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We have entered a new era where discoveries in astronomy 
will be driven by combining observations in gravitational 
waves and the electromagnetic spectrum, as well as neu-

trinos1,2. This is often referred to as multimessenger astronomy, and 
it has been enabled by the direct detection of gravitational-wave 
transients3,4 with the large ground-based laser interferometers LIGO 
(Laser Interferometer Gravitational-Wave Observatory)5,6 and 
Virgo7. The data analyses for gravitational-wave transients of both 
known and unknown signal morphology present a major computa-
tional challenge for these instruments as they prepare to enter their 
fourth observing run (referred to as ‘O4’) in the summer of 20228. 
Existing gravitational-wave detection algorithms for compact binary 
systems rely heavily on parameterized waveforms (templates) and the 
use of matched-filtering techniques9,10. While such approaches have 
performed well since the start of LIGO running, they scale poorly 
with the expected low-frequency improvement of instruments as 
well as with the expanding parameter space needed to cover spin 
effects and sub-solar-mass compact binaries11. The anticipated addi-
tion of KAGRA (Kamioka Gravitational Wave Detector)12,13 to the 
international network of detectors observing the gravitational-wave 
sky is expected to further increase the computational demands.

At the same time, gravitational-wave transients of ill defined 
morphology (for example, supernovae, neutron star glitches and 
potentially yet unknown astrophysical systems) are susceptible 
to instrumental and environmental noise that is hard to simulate 
and often challenging to subtract14,15. Such noise sources will affect 
searches for binary systems with sufficient signal duration to make 
it statistically probable to overlap with non-Gaussian artefacts, as 
in the case of GW1708174. While the vast majority of data analy-
sis techniques employed in gravitational-wave searches are built on 
traditional time–frequency decomposition using Fourier and wave-
let transforms, machine learning (ML) techniques have recently 
emerged as potentially powerful solutions to the computational 
challenges in this field16. Neural networks and other gradient-based 
learning algorithms have been proposed in gravitational-wave anal-
yses for tasks such as noise regression17,18, astrophysical searches19,20, 

parameter estimation21,22 and transient noise classification14,23. While 
there remains debate on whether ML algorithms can fully match the 
robustness of more traditional approaches in certain domains, their 
current interest for the physics community and long-term poten-
tial make it important to understand how best to leverage them in 
practice. This debate is particularly relevant in gravitational-wave 
analysis, where the comparatively large computational demands 
make their application difficult.

Innovative hardware-based acceleration with graphics process-
ing units (GPUs) and field programmable gate arrays (FPGAs) 
have recently been gaining ground within industry and academic 
research24,25 as methods for performing fast ML inference at large 
scales. For example, Microsoft uses a large FPGA-based system to 
assist its Bing search engine26, the IceCube experiment has utilized a 
large amount of cloud resources to accelerate its event reconstruction 
on GPUs27 and computations for lattice quantum chromodynamics 
have made heavy use of GPUs, particularly at high-performance 
computing centres. However, to take full advantage of accelerators, 
modifications must be made to standard models of computing. An 
alternative model, which has gained popularity in other fields such 
as neutrino physics28 (at ProtoDUNE) and collider physics29,30 (at 
the Large Hadron Collider), is called ‘as a service’, or ‘inference as 
a service’ (IaaS) when used to specifically denote accelerated ML 
inference. In this IaaS model, trained ML models are hosted in a 
centralized repository, from which an inference application loads 
and exposes them to requests from networked clients. The user then 
requests inferences by sending packets of inputs to the server, but the 
details of the server are abstracted from the user using standard client 
application programming interfaces. This model allows the simple 
integration and management of heterogeneous computing resources 
as well as parallel and asynchronous execution of inference requests.

