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Abstract

Although interdisciplinary collaborations are becoming increasingly common,
researchers typically use data analysis methods specific to their field in order
to uncover how students learn. We present affordances of integrating theo-
ries of embodied cognition and design with machine-learning methods to study
student learning in mathematics and inform the design of embodied learning
activities. By increasing such collaborative research efforts, learning scientists
can incorporate regularization in computational models and ultimately draw
reliable conclusions to further inform theory and practice through the design of
technology-augmented learning activities. To illustrate this point, we explored
students’ conceptual understanding of measurement since limited research has
identified measurement estimation strategies that should be emphasized in class-
room instruction. By uniquely applying machine-learning methods to a small,
multimodal dataset from a study on student behavior in mathematics, we iden-
tified behavioral profiles, patterns in speech, and specific actions and gestures
that are predictive of performance. These findings may be used to inform the
design of embodied learning activities for measurement. We discuss the contri-

bution of these findings to the field of embodied design, and the affordances and
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challenges of conducting collaborative research in the learning sciences.
Keywords: Embodied Cognition, Regularization, Natural Language

Processing, Mathematics Learning

1. Introduction

Learning is complex and multifaceted, necessitating research across fields
to study learning in different contexts (e.g., formal and informal environments,
online and offline settings). On one hand, cognitive scientists have employed a
range of study designs (e.g., observational, experimental, and qualitative) and
statistical methods on data from a variety of sources (e.g., assessments, coded
behaviors) to study learning driven by cognitive theories. On the other hand,
learning analysts have refined the use of machine learning methods to make
inferences about student learning and provide recommendations for instruction
and learning environments from large amounts of recorded data. Unique goals
and efforts from both learning analytics and the cognitive sciences have been
informative to the learning and educational research communities; however, as
integrative theories of embodied cognition and design emerge, and more mul-
timodal data collection becomes feasible, synergistic efforts are necessary to
advance the study of learning.

Recent work across the learning sciences has emphasized cross-disciplinary
collaborations with active exchanges of field expertise to study learning more
broadly. Namely, there has been a push to utilize the field of learning analytics
[1] as a bridge between disciplines within the learning sciences [2]. Notably, the
field of multimodal learning analytics (MMLA; e.g., [3, 4]) has demonstrated the
advantages, and value, of integrating multimodal data with machine-learning
methods to draw inferences about learning from multiple sources collected across
disciplines within the learning sciences. Methods of MMLA often allow re-
searchers to capture more dimensions of learning processes to measure latent
constructs with greater accuracy; constructs of learning may be operationalized

in varying ways and a greater number of measured dimensions of such constructs
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allows researchers to better separate important factors from random noise. Sim-
ilarly, more research grounded in embodied cognition [5, 6, 7, 8] and embodied
design [9, 10, 11] has resulted in new learning technologies that utilize mul-
timodal sensors for feedback and data collection. As such, combining research
efforts between cognitive scientists and learning analysts is necessary to advance
the study of student learning and the continuous improvement of learning tech-
nologies grounded in embodied design. Such a blending of efforts, just as is
an advantage of MMLA, provides additional dimensions with which to explore
learning processes to build better definitions, measures, and interventions to
positively impact student learning.

Currently, we advocate for collaborative efforts between the cognitive sci-
ences and learning analytics fields. We contend that to effectively garner deeper
insights into learning and contribute impactful recommendations for design, in-
terdisciplinary collaborations must be embraced. To illustrate this point, this
project applies machine-learning methods to a relatively small dataset from a
qualitative study with two goals. First, we examine how elementary and college
students reason about measurement and display understanding through task-
related behavior. Second, we discuss the affordances and challenges of applying
machine-learning methods to observational, behavior-focused data sets, demon-
strating how regularization can support the blending of learning theory with
learning analytics. Through this exploratory work, we aim to encourage more
collaborative research informed by theories of embodied cognition and design
by illustrating the affordances of utilizing learning theory and machine-learning

methods together to advance educational research.

1.1. Embodiment, Mathematics Learning, and Design

Theories of embodied cognition (e.g., [5] [6] [7] [8]) share the philosophical
standpoint that thinking does not occur within a black box; rather, our phys-
ical, sensorimotor experiences in the world reflect and influence our cognitive
processes, including mathematical thinking and reasoning [5]. From these the-

ories, mathematics learning can be modeled as a multimodal, cyclical process
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impacted by the reciprocal relationship between perception and action. Specif-
ically, Alibali and Nathan [12] argue that mathematical cognition is “based in
perception and action, and it is grounded in the physical environment.” An
individual’s learning environment shapes their perceptions, and that, in turn,
informs their cognitive processes to act on and in their environment, then influ-
ence mathematical skills and thinking. This theoretical perspective has informed
educational research on students’ physical behaviors (i.e., actions, language, and
gestures) as they relate to mathematics reasoning and learning.

For instance, gestures are a primary example of behaviors which contribute
to mathematics learning. Distinct from actions, which effect change on the en-
vironment, gestures are primarily hand movements that complement speech to
simulate actions and perceptual states [13] [14]. Student gestures have been
shown to improve their abilities to process new mathematics concepts [15] and
indicate their readiness to learn concepts they are unable to express verbally
[16] [17] [18]. In addition to impacting reasoning and learning about math, ges-
tures and actions reveal cognitive processes and insights into student knowledge,
attitudes, and beliefs that may not necessarily be reflected in speech [19] [20].

More broadly, a large body of research has examined the relations between
student behavior, cognitive processes, and learning in different contexts (i.e.,
the relations between student actions, speech, gestures) [21] [22] [23] [20] [24].
Previous research on the coupling between speech and physical movements in
communication has shown a stronger relationship between speech and gesture
than between speech and action in the context of language production and
language comprehension [23] [24]. However, this line of inquiry has not been
extended to explore the relationship between action, speech, and gesture as
they relate to mathematics learning. Similarly, limited research has examined
which types of behavior could be most indicative of students’ understanding
and implicit cognitive processes during embodied mathematics activities.

More broadly, a large body of research has examined the relations between
student behavior, cognitive processes, and learning in different contexts (i.e., the

relations between student actions, speech, gestures; e.g., [21, 22, 23, 20, 24]).
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Previous research on the coupling between speech and physical movements in
communication has shown a stronger relationship between speech and gesture
than between speech and action in the context of language production and
language comprehension [23, 24]. Similarly, Congdon, Kwon, and Levine [25]
discovered an interaction between students’ conceptual understanding of mea-
surement and whether they benefited from the use of actions and gestures.
Specifically, they found that first graders with higher prior knowledge bene-
fited from the use of actions and gestures whereas students who displayed lower
knowledge did not benefit from producing gestures. This finding suggests that
the relation between behavior types and performance on measurement tasks
may be moderated by knowledge such that instruction for novices may benefit
from focusing on productive actions rather than eliciting meaningful gestures
associated with measurement skills. However, limited research has examined
which types of behavior could be most indicative of students’ understanding
and implicit cognitive processes across different ages beyond first grade and by

examining different behaviors at a fine-grained level of analysis.

