanocrystalline domains.

These  $\beta$ -sheet nanocrystals act as load-bearing cross-linking 4s clusters within the glycine-rich amorphous matrix, endowing 46 them with high elasticity and exceptional toughness/strength 47 surpassing man-made fibers like Kevlar. 48

Similar strategies have been employed in designing tough 49 high-performance elastomers. This type of nanophase 50 separation can be achieved synthetically when the functional 51 groups are immiscible with polymer matrix and phase-52 segregate in clusters, as observed in ionomers, associating 53 polymers, and recently in vitrimers. Clusters having 54 higher glass transition or melting temperature compared to 55 that of polymer matrix result in a prolonged rubbery plateau. Moreover, recent studies suggest that structural relaxation in 57 these clusters controls viscosity and terminal relaxation of the 58 polymers with phase separated associating groups. However, a 59

Received: January 3, 2022 Accepted: February 25, 2022





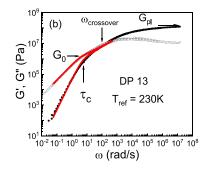



Figure 1. (a) Shear modulus master curves for the telechelic PDMS-COOH measured at temperatures higher than second  $T_o$ . The arrow indicates the increased rubbery plateau value for shorter chains. Slope of 0.5 indicates Rouse-like regime, whereas regime with  $G' \approx \omega$  and  $G'' \approx \omega^2$  at lower frequencies indicate terminal flow behavior of these polymers. (b) Master curve of the shear modulus for DP 13 sample based on the reference temperature of 230 K. Solid and open symbols refer to G' and G'' spectra, respectively. Fits based on the Rouse model are shown as red lines.  $\tau_C$  refers to terminal relaxation of the material. The values of the rubbery plateau modulus  $(G_{Pl})$  and shear modulus at terminal relaxation  $(G_0)$  are indicated with arrows. The crossover of G' and G'' is labeled as well, demonstrating that the estimation of the terminal relaxation time from the crossover is not accurate.

60 detailed microscopic understanding of how the network 61 rearrangement occurs in the presence of phase separated 62 clusters is still lacking. Simulations studies<sup>27</sup> suggested that structural rearrangements in this type of systems should go 64 through fusion and dissociation of the clusters. This idea, 65 however, was questioned in the recent experimental stud-66 ies.<sup>28,29</sup> Moreover, a clear separation between the time scale of cluster's structural relaxation time and rheological terminal mode was observed and remains unexplained.<sup>24,7</sup>

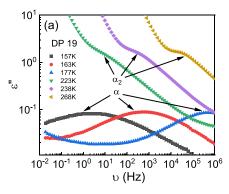
Experiments<sup>30-32</sup> also indicated the presence of a thin 70 interfacial polymer layer with restricted mobility around these 71 clusters, which also results in the elevated rubbery plateau 72 modulus explained by the mechanical interfacial layer model (ILM). However, the interfacial layers might overlap forming a percolated network.<sup>33,34</sup> Since the mechanical ILM assumes independent fillers with interfacial later,<sup>35</sup> the previous interpretation from mechanical ILM is questionable. For the polymer nanocomposites systems, the mechanical percolation model has already been utilized to describe the mechanical reinforcement in the presence of percolated network of the overlapping interfacial layers. <sup>36–38</sup> It has, however, never been used to study the analogous system like the phase separated associating polymers. Thus, the mechanism of network rearrangements and its effect on viscoelastic behavior in systems with clusters of the dynamic bonds remains a puzzle. Developing a microscopic understanding of viscoelasticity in 86 polymers with clusters of dynamic bonds will help with rational design of materials with multifunctional properties and relatively easy recyclability.

To address this challenge, we provide a detailed analysis of 90 the earlier studied model telechelic polymers with phaseseparated functional end groups.<sup>24,39</sup> We demonstrate that the mechanical percolation model indeed explains well the unusually high rubbery plateau modulus in these materials. 94 Most importantly, based on the analogy to block copolymers, we propose a mechanism of the network rearrangements via single chain hopping between clusters controlled by a thermodynamic energy barrier related to the immiscibility of the dynamic end groups and the polymer matrix. On the basis of these results, we propose a general scenario of viscoelasticity 100 of polymers with clusters of dynamic bonds. The presented in-101 depth understanding provides design rules for developing 102 functional materials with tunable viscoelastic properties.

#### RESULTS AND DISCUSSION

The telechelic PDMS-COOH used in this work consists of a 104 backbone with polydimethylsiloxane (PDMS) terminated with 105 4-(propylamino)-4-oxobutanoic acid (COOH) (Figure S1). 106 The telechelic PDMS-COOH has different degrees of 107 polymerization (DP) of 13, 19, 22, 50, and 74.

103


Differential Scanning Calorimeters (DSC). Each of the 109 investigated PDMS-COOH samples shows two glass transition 110 steps in their heat flow spectra. The one at lower temperature 111 (~150 K) refers to the glass transition of the segmental 112 motions of PDMS chains, while the one at higher temperature 113  $(\sim 200 \text{ K})$  originates from the end-group motions within the 114 clusters (Figure S3).24

X-ray Scattering. Phase separation in PDMS-COOH has 116 been verified through X-ray scattering in our previous 117 publication.<sup>32</sup> The low-q weak result at around 0.1 Å <sup>-1</sup> 118 indicates the phase separation. The similar X-ray scattering 119 result was observed in DP 19 PDMS-COOH, which has not 120 been studied before (Figure S4). The detailed analysis of X-ray 121 scattering spectra<sup>32</sup> provides information on average center-to- 122 center cluster distance (d) and radius of the cluster ( $R_{cluster}$ ) 123 (Table S1). The nearest cluster surface-to-surface distance can 124 be calculated through  $d_{IPS} = d - 2R_{cluster}$  (Table S1). With 125  $R_{cluster}$ , the grafting density  $(n_e)$  of PDMS chains on surface of 126 the clusters can be calculated as

$$n_e = \frac{V_{cluster}}{S_{cluster}V_{end}} = \frac{R\rho N_A}{3M_{end}}$$
(1) 128

where  $M_{\it end}$  and ho are the molecular weight and density of the 129 associating chain end, respectively.  $N_{\rm A}$  is the Avogadro's 130 number. The grafting density was found to be  $\sim 1.7-1.9 \text{ nm}^{-2}$  131 for all associating polymers (Table S1).

Rheology. Small amplitude oscillatory shear was employed 133 to measure linear viscoelastic behavior of the associating 134 polymers. Shear modulus master curves were constructed 135 (Figure 1a) by using time—temperature superposition (TTS) 136 f1 of the measured rheological spectra at different temperatures. 137 The shift factor at various temperature used for TTS is shown 138 in Figure S5. As was shown in our earlier studies, 32,39 the 139 rubbery plateau modulus  $(G_{Pl})$  increases as the chain length of 140 the polymer backbone decreases, reaching an unusually high 141 level of  $G_{Pl} \approx 100$  MPa in the shortest chains with DP = 13 142 (Figure 1a).



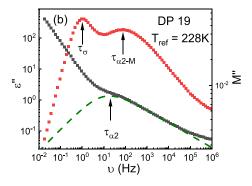



Figure 2. (a) Dielectric loss spectra for PDMS-COOH (DP 19) in the range of  $10^{-2}$  to  $10^6$  Hz. Loss peaks at low temperatures correspond to PDMS segmental motion ( $\alpha$ -relaxation), while at higher temperatures, sticker motion within the cluster is visible as a separate process, termed as  $\alpha_2$  process. (b) Comparison of  $\varepsilon''$  spectra and M'' spectra for telehelic PDMS-COOH with DP of 19 in which  $\tau_{\alpha_2}$ ,  $\tau_{\alpha_2-M}$ , and  $\tau_{\sigma}$  are labeled.