Inference-as-a-service framework
In the following, we will analyse the advantages of the IaaS para-
digm using two deep learning models as examples of realistic  
ML usage in gravitational-wave analysis. The first is DeepClean18, 
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a one-dimensional convolutional autoencoder able to predict and 
subtract noise present in the gravitational-wave sensing channel 
(referred to as ‘strain’). Gravitational-wave interferometers are sub-
ject to technical and environmental noise that ultimately limit the 
instruments’ ability to reach their design sensitivity. The bulk of 
data written onto disk by these instruments corresponds to auxiliary 
channels that monitor and record the interferometry as well as their 
physical environment. These auxiliary channels allow for effective 
monitoring and regression of transient or continuous noise from 
the gravitational-wave measurement. To achieve this noise removal, 
about 200,000 such auxiliary channels resulting in over 10 MBps of 
time-series data from each interferometer are continually written 
onto disk during normal data acquisition31. We generally refer to 
them as ‘witness’ channels for their ability to record noise that may 
affect the measurement and their role in assisting noise subtraction 
from the strain channel. DeepClean uses information from the aux-
iliary channels correlated with the strain channel to achieve noise 
reduction. It can also be customized to specific noise couplings for 
a variety of applications18. In the use-case described here, we use 21 
auxiliary channels that are good witnesses of noise appearing in the 
strain channel and associated with monitor lines of power mains 
and their harmonics, including sidebands.

The second model we will use to demonstrate the IaaS frame-
work, called BBHnet (T.N. et al., manuscript in preparation), is used 
in the archetypal search for compact binary black hole coalescences. 
BBHnet utilizes one-dimensional convolutional neural networks 
to distinguish between binary black holes and detector noise, with 
the noise-regressed strain signal derived by DeepClean as its input. 
The combination of DeepClean and BBHnet offers an end-to-end 
test of a pipeline that combines both data cleaning and astrophysi-
cal searches. The task of binary black hole identification is a chal-
lenging one, but deep learning has been shown to be an effective 
replacement19 for the template-matching algorithms that are cur-
rently used. The number of templates required for such algorithms 
can grow to the millions as searches expand to cover neutron stars 
and systems with sub-solar component masses11. Moreover, the 
continuing improvement of the low-frequency sensitivity of inter-
ferometers and the addition of new detectors to the international 
gravitational-wave network8 also grow the template banks used 
in gravitational-wave searches. Deep learning is only expected to 
become more critical in this regime due to the large number of free 
parameters in the compact binary star system numerical problem. 
At the same time, the ability to perform such gravitational-wave 
searches in real time enables their follow-up via the electromagnetic 
spectrum and neutrinos, thus enabling multimessenger astronomy.

To deploy these pipelines, we use an out-of-the-box inference 
service developed by NVIDIA called the Triton Inference Server32. 
Triton supports concurrent inference execution on both CPUs and 
GPUs using multiple framework backends. It is provided as a con-
tainerized application to make it portable to different deployment 
locations. Triton automatically detects changes in the model reposi-
tory from which it reads, and will update the models that it hosts 
in-memory in response to updates according to a prescribed ver-
sioning policy. This design ensures that all services, and their users, 
are kept in sync with the latest developments and with one another. 
This feature is particularly beneficial for computing scenarios where 
a distributed user base is interested in accessing centrally man-
aged server resources, such as HTCondor and similar distributed  
computing tools.

Inference scenarios in gravitational-wave data analyses can be 
broadly separated into online and offline categories. The online 
inference scenario requires low-latency inferences for real-time pro-
cessing of live streams during data collection runs33,34. The offline 
scenario, on the other hand, involves large-scale processing of archi-
val data for use-cases such as model validation analyses or comple-
tion of transient event searches35,36 and corresponding catalogues37 

