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A B S T R A C T   

Background: Longitudinal studies provide a more precise measure of brain development over time, as they focus 
on within subject variability, as opposed to cross-sectional studies. This is especially important in children, where 
rapid brain development occurs, and inter-subject variability can be large. Tracking healthy brain development 
and identifying markers of typical development are also critically important to diagnose mental disorders at early 
ages. 
New method: We track longitudinal changes in spectral power of time-courses using a unique non-binning 
approach assessed with group independent component analysis, in a large multi time-point resting state func
tional magnetic resonance imaging dataset (N = 124) containing healthy children from 8.2 to 17.6 years old 
(m=12.6) called the Developmental Chronnecto-Genomics study. We examined how eyes open (EO) and eyes 
closed (EC) resting states play a role in age-related spectral differences, as several studies have reported dif
ferences in these conditions. 
Results: Typical brain development shows increased spectral power in low frequencies and decreased spectral 
power in high frequencies in as children grow and develop, for both the EO and EC conditions. In addition, we 
observed significant differences in power spectra between EO and EC and between sexes, mainly suggesting 
higher spectral power in females at middle and high frequencies. A replication analysis using the Adolescent 
Brain Cognitive Development data (N = 3371, mean age 9.9 years old) further supported this result, also showing 
general increases in low frequencies and decreases in higher frequencies, though some network level differences 
are present comparing to the main dataset. 
Comparison with existing method: Our results indicate that spectral power changes significantly with typical 
development and our non-binning approach shows these changes with more detailed frequency resolution 
comparing to binning approaches. This is important as many studies reported an association of higher frequency 
power with brain disorders. 
Conclusion: Our findings of decreased spectral power in the high frequencies with development may be a general 
marker of typical development., though this needs further investigation.   

1. Introduction 

Frequency domain analysis of functional magnetic resonance imag
ing (fMRI) data has provided useful insight about brain function. 

Starting with the initial observation (Biswal et al., 1995) that low fre
quency fluctuations in resting state-fMRI (rs-fMRI) (<0.1 Hz) can pro
vide an estimate of functional connectivity, there have been several 
studies on analyzing rs-fMRI data in the amplitude of low frequency 
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fluctuations (ALFF)(Zang et al., 2007) and its altered version of frac
tional ALFF (fALFF) (Zou et al., 2008). Altered ALFF has been reported 
in multiple mental and neurological disorders including schizophrenia 
(Fu et al., 2018; Turner et al., 2013), attention-deficit/hyperactivity 
disorder; (Wang et al., 2016; Zang et al., 2007), amyotrophic lateral 
sclerosis, and stroke patients (Egorova et al., 2017). ALFF/fALFF studies 
have often used seed or region of interest based analysis and are usually 
focused on the total power between 0.01 Hz and 0.08 Hz. Recently, some 
studies have used other frequency bands to calculate ALFF/fALFF, such 
as slow 4: 0.027–0.073 Hz, and/or slow 5: 0.01–0.027 Hz. (Zhan et al., 
2016). 

Some studies have compared frequency differences in focused fre
quency bins rather than summing across specific intervals. For example, 
Garrity et al. (2007) found decreased power in low frequencies and 
increased power in high frequencies in schizophrenia patients compared 
to control group in default mode networks. Calhoun et al. (2011) 
compared the spectral power in group independent component analysis 
(gICA) time-courses between bipolar patients, schizophrenia patients 
and control group and found higher power in lower frequencies (0–0.1 
Hz) and lower power in higher frequencies (0.01–0.25 Hz) in an audi
tory oddball task dataset in schizophrenia and bipolar disorder. Allen 
et al. (2011) reported altered spectral power in the resting state network 
(RSN) time-courses with age, which also varied in males vs females. 
Rs-fMRI data were also investigated in a 4D spatial-temporal framework 
in (Miller et al., 2015) and (Agcaoglu et al., 2016), which found sig
nificant differences between patients with schizophrenia and control 
group in left and right hemispheres. 

