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Abstract

Although interdisciplinary collaborations are becoming increasingly common,

researchers typically use data analysis methods specific to their field in order

to uncover how students learn. We present affordances of integrating theo-

ries of embodied cognition and design with machine-learning methods to study

student learning in mathematics and inform the design of embodied learning

activities. By increasing such collaborative research efforts, learning scientists

can incorporate regularization in computational models and ultimately draw

reliable conclusions to further inform theory and practice through the design of

technology-augmented learning activities. To illustrate this point, we explored

students’ conceptual understanding of measurement since limited research has

identified measurement estimation strategies that should be emphasized in class-

room instruction. By uniquely applying machine-learning methods to a small,

multimodal dataset from a study on student behavior in mathematics, we iden-

tified behavioral profiles, patterns in speech, and specific actions and gestures

that are predictive of performance. These findings may be used to inform the

design of embodied learning activities for measurement. We discuss the contri-

bution of these findings to the field of embodied design, and the affordances and
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challenges of conducting collaborative research in the learning sciences.

Keywords: Embodied Cognition, Regularization, Natural Language

Processing, Mathematics Learning

1. Introduction

Learning is complex and multifaceted, necessitating research across fields

to study learning in different contexts (e.g., formal and informal environments,

online and offline settings). On one hand, cognitive scientists have employed a

range of study designs (e.g., observational, experimental, and qualitative) and5

statistical methods on data from a variety of sources (e.g., assessments, coded

behaviors) to study learning driven by cognitive theories. On the other hand,

learning analysts have refined the use of machine learning methods to make

inferences about student learning and provide recommendations for instruction

and learning environments from large amounts of recorded data. Unique goals10

and efforts from both learning analytics and the cognitive sciences have been

informative to the learning and educational research communities; however, as

integrative theories of embodied cognition and design emerge, and more mul-

timodal data collection becomes feasible, synergistic efforts are necessary to

advance the study of learning.15

Recent work across the learning sciences has emphasized cross-disciplinary

collaborations with active exchanges of field expertise to study learning more

broadly. Namely, there has been a push to utilize the field of learning analytics

[1] as a bridge between disciplines within the learning sciences [2]. Notably, the

field of multimodal learning analytics (MMLA; e.g., [3, 4]) has demonstrated the20

advantages, and value, of integrating multimodal data with machine-learning

methods to draw inferences about learning from multiple sources collected across

disciplines within the learning sciences. Methods of MMLA often allow re-

searchers to capture more dimensions of learning processes to measure latent

constructs with greater accuracy; constructs of learning may be operationalized25

in varying ways and a greater number of measured dimensions of such constructs
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allows researchers to better separate important factors from random noise. Sim-

ilarly, more research grounded in embodied cognition [5, 6, 7, 8] and embodied

design [9, 10, 11] has resulted in new learning technologies that utilize mul-

timodal sensors for feedback and data collection. As such, combining research30

efforts between cognitive scientists and learning analysts is necessary to advance

the study of student learning and the continuous improvement of learning tech-

nologies grounded in embodied design. Such a blending of efforts, just as is

an advantage of MMLA, provides additional dimensions with which to explore

learning processes to build better definitions, measures, and interventions to35

positively impact student learning.

Currently, we advocate for collaborative efforts between the cognitive sci-

ences and learning analytics fields. We contend that to effectively garner deeper

insights into learning and contribute impactful recommendations for design, in-

terdisciplinary collaborations must be embraced. To illustrate this point, this40

project applies machine-learning methods to a relatively small dataset from a

qualitative study with two goals. First, we examine how elementary and college

students reason about measurement and display understanding through task-

related behavior. Second, we discuss the affordances and challenges of applying

machine-learning methods to observational, behavior-focused data sets, demon-45

strating how regularization can support the blending of learning theory with

learning analytics. Through this exploratory work, we aim to encourage more

collaborative research informed by theories of embodied cognition and design

by illustrating the affordances of utilizing learning theory and machine-learning

methods together to advance educational research.50

1.1. Embodiment, Mathematics Learning, and Design

Theories of embodied cognition (e.g., [5] [6] [7] [8]) share the philosophical

standpoint that thinking does not occur within a black box; rather, our phys-

ical, sensorimotor experiences in the world reflect and influence our cognitive

processes, including mathematical thinking and reasoning [5]. From these the-55

ories, mathematics learning can be modeled as a multimodal, cyclical process
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impacted by the reciprocal relationship between perception and action. Specif-

ically, Alibali and Nathan [12] argue that mathematical cognition is “based in

perception and action, and it is grounded in the physical environment.” An

individual’s learning environment shapes their perceptions, and that, in turn,60

informs their cognitive processes to act on and in their environment, then influ-

ence mathematical skills and thinking. This theoretical perspective has informed

educational research on students’ physical behaviors (i.e., actions, language, and

gestures) as they relate to mathematics reasoning and learning.

For instance, gestures are a primary example of behaviors which contribute65

to mathematics learning. Distinct from actions, which effect change on the en-

vironment, gestures are primarily hand movements that complement speech to

simulate actions and perceptual states [13] [14]. Student gestures have been

shown to improve their abilities to process new mathematics concepts [15] and

indicate their readiness to learn concepts they are unable to express verbally70

[16] [17] [18]. In addition to impacting reasoning and learning about math, ges-

tures and actions reveal cognitive processes and insights into student knowledge,

attitudes, and beliefs that may not necessarily be reflected in speech [19] [20].

More broadly, a large body of research has examined the relations between

student behavior, cognitive processes, and learning in different contexts (i.e.,75

the relations between student actions, speech, gestures) [21] [22] [23] [20] [24].

Previous research on the coupling between speech and physical movements in

communication has shown a stronger relationship between speech and gesture

than between speech and action in the context of language production and

language comprehension [23] [24]. However, this line of inquiry has not been80

extended to explore the relationship between action, speech, and gesture as

they relate to mathematics learning. Similarly, limited research has examined

which types of behavior could be most indicative of students’ understanding

and implicit cognitive processes during embodied mathematics activities.

More broadly, a large body of research has examined the relations between85

student behavior, cognitive processes, and learning in different contexts (i.e., the

relations between student actions, speech, gestures; e.g., [21, 22, 23, 20, 24]).
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Previous research on the coupling between speech and physical movements in

communication has shown a stronger relationship between speech and gesture

than between speech and action in the context of language production and90

language comprehension [23, 24]. Similarly, Congdon, Kwon, and Levine [25]

discovered an interaction between students’ conceptual understanding of mea-

surement and whether they benefited from the use of actions and gestures.