following the definitive calibration of the instruments. Figure 1 
depicts the two IaaS deployment scenarios we have adopted for real-
istic online and offline use-cases in gravitational-wave experiments. 
Additionally, Fig. 1a depicts the deployment for an online pipeline 
that leverages DeepClean to remove noise from the strain channel 
at each detector to be made available to downstream transient-event 
detection algorithms in real time. To meet the low-latency require-
ments of multimessenger astronomy, this pipeline is deployed fully 
on the LIGO Data Grid (LDG: https://computing.docs.ligo.org/
lscdatagridweb/) so that the data sources, client, and inference 
service can minimize latency incurred by networked connections. 
Figure 1b presents a generic offline scenario we use for two archival 
data processing tasks. These use-cases, unlike the online use-case, 
prioritize the total processing time for a given dataset instead of 
the individual request latency. In addition, they can be massively 
parallelized by breaking the dataset into smaller, time-contiguous 
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Fig. 1 | Example IaaS deployment scenarios. a, Locally (that is, at the 
gravitational-wave detector sites) deployed client and server instances 
collocated with in-memory data sources to minimize latency. The server is 
deployed in a container using Singularity40 and reads from a cloud-based 
model repository to stay in sync with updates. b, Offline collocated 
cloud-based deployment where multiple server instances are managed by 
Kubernetes and data are split among multiple client virtual machines.
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subsets, which are assigned to individual client instances. In both 
these scenarios, building an optimal IaaS pipeline involves tuning 
the same parameters, but their different objectives and constraints 

lead to very different decisions for which set of values is optimal. 
Moreover, the streaming nature of gravitational-wave data presents 
unique challenges to the IaaS model in both deployment scenarios. 
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To reduce the overall bandwidth going into the inference service, 
previous time-series samples are cached on the GPU so that only the 
new samples need to be sent to the server. More details can be found 
in Supplementary Information.

Offline usage
As a first test of the offline use-case, we deploy DeepClean to 
remove noise from roughly a month’s worth of strain data from the 
O3 observing run of the LIGO–Virgo instruments8. As discussed 
in Supplementary Information, we sample fixed-length kernels for 
inference from the time series at an inference sampling rate r of 
0.25 Hz. Figure 2a shows the distribution of wall-clock processing 
time per second of data achieved both by a traditional workflow 
on the LDG and by workflows leveraging an inference service on 
various amounts of cloud resources. These workflows are described 
in detail in Supplementary Information. The LDG workflow, imple-
mented on a single GPU, has the longest processing time, shown in 
grey. For the IaaS workflow using only CPUs we observe a reduction 
in the processing time by a factor of 3–5 when compared with a 
traditional, serially executed workflow. This reduction arises largely 
from the inference service’s trivial parallelization of server-side 
inference and client-side tasks such as data loading and preprocess-
ing, as well as from efficient scheduling of concurrent inference 
execution on the server. Further reductions in time are achieved 
by adding GPUs to the service. An inference service equipped with 
four GPUs is able to decrease the processing time by another fac-
tor of 10–12, and the reduction continues proportionally as more 
service nodes are added. This scaling to additional GPUs can be 
handled seamlessly in the IaaS paradigm.

The second offline workflow, an end-to-end pipeline imple-
mented in multiple different frameworks and comprising both 
DeepClean and BBHnet, is shown in Fig. 3. The time and cost 
required to process 1 s of data using this pipeline with various 
server and client configurations are shown in Fig. 2b–e. The cost 
is computed by aggregating the cost per unit time of all client 
and server resources and normalizing by the cost of 1 CPU h. See 
Supplementary Information for more details of these measurements. 
As can be seen from Fig. 2b,c, for both values of r and the number 
of clients per server node, the processing time decreases nearly lin-
early as the number of server nodes is increased. However, the total 
cost per second of data remains nearly constant with increasing 

numbers of nodes leveraged by the inference service, as shown in 
Fig. 2d,e. These trends show that once external constraints such as 
cost or sampling rate are imposed the IaaS workflow is able to make  
efficient use of the available resources, regardless of the exact values 
of the constraints.

We see in Fig. 2b,c that increasing the clients per server node 
from two to four is able to reduce the total processing time, 
regardless of the actual number of server nodes. This reduction is 
possible because we do not fully utilize the server’s resources, and 
therefore more clients can be served with the unused resources. 
This behaviour underscores the ability of off-the-shelf IaaS 
implementations to take full advantage of scarce server resources 
through trivial scaling in a way that is independent of the details 
of the particular algorithms being deployed. For larger numbers 
of clients we observe the same processing time, but an increased 
cost as a result of the saturated server throughput. In this par-
ticular example, the models limiting the throughput are the 
two DeepClean instances, which are the larger of the models in  
the pipeline. Some optimizations have already been applied to 
these models for this pipeline, but further improvement to their 
inference throughput is being investigated.