1.1.1. Embodied Design

With a large body of research demonstrating the powerful role of the body
and action in cognition, such as through the coupling between gesture and math-
ematical cognition, recent attention has turned to designing learning technolo-
gies that support learning and reasoning through movement-based activities.
This area of research, Embodied Design (ED), builds on theories of embod-
ied cognition to investigate how students interact with embodied learning ac-
tivities; this research informs theories of teaching and learning as well as the
development and refinement of embodied learning activities in a bidirectional
relationship [9, 11]. ED research is growing increasingly important for evaluat-
ing and refining math learning activities and educational technologies as more
of them incorporate ED principles through perceptual and embodied experi-
ences (e.g., [26, 27]; see Abrahamson et al. [10] for an overview). Particularly

relevant to our work, Abrahamson and colleagues [10] note that a major prin-
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ciple of ED is that of “abstr-action” which states that student actions (both
spontaneous and externally directed) can facilitate insights and understanding
of mathematical concepts. Our study utilizes an ED approach to extend re-
search on embodiment and to inform the design of embodied learning activities
that effectively support the development of measurement skills through guided
and meaningful actions that connect to the mathematics concepts at hand.
Instructional and technology-augmented activities designed from principles of
embodiment present exciting opportunities to study student learning through
a rich array of behavioral data (e.g., through video recordings, Kinect sensors,
joint-tracking, etc.) that would not be present in computer-driven or paper-and-
pencil activities and constitute the application of machine-learning methods to
meaningfully integrate and interpret multimodal data (e.g., [28]). One of the
largest affordances of integrating ED theory and learning analytics is the added

regularization to models and analyses.

1.2. Regularization: An Affordance of Blending Embodied Design and Learning
Analytics

Efforts to promote interdisciplinary research across sub-fields of learning
sciences have become increasingly common as teams utilize educational tech-
nologies to collect behavioral and sensorimotor data related to learning. As a
result, interdisciplinary teams have formed to utilize machine-learning methods
in work that is grounded in cognitive theories of embodiment and may have been
approached from a qualitative or traditional statistics approach in the past. For
instance, the Mathematics Imagery Trainer (MIT; [29, 30] ) was designed to sup-
port students’ conceptual understanding of proportional equivalence by provid-
ing hands-on opportunities for students to develop new sensorimotor schemes.
Designed in alignment with theories of embodied cognition, research around the
technology has expanded to apply machine-learning methods to the multimodal
behavior data to identify students’ strategies while using the MIT. Pardos et
al. [31], for example, used expert-developed labels to classify student strat-

egy in deep learning models utilized deep learning models. Similarly, Ou et al.
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[32] combined clustering and regression analyses to study student interactions
with the MIT and Tancredi and colleagues [33] applied a nonlinear analysis
model to examine changes in students’ perceptuomotor behavior to inform fu-
ture iterations of the technology to support student learning through embodied
interactions. All of these examples from research on the MIT demonstrate how
expert knowledge was incorporated into the respective machine-learning analy-
ses to develop models of student action (e.g., the expert-generated labels utilized
in Pardos et al. [31]) and to inform analysis decisions (e.g., the selection and
interpretation of clusters observed in Ou et al. [32]) in a way that extends be-
yond the capacities of qualitative or traditional statistics approaches to provide
new insights into student learning.

The importance of applying theory and domain knowledge in data analyses
has recently been acknowledged in learning analytics [2] [34] and we argue that
one of the primary reasons to leverage learning theory and ED research in learn-
ing analytics is the concept of regularization. Regularization is the introduction
of knowledge or other information to better-structure a problem or improve
the generalizability of a model or approach [35]. In this way, regularization is
the process of restricting the search space of possible methods through prac-
tices including normalization and dimensionality reduction, or by incorporating
constraints on model selection or training procedures.

The importance of applying theory and domain knowledge in data analy-
ses has recently been acknowledged in learning analytics (e.g., [2, 34]) and we
argue that one of the primary reasons to leverage learning theory and ED re-
search in learning analytics is the concept of regularization. Regularization is
the introduction of knowledge or other information to better-structure a prob-
lem or improve the generalizability of a model or approach [35]. In this way,
regularization is the process of restricting the search space of possible meth-
ods through practices including normalization and dimensionality reduction, or
by incorporating constraints on model selection or training procedures. As an
example, consider the common challenge in clustering analyses in choosing num-

ber of clusters by which to group the given data; in practice, this is normally
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accomplished by observing and interpreting characteristics of resulting clusters
at different cluster sizes (i.e. different values of ‘K’ in the K-means clustering
method, for example) and selecting the number that produces the most inter-
pretable groups. This process is an example of regularization in practice, as the
decision is being made based on incorporated domain knowledge. Clustering
as a process, as well as related methods including factor analyses and principal
component analyses, are themselves examples of regularization as well. The
choice to apply these methods emerges from a hypothesis or understanding that
latent classes exist within a given data and that some of the variance therein
is correlated within these groupings; accounting for these groupings within a
machine learning model or analysis can help improve the chances of results gen-
eralizing to new contexts by explaining variance and removing noise that may
confound such methods.

In the fields of machine learning, statistics, and even learning analytics, the
practice of regularization is applied to reduce the chances of overfitting a model
to a given dataset; this application of regularization is often considered essential
when applying complex modeling methods, such as deep learning, to relatively
small datasets. For example, many researchers and practitioners of machine
learning are familiar with L1 and L2 regularization methods for their common
usage within methods such as ridge regression [36] and Lasso [37]. These meth-
ods of regularization impose a cost when training a model on the magnitude
of learned coefficients with the intuition that lower-valued coefficients are more
likely to generalize across applications; that is, these methods help to perform
feature selection within the model. Despite the wide usage of regularization in
these contexts, there is often a connotative disconnect between common methods
of regularization and the general concept of regularization. For instance, it is
important to recognize that L1 and L2 methods introduce regularization when
training models, but there are many other ways to incorporate regularization
into an analysis.

Regularization occurs implicitly and explicitly at many stages of analysis,

typically by introducing some form of external knowledge. Adding theory and
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domain knowledge to determine appropriate modeling procedures, including
or excluding certain variables and interactions, or applying methods of group-
ing observation samples or reducing covariate dimensionality are all manners
through which regularization is commonly introduced into an analysis. Par-
ticularly, when guided by domain knowledge, additional information can add
statistical power, strengthen resulting claims, or even allow for analyses that
would otherwise be infeasible [32] [31]. Therefore, ED research may greatly
benefit from cross-disciplinary efforts to address impactful research questions

through the application of theory-driven learning analytics methods.