In the current study, we analyzed the frequency spectrum from 0.01 
Hz to 0.15 Hz in a longitudinal dataset of children from ages 8–17 called 
Developmental Chronnecto-Genomics (Dev-CoG) (Stephen et al., 2021). 
The purpose of this study is to examine whether there are clearly 
discernable developmental patterns in the spectra of resting-state fMRI 
using a non-binning approach. Such patterns could shed light on 
important markers of normative development, which in the future could 
be used to identify aberrant developmental trajectories in those with 
emerging psychiatric and/or neurological conditions. We used a longi
tudinal approach because there is considerable evidence in the literature 
that brain development can show non-linear trajectories and 
inter-subject variability can be very high in these age groups, which may 
prevent replicable results in cross sectional studies. Thus, in this paper, 
we utilized a longitudinal dataset and focused on the time-related dif
ferences. We hypothesized that the employed method may provide more 
robust and replicable trajectories of development. To support our hy
pothesis, we also applied our method to an independent dataset con
sisting of 3371 subjects from the Adolescent Brain Cognitive 
Development (ABCD) dataset(Casey et al., 2018). To the best of our 
knowledge, this is the first study that tracks longitudinal changes of 
rs-fMRI spectral power in children. 

2. Method and materials 

2.1. Participants 

We utilized the full longitudinal Dev-CoG dataset, which is an 
extension of the cross-sectional analyses representing the single time 
point reported previously(Agcaoglu et al., 2019; Agcaoglu et al., 2020). 
Resting state fMRI scans were collected from children at two different 
sites (Mind Research Network (MRN)/New Mexico and the University of 
Nebraska Medical Center (UNMC)/Nebraska) under both EO and EC 
conditions as part of the National Science Foundation (NSF) supported 
Dev-CoG project (http://devcog.mrn.org/). The study protocols were 
approved by the relevant institution review board (IRB) prior to study 
initiation at each data collection site (Advarra IRB – MRN and UNMC 
IRB – Nebraska) and the research was carried out in compliance with the 
Declaration of Helsinki. Participants were recruited at each site from 
local communities, with the goal of matching the local demographics in 

racial and ethnic categories. The inclusion criteria were age 9–14 years 
at enrollment, able to speak English, willing and able to provide 
assent/consent by both child and parents; the exclusion criteria were 
being pregnant, unable to provide consent, history or current mental or 
developmental disorders, history or current epilepsy or other neuro
logical disorders, parental history of major psychiatric or neurological 
disorders, parent-reported prenatal exposure to alcohol or drugs, 
medication use indicative of psychiatric or neurological disorder, an 
individual education plan indicative of a developmental delay/disorder, 
contraindication to MRI and orthodontia (e.g. braces or spacers). Please 
see Stephen, Solis et al. (2021) for details of the study. Participants were 
instructed to close their eyes but remain awake during the EC condition 
and were asked to stare at a fixation cross during the EO scan. There 
were 713 scans from 148 subjects with multiple timepoint scans avail
able. We excluded scans having poor registration, low signal to noise 
ratio (less than 150), or incomplete datasets, resulting in 574 scans from 
124 subjects with some participants having more than two timepoints 
available. In the final analysis, we included 470 EO and EC scans with 
data from at least two timepoints from 124 participants (age range from 
8.2 to 17.6 years). The minimum time between scans for any individuals 
was 100 days (m=592, std=218), and we selected the two most sepa
rated timepoints if multiple timepoints were available. The retained 
participants had a maximum mean framewise displacement (MFD) of 
0.25 mm. For the EO condition, data from 62 males and 58 females were 
available, and for the EC condition, data from 60 males and 55 females 
were available. The mean age was 11.81 and 13.48 for the first and 
second time point respectively. The mean time interval between scans 
was 584.9 days (standard deviation(std) 221.7 days) in EO case; for the 
EC case, mean interval was 597.9 days (std= 214.8 days). The average 
time intervals were 615.7 days (std=219.5 days) and 564.8 days 
(std=214.1) for males and females respectively. Note that when par
ticipants had more than two scans available, we took those with the 
longest interval between. 

We checked to see any significant differences between females and 
males that could bias the results. There were slightly more male par
ticipants than female participants. There wasn’t any significant age 
difference between sexes (1st time point, mean females= 11.87, mean 
males= 11.75, p = 0.57; 2nd time point: mean females=13.30, mean 
males = 13.66, p = 0.13) and scan time interval was slightly higher for 
males (615 days) comparing to females (564 days); however, two- 
sample t-test didn’t reveal any significant differences(p = 0.0737). 

