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ARTICLE INFO ABSTRACT

Keywords: The COVID-19 pandemic has likely affected natural systems around the world; the curtailment of human activity
Citizen science/community science has also affected the collection of data needed to identify the indirect effects of this pandemic on natural systems.
COVID-19

We describe how the outbreak of COVID-19 disease, and associated stay-at-home orders in four political regions,
have affected the quantity and quality of data collected by participants in one volunteer-based bird monitoring
project, eBird. The four regions were selected both for their early and prolonged periods of mandated changes to
human activity, and because of the high densities of observations collected. We compared the months of April
2020 with April in previous years. The most notable change was in the landscapes in which observations were
made: in all but one region human-dominated landscapes were proportionally more common in the data in April
2020, and observations made near the rarer wetland habitat were less prevalent. We also found subtler changes
in quantity of data collected, as well as in observer effort within observation periods. Finally, we found that these
effects of COVID-19 disease varied across the political units, and thus we conclude that any analyses of eBird data
will require region-specific examination of whether there have been any changes to the data collection process
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during the COVID-19 pandemic that would need to be taken into account.

1. Introduction

Citizen science data have long been important for ecological and
conservation research (e.g., Greenwood et al., 1995), and the diversity
of uses has only increased through time (e.g., Fink et al., 2020; La Sorte
et al., 2018; Reynolds et al., 2017; Robinson et al., 2018); however,
changes in human behaviour can cause variation in how these data are
collected. The sampling processes of citizen science projects with rela-
tively unstructured data-collection protocols — with observers choosing
when, where and for how long to make observations — have the po-
tential to systematically change through time, both within and among
years, with changes in observers’ motivation and life circumstances. It is
important to identify the sources of temporal variation in the sampling
process that must be controlled during data analysis, particularly when
describing changes through time in distribution and abundance. The
emergence of COVID-19 disease starting in late 2019 has disrupted
human activity around the world, including disruptions to highly
structured monitoring of bird populations. For example, in 2020 data

collection for the North American Breeding Bird Survey was cancelled
(BBS National Offices, 2020), and the British Breeding Bird Survey ac-
tivity was highly curtained (The BTO Team, 2020). Although less
structured citizen science projects have not ceased activity, the volume
and type of observations submitted may have been significantly altered
due to restrictions imposed on human movement. If we want to use data
from relatively unstructured projects in order to understand the effects
of this pandemic on natural systems (Rutz et al., 2020), or to use such
data in lieu of those from more structured monitoring programs in 2020,
it will be necessary to understand whether and how observer behaviour
has changed in response to the COVID-19 pandemic.

Changes in the quantity of data that are collected are the most basic
of the potential impacts of changes in observer behaviour. We do not
have a clear expectation of whether the quantity of data will have
increased or decreased as a consequence of the COVID-19 pandemic.
Stay-at-home orders may have curtailed the activities of observers
because of restrictions preventing observers from travelling to their
preferred locations for bird watching. However, anecdotally there are
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also suggestions that these same restrictions may have increased the
desire of people to connect with the natural world (e.g., Flaccus, 2020),
and in some regions bird watchers have been actively encouraged to
report birds that they see from their homes (anonymous, 2020; Bird
Count India, 2020; Domingues, 2020). Thus, new data may have entered
the database at a higher, and not lower rate.

Not just the quantity but the quality (i.e. the relative information
content of each observation) may have changed. One aspect of quality of
the entire dataset is the evenness with which observations are distrib-
uted across a region; evenly spaced observations contain greater inde-
pendent information than the same number of observations that are
clustered together. L.e. spatial autocorrelation are routinely higher, and
thus each datum provides a lower amount of independent ecological
information, for locations that are in closer proximity (e.g., Koenig,
1999). Because of restrictions of human movement, we expect that ob-
servations will be more clustered, and that urbanized landscapes will be
represented more frequently in the data collected during the pandemic,
exacerbating an existing bias toward the collection of observations near
to urban centers (e.g., Tulloch and Szabo, 2012; unpubl. data from
eBird), and the reporting of species that more commonly are found near
people. We also expect that rare habitat types such as wetland areas, and
their associated faunas, will be under-sampled because the curtailment
of long-distance movement has made it less likely that observers will
travel to these habitats.

The probabilities of detecting birds that are actually present can also
be affected by pandemic-related changes in the behaviour of observers.
Differences in the habitats visited by observers can impact data not just
because species have different habitat associations, but also because
detection rates can differ between habitat types (Ruiz-Gutiérrez et al.,
2010). Detection rates will also vary with multiple aspects of observer
behaviour such as the durations of observation periods and distances
travelled during observation periods (Johnston et al., 2020). Both of
these may have changed during the pandemic. We do not have a clear
expectation for whether pandemic-related restrictions to observers’
movements will have decreased durations of observation periods (i.e.
less motivation because of low avian diversity in urban areas), or in-
crease the durations of observation periods because of additional time
being available. We expect that a greater proportion of counts will be
made by people who are stationary (e.g., counting birds from within
their homes), and that those observers who are moving during obser-
vation periods will travel shorter distances. Impacts of the COVID-19
pandemic on the factors that affect probabilities of detection need to
be identified and taken into account so that differences in probabilities
of detection are not erroneously interpreted as changes in abundances.

The eBird project (Sullivan et al., 2014) is a useful candidate for
examining the effects of the COVID-19 pandemic on the quantity and
quality of citizen science data being collected, given its prominence as a
source of information about bird distribution and abundance in many
parts of the world (Amano et al., 2016). eBird has been described as a
“semi-structured” citizen science project (Kelling et al., 2019); obser-
vation location, time and effort are all determined by project partici-
pants, but ancillary information is collected in order to enable the
filtering of raw data and modelling of the effects of this sampling
variation.

In this paper, we test our expectations that several facets of the
quantity and quality (i.e. information content) of data submitted to the
eBird project have changed as a consequence of the COVID-19
pandemic. We have looked for evidence of effects in four political re-
gions that we will use as examples of the potential impacts of the
pandemic on the data being collected by the eBird project. These regions
are the U.S. states of California and New York, and the countries of
Portugal and Spain. Spain underwent a longer and stricter curtailment of
human activity in the spring of 2020 than in the other regions, and our
expectation is that Spain may have some of the largest differences in
data being collected during the pandemic. For each of these political
units we assess whether the quantities of data were affected by
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comparing data submissions from April 2020 — when all four political
units were under stay-at-home decrees — to the data collected in April of
previous years. We also assessed changes in various facets of data
quality. We looked for greater representation of urban landscapes within
the data from April 2020 across the four political units; additionally, we
looked for evidence of a decline in representation of wetland habitat.
Also, we carried out analyses to look for evidence of other potential
changes in the behaviour of observers that might have led to deviation in
the detection rates of birds in April 2020 compared to the same month in
previous years.