1.8. Measurement and Measurement Instruction

Perhaps even unknowingly, we apply measurement skills and concepts daily.
Therefore, it is crucial for elementary curricula to focus on developing an under-
standing of measurement concepts as well as building strategies for application
beyond physical measurement [38]. However, students struggle to learn proce-
dural and conceptual measurement skills, taking months or years to advance
from one level to the next of learning trajectories [39] and even maintaining
misconceptions about measurement tools and strategies through sixth grade
[40, 41]. This is problematic because measurement skills is a foundation for
more advanced critical skills in mathematics such as quantitative reasoning,
arithmetic, and proportional reasoning, one of the key concepts of the Common

Core Standards for Mathematics for middle school [42, 43, 44].

1.4. The Current Study: FExploring Students’ Measurement Strategies

This project aims to advance research on student behavior, reasoning, and
learning by using machine-learning methods to analyze the interplay between
learners’ actions, speech, and gestures while completing measurement estima-
tion tasks. Since physical behavior during problem solving [22] and gestures
[20] reveal implicit knowledge, we hypothesize that observing students’ physical
actions while problem solving will also reveal valuable implicit knowledge of

measurement, concepts. Our goal is to use machine-learning methods to discern
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how student behavior is indicative of student performance and, consequently,
conceptual understanding in the context of measurement, in order to inform
the design of future activities and instructional support for students to develop
procedural and conceptual measurement skills.

To do so, we use data from a larger project in which college and elementary
students estimated physical dimensions (i.e., height, width, length) of geomet-
ric objects and then explained their strategy and reasoning. The sessions were
videotaped for further analysis on how physical and verbal behaviors, including
actions, gestures, and speech, reveal students’ understanding of measurement
and estimation. Here, we analyze all three aspects of learners’ behavior (action,
speech and gesture) to identify those that may reveal whether a student under-
stands concepts of measurement or whether they might be struggling and need
additional support. We aim to identify different behaviors and behavioral strate-
gies indicative of knowledge to inform the future design of embodied games for
measurement. We analyze the behavior of both college and elementary students
to explore how students at different levels of knowledge and expertise approach
measurement estimation tasks and express their understanding of measurement.

Specifically, we explore:

1. Are there common behavioral profiles among students and, if so, what do
they suggest?

2. How do students’ verbal reasoning about measurement tasks vary by age
and measurement accuracy?

3. Do students’ actions, speech, or gestures best predict performance on mea-

surement estimation tasks?

2. Materials and Methods

2.1. Participants

We used video data collected from 51 participants. In the fall of 2018, 29
college students (59% female; 38% male; 3% non-binary) from a northeastern

university participated in a study for course credit where they completed a series
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of measurement estimation tasks. Following a similar protocol, a second study
was conducted with 33 elementary students (ages 8-11; grades 3-6) at a local
after-school program. Of the 33 elementary students, we obtained and analyzed
video data from 22 students for our final sample (55% female, 45% male). Of
these students, six were in third grade, ten in fourth grade, and five in fifth

grade (grade level was unreported for one student).

2.2. Procedure

A similar procedure, asking participants to complete a series of measure-
ment tasks, was followed for both populations with the caveat that the study
was shortened for elementary school participants. The eight tasks that were
completed by both the college and the elementary students were used in the
following analyses (see Appendix 8 for the list of tasks). College students who
participated in the study were interviewed by graduate and undergraduate re-
search assistants individually for 30 minutes. Research assistants were informed
of the purpose of each study beforehand and trained in advance on the proto-
col to follow in interviews. Data collection for the elementary student study
was completed by research assistants in 15-minute, one-on-one sessions at an
after-school program. Informed consent was obtained for all participants prior
to beginning the study.

Participants were informed that they would be completing different mea-
surement tasks. For each task, participants were offered, though not required
to use, an unmarked 6-inch or 12-inch dowel as a tool to estimate different
dimensions (length, width, height or diameter) of geometric objects including
prisms, spheres, and cylinders of various sizes, with dimensions ranging from
two to 24 inches. For example, participants were presented with a 24” cylinder
and asked to estimate its height. After verbally providing an answer for each
task, participants were asked to explain how they arrived at that answer and
were free to gesture during those explanations. No restrictions were placed on
behavior during the answer explanations, allowing participants to demonstrate

and pick up objects freely. Participants did not receive any accuracy feedback
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throughout the study. Participants were unrestricted in the amount of time
they could spend on any given task and (barring participants who left the after-
school program early) all participants provided an answer for all tasks during

the interviews.

2.8. Behavioral Measures Code Book

Participants’ video data was analyzed using a behavioral measures code book
designed to provide quantitative data about the actions, language, and ges-
tures observed by students as they complete estimation tasks and explain the
strategies they used [45]. This code book builds off previous work on gesture
analysis with the intent to capture behavioral markers of students’ 1) actions
while problem-solving, 2) speech used to explain measurement strategy, and 3)
gestures displayed with speech, through video footage to study how different
behavior types afford different information about student knowledge and rea-
soning. To that end, we compiled all of the coded behavior into one dataset in
which the codes distinguish whether each behavior was observed while students
were solving the task or explaining their process afterwards.

The coding book consists of 35 items ranging from binary indicators of a
present behavior to categorical items based on participants’ actions, language,
and gestures. There are 11 features based on participants’ actions while com-
pleting each measurement estimation task. Binary features include whether the
participant: 1) used a dowel while measuring; 2) used an external tool, such as
a pen; 3) used an autonomous tool (e.g., finger); 4) used a placeholder while
measuring an object; 5) used a start-point marker to designate where they be-
gan measuring; 6) used an end-point marker to designate where they stopped
measuring a dimension; 7) double-checked their answer; and whether the partic-
ipant 8) decomposed the problem into smaller measurement tasks. Additionally,
prozimity indicated whether the participant was physically near (within a foot),
moderate (roughly 1-2 feet), or far (over two feet) from the object while mea-
suring it. Lastly, perspective was coded as eye-level, high, or birds-eye, relative

to the position of the object. Students’ time-to-answer was also recorded as
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the duration between the task instructions and the students’ final answer (M =
25.40 seconds, SD = 22.67 seconds) prior to providing an explanation of their
problem-solving strategy.

Transcripts of student explanations of their measurement strategy were also
recorded. These transcripts include participants’ verbal explanations of their
strategy after providing an answer for each task. These explanations range from
short phrases (e.g.,“I don’t know, I guessed”) to more explicit explanations. For
example, below is the verbal exchange between the researcher and a participant
for one task:

Researcher: “Can you estimate the height of the cylinder?”