ABCD study recruited nearly 10,000 youth aged 9–10 years old 
across the US with the aim to track human brain development from 
childhood through adolescence. Participants were recruited using a 
school base strategy and the sample were aimed to resemble US pop
ulation’s sociodemographic status as closely as possible. Scans were 
collected at 21 different sites in EO condition and were optimized and 
harmonized. (Casey et al., 2018; Jernigan et al., 2018). We included 
3371 subjects whose multi time point spectra results were available; 
1552 girls and 1819 boys, mean age at first scan is 9.9 years old (std =
0.6, min = 8.9, max = 11.1) and mean age at second scan is 11.9 years 
old (std = 0.6, max = 13.4, min = 10.6); longitudinal scan interval has a 
mean of 1.9 years (std = 0.13, max = 2.6, min = 1.4). 

2.2. Imaging parameters 

Imaging data were collected on a 3 T Siemens TIM Trio scanner at the 
MRN site and on a 3 T Siemens Skyra scanner at the Nebraska site. A 
total of 650 volumes of multiband echo planar imaging blood-oxygen- 
level-dependent data (a length of 4 min and 59 s) were collected per 
resting state condition and per participant with repetition time (TR) of 
0.46 s, time to echo of 29 ms, flip angle of 44 degrees, and a slice 
thickness of 3 mm with no gap. Rs-fMRI scans were acquired using a 
standard gradient-echo planar imaging paradigm; MRN site: field-of- 
view (FOV) of 246 × 246 mm (82 ×82 matrix), 56 sequential axial sli
ces; Nebraska: FOV of 268 × 268 mm (82 ×82 matrix), 48 sequential 
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axial slices. Eyes of the participants were monitored via an eye-tracker 
during the EO condition to ensure that participants were following the 
instructions. The order of the EO and EC scanning sessions were counter- 
balanced across participants at both sites. 

The ABCD study were collected at 21 different sites, using Siemens 
Prisma, Phillips and GE 750 3 T scanners with harmonized imaging 
parameters, in EO condition and passive viewing of a cross hair with a 
TR of 0.8 s. Please see (Casey et al., 2018) for the details of the ABCD 
study parameters. 

2.3. Preprocessing 

The preprocessing of the DevCog data included image distortion 
corrected using FSL’s topup (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and 
re-alignment to the single-band reference image (SBref) using AFNI’s 
align_epi_anat.py (https://afni.nimh.nih.gov/). Motion parameters were 
estimated relative to SBref and data was registered to the Montreal 
Neurological Institute (MNI) template using AFNI’s 3dNwarpApply as 
estimated using AFNI’s auto warp.py. The first 4 volumes were excluded 
to account for the T1 equilibrium effect. The participants consisted of 
children with an age range of 8.2–17.6 years, therefore we re-warped the 
data to a study specific template computed as the average of the first 
time point from each scan. Finally, the data was smoothed to 6 mm full- 
width at half maximum. The ABCD data were preprocessed using an 
automated analysis pipeline based in SPM, which included image 
realignment, slice timing correction, spatially normalizing to MNI space, 
and smoothing. 

2.4. Group independent component analysis 

In a previous study (Agcaoglu et al., 2019), a part of this dataset from 
a single timepoint was decomposed into 150 independent components 
and 51 components were retained as intrinsic resting networks. The 51 
RSNs were labeled and ordered/grouped based on their anatomical and 
functional properties including 4 sub-cortical networks (SC), 3 auditory 
networks (Aud), 8 sensorimotor networks (SM), 18 visual networks 
(Vis), 4 default-mode networks (DMN), 12 cognitive control networks 
(CC), and 2 cerebellar networks (Cb). In this longitudinal study, we 
utilized spatially constrained ICA with the selected and ordered com
ponents as references. Preprocessed functional data were analyzed with 
a spatially constrained ICA algorithm, based on multi-objective opti
mization (MOO-ICAR) (Du et al., 2013) and (Du et al., 2016), imple
mented in the group ICA of fMRI toolbox (GIFT) software 
(http://trendscenter.org/software/gift). Using this approach, we esti
mated scan specific spatial maps (SMs) and time courses (TCs). These 
RSNs are displayed in Fig. 1 and the corresponding anatomical regions, 
and their peak locations are detailed in Table 1. Please see Agcaoglu 
et al. (2019) for additional details of the gICA and RSN selection process. 

ABCD data were decomposed into 53 RSN by utilizing a spatially 
constrained ICA using the spatial maps from the NeuroMark study; and 
SMs derived from two large-sample healthy control datasets, (Du et al., 
2020); and used the available power spectral density estimated using the 
GIFT software. 

