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Recent studies showed that working with neuroimage data collected from different
research facilities or locations may incur additional source dependency, affecting the
overall statistical power. This problem can be mitigated with data harmonization
approaches. Recently, the ComBat method has become commonly adopted for various
neuroimage modalities. While open neuroimaging datasets are becoming more common,
a substantial amount of data is still unable to be shared for various reasons. In addition,
current approaches require moving all the data to a central location, which requires
additional resources and creates redundant copies of the same datasets. To address
these issues, we propose a decentralized harmonization approach that does not create
redundant copies of the original datasets and performs remote operations on the
datasets separately without sharing any individual subject data, ensuring a certain level
of privacy and reducing regulatory hurdles. We proposed a novel approach called
“Decentralized ComBat” which can harmonize datasets separately without combining
the datasets. We tested our model by harmonizing functional network connectivity
datasets from two traumatic brain injury studies in a decentralized way. Also, we used
simulations to analyze the performance and scalability of our model when the number
of data collection sites increases. We compare the output with centralized ComBat and
show that the proposed approach produces similar results, increasing the sensitivity of
the functional network connectivity analysis and validating our approach. Simulations
show that our model can be easily scaled to many more datasets based on the
requirement. In sum, we believe this provides a powerful tool, further complementing
open data and allowing for integrating public and private datasets.

Keywords: harmonization, federated learning, neuroimage analysis, functional connectivity, brain network

INTRODUCTION

The significance of network neuroscience has reached a global scale with a growing number of
large-scale projects related to impactful topics such as brain disease, brain development, brain
aging, and brain-computer interfacing (1-3). Maximizing the potential of these large projects to
reach their goal depends on the data at one’s disposal, which urges global collaboration, knowledge,
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and data sharing. These collaborative approaches include
aggregating data collection to a central repository or data sharing
based on data usage agreements (DUA) (4, 5). Such an approach
has several limitations to consider. The first concern is the policy
and proprietary restrictions, or data de-identification issues may
be raised. Such concerns are time-consuming and take months
to resolve.

Moreover, the processing of DUA can consume a large
amount of time. Another significant concern is the volume of
the data collected from multiple sites because merging large
neuroimage datasets in a single location consumes redundant
space. Additionally, computational resources become costly
when the volume of data grows. Also, sharing the data only
creates redundant copies around the world. Thus, it is not always
an optimal approach considering the constraints on available
resources. While open neuroimage datasets are becoming more
common, some data cannot be transferred or shared directly
due to confidentiality or regulatory constraints. These issues
led to a paradigm shift toward decentralized data-sharing (6,
7) which is particularly true with widespread efforts in the
neuroimage community to maximize study power through
multi-site investigation, data sharing, and team science.

With the availability of neuroimage data at multiple sites
worldwide, an important goal is to jointly analyze geographically
dispersed data to increase statistical power and test against the
common biological hypothesis. There is an issue with combining
the multi-site neuroimage data because each data at a different
location introduces additional non-biological variability. These
variabilities are closely related to image acquisition protocol
and scanner parameters categorized as “site effects” (8). These
site effects can reduce statistical power or lead to erroneous
conclusions. Harmonization techniques aim to combine datasets
generated from different sites, e.g., hospitals, research facilities, or
laboratories, reducing the site effects in the combined dataset (9).

One popular harmonization technique is known as ComBat
(10). The ComBat technique was first introduced in genomics
to reduce batch effects and non-biological variability due to
pooling batches of sample genes from various laboratories.
Later, it was applied to diffusion tensor imaging (DTI) (9),
cortical thickness data (11), functional connectivity measures
(12), Dynamic Functional Network Connectivity (13). However,
the current ComBat model does not address data access
problems, including geographical and confidentiality issues,
which motivate us to develop a decentralized model that
works in a distributed environment. This manuscript presents
a decentralized harmonization model called “Decentralized
ComBat (DC-ComBat)”.