Participant: “Twenty-three and a half inches”

Researcher: “How did you reach that answer?”

Participant: “I had the six-inch wooden dowel and used its
length and put my finder there to try to measure it. Then
once I got to the end I kind of approximated the length
of an inch and it wasn’t fully the length of it, it was kind
of over a bit, so I figured that was about half an inch.”

Alongside this transcript, the actions demonstrated by the participant prior
to saying “twenty-three and a half inches” were video analyzed and coded to
depict the presence of different actions used by the participant to measure the
cylinder. Specifically, the participant used a dowel (D), used their finger to
indicate a start-point marker (S) as well as an end-point marker (E), and used
their finger as a placeholder (P) while moving the dowel along the cylinder from
right to left to estimate its height (Figure 1).

Lastly, each gesture produced by participants was recorded and coded as
being one of five gesture types, defined based on previous work with gestures.
Deictic gestures indicate objects, people and locations through point or reaching
[46] [47]. Spatial gestures, a subset of iconic gestures, depict spatial relations
[48]. Kinetographic gestures, another subset of iconic gestures, indicate actions
[48]. Pictographic gestures, also a subset of iconic gestures, are used to depict

a referent object [48]. Metaphoric gestures occur when an individual creates a
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Figure 1: Example Measurement Estimation Task and Coded Action Features.

physical representation of an abstract idea or concept [49] including dimensions
such as length, width, or height.

In order to establish agreement, four coders met regularly over two months
to collaboratively code all college participant videos and discuss points of con-
troversy. Once the four coders obtained 75% agreement (3 out of 4 coders)
across 80% of items on seven given cases, the coders individually coded the re-
maining video data while continuing to meet and resolve discrepancies. For the
elementary student data, three coders met regularly for a month to collectively

code all tasks together for full agreement on all tasks.

2.4. Dataset

The behavioral data was coded and analyzed at the task level using the
eight measurement tasks completed by participants in both the college and
elementary sample. The final dataset included a total of 378 tasks (213 college,
165 elementary).

2.5. Approach to Analysis

To address our research questions, we applied three methodologies that lever-
age the processed data and coding labels within a machine learning-centered
approach. While early in this work we argue for the benefits of blending ma-
chine learning and theories of embodied cognition and design, it is important to
emphasize the broadness of that argument; there is often misconception or even

disagreement as to what constitutes machine learning as opposed to other more
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traditional methods. In this work, we use this term inclusively, encompassing
methods of deep learning, natural language processing, and nonlinear modeling
as well as more traditional methods including clustering and regression (deep
learning, after all, is just a form of regression), all where the computer is helping
further research by learning and reporting from data. In this way, many of these
methods are already being utilized to study cognition and learning, particularly
in exploring the relationships between covariates and outcome of interested (e.g.
through the application of regression models), but it is through even further in-
tegration of these methods at different stages of the research process that they
may provide even greater benefit.

This work exemplifies this by applying a “discovery with models” approach
[1] to identify whether students’ actions, speech, or gestures most strongly corre-
lates with observed measurement performance in the task. First, we utilized the
expert-coded labels within a k-means cluster analysis to identify behavior pro-
files that emerged across the participants. Second, we applied state-of-the-art
natural language processing techniques within another cluster analysis to iden-
tify differences in applied verbal strategies as students explained their approach
to each measurement task. Finally, to address the third research question, we
built regression models that observe how the profiles of student behavior (ac-
tions and gestures) and verbal strategies correlate with performance on task.

These methods are described in detail below.

2.5.1. Identifying Behavior Profiles with K-means Clustering

From the coding procedure, we derived 44 binomial variables to describe
student behavior within each task. These constructed features capture binary-
coded representations of categorical coding labels (e.g., applied strategy, the
use or non-use of tools such as a dowel) and binned representations of ordinal
and continuous metrics recorded during the task (e.g., time to answer, number
of gestures). These variables included verbal codes of students’ explanations
as they were informative of student behavior (e.g. the use of counting) while

participating in the task.
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Initially reported by Harrison, Smith, Botelho, Ottmar and Arroyo [50],
we applied a k-means clustering method using Jaccard distance (for binomial
variables) to identify the emerging behavior profiles of the students working on
each of the measurement tasks. While clustering, we did not include an indicator
of student age group (college or elementary) in order to identify those behaviors
that were distinctive to each group as well as those that were shared; it was
hypothesized and expected, in this case, that some clusters would be comprised
of primarily one age group or the other, with notable findings being the cases
where there were comparable distributions within clusters indicating that the

represented behaviors were not age-dependent.

2.5.2. Examining Verbal Strategies with NLP and K-means Clustering

To explore students’ verbal strategies, we applied several methods of natural
language processing (NLP) to the transcribed text of the student explanations
recorded in describing their approach to each task. The purpose of this analysis
is to construct measures that represent what students verbalize while partici-
pating in the study as distinctive from their actions; while verbal strategies are
likely to be correlated with action (e.g. a student is likely to verbally reference
a tool if that tool was used), the choice of words in describing such actions may
vary, providing insights into the students’ conceptual understanding of mea-
surement that simple codings of action are not able to fully represent; this NLP
analysis, therefore, is conducted using the raw transcripts of student explana-
tions, independent of the verbal codes described previously.

In alignment with common practices in NLP, several pre-processing steps
were applied to first “tokenize” the data (i.e. identify individual words and break
up contractions such as “couldn’t” into “could” and “n’t”) and remove overly
common stop words such as “the”, “and”, “a”, and so forth [51]. Additionally,
we applied stemming to commonly reduce each word to its root form. We then
used a median split of task performance to observe words commonly used by
high- and low-performing students during the measurement task as shown in

Table 1.
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Most Frequently Used Words
High Performance | Low Performance
inches 134 | like 27
like 91 | inch 24
dowel 78 | count 20
two 76 | one 17
one 66 | measure 13
three 64 | two 13
measure 60 | would 12
use 59 | three 12
six 54 | five 11
stick 52 | n't 10

Table 1: Counts of most frequently said words by high- and low-performing students

While it is apparent that both high- and low-performing students used nu-
meric language, the most notable difference is the prominence of “dowel” and
“stick” in the high performing group and that of “counted” in the low perform-
ing group. The position of these two words suggests that the high-performing
students used verbal strategies that referred to the measured objects while the
low-performing students more often described their approach to the task by
counting. Further exploration revealed, unsurprisingly, that the low-performing
group consisted of mostly elementary students. This difference in verbal strat-
egy, likely aligning with their actions (i.e. the use or non-use of dowels as a
measurement tool), began to highlight different approaches to the tasks, and we
examined these differences further through a cluster analysis.