2. Methods

Rather than attempting to describe this globally, our purpose is to
conduct a detailed case studies of the potential impacts over a one-
month period in four geographically contiguous political units. For
this, we selected the states of California and New York, and the countries
of Spain and Portugal (excluding their overseas territories: the Spanish
autonomous communities of the Canary Islands, Cueta and Melilla; the
Portuguese autonomous regions of the Azores and Madeira Islands). We
chose California and New York both because of the large quantities of
data available in these two states, and also because the restrictions
imposed on citizens of these states were among the strongest and earliest
in the United States. In both of these states, stay-at-home orders came
into effect in late March 2020, and continued throughout and beyond
the month of April. The governments of Spain and Portugal, countries
with partner organizations coordinating nation-specific versions of
eBird (eBird Espana, and PortugalAves) and high participation by resi-
dent bird watchers, also decreed stay-at-home restrictions that were in
place throughout April 2020, and in Spain these restrictions placed very
severe limits on peoples’ ability to leave their places of residence. We are
restricting our analyses to data from the month of April, and comparing
the data from April 2020 to those collected in April of preceding, typi-
cally 3-4, years. Note that 2020 was the first year of data collection for
the third New York Breeding Bird Atlas, for which eBird is serving as the
data-collection and management platform, which independently may
have affected the quantity and quality of data within eBird. It is not
possible to separate atlas-specific observations from those made for
other purposes; however, April is prior to nesting of most bird species in
New York state, and thus prior to the greatest focus of data collection for
the breeding bird atlas.

We extracted the data from the eBird Sampling Event Data (eBird
SED), a data product in which each row of data contains only informa-
tion about each observation event’s sampling process (e.g., date, time,
location, effort), but no information about the bird species observed. The
version of the SED that we used was released in May 2020, and contains
all observations submitted to the database prior to mid-May 2020.
Because data entry for eBird is entirely done through a web data-entry
page or increasingly from smartphones, there was no need to wait
multiple months for the data compliation to contain records of essen-
tially all observations made in April 2020. We found that only a small
proportion (<1%) of observation records from the month of April 2020
first appeared in the compilations of these data that were created in mid-
June or mid-July 2020. We used the R package auk (Strimas-Mackey
et al., 2018) to extract only the records from the month of April for the
four regions described above. We filtered these records to only include
data from those observation events that are routinely used in analyses at
the Cornell Lab of Ornithology, which is the lead organization main-
taining the eBird enterprise; these practices and the reason for their use
are summarized in Johnston et al. (2020). We retained data only from
“complete checklists” (i.e. observation events for which the non-
detections could be inferred for all species not reported). For most of
our analyses, except when counting the number of observers, we used
auk to reduce “shared checklists”, which are multiple versions of the
same observation event, to one record for each shared group. We only
retained records for which observation effort was within these criteria:
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durations of observation periods were between 3 and 300 min, and
travel distances were no more than 5 km (for rationale see Johnston
et al., 2020).

In order to describe the environments around all of the sampling
locations, we calculated the proportions of land cover classes based on
the University of Maryland (UMD) classification of MODIS MCD12Q1
Version 6 remote sensing data (Friedl and Sulla-Menashe, 2019; Sulla-
Menashe and Friedl, 2018). These data classify land cover within pixels
500 m on a side, and for each location we summarized the proportions of
pixels classified as belonging to each of the 16 land cover types from a 5-
by-5 grid of pixels centered on the pixel containing the reported loca-
tion. A separate land cover classification is available, and was used, for
each calendar year up to and including 2018; for eBird observations
from 2019 and 2020 we assigned land covers based on the 2018 land
cover classification. We chose this spatial extent for the summary of
habitat information because this is the standard extent across which
habitat information is summarized in analyses of eBird data at the
Cornell Lab of Ornithology, and past studies have demonstrated that this
spatial extent provides biologically relevant informative on species’
habitat preferences (e.g., Fink et al., 2020).

We divided each political unit into a grid of equal-area hexagonal
cells whose centers were approximately 95 km apart (each grid cell
7774.2km? in area) by specifying the res = 9 argument in the dgconstruct
O function of dggridR R package (Barnes, 2018). In analyses for which
multiple data were present within each grid cell in each year, we used
the grid cell ID as a random intercept, so that the pattern of interest in
each analysis was modelled as each observation’s deviation from its grid
cell’s pre-2020 average value across years. There were data in 104 grid
cells for California, 32 for New York state, 108 for Spain, and 34 for
Portugal.

Typical parametric analyses, like generalized linear models, only
describe variation in the mean value of a response variable. However,
geographically uneven responses within a country, state or other region
also could have resulted in a change in the range of variation (i.e.
variance), or the extremes (i.e. skewness, kurtosis) of the responses
across the grid cells. Any such changes could affect the species of birds
observed or their reported numbers; thus we needed to identify all types
of changes in distribution. Generalized additive models for location,
scale and shape (GAMLSS) are designed to allow each of these moments
of distribution to vary independently, with variation in each being
described using separate sets of predictor variables. For our analyses we
used the implementation of GAMLSS models in the R package gamiss
(Mayr et al., 2012).