Online usage
The IaaS paradigm is equally capable of performing in an online set-
ting. Unlike the offline settings described above, the online setting 
prioritizes low latency. DeepClean in particular has an extremely 
high latency sensitivity, since the frames it cleans are already a 
few seconds delayed due to detector calibration processes, and its 
cleaned outputs will be made available to downstream event detec-
tion and characterization algorithms that may themselves incur 
multiple seconds of latency. To be valuable in the multimessen-
ger astronomy setting, then, we would like DeepClean to be able 
to clean data within milliseconds to minimize its cost to down-
stream applications. Figure 4 depicts the latency achieved with 
various server configurations as a function of r for the DeepClean 
pipeline. We disaggregate the latencies into time spent computing 
model inference (light blue) and time spent queuing for available 
resources (light brown). At low values of r, the latency is dominated 
by compute time and remains nearly constant regardless of server 
configuration, since a single GPU is capable of handling the request 
load. As r increases past ~1,000 Hz, the request load overwhelms 
the maximal GPU performance, and so requests must queue and 
wait for resources to become available. At the highest values of r, 
this resource availability is the primary determinant of total latency, 
which becomes a near-linear function of the amount of server 
resources. More detailed inspection of latency sources indicates 
that the bottleneck in this pipeline is the streaming state update 
described in Supplementary Information, which limits the capacity 
for the downstream DeepClean model to benefit from additional 
GPUs. Future optimizations to this update step via heterogeneous 
high-performance computing techniques will allow this pipeline to 
better utilize the available resources to both increase the values of 
r that can be processed stably and decrease the latency incurred at 
sustainable values of r.

At-scale testing
Finally, we emulate the offline end-to-end pipeline in the con-
text of jobs running over a prolonged period of time. The jobs are 
submitted to compute instances on the Google Cloud Platform 
via the HEPCloud framework38. HEPCloud enables scientific 
experiments to access a heterogeneous variety of computing 
resources (on-premises batch, commercial cloud, supercomput-
ing facilities), while presenting a single simple frontend interface 
(HTCondor) to the end user. HEPCloud is a good testbed for pro-
totyping as-a-service workloads. First, it allows a large number of 
CPU, GPU and other resources to be provisioned at a single site, 
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facilitating scalable intrasite tests. Second, these resources form a 
self-contained system free from other jobs, which increases repro-
ducibility for testing new frameworks. Finally, the HTCondor fron-
tend is widely used in pre-existing job submission frameworks. The 
clients are configured to run on Google Cloud CPU nodes accessed 
via HEPCloud. The servers are configured to have between 4 and 80 
NVIDIA T4 GPUs at the same site.

The sustained inference throughput as a function of time is 
shown in Fig. 5. With a server consisting of four GPUs, stable pro-
cessing of 1,000 inferences per second (2 s of data per second) is 
observed. This work is distributed across 100 HEPCloud clients. 
The observed throughput scales linearly with the number of servers 
(GPUs), reaching 20,000 inferences per second (40 s of data per sec-
ond) for 80 GPUs communicating with 2,000 clients. This test is a 
demonstration of our frameworks’ ability to deliver inferences for a 
sustained period of time, and with large numbers of resources, using 
existing gravitational-wave experimental paradigms.

Current limitations
While we have shown that the IaaS paradigm is capable of meet-
ing the computational needs of streaming low-latency data denois-
ing and astrophysical searches, there are additional considerations 
that are required for a fully real-time pipeline for multimessenger 
follow-up. Specifically, the performance of the deep neural network 
inference pipeline must operate with the same fidelity in the offline 
scenario. In this instance, we have observed that there is some 
degradation in the subtraction quality at the edges of the cleaned 
segments when using DeepClean. In the present set-up we simply 
exclude the quality-degraded edges from the cleaned data segments 
at a latency cost equal to the excluded data length. We refer to this 
latency as the aggregation latency. Figure 6 demonstrates this deg-
radation and subsequent recovery by comparing the performance 
with the fully offline DeepClean pipeline. We see that an aggrega-
tion latency of 0.75 s is able to closely reproduce the amplitude spec-
tral density of offline DeepClean. While this aggregation latency 
limits the minimum possible latency for the online pipeline we have 

used, it could potentially be reduced or even removed entirely by an 
algorithm designed (trained) specifically for low-latency cleaning.