For several years, our team has been working on a
web-based framework to analyze data stored in multiple
locations without pooling named Collaborative Informatics
and Neuroimaging Suite Toolkit for Anonymous Computation
(COINSTAC) (14). This framework also preserves the privacy
of the data as there is no data pooling involved and all the
communication between the sites is encrypted. COINSTAC uses
a message-passing infrastructure to implement decentralized
algorithms to work with geographically scattered datasets.
We can develop a decentralized algorithm that returns

similar results on collected datasets with this framework.
This framework preserves dataset privacy by not creating
additional copies. Also, this framework can be scaled easily
when the number of sites or datasets increases. There are
several decentralized algorithms already implemented using
COINSTAC. Some of the decentralized computation proposed
earlier include decentralized regression (14), decentralized
temporal independent component analysis (15), decentralized
independent vector analysis (16), decentralized neural networks
(17), decentralized data ICA (18), decentralized PCA (19), and
many more. Some of these algorithms can be used jointly with
our decentralized harmonization approach in the COINSTAC for
creating different pipelines. We found this framework suitable for
our decentralized approach based on the benefits.

METHODS

ComBat can be described as follows if the data is collected from
k different sites where each site has n; scans wherei =1, 2, ...,
k. Each harmonized feature y indexed by v of scan j at site i, the
value yjjv can be defined as:

Yijo=0y+XiiBy +Vivt8ivEijy (1)

In the above equation ay represents the overall mean value at
feature v. X represents the biological variants, f, represents
the regression coeflicient for X at feature v. The error term
¢ is assumed to follow a Gaussian distribution N(0,02). In
Equation (1) &;, and y;, represents the multiplicative and
additive parameters correcting for site effects at site i for feature
v. The model aims to reduce the unwanted variance using the
Empirical Bayes approach. The final distribution model can be
achieved by:

comBat__Yijv —%v _Xi]ﬂv —Viv
yijl) - ~
(Siv

+én+XiiBy )

The model can be divided into three parts. The first part is the
standardization of data. The Decentralized regression algorithm
available in COINSTAC (14) was used to calculate the initial
B-coefficients. We calculated the local mean and local variance
based on B-coefficients in later stages. After standardization,
every data will have similar overall mean and variance. The
following equation calculates the standardization data:

Yijy _&f —XiiBy 3)

Zijy = z
The second part is the estimation of batch effect using parametric
empirical priors. The ComBat assumes that the standardized
data Z;jy follows the standard distribution form, Zjjy, ~
N()/i,v, 6fv). It is also mentioned that parametric forms of
the prior distributions on the batch effect parameters, yiy , va
follows a normal distribution and Inverse gamma distribution,

respectively. Defined by:

Yiv ™~ N(Yi, 7:,-2) and va ~ Inverse Gamma (1;,6;) (4)
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The hyperparameters yi,tiz,)»i,ei are estimated empirically
from the standardized data. Details of the derivation of the
estimators are explained in the Supplementary Material of the
original ComBat paper (8). Based on the Empirical Bayes
estimators jy, (va can be defined by the posteriors means
as followings:

2

~ *__ 0.4 1 I ¥
oAy 6 (2 )
yivzziz;andfsiv: P o* (S)
’ mit; +8, ’ it +8,

Finally, data is adjusted based on the estimated site parameters
y;v and 812i

The described ComBat model does not address working
in a decentralized environment. We proposed a decentralized
model that can operate on separate datasets and produce
identical results to the original model. We implemented
the decentralized ComBat (DC-ComBat) using a platform
COINSTAC. The architecture of DC-ComBat- is discussed in the
following section.

DECENTRALIZED COMBAT MODEL
OVERVIEW

In our decentralized environment, we have two types of nodes:
The first type is the aggregator node, also known as the remote
node which does not hold any data and acts as a storage of
intermediate results and performs simple operations such as
aggregation. The second node type is the local/regional node
where datasets are located. These local nodes represent the
participants who are willing to collaboratively. With the help
of COINSTAC, we created a network where the regional nodes
can be connected to the remote node and perform different
operations synchronously.