Terminal relaxation is observed at low frequencies where G'145 and G'' increase with frequency as  $\omega^2$  and  $\omega^1$ , respectively. In 146 addition, the samples with DP of 13, 19, and 22 exhibit an 147 intermediate regime between the rubbery plateau and the terminal relaxation where both G' and G'' follow power law 149 behavior  $\sim \omega^{\alpha}$  with the exponent  $\alpha \approx 0.5$  (Figure 1a). In 150 contrast, this regime is absent in spectra of samples with DP 50 151 and DP 74, where the terminal relaxation is reached right after 152 the end of the rubbery plateau (Figure 1a). In our previous 153 publication, the terminal relaxation time was determined from 154 the crossover of G' and G''. <sup>24,39</sup> However, this method is only 155 valid for the Maxwellian relaxation behavior. Because of the 156 presence of the Rouse-like spectra in lower DP samples, the 157 crossover is no longer able to provide the accurate estimation 158 of the terminal relaxation time (Figure 1b). In such case, the 159 longest Rouse time scale is more accurate. Thus, to acquire the 160 accurate terminal relaxation time  $(\tau_C)$  as well as its 161 corresponding shear modulus level  $(G_0)$ , the Rouse model<sup>40</sup> 162 is utilized to fit the shear modulus spectra:

$$G' = G_0 \sum_{j=1}^{N} \frac{\omega^2 \tau_j^2}{1 + \omega^2 \tau_j^2} \text{ and } G'' = G_0 \sum_{j=1}^{N} \frac{\omega \tau_j}{1 + \omega^2 \tau_j^2}$$
(2)

in which  $\tau_j = \frac{\tau_c}{j^2}$ . For PDMS-COOH with DP of 50 and 74, N 165 is chosen to be 1, which corresponds to the Maxwell relaxation. 166 However, for PDMS-COOH with DP of 13, 19, and 22, N is 167 chosen to be an arbitrary number to fit the region of parallel 168 decrease of the G' and G'' with slope of 0.5. The proposed fit 169 describes well the shear modulus spectra (see, e.g., Figure 1b 170 for PDMS-COOH with DP of 13) and provides estimates of 171 both the  $G_{Pl}$  and  $G_0$  as well as  $\tau_c$ .

Broadband Dielectric Spectroscopy (BDS). To analyze dynamics in the studied systems, we employed dielectric rate spectroscopy that revealed two major dielectric processes.  $^{24,39}$  175 As a representative example, dielectric loss spectra ( $\varepsilon''$ ) for the rate sample with DP 19 at several temperatures are shown in Figure 2a. Dielectric loss spectra for the rest of the samples are presented in Figure S6a-d. The process at lower temperatures rate PDMS segmental motion ( $\alpha$ -relaxation), while the process at higher temperatures is ascribed to motion of associating groups in the clusters, termed as  $\alpha_2$ -relaxation.  $^{24}$ 

To compare rheological and dielectric data, the latter should be converted to the dielectric modulus  $M^*(\omega)$ :

$$M^*(\omega) = \frac{1}{\varepsilon(\omega)} = M'(\omega) + iM''(\omega)$$
(3) <sub>184</sub>

 $M^{\prime\prime}$  spectra exhibit an additional dielectric process at lower 185 frequencies (Figure 2b), which originate from conductivity 186 relaxation  $(\tau_{\sigma}).^{43,44}$  We also noticed that the time scale of  $\alpha_2$  187 relaxation process from  $M^{\prime\prime}$   $(\tau_{\alpha_2-M})$  is faster than that from 188  $\varepsilon^{\prime\prime}$  spectra  $(\tau_{\alpha_2}).$  This is expected, as the relationship between 189 characteristic relaxation time from  $M^{\prime\prime}$  spectra  $(\tau_M)$  and  $\varepsilon^{\prime\prime}$  190 spectra  $(\tau_{\varepsilon})$  can be expressed by  $^{45}$ 

$$\tau_{\rm M} = \frac{\varepsilon_{\rm inf}}{\varepsilon_{\rm s}} \tau_{\rm e} \tag{4}_{192}$$

in which  $\varepsilon_s$  and  $\varepsilon_{inf}$  indicate the dielectric constant in the limit 193 of high and low frequencies. Thus,  $\tau_{\alpha_2-M}$  is shorter than  $\tau_{\alpha_2}$ , as 194 was already emphasized in the literature.

To acquire the characteristic relaxation time from modulus 196 spectra, the M'' spectra were fit based on one Havrilliak- 197 Negami (HN) function plus one Debye-like process for 198 conductivity relaxation:

$$M''(v) = Im \left\{ \frac{\Delta M_{\alpha_2}}{(1 + (2\pi v \tau_{HN-M})^{\beta_M})^{\gamma_M}} + \frac{\Delta M_{\sigma}}{1 + 2\pi i v \tau_{\sigma}} \right\}$$
(5) 200

in which  $\Delta M_{\alpha_2}$  and  $\Delta M_{\sigma}$  are the "modulus strength" of  $\alpha_2$   $_{201}$  process and conductivity process.  $\tau_{HN-M}$  and  $\tau_{\sigma}$  are the HN  $_{202}$  relaxation time for  $\alpha_2$  process and the conductivity relaxation  $_{203}$  time from dielectric modulus.  $\beta_M$  and  $\gamma_M$  are the stretching  $_{204}$  parameters for the  $\alpha_2$  process. The relaxation time corresponding to the peak position of  $\alpha_2$  process in M'' spectra is  $_{206}$  calculated using  $_{46}$   $_{207}$ 

$$\tau_{\alpha_2 - M} = \tau_{HN - M} \left[ \sin \left( \frac{\beta_M \pi}{2 + 2\gamma_M} \right) \right]^{-1/\beta_M} \left[ \sin \left( \frac{\beta_M \gamma_M \pi}{2 + 2\gamma_M} \right) \right]^{1/\beta_M}$$
(6) 208

**Mechanical Percolation Model.** Our previous studies 209 revealed the existence of an interfacial polymer layer around 210 the phase-separated clusters with a thickness  $l_{int} \approx 0.8-0.9$  nm 211 regardless of PDMS backbone length.<sup>32</sup> This small thickness 212 was explained by the small radius of the phase separated 213 clusters,  $R_{\rm cluster} \approx 1.4-1.6$  nm.<sup>32</sup> When the distance between 214 clusters surfaces  $d_{\rm IPS} < 2l_{int}$  the interfacial layers overlap with 215

216 each other, forming a percolating network. According to Table 217 S1, the percolation of the interfacial regions can happen in 218 PDMS-COOH with DP of 13, 19, and 22, while the interfacial 219 layers are expected to be fairly separated in PDMS-COOH 220 with DP of 50 and 74 (Figure 3). The critical volume fraction 221 of the cluster,  $(f_e)_o$  for percolation is estimated as  $d_{IPS} \approx 2l_{int}$  222 and appears in the range  $\sim 13.5 \pm 1.2$  wt %.

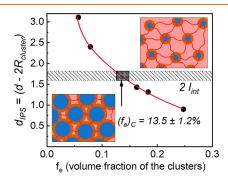



Figure 3.  $d_{IPS}$  as a function of  $f_e$ . Range of  $2l_{int}$  value shown as a gray area. The box area indicates the estimated range of percolation threshold,  $(f_e)_C$ , when  $d_{IPS} \approx 2l_{int}$ . Above the percolation threshold, interfacial layers overlap to form a percolated network, whereas below the threshold, they are well separated. Blue circles represent the clusters of functional groups, which are surrounded by interfacial layers (orange) and linked by PDMS chains (red).

