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Resting-state functional magnetic resonance imaging is currently the mainstay of functional neuroimaging and
has allowed researchers to identify intrinsic connectivity networks (aka functional networks) at different spatial
scales. However, little is known about the temporal profiles of these networks and whether it is best to model
them as continuous phenomena in both space and time or, rather, as a set of temporally discrete events. Both
categories have been supported by series of studies with promising findings. However, a critical question is
whether focusing only on time points presumed to contain isolated neural events and disregarding the rest of
the data is missing important information, potentially leading to misleading conclusions. In this work, we argue
that brain networks identified within the spontaneous blood oxygenation level-dependent (BOLD) signal are not
limited to temporally sparse burst moments and that these event present time points (EPTs) contain valuable but
incomplete information about the underlying functional patterns.

We focus on the default mode and show evidence that is consistent with its continuous presence in the BOLD
signal, including during the event absent time points (EATS), i.e., time points that exhibit minimum activity and
are the least likely to contain an event. Moreover, our findings suggest that EPTs may not contain all the available
information about their corresponding networks. We observe distinct default mode connectivity patterns obtained
from all time points (AlITPs), EPTs, and EATs. We show evidence of robust relationships with schizophrenia
symptoms that are both common and unique to each of the sets of time points (AlITPs, EPTs, EATs), likely
related to transient patterns of connectivity. Together, these findings indicate the importance of leveraging the
full temporal data in functional studies, including those using event-detection approaches.

1. Introduction

Brain function results from the interaction among local and dis-
tributed brain areas. Thus, the temporal dependency among brain re-
gions, commonly known as functional connectivity, is a widely-used tool
for studying brain function (Friston, 2011). The advent of resting-state
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functional magnetic resonance imaging (rsfMRI) revealed the presence
of strong temporal dependencies between functionally related brain re-
gions (e.g., bilateral motor cortices) even without external stimulation
(Biswal, Yetkin, Haughton, and Hyde, 1995). This led to a rapid growth
in rsfMRI research and identification of spatial patterns of function-
ally connected regions termed intrinsic connectivity networks (ICNs),
or functional networks, at different spatial scales from large-scale dis-
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tributed networks to fine-grained, spatially local ones (Allen et al., 2011;
Damoiseaux et al., 2006; Iraji et al., 2019). Interestingly, spatial patterns
obtained by applying independent component analysis (ICA) to spatial
maps of thousands of different activation conditions derived from the
BrainMap meta-analytic tool (https://www.brainmap.org) closely re-
semble large-scale networks (Smith et al., 2009), as do data-driven anal-
yses of activation maps from task data (Calhoun and Allen, 2013), fur-
ther supporting the functional relevance of functional networks. These
approaches are implicitly built upon the notion of continuous informa-
tion processing and interaction among brain regions.

In parallel to this work, another family of approaches, that we collec-
tively called event detection approaches, was developed originally based
upon a hypothesis that functional patterns and brain networks emerge
from discrete, neural events (Chialvo, 2010; Tagliazucchi, Balenzuela,
Fraiman, and Chialvo, 2012). Therefore, instead of studying static or
dynamic functional patterns in the context of ongoing, continuous func-
tional interactions, this family of approaches focuses on extracting dis-
crete events to study static and dynamic functional patterns. The com-
mon procedure for these approaches is to first select a set of extreme time
points (e.g., top 10%) as event present time points (EPTs) and use only
these EPTs to obtain corresponding brain functional patterns (Liu and
Duyn, 2013; Tagliazucchi et al., 2012). There are also work that unified
these two steps to directly obtain events and associated time points,
for example, by applying clustering on all time points (Liu, Chang, and
Duyn, 2013). These approaches assume that these event present time
points alone are sufficient to estimate the temporal dependency and to
derive the functional connectivity patterns observed in functional con-
nectivity studies (Cifre, Zarepour, Horovitz, Cannas, and Chialvo, 2020;
Tagliazucchi, Balenzuela, Fraiman, Montoya, and Chialvo, 2011, 2016),
and resting-state functional connectivity is driven by short-lived cofluc-
tuation events (Zamani Esfahlani et al., 2020). As such, event-based
studies shift away from typical functional connectivity and mainly fo-
cus on capturing functional patterns as (co-)activation patterns of sparse
EPTs using first-order statistics and signal amplitude rather than sta-
tistical dependence between them (Petridou, Gaudes, Dryden, Francis,
and Gowland, 2013; Tagliazucchi et al., 2012, 2011). Event detection
approaches have shown direct correspondence between such spatial co-
activation patterns and large-scale brain networks obtained from func-
tional connectivity analysis (Liu et al., 2013; Tagliazucchi et al., 2012).
They also demonstrated that different EPTs of a given node represent dif-
ferent co-activation patterns reflecting dynamic information of rsfMRI
data (Karahanoglu and Van De Ville, 2015; Liu and Duyn, 2013). How-
ever, these findings were limited to large-scale distributed brain net-
works with no established observations of fine-grained networks (ICNs)
obtained from high-order ICA. This, in turn, may indicate that event de-
tection approaches are limited to dominant large covarying functional
patterns.

After years of using first-order statistics in event-based studies,
which followed early work utilizing the temporal dependency be-
tween extreme time points to derive the functional connectivity
(Tagliazucchi et al., 2012, 2011), recent studies revisited the idea of
using extreme time points to study (dynamic) functional connectivity
in the context of second and higher-order statistics and demonstrated
the potential to provide additional insights into cognition and behavior
(Sporns et al., 2021; Tagliazucchi et al., 2016; Zamani Esfahlani et al.,
2020).

These intriguing findings, along with the potential clinical and be-
havioral relevance of EPTs (Bolton et al., 2020; Chen, Chang, Greicius,
and Glover, 2015; Gaviria et al., 2021) and a number of supporting ob-
servations in animal studies (Liang, Liu, and Zhang, 2015; Matsui, Mu-
rakami, and Ohki, 2019, 2016), further buttress the assumption that
rsfMRI signal may originate from brief, sporadically events rather than
continuous dynamic functional interactions. This has led to a growing
interest in studying brain function using momentarily sparse time points
and related approaches (Bolton et al., 2020; Janes, Peechatka, Freder-
ick, and Kaiser, 2020; Miller, Pearlson, and Calhoun, 2019; Takeda, Ita-
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hashi, Sato, and Yamashita, 2019; Zhang, Pan, and Keilholz, 2020;
Zimmern, 2020).

However, an important question that has not yet been addressed is
whether estimating results from only EPTs omits important informa-
tion, potentially leading to misleading conclusions. While we do not
refute the existence of discrete, neural events or even the possibility of
large-scale networks are emerged from these spontaneous, infrequent
events, we argue against the proposition that functional patterns esti-
mated from the spontaneous blood oxygenation level-dependent (BOLD)
signal manifest only in temporally sparse burst moments and these dis-
crete EPTs contain incomplete information about the underlying func-
tional patterns. This position can be supported by two specific obser-
vations. First, it has been shown that spiking activity propagates using
both asynchronous and synchronous spiking (Kumar, Rotter, and Aert-
sen, 2010). It is unlikely that sparse events alone can completely capture
both of these modes. Second, the fact that connectivity estimators based
on both amplitude (e.g., Pearson correlation) and phase (e.g., instanta-
neous phase synchrony) modulation that have been shown to contain
meaningful information (Allen et al., 2011; Omidvarnia et al., 2016)
suggests that sparse events based only on amplitude in the space-time
domain may give incomplete results.