Specifically, they found that first graders with higher prior knowledge bene-

fited from the use of actions and gestures whereas students who displayed lower95

knowledge did not benefit from producing gestures. This finding suggests that

the relation between behavior types and performance on measurement tasks

may be moderated by knowledge such that instruction for novices may benefit

from focusing on productive actions rather than eliciting meaningful gestures

associated with measurement skills. However, limited research has examined100

which types of behavior could be most indicative of students’ understanding

and implicit cognitive processes across different ages beyond first grade and by

examining different behaviors at a fine-grained level of analysis.

1.1.1. Embodied Design

With a large body of research demonstrating the powerful role of the body105

and action in cognition, such as through the coupling between gesture and math-

ematical cognition, recent attention has turned to designing learning technolo-

gies that support learning and reasoning through movement-based activities.

This area of research, Embodied Design (ED), builds on theories of embod-

ied cognition to investigate how students interact with embodied learning ac-110

tivities; this research informs theories of teaching and learning as well as the

development and refinement of embodied learning activities in a bidirectional

relationship [9, 11]. ED research is growing increasingly important for evaluat-

ing and refining math learning activities and educational technologies as more

of them incorporate ED principles through perceptual and embodied experi-115

ences (e.g., [26, 27]; see Abrahamson et al. [10] for an overview). Particularly

relevant to our work, Abrahamson and colleagues [10] note that a major prin-
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ciple of ED is that of “abstr-action” which states that student actions (both

spontaneous and externally directed) can facilitate insights and understanding

of mathematical concepts. Our study utilizes an ED approach to extend re-120

search on embodiment and to inform the design of embodied learning activities

that effectively support the development of measurement skills through guided

and meaningful actions that connect to the mathematics concepts at hand.

Instructional and technology-augmented activities designed from principles of

embodiment present exciting opportunities to study student learning through125

a rich array of behavioral data (e.g., through video recordings, Kinect sensors,

joint-tracking, etc.) that would not be present in computer-driven or paper-and-

pencil activities and constitute the application of machine-learning methods to

meaningfully integrate and interpret multimodal data (e.g., [28]). One of the

largest affordances of integrating ED theory and learning analytics is the added130

regularization to models and analyses.

1.2. Regularization: An Affordance of Blending Embodied Design and Learning

Analytics

Efforts to promote interdisciplinary research across sub-fields of learning

sciences have become increasingly common as teams utilize educational tech-135

nologies to collect behavioral and sensorimotor data related to learning. As a

result, interdisciplinary teams have formed to utilize machine-learning methods

in work that is grounded in cognitive theories of embodiment and may have been

approached from a qualitative or traditional statistics approach in the past. For

instance, the Mathematics Imagery Trainer (MIT; [29, 30] ) was designed to sup-140

port students’ conceptual understanding of proportional equivalence by provid-

ing hands-on opportunities for students to develop new sensorimotor schemes.

Designed in alignment with theories of embodied cognition, research around the

technology has expanded to apply machine-learning methods to the multimodal

behavior data to identify students’ strategies while using the MIT. Pardos et145

al. [31], for example, used expert-developed labels to classify student strat-

egy in deep learning models utilized deep learning models. Similarly, Ou et al.
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[32] combined clustering and regression analyses to study student interactions

with the MIT and Tancredi and colleagues [33] applied a nonlinear analysis

model to examine changes in students’ perceptuomotor behavior to inform fu-150

ture iterations of the technology to support student learning through embodied

interactions. All of these examples from research on the MIT demonstrate how

expert knowledge was incorporated into the respective machine-learning analy-

ses to develop models of student action (e.g., the expert-generated labels utilized

in Pardos et al. [31]) and to inform analysis decisions (e.g., the selection and155

interpretation of clusters observed in Ou et al. [32]) in a way that extends be-

yond the capacities of qualitative or traditional statistics approaches to provide

new insights into student learning.

The importance of applying theory and domain knowledge in data analyses

has recently been acknowledged in learning analytics [2] [34] and we argue that160

one of the primary reasons to leverage learning theory and ED research in learn-

ing analytics is the concept of regularization. Regularization is the introduction

of knowledge or other information to better-structure a problem or improve

the generalizability of a model or approach [35]. In this way, regularization is

the process of restricting the search space of possible methods through prac-165

tices including normalization and dimensionality reduction, or by incorporating

constraints on model selection or training procedures.

The importance of applying theory and domain knowledge in data analy-

ses has recently been acknowledged in learning analytics (e.g., [2, 34]) and we

argue that one of the primary reasons to leverage learning theory and ED re-170

search in learning analytics is the concept of regularization. Regularization is

the introduction of knowledge or other information to better-structure a prob-

lem or improve the generalizability of a model or approach [35]. In this way,

regularization is the process of restricting the search space of possible meth-

ods through practices including normalization and dimensionality reduction, or175

by incorporating constraints on model selection or training procedures. As an

example, consider the common challenge in clustering analyses in choosing num-

ber of clusters by which to group the given data; in practice, this is normally
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accomplished by observing and interpreting characteristics of resulting clusters

at different cluster sizes (i.e. different values of ‘K’ in the K-means clustering180

method, for example) and selecting the number that produces the most inter-

pretable groups. This process is an example of regularization in practice, as the

decision is being made based on incorporated domain knowledge. Clustering

as a process, as well as related methods including factor analyses and principal

component analyses, are themselves examples of regularization as well. The185

choice to apply these methods emerges from a hypothesis or understanding that

latent classes exist within a given data and that some of the variance therein

is correlated within these groupings; accounting for these groupings within a

machine learning model or analysis can help improve the chances of results gen-

eralizing to new contexts by explaining variance and removing noise that may190

confound such methods.

In the fields of machine learning, statistics, and even learning analytics, the

practice of regularization is applied to reduce the chances of overfitting a model

to a given dataset; this application of regularization is often considered essential

when applying complex modeling methods, such as deep learning, to relatively195

small datasets. For example, many researchers and practitioners of machine

learning are familiar with L1 and L2 regularization methods for their common

usage within methods such as ridge regression [36] and Lasso [37]. These meth-

ods of regularization impose a cost when training a model on the magnitude

of learned coefficients with the intuition that lower-valued coefficients are more200

likely to generalize across applications; that is, these methods help to perform

feature selection within the model. Despite the wide usage of regularization in

these contexts, there is often a connotative disconnect between common methods

of regularization and the general concept of regularization. For instance, it is

important to recognize that L1 and L2 methods introduce regularization when205

training models, but there are many other ways to incorporate regularization

into an analysis.

Regularization occurs implicitly and explicitly at many stages of analysis,

typically by introducing some form of external knowledge. Adding theory and
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domain knowledge to determine appropriate modeling procedures, including210

or excluding certain variables and interactions, or applying methods of group-

ing observation samples or reducing covariate dimensionality are all manners

through which regularization is commonly introduced into an analysis. Par-

ticularly, when guided by domain knowledge, additional information can add

statistical power, strengthen resulting claims, or even allow for analyses that215

would otherwise be infeasible [32] [31]. Therefore, ED research may greatly

benefit from cross-disciplinary efforts to address impactful research questions

through the application of theory-driven learning analytics methods.

