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a b s t r a c t 

Resting-state functional magnetic resonance imaging is currently the mainstay of functional neuroimaging and 
has allowed researchers to identify intrinsic connectivity networks (aka functional networks) at different spatial 
scales. However, little is known about the temporal profiles of these networks and whether it is best to model 
them as continuous phenomena in both space and time or, rather, as a set of temporally discrete events. Both 
categories have been supported by series of studies with promising findings. However, a critical question is 
whether focusing only on time points presumed to contain isolated neural events and disregarding the rest of 
the data is missing important information, potentially leading to misleading conclusions. In this work, we argue 
that brain networks identified within the spontaneous blood oxygenation level-dependent (BOLD) signal are not 
limited to temporally sparse burst moments and that these event present time points (EPTs) contain valuable but 
incomplete information about the underlying functional patterns. 

We focus on the default mode and show evidence that is consistent with its continuous presence in the BOLD 
signal, including during the event absent time points (EATs), i.e., time points that exhibit minimum activity and 
are the least likely to contain an event. Moreover, our findings suggest that EPTs may not contain all the available 
information about their corresponding networks. We observe distinct default mode connectivity patterns obtained 
from all time points (AllTPs), EPTs, and EATs. We show evidence of robust relationships with schizophrenia 
symptoms that are both common and unique to each of the sets of time points (AllTPs, EPTs, EATs), likely 
related to transient patterns of connectivity. Together, these findings indicate the importance of leveraging the 
full temporal data in functional studies, including those using event-detection approaches. 
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. Introduction 

Brain function results from the interaction among local and dis-
ributed brain areas. Thus, the temporal dependency among brain re-
ions, commonly known as functional connectivity, is a widely-used tool
or studying brain function ( Friston, 2011 ). The advent of resting-state
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ions (e.g., bilateral motor cortices) even without external stimulation
 Biswal, Yetkin, Haughton, and Hyde, 1995 ). This led to a rapid growth
n rsfMRI research and identification of spatial patterns of function-
lly connected regions termed intrinsic connectivity networks (ICNs),
r functional networks, at different spatial scales from large-scale dis-
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ributed networks to fine-grained, spatially local ones ( Allen et al., 2011 ;
amoiseaux et al., 2006 ; Iraji et al., 2019 ). Interestingly, spatial patterns
btained by applying independent component analysis (ICA) to spatial
aps of thousands of different activation conditions derived from the
rainMap meta-analytic tool (https://www.brainmap.org) closely re-
emble large-scale networks ( Smith et al., 2009 ), as do data-driven anal-
ses of activation maps from task data ( Calhoun and Allen, 2013 ), fur-
her supporting the functional relevance of functional networks. These
pproaches are implicitly built upon the notion of continuous informa-
ion processing and interaction among brain regions. 
In parallel to this work, another family of approaches, that we collec-

ively called event detection approaches, was developed originally based
pon a hypothesis that functional patterns and brain networks emerge
rom discrete, neural events ( Chialvo, 2010 ; Tagliazucchi, Balenzuela,
raiman, and Chialvo, 2012 ). Therefore, instead of studying static or
ynamic functional patterns in the context of ongoing, continuous func-
ional interactions, this family of approaches focuses on extracting dis-
rete events to study static and dynamic functional patterns. The com-
on procedure for these approaches is to first select a set of extreme time
oints (e.g., top 10%) as event present time points (EPTs) and use only
hese EPTs to obtain corresponding brain functional patterns ( Liu and
uyn, 2013 ; Tagliazucchi et al., 2012 ). There are also work that unified
hese two steps to directly obtain events and associated time points,
or example, by applying clustering on all time points ( Liu, Chang, and
uyn, 2013 ). These approaches assume that these event present time
oints alone are sufficient to estimate the temporal dependency and to
erive the functional connectivity patterns observed in functional con-
ectivity studies ( Cifre, Zarepour, Horovitz, Cannas, and Chialvo, 2020 ;
agliazucchi, Balenzuela, Fraiman, Montoya, and Chialvo, 2011 , 2016 ),
nd resting-state functional connectivity is driven by short-lived cofluc-
uation events ( Zamani Esfahlani et al., 2020 ). As such, event-based
tudies shift away from typical functional connectivity and mainly fo-
us on capturing functional patterns as (co-)activation patterns of sparse
PTs using first-order statistics and signal amplitude rather than sta-
istical dependence between them ( Petridou, Gaudes, Dryden, Francis,
nd Gowland, 2013 ; Tagliazucchi et al., 2012 , 2011 ). Event detection
pproaches have shown direct correspondence between such spatial co-
ctivation patterns and large-scale brain networks obtained from func-
ional connectivity analysis ( Liu et al., 2013 ; Tagliazucchi et al., 2012 ).
hey also demonstrated that different EPTs of a given node represent dif-
erent co-activation patterns reflecting dynamic information of rsfMRI
ata ( Karahano ğlu and Van De Ville, 2015 ; Liu and Duyn, 2013 ). How-
ver, these findings were limited to large-scale distributed brain net-
orks with no established observations of fine-grained networks (ICNs)
btained from high-order ICA. This, in turn, may indicate that event de-
ection approaches are limited to dominant large covarying functional
atterns. 
After years of using first-order statistics in event-based studies,

hich followed early work utilizing the temporal dependency be-
ween extreme time points to derive the functional connectivity
 Tagliazucchi et al., 2012 , 2011 ), recent studies revisited the idea of
sing extreme time points to study (dynamic) functional connectivity
n the context of second and higher-order statistics and demonstrated
he potential to provide additional insights into cognition and behavior
 Sporns et al., 2021 ; Tagliazucchi et al., 2016 ; Zamani Esfahlani et al.,
020 ). 
These intriguing findings, along with the potential clinical and be-

avioral relevance of EPTs ( Bolton et al., 2020 ; Chen, Chang, Greicius,
nd Glover, 2015 ; Gaviria et al., 2021 ) and a number of supporting ob-
ervations in animal studies ( Liang, Liu, and Zhang, 2015 ; Matsui, Mu-
akami, and Ohki, 2019 , 2016 ), further buttress the assumption that
sfMRI signal may originate from brief, sporadically events rather than
ontinuous dynamic functional interactions. This has led to a growing
nterest in studying brain function using momentarily sparse time points
nd related approaches ( Bolton et al., 2020 ; Janes, Peechatka, Freder-
ck, and Kaiser, 2020 ; Miller, Pearlson, and Calhoun, 2019 ; Takeda, Ita-
2 
ashi, Sato, and Yamashita, 2019 ; Zhang, Pan, and Keilholz, 2020 ;
immern, 2020 ). 
However, an important question that has not yet been addressed is

hether estimating results from only EPTs omits important informa-
ion, potentially leading to misleading conclusions. While we do not
efute the existence of discrete, neural events or even the possibility of
arge-scale networks are emerged from these spontaneous, infrequent
vents, we argue against the proposition that functional patterns esti-
ated from the spontaneous blood oxygenation level-dependent (BOLD)
ignal manifest only in temporally sparse burst moments and these dis-
rete EPTs contain incomplete information about the underlying func-
ional patterns. This position can be supported by two specific obser-
ations. First, it has been shown that spiking activity propagates using
oth asynchronous and synchronous spiking ( Kumar, Rotter, and Aert-
en, 2010 ). It is unlikely that sparse events alone can completely capture
oth of these modes. Second, the fact that connectivity estimators based
n both amplitude (e.g., Pearson correlation) and phase (e.g., instanta-
eous phase synchrony) modulation that have been shown to contain
eaningful information ( Allen et al., 2011 ; Omidvarnia et al., 2016 )
uggests that sparse events based only on amplitude in the space-time
omain may give incomplete results. 
We evaluated our premise by concentrating on the default mode as it