We evaluated our premise by concentrating on the default mode as it
is arguably the most detected/studied functional pattern in event-based
studies and is commonly used to support the discrete nature of func-
tional patterns in the spontaneous BOLD signal. We first asked whether
the default mode pattern is present only in its so-called EPTs or whether
it can also be identified from the event absent time points (EATs), i.e.,
time points with the least (almost zero) probability of being EPTs. Ad-
ditionally, we explored whether the default mode EPTs contain simi-
lar functional connectivity information as the full data in the context of
their associations with a diagnosis of schizophrenia and with schizophre-
nia symptoms. Finally, we asked whether the (usually ignored) EATs of
the default mode could provide additional unique information about
schizophrenia.

It should be mentioned that this study evaluates if default mode net-
work continuously contributes to the BOLD signal, including the time
points with the least probability of being EPTs. This is in contrast to
earlier studies that assess the effect of scan length on the reliability
of estimating static functional connectivity (Birn et al., 2013). Further-
more, while the term “co-activation pattern/map” is commonly used to
describe spatial patterns identified by event-detection approaches, the
term co-activation pattern (CAP) also refers to a specific category of
event detection approaches (Liu, Zhang, Chang, and Duyn, 2018), and
the term co-activation has also been used in other contexts, such as de-
scribing task co-activation patterns across fMRI studies (Eickhoff et al.,
2011; Toro, Fox, and Paus, 2008). Therefore, we opted for the term acti-
vation spatial maps (ASMs) to describe the first-order activation patterns
that are being evaluated in this study to avoid confusion. Furthermore,
to simplify notation in the remainder of this paper, unless we explicitly
indicate otherwise, the terms EATs and EPTs refer to the EATs and EPTs
of the default mode.

2. Materials and methods
2.1. Dataset and inclusion criteria

We used 3-Tesla rsfMRI data, comprising 477 typical controls
and 350 individuals with schizophrenia selected from three datasets
(Table 1) with different data acquisition parameters, including Func-
tional Imaging Biomedical Informatics Research Network (FBIRN)
(Damaraju et al., 2014), Center for Biomedical Research Excellence (CO-
BRE) (Aine et al., 2017), and Maryland Psychiatric Research Center
(MPRC) (Adhikari et al., 2019).

The FBIRN includes rsfMRI data collected at six sites using Siemens
3-Tesla Tim Trio scanners and one site using a General Electric
3-Tesla Discovery MR750 scanner. All sites use the same follow-
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Table 1
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Demographic information of Subjects studied. FBIRN: Functional Imaging Biomedical Informatics Research Network, COBRE: Center for Biomedical Research

Excellence, and MPRC: Maryland Psychiatric Research Center.

Sex Age (years)
Dataset Diagnostic (#) #) mean + sd median/range
FBIRN Control group (160) Male (115) 37.26 + 10.71 39/(19-59)
Female (45) 36.47 + 11.33 33/(19-58)
Schizophrenia group Male (114) 38.74 + 11.78 40/(18-62)
(150) Female (36) 39.06 + 11.40 36/(21-57)
COBRE Control group (79) Male (55) 39.07 +12.43 38/(18-65)
Female (24) 34.92 +10.23 34/(18-58)
Schizophrenia group Male (42) 37.43 + 15.05 32.5/(19-64)
50) Female (8) 43.25 +12.78 40/(31-65)
MPRC Control group (238) Male (94) 38.72 + 13.63 40/(12-68)
Female (144) 41.22 + 16.06 44/(10-79)
Schizophrenia group Male (98) 35.57 +13.18 32/(13-63)
(150) Female (52) 44.60 + 13.87 47/(13-63)

ing parameters: a standard gradient echo-planar imaging sequence,
repetition time/echo time (TR/TE) = 2000/30 ms, voxel spacing
size = 3.4375 x 3.4375 X 4 mm, slice gap = 1 mm, field of
view = 220 x 220 mm, and a total of 162 vol. The COBRE dataset
was collected at one site using a Siemens 3-Tesla TIM Trio scanner and
a standard echo-planar imaging sequence with TR/TE = 2000/29 ms,
voxel spacing size = 3.75 x 3.75 x 4.5 mm, slice gap = 1.05 mm,
field of view = 240 x 240 mm, and a total of 149 vol. Finally, the
MPRC dataset was collected in three sites: (Friston, 2011) Siemens 3-
Tesla Allegra scanner using a standard echo-planar imaging sequence
with TR/TE = 2000/27 ms, voxel spacing size = 3.44 x 3.44 X 4 mm,
FOV = 220 x 220 mm, and 150 vol; (Biswal et al., 1995) Siemens
3-Tesla Trio scanner using a standard echo-planar imaging sequence
with TR/TE = 2210/30 ms, voxel spacing size = 3.44 x 3.44 x 4 mm,
FOV = 220 x 220 mm, and 140 vol; and (Damoiseaux et al.,
2006) Siemens 3-Tesla Tim Trio scanner using a standard echo-
planar imaging sequence with TR/TE = 2000/30 ms, voxel spacing
size = 1.72 x 1.72 x 4 mm, field of view = 220 x 220 mm, and 444
vol.

The inclusion criteria include 1) the number of time points (volumes)
of the BOLD time series larger than 100 (the minimum number of time
points is 135), 2) head motion transition less than 3° rotations and 3 mm
translations in every direction, 3) mean framewise displacement less
than 0.25, 4) high-quality registration to an echo-planar imaging tem-
plate, and 5) spatial overlap between individual mask and group mask
above 80%.

2.2. Preprocessing

The rsfMRI data were preprocessed primarily using the statistical
parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) tool-
box. The first five volumes were discarded for magnetization equilib-
rium purposes. Rigid body motion correction was performed to correct
subject head motion during the scan. Slice-timing correction was applied
to correct timing differences (temporal misalignment) in slice acquisi-
tion. The data of each subject were warped into a Montreal Neurological
Institute (MNI) echo-planar imaging template and resampled to 3 mm3
isotropic voxels. Next, the data were spatially smoothed using a Gaus-
sian kernel with a 6 mm full width at half-maximum. Considering ICA
separates white matter and cerebrospinal fluid signals into independent
components, we do not regress them out during preprocessing (thus fol-
lowing standard practice for ICA analyses).

Because the fMRI signal has a low signal-to-noise ratio, the detection
of EPTs can be sensitive to noise. For example, noise can change the time
points that survive thresholding and alter the time points that manifest
as local maxima. To address this, we performed the following cleaning
steps on the time course of each voxel. Voxel time courses were de-
trended by removing linear, quadratic, and cubic trends. We regressed
out six motion realignment parameters and their derivatives. Outliers

were detected based on the median absolute deviation, spike threshold
(c;) = 2.5 (Jo et al., 2013), and replaced with the best estimate using
a third-order spline fit to the clean portions of the time courses. Band-
pass filtering was applied using a fifth-order Butterworth filter with a
cutoff frequency of 0.01 Hz-0.15 Hz. We also evaluated if the cleaning
procedure drives the findings by repeating the analysis using uncleaned
data.