1.3. Measurement and Measurement Instruction

Perhaps even unknowingly, we apply measurement skills and concepts daily.220

Therefore, it is crucial for elementary curricula to focus on developing an under-

standing of measurement concepts as well as building strategies for application

beyond physical measurement [38]. However, students struggle to learn proce-

dural and conceptual measurement skills, taking months or years to advance

from one level to the next of learning trajectories [39] and even maintaining225

misconceptions about measurement tools and strategies through sixth grade

[40, 41]. This is problematic because measurement skills is a foundation for

more advanced critical skills in mathematics such as quantitative reasoning,

arithmetic, and proportional reasoning, one of the key concepts of the Common

Core Standards for Mathematics for middle school [42, 43, 44].230

1.4. The Current Study: Exploring Students’ Measurement Strategies

This project aims to advance research on student behavior, reasoning, and

learning by using machine-learning methods to analyze the interplay between

learners’ actions, speech, and gestures while completing measurement estima-

tion tasks. Since physical behavior during problem solving [22] and gestures235

[20] reveal implicit knowledge, we hypothesize that observing students’ physical

actions while problem solving will also reveal valuable implicit knowledge of

measurement concepts. Our goal is to use machine-learning methods to discern
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how student behavior is indicative of student performance and, consequently,

conceptual understanding in the context of measurement, in order to inform240

the design of future activities and instructional support for students to develop

procedural and conceptual measurement skills.

To do so, we use data from a larger project in which college and elementary

students estimated physical dimensions (i.e., height, width, length) of geomet-

ric objects and then explained their strategy and reasoning. The sessions were245

videotaped for further analysis on how physical and verbal behaviors, including

actions, gestures, and speech, reveal students’ understanding of measurement

and estimation. Here, we analyze all three aspects of learners’ behavior (action,

speech and gesture) to identify those that may reveal whether a student under-

stands concepts of measurement or whether they might be struggling and need250

additional support. We aim to identify different behaviors and behavioral strate-

gies indicative of knowledge to inform the future design of embodied games for

measurement. We analyze the behavior of both college and elementary students

to explore how students at different levels of knowledge and expertise approach

measurement estimation tasks and express their understanding of measurement.255

Specifically, we explore:

1. Are there common behavioral profiles among students and, if so, what do

they suggest?

2. How do students’ verbal reasoning about measurement tasks vary by age

and measurement accuracy?260

3. Do students’ actions, speech, or gestures best predict performance on mea-

surement estimation tasks?

2. Materials and Methods

2.1. Participants

We used video data collected from 51 participants. In the fall of 2018, 29265

college students (59% female; 38% male; 3% non-binary) from a northeastern

university participated in a study for course credit where they completed a series
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of measurement estimation tasks. Following a similar protocol, a second study

was conducted with 33 elementary students (ages 8-11; grades 3-6) at a local

after-school program. Of the 33 elementary students, we obtained and analyzed270

video data from 22 students for our final sample (55% female, 45% male). Of

these students, six were in third grade, ten in fourth grade, and five in fifth

grade (grade level was unreported for one student).

2.2. Procedure

A similar procedure, asking participants to complete a series of measure-275

ment tasks, was followed for both populations with the caveat that the study

was shortened for elementary school participants. The eight tasks that were

completed by both the college and the elementary students were used in the

following analyses (see Appendix 8 for the list of tasks). College students who

participated in the study were interviewed by graduate and undergraduate re-280

search assistants individually for 30 minutes. Research assistants were informed

of the purpose of each study beforehand and trained in advance on the proto-

col to follow in interviews. Data collection for the elementary student study

was completed by research assistants in 15-minute, one-on-one sessions at an

after-school program. Informed consent was obtained for all participants prior285

to beginning the study.

Participants were informed that they would be completing different mea-

surement tasks. For each task, participants were offered, though not required

to use, an unmarked 6-inch or 12-inch dowel as a tool to estimate different

dimensions (length, width, height or diameter) of geometric objects including290

prisms, spheres, and cylinders of various sizes, with dimensions ranging from

two to 24 inches. For example, participants were presented with a 24” cylinder

and asked to estimate its height. After verbally providing an answer for each

task, participants were asked to explain how they arrived at that answer and

were free to gesture during those explanations. No restrictions were placed on295

behavior during the answer explanations, allowing participants to demonstrate

and pick up objects freely. Participants did not receive any accuracy feedback
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throughout the study. Participants were unrestricted in the amount of time

they could spend on any given task and (barring participants who left the after-

school program early) all participants provided an answer for all tasks during300

the interviews.

2.3. Behavioral Measures Code Book

Participants’ video data was analyzed using a behavioral measures code book

designed to provide quantitative data about the actions, language, and ges-

tures observed by students as they complete estimation tasks and explain the305

strategies they used [45]. This code book builds off previous work on gesture

analysis with the intent to capture behavioral markers of students’ 1) actions

while problem-solving, 2) speech used to explain measurement strategy, and 3)

gestures displayed with speech, through video footage to study how different

behavior types afford different information about student knowledge and rea-310

soning. To that end, we compiled all of the coded behavior into one dataset in

which the codes distinguish whether each behavior was observed while students

were solving the task or explaining their process afterwards.

The coding book consists of 35 items ranging from binary indicators of a

present behavior to categorical items based on participants’ actions, language,315

and gestures. There are 11 features based on participants’ actions while com-

pleting each measurement estimation task. Binary features include whether the

participant: 1) used a dowel while measuring; 2) used an external tool, such as

a pen; 3) used an autonomous tool (e.g., finger); 4) used a placeholder while

measuring an object; 5) used a start-point marker to designate where they be-320

gan measuring; 6) used an end-point marker to designate where they stopped

measuring a dimension; 7) double-checked their answer; and whether the partic-

ipant 8) decomposed the problem into smaller measurement tasks. Additionally,

proximity indicated whether the participant was physically near (within a foot),

moderate (roughly 1-2 feet), or far (over two feet) from the object while mea-325

suring it. Lastly, perspective was coded as eye-level, high, or birds-eye, relative

to the position of the object. Students’ time-to-answer was also recorded as
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the duration between the task instructions and the students’ final answer (M =

25.40 seconds, SD = 22.67 seconds) prior to providing an explanation of their

problem-solving strategy.330

Transcripts of student explanations of their measurement strategy were also

recorded. These transcripts include participants’ verbal explanations of their

strategy after providing an answer for each task. These explanations range from

short phrases (e.g.,“I don’t know, I guessed”) to more explicit explanations. For

example, below is the verbal exchange between the researcher and a participant335

for one task:

Researcher: “Can you estimate the height of the cylinder?”