This analysis reveals that indeed interfacial layers form a percolating structure in systems with low DP, and the mechanical percolation model needs to be used to describe the elevated mechanical modulus observed in these samples. According to this model, 47 a composite modulus is expressed as

$$G_c = \frac{(1 - 2\psi + \psi X_r)G_sG_r + (1 - X_r)\psi G_r^2}{(1 - X_r)G_r + (X_r - \psi)G_s}$$
(7)

230 in which  $G_r$  is the shear modulus of the rigid phase.  $G_s$  is the 231 shear modulus of the matrix (in this case PDMS matrix, which 232 can be estimated from the classical rubber elasticity theory).  $X_r$  233 is the volume fraction of the overall rigid phase.  $\psi$  is the 234 volume fraction of the spanning rigid phase formed in the 235 percolated network through the overlapping of the interfacial 236 layer and defined as

$$\psi = \begin{cases} 0, & X_r < X_c \\ X_r \left( \frac{X_r - X_c}{1 - X_c} \right)^b, & X_r \ge X_c \end{cases}$$
 (8)

238 Here  $X_c$  is the volume fraction of the rigid phase at the 239 percolation threshold; b is the percolation exponent character-240 izing the rate of the percolation structure formation with  $X_c$ . 241 We assume for simplicity that the clusters and their 242 interfacial layers form a single rigid phase with volume fraction 243  $X_r = \varphi_{cluster} + \varphi_{int}$ . The mechanical percolation model (eqs 7 244 and 8) successfully describes the mechanical reinforcements in 245 studied polymers (Figure 4). The value of  $X_r$  at the percolation 246 threshold is found to be 56.5%, which corresponds to the 247 critical volume fraction of the cluster,  $(f_e)_c \approx 14.8\%$ . The 248 obtained value is in good agreement with the value estimated 249 assuming an ordered cubic arrangement of the clusters (Figure

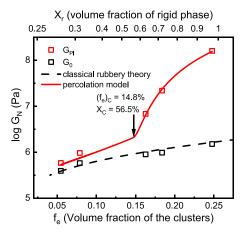



Figure 4. Variation of  $G_{PL}$  (red squares) and  $G_0$  (black squares) as a function of  $f_e$  and  $X_r$ . Red line shows the fitting based on the mechanical percolation model (eqs 7 and 8). Black dashed line indicates the prediction from classical rubber elasticity theory. The arrow indicates the estimated from the fit percolation threshold.

4). The critical exponent b obtained from the fit is  $\sim 1.7$ , which 250 also agrees with the prediction from scalar elastic model in 3 251 dimensions developed by de Gennes. Experimental inves- 252 tigations of percolation in various systems including organic 253 polymer blends, polymer gels, and nanocomposite indicate the 254 exponent b ranges from 1.6 to 2.2. The model also 255 provides the estimates of the shear modulus of the rigid phase, 256  $G_r \approx 177$  MPa.

The obtained  $G_r$  value agrees well with the estimates of the 258 shear modulus of the rigid phase using the two-phase model 259 (TPM) (Table 1). The two phases are clusters and the 260 tl

Table 1. DP, Volume Fraction of Clusters  $\varphi_{cluster}$ , Volume Fraction of the Interfacial Layer  $\varphi_{int}$ , Volume Fraction of Clusters in Rigid Phase  $\varphi_{cluster,TPM}$ , Volume Fraction of Interfacial Regions in Rigid Phase  $\varphi_{int,TPM}$ , and Overall Shear Modulus of Rigid Phase Estimated Using TPM for PDMS-COOH Associating Polymers

| material      | DP | $\left( egin{array}{c} arphi_{	ext{cluster}} \ \left( lpha  ight) \end{array}  ight)$ | $\left( egin{array}{c} arphi_{int} \ (\%) \end{array}  ight)$ | $\left( egin{array}{c} arphi_{	ext{cluster,TPM}} \ \left( lpha  ight) \end{array}  ight)$ | $egin{pmatrix} arphi_{int,TPM} \ (\%) \end{pmatrix}$ | $G_r(\text{TPM})$ (MPa) |
|---------------|----|---------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|
| PDMS-<br>COOH | 13 | 24.7                                                                                  | 71.8                                                          | 25.6                                                                                      | 74.4                                                 | 171                     |
|               | 19 | 18.4                                                                                  | 59.1                                                          | 23.7                                                                                      | 76.3                                                 | 164                     |
|               | 22 | 16.3                                                                                  | 40.8                                                          | 28.5                                                                                      | 71.5                                                 | 183                     |
|               | 50 | 7.9                                                                                   | 26.6                                                          | 22.9                                                                                      | 77.1                                                 | 161                     |
|               | 74 | 5.7                                                                                   | 19.7                                                          | 22.4                                                                                      | 77.6                                                 | 159                     |
|               |    |                                                                                       |                                                               |                                                                                           |                                                      |                         |

interfacial layer. The necessary parameters to estimate the 261 shear modulus using TPM are shear modulus, volume fraction, 262 and Poisson ratio of both clusters and the interfacial layer. The 263 modulus of the interfacial layer was estimated to be ~100 264 MPa. The Poisson's ratio of the interfacial layer (which 265 consists of PDMS segments) is taken from literature 55 based 266 on the PDMS values. For clusters, the modulus and the 267 Poisson's ratio are assumed to be 3 GPa and 0.33, respectively, 268 which are typical values for glassy hydrogen-bonded systems 269 such as glycerol. The volume fraction of cluster and 270 interfacial layer in the rigid phase were estimated as 271  $\varphi_{cluster,TPM} = \frac{\varphi_{cluster}}{\varphi_{cluster} + \varphi_{int}}$  and  $\varphi_{int,TPM} = \frac{\varphi_{int}}{\varphi_{cluster} + \varphi_{int}}$ , respectively, 272 where values of  $\varphi_{cluster}$  and  $\varphi_{int}$  for PDMS-COOH with DP of 273 13, 22, 50, and 74 were taken from previously published 274

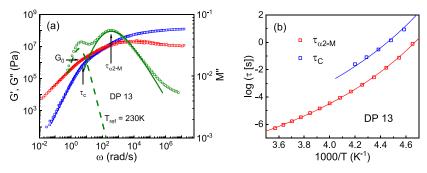



Figure 5. (a) Comparison between the shear modulus (red and blue symbols) and the dielectric loss modulus spectra (green symbols) for PDMS-COOH with DP of 13 sample at 230 K. Terminal relaxation time scale ( $\tau_C$ ) and  $\alpha_2$ -relaxation time scale ( $\tau_{\alpha_2-M}$ ) (arrows) are separated by more than one order of magnitude. The low-frequency process (dashed line) in the dielectric modulus spectrum corresponds to conductivity relaxation process with a Debye-like shape. (b) Temperature dependence of the two time scales (symbols) and their fit based on eq 12 and eq 11 (lines).

275 work,  $^{32}$  and  $\varphi_{int}$  of DP 19 PDMS-COOH was estimated 276 through

$$\varphi_{int} = \varphi_{cluster} \left[ \left( \frac{l_{int}}{R_{cluster}} + 1 \right)^3 - 1 \right]$$
(9)

278 by using  $l_{int}=0.85$  nm, the value estimated in our previous 279 studies. The results are in good agreement with the value 280 from mechanical percolation model ( $\sim$ 177 MPa), validating 281 that the percolation model explains well the mechanical 282 reinforcement in the studied samples.

Viscoelastic Behavior near Terminal Relaxation. It is 2.83 284 interesting that in systems with no percolation (i.e., with DP of 285 50 and 74), the terminal relaxation demonstrates Maxwellian 286 behavior, that is, the rubbery plateau stops at the terminal 287 relaxation. In contrast, the rubbery plateau in systems with 288 percolating rigid regions (i.e., with DP of 13, 19, and 22) first 289 decreases with a power law before reaching the terminal 290 relaxation (Figure 1a). Consequently, the moduli  $G_{Pl}$  and  $G_0$ 291 (eq 2) appear to be comparable for nonpercolated systems, 292 while  $G_{Pl}$  is much higher than  $G_0$  in percolating systems, and 293 the difference increases with decreases in samples DP (Figure 294 4). Analysis of these data revealed that  $G_0$  obtained from the fit 295 for all the sample follows the classical rubber elasticity 296 predictions for a given length of the PDMS chains (Figure 4), 297 demonstrating that the mechanical reinforcement actually 298 vanishes at terminal relaxation.