2.3. Extracting default mode time course

We used several procedures to obtain the time series associated with
the default mode network to illustrate that our findings are not the
result of a selected node or time courses. Similar to most event-based
studies, we first used a region of interest (ROI) in the posterior cingu-
late cortex area as a node for the default mode. For this purpose, we
used the two most commonly used ROIs including a 6 X 6 x 6 mm?
cube centered at (x = 0, y = =53, z = 26) (Liu and Duyn, 2013) and
a sphere with 3mm-radius, centered at (x = -6, y = —-58, z = 28))
(Chang and Glover, 2010) in MNI coordinates. We called these two
Nodege.q; and Nodeg..qo. We defined an additional node (Nodeyei,)
using a term-based meta-analysis for the term “default mode” in Neu-
rosynth (https://www.neurosynth.org/) (Yarkoni, Poldrack, Nichols,
Van Essen, and Wager, 2011). The default mode associated map was
registered to the study common space, and the top 27 voxels were se-
lected as Nodey, for the default mode. The Nodey;, includes a cluster
of size 20 voxels in the posterior cingulate cortex and a cluster of size
seven voxels in the left angular gyrus. For these three nodes, the aver-
age time course within each node was used as the representation of the
default mode time course to identify time points with the highest and
lowest contributions of the default mode.

While the default procedure for existing event-based approaches is
to use anatomically fixed nodes to estimate EPTs, one may argue our
findings are the result of using predefined anatomically fixed nodes for
all individuals, which could result in inaccurate estimation of the default
mode time course. As such, we also utilized ICA to obtain subject-specific
default mode maps and associated time courses (Node;c,) (Calhoun and
Adali, 2012; Calhoun et al., 2001). ICA was performed using the
GIFT v4.0c software package (https://trendscenter.org/software/gift/)
(Iraji et al., 2021). We applied a low model order (model order = 20)
group-level spatial ICA to obtain large-scale brain networks (Iraji et al.,
2016), including the default mode. We applied variance normalization
(z-score) on voxel time courses and computed subject-level spatial prin-
cipal components analysis (PCA) to retain maximum subject-level vari-
ance (greater than 99%). Subject-level principal components were then
concatenated together across the time dimension, and group-level spa-
tial PCA was applied to the concatenated subject-level principal com-
ponents. The 20 group-level principal components that explained the
maximum variance were selected as the input for the Infomax algo-
rithm to calculate 20 group independent components. The Infomax ICA
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algorithm was run 20 times, and only components with (ICASSO cluster
quality index > 0.8) were used to identify networks. Next, we used the
group component as a reference in a spatially constrained ICA (called
group information guided ICA or GIG-ICA) to calculate subject-specific
default mode and its associated time courses (Du et al., 2015).

2.4. Detecting event present and absent time points (EPTs and EATs) of the
default mode

The main idea behind event-based studies is that functional connec-
tivity patterns, such as the default mode, are derived from sparse, abrupt
neuronal events which manifest as momentarily changes in the ampli-
tude (or other characteristics) of the BOLD signal of associated regions.
Thus, the key step for event-based studies is to identify a set of time
points with the largest association to a predefined node (i.e., EPTs).
Here, to evaluate our hypothesis, we also focus on the set of time points
with the weakest association to the predefined node (i.e., EATs), which
are at the opposite extreme, the time points with the minimum chance
of event occurrence. Event-based studies use different techniques to de-
tect EPTs from the time series of a given node, which are suggested to
lead to similar results (Cifre et al., 2020). The most common techniques
include 1) choosing the time points with maximum amplitudes (e.g., top
10 percent or top 20 percent time points), 2) choosing time points that
pass a threshold value (e.g., above one standard deviation of the time se-
ries), 3) selecting time points which are the local maxima/minima of the
time series, and 4) deconvolving the BOLD signal using hemodynamic
models, which resolve into a set of sparse EPTs.

Focusing on the default mode, our main objective here is not to iden-
tify the default mode and its EPTs, but rather to assess the possibility
of estimating the default mode from its assumed EATs, and secondarily
whether we are losing information if we focus only on the EPTs. In other
words, we first aim to evaluate if the default mode can be retrieved by
only using EATs. We can use any event detection techniques and assign
time points not selected as EPTs as EATs, but here we chose a more ex-
treme approach and defined EATs as time points that are the least likely
EPTs of the default mode. For this purpose, we selected the 20 time
points (equal to the ICA model order) with the minimum amplitude of a
given node time series as EATs (Fig. 1). In the same manner, the 20 time
points with the largest amplitude are considered to be the EPTs (Fig. 1).
We also evaluate the finding by choosing the 20 time points with the
highest absolute value.

In addition, we used EPTs to investigate if other large-scale networks
can be obtained by applying ICA to the EPTs of the default mode (Fig. 1).
In other words, we evaluated if the default mode EPTs are only occu-
pied or mainly dominated by default mode or other networks similarly
present and contribute to these time points. While some recent event-
based works consider the possibility of the coexistence of a few func-
tional patterns and allow the temporal overlap between their events
(Karahanoglu and Van De Ville, 2015; Zoller et al., 2019), event-based
studies commonly assume the activation peaks of different networks do
not coincide together. Here, we argue for the continuous presence of
all networks including EPTs of other networks and assess this by focus-
ing on EPTs of the default mode. The presence of other networks in the
EPTs of the default mode (and also EATs and AllTPs) also suggests the
continuous presence of overlapping networks.

2.5. Evaluating event present and absent time points (EPTs and EATs)

We used the following procedures to evaluate the presence of the
large-scale networks in the EATs (EPTs) of the default mode estimated
using the various nodes mentioned earlier. First, we applied ICA to the
EATs (EPTs) of the default mode to evaluate if we can obtain brain net-
works from these time points. We used ICA with the same parameters as
explained above. However, instead of using all time points, we only used
the EATs (EPTs) of each subject for this procedure. To further clarify,
ICA analysis has been used for different purposes. Once, we use ICA to
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estimate subject-specific default mode node which is called Nodec, . The
other time, we applied ICA analysis to extract ICNs (including the de-
fault mode network) from different portions of data (EPTs/EATs). Mov-
ing forward, whenever we talk about ICA results we are referring to the
second one (i.e., running ICA on EPTs/EATs). We also calculated whole-
brain functional connectivity maps by calculating Pearson correlation
between a node time series and all brain voxels using only EATs (EPTs).
The main objective of this procedure was to determine if the default
mode can be obtained from EATs using linear second-order statistics or
if high-order statistics (for example, using ICA) are required to extract
the network.