Participant: “Twenty-three and a half inches”

Researcher: “How did you reach that answer?”

Participant: “I had the six-inch wooden dowel and used its340

length and put my finder there to try to measure it. Then

once I got to the end I kind of approximated the length

of an inch and it wasn’t fully the length of it, it was kind

of over a bit, so I figured that was about half an inch.”

Alongside this transcript, the actions demonstrated by the participant prior345

to saying “twenty-three and a half inches” were video analyzed and coded to

depict the presence of different actions used by the participant to measure the

cylinder. Specifically, the participant used a dowel (D), used their finger to

indicate a start-point marker (S) as well as an end-point marker (E), and used

their finger as a placeholder (P) while moving the dowel along the cylinder from350

right to left to estimate its height (Figure 1).

Lastly, each gesture produced by participants was recorded and coded as

being one of five gesture types, defined based on previous work with gestures.

Deictic gestures indicate objects, people and locations through point or reaching

[46] [47]. Spatial gestures, a subset of iconic gestures, depict spatial relations355

[48]. Kinetographic gestures, another subset of iconic gestures, indicate actions

[48]. Pictographic gestures, also a subset of iconic gestures, are used to depict

a referent object [48]. Metaphoric gestures occur when an individual creates a
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Figure 1: Example Measurement Estimation Task and Coded Action Features.

physical representation of an abstract idea or concept [49] including dimensions

such as length, width, or height.360

In order to establish agreement, four coders met regularly over two months

to collaboratively code all college participant videos and discuss points of con-

troversy. Once the four coders obtained 75% agreement (3 out of 4 coders)

across 80% of items on seven given cases, the coders individually coded the re-

maining video data while continuing to meet and resolve discrepancies. For the365

elementary student data, three coders met regularly for a month to collectively

code all tasks together for full agreement on all tasks.

2.4. Dataset

The behavioral data was coded and analyzed at the task level using the

eight measurement tasks completed by participants in both the college and370

elementary sample. The final dataset included a total of 378 tasks (213 college,

165 elementary).

2.5. Approach to Analysis

To address our research questions, we applied three methodologies that lever-

age the processed data and coding labels within a machine learning-centered375

approach. While early in this work we argue for the benefits of blending ma-

chine learning and theories of embodied cognition and design, it is important to

emphasize the broadness of that argument; there is often misconception or even

disagreement as to what constitutes machine learning as opposed to other more
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traditional methods. In this work, we use this term inclusively, encompassing380

methods of deep learning, natural language processing, and nonlinear modeling

as well as more traditional methods including clustering and regression (deep

learning, after all, is just a form of regression), all where the computer is helping

further research by learning and reporting from data. In this way, many of these

methods are already being utilized to study cognition and learning, particularly385

in exploring the relationships between covariates and outcome of interested (e.g.

through the application of regression models), but it is through even further in-

tegration of these methods at different stages of the research process that they

may provide even greater benefit.

This work exemplifies this by applying a “discovery with models” approach390

[1] to identify whether students’ actions, speech, or gestures most strongly corre-

lates with observed measurement performance in the task. First, we utilized the

expert-coded labels within a k-means cluster analysis to identify behavior pro-

files that emerged across the participants. Second, we applied state-of-the-art

natural language processing techniques within another cluster analysis to iden-395

tify differences in applied verbal strategies as students explained their approach

to each measurement task. Finally, to address the third research question, we

built regression models that observe how the profiles of student behavior (ac-

tions and gestures) and verbal strategies correlate with performance on task.

These methods are described in detail below.400

2.5.1. Identifying Behavior Profiles with K-means Clustering

From the coding procedure, we derived 44 binomial variables to describe

student behavior within each task. These constructed features capture binary-

coded representations of categorical coding labels (e.g., applied strategy, the

use or non-use of tools such as a dowel) and binned representations of ordinal405

and continuous metrics recorded during the task (e.g., time to answer, number

of gestures). These variables included verbal codes of students’ explanations

as they were informative of student behavior (e.g. the use of counting) while

participating in the task.
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Initially reported by Harrison, Smith, Botelho, Ottmar and Arroyo [50],410

we applied a k -means clustering method using Jaccard distance (for binomial

variables) to identify the emerging behavior profiles of the students working on

each of the measurement tasks. While clustering, we did not include an indicator

of student age group (college or elementary) in order to identify those behaviors

that were distinctive to each group as well as those that were shared; it was415

hypothesized and expected, in this case, that some clusters would be comprised

of primarily one age group or the other, with notable findings being the cases

where there were comparable distributions within clusters indicating that the

represented behaviors were not age-dependent.

2.5.2. Examining Verbal Strategies with NLP and K-means Clustering420

To explore students’ verbal strategies, we applied several methods of natural

language processing (NLP) to the transcribed text of the student explanations

recorded in describing their approach to each task. The purpose of this analysis

is to construct measures that represent what students verbalize while partici-

pating in the study as distinctive from their actions; while verbal strategies are425

likely to be correlated with action (e.g. a student is likely to verbally reference

a tool if that tool was used), the choice of words in describing such actions may

vary, providing insights into the students’ conceptual understanding of mea-

surement that simple codings of action are not able to fully represent; this NLP

analysis, therefore, is conducted using the raw transcripts of student explana-430

tions, independent of the verbal codes described previously.

In alignment with common practices in NLP, several pre-processing steps

were applied to first “tokenize” the data (i.e. identify individual words and break

up contractions such as “couldn’t” into “could” and “n’t”) and remove overly

common stop words such as “the”, “and”, “a”, and so forth [51]. Additionally,435

we applied stemming to commonly reduce each word to its root form. We then

used a median split of task performance to observe words commonly used by

high- and low-performing students during the measurement task as shown in

Table 1.
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Most Frequently Used Words

High Performance Low Performance

inches 134 like 27

like 91 inch 24

dowel 78 count 20

two 76 one 17

one 66 measure 13

three 64 two 13

measure 60 would 12

use 59 three 12

six 54 five 11

stick 52 n’t 10

Table 1: Counts of most frequently said words by high- and low-performing students

While it is apparent that both high- and low-performing students used nu-440

meric language, the most notable difference is the prominence of “dowel” and

“stick” in the high performing group and that of “counted” in the low perform-

ing group. The position of these two words suggests that the high-performing

students used verbal strategies that referred to the measured objects while the

low-performing students more often described their approach to the task by445

counting. Further exploration revealed, unsurprisingly, that the low-performing

group consisted of mostly elementary students. This difference in verbal strat-

egy, likely aligning with their actions (i.e. the use or non-use of dowels as a

measurement tool), began to highlight different approaches to the tasks, and we

examined these differences further through a cluster analysis.450

Utilizing complex deep learning models, we applied SBERT [52], a method

designed to build semantic representations of sentences, pre-trained on a large

set of data collected from Wikipedia and BooksCorpus. Researchers have made

many such models openly available to allow others to utilize such tools without

facing the technical challenges of training these models on such large language455
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datasets. While uninterpretable by humans, the method produces a large, 768-

dimensional-feature vector that represents the full student explanations in re-

gard to their semantic meaning. The vectors are produced in such a way that

two different explanations of similar semantic meaning will be closer together

in the generated embedding space. This type of embedding is well-suited for460

a cluster analysis, as the feature vector can help identify emerging groups of

similar explanations without additional coding or labelling efforts. Similar to

our first analysis, we applied k -means clustering to the generated vectors across

all student explanations.