2.5. Spectra estimation 

After gICA, we further analyzed the subject specific TCs. We 

Fig. 1. Fifty-one Resting State Networks; grouped according to their anatomical and functional properties; four SC, 3 Aud, 8 SM, 18 Vis, 4 DMN, 12 CC and 2 Cb 
(Agcaoglu et al., 2019). 
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Table 1 
Anatomical regions corresponding to each RSN presented in Fig. 1. Number of 
voxels, maximum t-value, coordinates of the peak and Broadman area number 
are shown (Agcaoglu et al., 2019).  

RSN# Nv Tmax Coord. BA 

Sub-Cortical Networks     
85     
Left Putamen 1463 141.63 -18 10 4  
Right Putamen 735 82.27 20 12 0  
54     
Right Putamen 1224 135.54 26 4 − 2  
Left Putamen 1197 147.24 -28 0 − 2  
58     
Right Thalamus 1033 170.69 2 − 20 6  
68     
Left Thalamus 1430 141.33 -4 − 12 12  
Auditory Networks     
62     
Left Superior Temporal Gyrus 2267 84.25 -52 − 18 6 22 
Right Superior Temporal Gyrus 2029 87.45 60 − 12 0 22 
145     
Right Superior Temporal Gyrus 3713 104.6 56 − 44 18 13 
Left Middle Temporal Gyrus 1378 51.41 -58 − 54 12 22 
125     
Right Insula Lobe 1908 119.75 42 − 18 12 13 
Left Superior Temporal Gyrus 1795 107.6 -46 − 24 12 41 
Sensorimotor Networks     
9     
Left Paracentral Lobule 2599 94.33 0 − 24 72 6 
8     
Left Postcentral Gyrus 1828 94.76 -46 − 30 54 2 
Right Postcentral Gyrus 383 37.47 54 − 20 48 1 
98     
Left Inferior Parietal Lobule 2438 96.03 -54 − 30 46 2 
Right SupraMarginal Gyrus 1621 76.73 60 − 20 40 3 
26     
Right Postcentral Gyrus 2515 96.98 44 − 30 58 2 
Left Postcentral Gyrus 507 37.30 -42 − 38 60 40 
2     
Left Postcentral Gyrus 1080 91.31 -54 − 8 34 6 
Right Postcentral Gyrus 1014 90.70 60 − 6 30 6 
73     
Left Paracentral Lobule 4219 125.8 0 − 24 54 6 
Left Rolandic Operculum 157 40.96 -40 − 26 18 13 
124     
Left Inferior Parietal Lobule 1073 76.71 -58 − 42 42 40 
Right SupraMarginal Gyrus 873 73.92 60 − 38 40 40 
77     
Left SMA 4587 101.23 0 6 52 6 
Right Insula Lobe 516 53.27 48 10 − 2 22 
Visual Networks     
131     
Left Inferior Temporal Gyrus 2183 74.55 -52 − 50 − 12 37 
Right Fusiform Gyrus 1668 60.82 44 − 30 − 18 20 
76     
Right Calcarine Gyrus 2756 81.86 18 − 102 − 2 18 
34     
Left Cuneus 3412 82.78 2 − 80 24 18 
42     
Right Fusiform Gyrus 1510 72.64 32 − 78 − 14 19 
Left Cerebellum 569 36.52 -40 − 68 − 20 19 
71     
Left Fusiform Gyrus 1920 77.93 -30 − 56 − 14 19 
Right Fusiform Gyrus 1422 69.95 30 − 48 − 18 37 
91     
Right Lingual Gyrus 4008 91.16 24 − 72 − 12 19 
111     
Left Lingual Gyrus 2891 109.15 0 − 78 4 18 
69     
Left Cerebellum 1662 143.19 -6 − 50 − 2 30 
82     
Right Cerebellum 1674 142.59 8 − 50 − 2 30 
70     
Left Lingual Gyrus 2152 76.07 -18 − 86 − 18 18 
33     
Right Calcarine Gyrus 3313 115.61 8 − 68 10 30 
59      

Table 1 (continued ) 