To study the viscoelastic properties in phase separated 300 associating polymers, we compared shear modulus spectra and 301 dielectric M'' spectra (Figure 5a). It is evident that  $\tau_c$  is significantly slower than  $\tau_{\alpha_2 - M}$  indicating that motion of 303 stickers inside the clusters is not sufficient for terminal relaxation. Interestingly, the shear modulus in percolating systems starts to decrease from the rubbery plateau level at the time scale comparable to  $\tau_{\alpha_2 - M}$  (Figure 5a), suggesting that the stickers motions within the clusters lead to the softening of the modulus down to the level predicted from classical rubber elasticity. Indeed, when chain ends in clusters are unable to 310 move, the whole system is similar to nanoparticles with 311 extremely high grafting density ~1.7-1.9 chains/nm<sup>2</sup> (Table 312 S1). This grafting density is ~3-times higher than in usual 313 polymer grafted nanoparticles, leading to strong crowding and 314 stretching of the chains in the interfacial layer. Stretching of the 315 chain is supported by larger population of the gauche states 316 found from wide-angle X-ray scattering results. 32 All these

factors strongly hinder bending of the PDMS segments in the 317 interfacial layer and lead to high modulus. However, when 318 chain ends start to move inside the clusters, the PDMS 319 segments in the interfacial layer can be easily rearranged and 320 change their conformations under external force, and the 321 macroscopic deformation is easier to reach. This results in a 322 gradual softening of the polymer interfacial layer, which is 323 demonstrated through the parallel decrease of the G' and G'' 324 with decrease in frequency. This softening reaches the modulus 325 level expected from the rubber elasticity at the time of the 326 terminal relaxation. Moreover, similar temperature depend- 327 ences of both  $\tau_{\alpha_2-M}$  and  $\tau_C$  (Figures 5b and S7) suggest that 328 dynamics in the clusters might act as a precursor for the 329 macroscopic rearrangement of the network.

Mechanism of Network Rearrangement. The mecha- 331 nism of network rearrangement in phase separated associating 332 polymers remains a puzzle. It is obvious that the network 333 rearrangement should involve exchange of the stickers between 334 different clusters.<sup>27,58</sup> On the basis of computer simulations, 335 Amin et al. suggested that exchange should go through a merge 336 of different clusters.<sup>27</sup> This mechanism was questioned by 337 Mordvinkin et al.,<sup>28,29</sup> where telechelic poly(isobutylene) 338 (PIB) with functional end groups was studied. These systems, 339 like the polymers studied here, have well-separated clusters, 340 and merging of these clusters is not feasible due to the 341 presence of multiple chains between the clusters. These 342 systems, however, are similar to phase separating triblock 343 copolymers. In phase separating triblock copolymers, network 344 rearrangement process is dominated by a chain pullout 345 process, which needs to overcome the free energy penalty 346 from the immiscibility of different blocks. 58-60 In other words, 347 the block in the phase separated cores needs to be pulled out 348 and diffuse to another phase-separated core to complete the 349 rearrangement process. According to refs 61-63, the pullout 350 time scale is expressed as

$$\tau_{pullout} = \tau_{Rouse} \exp(\alpha \chi N_{core})$$
 (10) 352

in which  $\tau_{Rouse}$  is Rouse relaxation time of the block inside the 353 phase separated cores.  $\chi$  is the Flory–Huggins parameter.  $N_{core}$  354 is the number of Kuhn segments of the block forming phase- 355 separated cores.  $\alpha$  is a constant in the order of unity. We 356 hypothesize that the similar mechanism controls bond 357 rearrangements in the studied telechelic systems, and the free 358 energy barrier to "chain end pullout" process determines the 359 network rearrangement process.

Borrowing the idea of chain exchange kinetics in block 362 copolymer micelles, <sup>58–60,64</sup> relationship between  $\tau_c$  and  $\tau_{\alpha_2-M}$  363 can be expressed as

$$\tau_c(T) = \tau_{\alpha_2 - M}(T) \exp\left(\frac{E_a}{RT}\right) = \tau_{\alpha_2 - M}(T) \exp(\alpha \chi N_{core})$$
(11)

365 in which the activation energy barrier,  $E_{av}$  is related to the 366 thermodynamic penalty for the sticker to be placed in the 367 polymer matrix  $\sim \alpha \chi N_{core}$ . To estimate the activation barrier 368 from the experimental result,  $\tau_{\alpha_2 - M}(T)$  was fit to the Vogel—369 Fulcher—Tammann (VFT) eq (Figure 5b, red line):

364

$$\tau_{\alpha_2 - M}(T) = \tau_0 \exp\left(\frac{B}{T - T_0}\right) \tag{12}$$

371 Here  $\tau_0$ , B, and  $T_0$  are the VFT fit parameters. Then  $\tau_C$  (T) was 372 fitted using eq 11, in which  $\tau_{\alpha_2-M}$  was substituted by the VFT 373 equation, with the energy barrier  $E_a$  as the only free fit 374 parameter (Figure 5b). The fitting results revealed the average 375 activation energy to be  $\sim\!6.6$  kJ/mol (Figure 6). Strong 376 deviation in the case of the sample with DP 74 might be caused 377 by crystallization that strongly limited the studied temperature 378 range.

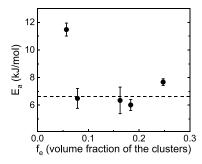



Figure 6. Estimated energy barrier for single sticker "pullout" into PDMS matrix. The solid dashed line indicates the average activation energy for this process. Value for the lowest  $f_\epsilon$  data is not reliable due to possible sample crystallization.

The obtained activation energy can be compared to the s80 expected  $\sim \alpha \chi N_{core}$ .  $N_{core}$  of the end group is 1, and the Flory-s81 Huggins parameter,  $\chi$ , can be estimated from the solubility parameters ( $\delta$ ) and molar volume of the chain end instead of s83 the molar volume of a copolymer block:  $^{65}$ 

$$\chi = \frac{(\delta_{end} - \delta_{PDMS})^2 V_{end}}{RT}$$
(13) <sub>384</sub>

The solubility parameter of the PDMS backbone  $\delta_{PDMS}$  is 7.3 385 cal<sup>1/2</sup> cm<sup>-3/2</sup>.66 The solubility parameter of the chain end 386 (COOH),  $\delta_{end}$ , is estimated to be 11.86 cal<sup>1/2</sup> cm<sup>-3/2</sup> via 387 Hansen solubility parameter (HSP)<sup>67</sup> approach, which divides 388 the solubility parameter into three partial components: 389 dispersion, polarity, and hydrogen-bonding (detailed method 390 is mentioned in the Supporting Information). The molar 391 volume of chain ends  $V_{end}$  is calculated using  $V_{end} = \frac{M_{end}}{\rho_{end}}$ , where the molecular weight of chain ends  $M_{end}$  is 158 g/mol, and the 393 density of chain ends is assumed to be the same as that of 394 glycerol,  $\rho_{end} = 1.26$  g/cm<sup>3</sup>. Thus,  $(\delta_{end} - \delta_{PDMS})^2 V_{end}$  is 395 estimated to be ~11 kJ/mol, in reasonable agreement with the 396 experimentally estimated  $E_a$  assuming  $\alpha$  value of ~0.6. The 397 value of  $\alpha$  close to 0.6 has been reported in several studies of 398 chain exchange kinetics in different block copolymer 399 micelles. 60,68,69 Thus, the single chain hopping mechanism 400 provides reasonable estimates of the energy barrier controlling 401 terminal relaxation in polymers with phase separated stickers. 402