2.1. Modelling deviations from expected densities of observation events

The first potential consequence of the COVID-19 pandemic that we
described with statistical models was whether the quantity of data
collected was altered in April 2020. We measured quantities as the
number of separate observation events within each hexagonal grid cell,
summed across all days in the month of April separately for each year.
For the U.S. states we calculated these summaries between 2005 and
2020 inclusive (eBird began in 2002 in the U.S.). eBird was formally
adapted substantially later in Portugal and Spain, and we created these
summaries only for the years from 2015 and 2017 onward, for Portugal
and Spain respectively. The quantity of data being collected by eBird is
increasing through time (Sullivan et al., 2014), and thus the potential
impact of COVID-19 disease for which we looked was a deviation in the
number of observation events in 2020 relative to the number expected
based on the trend from prior years. We modelled the distributions of
these responses using generalized inverse Gaussian (GIG) distributions,
in which the response could take any value from zero to positive infinity
with the shape of the distribution controlled by specifying mean, vari-
ance, and skewness. Preliminary analyses showed the GIG distribution
to be the best available choice with which to model the data, based on
inspection of Q-Q plots created by R’s gamliss package. We found that
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GIG regression models only slightly under-predicted the very largest
observed values. We created a set of 20 candidate models (the combi-
nations of fixed effects are listed in Table A1) in which we allowed each
of mean, variance, and skewness to vary as a function of some combi-
nation of calendar year (continuous variable, hereafter “CalYr”), and
whether the data were from the COVID-19 year (i.e. 2020 versus all
other calendar years; “COVIDYr”). In this model set, CalYr was always
included as a predictor of variation in the mean number of checklists
because of our expectation that numbers of observation events have
increased through time. The predictor variable COVIDYr was present as
a main effect in some models of variation in the mean, and presence or
absence of COVIDYr in otherwise identical models allowed us to
determine whether there was a statistically important deviation in 2020
from the numbers of observation events expected based on the trend in
prior years that was described by CalYr. We modelled changes in vari-
ance and skewness similarly, except that we also included models in
which variance and skewness remained constant through time (i.e.
intercept-only models of variance or skewness). We identified well-
supported models based on their AIC scores, considering the well-
supported models to be those within AAIC <8 of the best-supported
model (Burnham and Anderson, 2002).

2.2. Modelling deviations from expected habitat representation in
observations

Our approach to testing for effects of COVID-19 on the other
response variables (proportion of urban habitat, probability of any
nearby wetlands, duration of observation period, probability of observer
movement during the observation period, distance travelled by moving
observers) was different from the method outlined above for examining
variation in the number of observation events. Based on prior work with
eBird data (D. Fink, pers. comm.), at least in North America we expected
that in recent years the typical values of the responses of interest —
habitats surveyed, and observer effort — should be approximately
constant through time, unless the COVID-19 pandemic had an impact on
observers’ behaviour in 2020. Thus, our tests for effects of COVID-19 did
not model a systematic trend across years, but instead we treated CalYr
as a categorical variable and compared observer behaviour in April 2020
to behaviour in the month of April of the preceding 4 years: 2016-2019,
inclusive (or the 3 years 2017-2019 for Spain). We again created sets of
candidate models with which to examine effects of COVID-19 on inter-
annual variation in each moment of distribution (e.g., mean, variance,
skewness) of the reponse. The year 2020 was set to be the reference
category; in other words, the regression coefficient for CalYr = 2020
describes a baseline value of the response (i.e. it is the intercept), and the
regression coefficients for each of the other years describe the deviation
from the 2020 value. By parameterizing the model in this way, we are
conveniently able to evaluate whether there was a consistent difference
between 2020 and all earlier years, because differences would be indi-
cated by the regression coefficients for the other years being either all
above zero, or all below zero. In this paper, we will describe 2020 as
being statistically different if other years’ coefficients were all positive
(or all negative) and if the 95% confidence limits around all of these
coefficients did not overlap zero.

In order to examine whether the proportion of urban habitat around
observation locations was different in April 2020 than in previous years,
we fitted separate models to the data from each of the four political
units. We fitted models using an inflated Beta error distribution (the
“BEINF” distribution family in the gamliss package). This is a beta dis-
tribution (response values of between 0 and 1) modified to allow excess
or deficit in the presence of response values of 0 or 1. The use of this
distribution enabled modelling of the effects of predictor variables on
mean, variance, skewness, and kurtosis. We used only one fixed effect
predictor variable, CalYr (categorical predictor). For each political unit,
we fitted a set of models in which each moment of the distribution could
be either constant or a function of CalYr. In all models, the grid cell in
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which each observation was made was used as a random intercept for
the mean proportion of urban habitat. All possible combinations of fixed
effects were modelled, producing a model set of 16 models (Table A2).
The best-supported model(s) were identified based on AAIC values of
the models within each set.

We also examined whether one rare habitat, wetlands, differed in
representation in April 2020 compared to this same month in prior years
(2016-2019; 2017-2019 for Spain). The presence of any amount of
wetland habitat was uncommon (only between 20% and 40% of ob-
servations had any landcover classified as wetland within 2.5 km of the
sampling location, in any year and political unit). As a consequence, we
chose to treat the presence of wetland habitat as a binary response:
either there was, or there was not any nearby wetland habitat. We fitted
these binary-response data using a single model for the data from each
political unit. This model contained CalYr as a categorical fixed effect
(2020 was the reference/intercept year). The grid cell in which an
observation was made was treated as a random intercept, which
controlled for variation in the prevalence of wetlands across each po-
litical unit. Given the small number of predictor variables and our ability
to test for the predicted effect based on the regression coefficients for the
only fixed effect, we do not believe that there is need to examine mul-
tiple statistical models.

2.3. Modelling deviations from expected observer effort

The species of birds detected, and the numbers of individuals coun-
ted are affected by the amount of effort expended by observers during an
observation period. We know that the duration of an observation period
is an important determinant of the number of birds detected (e.g., Kel-
ling et al., 2015). In our analyses of variation in the lengths of obser-
vation periods, we needed to account for the fact that ranges of effort
were truncated in the process of filtering the raw records in order to
create the set of data that we used. For our analyses of variation in the
duration of the observation period, the data were filtered to leave only
observation periods of between 3 and 300 min, inclusive; we modelled
these data using a truncated version of the gamlss generalized inverse
Gaussian family that allowed only response values of between 3 and 300
min. The fixed effects of the models that we used are shown in Table A3.

The distance travelled will also affect the number of birds detected,
with longer distances leading to the detection of more birds, and we
expect that the distances that observers travelled during observation
periods will have been decreased by the restrictions on human move-
ment. We have divided our examination of variation in these travel
distances into two components, asking whether in April 2020: (1) a
greater proportion of observation periods were made by non-moving
observers (i.e. whether the observation was an eBird “stationary
count”), and (2) whether the distances travelled by non-stationary ob-
servers were different than in prior years. We have separated our ana-
lyses into these two components because our prior experience with these
data has shown that a “stationary count” is not simply a travelling count
of zero distance. Our analyses for component (1) were logistic regression
models in which a single model was fitted to the data from each political
unit. This model has a single fixed effect predictor, CalYr (categorical
variable; 2020 is the reference/intercept year) and the grid cell of each
observation as a random intercept. For our analyses of component (2) we
fitted the same set of models that we used to examine variation in the
duration of observation periods (Table A3). The distribution of the
response variable was truncated, and we fitted data using a truncated
generalized inverse Gaussian distribution, this time allowing values to
range between 0.01 km and 5 km, the range produced by our filtering of
the total set of data and removing all data from stationary counts.