Utilizing complex deep learning models, we applied SBERT [52], a method
designed to build semantic representations of sentences, pre-trained on a large
set of data collected from Wikipedia and BooksCorpus. Researchers have made
many such models openly available to allow others to utilize such tools without

facing the technical challenges of training these models on such large language
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datasets. While uninterpretable by humans, the method produces a large, 768-
dimensional-feature vector that represents the full student explanations in re-
gard to their semantic meaning. The vectors are produced in such a way that
two different explanations of similar semantic meaning will be closer together
in the generated embedding space. This type of embedding is well-suited for
a cluster analysis, as the feature vector can help identify emerging groups of
similar explanations without additional coding or labelling efforts. Similar to
our first analysis, we applied k-means clustering to the generated vectors across

all student explanations.

2.5.83. Modeling the Role of Action, Speech, and Gesture with Regression Anal-
yses

Our final analysis sought to observe whether recorded student actions, speech,
or gestures most correlated with performance, as operationalized through stu-
dent estimation error on the measurement task illustrated in Figure 1. Along
with the features derived from the coding procedure, the students’ estimation
errors were also calculated and used as a dependent measure of performance on
task in the analyses described in the following sections. Specifically, the magni-
tude of inverted estimation error was z-scored within task (c.f. Equation 1 such
that all comparisons can be made with respect to the mean and standard de-
viations of estimation performance rather than the raw values; in the equation,
the € term is added as a small offset to avoid division by 0. The purpose of
inverting the magnitude of error transforms the dependent variable for better
interpretation of results (i.e., a higher value represents a higher performance

exhibited by the student).

1
Inverse Error = lo
g < |correct — estimated + e|>

(1)

(InverseError — meaniqsk)
S-Dtask

Z-scored Estimation Performance =

Building on the previous two analyses, a linear regression model was devel-

oped for each set of observed student actions, speech, and gestures. The gen-
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490

495

% of College % of Elementary —Chi-Square

Z

Cluster Label Behaviors

Students Students p-value
Low Effort Eyeballmg,ﬂno double»c_heckmg of answers, 43 87% 13.9% 0.102
no dowel use or end-point marker
. . No gestures, long answer time, . o
Confused unknown verbal strategies 31 6.1% 0.127
High Performance & Proportional action and verbal strategy, 0 QO o
Conceptual Understanding  correct math reasoning, precise language 82 32.8% 4.2% <0.001
ngl? Effort, ] Vavncd léng and sk}ort answer t,un(‘:?, act{on— 51 6.6% 21.8% <0.001
Low Performance gesture-speech mismatch, many gestures
Counters Us?dv counting verba_l‘st‘rategy. short 63 3.9% 32.7% <0.001
answer time, imprecise language
High Effort & Long answer time, correct reasoning, double- o o
Experience checked answers, estimation verbal strategy 124 41.9% 17% <0.001

Table 2: Labels, prominent behaviors, and distribution of college and elementary students

by cluster.

erated behavior features from the first analysis were divided into coding labels
aligned to the actions taken by the student (e.g., use of tools or place-marking)
and those aligning to observed gestures (e.g., use of deictic gestures, spatial
gestures, etc.). These sets of features, along with the verbal clusters generated
in our second analysis, were used to train the three linear models predicting the
normalized estimation performance; in each model, the age group of the student
was also included as a covariate. The predictions of these models represent the
task performance that is explainable by the respective feature set. As such, we
ensembled the three different predictions within a fourth linear regression model
and observed the predictive power of each to identify which feature set is most
correlated with student estimation performance while controlling for the other

factors.

3. Results and Discussion

8.1. Identifying Behavior Profiles with K-means Clustering

After observing several values of “k,” we found six clusters to be most rep-
resentative, determined from a plot of the ratio of within- and across-sum-of-

squared distances of samples to cluster centers, in addition to being interpretable
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for comparisons. Table 2 describes these clusters based on students’ action, ver-
bal, and gesture strategies and distribution between age groups. Notably, some
profiles include both age groups (i.e., low effort and confusion) while others
more distinctly comprise either elementary or college students. For instance,
the behaviors represented mostly by college students in Clusters 3 and 6 in-
clude correct mathematical reasoning and proportional strategies, which have
been considered expert strategies for length measurement in previous work [42].
Meanwhile, elementary students were more likely to use a form of counting
(Cluster 5). This display of behavior aligns with an intermediate level called
“End-to-End Length Measurer” on a hypothetical length learning trajectory by
Samara and colleagues [44]. The students in Cluster 5 also show an incongru-
ence between their actions while estimating and their speech and gestures while
explaining their answer, suggesting that they were unable to articulate their
problem-solving strategy (Cluster 4). Such incongruences are consistent with
prior work on speech-gesture mismatch demonstrating that students who say
one statement while gesturing in reference to another are likely on the verge of
learning a new concept but are yet to formalize their understanding through
speech (e.g., [16, 17, 18]). We compare these behavior profiles in more detail in
a prior conference proceeding [50].

These behavior profiles may assist in identifying students with different de-
grees of conceptual knowledge about measurement based on their displayed
behavior and performance during measurement tasks in classrooms (e.g., iden-
tifying students with high performance as opposed to students who may be iden-
tified as counters). Additionally, these clusters display common behaviors by
high-performing students which suggest strategies to encourage in instructional
support to help students develop strong measurement skills (e.g., proportional
measuring strategy, start- and end-point markers).

Importantly, we were able to discern these behavior profiles through the use
of k-means clustering because the method allows researchers to efficiently iden-
tify groups of cases without necessitating a priori hypotheses about which fea-

tures may be the most distinguishing between groups (although such hypotheses

20



530

535

540

545

Most Frequent Bi-Grams

Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster 5 Cluster 6 Cluster 7
feel like six inch look like eight nine point five look like one two
little bit twelve inch little bit got top four five three inch went like
went like two inch think like little bit one two length stick count like
four inch four inch kind look one inch three four like inch measured it

three four inch stick like inch that twelve  two three like three right one
tried see little bit like like three four five six one two three four

circle sphere two feet one kind bit would like inch twelve inch two three
could have four time ten inch by going right here two three count sideways
go like half inch this one count way this one cause look dowel rod
kind like length dowel because like  eight inch  two point that two *inaudible* there

Table 3: Most frequently stated bi-grams by students in the verbal clusters.

could benefit such an approach by means of regularization). While hand-coding
multimodal data and using descriptive statistics may allow researchers to also
piece together different profiles of student behavior, this application of ma-
chine learning lends efficiency by automating the process of determining the
appropriate number of groups and provides the opportunity to identify clusters
objectively and then use the available data to qualitatively label the different
behavior profiles that emerge from the clusters. As a representative grouping,
clustering in this way helps reduce noise when modeling interactions and out-

comes by reducing within-group variance.