For harmonizing distributed datasets located at different
locations, we first constructed a network prototype shown in
Figure 1 where all the participating local nodes connect with
the remote node. Then each participating local node shares
the local weights and summary statistics with the remote node
via the secured message-passing mechanism [Figure 1(1)]. All
intermediate communication is encrypted and sent over TLS
(Transport Layer Security) provided by COINSTAC (14). The
remote node calculates the grand mean and grand variance
by aggregating the regional nodes’ values in Figure 1(2) and
broadcasting the grand mean and grand variance to all local
nodes in Figure 1(3). After receiving the grand mean and
grand variance information from the remote node, each node
performs data standardization on the dataset located at each node
[Figure 1(4)]. Following the data standardization, estimation
of site effect using parametric empirical priors is done on
each site. Moreover, each site can adjust and harmonize the
local data concerning the other participating site nodes based
on the estimated site parameters. The pseudo algorithm is
given below:

Algorithm:

Step1: Initialize the central node and site nodes.

Step2: Collect the initial summary (number of samples) of the site
nodes in the central node.

Step3: Calculate the B coefficient for each site using the
decentralized regression approach available in COINSTAC.

Step4: Forsite nodei=1,2,3.... Ndo

1. calculate the local mean across the features using the local
B coefficients

2. calculate the local variance across the feature using the local
B coefficients

3. send the local mean and variance to the aggregator node.
4. end for loop.

Step5: compute grand mean and grand variance and update
each site node.

Step6: For site nodei=1,2,3.... Ndo

1. standardized the data w.r.t the grand mean and
grand variance.

2. estimate the site parameters y;,'and B,ZV
3. Adjust the data accordingly.

4. Save the adjusted data.

5. end for loop.

DATA COLLECTION AND
PRE-PROCESSING

We used two sets of data for experimenting with our
decentralized ComBat model. The first set consists of static FNC
(functional network connectivity) data collected from two studies
on mild traumatic brain injuries (mTBI) (20). We wanted to
observe the performance of our model when it is applied to FNC
data as from the previous study presented in (10), which showed
that the ComBat model performs well on removing site effects
from FNC datasets. The second set consists of simulated data
generated using a connectivity template. The second dataset was
used to measure the performance and scalability of our model
when the number of sources increases. We tried to simulate
a real-world situation where datasets are located at different
locations across the world can be harmonized simultaneously.
In the following sections, we will describe how these two sets of
datasets were collected and pre-processed.

Dataset 1

This dataset consists of data collected from two cohorts. The first
cohort was collected from New Mexico (NM). All participants
provided informed consent according to the Declaration of
Helsinki and the institutional review board guidelines at the
University of New Mexico. The second cohort was collected
from the Netherlands Europe (EU). The local Medical Ethics
Committee of the UMCG approved the data collection protocol,
and every participant provided written informed consent. All
procedures were conducted following the declaration of Helsinki.
This data was also used in other studies related to dynamic
functional connectivity (20) and brain modalities (21). Data pre-
processing and analysis were the same as described in the earlier
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2, Calculate the Grand
Mean and variance
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FIGURE 1 | Gives the overall picture of the decentralized ComBat algorithm and intra-communication between nodes.

3. Updates grand mean
and grand variance at each
node

¢

4. Harmonized the data using the updated
information

research publication (22); therefore, we present a brief outline of
the whole process.

New Mexico Cohort Imaging Protocol

In the New Mexico cohort, the total number of participants
was 96, among which 48 were mTBI patients and 48 were
healthy control (HC). The subjects had a mean age of 27.3
£ 9.0 years. The scanner used in the New Mexico cohort
was a 3 Tesla Siemens TIM Trio scanner. Every participant
had gone through 5min resting state-run. TR (Repetition
Time) = 2,000ms; TE (Time of Echo) = 29ms; flip angle
= 75°% FOV (Field of View) = 240 mm; matrix size = 64
x 64. After removing the first five images due to the T1
equilibrium effect, the final 145 images were selected next
step analysis.