GAMLSS models did not always converge to solutions using the
default settings within R’s gamlss package. In most, but not all, cases we
were able to produce model convergence by altering two aspects of the
model fitting process that we describe in a footnote to Table A3. In spite
of this some of the models of variation in observer effort failed to
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converge (duration of observation period and distance travelled; models
listed in footnotes to Tables A8 and A9). Based on inspection of the data,
our experimentation with adjusting model fitting, and conversations
with colleagues, we suggest that the lack of model convergence was the
result of intrinsic difficulties in fitting GAMLSS models. The large
number of parameters estimated in GAMLSS models is particularly
challenging with truncated response distributions, for which we suspect
that truncation removed exactly the information required in order to
identify distribution variance and skewness.

3. Results

Across the political units that we have considered, the restrictions
imposed on the populations had markedly different effects on the abil-
ities and motivations of people to make observations, as evidenced by
changes to the numbers of people collecting observations (Fig. 1). All
year-to-year changes in numbers of observers were increases, except in
Portugal where there was a decline in the number of people partici-
pating in data collection in April 2020 compared to April 2019.
Exploring the causes of these differences (e.g., how much of the decline
in Portugal was because of the absence of tourist bird watchers?) is out
of scope for this paper, because we were investigating of the COVID-19
pandemic for data quantity and quality, and not the causes of changes in
human behaviour.

3.1. Deviation from expected densities of observation events in 2020

The distribution, and not just the number, of observation events
determines the information content of eBird’s data within a larger re-
gion. We described variation in the distribution of observations within
each of our four political units based on the number of observation
events recorded within each of the hexagonal equal-area grid cells
within that political unit. The majority of grid cells had relatively few
observation events, but a small number of grid cells contained a very
large number of observations (Fig. 2).

We found no statistical evidence that the numbers of observations
per grid cell in April 2020 differed from the expected trend of increasing
average numbers seen in prior years, with AIC-based support spread
across most of the models in all four political units. Because different
aspects of the shapes of these distributions could vary among years, we
statistically tested whether any of three moments of distribution —
mean, variance or skewness — were consistently different in 2020
relative to the prior years. With the data from Spain, model support was
spread across the models, which were all within AAIC <5.3 of the best-
supported model. With the data from Portugal, model support was
spread across the converging 17 models (see footnote to Table A1) that
were all within AAIC <7.1 of the best-supported model. For California
data, there were 13 models within AAIC <8 of the best-supported model.
From our analyses of data from New York state, there were 14 models
within AAIC <8 of the best-supported model. For the model sets from
each of the four of the political units, all regression parameters
describing deviations of 2020 from prior years were estimated with 95%
confidence limits that overlapped with zero. In other words, there is no
statistical support for the existence of differences in the number of ob-
servations per grid cell between April 2020 and April of prior years.

3.2. Changes in the habitats surveyed

In all four political units, we detected statistical differences in the
amounts of urbanized landscape surrounding locations of observation in
April 2020 compared to previous years (Fig. 3). The mean proportion of
urban habitat was higher in 2020 in all four of the political units
examined (Fig. 3, Tables A4-A7). Not only were the mean proportions of
urban habitat different in 2020, but the overall shapes of the distribu-
tions changed. The variance in amounts of urban landscape was higher
in Portugal for data from 2020. The skewness was lower in 2020 in
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Fig. 1. The number of volunteer observers contributing data
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Spain, Portugal, and California. Kurtosis was higher in 2020 in the data
from Portugal and California. For our purposes in this paper, the
implication of a change in each moment of distribution is not relevant;
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the only moment of a distribution that is statistically evaluated for
change, only in New York state was the mean the only moment of dis-
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Observers in Spain, Portugal and California made fewer observations
near wetland habitat in April 2020 than in the preceding years; we found
no consistent pattern of inter-annual variation in the data from New
York (Table 1).

3.3. Changes in observer effort

We found statistical evidence that count durations varied between
2020 and prior years in both Spain and California. For the data from
Spain both the mean and variance of observation durations were lower
in 2020 than in any of the prior years (Table A8). The best-supported
model for data from California modelled only the mean count dura-
tion as varying among years, and mean count duration was lower in
April 2020 than in the four prior years (Table A8). For Portugal the best-
supported model describes inter-annual variation only in mean duration
of the observation period, but in the years prior to 2020 the mean du-
rations of observation periods were both higher and lower than in 2020
(Table A8). The best-supported model for data from New York state only
modelled skewness of count durations to vary among years, with mean
and variance being constant. However, while there were year-to-year
differences in skewness, the observations in April 2020 did not differ

2020

consistently from those in all other years, and the skewness of count
durations was most similar between 2019 and 2020 (Table A8). Given
that several of the models did not converge to solutions (see Table A8),
this emphasizes the challenges of identifying whether or how count
durations varied among years given the presence of the trunctated
response variable.

Our prediction that stationary counts would be more common in
2020 was confirmed, except in New York state (Table 2). In Spain,
Portugal, and California a greater proportion of observation periods
were stationary counts in April 2020 compared to April of prior years.
This change was most dramatic in Spain, where the proportion of sta-
tionary counts was over 80% in 2020, more than doubling the per-
centage of any of the prior three years. In all three of the aforementioned
political units, the 95% confidence intervals around these estimates did
not overlap zero, meaning that these differences were statistically
robust. New York state was the exception, with only one of the four prior
years having a lower proportion of stationary counts; only 2 of these 4
differences from the 2020 proportion of stationary counts were statis-
tically robust, and both of these coefficients were for larger, and not
smaller, proportions of stationary counts in prior years.

Only for the two U.S. states did we find statistical evidence that the
distribution of travel distances was consistently different in 2020
compared to prior years. We fitted a set of 7 models (Table A3) to the
travel-distance data from each country or state. For Portugal’s data, the
single converging model describes inter-annual differences in mean
travel distance, but there was no consistent direction to this variation in
the years prior to 2020 (Table A9). The best-supported model from
California’s data described both higher mean and skewness of travel
distances in 2020, relative to prior years, and for data from New York the
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Fig. 2. The numbers of observation events in April 2020 were largely consis-
tent with the patterns of interannual change across prior years. Data points
were the numbers of observation events within each hexagonal grid cell inside
each political unit. The width of each vertical bar of these violin plots is a
smoothed representation of the proportion of grid cells with a given number of
observation events. White dots within the “violins” are the median number of
observation events, and thicker black bars denote the inter-quartile ranges.

best supported model was of higher variance in travel distances in 2020
compared to prior years (Table A9). Note that many models, including
all models of data from Spain, did not converge to solutions (Table A9).
Regarding non-convergence of the models of travel distance in Spain,
there were relatively fewer data on travel distance in 2020, given that
roughly 80% of all observations were made by stationary observers in
April 2020; in contrast, the majority of observations were made by
people who were moving during their observation periods in all other
political units.