3.2. Ezxamining Verbal Strategies with NLP and K-means Clustering

Following the same method of determining a value for “k” as was performed
in the first analysis, seven clusters of verbal strategies emerged (Table 3). We
explored aspects of the identified groups by observing common bi-grams used by
participants within each cluster; the bi-grams are viewed by looking at pairs of
consecutive words, accounting for differing forms of words that may appear (e.g.,
“inches” and “inch” are treated as the same when counting the frequency of word
pairs). While each of the clusters contained common bi-grams that exhibited
various use of numbers in terms of measurement (e.g., “four inch”) and evidence

of counting (e.g., “three four,” as well as several such references in Cluster 7),
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there are some other notable differences that are observed. Clusters 2, 6, and 7,
for example, both reference the use of a measurement tool (“inch stick”, “length
stick”, and “dowel rod”). Conversely, Clusters 1, 3, and 6 exhibit frequent use
of the word “like,” suggesting the use of imprecise language and estimation.
From this, the verbal strategies appear to correspond with, unsurprisingly, the
action strategy utilized by the student, but then further distinguishes students

based on the precision of language used to describe their applied approach.

8.8. Modeling the Role of Action, Speech, and Gesture with Regression Analyses

The learned coefficients for each model utilizing action, verbal, and gesture
features are depicted in Tables 4, 5, and 6. As can be seen in these tables, the
age group identifier is consistently a strong predictor of student performance as
was expected. In regard to the action model, only the use of a placeholder was
found to be statistically reliable, and correlated positively with higher student
performance. For the verbal model, two clusters were found to be statistically
reliable; these two, from the comparison illustrated in Table 3, appear to high-
light subtle differences in the precision of terms used in the measurement task.
Beyond these subtle differences, however, it is difficult to draw further meaning-
ful conclusions or interpretations pertaining to the resulting clusters of verbal
strategy. This aspect of the analysis is further discussed as a challenge and lim-
itation of the analysis in Section 4.2. Finally, observing the gestures model, the
use of spatial and kinetographic gestures reliably predict student performance.

Finally, the results of the ensemble model, observing student estimation
performance in regard to the combined models of action, verbal strategy, and
gesture are reported in Table 7. As seen in that table, all factors were statis-
tically reliable predictors of student performance, with the verbal and action
models being the most predictive. This result suggests that these aspects are

most correlated with our measure of student performance.
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Variable B B 95% CI t statistic p value

Intercept -0.153  [-0.480, 0.174] -0.915 0.361
Elementary Student -0.305 -0.609 [-0.813, -0.405] -5.851 <0.001 FF*
Use Dowel 0.099 0.288  [-0.051, 0.627] 1.664 0.097
Use External Tool 0.025 0.123  [-0.368, 0.615] 0.492 0.623
Use Autonomous Tool ~ -0.060 -0.369 [-0.953, 0.215] -1.237 0.217
Use Placeholder 0.120 0.273  [0.030, 0.517] 2.201 0.028 *
Mark Start Point 0.061 0.138  [-0.133, 0.409] 0.997 0.320
Mark End Point -0.047 -0.094 [-0.312, 0.125] -0.842 0.400
Use Perspective 0.074  0.137  [-0.048, 0.322] 1.452 0.147
Use Proximity -0.092 -0.283  [-0.582, 0.016] -1.852 0.065
Double Check Estimate -0.044 -0.117  [-0.374, 0.141] -0.888 0.375
Use Decomposition -0.011 -0.039  [-0.370, 0.292] -0.231 0.818

Table 4: Features Used in Action Model

4. Implications and Contributions

We explored how students of varying ages and levels of experience approach
and reason about measurement estimation tasks in order to identify successful
measurement strategies through three distinct applications of machine-learning
methods. We found that students’ actions, speech, and gestures are all related
to performance on measurement tasks. Specifically, using a placeholder while
measuring, verbally articulating the use of a tool and units of measurement, and
using spatial and kinetographic gestures were all behaviors of high-performing
students. Together, these findings contribute to the body of research on student
behavior and mathematics learning. The findings also illustrate the affordances
of leveraging theories of embodiment and learning analytics together to ad-
vance our understanding of student learning and the development of learning
technologies. In the following sections, we draw on examples and findings from
our study to discuss affordances provided, and challenges faced, by using col-
laborative efforts to study student reasoning and learning through multimodal

data.
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Variable I} B 95% CI t statistic p value

Intercept 0.123  [-0.120, 0.366] 0.994 0.321
Elementary Student -0.304 -0.607 [-0.805, -0.409] -5.998 <0.001 ***
Verbal Cluster 2 0.892  0.426 [0.134, 0.718] 2.862 0.004 **
Verbal Cluster 3 -0.072 -0.144  [-0.473, 0.184] -0.861 0.390
Verbal Cluster 4 0.658 0.314  [-0.039, 0.667] 1.746 0.082
Verbal Cluster 5 0.021  0.042  [-0.315, 0.399] 0.228 0.820
Verbal Cluster 6 0.836  0.399 [0.005, 0.793] 1.985 0.048 *
Verbal Cluster 7 -0.039 -0.078  [-0.398, 0.242] -0.478 0.633

Table 5: Clusters Identified in Verbal Model

Variable B B 95% CI t statistic p value
Intercept -0.084  [-0.368, 0.199] -0.582 0.561
Elementary Student -0.365 -0.729  [-0.920, -0.538] -7.48 <0.001 X
Gesture: Spatial 0.192  0.500  [0.168, 0.832] 2.949 0.003 **
Gesture: Kinetographic  0.206  0.574  [0.229, 0.919] 3.264 0.001 **
Gesture: Deictic 0.110  0.295  [-0.050, 0.640] 1.677 0.094
Gesture: Metaphoric 0.109  0.408  [-0.012, 0.828] 1.903 0.058
Gesture: Pictographic 0.084 0.656  [-0.113, 1.426] 1.672 0.095

Table 6: Features Used in Gesture Model

4.1. Affordances of Blending Embodied Design and Learning Analytics

From this project, we have identified two overarching affordances of blend-
ing ED principles with learning analytics. From a methodological standpoint,
leveraging theory during data analysis incorporates regularization to promote
the generalizability of results. More broadly, new approaches to study student
learning, behavior, and strategy advance theories of embodiment to ultimately
inform the development of educational technologies grounded in ED principles.