Finally, we calculated whole-brain ASMs to evaluate if the co-
activation pattern of the default mode can be estimated from EATs in ad-
dition to EPTs. First, we calculated the weighted-ASM (wASM) (Eq. (1)),
where weight at each time point, w(t), is node signal amplitude and X(t)
is the preprocessed BOLD signal at a given time point.

T
WASMonel x1= % ;w(t) * Xvoxel X l(t) (1)
We also calculated ASM by averaging EATs (EPTs) while correcting the
sign of node signal at a given time point (Eq. (2)). The sign correction
is needed to prevent positive and negative values from canceling each
other. When EPTs are obtained using the amplitude of a given node
time course, EPTs are expected to have positive values, and Eq. (2) is
equal to the simple averaging. However, many studies use the maximum
absolute values of a node time course or L!-norm (or L2-norm) of time
series obtained from several node amplitudes at any given time, which
requires sign correction.

;&

T D sign(w(®) # X e x 1) @

t=1

ASML'r)xel x1=
For all analyses, we use spatial correlation to quantify the similarities
in the spatial maps. To ensure that the effect of other networks is not
driving similarity values, we first regressed out the contribution of other
networks.

2.6. Recursive ICA

When we use GIG-ICA to obtain a subject-specific node for the default
mode (Nodejc,), EATs are estimated from subject-specific default mode
time courses. Thereby, the EATs are largely dominated by other net-
works, and typically it is assumed there would be no significant presence
of default mode within these timepoints. However, we hypothesized that
even in this scenario, the default mode network is present and can be
recovered. To evaluate our hypothesis, we introduce an approach called
recursive ICA, which is simply performing ICA on the residual of the pre-
vious ICA. For this purpose, we first estimate ICA components from the
EATs and obtained the stable components. Then, we regress out these
components from each subject EATs and estimate components from the
residual. Recursive ICA is similar to Snowball ICA approach (Hu et al.,
2020) in which information and ICNs are collected iteratively by using
the recursive ICA subtraction approach.

2.7. Event present and event absent time point (EPT and EAT) signatures
in schizophrenia

We next investigated whether default mode EPTs carry all informa-
tion about the default mode or if instead different temporal portions,
EPTs, EATs, and all time points (AlITPs), contain distinct and potentially
complementary information about the default mode. We used Node;c,
as it uses subject-specific default mode information to provide the best
estimation of the default mode EPTs and EATs from data itself.

We first evaluated the association between a schizophrenia symp-
tom score and the default mode functional network connectivity (DM-
FNC). Because different symptom scores, the Positive and Negative Syn-
drome Scale (PANSS) and the Brief Psychiatric Rating Scale (BPRS),
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Fig. 1. Schematic of the analysis pipeline. First, we select one of the four default mode nodes and use its time course to identify event present time points (EPTs)
and event absent time points (EATSs) for the default mode. The 20 time points with the largest amplitude are labeled as the EPTs (blue dots), while EATs are the 20
time points with minimum amplitudes (red dots). We selected this time point selection technique to minimize the likelihood of the presence of an event in EATs.
We also repeated the analysis by using the amplitude of absolute value (as some studies use both positive and negative extremes as EPTs). We compared EPTs and
EATs with the functional patterns obtain using all time points (AlITPs, green dots). We evaluated the presence of functional patterns in EATs, EPTs, and AlITPs of
default mode (DM) using different tools, including high-order statistics using independent component analysis (ICA), presented in the figure, second-order statistics
using pair-wise Pearson correlation, and first-order statistics using (weighted-) activation spatial maps (ASMs). We were specifically interested in whether (1) the
DM is present within the EATs (magenta box) and (2) EPTs of the DM also include information about the non-DM networks (cyan box). aDM: anterior default mode
network (as opposed to classical (posterior) DM), ATN: attention network, LFP/RFP: left/right frontoparietal network, SUB: subcortical network, MTR: Somatomotor
network, AUD: auditory network, CER: cerebellar network, and VIS: visual network.

were recorded for different individuals with schizophrenia, we used a
prior conversion algorithm obtained from 3767 individuals to convert
BPRS total scores to PANSS total scores (Leucht, Rothe, Davis, and En-
gel, 2013) and used PANSS total score in our analysis. We calculated
FNC between the default mode network and nine other large-scale net-
works for EPTs, EATs, and AllTPs (aka, static DM-FNC). We regressed
out age, gender, site, and mean framewise displacement from each FNC.
For each approach, i.e., AllTPs, EPTs, and EATs, we used nine DM-
FNCs as the independent variables and the total PANSS score as the
dependent variable. We applied the least absolute shrinkage and selec-
tion operator (LASSO) (Tibshirani, 1996) with ten-fold cross-validations
(CV = 10) and 50 Monte Carlo repetitions for cross-validation to iden-
tify the symptom-related DM-FNC features. We chose the model and the
regularization coefficient (lambda) that resulted in the minimum cross-
validated mean squared error (MSE). The DM-FNCs with nonzero coeffi-
cients are the most relevant attributes, among the independent variables
in the model, to best describe the PANSS score in our dataset. If all coef-
ficients are zero for a model, it means none of the FNC pairs significantly
(i.e., beyond constant value) relate to the symptom severity score. Next,
we evaluated if symptom-related DM-FNCs (DM-FNCs with nonzero co-
efficients, if there are any), obtained using individuals with schizophre-
nia, can also differentiate between individuals with schizophrenia and
typical controls using a logistic regression model. Similar to the previ-
ous analysis, the logistic regression was applied after regressing out age,
gender, site, and mean framewise displacement covariates.

3. Results
3.1. The default mode never rests

The results for using the amplitude of Nodeg,.q; time series to obtain
the default mode from EATs and EPTs are presented in Fig. 2. The ICA
results (i.e., running ICA on EATs obtained using Nodeg,.4;) show that
the default mode network can be estimated well from just the EATs. The

spatial similarities between subject-level and group-level default mode,
while controlling for the effect of other networks, are 0.674 + 0.053
(mean + SD) for AlITPs, 0.483 + 0.072 for EPTs, and 0.366 + 0.083 for
EATs. If we consider this criterion as the reproducibility measurement,
results from AllTPs outperform EPTs, suggesting the potential benefit of
using all time points. The result for EATs shows lower spatial similarity
at the subject-level (group-level results are comparable); however, the
similarity is well above chance. We also performed an additional test by
removing local peaks from EATs (i.e., EATs are less than 20 time points)
and applying ICA on the remaining EATs, which shows the presence of
the default mode network.

As expected, the spatial patterns of the default mode in EATs demon-
strated meaningful differences. For example, the location of Nodegeqq;
itself does not strongly contribute to the default mode network in these
EATs, which partially explains the lower spatial similarity in EATs. In
other words, the default mode exists strongly in Nodeg..q; EATSs, but the
contribution of Nodeg..q; to the default mode in EATs is not as strong
as the rest of the default mode regions. The fact that the default mode
can still be estimated from the EATs, where it should be least likely to
be detected, provides evidence that intrinsic networks are best modeled
as continuous in both space and time, rather than as discrete events.