Netherland (European) Cohort Imaging Protocol

In the case of the European cohort total of 74 participants were
studied. There were 54 patients with mTBI and 20 Healthy
controls among the participants. The mean age was 37, ranging
from 19 to 64. The 3.0 T Philips Integra MRI scanner was used
to collect the brain images for this group of participants. The
duration was 10 min for the Netherlands cohort. TR (Repetition
Time) = 2,000 ms; TE (Time of Echo) = 20 ms; flip angle = 8°;
FOV (Field of View) = 224 x 224 x 136.5 mm.

fMRI Pre-processing

First, the fMRI data underwent Statistical Parametric Mapping
(SPM) (23) and was transformed into Montreal Neurological
Institute standard space. AFNI v17.1.03 software was used
for de-spiking. The time courses were made orthogonal to
(1) linear, quadratic, and cubic trends, (2) 6 realignment
parameters, (3) derivatives of realignment parameters.
Data collected from the NM participants were used in the
group independent component analysis (ICA) (24) using
the GIFT software (25) to gather a set of functionally

independent components. For Netherland cohort data, the
group information guided ICA (26) (GIGICA) algorithm
was used to match the 48 selected components. Finally,
discarding the artifactual components, only 48 noise-free
components were chosen as resting-state networks (RSNs) for
further study.

Dataset 2

For this set, we generated data using computer simulation. The
primary purpose of using a simulated dataset was to observe
the scalability and performance of our model. Additionally, we
used simulated data because the original ComBat model assumes
that two site parameters: multiplicative and additive parameters
drawn from the dataset will follow inverse-gamma and gaussian
distribution. However, in practice such an assumption may
not always hold. That is why we created a simulation
where datasets may follow some other distribution, e.g., sub-
gaussian distribution, super-Gaussian distribution, or a skewed
distribution for additive parameter and Poisson, Rayleigh, or
Weibull distribution for multiplicative parameter. To generate
the datasets, we used an FNC (functional network connectivity)
template based on an FNC matrix from a previous study (27)
as the ground truth. We created various datasets by randomly
adding site variance complying with the assumed normal and
inverse gamma distributions. We fixed the Gaussian distribution
parameters with the mean at 0.05 and the standard deviation at
0.3. For the inverse gamma distribution, we set the mean at 0.3
and the standard deviation at 0.5. We used this dataset to observe
the performance of the DC-ComBat model.

EXPERIMENT SETUP 1 AND
INVESTIGATION

For this experiment, we keep two datasets collected from
two research facilities into two local nodes. We applied our
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model DC-ComBat to harmonize the datasets. To observe
the harmonization performance, we perform two different
assessments on the dataset. First, we compare the site differences
before and after harmonization. So, we took the difference
between the functional connectivity values of New Mexico (NM)
and European (EU) sites, resulting in 1,128 t-values. Instead of
showing vectors, we converted them into a matrix where rows
and columns represent each of the 48 ICA components and
heatmap indicates the strength of the site difference. Figure 2
shows the site difference before and after harmonization. There
were a high number of significant site differences before
harmonization, observed in Figure 2 (left). These indicate that
site information was adding non-biological variance in the
datasets, which is undesirable. After harmonization, we observed
from Figure 2 (right) that all the significant site differences were
removed from the data. Removal of site differences indicates a
high performance of DC-ComBat.

Later, we calculate the group difference (mTBI vs. HC) for
the second assessment before and after harmonization. We
first combined the datasets and calculated the group difference
between participant groups ( mTBI and Healthy Controls) before
and after harmonization. Again, based on the t-values, we plot
the heatmap shown in Figure 3. Before harmonization, there
were 128 significant t-values (p < 0.05) shown in Figure 3 (left);
however, the number increased to 159 significant ¢-values when
datasets were harmonized in Figure 3 (right). We observed that
after harmonization, higher connectivity was observed in the
TBI group in general. We observed the increase in connectivity
because due to harmonization, site effects were posteriorly
removed by DC-ComBat.

