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Abstract

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic
disorders can be decomposed into useful imaging features such as time courses (TCs) of
independent components (ICs) and functional network connectivity (FNC) calculated by TC
cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes
temporal coherence across intrinsic brain networks. Both features have been used as input

to deep learning approaches with decent results. However, few studies have tried to leverage
their complementary information to learn optimal representations at multiple facets. Motivated
by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and
Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN)
and deep neural network (DNN), aiming to improve classification accuracy and interpretability
simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies
with an attention module (AM) to automatically learn discriminative knowledge from TC nodes,
while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise
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relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new

feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA
was validated on both multi-site schizophrenia (SZ, n ~ 1100) and public autism datasets (ABIDE,
n ~ 1522) by outperforming 12 alternative models at 2.8-8.9% accuracy, including 8 models

using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification
accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More
importantly, the most group-discriminative brain regions can be easily attributed and visualized,

providing meaningful biological interpretability and highlighting the great potential of the

proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
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1.

Introduction

Functional magnetic resonance imaging (fMRI) has been a promising tool to provide novel
insights into the brain function abnormalities of psychotic disorders (Andreou, 2020). Based
on multivariate decomposition such as independent component analysis (ICA) (Du and Fan,
2013), useful imaging features such as independent components (ICs), their corresponding
time courses (TCs) and functional network connectivity (FNC) (Calhoun and Adali, 2006;
Jafri et al., 2008; Smith et al., 2009) can be easily extracted and widely used in studies

of mental disorders (Fig. 1 A). Specifically, TCs reflect the temporal fluctuations of each
IC, i.e., the spatially distinct brain regions, while FNC characterizes the temporal coherence
across the selected ICs by correlating their TCs, representing the intrinsic connectivity
networks (Calhoun and Adali, 2012; Seeley et al., 2007; Supekar et al., 2009). Both features
have been widely used in brain disorder comparison and classification.

On the other hand, with the ability to characterize discriminative patterns and learn optimal
representations automatically from neuroimaging data, deep learning (DL) methods have
received growing attention in fMRI-based diagnosis of mental disorders. One of the most
commonly used DL input features is functional (network) connectivity calculated based

on either a brain atlas or ICA (Du et al., 2018). For example, Kim et al. trained a deep
neural network (DNN) based on FNC, with L1-norm to monitor weight sparsity, achieved
substantial performance improvement (Kim et al., 2016). Zeng et al. presented a sparse
autoencoder to learn imaging site-shared FCs, which was then used to guide SVM training
on multi-site datasets for schizophrenia (SZ) diagnosis (Zeng et al., 2018). Similarly, in
order to exploit the wealth of temporal dynamic information in BOLD signals, recurrent
neural networks (RNN)-based approaches have also been proposed to work on fMRI time
series. Particularly, Yan et al. proposed multi-scale RNN on the TCs (Yan et al., 2017)

and Dakka et al. adopted a recurrent convolutional neural network (R-CNN) on 4-D fMRI
recordings at the whole-brain voxel level (Dakka et al., 2017) to distinguish patients with SZ
from healthy controls (HCs). Moreover, dynamic FNC (dFNC) has also been adopted with
or without combining with static FNCs to discriminate brain disorders, which can further
improve prediction accuracy (Cetin et al., 2016; Du et al., 2017; Rashid et al., 2016).
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However, despite the significant advances in fMRI-based classification, the complementary
information between spatial-temporal coherence (FNC) and temporal dynamics of brain
activity (TCs) have not been fully leveraged to take advantage of fMRI data. To our
knowledge, there are no deep models yet combining both functional connectivity and
activity as input features. To address this issue, we are motivated to propose a Hybrid

Deep Learning framework integrating brain Connectivity and Activity (HDLFCA) together
by combining DNN and C-RNN (convolutional recurrent neural network), aiming to
enhance the classification performance for brain disorders by capitalizing on multi-domain
neuroimaging information. The prediction outputs of the two neural networks were then
concatenated to build a new feature matrix, generating the final decision by logistic
regression (Fig. 1B).