4. Discussion

The effects of the stay-at-home decrees in April 2020 are visible in
the way that eBird data were gathered. However, these effects varied
among the four political units whose data we examined. We found a
reduction in the proportion of travelling observation events, and in the
two U.S. states we also found subtle changes in the distances travelled
for those observation events that were “travelling counts” (Fig. 4). We
also found shifts toward making observations in more human-
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dominated landscapes and away from landscapes containing wetlands,
with the exception of New York state for which urban-dominated
landscapes were statistically less likely to be sampled in 2020 (Fig. 3;
Table 1). Of note, we found that not all of these changes were shifts in
averages. We fitted models that simultaneously described changes in
mean, variance, skewness, and (for the proportion of urban habitat)
kurtosis, and each of these moments of distribution was significantly
different in 2020 in one or more analyses. We have not attempted to
provide separate interpretations for variance, skewness and kurtosis, but
instead for the purpose of our paper we emphasize that changes in any
and all of these moments of distribution are associated with changes in
the shapes of distributions of observer activity. These changes in dis-
tribution of data are best interpreted by examination of graphs that
visualize the changes in shapes of distributions, as this encompasses
changes in all of the parameters. Our most important conclusion is that
any use of eBird data to infer changes in the abundance or distribution of
birds in 2020 must account for changes in the checklists that were
contributed during periods of altered daily patterns of human activity.
This applies to studies designed to infer impacts of the COVID-19
pandemic or those that include data from this year for other purposes.
Important aspects of change to data contributions to consider are: the
spatial distribution of observers’ activity, the specific habitats visited by
observers, and the amount and type of effort expended during the
collection of these data. If assessments do not account for changes to
observer behaviour and data submissions, misleading conclusions will
often be made regarding changes to bird populations and communities
in 2020.

Our results indicate that it is impossible to create a universal pre-
scription for dealing with the impacts of the changed behaviour of bird
watchers. Instead, any use of the data from 2020 will require analysts to
determine how the COVID-19 pandemic has affected their data and
apply the necessary corrections (e.g., Johnston et al., 2020). Further,
those analysing data from broad geographic areas will need to consider
that the impacts of the pandemic will have varied across their study
region. This point is illustrated by the differences found between Cali-
fornia and New York in the United States, and especially between the
neighbouring countries of Spain and Portugal. The differences that we
found in the data from Portugal and Spain are consistent with differ-
ences in the severity with which stay-at-home restrictions were imposed
in these two countries: in Spain the prohibition on leaving one’s place of
residence was almost absolute, whereas in Portugal people were able to
walk outside within a few kilometers of their homes. Additionally, the
restrictions imposed in Portugal were relaxed in the last week of April.
We suggest that the differences between New York state and the other
three political units (e.g., Fig. 3) illustrate that responses to the COVID-
19 pandemic may not have been the only cause of variation in observer
behaviour in 2020. The shifting of observer activity away from urban
landscapes in New York is consistent both with observers in New York
state generally avoiding urban areas, as well as with observers shifting
their efforts toward searching areas with a greater diversity of nesting
species for the third New York Breeding Bird Atlas. Our findings have a
more general implication for the analyses of broad-scale ecological data
in that analytical approaches proposed for dealing with spatial variation
assume gradual variation through space (e.g., Fink et al., 2010; Osborne
et al., 2007; Royle and Young, 2008), but the potential for sharp dif-
ferences in observer behaviour across political boundaries cannot be
ignored.

The fact that habitats have been visited in different proportions in
April 2020, compared to the same month in previous years, will result in
fewer reported observations of species that are most prevalent in the
habitats under-sampled in 2020, such as wetland-associated species, and
more observations of species in the over-sampled habitats. Thus, in
order to appropriately describe how the distribution and abundance of a
bird species may have changed in 2020 compared to previous years, the
habitat associations of species and changes in frequency of sampling
within habitats need to be incorporated into analyses (Johnston et al.,
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Fig. 3. The relative frequency with which landscapes
containing different proportions of urban landcover
were sampled in 2020 compared to 2019. In red (or
the darkest shade of grey in greyscale reproduction)
are the proportions of urbanization that were more
frequently sampled in 2020, relative to 2019. In the
data from Portugal, Spain and California, more ur-

banized landscapes were sample at higher frequency
in 2020 than 2019. Qualitatively similar results were
found when the data from 2020 were compared to

data from years prior to 2019. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Table 1 Table 2

Estimated regression coefficients describing the differences in the probability of
an observation event in April being near wetland habitat among years. Co-
efficients are from the single logistic regression model fitted to data from each of
the four political units separately. These models were parameterized so that the
April 2020 proportion of observations near any wetlands is the intercept/
reference value, and the coefficients for all earlier years represent deviations
from the 2020 proportions. Thus, positive values for regression coefficients for
the years prior to 2020 indicate that the proportion near wetlands were higher in
these years than in 2020. Coefficients and standard errors in bold font indicate
coefficients for which the 95% confidence intervals did not overlap with zero,
indicating statistically reliable estimates. The final column, presenting the
estimated proportions of observation events made near wetlands, were calcu-
lated based only on the fixed effect in the model (i.e. setting the random effect
coefficient to zero).

Estimated regression coefficients describing the differences in the probability of
an observation event being a stationary (i.e. point) count among years, in April.
Coefficients are from the single logistic regression model fitted to data from each
of the four political units separately. These models were parameterized so that
the April 2020 proportion of stationary counts is the intercept/reference value,
and the coefficients for all earlier years represent deviations from the 2020
proportions. Thus, negative values for regression coefficients for the years prior
to 2020 indicate that the proportion of stationary counts was lower in these
years than in 2020. Coefficients and standard errors in bold font indicate co-
efficients for which the 95% confidence intervals did not overlap with zero,
indicating statistically reliable estimates. The final column, presenting the
estimated proportions of observation events that were from stationary counts,
was calculated calculating based only on the fixed effect in the model (i.e. setting
the random effect coefficient to zero).