We next studied the connectivity profile of Nodeg..q; in the EATs to
evaluate if Nodegg.q; is completely dissociated from the default mode or,
despite not being a part of the default mode network dominant pattern,
Nodeg,.q; maintains its connection to the default mode regions. Interest-
ingly, even in the EATSs, Nodeg..q; is significantly connected to the de-
fault mode regions, and the default mode connections are the dominant
functional connectivity of Nodege.q; even in its EATs (Fig. 2). The activ-
ity patterns further supported the functional connectivity results in that
both ASMs and weighted ASMs (WASMs) show co-activation patterns
resembling the default mode network for AlITPs, ETPs, and EATs. The
connectivity and co-activity patterns of Nodeg.q; in EATs are somewhat
noisier because of the small amplitude and fluctuations of Nodeggeq;
time series in these time points; however, the default mode pattern is
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Fig. 2. Nodeg..q; default mode functional patterns. The plots are z-maps (mean equals to zero and standard deviation equals to one), thresholded at z-value = 1. The
z-score colorbar range is [1 - 6] for all plots. The first column shows the functional patterns obtained using all time points (AllTPs) of individuals. The second column
represents the results obtained by applying analysis on the event present time points (EPTs), and the third column is the functional patterns obtained using only event
absent time points (EATs). The first row is showing the ICA results. The top left shows the default mode network calculated by applying ICA on the whole dataset
(using all time points). The default mode network was successfully obtained for both EPTs and EATs. For EATSs, Nodeg..4;, Which is in the posterior cingulate area,
does not strongly contribute to the default mode network (see the ‘hole’ in seed location in the top right panel. However, even in EATs, the Nodeg..4, connectivity
with the default mode regions is stronger than its connectivity with the rest of the brain as shown in the functional connectivity map (FCM) of Nodeg.4; obtained
using pair-wise Pearson correlation (the second row). In other words, this result suggests the default mode network exists strongly at EAT time points, and Nodeg.q;
is functionally connected to it. Activation spatial maps (ASMs) and weighted ASMs (WASMs) show very similar co-activation patterns for AlITPs, ETPs, and EATs
consist of default mode regions. Indeed, the EATs maps are noisier because the small amplitude of Nodeg,.4;, time course in EATs making it more susceptible to noise.
The arrows in cyan color show regions commonly contribute to the executive control network.

Table 2 Performing analysis using the absolute value of Nodeg..q; time series
The spatial similarity between AlITPs with EPTs and EATs resulted in similar findings as using the signed amplitude of Nodegeeq;
using Nodegeeq;: “subject-level mean + subject-level stan- time series (Supplementary 2). The findings were replicated when other
dard deviation (group-level)”.

nodes were used to identify EPTs and EATs Fig. 3. (and Supplemen-

Nodeg,.q;  AlITPs - EPTs AlITPs - EATs tary 3 and 4) shows the results for Nodeg..q, and Nodey;.; when the
CA 0.648 < 0.089 (0.972) _ 0.371 = 0.084 (0.840) absolute value (amplitude) of thelr.tu.ne courses were used to extract
FCM 0.520 + 0.178 (0.927)  0.513 + 0.197 (0.902) EATs and EPTs. These results are similar to those for Nodegeeqq, sug-
ASM 0.576 + 0.164 (0.733)  0.499 + 0.188 (0.891) gesting our findings are not the results of specific node or event selec-
WASM 0.666 + 0.150 (0.865)  0.504 + 0.211 (0.895) tion procedures. Our analysis also shows that the spatial similarity of

the default mode is well above chance for all of the nodes. For instance,
the subject-level similarities between functional connectivity maps ob-
tained from Nodeg..q; and Nodey., are 0.909 + 0.076 (mean + SD) for
AlITPs, 0.689 + 0.221 for EPTs, and 0.460 + 0.244 for EATs, which indi-
cate more robustness toward node selection for AlITPs compared to EPTs
and EATs in static analysis. The results are the same for other analyses,
including ASM and wASM (Supplementary 5). It should be noted that
while the sensitivity to node selection could be related to the regions’
functional specificity and brain dynamics in addition to lower SNR, it
has an undesirable effect on the reproducibility of static analysis par-
ticularly in the EATs which show lower subject-level similarity. Thus,
caution should be taken when using EATs to evaluate within network
connectivity patterns, especially in clinical studies.

Next, we evaluated the presence of the default mode in EATs (and
EPTs) identified from the time course of the subject-specific default
mode network (i.e., Nodec, ). As we predicted, because these EATs were
obtained from the same subject’s data, the default mode network activ-
ity was weak and concealed by the strong activity of other sources (such
as other networks and artifacts). By using recursive ICA and removing
the contribution of dominant components from EATs first, we success-
fully estimated the default mode network from the EATs alone (Fig. 4).

still clearly present. The spatial similarities between subject-level and
group-level default mode for these analyses can be found in Supplemen-
tary 1.

We also calculated the spatial similarities of EPTs (and EATs) with
AlITPs (Table 2) at both subject-level and group-level. For both EPTs
and EATs, the spatial similarity is highly significant. EPTs shows higher
similarity compared to EATs, which is expected as EPTs contribute more
than EATs to the spatial maps obtained from AlITPs. The lower spatial
similarity in EATs is also derived by a different topology of the default
mode in EATs, which is related to the dynamic nature of the brain, in-
cluding the lower contribution of the posterior cingulate cortex to the
default mode, which significantly contributes to EPTs. Another example
of different topologies can be seen in ICA analysis (i.e., running ICA on
EATs and EPTs). In the EAT ICA analysis, many regions of the executive
control network (identified as the cyan arrows in Fig. 2) have merged
with the default mode component, suggesting these two networks are
dynamically integrated with one another into a single network. In con-
trast, these two networks are identified separately in EPTs and AllTPs
analysis.
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Fig. 3. The default mode functional patterns were obtained using the absolute value of Nodeg..4, (a) and Nodey,, (b) time courses. The plots are z-maps (mean
equals to zero and standard deviation equals to one), thresholded at z-value = 1. The z-score colorbar range is [1 - 6] for all plots. The first, second, and third columns
illustrate the results obtained using all time points (AlITPs), using only the event present time points (EPTs), and using only event absent time points (EATS),
respectively. Nodeg..qo and Nodey,, results reproduce the findings obtained from Nodeg..4; (see Fig. 1).

We also observed significant functional connectivity and co-activation
in EATs between the time course of the default mode network and other
regions involved in the default mode (Fig. 4). The result confirmed the
previous findings using other nodes, suggesting the default mode and
functional connectivity between associated regions consistently present
in spontaneous BOLD signals. Results were also consistent when we did
not perform cleaning steps on the voxel time course.

In a supplementary analysis, we calculate the contribution of the
default mode across time for 50 randomly selected subjects. The con-
tribution values are the coefficient (beta) from linear regression of the
default mode onto the fMRI data Fig. 5. shows the sorted contribution of
the default mode with no sudden drop in its contribution in any of these
subjects. The results are the same for other studied networks, including

the visual and somatomotor networks (Supplementary 6). We addition-
ally evaluate and observe that the visual and somatomotor networks can
be obtained from their own EATs (Supplementary 7).