Another point that needs to mention is the lack of interpretability of DL methods, which
often limited their use in clinical contexts due to the ‘black-box’ nature of deep layers
(Kohoutova et al., 2020). To this end, the attention mechanism, inspired by human
perception, was developed to improve the interpretability of DL models, and has been
employed in various medical imaging data mining cases. For instance, Lian et al. developed
an attention-guided DL framework for dementia diagnosis (Lian et al., 2020), including

a full CNN to localize the discriminative regions and a hybrid network to fuse multi-

level spatial information. Similarly, Jin et al. proposed an attention-based 3D CNN for
Alzheimer’s disease diagnosis (Jin et al., 2020). However, most existing attention-guided
DL studies focused on structural images such as structural MRI (sMRI) and Computed
Tomography (CT) (Chen et al., 2020; Dong et al., 2019; Lei et al., 2020), less attention

has been paid to fMRI data due to its higher dimensionality. In this work, we propose two
schemes to improve the interpretability: 1) to develop an attention-guided C-RNN for TCs,
i.e., C-RNNAM, which enables learning of temporal dynamics and identification of the most
discriminative TC nodes (ICs) integrated into a unified framework (Fig. 1C). 2) In parallel,
layer-wise relevance propagation (LRP) was applied to DNN layers, searching for the most
discriminative FNC patterns. Taken together, the most contributing fMRI features for group
discrimination were identified and visualized, improving the whole model interpretability.

To validate the effectiveness of our proposed method, HDLFCA, rigorous comparisons
have been made with 12 popular methods. Specifically, we compared with 8 alternative
models based on static FNC or TCs and 4 DL methods using dynamic FNC, which

also characterized functional connectivity and dynamics of BOLD signals simultaneously.
These tests were performed using In-House multi-site dataset (558 SZ and 541 HCs)

and public ABIDE datasets (743 ASD and 779 HCs). Experimental results showed our
method outperformed 12 alternative models by 2.8-8.9%, achieving SZ-HC classification
accuracy at 85.1% and 81.0% for the multi-site pooling and leave-one-site-out respectively,
and 72.4% for ABIDE dataset with multi-site pooling. More importantly, the most

group discriminative brain regions can be easily traced back with convincing biological
interpretability, suggesting the great promise of HDLFCA to identify potential imaging
biomarkers.
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2. Materials and methods

2.1. Participants

For In-House dataset, participants (558 schizophrenia patients and 542 HCs) were recruited
from 7 hospitals, including Peking University Sixth Hospital (PKU®6), Beijing Huilongguan
Hospital (HLG), Xinxiang Hospital Simens (XX#1), Xinxiang Hospital GE (XX#2), Xijing
Hospital (XJ), Renmin Hospital of Wuhan University (RWU) and Zhumadian Psychiatric
Hospital (ZMD). Demographic and clinical information of subjects were listed in Table 1
and Table S1. All patients with SZ are diagnosed by experienced psychiatrists using the
Structured Clinical Interview for DSM-IV-TR Disorders. All HCs are interviewed using
the SCID-Non-Patient Version and excluded if their first-degree relatives had any psychotic
disorders. Besides, none of the participants had neurological disorders, substance abuse or
dependence, pregnancy, and prior electroconvulsive therapy or head injury resulting in loss
of consciousness. The severity of positive and negative symptoms was assessed according
to PANSS scores. Two sample t-test and Chi-square test were performed to measure the
difference of age and gender between HCs and patients respectively. This study has been
approved by the ethical committees and all subjects provided written informed consent,
including permission to share data between centers.

For public ABIDE dataset (743 patients with ASD and 779 HCs), the detailed demographic
information of datasets was listed in Table S14.

2.2. Image acquisition

For all sites in In-House datasets, scanning parameters are as follows: repetition time (TR)
= 2000 ms; echo time (TE) = 30 ms; flip angle (FA) = 90°; field of view (FOV) =220

x 220mm; matrix = 64 x 64; slice thickness = 4 mm; gap = 0.6 mm; slices = 33. The
resting-state fMRI data were collected on a 3T Tim Trio scanner (Siemens) in PKU6, HLG
and XJ sites, Verio scanner (Siemens) in XX#1 site, 3T Signa HDx GE scanner (General
Electric) in the other sites. Subjects were instructed to lie still, keep their eyes closed, stay
awake, and minimize head movement with foam padding and earplugs. Details of all sites
were listed in Table S2.