Another factor that must be considered when discussing the 
overall latency is how often the trained network must be updated 
on the server. Typically a cleaning algorithm must be retrained on 
recent data to maintain performance under gradually changing con-
ditions. For continuous functioning, the trained model must remain 
valid for longer than the time it takes to retrain a new model. For 
DeepClean, training the network on a new dataset typically takes 
<20 min on a single GPU, while analysis of O3 gravitational-wave 
data from the LIGO–Hanford detector shows that a trained model 
can be used to clean at least 4,096 s of subsequent data without 
compromising the quality of its predictions. Since this time is well 
beyond the required training time already, it ensures that DeepClean 
can be safely employed in an environment with a non-stationary 
noise distribution.

We have demonstrated a fully realistic computational work-
flow to process gravitational-wave data with ML algorithms using 
a heterogeneous computing stack, using it to deploy ML algo-
rithms for both noise subtraction and binary black hole detec-
tion. Furthermore, we have shown that we can increase the input 
throughput to this workflow by several orders of magnitude by 
caching updates to the time series under analysis. Our workflow 
can seamlessly incorporate future updates to either algorithm stud-
ied here, and can be extended to additional algorithms for detec-
tion or any other analysis. We have run this workflow with real 
gravitational-wave data and demonstrated operation in two dif-
ferent scenarios: online and offline data processing. We find that 
in the online scenario our current set-up can perform real-time 
noise subtraction and binary black hole detection with a latency of 
1 s, despite bottlenecks introduced by a serial time-series caching 
step. A server with a GPU located locally at each gravitational-wave 
site would be able to output a cleaned stream of data within 1 s of 
acquisition. With modified deep neural network models, it is likely 
that the latency can be reduced to milliseconds. The success of  
this scheme is not dependent on the specifics of the algorithms 
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implemented, which is crucial for its long-term viability as compu-
tational needs and resources develop.

Outlook
For offline gravitational-wave data processing, we have set up a full 
reprocessing stream. By relying on the IaaS model, we are able to 
optimally configure the GPUs and CPUs to process the datastream, 
leading to large increases in the overall throughput of the system 
with respect to more standard deep learning inference implementa-
tions. For large many-GPU setups we demonstrate orders of magni-
tude reductions in the time required to process gravitational-wave 
data, and these reductions scale proportionally to the number of 
GPUs. This scaling is another crucial advantage of the IaaS model, 

particularly as computing systems evolve and are updated and 
expanded. Even for purely CPU-based set-ups we observe an order 
of magnitude reduction in the processing time with respect to a 
traditional, CPU-only workflow. The pipeline we employ is chosen 
purposefully to demonstrate this reduction for a realistic workflow. 
For any underlying background noise that is consistently present 
in the detectors and has correlation with auxiliary sensors, such as 
noise sources due to power lines, and its harmonics and sidebands, 
DeepClean is capable of cleaning the noise source. BBHNet, on 
the other hand, separates noise transients from gravitational-wave 
signals using the lack of coherence in noise transients between 
detectors. Taken together, these ML algorithms can identify and 
mitigate both omnipresent and transient noise sources affecting 
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gravitational-wave searches. Our system is dynamically scalable, 
and remains optimized whether we use a small number of GPUs 
or a larger number of resources. We have also demonstrated scal-
ability by testing a sustained offline workflow with HEPCloud on 
Google Cloud. As a consequence, we have demonstrated that we can 
scale out gravitational-wave reprocessing to utilize a large number 
of computing nodes available within a cloud or high-performance 
computing centre. With sufficient computing resources, our com-
puting scheme can reprocess gravitational-wave datasets containing 
many years of data within a few hours. Extrapolating from Fig. 5 
we can project that processing 365 d of data in 6 h would require 
approximately 3,000 T4 GPUs, with this number reduced in the case 
of more powerful GPUs. This amount of GPUs is already within the 
current capabilities of cloud providers27, although using this many 
GPUs often would be quite costly in the cloud. The number of CPUs 
needed would also be quite large (75,000 clients) to sustain the nec-
essary request rate, but is within the current capabilities of cloud 
providers or large grid computing.