RSN# Nv Tmax Coord. BA 

Right Lingual Gyrus 2465 127.29 12 − 56 10 30 
Left Middle Occipital Gyrus 293 41.29 -42 − 80 30 19 
RSN# Nv Tmax Coord. BA 
130     
Right Middle Occipital Gyrus 3229 97.50 38 − 84 6 19 
Left Middle Occipital Gyrus 3092 82.44 -36 − 86 6 19 
100     
Cerebellar Vermis 1270 192.57 2 − 42 4 29 
129     
Cerebellar Vermis 1448 140.21 6 − 56 0  
38     
Left Precuneus 3174 79.17 0 − 66 58 7 
Right Superior Frontal Gyrus 241 32.07 30 4 60 6 
37     
Left Posterior Cingulate Cortex 2019 141.39 0 − 54 30 31 
Left Angular Gyrus 509 45.23 -52 − 68 28 39 
27     
Right Middle Cingulate Cortex 2693 88.57 -4 − 24 28 23 
Left Inferior Parietal Lobule 207 35.50 -36 − 62 48 7 
Default-Mode Networks     
123     
Right Anterior Cingulate Cortex 4398 118.94 2 42 10 32 
Right Insula Lobe 538 59.55 36 18 − 12 47 
49     
Left Mid Orbital Gyrus 2941 115.46 0 48 − 6 10 
Left Middle Temporal Gyrus 253 39.78 -58 − 14 − 18 21 
90     
Left Angular Gyrus 2579 91.98 -52 − 62 30 39 
Left Middle Frontal Gyrus 2269 52.91 -42 18 46 8 
101     
Right Middle Frontal Gyrus 2450 57.54 30 18 54 8 
Right Inferior Parietal Lobule 1892 99.84 54 − 56 40 40 
Cognitive Control Networks     
83     
Left Middle Temporal Gyrus 2105 93.39 -46 6 − 30 21 
Right Medial Temporal Pole 1588 96.98 48 10 − 26 21 
114     
Left Superior Medial Gyrus 3955 103.29 0 60 22 10 
Left Temporal Pole 733 40.71 -36 22 − 20 47 
63     
Right Middle Frontal Gyrus 6987 115.49 32 58 4 10 
Right Inferior Parietal Lobule 72 26.70 50 − 50 48 40 
48     
Left Superior Medial Gyrus 2744 86.68 0 66 18 10 
Right Cerebellum 77 31.19 48 − 72 − 38  
120     
L. Inf. Front. G. (p. Triangularis) 4236 91.65 -48 30 18 46 
R. Inf. Front. G. (p. Triangularis) 855 52.20 50 22 28 46 
146     
R. Inf. Front. G. (p. Opercularis) 7279 114.14 50 18 6 45 
Left Insula Lobe 590 46.17 -34 24 − 2 13 
119     
Left Insula Lobe 2186 116.66 -40 18 − 6 47 
Right Insula Lobe 1381 88.71 44 16 − 2 47 
96     
Left Inferior Parietal Lobule 3989 78.25 -24 − 72 46 7 
Left Precentral Gyrus 711 47.22 -52 10 34 9 
102     
Right Inferior Parietal Lobule 3397 82.40 44 − 42 48 40 
R. Inf. Front, G. (p. Opercularis) 1660 51.33 54 12 30 9 
133     
Right Rolandic Operculum 2745 102.29 54 4 4 22 
Left Rolandic Operculum 766 51.31 -54 0 4 22 
55     
Right Superior Parietal Lobule 3916 71.19 18 − 54 66 7 
Right Cerebellum 106 33.04 26 − 44 − 48  
136     
Left Angular Gyrus 6603 74.10 -52 − 78 28 39 
Right Middle Occipital Gyrus 807 58.53 44 − 78 34 19 
Cerebellar Networks     
84     
Right Cerebellum 4173 150.37 30 − 68 − 38  
110     
Left Cerebellum 3906 126.64 -30 − 66 − 38   
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detrended the time-courses to mitigate low frequency artifacts such as 
gradient heating. To estimate the spectral density, we utilized a sliding 
window approach (window size of 512) with a multi-taper frequency 
domain transfer and shifted one TR at each slide. Each windowed time 
course was demeaned and normalized to unit power. Later, each win
dow was transferred to the frequency domain using multi-taper spectral 
estimation as implemented in GIFT. Finally, the estimated power spectra 
were averaged over each window. 