2.5.3. Modeling the Role of Action, Speech, and Gesture with Regression Anal-465

yses

Our final analysis sought to observe whether recorded student actions, speech,

or gestures most correlated with performance, as operationalized through stu-

dent estimation error on the measurement task illustrated in Figure 1. Along

with the features derived from the coding procedure, the students’ estimation470

errors were also calculated and used as a dependent measure of performance on

task in the analyses described in the following sections. Specifically, the magni-

tude of inverted estimation error was z-scored within task (c.f. Equation 1 such

that all comparisons can be made with respect to the mean and standard de-

viations of estimation performance rather than the raw values; in the equation,475

the ε term is added as a small offset to avoid division by 0. The purpose of

inverting the magnitude of error transforms the dependent variable for better

interpretation of results (i.e., a higher value represents a higher performance

exhibited by the student).

Inverse Error = log

(
1

|correct− estimated+ ε|

)
Z-scored Estimation Performance =

(InverseError −meantask)

SDtask

(1)

Building on the previous two analyses, a linear regression model was devel-480

oped for each set of observed student actions, speech, and gestures. The gen-
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Cluster Label Behaviors N
% of College

Students
% of Elementary

Students
Chi-Square

p-value

Low Effort
Eyeballing, no double-checking of answers,
no dowel use or end-point marker

43 8.7% 13.9% 0.102

Confused
No gestures, long answer time,
unknown verbal strategies

31 6.1% 10.3% 0.127

High Performance &
Conceptual Understanding

Proportional action and verbal strategy,
correct math reasoning, precise language

82 32.8% 4.2% <0.001

High Effort,
Low Performance

Varied long and short answer times, action-
gesture-speech mismatch, many gestures

51 6.6% 21.8% <0.001

Counters
Used counting verbal strategy, short
answer time, imprecise language

63 3.9% 32.7% <0.001

High Effort &
Experience

Long answer time, correct reasoning, double-
checked answers, estimation verbal strategy

124 41.9% 17% <0.001

Table 2: Labels, prominent behaviors, and distribution of college and elementary students

by cluster.

erated behavior features from the first analysis were divided into coding labels

aligned to the actions taken by the student (e.g., use of tools or place-marking)

and those aligning to observed gestures (e.g., use of deictic gestures, spatial

gestures, etc.). These sets of features, along with the verbal clusters generated485

in our second analysis, were used to train the three linear models predicting the

normalized estimation performance; in each model, the age group of the student

was also included as a covariate. The predictions of these models represent the

task performance that is explainable by the respective feature set. As such, we

ensembled the three different predictions within a fourth linear regression model490

and observed the predictive power of each to identify which feature set is most

correlated with student estimation performance while controlling for the other

factors.

3. Results and Discussion

3.1. Identifying Behavior Profiles with K-means Clustering495

After observing several values of “k,” we found six clusters to be most rep-

resentative, determined from a plot of the ratio of within- and across-sum-of-

squared distances of samples to cluster centers, in addition to being interpretable
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for comparisons. Table 2 describes these clusters based on students’ action, ver-

bal, and gesture strategies and distribution between age groups. Notably, some500

profiles include both age groups (i.e., low effort and confusion) while others

more distinctly comprise either elementary or college students. For instance,

the behaviors represented mostly by college students in Clusters 3 and 6 in-

clude correct mathematical reasoning and proportional strategies, which have

been considered expert strategies for length measurement in previous work [42].505

Meanwhile, elementary students were more likely to use a form of counting

(Cluster 5). This display of behavior aligns with an intermediate level called

“End-to-End Length Measurer” on a hypothetical length learning trajectory by

Samara and colleagues [44]. The students in Cluster 5 also show an incongru-

ence between their actions while estimating and their speech and gestures while510

explaining their answer, suggesting that they were unable to articulate their

problem-solving strategy (Cluster 4). Such incongruences are consistent with

prior work on speech-gesture mismatch demonstrating that students who say

one statement while gesturing in reference to another are likely on the verge of

learning a new concept but are yet to formalize their understanding through515

speech (e.g., [16, 17, 18]). We compare these behavior profiles in more detail in

a prior conference proceeding [50].

These behavior profiles may assist in identifying students with different de-

grees of conceptual knowledge about measurement based on their displayed

behavior and performance during measurement tasks in classrooms (e.g., iden-520

tifying students with high performance as opposed to students who may be iden-

tified as counters). Additionally, these clusters display common behaviors by

high-performing students which suggest strategies to encourage in instructional

support to help students develop strong measurement skills (e.g., proportional

measuring strategy, start- and end-point markers).525

Importantly, we were able to discern these behavior profiles through the use

of k-means clustering because the method allows researchers to efficiently iden-

tify groups of cases without necessitating a priori hypotheses about which fea-

tures may be the most distinguishing between groups (although such hypotheses
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Most Frequent Bi-Grams

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

feel like six inch look like eight nine point five look like one two

little bit twelve inch little bit got top four five three inch went like

went like two inch think like little bit one two length stick count like

four inch four inch kind look one inch three four like inch measured it

three four inch stick like inch that twelve two three like three right one

tried see little bit like like three four five six one two three four

circle sphere two feet one kind bit would like inch twelve inch two three

could have four time ten inch by going right here two three count sideways

go like half inch this one count way this one cause look dowel rod

kind like length dowel because like eight inch two point that two *inaudible* there

Table 3: Most frequently stated bi-grams by students in the verbal clusters.

could benefit such an approach by means of regularization). While hand-coding530

multimodal data and using descriptive statistics may allow researchers to also

piece together different profiles of student behavior, this application of ma-

chine learning lends efficiency by automating the process of determining the

appropriate number of groups and provides the opportunity to identify clusters

objectively and then use the available data to qualitatively label the different535

behavior profiles that emerge from the clusters. As a representative grouping,

clustering in this way helps reduce noise when modeling interactions and out-

comes by reducing within-group variance.