To conclude, this Perspective has illustrated the efficacy of an 
ML-based heterogeneous computing model that can integrate 
seamlessly within existing gravitational-wave computing stacks and 
is ready to be deployed. Adjustments to the ML algorithms used, 
or additions of new models, can be handled in a straightforward 
manner. Our implementation shows the ability to meet latency and 
scale requirements for online and offline uses in gravitational-wave 
ground-based interferometers such as LIGO, Virgo and KAGRA. 
The IaaS paradigm also has broad implications across many fields 
where the fast processing of real-time datastreams is critical, 
including areas of electromagnetic and neutrino astronomy. Most 
importantly, this paradigm has the potential to improve our abil-
ity to perform multimessenger astronomical observations through 
high-throughput and low-latency inference. It also offers a pos-
sible means with which to incorporate ML-based techniques for 
real-time controls of the numerous servo loops that are part of 
the laser interferometry in present and future ground interferom-
eters39. Substantial work remains to realize these possibilities. As 
gravitational-wave detectors become increasingly sensitive over 
the course of second-generation improvements in this decade8, and 
with third-generation improvements in the next39, this new hetero-
geneous computational stack has the ability to facilitate the compu-
tational demands needed to accelerate discovery.

Data availability
The datasets generated during and/or analysed during the  
current study are available from the corresponding author on  
reasonable request.

Code availability
All code used to generate the data for both the online and offline 
experiments in this study is available at https://github.com/
fastmachinelearning/gw-iaas.

Received: 21 September 2021; Accepted: 9 March 2022;  
Published online: 12 May 2022

References
 1. Dietrich, T. et al. New constraints on the supranuclear equation of state and 

the Hubble constant from nuclear physics—multi-messenger astronomy. 
Science 370, 1450–1453 (2020).

 2. Aartsen, M. G. et al. Multimessenger observations of a !aring blazar 
coincident with high-energy neutrino IceCube-170922A. Science 361, 
eaat1378 (2018).

 3. Abbott, B. P. et al. Observation of gravitational waves from a binary black 
hole merger. Phys. Rev. Lett. 116, 061102 (2016).

 4. Abbott, B. et al. GW170817: observation of gravitational waves from a binary 
neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

 5. Harry, G. M. et al. Advanced LIGO: the next generation of gravitational wave 
detectors. Class. Quantum Gravity 27, 084006 (2010).

 6. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).
 7. Acernese, F. et al. Advanced Virgo. Class. Quantum Gravity 32,  

024001 (2015).
 8. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave 

transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. 
Relativ. 23, 3 (2020).

 9. Usman, S. A. et al. "e PyCBC search for gravitational waves from compact 
binary coalescence. Class. Quantum Gravity 33, 215004 (2016).

 10. Cannon, K. et al. GstLAL: a so#ware framework for gravitational wave 
discovery. Preprint at https://arxiv.org/abs/2010.05082 (2020).

 11. Abbott, B. et al. Search for subsolar mass ultracompact binaries in Advanced 
LIGO’s second observing run. Phys. Rev. Lett. 123, 161102 (2019).

 12. Aso, Y. et al. Interferometer design of the KAGRA gravitational wave 
detector. Phys. Rev. D 88, 043007 (2013).

 13. Somiya, K. Detector con$guration of KAGRA—the Japanese cryogenic 
gravitational-wave detector. Class. Quantum Gravity 29, 124007 (2012).

 14. Zevin, M. et al. Gravity Spy: integrating advanced LIGO detector 
characterization, machine learning, and citizen science. Class. Quantum 
Gravity 34, 064003 (2017).