2.3. Data preprocessing

All resting-state fMRI data were preprocessed with the same procedures as we did in Liu
et al. (2019) using the SPM software package (http://www.fil.ion.ucl.ac.uk/spm/). The first
ten volumes of each scan time series were discarded for magnetization equilibrium. The
following processing pipeline was then performed: 1) slice timing correction to the middle
slice; 2) motion correction to the first image; 3) normalization into the standard Montreal
Neurological Institute (MNI) space, and resliced to 3x3x3 mm; 4) denoising and spatially
smoothing using an 8 mm full width half max (FWHM) Gaussian kernel.

To control the effects of motion artifacts, each subject has been evaluated with a maximum
displacement that did not exceed + 3 mm (translation) or & 3° (rotation). The group
difference in the mean framewise displacement (FD) between HC and SZ groups was not
significant (HC: 0.137 £ 0.071, SZ: 0.142 £+ 0.085, two-sample t-test: p=0.98).
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2.4. Feature extraction

Imaging data were decomposed into spatial functional networks and back-reconstructed
using Group-guided independent component analysis (GIG-ICA) (Calhoun et al., 2001; Du
et al., 2016; Du and Fan, 2013; Du et al., 2020) in the GIFT software (http://trendscenter.org/
software/gift). We chose a high model order ICA (number of components = 100) to
decompose the functional networks showing temporally coherent activity as our previous
work (Luo et al., 2020; Zhi et al., 2018). For subject-level data, 150 principal components
were retained by principal component analysis (PCA). For group-level data, acquired by
concatenating subject data across time, 100 principal components were retained using

PCA again. Afterward, the Infomax ICA algorithm was repeated 20 times using ICASSO
followed by selection of the most representative result, to improve the reliability of the
decomposition, resulting in 100 stable group ICs (Du et al., 2014; Yan et al., 2021). 50 ICs
were further selected and characterized as intrinsic connectivity networks, which showed
higher low-frequency spectral power and presented minimal overlap with white matter,
ventricles, and edge regions (Allen et al., 2011). The 50 spatial maps are sorted into eight
domains as listed in Fig. S1. Furthermore, subject-specific time courses and spatial maps
were back-reconstructed using GIG-ICA (Du et al., 2016; Du and Fan, 2013). The following
additional post-processing steps were performed on the selected component TCs: linear,
quadratic and cubic detrending, regressing out six realignment parameters and their temporal
derivatives, despiking, and low-pass filtering (<0.15 Hz).

As shown in Fig. 1, the subject-level TCs with a size of 50x170 (ICs x time points) are
used as the input of the RNN-based model. Pearson’s correlation between TCs of each pair
of ICs was calculated, yielding a symmetric connectivity matrix of 50x50. The FNC matrix
was further reshaped into a vector with a dimension of (50 X 49)/2 = 1225 using the upper
triangle elements, which were used as input features of DNN.

2.5. Methods

2.5.1. Hybrid deep learning framework integrating brain connectivity and
activity (HDLFCA)—As shown in Fig. 1B, we proposed a Hybrid Deep Learning
Framework integrating brain Connectivity and Activity (HDLFCA) to enhance the
performance for brain disorder classification by taking advantage of both temporal
coherence and dynamic neuroimaging information. In the first stage, different DL

models were designed to characterize heterogeneous features and leverage complementary
information between TCs and FNC. Specifically, we used the C-RNNAM to capture
time-varying fluctuations in fMRI time series, with the attention module integrated to
automatically extract the most discriminative TCs. Meanwhile, we used DNN to learn
functional interaction between ICs, where LRP was performed to identify the most group-
discriminative FNC patterns. In the second stage, the outputs from the above two models
were concatenated to create a new feature matrix to train a logic regression, whose output
is the final decision. 10-fold cross-validation was conducted to evaluate the performance of
models. The implementation details were depicted in section 2.6.
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2.5.2. Convolutional recurrent neural network with attention module (C-
RNNAM)

1) Overview: As shown in Fig. 1C, the C-RNNAM petwork consists of an attention
module, three 1D convolutional layers with different kemel sizes, one concatenation layer,
one max pooling layer, two gated recurrent unit (GRU) layers, and a fully connected
layer. The processed TCs were fed to the C-RNNAM network to generate the intermediate
prediction P; € R™¥1 where N is the number of training samples.