Furthermore, by comparing the output of the proposed
decentralized ComBat with centralized ComBat, found that the
maximum difference was 3.06699¢~ !°. This very slight difference
in the output was within the order of magnitude of the machine
precision error. We conclude there was no effective difference
between ComBat and DC-ComBat.

EXPERIMENT 2 AND INVESTIGATION

For the second experiment, we used simulation to generate data
based on a functional connectivity template used as ground
truth for further analysis (27). We had selected four probability
distributions: Rayleigh, Weibull, Poisson, and inverse-gamma
to simulate the multiplicative parameter and added noise to
the ground truth. Similarly, we selected Gaussian, Sub-gaussian,
Right-skewed, and Left-skewed distributions for simulating
additive site parameters and added noise to the ground truth.
The selection of these probability distributions was random
and without any prior knowledge. After adding the noise to
the ground truth, we created several datasets. We had created
250 datasets, each with 100 participants, random patients, and
healthy controls. In the next step, we used COINSTAC-simulator
to set the environment where each local node will contain a single
dataset. Finally, we run our DC-ComBat algorithm to harmonize
the datasets. We repeated the experiment by incrementing the
number of sites and calculating the percentage of site effects

removed with respect to the ground truth. The whole process
was repeated four times by generating data with different
distributions. We finally generated four plots in Figures 4, 5.

The primary purpose of this experiment was to evaluate the
consistency of our model when the number of sites increases and
randomness is introduced. From Figures 4, 5, we observed that
our model performance was not affected when the number of
sites was more than 50. We did not observe any performance
issues even when the number of sites increased, indicating that
our proposed model is scalable and robust.

The second purpose of using simulated data was to observe
the performance of DC-ComBat when exposed to different site
parameters drawn from different probability distributions. From
Figures 4, 5, we observed that the skewness and kurtosis of the
additive parameter affect the performance of the harmonization
process. In Figure5, we observed that when skewness and
kurtosis increased, the algorithm could remove up to a maximum
of 70% compared to Figure4 where skewness and kurtosis
were lower, and accuracy maximum accuracy was only 54%.
We also observed from our experiment that the performance
of DC-ComBat degrades for a certain distribution choice
for multiplicative parameters. In Figures4, 5, we saw that
for Poisson distribution, performance is poor compared to
other distributions.

DISCUSSION

In our work, we proposed a scalable decentralized version
of ComBat which can be used for harmonizing neuroimage
datasets in a decentralized fashion. From the algorithm presented
above, we can observe that our model only shares simple meta-
information about datasets which helps each site harmonize
its dataset independently with respect to other participating
sites. Also, no complex operation was performed in the remote
node, so it does not require high computational power. This
model has several advantages. First, data sharing becomes more
manageable as it does not require the dataset transfer away
from the original location. Secondly, we do not need to create
redundant copies of the datasets by pooling them on a single
location, saving much space and reducing the computational
cost associated. Thirdly, our model can be easily extended
when the number of participating sites increases. Fourthly,
each node harmonizes its dataset independently which requires
less computational power. Fifthly, our model is integrated
with COINSTAC which provides additional security during
information exchange off the shelf. Finally, we can easily combine
our model with other decentralized algorithms provided by
COINSTAC to create different analysis pipelines. Another main
contribution of our work is that there is no significant difference
between the computer parameters of centralized ComBat and
decentralized ComBat.

We presented a simple star network model which could
harmonize data in a decentralized environment. Also, from
Figure 1, it can be observed that original data never leaves the
sites, which protects the confidentiality of the datasets. Also, the
computational cost is divided among the local nodes.
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FIGURE 3 | Heatmap of t-values group difference (NM-EU) before (left) and after harmonization (right).