Region Predictor Coefficient SE Proportion near wetlands Region Predictor Coefficient SE Proportion stationary
Spain Intercept (2020) —3.74 0.31 0.0232 Spain Intercept (2020) 1.59 0.06 0.831
Year (2017) 1.29 0.06  0.0796 Year (2017) —-1.97 0.04 0.408
Year (2018) 1.09 0.05  0.0660 Year (2018) —2.13 0.03 0.368
Year (2019) 1.04 0.05 0.0627 Year (2019) —2.34 0.03 0.322
Portugal Intercept (2020) —3.57 0.43 0.0274 Portugal Intercept (2020) 0.12 0.08 0.529
Year (2016) 0.43 0.09 0.0414 Year (2016) -1.13 0.07 0.267
Year (2017) 0.62 0.09  0.0497 Year (2017) —0.89 0.06 0.316
Year (2018) 0.44 0.08 0.0418 Year (2018) —0.32 0.05 0.450
Year (2019) 0.83 0.08  0.0610 Year (2019) —0.58 0.05 0.386
California Intercept (2020) —3.46 0.31 0.0305 California Intercept (2020) —0.39 0.05 0.404
Year (2016) 0.38 0.03 0.0440 Year (2016) —0.40 0.02 0.313
Year (2017) 0.44 0.03  0.0468 Year (2017) —0.36 0.02 0.322
Year (2018) 0.27 0.03  0.0396 Year (2018) —0.45 0.02 0.303
Year (2019) 0.21 0.02  0.0374 Year (2019) —0.44 0.02 0.303
New York Intercept (2020) —-1.97 0.37 0.123 New York Intercept (2020) —0.19 0.07 0.453
Year (2016) —0.005 0.02 0.122 Year (2016) 0.13 0.02 0.486
Year (2017) 0.07 0.02 0.131 Year (2017) 0.10 0.02 0.478
Year (2018) 0.04 0.02 0.127 Year (2018) 0.0002 0.02 0.453
Year (2019) 0.07 0.02  0.130 Year (2019) —0.001 0.02 0.453

2020). When using datasets that include detection/non-detection, it is
possible to analytically separate the habitats surveyed from the species
presence, although care is required to design analyses that will accom-
modate changes in habitats sampled. With presence-only data (for
example iNaturalist or Observation.org) it would be much more chal-
lenging to separate these two processes, because at best the sampling of
habitats can only be inferred indirectly (Isaac and Pocock, 2015; Isaac
et al., 2014).

Different rates of species detection also will have resulted from any
differences in the duration of observation periods and distances trav-
elled during non-stationary observation periods. For any specific region
these changes in detection frequency will vary with the magnitude of

change in observer effort, and will also differ among species. This un-
derlines the importance of including effort variables in models, to
describe the heterogeneity in detectability between observations (Kel-
ling et al., 2019). Including observer effort as a predictor variable can be
complicated because, for example, 1 h of observation effort or 1 km of
distance travelled likely will produce different counts of birds or
different lists of species for observers who are in different habitats.
Describing such interactions can be a complex task when parametric
statistical models are being specified, although machine-learning
models such as random forest or boosted regression trees models
should automatically detect important interactions among factors that
affect detection rates (e.g., Elith et al., 2008).
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Fig. 4. The relative frequency with which observers travelled different distances during observation periods in 2020 compared to 2019. In red (or the darkest shade
of grey in greyscale reproduction) are the distances frequently travelled in 2020, relative to 2019. In the data from California mean travel distance was greater in
2020, whereas in the data from New York state only the variance but not the mean travel distance was greater in 2020. Qualitatively similar results were found when
the data from 2020 were compared to data from years prior to 2019. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

In conclusion, we found that bird watchers participating in data
collection for eBird did alter their behaviours in April 2020 in response
to the restrictions on human movement that resulted from the COVID-19
pandemic. Given the magnitude of the change to daily life, it is perhaps
notable that the changes observed in eBird data are not more substantial.
Nevertheless, the behaviour of observers did change in ways that will
require analyses of eBird’s data to account for differences in the pro-
portional representation of habitats in observations, and differences in
observer effort. While we have only looked for changes in observer ac-
tivity in four political units, we have found different effects on the ac-
tivities of project participants among these political units. We expect
such differences have occurred globally, given the substantial differ-
ences in political and policy responses to the pandemic around the globe
and the different environments in which observers live. These regional
differences in effects on participants’ behaviour will need to be taken
into account for most any use of these data. This applies to examining
whether behaviour and local distribution of wild animals was altered by
pandemic-related changes in human behaviour. This conclusion also
applies more broadly to the use of data from eBird collected during the
pandemic for other purposes including montoring of longer term
changes in distribution and abundance. We have only looked at changes
in the behaviour of participants in one project, eBird. However, we
expect that similar changes in observer behaviour in 2020 have occurred
for other projects for which volunteer participants choose how much
effort to expend, where to expend their effort, and when to expend their
effort. Thus, similar analytical challenges await anyone using data
collected by these other projects during the COVID-19 pandemic.
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Table Al

Fixed effect predictor variables for each model in the set of twenty models fitted
separately to data from each of the four political units, in order to identify the
best-supported model(s) describing inter-annual variation in numbers of
observation events across the equal-area hexagonal grid cells into which each
political unit was divided. An “X” within a column indicates that this predictor
variable was included in the model described by a row within this table. The
fixed effect predictor “CalYr” is a continuous variable that describes monotonic
changes across the calendar years in each moment of the distribution (i.e. mean,
variance, and skewness) “COVIDYr” is a 2-value categorical variable that in-
dicates whether the calendar year was 2020; this predictor functions to allow the
moment of distribution to deviate in 2020 from the longer-term trend described
by “CalYr”. All models converged, except for fitting of models for Portugal; here,
3 models failed to converge®.

Model number Mean Variance Skewness
CalYr COVIDYr CalYr COVIDYr CalYr COVIDYr

1 X
2 X X
3 X X
4 X X X
5 X X X
6 X X X X
7 X X
8 X X X
9 X X X
10 X X X X
11 X X X
12 X X X X
13 X X X X
14 X X X X X
15 X X X X
16 X X X X X
17 X X X X
18 X X X X X
19 X X X X X
20 X X X X X X

@ Models # 13, 17 and 20 did not converge when fitted to the data from
Portugal.