On the basis of these results and analysis, we propose the 403 following mechanism of the terminal relaxation in polymers 404 with phase separated reversible bonds (stickers). Network 405 rearrangements require mobility of stickers in the clusters and 406 a sticker escape from the cluster requires to overcome an 407 energy barrier controlled by miscibility of stickers in a polymer 408 matrix. Once the sticker escaped from the cluster, it will diffuse 409 through the polymer matrix to another cluster with a time scale 410 of  $\tau_{\rm diffusion}$ , which will be mainly governed by Rouse 411

subdiffusive motion, that is,  $\tau_{diffusion} \approx \tau_{\alpha} \left(\frac{d}{l_k}\right)^4$ , here d is the distance between clusters (~5 nm, Tables S1) and  $l_k$  is the 413 Kuhn segment length of PDMS (~1 nm). This provides 414 estimates of  $\tau_{diffusion} \approx 10^3 \, \tau_{\alpha}$ . At the onset of second  $T_g$ , where 415 stickers can move inside the clusters,  $\tau_{\alpha}$  is ~10<sup>-9</sup> s (Figure 416 S6e) and  $\tau_{diffusion}$  is ~10<sup>-6</sup> s. This time is many orders faster 417 than terminal relaxation time at the same temperatures. Thus, 418 we can safely assume that sticker escape from the cluster is the 419 rate-determining step in the single chain hopping process. This 420 mechanism is similar to that describing the network rearrange-421 ment of Butyl ionomer. However, we introduce the 422 microscopic mechanism of these rearrangements and identify 423 the energy barrier controlling the sticker hopping process. This 424 mechanism also explains the difference between the time scale 425

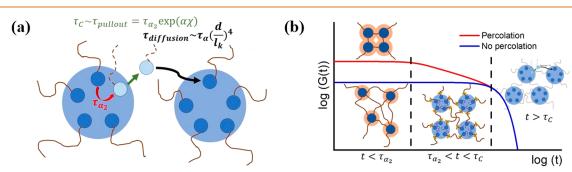



Figure 7. (a) Cartoon of a single chain exchange process between two clusters, which leads to a macroscopic rearrangement of the network. (b) Qualitative picture of the shear modulus variation with time for a phase-separated associated polymer network with percolated interfacial layers (red line) and with no percolation (blue line). Dashed lines mark two important time scales of the system:  $\tau_{\alpha 2}$ , relaxation in clusters of dynamic bonds; and  $\tau_C$ , terminal relaxation defined by the network rearrangement time.

426 of network rearrangement and the dynamic bonds motion 427 inside the clusters. The proposed mechanism is consistent with 428 the recent NMR studies<sup>28,29</sup> revealing that single chain 429 relaxation is responsible for the terminal relaxation in the 430 associating polymer with phase separation. These studies of 431 telechelic PIBs with barbituric acid end groups and with 432 thymine end groups also revealed that cluster relaxation 433 process observed in dielectric spectra is faster than the terminal 434 relaxation, and the ratio of these time scales depends on 435 chemistry of the stickers<sup>29</sup> (Figure S9). Following the 436 proposed mechanism, we estimated the energy barrier 437 (through eq 11) to be  $E_a \approx 16-17$  kJ/mol for more polar 438 barbituric acid end groups and ~9 kJ/mol for less polar 439 thymine end group (Table S2). Moreover, these values agree 440 with estimates of  $(\delta_{end} - \delta_{PDMS})^2 V_{end}$  (~26 kJ/mol for 441 barbituric acid end group and ~13 kJ/mol for thymine end 442 group) assuming  $\alpha \approx 0.6$  (see Supporting Information). Thus, 443 the proposed mechanism also provides good understanding for 444 the network rearrangement in other systems with phase-445 separated stickers.

General Molecular Picture. On the basis of analysis of the 447 presented above results, we propose a general picture of 448 viscoelasticity in polymers with phase separated dynamic 449 bonds (Figure 7b). Functional end-group clusters possess a 450 higher  $T_g$  value than the polymer matrix, and their dynamics is 451 governed by a time scale of structural relaxation in these  $_{452}$  clusters,  $\tau_{\alpha}$ . At times  $t < \tau_{\alpha}$ , clusters are glassy and control the 453 rubbery plateau level. In such case, not only chain ends are 454 fixed but also the grafting density is extremely high, resulting in 455 chains crowding and stretching in an interfacial layer around 456 these clusters. These severely restrict segmental mobility and 457 chain bending (similar to polymer grafted nanoparticles), 458 leading to a much higher elastic modulus. <sup>32,39</sup> In the absence of 459 percolation of the interfacial polymer regions, the mechanical 460 reinforcement from the interfacial layer is small, and 461 mechanical strength of the associating polymer is mostly 462 defined by the rubber elasticity of network structure cross-463 linked by the clusters. However, in a case where interfacial 464 regions overlap, significant mechanical reinforcement is 465 observed, which can be ascribed to a percolation phenomenon 466 (Figure 7b). On time scale  $\tau_{\alpha_2} < t < \tau_c$  stickers become mobile 467 within the clusters, and even if the grafting density is high, the 468 segments in the vicinity of clusters can easily rearrange and 469 change conformations. This leads to a subsequent decrease of 470 the mechanical modulus in the interfacial layer down to the 471 level expected in the rubber elasticity theory. As a result, the 472 macroscopic modulus level drops down significantly in the case 473 of percolated network as the effect of percolation fades away 474 with the gradual decreasing of the modulus in the interfacial 475 layer. When there is no percolation, the decrease in the shear 476 modulus is negligible until topological reorganization of 477 network occurs at the terminal relaxation time  $(\tau_c)$ . At  $t > \tau_c$ 478 sticky ends start to move out of the cluster overcoming the free 479 energy barrier due to their immiscibility with the polymer 480 matrix and subsequently diffuse to another cluster. Through 481 this single chain exchange process, macroscopic stress 482 relaxation happens within the network.

### **483 CONCLUSIONS**

484 In this study, we investigated telechelic PDMS with functional 485 groups phase-separating in clusters due to their immiscibility 486 with the polymer backbone. We demonstrated that mechanical

percolation model describes well the strong mechanical 487 reinforcement observed in these systems. Although the result 488 is similar to what we achieved earlier using mechanical ILM,<sup>32</sup> 489 the percolation model is more appropriate to explain the 490 mechanical reinforcement since interfacial layers overlap in 491 most of the studied samples. Moreover, our results and analysis 492 question the proposed earlier mechanism<sup>27</sup> of network 493 relaxation through a merger of phase-separated clusters. 494 Instead, we propose a chain-hopping mechanism of network 495 rearrangement borrowed from the field of block copolymer. It 496 provides a reasonably good description of the presented data 497 even on a quantitative level. This mechanism also describes 498 earlier data on telechelic PIB.<sup>29</sup> Finally, we formulate a general 499 molecular picture describing the viscoelastic behavior of 500 associating polymers. When phase separated clusters are 501 frozen, the system behaves as a permanent network, which 502 show strong mechanical reinforcement depending on whether 503 there is percolation. Then the softening of the interfacial layer 504 occurs upon the motion of functional groups inside the phase 505 separated clusters, followed by the network rearrangement 506 controlled by additional energy barrier defined by immiscibility 507 of stickers and polymer matrix.

The presented analysis and the proposed mechanism 509 provide a detailed understanding of the viscoelastic behavior 510 of polymers with phase-separated reversible bonds. These 511 mechanisms should work not only for telechelic associating 512 polymers but also for any associating polymer having phase 513 separating dynamic bonds. The developed understanding is of 514 paramount importance for rational design of advanced 515 materials with enhanced mechanical properties, and better 516 recyclability.

METHODS 518

Synthesis of PDMS-COOH Polymers. Synthesis of PDMS- 519 COOH polymers was described in detail in our pervious 520 publication. 24,39 The synthesis route is shown in Scheme 1 in Xing 521 et al.<sup>24</sup> DP 19 PDMS-COOH was synthesized in this work. Five 522 grams of PDMS-NH<sub>2</sub> (5 mmol, Gelest Inc. DMS-A11) was added 523 into a flame-dried 100 mL round-bottom flask, and then 2 g of 524 succinic anhydride (20 mmol) was also added followed by the 525 addition of 1.518 g of triethylamine (15 mmol), 0.611 g of 4- 526 dimethylaminopyridine (5 mmol), and 30 mL tetrahydrofuran 527 (THF). The reaction was conducted under an  $N_2$  atmosphere at 40 528 °C for 2 days. After the reaction was completed, THF was removed by 529 rotary evaporation. Ten milliliters of 1 M hydrochloric acid was 530 added, a total amount of 50 mL of dichloromethane (DCM) was 531 utilized to extract the product from the aqueous solution three times. 532 The organic layer was collected and was removed by rotary 533 evaporation. The final product was obtained and dried in a vacuum 534 oven to remove all residual solvents. <sup>1</sup>H NMR was utilized to confirm 535 the final product with CDCl<sub>3</sub> as solvent. The chemical structure and 536 the <sup>1</sup>H NMR spectra analysis is shown in Figure S2.