2.6. Statistical analysis 

We conducted statistical analysis with t-tests and corrected all sta
tistical tests with 0.05 false discovery rate (FDR) using the Benjami
ni–Hochberg procedure (Benjamini et al., 1995). We tested the 
longitudinal differences with paired t-tests for EO and EC cases sepa
rately. We compared frequencies greater than 0.01 Hz and lower than 
0.15 Hz, as this is a widely used spectral range of interest in fMRI 
studies. Before the statistical tests, motion as MFD and site were 
regressed out from the estimated spectral density. We compared EO and 
EC differences in the first timepoint and the second timepoint scans 

Fig. 2. The power spectral difference between second and first time points is displayed for EO and EC cases separately, where x direction shows the frequencies and y 
axis shows the different components. EO analysis includes 120 participants, EC analysis includes 115 participants. On the right, the results are displayed after FDR 
correction. There is an increase of power in low frequencies with development and a decrease of power in higher frequencies. There are significant differences 
especially in visual and cognitive control networks. 
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using paired t-test (111 subjects have both data available). 
We also evaluated the differences in the longitudinal change in EO 

versus EC via a paired t-test and also examined sex differences between 
females and males in spectral power using two-sample t-tests in both 
first and second time point scans. The difference in development be
tween females and males were analyzed using a two-sample t-test. 
Finally, we repeated the longitudinal spectral analysis on the ABDC 
dataset (Casey et al., 2018), collected as EO condition. For the statistical 
analysis, the FDR correction was applied at the network level for all 
DevCoG analyses. In this study, we used a relatively large gICA model 
order of 150, which resulted in 51 RSNs, and we evaluated a wide range 
of frequencies (34 frequency bins) rather than comparing summation of 

intervals. Importantly, the replication study revealed a consistent gen
eral pattern regardless of the threshold. For the ABCD dataset, the FDR 
correction was carried out across all networks and did reveal similar 
results comparing to those with FDR corrected at network level. 

3. Results 

3.1. Longitudinal spectral power differences 

Spectral changes with development are presented in Fig. 2. Both EO 
and EC differences show a similar pattern, in which lower frequency 
power increases with age and higher frequency power decreases with 

Fig. 3. Comparing Eyes open vs. Eyes Closed differences in power spectra in the first and second time point. There are significant differences in both time points 
mainly in Visual and cognitive control networks. 111 participants who had both EO, EC data available on multiple time points were included in this analysis. 
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age. Differences are more extensive for the EC case with more FDR 
significant regions. SC 58 and SM 8, 26 show FDR significant differences 
in higher frequencies for the EO case indicating power decreases as the 
individuals age. SC 85, SM 26, VIS 69 and CC 114, 48 and 119 have 
increasing power in low frequencies with age for the EO case. CC 119 has 
decreasing power with age in middle frequencies. Visual and cognitive 
control networks show the most FDR significant differences in the EC 
case. SC 85 and 54, SM 9, VIS 76, 34, 71, 111 and 33, DMN 90, CC 114, 
63, 120 and 146 shows FDR significant increases in power in low fre
quencies. Some networks, SM 9 and 124, VIS 76 and 71, CC 63 and 120, 
have significant decrease in power in high frequencies as individuals 
age. SM 9 and CC 120 also have decreasing power in middle frequencies 
as individuals age. 

3.2. Spectral differences between resting state condition 

One-sample t-test results are presented in Fig. 3, showing EO and EC 
differences in power spectra in both first and second timepoints. We find 
significant differences in both first and second timepoint, mainly in vi
sual networks and cognitive control networks. There are some signifi
cant differences in first timepoint in the SC networks, SM networks and 
DMN, that are not presented in second time point differences. CC and 
VIS network differences are more elaborated in the second time point.  
Fig. 4 shows the differences in power spectra over development between 
EO and EC cases. While significant differences are identified in only one 
CC 63, the un-thresholded t-values are highly structured, showing a 
pattern of low frequency power increases (with more in the EC case) and 
mid and high frequency increases (with more in the EO case) as in
dividuals age. 