3.2. The default mode event time points are also occupied by other
networks

Next, we evaluated the presence of large-scale networks obtained
in static analysis using all time points in EPTs and EATs. For all inves-
tigated nodes (i.e., Nodegeeq1, Nodegeeqo, NOdeyera, and Nodejcy), we
successfully obtained the large-scale networks for both EPTs and EATs,
suggesting that the large-scale networks present in the data regardless of
the strength of the default mode and associated regions Fig. 6. shows the
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Fig. 4. The default mode functional patterns were obtained using the amplitude of Node,;, Nodec, is subject-specific default mode network obtain using group-
information guided independent component analysis (GIG-ICA) (Du et al., 2015). The plots are z-maps (mean equals to zero and standard deviation equals to one),
thresholded at z-value = 1. The z-score colorbar range is [1 - 6] for all plots. The first, second, and third columns illustrate the results obtained using all time points
(AllTPs), using only the event present time points (EPTs), and using only event absent time points (EATs), respectively. * indicates the default mode network obtain

using recursive ICA.

AlITPs: Average AlITPs: Subjects

0.5 0.5 3
0 0
05 -0.5
0 50 100 150 0 50 100 150
0.4 EPTs: Average 0.6 EPTs: Subjects ’
. el
. . i
0.3 0.4 3 '!H!
I
02f ... O-ZHH:!;??:?:...:"'{
0 10 20 0 10 20
0.02 EATs: Average - 0.05 EATs: Subjects I
5% St
5 . 'ii:”“'
;fléiis!;"l
. i
0.02 -~ -0.05
0 10 20 0 10 20

Fig. 5. The sorted contribution of the default mode to the BOLD signal over
time. The left column shows the average contribution across 50 randomly se-
lected subjects, and the figures in the right column show contributions for each
of the 50 individuals. The first row represents sorted contributions across all
time points. The second and third columns show contributions to EPTs and EATs
obtained using NodeICA. The results show smooth changes in the default mode
contribution to time points with no sudden change that can explain changes
related to before and after the occurrence of an event.

large-scale networks obtained by applying ICA on the amplitude value
of Nodey., (i.e., Neurosynth default mode associated map) time course.
The large-scale networks for other nodes and conditions can be found
in Supplementary 8 and 9.

These findings are important because we show other networks
present in the EPTs of the default mode, providing evidence that the ac-
tivation peaks of the default mode do not only contain the default mode

but also similarly contain other networks. In other words, by showing
networks exist in EPTs of the default mode, we provide evidence of the
presence of brain networks beyond isolated events, complementary ev-
idence of continuous present coexistence networks.

3.3. Event present and event absent time point (EPT and EAT) unique
signatures in schizophrenia

We next studied the DM-FNC obtained from different portions
(EPTs, EATs, and AlITPs) of data in the context of their associations
with schizophrenia and schizophrenia symptoms. We observed signif-
icant associations with PANSS score for different portions (for EATs:
|r|/p = 0.191/0.002; for EPTs: |r|/p = 0.143/0.018; and for AllTPs:
|r|/p = 0.125/0.038). Post-hoc analysis shows that the weights of
symptom-related DM-FNCs (1) are almost identical across LASSO repe-
titions and (2) did not show significant differences for regression model
applied across different subsets of data. Moreover, the model obtained
for each time portion is not significantly associated with PANSS in other
time portions.

Fig. 7 shows the minimum cross-validated mean squared error results
for generalized linear models obtained using LASSO with ten-fold cross-
validations and 50 repetitions, where the response variable (dependent
variable) is the total PANSS score and the predictor variables (indepen-
dent variables) are nine DM-FNCs obtained using AlITPs, EPTs, or EATs.
The lines in Fig. 7 show the symptom-related DM-FNCs for AlITPs model
in red, EPTs model in blue, and EATs model in green, and the width of
each line represents the magnitude of the coefficients. The connection
between the default mode and the cerebellum (DM-CER) contributes
to all three models, suggesting its steady effect over time. However, it
has much smaller coefficient in EPTs (|b|= 0.61) compared to AlITPs
(|b| = 2.14) and EATs (|b| = 2.81). We also observed unique symptom-
related patterns across models. For example, the default mode and
the auditory (DM-AUD) connection contributes only to AlITPs model
(Jb| = 0.58), the default mode and the right frontoparietal (DM-RFP)
connection contributes only to EPTs model (|b| = 0.28), and the default
mode and the left frontoparietal (DM-LFP) connection contributes only
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Fig. 6. The large-scale networks calculate using the amplitude value of Nodey,, time courses. The plots are z-maps (mean equals to zero and standard deviation
equals to one), thresholded at z-value = 1. The z-score colorbar range is [1 - 6] for all plots. The first, second, and third columns illustrate the results obtained
using all time points (AlITPs), using only the event present time points (EPTs), and using only event absent time points (EATS), respectively. This result shows EPTs
are not solely dominated by the default mode network, and the large-scale networks are equally present in EPTs. We also retrieve large-scale networks from EATSs,
suggesting the networks consistently present in the BOLD signal. DM: default mode network (also known as posterior DM). aDM: anterior default mode network (as
opposed to classical (posterior) DM), ATN: attention network, LFP/RFP: left/right frontoparietal network, SUB: subcortical network, MTR: Somatomotor network,
AUD: auditory network, CER: cerebellar network, and VIS: visual network.
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Fig. 7. The association between schizophrenia symptoms and the default mode
functional network connectivity (DM-FNC). The lines represent the coefficients
of the generalized linear model obtained using the least absolute shrinkage and
selection operator (LASSO) with ten cross-validations (CV = 10) and 50 Monte
Carlo repetitions for the model with the minimum cross-validated mean squared
error (MSE), where the response variable is the total of positive and negative
syndrome scale (PANSS) scores and the predictor variables are nine default
mode-FNC pairs estimated using all time points (AlITPs) in red, using the de-
fault mode event present time points (EPTs) in blue, and using the default mode
event absent time points (EATs) in green. The width of each line represents
the magnitude of the coefficients. aDM: anterior default mode network (as op-
posed to classical (posterior) DM), ATN: attention network, LFP/RFP: left/right
frontoparietal network, SUB: subcortical network, MTR: Somatomotor network,
AUD: auditory network, CER: cerebellar network, and VIS: visual network.

to EATs model (|b| = 4.54). Additionally, we found the symptom-related
DM-FNCs differentiate (FDR < 0.05) between schizophrenia and typical
controls in all three AlITPs, EPTs, and EATs models, further supporting
their biological relevance. These results suggest that different portions
of data, including EATs, may carry unique/additional information about
the default mode, and a focus only on EPTs miss this potentially impor-
tant information.

We also performed additional analysis and evaluated changes within
the default mode network. We applied voxel-wise group comparison
while including age, gender, site, and mean framewise displacement
(mFD) as confound regressions and correcting for multiple comparisons.
We found significant differences in the thalamus for the ICA analysis us-
ing EATs (Supplementary 10). We did not observe any difference in the
EPTs and AllITPs. This may be due to the presence of time-varying spatial
connectivity consistent with previous findings (Iraji et al., 2019).