3.2. Examining Verbal Strategies with NLP and K-means Clustering

Following the same method of determining a value for “k” as was performed540

in the first analysis, seven clusters of verbal strategies emerged (Table 3). We

explored aspects of the identified groups by observing common bi-grams used by

participants within each cluster; the bi-grams are viewed by looking at pairs of

consecutive words, accounting for differing forms of words that may appear (e.g.,

“inches” and “inch” are treated as the same when counting the frequency of word545

pairs). While each of the clusters contained common bi-grams that exhibited

various use of numbers in terms of measurement (e.g., “four inch”) and evidence

of counting (e.g., “three four,” as well as several such references in Cluster 7),
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there are some other notable differences that are observed. Clusters 2, 6, and 7,

for example, both reference the use of a measurement tool (“inch stick”, “length550

stick”, and “dowel rod”). Conversely, Clusters 1, 3, and 6 exhibit frequent use

of the word “like,” suggesting the use of imprecise language and estimation.

From this, the verbal strategies appear to correspond with, unsurprisingly, the

action strategy utilized by the student, but then further distinguishes students

based on the precision of language used to describe their applied approach.555

3.3. Modeling the Role of Action, Speech, and Gesture with Regression Analyses

The learned coefficients for each model utilizing action, verbal, and gesture

features are depicted in Tables 4, 5, and 6. As can be seen in these tables, the

age group identifier is consistently a strong predictor of student performance as

was expected. In regard to the action model, only the use of a placeholder was560

found to be statistically reliable, and correlated positively with higher student

performance. For the verbal model, two clusters were found to be statistically

reliable; these two, from the comparison illustrated in Table 3, appear to high-

light subtle differences in the precision of terms used in the measurement task.

Beyond these subtle differences, however, it is difficult to draw further meaning-565

ful conclusions or interpretations pertaining to the resulting clusters of verbal

strategy. This aspect of the analysis is further discussed as a challenge and lim-

itation of the analysis in Section 4.2. Finally, observing the gestures model, the

use of spatial and kinetographic gestures reliably predict student performance.

Finally, the results of the ensemble model, observing student estimation570

performance in regard to the combined models of action, verbal strategy, and

gesture are reported in Table 7. As seen in that table, all factors were statis-

tically reliable predictors of student performance, with the verbal and action

models being the most predictive. This result suggests that these aspects are

most correlated with our measure of student performance.575
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Variable β B 95% CI t statistic p value

Intercept -0.153 [-0.480, 0.174] -0.915 0.361

Elementary Student -0.305 -0.609 [-0.813, -0.405] -5.851 <0.001 ***

Use Dowel 0.099 0.288 [-0.051, 0.627] 1.664 0.097

Use External Tool 0.025 0.123 [-0.368, 0.615] 0.492 0.623

Use Autonomous Tool -0.060 -0.369 [-0.953, 0.215] -1.237 0.217

Use Placeholder 0.120 0.273 [0.030, 0.517] 2.201 0.028 *

Mark Start Point 0.061 0.138 [-0.133, 0.409] 0.997 0.320

Mark End Point -0.047 -0.094 [-0.312, 0.125] -0.842 0.400

Use Perspective 0.074 0.137 [-0.048, 0.322] 1.452 0.147

Use Proximity -0.092 -0.283 [-0.582, 0.016] -1.852 0.065

Double Check Estimate -0.044 -0.117 [-0.374, 0.141] -0.888 0.375

Use Decomposition -0.011 -0.039 [-0.370, 0.292] -0.231 0.818

Table 4: Features Used in Action Model

4. Implications and Contributions

We explored how students of varying ages and levels of experience approach

and reason about measurement estimation tasks in order to identify successful

measurement strategies through three distinct applications of machine-learning

methods. We found that students’ actions, speech, and gestures are all related580

to performance on measurement tasks. Specifically, using a placeholder while

measuring, verbally articulating the use of a tool and units of measurement, and

using spatial and kinetographic gestures were all behaviors of high-performing

students. Together, these findings contribute to the body of research on student

behavior and mathematics learning. The findings also illustrate the affordances585

of leveraging theories of embodiment and learning analytics together to ad-

vance our understanding of student learning and the development of learning

technologies. In the following sections, we draw on examples and findings from

our study to discuss affordances provided, and challenges faced, by using col-

laborative efforts to study student reasoning and learning through multimodal590

data.
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Variable β B 95% CI t statistic p value

Intercept 0.123 [-0.120, 0.366] 0.994 0.321

Elementary Student -0.304 -0.607 [-0.805, -0.409] -5.998 <0.001 ***

Verbal Cluster 2 0.892 0.426 [0.134, 0.718] 2.862 0.004 **

Verbal Cluster 3 -0.072 -0.144 [-0.473, 0.184] -0.861 0.390

Verbal Cluster 4 0.658 0.314 [-0.039, 0.667] 1.746 0.082

Verbal Cluster 5 0.021 0.042 [-0.315, 0.399] 0.228 0.820

Verbal Cluster 6 0.836 0.399 [0.005, 0.793] 1.985 0.048 *

Verbal Cluster 7 -0.039 -0.078 [-0.398, 0.242] -0.478 0.633

Table 5: Clusters Identified in Verbal Model

Variable β B 95% CI t statistic p value

Intercept -0.084 [-0.368, 0.199] -0.582 0.561

Elementary Student -0.365 -0.729 [-0.920, -0.538] -7.48 <0.001 ***

Gesture: Spatial 0.192 0.500 [0.168, 0.832] 2.949 0.003 **

Gesture: Kinetographic 0.206 0.574 [0.229, 0.919] 3.264 0.001 **

Gesture: Deictic 0.110 0.295 [-0.050, 0.640] 1.677 0.094

Gesture: Metaphoric 0.109 0.408 [-0.012, 0.828] 1.903 0.058

Gesture: Pictographic 0.084 0.656 [-0.113, 1.426] 1.672 0.095

Table 6: Features Used in Gesture Model

4.1. Affordances of Blending Embodied Design and Learning Analytics

From this project, we have identified two overarching affordances of blend-

ing ED principles with learning analytics. From a methodological standpoint,

leveraging theory during data analysis incorporates regularization to promote595

the generalizability of results. More broadly, new approaches to study student

learning, behavior, and strategy advance theories of embodiment to ultimately

inform the development of educational technologies grounded in ED principles.