s arguably the most detected/studied functional pattern in event-based
tudies and is commonly used to support the discrete nature of func-
ional patterns in the spontaneous BOLD signal. We first asked whether
he default mode pattern is present only in its so-called EPTs or whether
t can also be identified from the event absent time points (EATs), i.e.,
ime points with the least (almost zero) probability of being EPTs. Ad-
itionally, we explored whether the default mode EPTs contain simi-
ar functional connectivity information as the full data in the context of
heir associations with a diagnosis of schizophrenia and with schizophre-
ia symptoms. Finally, we asked whether the (usually ignored) EATs of
he default mode could provide additional unique information about
chizophrenia. 
It should be mentioned that this study evaluates if default mode net-

ork continuously contributes to the BOLD signal, including the time
oints with the least probability of being EPTs. This is in contrast to
arlier studies that assess the effect of scan length on the reliability
f estimating static functional connectivity ( Birn et al., 2013 ). Further-
ore, while the term “co-activation pattern/map ” is commonly used to
escribe spatial patterns identified by event-detection approaches, the
erm co-activation pattern (CAP) also refers to a specific category of
vent detection approaches ( Liu, Zhang, Chang, and Duyn, 2018 ), and
he term co-activation has also been used in other contexts, such as de-
cribing task co-activation patterns across fMRI studies ( Eickhoff et al.,
011 ; Toro, Fox, and Paus, 2008 ). Therefore, we opted for the term acti-
ation spatial maps (ASMs) to describe the first-order activation patterns
hat are being evaluated in this study to avoid confusion. Furthermore,
o simplify notation in the remainder of this paper, unless we explicitly
ndicate otherwise, the terms EATs and EPTs refer to the EATs and EPTs
f the default mode. 

. Materials and methods 

.1. Dataset and inclusion criteria 

We used 3-Tesla rsfMRI data, comprising 477 typical controls
nd 350 individuals with schizophrenia selected from three datasets
 Table 1 ) with different data acquisition parameters, including Func-
ional Imaging Biomedical Informatics Research Network (FBIRN)
 Damaraju et al., 2014 ), Center for Biomedical Research Excellence (CO-
RE) ( Aine et al., 2017 ), and Maryland Psychiatric Research Center
MPRC) ( Adhikari et al., 2019 ). 
The FBIRN includes rsfMRI data collected at six sites using Siemens

-Tesla Tim Trio scanners and one site using a General Electric
-Tesla Discovery MR750 scanner. All sites use the same follow-
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Table 1 

Demographic information of Subjects studied. FBIRN: Functional Imaging Biomedical Informatics Research Network, COBRE: Center for Biomedical Research 
Excellence, and MPRC: Maryland Psychiatric Research Center. 

Dataset Diagnostic (#) 
Sex 
(#) 

Age (years) 
mean ± sd median/range 

FBIRN Control group (160) Male (115) 37.26 ± 10.71 39/(19–59) 
Female (45) 36.47 ± 11.33 33/(19–58) 

Schizophrenia group 

(150) 

Male (114) 38.74 ± 11.78 40/(18–62) 
Female (36) 39.06 ± 11.40 36/(21–57) 

COBRE Control group (79) Male (55) 39.07 ± 12.43 38/(18–65) 
Female (24) 34.92 ± 10.23 34/(18–58) 

Schizophrenia group 

(50) 

Male (42) 37.43 ± 15.05 32.5/(19–64) 
Female (8) 43.25 ± 12.78 40/(31–65) 

MPRC Control group (238) Male (94) 38.72 ± 13.63 40/(12–68) 
Female (144) 41.22 ± 16.06 44/(10–79) 

Schizophrenia group 

(150) 

Male (98) 35.57 ± 13.18 32/(13–63) 
Female (52) 44.60 ± 13.87 47/(13–63) 
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ng parameters: a standard gradient echo-planar imaging sequence,
epetition time/echo time (TR/TE) = 2000/30 ms, voxel spacing
ize = 3.4375 × 3.4375 × 4 mm, slice gap = 1 mm, field of
iew = 220 × 220 mm, and a total of 162 vol. The COBRE dataset
as collected at one site using a Siemens 3-Tesla TIM Trio scanner and
 standard echo-planar imaging sequence with TR/TE = 2000/29 ms,
oxel spacing size = 3.75 × 3.75 × 4.5 mm, slice gap = 1.05 mm,
eld of view = 240 × 240 mm, and a total of 149 vol. Finally, the
PRC dataset was collected in three sites: ( Friston, 2011 ) Siemens 3-
esla Allegra scanner using a standard echo-planar imaging sequence
ith TR/TE = 2000/27 ms, voxel spacing size = 3.44 × 3.44 × 4 mm,
OV = 220 × 220 mm, and 150 vol; ( Biswal et al., 1995 ) Siemens
-Tesla Trio scanner using a standard echo-planar imaging sequence
ith TR/TE = 2210/30 ms, voxel spacing size = 3.44 × 3.44 × 4 mm,
OV = 220 × 220 mm, and 140 vol; and ( Damoiseaux et al.,
006 ) Siemens 3-Tesla Tim Trio scanner using a standard echo-
lanar imaging sequence with TR/TE = 2000/30 ms, voxel spacing
ize = 1.72 × 1.72 × 4 mm, field of view = 220 × 220 mm, and 444
ol. 
The inclusion criteria include 1) the number of time points (volumes)

f the BOLD time series larger than 100 (the minimum number of time
oints is 135), 2) head motion transition less than 3° rotations and 3 mm
ranslations in every direction, 3) mean framewise displacement less
han 0.25, 4) high-quality registration to an echo-planar imaging tem-
late, and 5) spatial overlap between individual mask and group mask
bove 80%. 

.2. Preprocessing 

The rsfMRI data were preprocessed primarily using the statistical
arametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) tool-
ox. The first five volumes were discarded for magnetization equilib-
ium purposes. Rigid body motion correction was performed to correct
ubject head motion during the scan. Slice-timing correction was applied
o correct timing differences (temporal misalignment) in slice acquisi-
ion. The data of each subject were warped into a Montreal Neurological
nstitute (MNI) echo-planar imaging template and resampled to 3 mm 

3 

sotropic voxels. Next, the data were spatially smoothed using a Gaus-
ian kernel with a 6 mm full width at half-maximum. Considering ICA
eparates white matter and cerebrospinal fluid signals into independent
omponents, we do not regress them out during preprocessing (thus fol-
owing standard practice for ICA analyses). 
Because the fMRI signal has a low signal-to-noise ratio, the detection

f EPTs can be sensitive to noise. For example, noise can change the time
oints that survive thresholding and alter the time points that manifest
s local maxima. To address this, we performed the following cleaning
teps on the time course of each voxel. Voxel time courses were de-
rended by removing linear, quadratic, and cubic trends. We regressed
ut six motion realignment parameters and their derivatives. Outliers
3 
ere detected based on the median absolute deviation, spike threshold
c 1 ) = 2.5 ( Jo et al., 2013 ), and replaced with the best estimate using
 third-order spline fit to the clean portions of the time courses. Band-
ass filtering was applied using a fifth-order Butterworth filter with a
utoff frequency of 0.01 Hz-0.15 Hz. We also evaluated if the cleaning
rocedure drives the findings by repeating the analysis using uncleaned
ata. 