Table A2
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Table A3

Fixed effect predictor variables for each model in the set of seven models
fitted separately to data from each of the four political units, in order to
identify the best-supported model(s) describing inter-annual variation in
observer effort (separately duration of count periods, and distances
travelled for non-stationary counts). In these models each of three mo-
ments of distribution — mean, variance and skewness — could vary
independently as a function of their own set of predictor variables. An
“X” within a column indicates that this predictor variable was included
in the model described by a row within this table. The fixed effect pre-
dictor “intercept” indicates that the moment of variation was constant
across years. “Year” was a categorical predictor variable that describes
variation among years that is arbitrary and potentially non-systematic in
pattern; note that when “Year” was included as a predictor of a moment
of distribution the year 2020 was treated as the intercept. Note that
several models failed to converge, both for modelling of variation in
count durations and travel distances, in spite of our efforts to adapt the
model-fitting process”. See footnotes for Tables A8 and A9 for lists of the
models that did not converge for each political unit.

Model number Mean Variance Skewness

Intercept Year Intercept Year Intercept Year

1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X

# We adapted the default model-fitting process in two ways. First, we
increased the number of iterations allowed for model fitting from the default
20 to 100, and halved the “step.length” value with which the algorithm would
adjust parameter values in each iteration of the model-fitting algorithm; the
convergence criterion was never altered. Second, at times model convergence
failed in fewer than the 20 iterations allowed by default, and in these cases we
would change the algorithm used from the default “method = RS”, to instead
use a mixture of the two available algorithms (“method = mixed”) and then
vary the number of iterations using the first algorithm before starting to use the
second.

Fixed effect predictor variables for each model in the set of sixteen models fitted separately to data from each of the four political units, in order to identify the best-
supported model(s) describing inter-annual variation in proportion of urban landcover within the 2.5 km x 2.5 km areas centered on the locations of observation
events. In these models each of the four moments of distribution — mean, variance, skewness and kurtosis — could vary independently as a function of their own set of
predictor variables. An “X” within a column indicates that this predictor variable was included in the model described by a row within this table. The fixed effect
predictor “intercept” indicates that the moment of variation was constant across years. “Year” was a categorical predictor variable that describes variation among years
that is arbitrary and potentially non-systematic in pattern; note that when “Year” was included as a predictor of a moment of distribution the year 2020 was treated as

the intercept.

Model number Mean Variance Skewness Kurtosis
Intercept Year Intercept Year Intercept Year Intercept Year
1 X X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X X
6 X X X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X
11 X X X X
12 X X X X
13 X X X X
14 X X X X
15 X X X X
16 X X X X




W.M. Hochachka et al.

Table A4

In Portugal, the proportion of urban landscape in the area around
observation locations differed in April 2020 compared to the prior four
years. For each of the four moments of the distributions — mean, vari-
ance, skewness, and kurtosis — the coefficient describing the 2020 value
is the reference category, and the coefficients for all other years describe
deviations from the 2020 reference value. Coefficient and standard error
values printed in bold font denote coefficients that were estimated with
high statistical precision: the 95% confidence intervals around these
coefficients did not overlap zero. Thus, if the coefficients for effects in
the years 2016-2019 either all positive or all negative, and all are dis-
played in bold font, then in 2020 a moment of distribution is consistently
different than in all prior years examined. The coefficients for describing
mean and variance are presented on the logit scale, while skewness and
kurtosis are presented on the In-link scale.

Moment Predictor Coefficient SE
Mean Intercept (2020) —0.53 0.03
Year (2016) —0.14 0.05
Year (2017) —0.20 0.05
Year (2018) —0.29 0.04
Year (2019) —0.31 0.04
Variance Intercept (2020) 0.34 0.03
Year (2016) —0.20 0.05
Year (2017) —0.21 0.04
Year (2018) —0.44 0.03
Year (2019) —0.31 0.04
Skewness Intercept (2020) 0.09 0.04
Year (2016) 1.03 0.06
Year (2017) 0.88 0.05
Year (2018) 0.24 0.05
Year (2019) 0.68 0.05
Kurtosis Intercept (2020) —-1.70 0.07
Year (2016) —0.90 0.17
Year (2017) —0.67 0.12
Year (2018) —0.79 0.11
Year (2019) —0.48 0.11
Table A5

In Spain, the mean proportion of urban landscape in the area around
observation locations was higher in April 2020 compared to the prior
four years. For each of the four moments of the distributions — mean,
variance, skewness, and kurtosis — the coefficient describing the 2020
value is the reference category, and the coefficients for all other years
describe deviations from the 2020 reference value. Coefficient and
standard error values printed in bold font denote coefficients that were
estimated with high statistical precision: the 95% confidence intervals
around these coefficients did not overlap zero. Thus, if the coefficients
for effects in the years 2017-2019 either all positive or all negative, and
all are displayed in bold font, then in 2020 a moment of distribution is
consistently different than in all prior years examined. The coefficients
for describing mean and variance are presented on the logit scale, while
skewness and kurtosis are presented on the In-link scale.

Moment Predictor Coefficient SE
Mean Intercept (2020) —0.06 0.01
Year (2017) —0.57 0.03
Year (2018) —0.28 0.02
Year (2019) —0.34 0.02
Variance Intercept 0.02 0.01
Year (2017) —-0.01 0.03
Year (2018) 0.09 0.02
Year (2019) 0.003 0.02
Skewness Intercept —0.25 0.02
Year (2017) 1.22 0.04
Year (2018) 0.98 0.03
Year (2019) 0.86 0.03
Kurtosis Intercept —-2.45 0.03
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Table A6

In California, the mean, variance and kurtosis of the proportion of urban
landscape in the area around observation locations differed in April
2020 compared to the prior four years. For each of the four moments of
the distributions — mean, variance, skewness, and kurtosis — the co-
efficient describing the 2020 value is the reference category, and the
coefficients for all other years describe deviations from the 2020 refer-
ence value. Coefficient and standard error values printed in bold font
denote coefficients that were estimated with high statistical precision:
the 95% confidence intervals around these coefficients did not overlap
zero. Thus, if the coefficients for effects in the years 2016-2019 either all
positive or all negative, and all are displayed in bold font, then in 2020 a
moment of distribution is consistently different than in all prior years
examined. The coefficients for describing mean and variance are pre-
sented on the logit scale, while skewness and kurtosis are presented on
the In-link scale.