4. Discussion and perspective

The main objective of functional neuroimaging is to relate the mea-
surements of imaging modalities to underlying neural activity and bi-
ological variability. Among different imaging modalities, fMRI, which
measures the BOLD signal as a proxy for average neural activity, has
advantages over others because of its ability to record data from the
whole brain, arguably the best trade-off between spatial and temporal
resolutions. However, there is still little known about the underlying
functional architecture and how neural activity contributes to the spon-
taneous BOLD signal. To decipher this mystery, the neuroimaging com-
munity has dedicated great effort to develop analytical approaches to
model spontaneous BOLD signal and interpret the underlying functional
patterns.
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Building upon the notion of dynamic, ongoing functional interac-
tions across the brain, the dominant category of approaches model in-
trinsic functional patterns (i.e., functional networks) as continuous enti-
ties in time. A major departure from this category seeks to model brain
function as a set of discrete (i.e., sparse in time) functional patterns, ini-
tially developed based on the hypothesis that spontaneous BOLD signal
results from brief and isolated epochs of neural events (Chialvo, 2010).
Because detecting event present time points is the core component and
the real differentiator of this category, we used the term “event detection
approaches” as the general term to describe this category of approaches.
Similar to the main category, event detection studies have presented in-
triguing findings, suggesting their potential to facilitate understanding
of underlying neural activities with great opportunities for both clinical
and research settings. This results in a rapidly growing interest in event
detection approaches and using only a subset of data (EPTs), instead of
all available time points to study brain function.

This study argues that intrinsic networks have an ongoing, continu-
ous presence in BOLD signal, and EPTs do not contain all the information
of their corresponding functional patterns. As such, using only EPTs in
fMRI studies may result in missing important information, potentially
leading to misleading conclusions. The findings of this study support
this proposition. Thus, while we emphasize the potential of event de-
tection approaches and advocate for further studies of this category, we
call for caution on the assumptions and interpretation of the findings.

We summarize the findings of this study in three main analyses. The
first analysis stemmed from the premise that network patterns derived
from discrete, temporally sparse events, compared to continuous ongo-
ing interactions between associated regions. We focused on the default
mode pattern because it has been repeatedly detected as a dominant
global co-activation pattern and arguably most studied in ROI-based
event-driven studies. We evaluated the continuous presence of the de-
fault mode in spontaneous BOLD signal by investigating if the default
mode significantly exists in the time points with the least probability
of being the default mode event (EATs), i.e., the time points with am-
plitudes near to baseline (zero). We tested our proposition using two
commonly used default mode nodes in event-based studies, using a node
obtained from meta-analysis for the term “default mode” in Neurosynth,
and even using the time course of subject-specific default mode obtained
using group ICA followed by multi-objective optimization (Du et al.,
2015). We observed that regardless of choice of node, preprocessing
steps (cleaning), analysis (first, second, and higher-order statistics), the
default mode patterns strongly present in both activity and connectiv-
ity spaces. These findings suggest that the default mode is a continu-
ous phenomenon or at least has a continuous footprint in spontaneous
BOLD signal. Therefore, EPTs do not contain the complete information
of functional patterns and might be insufficient to model their proper-
ties. Considering that the true nature of the underlying neuronal activity
is still unknown, focusing only on EPTs may obscure our understanding
of brain function. The success of event detection approaches in identi-
fying brain networks and capturing useful information using only EPTs
should not be seen as evidence that networks only present or originated
from discrete infrequent events (Liu et al., 2018).

While the main objective of the first analysis was to evaluate the
presence of the default mode at EATs of the default mode, the second
analysis targeted its EPTs. We were particularly interested in whether
spontaneous BOLD signal in these time points is induced by default
mode events and merely reflects the default mode or subsists on other
functional patterns, obtained from the whole data. ICA analysis shows
that large-scale brain networks can be equally obtained from EPTs as
well as EATs. The results of these analyses provide evidence that intrin-
sic networks have an ongoing, continuous presence in the BOLD signal,
and they are best modeled as continuous in both space and time, rather
than as discrete events. While our supplementary analyses support our
findings for the visual and somatomotor network, the findings of this
study should be further evaluated for additional networks and spatial
scales.
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The third analysis was designed to answer whether EPTs can cap-
ture a full picture of functional properties or if different portions of
time carry unique/complementary information. First, we studied the
association between a schizophrenia symptom severity score and the
DM-FNC calculated using only EPTs, only EATs, and AlITPs. We ob-
served common patterns such as the contribution of DM-CER connec-
tion across all three models; in addition, robust and unique symptom-
related links were found for all three scenarios. For instance, unlike the
EPT model, the AlITPs model identified the DM-AUD connection to be
related to the symptom score suggesting the EPT approach may be miss-
ing some information present in the full-time series. Further support-
ing this, the DM-LFP connection from the EATs shows a robust associ-
ation with symptoms. At the same time, we advocate for using EPTs to
study brain function as they can contain unique information about brain
states. We observed that the DM-RFP connection contributes only to the
EPT model. These findings are aligned with previous studies showing
relationships between symptom severity and functional connectivity of
regions from cerebellar, default mode, and left/right frontoparietal net-
works (Brady et al., 2019; Chahine, Richter, Wolter, Goya-Maldonado,
and Gruber, 2017; Wang et al., 2015; Whitfield-Gabrieli et al., 2009;
Woodward et al., 2011). For instance, Brady et al. identified the func-
tional connectivity of the bilateral dorsolateral prefrontal regions (re-
gions in LFP and RFP) with the default mode regions covaried signif-
icantly with symptom severity (Brady et al., 2019). In particular, the
functional connectivity of the right dorsolateral prefrontal was associ-
ated with negative symptom severity (Brady et al., 2019). We observed
DM-RFP FNC is associated with PANSS total score in the EPTs. The
functional connectivity between a default mode node in posterior cingu-
late cortex and left middle frontal gyrus (regions involved in LFP) and
PANSS general symptom is shown to be correlated (Woodward et al.,
2011). Similarly, a DM-LFP FNC association with the PANSS total score
was found in the EAT analysis. LFP dysfunction has been frequently
associated with a range of abnormalities in schizophrenia, correlated
with PANSS score, and suggested as a potential endophenotypic marker
of schizophrenia (Chahine et al., 2017). The relationship between the
PANSS and the default mode has also been reported for within-DM func-
tional connectivity (Garrity et al., 2007). Strikingly for all three models
(i.e., AllTPs, EPTs, and EATs), the symptom-related DM-FNCs also dif-
ferentiated between schizophrenia and typical controls, supporting their
potential biological relevance. Building on these findings, we propose
different portions of time, to be exact EPTs versus EATs versus AllTPs,
carry unique/complementary information, and using EPTs alone may
not sufficient to study brain function. Furthermore, because symptom
scales like PANSS are the primary clinical tools to assess psychotic be-
havioral disorders, their functional fingerprints can provide a better un-
derstanding of schizophrenia-related brain functional changes. Despite
promising findings, the symptom severity scores on the schizophrenia
subjects are unfortunately differ between the two samples (PANSS ver-
sus BPRS), which we attempt to harmonized them using established a
prior conversion algorithm obtained to convert BPRS total scores to
PANSS total scores. This, on the other hand, results in very blunt in-
strument (PANSS total score) compared to the finely tuned tools. We
propose that future studies should dedicate more efforts to decipher-
ing behavior-functional imaging relationships and delineating the symp-
tom scale brain functional fingerprint, particularly by leveraging a finer
breakdown of severity symptom scores into positive and negative and
disorganized symptoms.