Differential Scanning Calorimetry (DSC) Measurements. DSC 538 was employed to probe the glass transition temperature  $(T_{\rm g})$  of 539 PDMS-COOH using a Q2500 DSC equipment from TA Instruments. 540 The samples were dried in a vacuum oven at 333 K overnight before 541 being placed into DSC pans. The samples were first equilibrated 542 isothermally at 363 K for 10 min to remove the thermal history before 543 being quenched to 113 K (to avoid crystallization). After equilibration 544 for 10 min, the samples were heated up to 293 K with a rate of 10 K/ 545 min. This procedure was repeated twice for each sample to ensure 546 repeatability.

X-ray Scattering. X-ray scattering spectra for DP 13, 22, 50, and 74 548 PDMS-COOH, as well as the reference sample PDMS-CH<sub>3</sub>, were 549 measured previously. The procedure was described in detail in ref 32. 550 The DP 19 PDMS-COOH was measured on XEUSS 3.0 (Xenocs, 551

ACS Nano www.acsnano.org Article

552 France) equipped with a Cu K $\alpha$  microfocus source and a Pilatus 300k 553 detector (Dectris, Switzerland). The scattering vector (q) was 554 calibrated by a silver behenate standard material. The distance 555 between sample and detector was 0.9 m and 0.55 m for SAXS and 556 WAXS, respectively. The sample was squeezed into a capillary tube 557 made of quartz glass with diameter 1.5 mm and wall thickness 0.01 558 mm. Then the capillary was placed perpendicularly to the X-ray beam. 559 The measurement mentioned above was also done on the empty 560 capillary to subtract the background. X-ray measurements were 561 performed at room temperature.

Broadband Dielectric Spectroscopy (BDS). BDS in the frequency for range from  $10^{-2}$  to  $10^6$  Hz was measured utilizing a Novocontrol system that includes an Alpha-A impedance analyzer and a Quatro Cryosystem temperature control unit. DP 13, 22, 50, and 74 PDMS-GOOH were placed into a parallel-plate dielectric cell made of sapphire and invar steel with an electrode diameter of 12 mm, and parallel-plate dielectric cell made of PDMS-COOH was placed into a parallel plate dielectric cell made of sapphire and invar steel with an electrode separation of 50  $\mu$ m. DP 19 pDMS-COOH was placed into a parallel plate dielectric cell made of sapphire and invar steel with an electrode diameter of 10 mm, and prevent crystallization, all samples were quenched from room temperature to about 113 K and reheated to 10 K below the  $T_g$  step for the measurements. All the spectra were measured on heating. After each temperature increase, the samples were equilibrated for 10 min to reach thermal stabilization within 0.1 K.

Small-Amplitude Oscillatory Shear (SAOS) Measurement. SAOS measurement was utilized to probe the viscoelastic properties of telechelic PDMS-COOH through a strain-controlled mode of the S80 AR2000ex (TA Instruments) with an angular frequency range from S81  $10^2$  to  $10^{-1}$  rad/s using parallel plate geometry with a disk diameter of S82 4 mm at a variety of temperatures range from second  $T_{\rm g}$  to S83 temperatures that the sample can flow freely. The strain amplitude S84 during the measurement was chosen to be in the range from 0.2% to S85 5% depending on the modulus level at different temperatures.

## **586 ASSOCIATED CONTENT**

## 587 Supporting Information

588 The Supporting Information is available free of charge at 589 https://pubs.acs.org/doi/10.1021/acsnano.2c00046.

Chemical structure; DSC results; X-ray scattering spectrum; structural information; rheological shift factors; dielectric spectra; energy barrier estimation;  $\delta_{end}$  estimation; activation energy estimation (PDF)

## **594 AUTHOR INFORMATION**

### 595 Corresponding Authors

Subarna Samanta – Department of Chemistry, University of
Tennessee, Knoxville, Tennessee 37996, United States;
Email: ssamant2@utk.edu

Alexei P. Sokolov – Department of Chemistry, University of
Tennessee, Knoxville, Tennessee 37996, United States;
Chemical Sciences Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830, United States; orcid.org/
0000-0002-8187-9445; Email: sokolov@utk.edu

# 604 Authors

612

Sirui Ge - Department of Material Science and Engineering,
 University of Tennessee, Knoxville, Tennessee 37996, United
 States; orcid.org/0000-0002-4276-7838
 Bingrui Li - The Bredesen Center for Interdisciplinary
 Research and Graduate Education, University of Tennessee,
 Knoxville, Tennessee 37996, United States; orcid.org/
 0000-0002-4974-5826

G. Peyton Carden – Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States

| Peng-Fei Cao – Chemical Sciences Division, Oak Riage    | 614 |  |  |  |
|---------------------------------------------------------|-----|--|--|--|
| National Laboratory, Oak Ridge, Tennessee 37830, United | 615 |  |  |  |
| States; o orcid.org/0000-0003-2391-1838                 | 616 |  |  |  |
| omplete contact information is available at:            |     |  |  |  |

618

620

621

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.2c00046

Notes 619

The authors declare no competing financial interest.

### **ACKNOWLEDGMENTS**

We thank the NSF Polymer program for the financial support 622 of these studies (BDS, rheology, DSC, and data analysis) under 623 Award No. DMR-1904657. B.L. and P.-F.C. acknowledge 624 support for synthesis by the DOE BES Materials Science and 625 Technology Division. X-ray measurements were enabled by the 626 Major Research Instrumentation program of the National 627 Science Foundation under Award No. DMR-1827474.

REFERENCES 629

- (1) Bowman, C. N.; Kloxin, C. J. Covalent adaptable networks: 630 reversible bond structures incorporated in polymer networks. *Angew.* 631 *Chem., Int. Ed.* **2012,** 51 (18), 4272–4274.
- (2) Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in 633 polymeric materials. *Angew. Chem.* **2019**, *131* (29), 9784–9797.
- (3) Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer 635 Networks: A Molecular Platform for Designing Functions beyond 636 Chemical Recycling and Self-Healing. *Chem. Rev.* **2021**, *121* (3), 637 1716–1745.
- (4) Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox- 639 responsive self-healing materials formed from host-guest polymers. 640 *Nat. Commun.* **2011**, 2 (1), 1–6.
- (5) Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; 642 Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels 643 composed of polyampholytes demonstrate high toughness and 644 viscoelasticity. *Nature materials* **2013**, *12* (10), 932–937.
- (6) Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Multiphase 646 design of autonomic self-healing thermoplastic elastomers. *Nature* 647 *Chem.* **2012**, 4 (6), 467–472.
- (7) Whittell, G. R.; Hager, M. D.; Schubert, U. S.; Manners, I. 649 Functional soft materials from metallopolymers and metallosupramo- 650 lecular polymers. *Nature materials* **2011**, *10* (3), 176–188.
- (8) Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; 652 Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. 653 W.; Rowan, S. J. A healable supramolecular polymer blend based on 654 aromatic  $\pi$   $\pi$  stacking and hydrogen-bonding interactions. *J. Am.* 655 *Chem. Soc.* **2010**, 132 (34), 12051–12058.
- (9) Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; 657 Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable 658 autonomous self-healing elastomer. *Nature Chem.* **2016**, 8 (6), 618–659 624.
- (10) Cao, P. F.; Li, B.; Hong, T.; Townsend, J.; Qiang, Z.; Xing, K.; 661 Vogiatzis, K. D.; Wang, Y.; Mays, J. W.; Sokolov, A. P.; et al. 662 Superstretchable, Self-Healing Polymeric Elastomers with Tunable 663 Properties. *Adv. Funct. Mater.* **2018**, 28 (22), 1800741.
- (11) Peng, W.; Zhang, G.; Zhao, Q.; Xie, T. Autonomous Off- 665 Equilibrium Morphing Pathways of a Supramolecular Shape-Memory 666 Polymer. *Adv. Mater.* **2021**, *33*, 2102473.
- (12) Cooper, C. B.; Nikzad, S.; Yan, H.; Ochiai, Y.; Lai, J.-C.; Yu, Z.; 668 Chen, G.; Kang, J.; Bao, Z. High Energy Density Shape Memory 669 Polymers Using Strain-Induced Supramolecular Nanostructures. ACS 670 Central Science 2021, 7, 1657.
- (13) Qin, B.; Zhang, S.; Sun, P.; Tang, B.; Yin, Z.; Cao, X.; Chen, 672 Q.; Xu, J. F.; Zhang, X. Tough and multi-recyclable cross-linked 673 supramolecular polyureas via incorporating noncovalent bonds into 674 main-chains. *Adv. Mater.* **2020**, 32 (36), 2000096.