We observed the influence of site effects in the dataset
before and after harmonization. We observed increased
connectivity among the mTBI groups after harmonization
because harmonization removed the site effects. Moreover,
results in post-harmonized data, Figure 3 suggest that mTBI
patients develop hyperconnectivity after TBI injuries. Based on
the literature, increased connectivity is a regular observation in
TBI as the brain reacts to the traumatic injury event (22, 28, 29).
In our case, after we remove the site effects from the datasets, we
observe more connectivity in the TBI groups not observed before
as it was mixed with site effects. Based on the observations, we
can say that harmonization does help in removing confounding
non-biological effects allowing for more meaningful discoveries.

In our study, we showed that our proposed model could
handle an increased number of sites. Based on the simulation,
we showed that DC-ComBat could harmonize even 250 sites
simultaneously. We showed in Figures4, 5 that after the
number of sites reached above 50, there was no change in
performance. Moreover, the remote node does not perform
any complex operation. Instead, all the complex operation such
as harmonization is done on each local node. That is why
the model can scale quickly when the number of participating
nodes increases.

In our study, we observed that the performance of DC-
ComBat is dependent on the two site parameters called additive
parameter and multiplicative parameter. The base assumption of

Frontiers in Neurology | www.frontiersin.org

March 2022 | Volume 13 | Article 826734


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Bostami et al.

A Decentralized ComBat Algorithm and Applications

v — Gaussian Distribution

Number of sites

60 [
- O
&
e
s 50 -
£ Rayleigh
(g w— Weibull
E 45| Poisson
@ Inv-Gamma
kS
@ 40
=
v
35
30 l
0 50 100 150 200 250

FIGURE 4 | Decentralized ComBat with different distributions as the multiplicative parameter; Gaussian distribution (skewness: 0.26 and kurtosis: 3.3) (left) and
Sub-Gaussian distribution (skewness: 0.12 and kurtosis: 2.2) (right) for additive parameter.
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the ComBat model is that the multiplicate parameter will follow
the inverse-gamma distribution, and the additive parameter will
follow the Gaussian distribution. However, we cannot control the
probability distributions of site parameters directly. That is why
for some distributions, our proposed model may perform poorly
for the Poisson distribution shown in Figures 4, 5. We observed
that Rayleigh and Weibull distributions were similar to the
inverse-gamma because they conjugate prior to inverse-gamma!,
whereas Poisson is not for the inverse-gamma distribution.
Moreover, we also observed that skewness and kurtosis could
increase or decrease the performance of our model. We will
not discuss the effects of probability distributions of site effects
as it is not fully understood and will be a part of our future
research direction.

The main contribution of this work is the decentralization
of the harmonization process using ComBat and COINSTAC.
The output of these two separate approaches had very
insignificant differences due to the difference in machines

Thttps://en.wikipedia.org/wiki/Conjugate_prior

precision and operating systems. Therefore, we conclude that
both approaches produce identical output. Our proposed model
is more optimal than the centralized approach considering
the volume, confidentiality, security, and resource constraints
associated with data.

LIMITATIONS AND FUTURE DIRECTION

There are several limitations in the current study, which will be
addressed in future studies. We did not concern about the re-
identification attack; we only secured the intercommunications
between local and remote nodes. Our study worked with FNC
datasets; however, we could study other image modalities in our
subsequent studies. Moreover, we did not present many details
related to the site parameter distributions as we had no accurate
knowledge about the probability distribution of site parameters
to compare. We want to add differential privacy and study
the effects of site parameter distribution in more detail in our
future studies. Moreover, in near future this algorithm will be
intrigated with ENIGMA HALFpipe (30).
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CONCLUSION

The proposed novel model showed that decentralized algorithms
could achieve identical results as their centralized counterpart.
Also, the decentralized approaches solve many challenges
associated with data sharing connecting the whole world.
This study encouraged future researchers to contribute to
making new decentralized algorithms, which will help us
study all the data scattered across the world and produce
beneficiary outcomes.
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