The t-test results showing the longitudinal differences in the ABCD 
study are presented in Fig. 8. Comparing the un-thresholded ABCD re
sults with those in the DevCoG EO data, the general pattern of increased 
power in low frequencies and decreased power in high frequencies can 
also be observed in the ABCD sample. There are some differences in the 
subnetworks, while the power increase in low frequencies was more 

consistent in the DevCoG case, in the ABCD study, SC networks do not 
have this increase in the very low frequencies, but they rather have it on 
the middle frequencies. Also, CB networks in the ABCD case show a 
decrease in power almost all frequencies. On the other hand, decrease in 
power in high frequencies are more consistent throughout the sub
networks in the ABCD case comparing to the DevCoG case. The ABCD 
results have more FDR significant regions compared to DevCoG, this can 
be expected considering the huge differences in sample size. Please note 
that the FDR comparison was carried out including all networks in the 
ABCD case, and the ABCD study uses a different ICA decomposition. 

3.3. Spectral differences between sexes 

Results showed significant spectral power differences between sexes 
at both time points. Sex differences at the first time point are displayed 
in Fig. 5; some SC and one VIS network have more power in middle 
frequencies, some SM, DMN and CC networks have more power in high 
frequencies in females comparing to males. VIS 100 shows more power 
in males in high frequencies. There are not many significant differences 
in low frequency power. The second time point differences are displayed 
in Fig. 6. At the second time point, the differences between sexes are 
enhanced, almost all networks have significantly more power in females 
in middle and high frequencies, while SM and CB networks have more 
power in boys in low frequencies. Fig. 7 shows the results of how the 
spectral power differences between sexes are changing with develop
ment. The differences are increasing with development, though statis
tically limited in one SM, one VIS, one DMN and one CC network. 

4. Discussion 

In this study, we investigated developmental changes in power 
spectra of rs-fMRI TCs assessed with gICA in a large longitudinal dataset 
(N = 124) focusing on children, where rapid developments occur. We 
found a significant increase in low frequency power and decrease in high 
frequency power in multiple networks with increasing age in EO and EC 

Fig. 4. Comparing developmental differences between (EO_second – EO_first difference) and (EC_second – EC_first difference). This shows the power spectra dif
ferences with development between the EO and EC cases. Though, significant results are limited, there is a structure in the p-values. Age-related differences are 
greater in low frequencies in EC case while developmental differences are greater in middle and high frequencies in EO case. 111 participants who had both EO, EC 
data available on multiple time points were included in this analysis. 
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scans. Our results indicated that power at low frequencies may be a 
general marker of typical brain development, as it was found in two 
dataset of healthy children in the current study and past studies have 
linked increased high-frequency power to schizophrenia and other 
clinical populations (Calhoun et al., 2011; Fu et al., 2018; Turner et al., 
2013; Wang et al., 2016; Zang et al., 2007). We replicated our results 
using an independent dataset as well. 

Our findings are consistent with some cross-sectional studies, though 

Allen et al. (2011) found a global decrease in low frequency power with 
increasing age across all RSNs in their study using a dataset containing 
603 healthy subjects aged 12–71, they found that this trend was 
non-linear and for some RSNs, consistent with our study, the power 
stayed constant between roughly 12–15 years-old with even a small 
increase, and then decrease starts roughly after 15–16 years of age. They 
interpreted that these changes may have been due to gray matter con
centration changes and other factors such as vascular compliance, 

Fig. 5. Sex differences in spectral power at the first time point, in general middle and higher frequencies have more power in females except VIS #100. 113 females 
and 122 males were included in this analysis. 

Fig. 6. Sex differences in spectral power at the second time point, middle and high frequencies have significantly more power in females in almost all networks, while 
males have more power in low frequencies in SM, CB and one CC network. There are more significant differences in the second time point compared to the first time 
point. 113 females and 122 males were included in this analysis. 
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degree of neural activation, and levels of basal activity. Consistently, 
(Agcaoglu et al., 2016), using a 4D spectral-temporal framework on the 
same dataset, also reported significant age-related decrease in low 
temporal frequencies between 0.01 and 0.15 Hz and significant increase 
in power after between 0.2 and 0.25 Hz in both hemispheres; and 
speculated that it may be related to an increase in reaction time. Our 
current study does not fully overlap in age with these existing studies, 
and our finding of increased power in low frequencies and decreased 

power in higher frequencies with development in early ages is consistent 
with prior non-linear age effects. 

The focus of this study is the frequency interval between 0.01.01 Hz 
and 0.15 Hz. Studies showed that though fMRI signal from 0.01 to 
0.073 Hz often related to the spontaneous activities in gray matter, 
0.073–0.25 Hz activity is often detected in the white matter (Zhou et al., 
2020). In our results, all the frequency bands that show an increase in 
power in the second time point are between 0.01 and 0.073 Hz interval 

Fig. 7. Spectral power differences between sexes are increasing with development, though statistically limited. Females have more changes in power in middle-high 
frequencies. 113 females and 122 males were included in this analysis. 