Although RNN has great power in sequence modeling, it is still challenging for it to deal
with high dimension spatiotemporal fMRI data with lots of redundant information. To solve
this problem, we first used Conv1D layers as an ‘encoder’ to learn correlations between
brain regions, followed by max-pooling layer. The Conv1D layers extract local information
from neighboring time points in the space dimension and the pooling layer downsample
data in the time dimension (Roy et al., 2019; Yan et al., 2019). Considering the brain
dynamics at different timescales can capture distinct aspects of human behavior (Liegeois

et al., 2019), we expanded simple convolution layers by applying multiple ConvlD layers
with different kernel sizes so that the next stage would aggregate dynamic brain activity
from multiple time scales simultaneously. Since the filter lengths vary exponentially rather
than linearly (Szegedy et al., 2015), we set the size of three convolutional filters as 32x2x50
(number of filters x time scales x ICs), 16x4x50 and 16x8 x50, resulting in three feature
maps with a size of 170x32 (time scalesx ICsxnumber of filters), 170x16 and 170x16
respectively. A concatenation layer was followed to integrate features with different time
scales. Furthermore, a max-pooling layer was performed to downsample along the time axis
with 3x1 kernel size, resulting in 56x64 features (time points =feature dimension) as the
input of GRU layers.

Considering the brain activity is characterized by long-range temporal dependence such that
signal fluctuations at the present time influence signal dynamics up to several minutes in the
future (Dhamala et al., 2020; Guclu and van Gerven, 2017), while conventional RNNs often
fail to learn long-term dependencies due to the gradient exploding and vanishing problems
during the back-propagation (Bengio et al., 1994). Therefore, we proposed to utilize GRU
layers to learn useful representations of brain activity patterns, which can mitigate the
gradients problem by controlling information flow with gating mechanisms (Roy et al.,
2019). In this study, two GRU layers were stacked in the HDLFCA to capture both short-
and long-term dependencies in BOLD time series. It is worth noting that each GRU layer
was densely connected to the other GRU layers to mitigate the degradation problem, which
provided short-cut paths during back-propagation (Huang et al., 2017). The size of hidden
states units was set as 32. To make full use of brain activity throughout the scan, the GRU
outputs were further averaged, and two fully-connected layers were followed to give the
intermediate prediction, which was then concatenated for the final decision.

2) Attention Module: The attention module was proposed to increase representation
power and improve interpretability by focusing on important brain regions and suppress
unnecessary ones. The schematic of attention module is illustrated in Fig. 1C. Given the
previously processed TCs X € R179%30 a5 input, where 170 and 50 are the number of time
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points and ICs, the attention module generated an attention map M(X) € R591*1- The
attention process can be defined as follows:

X' =BM(X)® X

where ® denotes element-wise multiplication and B() denotes broadcast operations : the
attention values M(X) was copied along time dimension accordingly and then reshaped into
the same size with X "is the refined feature.

To construct the attention module, TCs inputs were reshaped into a matrix of size 50x1x170.
The average-pooling calculates the mean value of all elements in the pooling region, and
may reduce the contrast of the new feature map, while max-pooling only uses the maximum
element and ignores the others, which may be useful for classification tasks (Yu et al.,
2014). Therefore, we adopted both of these along the time axis to learn temporal statistics
and aggregate temporal information fully (Woo et al., 2018). After that, two temporal
context descriptors: FM¥and /2V&, which denote max-pooled features and average-pooled
features respectively, were generated and were concatenated to produce an efficient feature
descriptor. We applied a convolution layer and sigmoid activation to produce an attention
map. Note that the size of filter is 501, which has the same dimension as the number of ICs
rather than a smaller size to extract global relations among ICs. And the number of filters

is 50, each of them was responsible for learning the importance of one IC. Integrated in the
unified framework, the attention map tells ‘which region’ is an informative part, namely, the
greater the weight of the attention map, the higher the discrimination power of the brain
region. To sum up, the attention module can be denoted as follows:

M(X) = o(conv([AvgPool(X); MaxPool(X)]))
= u(conU(FaUg; Fmax»

where o is the sigmoid function.