- 676 (14) Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-677 healing and thermoreversible rubber from supramolecular assembly. 678 *Nature* **2008**, *451* (7181), 977–980.
- 679 (15) Ge, S.; Tress, M.; Xing, K.; Cao, P.-F.; Saito, T.; Sokolov, A. P. 680 Viscoelasticity in associating oligomers and polymers: experimental 681 test of the bond lifetime renormalization model. *Soft Matter* **2020**, *16* 682 (2), 390–401.
- 683 (16) Keten, S.; Xu, Z.; Ihle, B.; Buehler, M. J. Nanoconfinement 684 controls stiffness, strength and mechanical toughness of  $\beta$ -sheet 685 crystals in silk. *Nature materials* **2010**, 9 (4), 359–367.
- 686 (17) Du, N.; Yang, Z.; Liu, X. Y.; Li, Y.; Xu, H. Y. Structural origin of 687 the strain-hardening of spider silk. *Adv. Funct. Mater.* **2011**, 21 (4), 688 772–778.
- 689 (18) Deng, Y.; Zhang, Q.; Feringa, B. L.; Tian, H.; Qu, D. H. 690 Toughening a self-healable supramolecular polymer by ionic cluster-691 enhanced iron-carboxylate complexes. *Angew. Chem.* **2020**, *132* (13), 692 5316–5321.
- 693 (19) Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. 694 Colorless, transparent, robust, and fast scratch-self-healing elastomers 695 via a phase-locked dynamic bonds design. *Adv. Mater.* **2018**, *30* (38), 696 1802556.
- 697 (20) Wan, D.; Jiang, Q.; Song, Y.; Pan, J.; Qi, T.; Li, G. L. 698 Biomimetic Tough Self-Healing Polymers Enhanced by Crystalliza-699 tion Nanostructures. ACS Applied Polymer Materials **2020**, 2 (2), 700 879–886.
- 701 (21) Middleton, L. R.; Winey, K. I. Nanoscale aggregation in acid-702 and ion-containing polymers. *Annu. Rev. Chem. Biomol. Eng.* **2017**, 8, 703 499–523.
- 704 (22) Goldansaz, H.; Fustin, C.-A.; Wübbenhorst, M.; Van 705 Ruymbeke, E. How supramolecular assemblies control dynamics of 706 associative polymers: Toward a general picture. *Macromolecules* **2016**, 707 49 (5), 1890–1902.
- 708 (23) Yan, T.; Schröter, K.; Herbst, F.; Binder, W. H.; Thurn-709 Albrecht, T. Unveiling the molecular mechanism of self-healing in a 710 telechelic, supramolecular polymer network. *Sci. Rep.* **2016**, *6* (1), 1–711 8.
- 712 (24) Xing, K.; Tress, M.; Cao, P.; Cheng, S.; Saito, T.; Novikov, V. 713 N.; Sokolov, A. P. Hydrogen-bond strength changes network 714 dynamics in associating telechelic PDMS. *Soft Matter* **2018**, *14* (7), 715 1235–1246.
- 716 (25) Liu, Y.; Tang, Z.; Wang, D.; Wu, S.; Guo, B. Biomimetic design 717 of elastomeric vitrimers with unparalleled mechanical properties, 718 improved creep resistance and retained malleability by metal-ligand 719 coordination. *Journal of Materials Chemistry A* **2019**, 7 (47), 26867–720 26876.
- 721 (26) Tress, M.; Xing, K.; Ge, S.; Cao, P.; Saito, T.; Sokolov, A. What 722 dielectric spectroscopy can tell us about supramolecular networks. 723 *Eur. Phys. J. E* **2019**, 42 (10), 133.
- 724 (27) Amin, D.; Likhtman, A. E.; Wang, Z. Dynamics in 725 Supramolecular Polymer Networks Formed by Associating Telechelic 726 Chains. *Macromolecules* **2016**, 49 (19), 7510–7524.
- 727 (28) Mordvinkin, A.; Döhler, D.; Binder, W. H.; Colby, R. H.; 728 Saalwächter, K. Terminal Flow of Cluster-Forming Supramolecular 729 Polymer Networks: Single-Chain Relaxation or Micelle Reorganiza-730 tion? *Physical review letters.* **2020**, *125* (12), 127801.
- 731 (29) Mordvinkin, A.; Döhler, D.; Binder, W. H.; Colby, R. H.; 732 Saalwächter, K. Rheology, Sticky Chain, and Sticker Dynamics of 733 Supramolecular Elastomers Based on Cluster-Forming Telechelic 734 Linear and Star Polymers. *Macromolecules* **2021**, *54*, 5065.
- 735 (30) Vanhoorne, P.; Jérôme, R.; Teyssié, P.; Laupretre, F. Direct 736 NMR evidence for a local restriction in the segmental chain mobility 737 of a model ionomer. *Macromolecules* **1994**, 27 (9), 2548–2552.
- 738 (31) Sinha, K.; Maranas, J. K. Segmental dynamics and ion 739 association in PEO-based single ion conductors. *Macromolecules* 740 **2011**, 44 (13), 5381–5391.
- 741 (32) Ge, S.; Samanta, S.; Tress, M.; Li, B.; Xing, K.; Dieudonné-742 George, P.; Genix, A.-C.; Cao, P.-F.; Dadmun, M.; Sokolov, A. P. 743 Critical Role of the Interfacial Layer in Associating Polymers with
- 744 Microphase Separation. *Macromolecules* **2021**, 54 (9), 4246–4256.