Fig. 8. Longitudinal power spectra differences on the ABCD dataset (3371 subjects). Results are consistent with those in Dev-CoG dataset (Fig. 2) and mostly 
replicated with power increasing in the lower frequencies and decreasing in the higher frequencies as individuals age. 
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for both EO and EC cases. Also, we see reduced power in the second time 
point typically at frequencies from 0.073 to 0.15 Hz interval, with the 
only exception to this being CC 119 for the EO cases from 0.04 to 
0.073 Hz. Bray (2017) found significant decreases in the global 
component of gray matter volume with increasing age in their 
cross-sectional study including 59 children aged 7–18 as well as trend 
level decreases in the global component of cerebral blood flow, and 
interestingly they did not find any significant age association in the 
global component of fALFF values (0.01–0.08 Hz). Although, this may 
imply the effect is mainly related to gray matter and white matter dif
ferences, we excluded the white matter components while selecting the 
RSNs. 

We found significant EO and EC differences, and our results mainly 
suggest more spectral power changes in visual network and cognitive 
control in the EO case compared to EC case, but there are some networks 
that show more power in the EC case as well. Yang et al. (2007) inves
tigated EO and EC differences in ALFF and found consistent results to our 
study; increased ALFF in bilateral visual cortex for the EO case. Yang 
et al. (2007) also reported significantly lower ALFF in right paracentral 
lobule in EO case. We found significant longitudinal effects between 
EO-EC differences in one network CC 63. Though, changes were rela
tively limited, un-thresholded results present an interesting pattern, 
suggesting lower frequency power increases more with age in EC case 
and middle and high frequency power increases more in EO case. A 
further study with a larger cohort may be needed to fully clarify this. 
Another interesting finding of our study is that we found more FDR 
significant differences in the EC case compared to the EO case. In 
Agcaoglu et al. (2019), we examined a subset of this dataset in a 
cross-sectional functional network connectivity framework and found 
more significant association with age, sex and social scores in EO case 
compared to the EC case. In this study we found some frequencies have 
higher spectral power in EO case compared to EC. This suggests the 
correlation differences in functional network connectivity in our previ
ous studies may be related to the identified frequency differences. Sex 
differences mainly suggested that females have more power in high 
frequencies in almost all networks and males has more power in some 
SM and CB networks, and consistent with developmental results, these 
differences are more elaborated in the EC case. 

We were able to replicate our main results of increase spectral power 
in low frequency and decrease spectral power in high frequency on an 
independent dataset. The second dataset revealed more FDR significant 
differences, which was expected considering the number of participants. 
It is important to note that the second dataset uses a different gICA 
decomposition and different model order, which can be interpreted as 
another strong evidence to the robustness of the findings. 

Some limitations should be considered while interpreting the results. 
First, we have used a model order of 150 in the DevCog dataset and have 
used a model order of 100 in the ABCD dataset (NeuroMark template); 
the model order can have an influence on the network level results; 
examining the power spectra with lower and higher gICA model orders 
could also provide more insight on longitudinal spectral changes. 

Secondly, (Klapwijk, Goddings et al., 2013; van Duijvenvoorde, 
Westhoff et al., 2019) reported altered connectivity with pubertal stage 
(independent of age) and (Kong, Hu et al., 2015) showed association 
between fALFF and subjective well-being; however, we did not have a 
measure of pubertal status for our participants and we did not include 
behavioral scores in our analysis. Based on these recent results, future 
developmental studies using our non-binning approach should include a 
pubertal scale to estimate pubertal stage in their participants. Further
more, including behavioral measures will help future investigators 
interpret the effects of brain developmental changes on child 
development. 

5. Conclusion 

In sum, we investigated spectral power changes longitudinally in a 

pediatric sample for the first time and found significant increases in low 
frequency power and significant decreases in high frequency power with 
typical development; this finding was replicated using an independent 
dataset. This pattern can be interpreted as a general marker of typical 
development in children. Furthermore, we found that though both EO 
and EC resting state conditions can detect these markers, EC provides 
more elaborated differences. Spectral power was also significantly 
different between sexes, with high frequencies showing more spectral 
power in females compared to males. 
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