The blending of ED with LA, through the application of machine learning

methods, provided us with the tools and measures necessary to operational-600

ize and explore student gesture, verbal strategy, and action as they relate to

measures of embodied cognition. While each of these abstract constructs are

traditionally described by multiple measures, it is through machine learning that
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Variable β B 95% CI t statistic p value

Intercept -0.391 [-0.629, -0.152] -3.219 0.001 **

Elementary Student 0.449 0.895 [0.387, 1.403] 3.465 <0.001 ***

Gesture Model 0.260 0.645 [0.124, 1.167] 2.434 0.015 *

Verbal Model 0.337 0.793 [0.380, 1.206] 3.776 <0.001 ***

Action Model 0.343 0.799 [0.401, 1.197] 3.949 <0.001 ***

Table 7: The ensemble model illustrating the relationship between action, verbal strategy,

and gesture with respect to z-scored estimation performance.

we were ultimately able to represent each as a single measure to explore their

relationships independently (e.g. we have a single numerical-valued represen-605

tation of each construct of gesture, verbal strategy, and action as they pertain

to the embodied cognition task); without the use of machine learning for this

task, representing these constructs becomes a challenge that may require many

additional hours of coding and validation to construct similar measures. In

this example, theory was used as a means of selecting and applying the machine610

learning methods, but the resulting models themselves were then used to further

our understanding of these in the context of a higher order construct operational-

ized through student performance on the measurement task; conversely, using a

strictly data-driven approach without the use of domain knowledge would have

made it difficult to extract and effectively interpret the relationships between615

these represented constructs (perhaps we could build a better model to predict

estimation error within the task, but the blending of modeling approaches with

domain knowledge allowed us to learn more from the process). As introduced

earlier, this exemplifies a “discovery with models” approach [1], but is just one

example of how the blending of ED and LA may help study these and similar620

constructs.

4.1.1. Methodological Contributions

Utilizing learning analytics approaches with learning theory to study stu-

dent behavior can help incorporate regularization to increase the generalization
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of our findings to new contexts. This project is unique in our attempt to use a625

dataset from a small, in-person study with limited cases and features, demon-

strating the ability to utilize machine learning techniques when paired with

learning theory in order to deeply explore data on student learning. This affor-

dance is exemplified by the clustering methods applied in the first and second

analyses. These clusters provide the means to describe emerging groupings and630

trends in the data, similar to the work of Ou et al. [32] using a different cluster-

ing method. The dimensionality reduction provided by the methods not only

increase our ability to interpret results and identify prominent groupings, but

also help to reduce the impact of small variations in the data that may detract

from the ability to generalize our findings to new populations. For instance,635

as it is unlikely that future students performing these tasks will use the same

combination of words to describe their strategy, the language used by these new

populations can still be mapped onto the categories of verbal strategies found

in this work; with these, we would also be able to assess how well our results

generalize based, for example, on if there are future explanations that do not640

map to any of the identified groupings.

Aside from our cluster analyses, the simple normalization performed in our

final analysis also incorporates regularization and promotes the generalization of

our results. The normalization of measurement performance, as in Equation 1,

helps to remove student- and task-level dependencies that may differ in new645

populations or different tasks. These simple methods collectively improve the

strength of our conclusions and improve the chances of our findings to generalize

across datasets.

4.1.2. Theoretical Contributions

Leveraging theories of embodiment alongside learning analytics can advance650

learning theory as well as inform classroom instruction and the design of ed-

ucational technologies in a cyclical relationship. We applied machine-learning

methods to both substantiate previous findings and extend previous related

work on the study of student behavior and gestures in mathematics, as well as
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inform the further refinement of existing embodied games. First, the behavior655

profiles that emerged in our first analysis coincided with successful measurement

strategies (i.e., the use of proportional relationships) evidenced in previous re-

search by Ayan and Isikal [42]. To extend our knowledge about behaviors that

exhibit different levels of conceptual understanding, the NLP techniques re-

vealed differences in the use of mathematically precise words and phrases used660

by high-performing students. Finally, through a “discovery of models” approach

[1], utilizing predictive models derived from each set of student actions, speech,

and gestures, we found that actions and speech are most predictive of perfor-

mance on measurement tasks, extending previous work on the relation between

students’ actions, speech, and gestures as they pertain to other domains (e.g.665

[23, 24]). [24]. The ensemble model revealed that student actions and speech

are more indicative of performance than gesture. These results extend the find-

ings of Congdon et al. [19] who found that producing actions, but not gestures,

were beneficial to novice learners in first grade to show a similar pattern as we

observe behaviors from elementary and college students.670

These findings have implications for the design of embodied learning ac-

tivities for measurement; namely, to emphasize the development of students’

actions and strategies for measurement as well as their ability to articulate

their measurement process. For instance, we found that the use of a place-

holder is positively related to performance, we infer that this measurement675

strategy and the underlying concept of tiling (i.e., that measuring should be

done successively without gaps between units; [53]) should be emphasized more

in elementary instruction through the design of embodied activities. For exam-

ple, technology-driven measurement activities should implement instruction and

feedback geared towards the appropriate use of a placeholder to assist students680

during hands-on practice.

Additionally, while previous research has shown that dynamic gestures sup-

port mathematical reasoning in geometry [54], we show that spatial and kine-

tographic gestures specifically are predictive of student performance in a new

context, measurement. To the best of our knowledge, this is the first project to685
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provide evidence that spatial and kinetographic gestures predict performance for

measurement tasks and may be more indicative of higher understanding among

students as opposed to other gesture types.

Moving forward, these findings can be used to inform the design of embodied

learning activities targeting elementary-level measurement skills. The produc-690

tive behaviors observed (e.g., use of a placeholder and explicit language) can be

encouraged through instructional prompts and unproductive strategies can be

anticipated in hints and immediate feedback features. Conversely, spatial and

kinetographic gestures may be useful in instructional support to provide stu-

dents. Ultimately, these findings can be used to encourage students to practice695

and mirror productive behaviors which are conducive to learning.

4.2. Challenges and Limitations

Alongside the affordances of considering the application of machine-learning

methods to cognitive science data, we acknowledge that there remain challenges

and limitations to doing so. Most notably, while applying machine-learning700

methods to this data allows us a fine-grained perspective on the relations be-

tween different behaviors and performance on measurement tasks, we are still

unable to draw any conclusions about causality. Specifically, it is unclear from

one-session interviews whether high achievement prompts students to apply

productive strategies or whether applying productive strategies leads to higher705

achievement on such tasks. Moving forward, it would be prudent to consider

including separate measures of conceptual understanding about measurement

to determine whether high performance is a prerequisite to or outcome of using

productive measurement strategies to inform the design of instructional activi-

ties and support.710

Another prominent challenge is identifying the appropriate and efficient

methods for an analysis. For example, we sought to identify whether action,

verbal, or gesture strategy most correlated with student performance, and thus

a simple linear model is sufficient to answer that question. Similarly, represent-

ing the complexity of student speech and language required a more complex,715
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deep-learning approach to effectively capture verbal strategies. Linear regres-

sions are arguably insufficient here as they would not be able to capture the

syntactic and semantic meaning of words without extensive feature engineering

that is afforded inherently by the utilized SBERT model [52]. In this way, it

is important to plan the intended analyses around the posed research questions720

both to avoid potential “fishing” and also to consider those methods that best

utilize the collected data and formulated learning theory.