.3. Extracting default mode time course 

We used several procedures to obtain the time series associated with
he default mode network to illustrate that our findings are not the
esult of a selected node or time courses. Similar to most event-based
tudies, we first used a region of interest (ROI) in the posterior cingu-
ate cortex area as a node for the default mode. For this purpose, we
sed the two most commonly used ROIs including a 6 × 6 × 6 mm 

3 

ube centered at ( x = 0, y = − 53, z = 26) ( Liu and Duyn, 2013 ) and
 sphere with 3mm-radius, centered at ( x = − 6, y = − 58, z = 28))
 Chang and Glover, 2010 ) in MNI coordinates. We called these two
ode Seed1 and Node Seed2 . We defined an additional node (Node Meta )
sing a term-based meta-analysis for the term “default mode ” in Neu-
osynth (https://www.neurosynth.org/) ( Yarkoni, Poldrack, Nichols,
an Essen, and Wager, 2011 ). The default mode associated map was
egistered to the study common space, and the top 27 voxels were se-
ected as Node Meta for the default mode. The Node Meta includes a cluster
f size 20 voxels in the posterior cingulate cortex and a cluster of size
even voxels in the left angular gyrus. For these three nodes, the aver-
ge time course within each node was used as the representation of the
efault mode time course to identify time points with the highest and
owest contributions of the default mode. 
While the default procedure for existing event-based approaches is

o use anatomically fixed nodes to estimate EPTs, one may argue our
ndings are the result of using predefined anatomically fixed nodes for
ll individuals, which could result in inaccurate estimation of the default
ode time course. As such, we also utilized ICA to obtain subject-specific
efault mode maps and associated time courses (Node ICA ) ( Calhoun and
dal ı , 2012 ; Calhoun et al., 2001 ). ICA was performed using the
IFT v4.0c software package (https://trendscenter.org/software/gift/)
 Iraji et al., 2021 ). We applied a low model order (model order = 20)
roup-level spatial ICA to obtain large-scale brain networks ( Iraji et al.,
016 ), including the default mode. We applied variance normalization
z-score) on voxel time courses and computed subject-level spatial prin-
ipal components analysis (PCA) to retain maximum subject-level vari-
nce (greater than 99%). Subject-level principal components were then
oncatenated together across the time dimension, and group-level spa-
ial PCA was applied to the concatenated subject-level principal com-
onents. The 20 group-level principal components that explained the
aximum variance were selected as the input for the Infomax algo-
ithm to calculate 20 group independent components. The Infomax ICA
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lgorithm was run 20 times, and only components with (ICASSO cluster
uality index > 0.8) were used to identify networks. Next, we used the
roup component as a reference in a spatially constrained ICA (called
roup information guided ICA or GIG-ICA) to calculate subject-specific
efault mode and its associated time courses ( Du et al., 2015 ). 

.4. Detecting event present and absent time points (EPTs and EATs) of the
efault mode 

The main idea behind event-based studies is that functional connec-
ivity patterns, such as the default mode, are derived from sparse, abrupt
euronal events which manifest as momentarily changes in the ampli-
ude (or other characteristics) of the BOLD signal of associated regions.
hus, the key step for event-based studies is to identify a set of time
oints with the largest association to a predefined node (i.e., EPTs).
ere, to evaluate our hypothesis, we also focus on the set of time points
ith the weakest association to the predefined node (i.e., EATs), which
re at the opposite extreme, the time points with the minimum chance
f event occurrence. Event-based studies use different techniques to de-
ect EPTs from the time series of a given node, which are suggested to
ead to similar results ( Cifre et al., 2020 ). The most common techniques
nclude 1) choosing the time points with maximum amplitudes (e.g., top
0 percent or top 20 percent time points), 2) choosing time points that
ass a threshold value (e.g., above one standard deviation of the time se-
ies), 3) selecting time points which are the local maxima/minima of the
ime series, and 4) deconvolving the BOLD signal using hemodynamic
odels, which resolve into a set of sparse EPTs. 
Focusing on the default mode, our main objective here is not to iden-

ify the default mode and its EPTs, but rather to assess the possibility
f estimating the default mode from its assumed EATs, and secondarily
hether we are losing information if we focus only on the EPTs. In other
ords, we first aim to evaluate if the default mode can be retrieved by
nly using EATs. We can use any event detection techniques and assign
ime points not selected as EPTs as EATs, but here we chose a more ex-
reme approach and defined EATs as time points that are the least likely
PTs of the default mode. For this purpose, we selected the 20 time
oints (equal to the ICA model order) with the minimum amplitude of a
iven node time series as EATs ( Fig. 1 ). In the same manner, the 20 time
oints with the largest amplitude are considered to be the EPTs ( Fig. 1 ).
e also evaluate the finding by choosing the 20 time points with the
ighest absolute value. 
In addition, we used EPTs to investigate if other large-scale networks

an be obtained by applying ICA to the EPTs of the default mode ( Fig. 1 ).
n other words, we evaluated if the default mode EPTs are only occu-
ied or mainly dominated by default mode or other networks similarly
resent and contribute to these time points. While some recent event-
ased works consider the possibility of the coexistence of a few func-
ional patterns and allow the temporal overlap between their events
 Karahano ğlu and Van De Ville, 2015 ; Zoller et al., 2019 ), event-based
tudies commonly assume the activation peaks of different networks do
ot coincide together. Here, we argue for the continuous presence of
ll networks including EPTs of other networks and assess this by focus-
ng on EPTs of the default mode. The presence of other networks in the
PTs of the default mode (and also EATs and AllTPs) also suggests the
ontinuous presence of overlapping networks. 

.5. Evaluating event present and absent time points (EPTs and EATs) 

We used the following procedures to evaluate the presence of the
arge-scale networks in the EATs (EPTs) of the default mode estimated
sing the various nodes mentioned earlier. First, we applied ICA to the
ATs (EPTs) of the default mode to evaluate if we can obtain brain net-
orks from these time points. We used ICA with the same parameters as
xplained above. However, instead of using all time points, we only used
he EATs (EPTs) of each subject for this procedure. To further clarify,
CA analysis has been used for different purposes. Once, we use ICA to
4 
stimate subject-specific default mode node which is called Node ICA . The
ther time, we applied ICA analysis to extract ICNs (including the de-
ault mode network) from different portions of data (EPTs/EATs). Mov-
ng forward, whenever we talk about ICA results we are referring to the
econd one (i.e., running ICA on EPTs/EATs). We also calculated whole-
rain functional connectivity maps by calculating Pearson correlation
etween a node time series and all brain voxels using only EATs (EPTs).
he main objective of this procedure was to determine if the default
ode can be obtained from EATs using linear second-order statistics or
f high-order statistics (for example, using ICA) are required to extract
he network. 
Finally, we calculated whole-brain ASMs to evaluate if the co-

ctivation pattern of the default mode can be estimated from EATs in ad-
ition to EPTs. First, we calculated the weighted-ASM (wASM) ( Eq. (1) ),
here weight at each time point, w(t) , is node signal amplitude and X(t)
s the preprocessed BOLD signal at a given time point. 