The blending of ED with LA, through the application of machine learning
methods, provided us with the tools and measures necessary to operational-
ize and explore student gesture, verbal strategy, and action as they relate to
measures of embodied cognition. While each of these abstract constructs are

traditionally described by multiple measures, it is through machine learning that
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Variable B B 95% CI t statistic p value

Intercept -0.391  [-0.629, -0.152] -3.219 0.001  **
Elementary Student 0.449 0.895  [0.387, 1.403] 3.465 <0.001 X
Gesture Model 0.260 0.645 [0.124, 1.167] 2.434 0.015 *
Verbal Model 0.337  0.793  [0.380, 1.206] 3.776 <0.001
Action Model 0.343  0.799 [0.401, 1.197] 3.949 <0.001 ¥

Table 7: The ensemble model illustrating the relationship between action, verbal strategy,

and gesture with respect to z-scored estimation performance.

we were ultimately able to represent each as a single measure to explore their
relationships independently (e.g. we have a single numerical-valued represen-
tation of each construct of gesture, verbal strategy, and action as they pertain
to the embodied cognition task); without the use of machine learning for this
task, representing these constructs becomes a challenge that may require many
additional hours of coding and validation to construct similar measures. In
this example, theory was used as a means of selecting and applying the machine
learning methods, but the resulting models themselves were then used to further
our understanding of these in the context of a higher order construct operational-
ized through student performance on the measurement task; conversely, using a
strictly data-driven approach without the use of domain knowledge would have
made it difficult to extract and effectively interpret the relationships between
these represented constructs (perhaps we could build a better model to predict
estimation error within the task, but the blending of modeling approaches with
domain knowledge allowed us to learn more from the process). As introduced
earlier, this exemplifies a “discovery with models” approach [1], but is just one
example of how the blending of ED and LA may help study these and similar

constructs.

4.1.1. Methodological Contributions
Utilizing learning analytics approaches with learning theory to study stu-

dent behavior can help incorporate regularization to increase the generalization
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of our findings to new contexts. This project is unique in our attempt to use a
dataset from a small, in-person study with limited cases and features, demon-
strating the ability to utilize machine learning techniques when paired with
learning theory in order to deeply explore data on student learning. This affor-
dance is exemplified by the clustering methods applied in the first and second
analyses. These clusters provide the means to describe emerging groupings and
trends in the data, similar to the work of Ou et al. [32] using a different cluster-
ing method. The dimensionality reduction provided by the methods not only
increase our ability to interpret results and identify prominent groupings, but
also help to reduce the impact of small variations in the data that may detract
from the ability to generalize our findings to new populations. For instance,
as it is unlikely that future students performing these tasks will use the same
combination of words to describe their strategy, the language used by these new
populations can still be mapped onto the categories of verbal strategies found
in this work; with these, we would also be able to assess how well our results
generalize based, for example, on if there are future explanations that do not
map to any of the identified groupings.

Aside from our cluster analyses, the simple normalization performed in our
final analysis also incorporates regularization and promotes the generalization of
our results. The normalization of measurement performance, as in Equation 1,
helps to remove student- and task-level dependencies that may differ in new
populations or different tasks. These simple methods collectively improve the
strength of our conclusions and improve the chances of our findings to generalize

across datasets.

4.1.2. Theoretical Contributions

Leveraging theories of embodiment alongside learning analytics can advance
learning theory as well as inform classroom instruction and the design of ed-
ucational technologies in a cyclical relationship. We applied machine-learning
methods to both substantiate previous findings and extend previous related

work on the study of student behavior and gestures in mathematics, as well as
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inform the further refinement of existing embodied games. First, the behavior
profiles that emerged in our first analysis coincided with successful measurement
strategies (i.e., the use of proportional relationships) evidenced in previous re-
search by Ayan and Isikal [42]. To extend our knowledge about behaviors that
exhibit different levels of conceptual understanding, the NLP techniques re-
vealed differences in the use of mathematically precise words and phrases used
by high-performing students. Finally, through a “discovery of models” approach
[1], utilizing predictive models derived from each set of student actions, speech,
and gestures, we found that actions and speech are most predictive of perfor-
mance on measurement tasks, extending previous work on the relation between
students’ actions, speech, and gestures as they pertain to other domains (e.g.
[23, 24]). [24]. The ensemble model revealed that student actions and speech
are more indicative of performance than gesture. These results extend the find-
ings of Congdon et al. [19] who found that producing actions, but not gestures,
were beneficial to novice learners in first grade to show a similar pattern as we
observe behaviors from elementary and college students.

These findings have implications for the design of embodied learning ac-
tivities for measurement; namely, to emphasize the development of students’
actions and strategies for measurement as well as their ability to articulate
their measurement process. For instance, we found that the use of a place-
holder is positively related to performance, we infer that this measurement
strategy and the underlying concept of tiling (i.e., that measuring should be
done successively without gaps between units; [53]) should be emphasized more
in elementary instruction through the design of embodied activities. For exam-
ple, technology-driven measurement activities should implement instruction and
feedback geared towards the appropriate use of a placeholder to assist students
during hands-on practice.

Additionally, while previous research has shown that dynamic gestures sup-
port mathematical reasoning in geometry [54], we show that spatial and kine-
tographic gestures specifically are predictive of student performance in a new

context, measurement. To the best of our knowledge, this is the first project to
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provide evidence that spatial and kinetographic gestures predict performance for
measurement tasks and may be more indicative of higher understanding among
students as opposed to other gesture types.

Moving forward, these findings can be used to inform the design of embodied
learning activities targeting elementary-level measurement skills. The produc-
tive behaviors observed (e.g., use of a placeholder and explicit language) can be
encouraged through instructional prompts and unproductive strategies can be
anticipated in hints and immediate feedback features. Conversely, spatial and
kinetographic gestures may be useful in instructional support to provide stu-
dents. Ultimately, these findings can be used to encourage students to practice

and mirror productive behaviors which are conducive to learning.

4.2. Challenges and Limitations

Alongside the affordances of considering the application of machine-learning
methods to cognitive science data, we acknowledge that there remain challenges
and limitations to doing so. Most notably, while applying machine-learning
methods to this data allows us a fine-grained perspective on the relations be-
tween different behaviors and performance on measurement tasks, we are still
unable to draw any conclusions about causality. Specifically, it is unclear from
one-session interviews whether high achievement prompts students to apply
productive strategies or whether applying productive strategies leads to higher
achievement on such tasks. Moving forward, it would be prudent to consider
including separate measures of conceptual understanding about measurement
to determine whether high performance is a prerequisite to or outcome of using
productive measurement strategies to inform the design of instructional activi-
ties and support.

Another prominent challenge is identifying the appropriate and efficient
methods for an analysis. For example, we sought to identify whether action,
verbal, or gesture strategy most correlated with student performance, and thus
a simple linear model is sufficient to answer that question. Similarly, represent-

ing the complexity of student speech and language required a more complex,
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deep-learning approach to effectively capture verbal strategies. Linear regres-
sions are arguably insufficient here as they would not be able to capture the
syntactic and semantic meaning of words without extensive feature engineering
that is afforded inherently by the utilized SBERT model [52]. In this way, it
is important to plan the intended analyses around the posed research questions
both to avoid potential “fishing” and also to consider those methods that best
utilize the collected data and formulated learning theory.