- (33) Essam, J. W. Percolation theory. Rep. Prog. Phys. 1980, 43 (7), 745 833.
- (34) Stauffer, D.; Aharony, A. Introduction to percolation theory; CRC 747 Press, 2018.
- (35) Maurer, F. An interlayer model to describe the physical 749 properties of particulate composites. In *Controlled interphases in* 750 composite materials; Springer, 1990; pp 491–504.
- (36) Musino, D.; Genix, A.-C.; Chauveau, E.; Bizien, T.; Oberdisse, 752 J. Structural identification of percolation of nanoparticles. *Nanoscale* 753 **2020**, 12 (6), 3907–3915.
- (37) Baeza, G. P.; Dessi, C.; Costanzo, S.; Zhao, D.; Gong, S.; 755 Alegria, A.; Colby, R. H.; Rubinstein, M.; Vlassopoulos, D.; Kumar, S. 756 K. Network dynamics in nanofilled polymers. *Nat. Commun.* **2016**, *7*, 757 11368.
- (38) Nadiv, R.; Fernandes, R. M. F.; Ochbaum, G.; Dai, J.; Buzaglo, 759 M.; Varenik, M.; Biton, R.; Furó, I.; Regev, O. Polymer nano- 760 composites: Insights on rheology, percolation and molecular mobility. 761 *Polymer* **2018**, *153*, 52–60.
- (39) Tress, M.; Ge, S.; Xing, K.; Cao, P.-F.; Saito, T.; Genix, A.-C.; 763 Sokolov, A. P. Turning Rubber into a Glass: Mechanical Reinforce- 764 ment by Microphase Separation. *ACS Macro Lett.* **2021**, *10*, 197–202. 765
- (40) Ferry, J. D. Viscoelastic properties of polymers; John Wiley & 766 Sons, 1980.
- (41) Kremer, F.; Schönhals, A. Broadband dielectric spectroscopy; 768 Springer Science & Business Media, 2002. 769
- (42) Tarnacka, M.; Jurkiewicz, K.; Hachuła, B.; Wojnarowska, Z.; 770 Wrzalik, R.; Bielas, R.; Talik, A.; Maksym, P.; Kaminski, K.; Paluch, 771 M. Correlation between Locally Ordered (Hydrogen-Bonded) 772 Nanodomains and Puzzling Dynamics of Polymethysiloxane Derivative. *Macromolecules* 2020, 53 (22), 10225–10233.
- (43) Richert, R.; Agapov, A.; Sokolov, A. P. Appearance of a Debye 775 process at the conductivity relaxation frequency of a viscous liquid. *J.* 776 Chem. Phys. **2011**, 134 (10), 104508.
- (44) Gainaru, C.; Stacy, E. W.; Bocharova, V.; Gobet, M.; Holt, A. 778 P.; Saito, T.; Greenbaum, S.; Sokolov, A. P. Mechanism of 779 conductivity relaxation in liquid and polymeric electrolytes: Direct 780 link between conductivity and diffusivity. *J. Phys. Chem. B* **2016**, 120 781 (42), 11074–11083.
- (45) Richert, R.; Wagner, H. The dielectric modulus: relaxation 783 versus retardation. *Solid State Ionics* **1998**, *105* (1–4), *167*–173. 784
- (46) Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; 785 Springer-Verlag; Berlin, 2003.
- (47) Favier, V.; Cavaille, J.; Canova, G.; Shrivastava, S. Mechanical 787 percolation in cellulose whisker nanocomposites. *Polym. Eng. Sci.* 788 **1997**, 37 (10), 1732–1739.
- (48) De Gennes, P.-G. On a relation between percolation theory and 790 the elasticity of gels. *J. Phys., Lett.* **1976**, 37 (1), 1–2.
- (49) Tokita, M.; Niki, R.; Hikichi, K. Percolation theory and elastic 792 modulus of gel. J. Phys. Soc. Jpn. 1984, 53 (2), 480–482.
- (50) Evingür, G. A.; Pekcan, Ö. Elastic percolation of swollen 794 polyacrylamide (PAAm)-multiwall carbon nanotubes composite. 795 *Phase Transitions* **2012**, 85 (6), 553–564.
- (51) Djabourov, M.; Leblond, J.; Papon, P. Gelation of aqueous 797 gelatin solutions. II. Rheology of the sol-gel transition. *J. Phys. (Paris)* 798 **1988**, 49 (2), 333–343.
- (52) Hsu, W. Y.; Wu, S. Percolation behavior in morphology and 800 modulus of polymer blends. *Polym. Eng. Sci.* **1993**, 33 (5), 293–302. 801
- (53) Gauthier-Manuel, B.; Guyon, E. Critical, elasticity of 802 polyacrylamide above its gel point. *J. Phys., Lett.* **1980**, 41 (21), 803 503-505.
- (54) Le Strat, D.; Dalmas, F.; Randriamahefa, S.; Jestin, J.; Wintgens, 805 V. Mechanical reinforcement in model elastomer nanocomposites 806 with tuned microstructure and interactions. *Polymer* **2013**, *54* (5), 807 1466–1479.
- (55) Müller, A.; Wapler, M. C.; Wallrabe, U. A quick and accurate 809 method to determine the Poisson's ratio and the coefficient of thermal 810 expansion of PDMS. *Soft Matter* **2019**, *15* (4), 779–784.
- (56) Lyapin, A. G.; Gromnitskaya, E. L.; Danilov, I. V.; Brazhkin, V. 812 V. Elastic properties of the hydrogen-bonded liquid and glassy 813

ı

- 814 glycerol under high pressure: comparison with propylene carbonate. 815 RSC Adv. 2017, 7 (53), 33278–33284.
- 816 (57) Hayashi, M.; Noro, A.; Matsushita, Y. Viscoelastic properties of 817 supramolecular soft materials with transient polymer network. *J.*
- 818 Polym. Sci., Part B: Polym. Phys. **2014**, 52 (11), 755–764.
- 819 (58) Ma, Y.; Lodge, T. P. Chain exchange kinetics in diblock 820 copolymer micelles in ionic liquids: The role of  $\chi$ . *Macromolecules* 821 **2016**, 49 (24), 9542–9552.
- 822 (59) Wang, E.; Lu, J.; Bates, F. S.; Lodge, T. P. Effect of corona 823 block length on the structure and chain exchange kinetics of block 824 copolymer micelles. *Macromolecules* **2018**, *51* (10), 3563–3571.
- 825 (60) Wang, E.; Zhu, J.; Zhao, D.; Xie, S.; Bates, F. S.; Lodge, T. P. 826 Effect of solvent selectivity on chain exchange kinetics in block 827 copolymer micelles. *Macromolecules* **2020**, *53* (1), 417–426.
- 828 (61) Lu, J.; Bates, F. S.; Lodge, T. P. Remarkable effect of molecular 829 architecture on chain exchange in triblock copolymer micelles. 830 *Macromolecules* **2015**, 48 (8), 2667–2676.
- 831 (62) Peters, A. J.; Lodge, T. P. Comparison of gel relaxation times 832 and end-block pullout times in ABA triblock copolymer networks. 833 *Macromolecules* **2016**, *49* (19), 7340–7349.
- 834 (63) Zhao, D.; Ma, Y.; Lodge, T. P. Exchange kinetics for a single 835 block copolymer in micelles of two different sizes. *Macromolecules* 836 **2018**, *51* (6), 2312–2320.
- 837 (64) Lu, J.; Bates, F.; Lodge, T. Chain exchange in binary copolymer 838 micelles at equilibrium: confirmation of the independent chain 839 hypothesis. *ACS Macro Lett.* **2013**, 2 (5), 451–455.
- 840 (65) Chremos, A.; Nikoubashman, A.; Panagiotopoulos, A. Z. Flory-841 Huggins parameter χ, from binary mixtures of Lennard-Jones particles 842 to block copolymer melts. *J. Chem. Phys.* **2014**, *140* (5), 054909.
- 843 (66) Lee, J. N.; Park, C.; Whitesides, G. M. Solvent Compatibility of 844 Poly(dimethylsiloxane)-Based Microfluidic Devices. *Anal. Chem.* 845 **2003**, 75 (23), 6544–6554.
- 846 (67) Hansen, C. M. Hansen solubility parameters: a user's handbook; 847 CRC Press, 2007.
- 848 (68) Choi, S.-H.; Lodge, T. P.; Bates, F. S. Mechanism of molecular 849 exchange in diblock copolymer micelles: hypersensitivity to core chain 850 length. *Physical review letters* **2010**, *104* (4), 047802.
- 851 (69) Kim, S.; Lee, S.; Choi, S.-H.; Char, K. Chain Exchange Kinetics 852 of Bottlebrush Block Copolymer Micelles. *Macromolecules* **2021**, *54* 853 (10), 4739–4746.
- 854 (70) Mordvinkin, A.; Suckow, M.; Böhme, F.; Colby, R. H.; Creton, 855 C.; Saalwächter, K. Hierarchical Sticker and Sticky Chain Dynamics in 856 Self-Healing Butyl Rubber Ionomers. *Macromolecules* **2019**, *52* (11), 857 4169–4184.