𝐴𝑆 𝑀 𝑣𝑜𝑥𝑒𝑙 × 1 = 

1 
𝑇 

𝑇 ∑

𝑡 =1 
𝑤 ( 𝑡 ) ∗ 𝑋 𝑣𝑜𝑥𝑒𝑙 × 1 ( 𝑡 ) (1)

e also calculated ASM by averaging EATs (EPTs) while correcting the
ign of node signal at a given time point ( Eq. (2) ). The sign correction
s needed to prevent positive and negative values from canceling each
ther. When EPTs are obtained using the amplitude of a given node
ime course, EPTs are expected to have positive values, and Eq. (2) is
qual to the simple averaging. However, many studies use the maximum
bsolute values of a node time course or L 1 -norm (or L 2 -norm) of time
eries obtained from several node amplitudes at any given time, which
equires sign correction. 

𝑆 𝑀 𝑣𝑜𝑥𝑒𝑙 × 1 = 

1 
𝑇 

𝑇 ∑

𝑡 =1 
𝑠𝑖𝑔𝑛 ( 𝑤 ( 𝑡 ) ) ∗ 𝑋 𝑣𝑜𝑥𝑒𝑙 × 1 ( 𝑡 ) (2)

or all analyses, we use spatial correlation to quantify the similarities
n the spatial maps. To ensure that the effect of other networks is not
riving similarity values, we first regressed out the contribution of other
etworks. 

.6. Recursive ICA 

When we use GIG-ICA to obtain a subject-specific node for the default
ode (Node ICA ), EATs are estimated from subject-specific default mode
ime courses. Thereby, the EATs are largely dominated by other net-
orks, and typically it is assumed there would be no significant presence
f default mode within these timepoints. However, we hypothesized that
ven in this scenario, the default mode network is present and can be
ecovered. To evaluate our hypothesis, we introduce an approach called
ecursive ICA, which is simply performing ICA on the residual of the pre-
ious ICA. For this purpose, we first estimate ICA components from the
ATs and obtained the stable components. Then, we regress out these
omponents from each subject EATs and estimate components from the
esidual. Recursive ICA is similar to Snowball ICA approach ( Hu et al.,
020 ) in which information and ICNs are collected iteratively by using
he recursive ICA subtraction approach. 

.7. Event present and event absent time point (EPT and EAT) signatures 
n schizophrenia 

We next investigated whether default mode EPTs carry all informa-
ion about the default mode or if instead different temporal portions,
PTs, EATs, and all time points (AllTPs), contain distinct and potentially
omplementary information about the default mode. We used Node ICA 
s it uses subject-specific default mode information to provide the best
stimation of the default mode EPTs and EATs from data itself. 
We first evaluated the association between a schizophrenia symp-

om score and the default mode functional network connectivity (DM-
NC). Because different symptom scores, the Positive and Negative Syn-
rome Scale (PANSS) and the Brief Psychiatric Rating Scale (BPRS),
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Fig. 1. Schematic of the analysis pipeline. First, we select one of the four default mode nodes and use its time course to identify event present time points (EPTs) 
and event absent time points (EATs) for the default mode. The 20 time points with the largest amplitude are labeled as the EPTs (blue dots), while EATs are the 20 
time points with minimum amplitudes (red dots). We selected this time point selection technique to minimize the likelihood of the presence of an event in EATs. 
We also repeated the analysis by using the amplitude of absolute value (as some studies use both positive and negative extremes as EPTs). We compared EPTs and 
EATs with the functional patterns obtain using all time points (AllTPs, green dots). We evaluated the presence of functional patterns in EATs, EPTs, and AllTPs of 
default mode (DM) using different tools, including high-order statistics using independent component analysis (ICA), presented in the figure, second-order statistics 
using pair-wise Pearson correlation, and first-order statistics using (weighted-) activation spatial maps (ASMs). We were specifically interested in whether (1) the 
DM is present within the EATs (magenta box) and (2) EPTs of the DM also include information about the non-DM networks (cyan box). aDM: anterior default mode 
network (as opposed to classical (posterior) DM), ATN: attention network, LFP/RFP: left/right frontoparietal network, SUB: subcortical network, MTR: Somatomotor 
network, AUD: auditory network, CER: cerebellar network, and VIS: visual network. 
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ere recorded for different individuals with schizophrenia, we used a
rior conversion algorithm obtained from 3767 individuals to convert
PRS total scores to PANSS total scores ( Leucht, Rothe, Davis, and En-
el, 2013 ) and used PANSS total score in our analysis. We calculated
NC between the default mode network and nine other large-scale net-
orks for EPTs, EATs, and AllTPs (aka, static DM-FNC). We regressed
ut age, gender, site, and mean framewise displacement from each FNC.
or each approach, i.e., AllTPs, EPTs, and EATs, we used nine DM-
NCs as the independent variables and the total PANSS score as the
ependent variable. We applied the least absolute shrinkage and selec-
ion operator (LASSO) ( Tibshirani, 1996 ) with ten-fold cross-validations
CV = 10) and 50 Monte Carlo repetitions for cross-validation to iden-
ify the symptom-related DM-FNC features. We chose the model and the
egularization coefficient (lambda) that resulted in the minimum cross-
alidated mean squared error (MSE). The DM-FNCs with nonzero coeffi-
ients are the most relevant attributes, among the independent variables
n the model, to best describe the PANSS score in our dataset. If all coef-
cients are zero for a model, it means none of the FNC pairs significantly
i.e., beyond constant value) relate to the symptom severity score. Next,
e evaluated if symptom-related DM-FNCs (DM-FNCs with nonzero co-
fficients, if there are any), obtained using individuals with schizophre-
ia, can also differentiate between individuals with schizophrenia and
ypical controls using a logistic regression model. Similar to the previ-
us analysis, the logistic regression was applied after regressing out age,
ender, site, and mean framewise displacement covariates. 

. Results 

.1. The default mode never rests 

The results for using the amplitude of Node Seed1 time series to obtain
he default mode from EATs and EPTs are presented in Fig. 2 . The ICA
esults (i.e., running ICA on EATs obtained using Node Seed1 ) show that
he default mode network can be estimated well from just the EATs. The
5 
patial similarities between subject-level and group-level default mode,
hile controlling for the effect of other networks, are 0.674 ± 0.053
mean ± SD) for AllTPs, 0.483 ± 0.072 for EPTs, and 0.366 ± 0.083 for
ATs. If we consider this criterion as the reproducibility measurement,
esults from AllTPs outperform EPTs, suggesting the potential benefit of
sing all time points. The result for EATs shows lower spatial similarity
t the subject-level (group-level results are comparable); however, the
imilarity is well above chance. We also performed an additional test by
emoving local peaks from EATs (i.e., EATs are less than 20 time points)
nd applying ICA on the remaining EATs, which shows the presence of
he default mode network. 
As expected, the spatial patterns of the default mode in EATs demon-

trated meaningful differences. For example, the location of Node Seed1 
tself does not strongly contribute to the default mode network in these
ATs, which partially explains the lower spatial similarity in EATs. In
ther words, the default mode exists strongly in Node Seed1 EATs, but the
ontribution of Node Seed1 to the default mode in EATs is not as strong
s the rest of the default mode regions. The fact that the default mode
an still be estimated from the EATs, where it should be least likely to
e detected, provides evidence that intrinsic networks are best modeled
s continuous in both space and time, rather than as discrete events. 
We next studied the connectivity profile of Node Seed1 in the EATs to