 15. Davis, D. et al. LIGO detector characterization in the second and third 
observing runs. Class. Quantum Gravity 38, 135014 (2021).

 16. Cuoco, E. et al. Enhancing gravitational-wave science with machine learning. 
Mach. Learn. Sci. Technol. 2, 011002 (2021).

 17. Vajente, G. et al. Machine-learning nonstationary noise out of 
gravitational-wave detectors. Phys. Rev. D 101, 042003 (2020).

 18. Ormiston, R., Nguyen, T., Coughlin, M., Adhikari, R. X. & Katsavounidis, E. 
Noise reduction in gravitational-wave data via deep learning. Phys. Rev. Res. 
2, 033066 (2020).

 19. George, D. & Huerta, E. A. Deep learning for real-time gravitational wave 
detection and parameter estimation: results with Advanced LIGO data.  
Phys. Lett. B 778, 64–70 (2018).

 20. Schäfer, M. B. & Nitz, A. H. From one to many: A deep learning coincident 
gravitational-wave search. Phys. Rev. D 105, 043003 (2022).

 21. Green, S. R., Simpson, C. & Gair, J. Gravitational-wave parameter estimation 
with autoregressive neural network !ows. Phys. Rev. D 102, 104057 (2020).

 22. Gabbard, H., Messenger, C., Heng, I.S. et al. Bayesian parameter estimation 
using conditional variational autoencoders for gravitational-wave astronomy. 
Nat. Phys. 18, 112–117 (2022).

 23. Mukund, N., Abraham, S., Kandhasamy, S., Mitra, S. & Philip, N. S. Transient 
classi$cation in LIGO data using di%erence boosting neural network. Phys. 
Rev. D 95, 104059 (2017).

 24. Mittal, S. & Vetter, J. S. A survey of CPU–GPU heterogeneous computing 
techniques. ACM Comput. Surv. 47, 69 (2015).

 25. Duarte, J. et al. FPGA-accelerated machine learning inference as a service for 
particle physics computing. Comput. So!w. Big Sci. 3, 13 (2019).

 26. Caul$eld, A. et al. A cloud-scale acceleration architecture. In Proc. 49th 
Annual IEEE/ACM International Symposium on Microarchitecture (IEEE, 
2016).

 27. S$ligoi, I. et al. Expanding IceCube GPU computing into the Clouds. In 2021 
IEEE 17th International Conference on eScience (eScience) 227–228 (IEEE, 
2021).

 28. Wang, M. et al. GPU-Accelerated Machine Learning Inference as a Service 
for Computing in Neutrino Experiments. Front. Big Data 3 (2021).

 29. Krupa, J. et al. GPU coprocessors as a service for deep learning inference in 
high energy physics. Mach. Learn. Sci. Technol. 2, 035005 (2021).

 30. Rankin, D. et al. FPGAs-as-a-Service Toolkit (FaaST). In 2020 IEEE/ACM 
International Workshop on Heterogeneous High-performance Recon"gurable 
Computing (H2RC) 38–47 (IEEE, 2020).

 31. Abbott, B. P. et al. Characterization of transient noise in Advanced LIGO 
relevant to gravitational wave signal GW150914. Class. Quantum Gravity 33, 
134001 (2016).

 32. Triton Inference Server v.2.12.0 https://developer.nvidia.com/nvidia-triton- 
inference-server (NVIDIA, 2021).

 33. Abadie, J. et al. First low-latency LIGO+Virgo search for binary inspirals and 
their electromagnetic counterparts. Astron. Astrophys. 541, A155 (2012).

 34. Nitz, A. H., Dal Canton, T., Davis, D. & Reyes, S. Rapid detection of 
gravitational waves from compact binary mergers with PyCBC Live. Phys. 
Rev. D 98, 024050 (2018).

 35. Abbott, R. et al. Search for gravitational waves associated with gamma-ray 
bursts detected by Fermi and Swi# during the LIGO–Virgo run O3a. 
Astrophys. J. 915, 86 (2021).

 36. Usman, S. A. et al. "e PyCBC search for gravitational waves from compact 
binary coalescence. Class. Quantum Gravity 33, 215004 (2016).