The careful selection of methods before an analysis requires an understanding

of such methods in terms of affordances and limitations. A notable challenge

in applying many machine-learning methods is in the interpretation of results,725

though this may not always be a challenge that jeopardizes a result. The verbal

strategy model again exemplifies this challenge. The resulting verbal strategy

clusters, while representing different manners in which students described their

approach to each task, do not clearly reveal how each grouping differs from

others aside from the limited observations that can be made in Table 3; we were730

hesitant, for example, to label these clusters with a descriptive title due to the

uncertainty that remained from these observations. We are able to identify in

Table 5 that two of the verbal strategy clusters exhibit statistical reliability in

their relationship with student measurement performance, and we are able to

further identify in Table 7 that applied verbal strategy as a whole is reliably735

correlated with student performance, but these analyses are currently unable

to describe the explanations as a whole within these clusters. For the current

study, this is acceptable, as our research questions do not rely on our ability to

fully interpret these groupings, but this certainly raises new research questions

that should be addressed in future works.740

Additionally, collaborations merging theories of embodiment with learning

analytics should start at the initial phase of research. Like this project, re-

searchers studying student behavior typically design studies in line with their

research questions and planned analyses, such as small classroom studies or in-

person interviews. Consequently, these study designs may perpetuate datasets745

that are not appropriate for many machine-learning methods. In that case, there
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may be limited room for exploratory collaborative efforts and the application of

machine-learning methods. Instead, by establishing collaborative efforts from

the initial phases of projects, researchers may be able to pose a wider range of

research questions and appropriately design studies and methods to collect data750

appropriate for a wider range of analyses.

Lastly, and possibly the greatest challenge, is finding the necessary resources

and support to make such collaborations feasible and valued. Many programs

do not explicitly offer interdisciplinary training and those that do may still face

challenges in effecting interdisciplinary collaborations. For instance, scholars755

with different backgrounds may have to reconcile field-based differences in per-

spectives (e.g., dissemination venues), language (e.g., “dummy” versus “one-hot

encoded” variables), and work styles (e.g., programming language) in order to

form successful partnerships and may benefit from resources or workshops to

provide guidance for establishing new project teams. The effort necessary to760

reconcile these differences make some interdisciplinary collaborations seem less

worthwhile.

4.3. Recommendations for the Field

Researchers have already advocated for more theory-informed applications

of machine-learning methods and collaborations to support active exchange of765

knowledge and skills, particularly in learning analytics [2] [34] and between

learning analytics and educational data mining (e.g., [1]). We advocate to ex-

tend this effort beyond the field of learning analytics more broadly into the

learning sciences, particularly by encouraging support and training within pro-

grams and departments to provide emerging scholars with the skills to work in770

interdisciplinary research teams.

Echoing the charge for support at the doctoral level by Fischer and col-

leagues [55], we agree that more value should be placed on team science rather

than individual accomplishments in doctoral training with opportunities to de-

velop cross-disciplinary skills. Program-wide seminars, workshops, and special775

topics research groups could all be used to intentionally promote data analysis
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skills and start a dialogue about how theories of embodied cognition can impact

our design, development and evaluation of educational technologies. To support

this reconstruction of graduate training, pathways for interdisciplinary collabo-

rations within or between programs should be established to provide emerging780

scholars with opportunities to forge new projects together and bring new per-

spectives to research on learning and the design, development, and evaluation

of educational technologies.

Broadly, we implore learning scientists to consider the potential benefits of

cross-disciplinary collaborations by blending theories of embodied cognition with785

learning analytics to pose new research questions and impact future research

directions. For instance, cross-disciplinary collaborations can ease the histori-

cal tension between explanation and prediction research among social scientists

[56] by affording more predictive methods. Likewise, learning analytics research

should consider how domain knowledge may strengthen not only novel methods790

themselves, but also lead to more impactful outcomes that may inform method-

ologies in ED research. Overall, we suggest providing pathways for predoctoral

scholars to engage in interdisciplinary work and leveraging collaborations to ul-

timately advance learning theory and inform the design of learning technologies

by blending theories of embodied cognition and learning analytics.795

5. Conclusion

In this paper, we applied clustering, natural language processing, and gen-

eral linear modeling to a small yet rich dataset detailing student behaviors and

speech during measurement tasks to identify successful measurement strategies.

Our findings revealed profiles of student behavior and speech that may indicate800

different levels of conceptual knowledge as well as evidence that spatial and kine-

tographic gestures predict performance on measurement tasks. These findings

advance research on gestures in mathematics learning; further, these findings

can inform instructional support and technology-augmented embodied measure-

ment activities that scaffold student learning through instructional support and805

31



feedback targeting prominent behaviors and strategies identified through our

analyses. Additionally, we highlight the benefits of interdisciplinary collabora-

tions to advance the field of learning sciences and the development of effective

educational technologies grounded in ED principles. Namely, we contend that

leveraging theories of embodiment and machine-learning methods affords added810

regularization in data analysis to increase the reliability and generalizability

of findings. Moving forward, we encourage more collaborations and predoctoral

training opportunities that leverage theoretical perspectives on embodiment and

machine-learning methods to study student learning with a multitude of behav-

ioral data to advance research and inform the design of educational technologies.815

6. Selection and Participation of Children

Participants in this study were attendees at a local after-school program,

specifically the cohort for children in grades 3-6. Prior to data collection, the

staff at the after-school program collected consent forms from parents and pro-

vided demographic information about each participant, including their age, gen-820

der, and grade level. As part of the consent letter to parents, we specified that

there were no known risks to participating children, or to their privacy, if they

participated. Their name would never be associated with collected data and any

answers they provided would not be linked to them personally. Parents who con-

sented to their child’s participation were able to specify their preferred level of825

data sharing (i.e., no videotaping, videotaping to be reviewed with the research

team, videotaping that may be shared for dissemination among researchers, or

videotaping that may be shared in public presentations). Researchers worked

one-on-one with participants in a room of the after-school program for 15-20

minutes apiece, starting with a verbal assent process and confirmation that the830

child could cease participation at any time. After the study, each participant

was compensated with a small toy and a debriefing letter was distributed to

parents and guardians.
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Appendix A.

Task Dimension Answer

Can you estimate the height of the cylinder? Height 24”

Can you estimate the combined length of the three cubes? Length 14”

Can you estimate the height of the cylinder? Height 8”

Can you estimate the diameter of the sphere? Diameter 9 1/2”

Can you estimate the height of the cylinder? Height 4”

Can you estimate the length of the longest side? Length 8”

Can you estimate the diameter of the sphere? Diameter 7 3/4”

Can you estimate the diameter of the cylinder? Diameter 2 5/8”

Table A.8: List of measurement tasks by verbal instruction given to students.
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