valuate if Node Seed1 is completely dissociated from the default mode or,
espite not being a part of the default mode network dominant pattern,
ode Seed1 maintains its connection to the default mode regions. Interest-
ngly, even in the EATs, Node Seed1 is significantly connected to the de-
ault mode regions, and the default mode connections are the dominant
unctional connectivity of Node Seed1 even in its EATs ( Fig. 2 ). The activ-
ty patterns further supported the functional connectivity results in that
oth ASMs and weighted ASMs (wASMs) show co-activation patterns
esembling the default mode network for AllTPs, ETPs, and EATs. The
onnectivity and co-activity patterns of Node Seed1 in EATs are somewhat
oisier because of the small amplitude and fluctuations of Node Seed1 
ime series in these time points; however, the default mode pattern is
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Fig. 2. Node Seed1 default mode functional patterns. The plots are z-maps (mean equals to zero and standard deviation equals to one), thresholded at z- value = 1. The 
z-score colorbar range is [1 - 6] for all plots. The first column shows the functional patterns obtained using all time points (AllTPs) of individuals. The second column 
represents the results obtained by applying analysis on the event present time points (EPTs), and the third column is the functional patterns obtained using only event 
absent time points (EATs). The first row is showing the ICA results. The top left shows the default mode network calculated by applying ICA on the whole dataset 
(using all time points). The default mode network was successfully obtained for both EPTs and EATs. For EATs, Node Seed1 , which is in the posterior cingulate area, 
does not strongly contribute to the default mode network (see the ‘hole’ in seed location in the top right panel. However, even in EATs, the Node Seed1 connectivity 
with the default mode regions is stronger than its connectivity with the rest of the brain as shown in the functional connectivity map (FCM) of Node Seed1 obtained 
using pair-wise Pearson correlation (the second row). In other words, this result suggests the default mode network exists strongly at EAT time points, and Node Seed1 
is functionally connected to it. Activation spatial maps (ASMs) and weighted ASMs (wASMs) show very similar co-activation patterns for AllTPs, ETPs, and EATs 
consist of default mode regions. Indeed, the EATs maps are noisier because the small amplitude of Node Seed1 time course in EATs making it more susceptible to noise. 
The arrows in cyan color show regions commonly contribute to the executive control network. 

Table 2 

The spatial similarity between AllTPs with EPTs and EATs 
using Node Seed1 : “subject-level mean ± subject-level stan- 
dard deviation (group-level) ”. 

Node Seed1 AllTPs - EPTs AllTPs - EATs 

ICA 0.648 ± 0.089 (0.972) 0.371 ± 0.084 (0.840) 
FCM 0.520 ± 0.178 (0.927) 0.513 ± 0.197 (0.902) 
ASM 0.576 ± 0.164 (0.733) 0.499 ± 0.188 (0.891) 
wASM 0.666 ± 0.150 (0.865) 0.504 ± 0.211 (0.895) 
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till clearly present. The spatial similarities between subject-level and
roup-level default mode for these analyses can be found in Supplemen-
ary 1. 
We also calculated the spatial similarities of EPTs (and EATs) with

llTPs ( Table 2 ) at both subject-level and group-level. For both EPTs
nd EATs, the spatial similarity is highly significant. EPTs shows higher
imilarity compared to EATs, which is expected as EPTs contribute more
han EATs to the spatial maps obtained from AllTPs. The lower spatial
imilarity in EATs is also derived by a different topology of the default
ode in EATs, which is related to the dynamic nature of the brain, in-
luding the lower contribution of the posterior cingulate cortex to the
efault mode, which significantly contributes to EPTs. Another example
f different topologies can be seen in ICA analysis (i.e., running ICA on
ATs and EPTs). In the EAT ICA analysis, many regions of the executive
ontrol network (identified as the cyan arrows in Fig. 2 ) have merged
ith the default mode component, suggesting these two networks are
ynamically integrated with one another into a single network. In con-
rast, these two networks are identified separately in EPTs and AllTPs
nalysis. 
6 
Performing analysis using the absolute value of Node Seed1 time series
esulted in similar findings as using the signed amplitude of Node Seed1 
ime series (Supplementary 2). The findings were replicated when other
odes were used to identify EPTs and EATs Fig. 3 . (and Supplemen-
ary 3 and 4) shows the results for Node Seed2 and Node Meta when the
bsolute value (amplitude) of their time courses were used to extract
ATs and EPTs. These results are similar to those for Node Seed1 , sug-
esting our findings are not the results of specific node or event selec-
ion procedures. Our analysis also shows that the spatial similarity of
he default mode is well above chance for all of the nodes. For instance,
he subject-level similarities between functional connectivity maps ob-
ained from Node Seed1 and Node Meta are 0.909 ± 0.076 (mean ± SD) for
llTPs, 0.689 ± 0.221 for EPTs, and 0.460 ± 0.244 for EATs, which indi-
ate more robustness toward node selection for AllTPs compared to EPTs
nd EATs in static analysis. The results are the same for other analyses,
ncluding ASM and wASM (Supplementary 5). It should be noted that
hile the sensitivity to node selection could be related to the regions’
unctional specificity and brain dynamics in addition to lower SNR, it
as an undesirable effect on the reproducibility of static analysis par-
icularly in the EATs which show lower subject-level similarity. Thus,
aution should be taken when using EATs to evaluate within network
onnectivity patterns, especially in clinical studies. 
Next, we evaluated the presence of the default mode in EATs (and

PTs) identified from the time course of the subject-specific default
ode network (i.e., Node ICA ). As we predicted, because these EATs were
btained from the same subject’s data, the default mode network activ-
ty was weak and concealed by the strong activity of other sources (such
s other networks and artifacts). By using recursive ICA and removing
he contribution of dominant components from EATs first, we success-
ully estimated the default mode network from the EATs alone ( Fig. 4 ).
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Fig. 3. The default mode functional patterns were obtained using the absolute value of Node Seed2 (a) and Node Meta (b) time courses. The plots are z-maps (mean 
equals to zero and standard deviation equals to one), thresholded at z-value = 1. The z-score colorbar range is [1 - 6] for all plots. The first, second, and third columns 
illustrate the results obtained using all time points (AllTPs), using only the event present time points (EPTs), and using only event absent time points (EATs), 
respectively. Node Seed2 and Node Meta results reproduce the findings obtained from Node Seed1 (see Fig. 1 ). 
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e also observed significant functional connectivity and co-activation
n EATs between the time course of the default mode network and other
egions involved in the default mode ( Fig. 4 ). The result confirmed the
revious findings using other nodes, suggesting the default mode and
unctional connectivity between associated regions consistently present
n spontaneous BOLD signals. Results were also consistent when we did
ot perform cleaning steps on the voxel time course. 
In a supplementary analysis, we calculate the contribution of the

efault mode across time for 50 randomly selected subjects. The con-
ribution values are the coefficient (beta) from linear regression of the
efault mode onto the fMRI data Fig. 5 . shows the sorted contribution of
he default mode with no sudden drop in its contribution in any of these
ubjects. The results are the same for other studied networks, including
 t  

7 
he visual and somatomotor networks (Supplementary 6). We addition-
lly evaluate and observe that the visual and somatomotor networks can
e obtained from their own EATs (Supplementary 7). 