In addition to differences in the context of schizophrenia, our anal-
yses illustrated differences in the functional patterns of EPTs and EATs,
suggesting they may reflect different states of brain functional architec-
ture. One intriguing finding was observed in the executive control net-
work. The executive control network has consistently been identified
as a separate functional network with anticorrelative patterns with the
default mode in both time and space. The executive control and default
mode were also reported to have opposite responses (activation ver-
sus deactivation) during cognitively demanding tasks (Sridharan, Lev-
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itin, and Menon, 2008). Similar to previous work, these two appeared
as two independent components in our ICA analyses using AlITPs and
EPTs. However, for EATs obtained using voxels mainly in the posterior
cingulate cortex (i.e., Nodeggeqq, Nodegeeqo, and Nodeye,), we observed
these two networks seem to emerge into one component which contains
the same default mode regions as EPTs and AlITPs and many regions of
the executive control network (see Fig. 2 and Fig. 3).

Considering the premise about the central role of the posterior
cingulate cortex in coordination between these intrinsic connectiv-
ity networks and supporting internally-directed cognition (Leech and
Sharp, 2014), which is important during goal-directed tasks, these mo-
ments may reflect information integration between these two networks
and modulation of top-down processing (Wen, Liu, Yao, and Ding,
2013). This finding is also supported by the recent spatial dynamic ob-
servation of dynamic integration and segregation between brain net-
works (Iraji et al., 2019). Iraji et al. show that intrinsic networks, com-
monly considered separate entities in previous spatial static studies,
transiently merge and separate, reflecting their dynamic segregation and
integration (Iraji et al., 2019, 2020). Our findings suggest that the de-
fault mode and executive networks are fully segregated at EPTs, which
is expected as the default mode activity is maximum and main default
mode regions are expected to strongly connect to each other compared
to their functional connections to other regions. However, in the EATs,
the functional connectivity among default mode regions, particularly the
posterior cingulate cortex, is lower relative to their connections with
other regions and potentially reflects the transfer of information and
modulatory interaction between these two momentarily integrated net-
works. As such, we argue that focusing only on EPTs would be limited
to dominant within network dynamics and unveil dynamic segregation
patterns, while including EATs would allow us to better capture dynamic
integration and spatial fluidity between networks (Iraji et al., 2019).

In addition, existing event-based studies are mainly limited to iden-
tifying spatial patterns that resemble large-scale distributed networks
obtained in functional connectivity studies. Early event-based studies
have used this similarity to support their hypothesis and assert that
functional connectivity results from coactivation in EPTs. We argue that
while the activation maps of EPTs successfully identify large-scale co-
varying functional patterns, more spatially local functional connectiv-
ity patterns in the data will be missed when using an EPT-type analy-
sis. In other words, the activity patterns cannot explain the functional
patterns obtained across multiple spatial scales, such as fine-grained
ICNs obtained in higher-order ICA analysis (Iraji et al., 2019, 2021).
Moreover, studies have shown that functional connectivity can occur
in cross-frequency and at different frequencies within a given network
(Allen et al., 2018; Chang and Glover, 2010; Yaesoubi, Silva, Iraji, and
Calhoun, 2020). As a matter of fact, various types of neural activities
with distinct spatial and temporal representation may contribute to the
BOLD signal (Logothetis, 2002, 2008).

5. Concluding remarks and future considerations

We propose that the BOLD signal can be best modeled as a com-
bination of processes that occur at different spatial and temporal
scales. Leveraging different existing models and analytical approaches
and developing new ones can help better understand underlying neu-
ronal processes that contribute to the BOLD signal, leading to bet-
ter insights into brain function and its alterations in various brain
conditions. This includes event detection approaches and other sin-
gle frame-based techniques (use single time points as the elements
of analysis). However, one should consider the impact of noise on
these approaches considering the signal-to-noise ratio of the BOLD
signal.

Furthermore, the key step in event detection approaches is to accu-
rately identifying a functional pattern time series to detect time point.
we recommend leveraging data-driven approaches instead of predefined
anatomical nodes to more accurately obtain time series and detect EPTs.
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When a region is a central part of a functional pattern (e.g., the pos-
terior cingulate cortex for the default mode), its high amplitude time
points can effectively depict the functional pattern. However, as our
results show, the amplitude of a given fixed node does not well rep-
resent the activity of the corresponding functional pattern, rather the
activity of a given node and its contribution to functional patterns. For
instance, while EPTs obtained from a posterior cingulate cortex node
extract the default mode, the default mode is also strongly present in
its EATs, but the node’s contribution to the default mode is not as
strong as the rest of the default mode regions. This, for example, can
be seen in the top right panel of Fig. 2, which shows the default mode
network obtained by applying ICA on the EATs of Nodege.q;, Where
the node itself appears as a ‘hole’ and does not have a strong con-
tribution to the default mode. This is expected given the EATs were
selected to have minimal relationship to Nodeg..q;, but it is striking
that even in this extreme case the rest of the default mode can still be
well-estimated.

Related to this, different methods capture different information re-
garding the association of a region to a functional pattern. Both ASM
and FCM (first and second-order statistics) calculate the contributions
of regions/voxels to their dominated functional patterns without consid-
ering their contribution to other functional patterns. On the other hand,
multivariate analyses like ICA calculate the degree of associations while
controlling for the effect of other functional patterns in a model. This
can result in differences in spatial maps of different functional patterns
(e.g., Fig. 2 and Fig. 3). We suggest that using multivariate data-driven
approaches to extract the time course of a functional pattern might bet-
ter detect its EPTs. This can be done using fully blind approaches like
clustering or ICA (Allen et al., 2011), or hybrid approaches that use
spatial constraints to facilitate comparability across analyses while also
adapting to the data to ensure functional coherence (Du et al., 2020).

Future studies should assess our findings using other brain networks
and use other event detection approaches such as using local max-
ima and minima, deconvolving the hemodynamic response, or using
other approaches such as instantaneous functional connectivity (second
or higher-order statistics) instead of activity (first-order statistic). Fur-
thermore, future studies should studies how functional connectivity be-
tween network being affected by choice of EATs, EPTs, and AllPTs and
should develop approaches to assess reproducibility in the context of
time-varying changes (Abrol et al., 2017). Finally, future single frame-
based studies, including event detection approaches, should also explore
the benefits of incorporating spatial dynamics (Iraji et al., 2019, 2020,
2019).

In sum, our finding suggests that functional networks are best mod-
eled as continuous, evolving temporal patterns with different portions
carrying unique/complementary information. This highlights the neces-
sity of utilizing all time points and opens new possibilities to study brain
function.
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