 37. Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO 
and Virgo during the $rst half of the third observing run. Phys. Rev. X 11, 
021053 (2021).

 38. Holzman, B. et al. HEPCloud, a new paradigm for HEP facilities:  
CMS Amazon Web Services investigation. Comput. So!w. Big Sci. 1,  
1 (2017).

NATURE ASTRONOMY | VOL 6 | MAY 2022 | 529–536 | www.nature.com/natureastronomy 535

https://github.com/fastmachinelearning/gw-iaas
https://github.com/fastmachinelearning/gw-iaas
https://arxiv.org/abs/2010.05082
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
http://www.nature.com/natureastronomy


PERSPECTIVE NATURE ASTRONOMY

 39. Reitze, D. et al. Cosmic Explorer: "e U.S. Contribution to 
Gravitational-Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc. 51 
(2019).

 40. Kurtzer, G. M. et al. hpcng/singularity: singularity 3.7.3. https://zenodo.org/
record/1310023 (2021).

Acknowledgements
We are grateful for computational resources provided by the LIGO Laboratory at 
Caltech, Livingston, LA, and Hanford, WA. The LIGO Laboratory has been supported 
under National Science Foundation (NSF) grants PHY-0757058 and PHY-0823459. 
A.G., D.R., T.N., P.H. and E.K. are supported by NSF grants 1934700 and 1931469, 
and D.R. additionally by the IRIS-HEP grant 1836650. J.K. is supported by NSF grant 
190444. M.S. and M.C. are supported by NSF grant PHY-2010970. Work supported by 
the Fermi National Accelerator Laboratory, managed and operated by Fermi Research 
Alliance, LLC under contract DE-AC02-07CH11359 with the US Department of 
Energy. The US Government retains and the publisher, by accepting the article for 
publication, acknowledges that the US Government retains a non-exclusive, paid-up, 
irrevocable, world-wide license to publish or reproduce the published form of this 
manuscript, or allow others to do so, for US Government purposes. Cloud credits for 
this study were provided by the Internet2-managed Exploring Clouds for Acceleration 
of Science (NSF grant PHY-190444). Additionally we would like to thank the NSF 
Institute for AI and Fundamental Interactions (cooperative agreement PHY-2019786). 
We are also grateful for the support provided by S. Anderson in the realization and 

testing of our workflow within the LDG. Finally, we thank A. Pace for providing useful 
comments on the manuscript.

Author contributions
A.G. and D.R. are the primary authors of the manuscript. J.K. integrated applications 
in HEPCloud. S.T. and B.H. support and operate HEPCloud. M.S., M.C., E.K. and T.N. 
support development of DeepClean. All authors contributed to editing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41550-022-01651-w.
Correspondence should be addressed to Alec Gunny or Dylan Rankin.
Peer review information Nature Astronomy thanks Alexander Nitz and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© Springer Nature Limited 2022

NATURE ASTRONOMY | VOL 6 | MAY 2022 | 529–536 | www.nature.com/natureastronomy536

https://zenodo.org/record/1310023
https://zenodo.org/record/1310023
https://doi.org/10.1038/s41550-022-01651-w
http://www.nature.com/reprints
http://www.nature.com/natureastronomy

	Hardware-accelerated inference for real-time gravitational-wave astronomy
	Inference-as-a-service framework
	Offline usage
	Online usage
	At-scale testing
	Current limitations
	Outlook
	Acknowledgements
	Fig. 1 Example IaaS deployment scenarios.
	Fig. 2 Distributions of time and cost required to process 1 s of data.
	Fig. 3 Flow of data through ensemble of individual modules on inference service in end-to-end pipeline.
	Fig. 4 End-to-end server-side latency for multiple GPU counts as a function of r.
	Fig. 5 The number of seconds of gravitational-wave data processed per second as a function of time for a sustained test using HEPCloud.
	Fig. 6 Performance of the online-deployed DeepClean noise regression as a function of the aggregation latency—length of the time-series data excluded from each cleaned segment, to avoid noisy edges.