.2. The default mode event time points are also occupied by other 
etworks 

Next, we evaluated the presence of large-scale networks obtained
n static analysis using all time points in EPTs and EATs. For all inves-
igated nodes (i.e., Node Seed1 , Node Seed2 , Node Meta , and Node ICA ), we
uccessfully obtained the large-scale networks for both EPTs and EATs,
uggesting that the large-scale networks present in the data regardless of
he strength of the default mode and associated regions Fig. 6 . shows the
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Fig. 4. The default mode functional patterns were obtained using the amplitude of Node ICA. Node ICA is subject-specific default mode network obtain using group- 
information guided independent component analysis (GIG-ICA) ( Du et al., 2015 ). The plots are z-maps (mean equals to zero and standard deviation equals to one), 
thresholded at z-value = 1. The z-score colorbar range is [1 - 6] for all plots. The first, second, and third columns illustrate the results obtained using all time points 
(AllTPs), using only the event present time points (EPTs), and using only event absent time points (EATs), respectively. ∗ indicates the default mode network obtain 
using recursive ICA. 

Fig. 5. The sorted contribution of the default mode to the BOLD signal over 
time. The left column shows the average contribution across 50 randomly se- 
lected subjects, and the figures in the right column show contributions for each 
of the 50 individuals. The first row represents sorted contributions across all 
time points. The second and third columns show contributions to EPTs and EATs 
obtained using NodeICA. The results show smooth changes in the default mode 
contribution to time points with no sudden change that can explain changes 
related to before and after the occurrence of an event. 

l  

o  

T  

i
 

p  

t  

b  

n  

p  

i

3
s

 

(  

w  

i  

|  

|  

s  

t  

a  

f  

t
 

f  

v  

v  

d  

T  

i  

e  

b  

t  

h  

(  

r  

t  

(  

c  

m  
arge-scale networks obtained by applying ICA on the amplitude value
f Node Meta (i.e., Neurosynth default mode associated map) time course.
he large-scale networks for other nodes and conditions can be found
n Supplementary 8 and 9. 
These findings are important because we show other networks

resent in the EPTs of the default mode, providing evidence that the ac-
ivation peaks of the default mode do not only contain the default mode
8 
ut also similarly contain other networks. In other words, by showing
etworks exist in EPTs of the default mode, we provide evidence of the
resence of brain networks beyond isolated events, complementary ev-
dence of continuous present coexistence networks. 

.3. Event present and event absent time point (EPT and EAT) unique 
ignatures in schizophrenia 

We next studied the DM-FNC obtained from different portions
EPTs, EATs, and AllTPs) of data in the context of their associations
ith schizophrenia and schizophrenia symptoms. We observed signif-
cant associations with PANSS score for different portions (for EATs:
r|/p = 0.191/0.002; for EPTs: |r|/p = 0.143/0.018; and for AllTPs:
r|/p = 0.125/0.038). Post-hoc analysis shows that the weights of
ymptom-related DM-FNCs (1) are almost identical across LASSO repe-
itions and (2) did not show significant differences for regression model
pplied across different subsets of data. Moreover, the model obtained
or each time portion is not significantly associated with PANSS in other
ime portions. 
Fig. 7 shows the minimum cross-validated mean squared error results

or generalized linear models obtained using LASSO with ten-fold cross-
alidations and 50 repetitions, where the response variable (dependent
ariable) is the total PANSS score and the predictor variables (indepen-
ent variables) are nine DM-FNCs obtained using AllTPs, EPTs, or EATs.
he lines in Fig. 7 show the symptom-related DM-FNCs for AllTPs model
n red, EPTs model in blue, and EATs model in green, and the width of
ach line represents the magnitude of the coefficients. The connection
etween the default mode and the cerebellum (DM-CER) contributes
o all three models, suggesting its steady effect over time. However, it
as much smaller coefficient in EPTs (|b| = 0.61) compared to AllTPs
|b| = 2.14) and EATs (|b| = 2.81). We also observed unique symptom-
elated patterns across models. For example, the default mode and
he auditory (DM-AUD) connection contributes only to AllTPs model
|b| = 0.58), the default mode and the right frontoparietal (DM-RFP)
onnection contributes only to EPTs model (|b| = 0.28), and the default
ode and the left frontoparietal (DM-LFP) connection contributes only
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Fig. 6. The large-scale networks calculate using the amplitude value of Node Meta time courses. The plots are z-maps (mean equals to zero and standard deviation 
equals to one), thresholded at z-value = 1. The z-score colorbar range is [1 - 6] for all plots. The first, second, and third columns illustrate the results obtained 
using all time points (AllTPs), using only the event present time points (EPTs), and using only event absent time points (EATs), respectively. This result shows EPTs 
are not solely dominated by the default mode network, and the large-scale networks are equally present in EPTs. We also retrieve large-scale networks from EATs, 
suggesting the networks consistently present in the BOLD signal. DM: default mode network (also known as posterior DM). aDM: anterior default mode network (as 
opposed to classical (posterior) DM), ATN: attention network, LFP/RFP: left/right frontoparietal network, SUB: subcortical network, MTR: Somatomotor network, 
AUD: auditory network, CER: cerebellar network, and VIS: visual network. 

9 
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Fig. 7. The association between schizophrenia symptoms and the default mode 
functional network connectivity (DM-FNC). The lines represent the coefficients 
of the generalized linear model obtained using the least absolute shrinkage and 
selection operator (LASSO) with ten cross-validations (CV = 10) and 50 Monte 
Carlo repetitions for the model with the minimum cross-validated mean squared 
error (MSE), where the response variable is the total of positive and negative 
syndrome scale (PANSS) scores and the predictor variables are nine default 
mode-FNC pairs estimated using all time points (AllTPs) in red, using the de- 
fault mode event present time points (EPTs) in blue, and using the default mode 
event absent time points (EATs) in green. The width of each line represents 
the magnitude of the coefficients. aDM: anterior default mode network (as op- 
posed to classical (posterior) DM), ATN: attention network, LFP/RFP: left/right 
frontoparietal network, SUB: subcortical network, MTR: Somatomotor network, 
AUD: auditory network, CER: cerebellar network, and VIS: visual network. 
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o EATs model (|b| = 4.54). Additionally, we found the symptom-related
M-FNCs differentiate (FDR < 0.05) between schizophrenia and typical
ontrols in all three AllTPs, EPTs, and EATs models, further supporting
heir biological relevance. These results suggest that different portions
f data, including EATs, may carry unique/additional information about
he default mode, and a focus only on EPTs miss this potentially impor-
ant information. 
We also performed additional analysis and evaluated changes within

he default mode network. We applied voxel-wise group comparison
hile including age, gender, site, and mean framewise displacement
mFD) as confound regressions and correcting for multiple comparisons.
e found significant differences in the thalamus for the ICA analysis us-
ng EATs (Supplementary 10). We did not observe any difference in the
PTs and AllTPs. This may be due to the presence of time-varying spatial
onnectivity consistent with previous findings ( Iraji et al., 2019 ). 