The careful selection of methods before an analysis requires an understanding
of such methods in terms of affordances and limitations. A notable challenge
in applying many machine-learning methods is in the interpretation of results,
though this may not always be a challenge that jeopardizes a result. The verbal
strategy model again exemplifies this challenge. The resulting verbal strategy
clusters, while representing different manners in which students described their
approach to each task, do not clearly reveal how each grouping differs from
others aside from the limited observations that can be made in Table 3; we were
hesitant, for example, to label these clusters with a descriptive title due to the
uncertainty that remained from these observations. We are able to identify in
Table 5 that two of the verbal strategy clusters exhibit statistical reliability in
their relationship with student measurement performance, and we are able to
further identify in Table 7 that applied verbal strategy as a whole is reliably
correlated with student performance, but these analyses are currently unable
to describe the explanations as a whole within these clusters. For the current
study, this is acceptable, as our research questions do not rely on our ability to
fully interpret these groupings, but this certainly raises new research questions
that should be addressed in future works.

Additionally, collaborations merging theories of embodiment with learning
analytics should start at the initial phase of research. Like this project, re-
searchers studying student behavior typically design studies in line with their
research questions and planned analyses, such as small classroom studies or in-
person interviews. Consequently, these study designs may perpetuate datasets

that are not appropriate for many machine-learning methods. In that case, there
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may be limited room for exploratory collaborative efforts and the application of
machine-learning methods. Instead, by establishing collaborative efforts from
the initial phases of projects, researchers may be able to pose a wider range of
research questions and appropriately design studies and methods to collect data
appropriate for a wider range of analyses.

Lastly, and possibly the greatest challenge, is finding the necessary resources
and support to make such collaborations feasible and valued. Many programs
do not explicitly offer interdisciplinary training and those that do may still face
challenges in effecting interdisciplinary collaborations. For instance, scholars
with different backgrounds may have to reconcile field-based differences in per-
spectives (e.g., dissemination venues), language (e.g., “dummy” versus “one-hot
encoded” variables), and work styles (e.g., programming language) in order to
form successful partnerships and may benefit from resources or workshops to
provide guidance for establishing new project teams. The effort necessary to
reconcile these differences make some interdisciplinary collaborations seem less

worthwhile.

4.3. Recommendations for the Field

Researchers have already advocated for more theory-informed applications
of machine-learning methods and collaborations to support active exchange of
knowledge and skills, particularly in learning analytics [2] [34] and between
learning analytics and educational data mining (e.g., [1]). We advocate to ex-
tend this effort beyond the field of learning analytics more broadly into the
learning sciences, particularly by encouraging support and training within pro-
grams and departments to provide emerging scholars with the skills to work in
interdisciplinary research teams.

Echoing the charge for support at the doctoral level by Fischer and col-
leagues [55], we agree that more value should be placed on team science rather
than individual accomplishments in doctoral training with opportunities to de-
velop cross-disciplinary skills. Program-wide seminars, workshops, and special

topics research groups could all be used to intentionally promote data analysis
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skills and start a dialogue about how theories of embodied cognition can impact
our design, development and evaluation of educational technologies. To support
this reconstruction of graduate training, pathways for interdisciplinary collabo-
rations within or between programs should be established to provide emerging
scholars with opportunities to forge new projects together and bring new per-
spectives to research on learning and the design, development, and evaluation
of educational technologies.

Broadly, we implore learning scientists to consider the potential benefits of
cross-disciplinary collaborations by blending theories of embodied cognition with
learning analytics to pose new research questions and impact future research
directions. For instance, cross-disciplinary collaborations can ease the histori-
cal tension between explanation and prediction research among social scientists
[56] by affording more predictive methods. Likewise, learning analytics research
should consider how domain knowledge may strengthen not only novel methods
themselves, but also lead to more impactful outcomes that may inform method-
ologies in ED research. Overall, we suggest providing pathways for predoctoral
scholars to engage in interdisciplinary work and leveraging collaborations to ul-
timately advance learning theory and inform the design of learning technologies

by blending theories of embodied cognition and learning analytics.

5. Conclusion

In this paper, we applied clustering, natural language processing, and gen-
eral linear modeling to a small yet rich dataset detailing student behaviors and
speech during measurement tasks to identify successful measurement strategies.
Our findings revealed profiles of student behavior and speech that may indicate
different levels of conceptual knowledge as well as evidence that spatial and kine-
tographic gestures predict performance on measurement tasks. These findings
advance research on gestures in mathematics learning; further, these findings
can inform instructional support and technology-augmented embodied measure-

ment activities that scaffold student learning through instructional support and
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feedback targeting prominent behaviors and strategies identified through our
analyses. Additionally, we highlight the benefits of interdisciplinary collabora-
tions to advance the field of learning sciences and the development of effective
educational technologies grounded in ED principles. Namely, we contend that
leveraging theories of embodiment and machine-learning methods affords added
regularization in data analysis to increase the reliability and generalizability
of findings. Moving forward, we encourage more collaborations and predoctoral
training opportunities that leverage theoretical perspectives on embodiment and
machine-learning methods to study student learning with a multitude of behav-

ioral data to advance research and inform the design of educational technologies.

6. Selection and Participation of Children

Participants in this study were attendees at a local after-school program,
specifically the cohort for children in grades 3-6. Prior to data collection, the
staff at the after-school program collected consent forms from parents and pro-
vided demographic information about each participant, including their age, gen-
der, and grade level. As part of the consent letter to parents, we specified that
there were no known risks to participating children, or to their privacy, if they
participated. Their name would never be associated with collected data and any
answers they provided would not be linked to them personally. Parents who con-
sented to their child’s participation were able to specify their preferred level of
data sharing (i.e., no videotaping, videotaping to be reviewed with the research
team, videotaping that may be shared for dissemination among researchers, or
videotaping that may be shared in public presentations). Researchers worked
one-on-one with participants in a room of the after-school program for 15-20
minutes apiece, starting with a verbal assent process and confirmation that the
child could cease participation at any time. After the study, each participant
was compensated with a small toy and a debriefing letter was distributed to

parents and guardians.
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Appendix A.

Task Dimension Answer
Can you estimate the height of the cylinder? Height 247
Can you estimate the combined length of the three cubes? Length 147
Can you estimate the height of the cylinder? Height 8”
Can you estimate the diameter of the sphere? Diameter 91/2
Can you estimate the height of the cylinder? Height 47
Can you estimate the length of the longest side? Length 8”
Can you estimate the diameter of the sphere? Diameter 73/47
Can you estimate the diameter of the cylinder? Diameter 25/8

Table A.8: List of measurement tasks by verbal instruction given to students.
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