Moment Predictor Coefficient SE
Mean Intercept —0.03 0.01
Year (2016) —0.29 0.01
Year (2017) —0.27 0.01
Year (2018) —0.20 0.01
Year (2019) —0.19 0.01
Variance Intercept 0.07 0.01
Year (2016) —0.01 0.01
Year (2017) 0.01 0.01
Year (2018) 0.04 0.01
Year (2019) 0.01 0.01
Skewness Intercept —1.07 0.01
Year (2016) 0.48 0.02
Year (2017) 0.53 0.02
Year (2018) 0.34 0.02
Year (2019) 0.42 0.02
Kurtosis Intercept —1.67 0.02
Year (2016) —0.57 0.03
Year (2017) —0.43 0.03
Year (2018) —0.33 0.03
Year (2019) —0.25 0.03
Table A7

In New York, the mean proportion of urban landscape in the area around
observation locations was lower in April 2020 compared to the prior
four years. For each of the four moments of the distributions — mean,
variance, skewness, and kurtosis — the coefficient describing the 2020
value is the reference category, and the coefficients for all other years
describe deviations from the 2020 reference value. Coefficient and
standard error values printed in bold font denote coefficients that were
estimated with high statistical precision: the 95% confidence intervals
around these coefficients did not overlap zero. Thus, if the coefficients
for effects in the years 2016-2019 either all positive or all negative, and
all are displayed in bold font, then in 2020 a moment of distribution is
consistently different than in all prior years examined. The coefficients
for describing mean and variance are presented on the logit scale, while
skewness and kurtosis are presented on the In-link scale.

Moment Predictor Coefficient SE
Mean Intercept —0.56 0.01
Year (2016) —0.10 0.01
Year (2017) —0.09 0.01
Year (2018) —0.07 0.01
Year (2019) —0.04 0.01
Variance Intercept 0.07 0.01
Year (2016) —0.01 0.01
Year (2017) —0.02 0.01
Year (2018) 0.01 0.01
Year (2019) 0.03 0.01
Skewness Intercept —0.43 0.01
Year (2016) 0.06 0.02
Year (2017) —0.05 0.02
Year (2018) —0.15 0.02

(continued on next page)
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Table A7 (continued)

Moment Predictor Coefficient SE
Year (2019) —0.23 0.02
Kurtosis Intercept —2.91 0.03
Year (2016) —0.02 0.05
Year (2017) 0.07 0.05
Year (2018) 0.15 0.05
Year (2019) 0.07 0.05
Table A8

Estimated regression coefficients describing the differences in duration
of observation periods among years. Results are presented only for an-
alyses of data from Portugal, California and New York state, because no
models converged to solutions for data from Spain. Coefficients are from
the single successfully fitted” model of a set of 7 that was best supported
by the data based on ranking models by AIC values. We fitted the data to
models (Table A3) in which mean, variance, and skewness (i.e. moments
of the distribution) could be modelled as being independently affected
by predictor variables. All “Year (201*)” coefficients describe differ-
ences between the specified year and 2020. The coefficients for
describing mean and variance are presented on the In-link scale, while
skewness was calculated on the scale of measurement (“identity link” in
the parlance of gamlss). Coefficients and standard errors in bold font
indicate coefficients for which the 95% confidence intervals did not
overlap with zero, indicating statistically reliable estimates.

State Moment Predictor Coefficient SE
Portugal Mean Intercept 3.98 0.02
Year (2016) 0.28 0.01
Year (2017) 0.33 0.03
Year (2018) —0.15 0.03
Year (2019) —0.06 0.03
Variance Intercept 0.34 0.01
Skewness Intercept —0.07 0.02
Spain Mean Intercept 4.22 0.01
Year (2017) 0.38 0.02
Year (2018) 0.08 0.01
Year (2019) 0.07 0.01
Variance Intercept 0.31 0.01
Year (2017) 0.10 0.02
Year (2018) 0.05 0.01
Year (2019) 0.04 0.01
Skewness Intercept 0.31 0.02
New York Mean Intercept 3.87 0.003
Variance Intercept 0.61 0.01
Skewness Intercept 0.68 0.01
Year (2016) —0.06 0.02
Year (2017) —0.04 0.01
Year (2018) —0.08 0.01
Year (2019) 0.003 0.02
California Mean Intercept 4.06 0.005
Year (2016) 0.08 0.01
Year (2017) 0.07 0.01
Year (2018) 0.04 0.01
Year (2019) 0.03 0.01
Variance Intercept 0.6524 0.01
Skewness Intercept 0.91 0.06

# For modelling of count duration the following models did not converge in
each political unit: Portugal Models 3, 5, 6 and 7; Spain 3, 5, 6 and 7; California
2, 4, 6 and 7; New York state 7.

Table A9

Estimated regression coefficients describing the differences among years
in distances travelled during of observation periods in April, for non-
stationary counts. Coefficients are from the best-supported statistical
model of a 7-model set, although not all models in this set were able to fit
the data®. We fitted the data to models in which mean, variance, and
skewness (i.e. moments of the distribution) could be modelled as being
independently affected by the predictor calendar year. All “Year (201*)”
coefficients describe differences between the specified year and 2020.
The coefficients for describing mean and variance are presented on the
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In-link scale, while skewness was calculated on the scale of measure-
ment (“identity link” in the parlance of gamlss). Coefficients and stan-
dard errors in bold font indicate coefficients for which the 95%
confidence intervals did not overlap with zero, indicating statistically
reliable estimates.

Region Moment Predictor Coefficient SE
Portugal Mean Intercept (2020) 0.74 0.02
Year (2016) 0.04 0.03
Year (2017) 0.16 0.03
Year (2018) 0.05 0.03
Year (2019) —0.03 0.03
Variance Intercept 0.36 0.02
Skewness Intercept 1.21 0.03
California Mean Intercept (2020) 0.70 0.01
Year (2016) —0.04 0.01
Year (2017) —0.05 0.01
Year (2018) —0.07 0.01
Year (2019) —0.07 0.01
Variance Intercept 0.59 0.005
Skewness Intercept (2020) 1.34 0.02
Year (2016) —0.25 0.03
Year (2017) —0.25 0.02
Year (2018) —0.15 0.02
Year (2019) —0.08 0.02
New York Mean Intercept 0.55 0.003
Variance Intercept (2020) 1.00 0.04
Year (2016) —0.28 0.05
Year (2017) —0.19 0.07
Year (2018) —0.23 0.05
Year (2019) —0.29 0.05
Skewness Intercept 1.37 0.01

# For modelling of travel distance the following models did not converge in
each political unit: Portugal Models 2-7; Spain 1-7; California 2, 4, 6 and 7; New
York state 7.
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