. Discussion and perspective 

The main objective of functional neuroimaging is to relate the mea-
urements of imaging modalities to underlying neural activity and bi-
logical variability. Among different imaging modalities, fMRI, which
easures the BOLD signal as a proxy for average neural activity, has
dvantages over others because of its ability to record data from the
hole brain, arguably the best trade-off between spatial and temporal
esolutions. However, there is still little known about the underlying
unctional architecture and how neural activity contributes to the spon-
aneous BOLD signal. To decipher this mystery, the neuroimaging com-
unity has dedicated great effort to develop analytical approaches to
odel spontaneous BOLD signal and interpret the underlying functional
atterns. 
10 
Building upon the notion of dynamic, ongoing functional interac-
ions across the brain, the dominant category of approaches model in-
rinsic functional patterns (i.e., functional networks) as continuous enti-
ies in time. A major departure from this category seeks to model brain
unction as a set of discrete (i.e., sparse in time) functional patterns, ini-
ially developed based on the hypothesis that spontaneous BOLD signal
esults from brief and isolated epochs of neural events ( Chialvo, 2010 ).
ecause detecting event present time points is the core component and
he real differentiator of this category, we used the term “event detection
pproaches ” as the general term to describe this category of approaches.
imilar to the main category, event detection studies have presented in-
riguing findings, suggesting their potential to facilitate understanding
f underlying neural activities with great opportunities for both clinical
nd research settings. This results in a rapidly growing interest in event
etection approaches and using only a subset of data (EPTs), instead of
ll available time points to study brain function. 
This study argues that intrinsic networks have an ongoing, continu-

us presence in BOLD signal, and EPTs do not contain all the information
f their corresponding functional patterns. As such, using only EPTs in
MRI studies may result in missing important information, potentially
eading to misleading conclusions. The findings of this study support
his proposition. Thus, while we emphasize the potential of event de-
ection approaches and advocate for further studies of this category, we
all for caution on the assumptions and interpretation of the findings. 
We summarize the findings of this study in three main analyses. The

rst analysis stemmed from the premise that network patterns derived
rom discrete, temporally sparse events, compared to continuous ongo-
ng interactions between associated regions. We focused on the default
ode pattern because it has been repeatedly detected as a dominant
lobal co-activation pattern and arguably most studied in ROI-based
vent-driven studies. We evaluated the continuous presence of the de-
ault mode in spontaneous BOLD signal by investigating if the default
ode significantly exists in the time points with the least probability
f being the default mode event (EATs), i.e., the time points with am-
litudes near to baseline (zero). We tested our proposition using two
ommonly used default mode nodes in event-based studies, using a node
btained from meta-analysis for the term “default mode ” in Neurosynth,
nd even using the time course of subject-specific default mode obtained
sing group ICA followed by multi-objective optimization ( Du et al.,
015 ). We observed that regardless of choice of node, preprocessing
teps (cleaning), analysis (first, second, and higher-order statistics), the
efault mode patterns strongly present in both activity and connectiv-
ty spaces. These findings suggest that the default mode is a continu-
us phenomenon or at least has a continuous footprint in spontaneous
OLD signal. Therefore, EPTs do not contain the complete information
f functional patterns and might be insufficient to model their proper-
ies. Considering that the true nature of the underlying neuronal activity
s still unknown, focusing only on EPTs may obscure our understanding
f brain function. The success of event detection approaches in identi-
ying brain networks and capturing useful information using only EPTs
hould not be seen as evidence that networks only present or originated
rom discrete infrequent events ( Liu et al., 2018 ). 
While the main objective of the first analysis was to evaluate the

resence of the default mode at EATs of the default mode, the second
nalysis targeted its EPTs. We were particularly interested in whether
pontaneous BOLD signal in these time points is induced by default
ode events and merely reflects the default mode or subsists on other
unctional patterns, obtained from the whole data. ICA analysis shows
hat large-scale brain networks can be equally obtained from EPTs as
ell as EATs. The results of these analyses provide evidence that intrin-
ic networks have an ongoing, continuous presence in the BOLD signal,
nd they are best modeled as continuous in both space and time, rather
han as discrete events. While our supplementary analyses support our
ndings for the visual and somatomotor network, the findings of this
tudy should be further evaluated for additional networks and spatial
cales. 



A. Iraji, A. Faghiri, Z. Fu et al. NeuroImage 251 (2022) 119013 

 

t  

t  

a  

D  

s  

t  

r  

E  

r  

i  

i  

a  

s  

s  

E  

r  

r  

w  

a  

W  

t  

g  

i  

f  

a  

D  

f  

l  

P  

2  

w  

a  

w  

o  

P  

t  

(  

f  

p  

d  

c  

n  

s  

h  

d  

p  

s  

s  

p  

P  

s  

p  

i  

t  

b  

d
 

y  

s  

t  

w  

a  

d  

m  

s  

i  

a  

E  

c  

t  

t  

t
 

c  

i  

S  

m  

a  

2  

s  

w  

m  

t  

i  

f  

i  

m  

t  

t  

p  

o  

m  

w  

t  

p  

i
 

t  

o  

h  

f  

w  

v  

i  

s  

p  

I  

M  

i  

(  

C  

w  

B

5

 

b  

s  

a  

r  

t  

c  

g  

o  

t  

s
 

r  

w  

a  
The third analysis was designed to answer whether EPTs can cap-
ure a full picture of functional properties or if different portions of
ime carry unique/complementary information. First, we studied the
ssociation between a schizophrenia symptom severity score and the
M-FNC calculated using only EPTs, only EATs, and AllTPs. We ob-
erved common patterns such as the contribution of DM-CER connec-
ion across all three models; in addition, robust and unique symptom-
elated links were found for all three scenarios. For instance, unlike the
PT model, the AllTPs model identified the DM-AUD connection to be
elated to the symptom score suggesting the EPT approach may be miss-
ng some information present in the full-time series. Further support-
ng this, the DM-LFP connection from the EATs shows a robust associ-
tion with symptoms. At the same time, we advocate for using EPTs to
tudy brain function as they can contain unique information about brain
tates. We observed that the DM-RFP connection contributes only to the
PT model. These findings are aligned with previous studies showing
elationships between symptom severity and functional connectivity of
egions from cerebellar, default mode, and left/right frontoparietal net-
orks ( Brady et al., 2019 ; Chahine, Richter, Wolter, Goya-Maldonado,
nd Gruber, 2017 ; Wang et al., 2015 ; Whitfield-Gabrieli et al., 2009 ;
oodward et al., 2011 ). For instance, Brady et al. identified the func-
ional connectivity of the bilateral dorsolateral prefrontal regions (re-
ions in LFP and RFP) with the default mode regions covaried signif-
cantly with symptom severity ( Brady et al., 2019 ). In particular, the
unctional connectivity of the right dorsolateral prefrontal was associ-
ted with negative symptom severity ( Brady et al., 2019 ). We observed
M-RFP FNC is associated with PANSS total score in the EPTs. The
unctional connectivity between a default mode node in posterior cingu-
ate cortex and left middle frontal gyrus (regions involved in LFP) and
ANSS general symptom is shown to be correlated ( Woodward et al.,
011 ). Similarly, a DM-LFP FNC association with the PANSS total score
as found in the EAT analysis. LFP dysfunction has been frequently
ssociated with a range of abnormalities in schizophrenia, correlated
ith PANSS score, and suggested as a potential endophenotypic marker
f schizophrenia ( Chahine et al., 2017 ). The relationship between the
ANSS and the default mode has also been reported for within-DM func-
ional connectivity ( Garrity et al., 2007 ). Strikingly for all three models
i.e., AllTPs, EPTs, and EATs), the symptom-related DM-FNCs also dif-
erentiated between schizophrenia and typical controls, supporting their
otential biological relevance. Building on these findings, we propose
ifferent portions of time, to be exact EPTs versus EATs versus AllTPs,
arry unique/complementary information, and using EPTs alone may
ot sufficient to study brain function. Furthermore, because symptom
cales like PANSS are the primary clinical tools to assess psychotic be-
avioral disorders, their functional fingerprints can provide a better un-
erstanding of schizophrenia-related brain functional changes. Despite
romising findings, the symptom severity scores on the schizophrenia
ubjects are unfortunately differ between the two samples (PANSS ver-
us BPRS), which we attempt to harmonized them using established a
rior conversion algorithm obtained to convert BPRS total scores to
ANSS total scores. This, on the other hand, results in very blunt in-
trument (PANSS total score) compared to the finely tuned tools. We
ropose that future studies should dedicate more efforts to decipher-
ng behavior-functional imaging relationships and delineating the symp-
om scale brain functional fingerprint, particularly by leveraging a finer
reakdown of severity symptom scores into positive and negative and
isorganized symptoms. 
In addition to differences in the context of schizophrenia, our anal-

ses illustrated differences in the functional patterns of EPTs and EATs,
uggesting they may reflect different states of brain functional architec-
ure. One intriguing finding was observed in the executive control net-
ork. The executive control network has consistently been identified
s a separate functional network with anticorrelative patterns with the
efault mode in both time and space. The executive control and default
ode were also reported to have opposite responses (activation ver-
us deactivation) during cognitively demanding tasks ( Sridharan, Lev-
11 
tin, and Menon, 2008 ). Similar to previous work, these two appeared
s two independent components in our ICA analyses using AllTPs and
PTs. However, for EATs obtained using voxels mainly in the posterior
ingulate cortex (i.e., Node Seed1 , Node Seed2 , and Node Meta ), we observed
hese two networks seem to emerge into one component which contains
he same default mode regions as EPTs and AllTPs and many regions of
he executive control network (see Fig. 2 and Fig. 3 ). 
Considering the premise about the central role of the posterior

ingulate cortex in coordination between these intrinsic connectiv-
ty networks and supporting internally-directed cognition ( Leech and
harp, 2014 ), which is important during goal-directed tasks, these mo-
ents may reflect information integration between these two networks
nd modulation of top-down processing ( Wen, Liu, Yao, and Ding,
013 ). This finding is also supported by the recent spatial dynamic ob-
ervation of dynamic integration and segregation between brain net-
orks ( Iraji et al., 2019 ). Iraji et al. show that intrinsic networks, com-
only considered separate entities in previous spatial static studies,
ransiently merge and separate, reflecting their dynamic segregation and
ntegration ( Iraji et al., 2019 , 2020 ). Our findings suggest that the de-
ault mode and executive networks are fully segregated at EPTs, which
s expected as the default mode activity is maximum and main default
ode regions are expected to strongly connect to each other compared
o their functional connections to other regions. However, in the EATs,
he functional connectivity among default mode regions, particularly the
osterior cingulate cortex, is lower relative to their connections with
ther regions and potentially reflects the transfer of information and
odulatory interaction between these two momentarily integrated net-
orks. As such, we argue that focusing only on EPTs would be limited
o dominant within network dynamics and unveil dynamic segregation
atterns, while including EATs would allow us to better capture dynamic
ntegration and spatial fluidity between networks ( Iraji et al., 2019 ). 
In addition, existing event-based studies are mainly limited to iden-

ifying spatial patterns that resemble large-scale distributed networks
btained in functional connectivity studies. Early event-based studies
ave used this similarity to support their hypothesis and assert that
unctional connectivity results from coactivation in EPTs. We argue that
hile the activation maps of EPTs successfully identify large-scale co-
arying functional patterns, more spatially local functional connectiv-
ty patterns in the data will be missed when using an EPT-type analy-
is. In other words, the activity patterns cannot explain the functional
atterns obtained across multiple spatial scales, such as fine-grained
CNs obtained in higher-order ICA analysis ( Iraji et al., 2019 , 2021 ).
oreover, studies have shown that functional connectivity can occur
n cross-frequency and at different frequencies within a given network
 Allen et al., 2018 ; Chang and Glover, 2010 ; Yaesoubi, Silva, Iraji, and
alhoun, 2020 ) . As a matter of fact, various types of neural activities
ith distinct spatial and temporal representation may contribute to the
OLD signal ( Logothetis, 2002 , 2008 ). 

. Concluding remarks and future considerations 

We propose that the BOLD signal can be best modeled as a com-
ination of processes that occur at different spatial and temporal
cales. Leveraging different existing models and analytical approaches
nd developing new ones can help better understand underlying neu-
onal processes that contribute to the BOLD signal, leading to bet-
er insights into brain function and its alterations in various brain
onditions. This includes event detection approaches and other sin-
le frame-based techniques (use single time points as the elements
f analysis). However, one should consider the impact of noise on
hese approaches considering the signal-to-noise ratio of the BOLD
ignal. 
Furthermore, the key step in event detection approaches is to accu-

ately identifying a functional pattern time series to detect time point.
e recommend leveraging data-driven approaches instead of predefined
natomical nodes to more accurately obtain time series and detect EPTs.
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hen a region is a central part of a functional pattern (e.g., the pos-
erior cingulate cortex for the default mode), its high amplitude time
oints can effectively depict the functional pattern. However, as our
esults show, the amplitude of a given fixed node does not well rep-
esent the activity of the corresponding functional pattern, rather the
ctivity of a given node and its contribution to functional patterns. For
nstance, while EPTs obtained from a posterior cingulate cortex node
xtract the default mode, the default mode is also strongly present in
ts EATs, but the node’s contribution to the default mode is not as
trong as the rest of the default mode regions. This, for example, can
e seen in the top right panel of Fig. 2 , which shows the default mode
etwork obtained by applying ICA on the EATs of Node Seed1, where
he node itself appears as a ‘hole’ and does not have a strong con-
ribution to the default mode. This is expected given the EATs were
elected to have minimal relationship to Node Seed1 , but it is striking
hat even in this extreme case the rest of the default mode can still be
ell-estimated. 
Related to this, different methods capture different information re-

arding the association of a region to a functional pattern. Both ASM
nd FCM (first and second-order statistics) calculate the contributions
f regions/voxels to their dominated functional patterns without consid-
ring their contribution to other functional patterns. On the other hand,
ultivariate analyses like ICA calculate the degree of associations while
ontrolling for the effect of other functional patterns in a model. This
an result in differences in spatial maps of different functional patterns
e.g., Fig. 2 and Fig. 3 ). We suggest that using multivariate data-driven
pproaches to extract the time course of a functional pattern might bet-
er detect its EPTs. This can be done using fully blind approaches like
lustering or ICA ( Allen et al., 2011 ), or hybrid approaches that use
patial constraints to facilitate comparability across analyses while also
dapting to the data to ensure functional coherence ( Du et al., 2020 ). 
Future studies should assess our findings using other brain networks

nd use other event detection approaches such as using local max-
ma and minima, deconvolving the hemodynamic response, or using
ther approaches such as instantaneous functional connectivity (second
r higher-order statistics) instead of activity (first-order statistic). Fur-
hermore, future studies should studies how functional connectivity be-
ween network being affected by choice of EATs, EPTs, and AllPTs and
hould develop approaches to assess reproducibility in the context of
ime-varying changes ( Abrol et al., 2017 ). Finally, future single frame-
ased studies, including event detection approaches, should also explore
he benefits of incorporating spatial dynamics ( Iraji et al., 2019 , 2020 ,
019 ). 
In sum, our finding suggests that functional networks are best mod-

led as continuous, evolving temporal patterns with different portions
arrying unique/complementary information. This highlights the neces-
ity of utilizing all time points and opens new possibilities to study brain
unction. 
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