2.5.3. Deep neural network (DNN)—Given the FNC as input, the deep neural network
was applied to learn high-level hierarchical feature representation and give the intermediate
prediction P, € RN*1, DNN was composed of one input layer, two hidden layers, and one
output layer. The size of hidden notes was set 32 and 16 respectively. L, norm regularization
and dropout strategies were used to avoid overfitting as reported in (Srivastava et al., 2014).

Based on the trained models, LRP was introduced to identify important FNC patterns for
classification decisions, and it decomposed the prediction of DNN over a test sample down
to relevance scores for the single input dimensions such as each FNC here. Supposing there
arelayers in total, the relevance of output neuron can be obtained in a feed-forward fashion:
RiM = fx). B— rule was performed to compute the propagation of relevance from layer /+
1 to layer /
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where z,~+j and zj; denotes positive and negative activations respectively. b}' and b; denote

the positive and negative part of the bias item b; - R}l D and Rl(c_lj D denotes the relevance

of a neuron jat layer /+ 1, and message between neurons 7 at the layer /and neurons iat
layer /+ 1 respectively. S controls how much inhibition is incorporated into the relevance
redistribution. Then the relevance of a neuron 7at layer /was defined by summing messages
from neurons at layer/+ 1:

Rl(l) _ R(l,l +1)

i<

jed+1

Therefore, the relevance scoreR {1 of each FNC was determined by this rule. For more
details on LRP, please refer to (Bach et al., 2015).

2.6. Implementation details

The HDLFCA was implemented via nested cross-validation using the Keras package
(https://keras.io/). In each one of the 10 fold experiment, the 3-fold cross-validation was
performed further to avoid overfitting. Specifically, training data was divided into three folds
further in the training stage, where two folds were used for training and validation, and

the remaining one was used for prediction. After 3-fold cross-validation, predictions from
three DNN models were concatenated to constitute intermediate prediction P1 and so does
C-RNNAM to generate P2, which were used for the final decision. In the testing stage, the
outputs of three DNN models and three C-RNN models were first averaged respectively,
then two predictions were concatenated to build the final decision by logistic regression. The
procedures of the training and testing phase were illustrated in Fig. S4. An implementation
for HDLFCA is available at https://github.com/minzhaoCASIA/HDLFCA.

The C-RNN model was trained by the Adam optimizer with an initial learning rate of 0.001
and decayed with the rate of 0.01. Dropout (0.5) and L; ,-norm regularization (L1 = 0.0001,
L2 =0.0001) were performed to control weight sparsity. The batch size was set at 64. The
DNN model was trained with the cross-entropy loss by the Adam optimizer with an initial
learning rate of 0.001. The performance of methods was evaluated by five metrics including
accuracy (ACC), specificity (SPE), sensitivity (SEN), F1-score (F1) and area under the
receiver operating characteristic curve (AUC). The performance of different algorithms was
compared via a two-sample t-test.
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3. Results

3.1.

Multi-site pooling classification

Ten-fold multi-site pooling experiments were conducted to evaluate classification
performance, where fMRI data from all sites were pooled together and ten-fold cross-
validation was performed. All experiments were repeated 10 times to generate mean and
standard deviations of metrics. We compare HDLFCA with eight competing methods on
both In-House and ABIDE datasets. The quantitative results in the task of classification are
reported in Table 2, Table 3 and Fig. 2.

As shown in Fig. 2, first, the HDLFCA reported a mean classification accuracy of 85.3%
and 72.4% on In-House and ABIDE datasets, indicating a significant improvement over

the other classical classifiers (p<0.01). For instance, HDLFCA achieved an improvement

of 8.9%, 8.3% and 3.8% in ACC compared with Random Forest, AdaBoost and SVM,
respectively on In-House datasets. This implied the significant effectiveness of learning
high-level, “deep” features from fMRI data. Second, compared with BrainNetCNN, DNN,
C-RNN and C-RNNAM that adopted features of either FNC or TC only, the proposed
HDLFCA that exploits complementary information between them led to a better diagnostic
performance on two datasets. For example, in terms of ACC, an improvement of 5.2%,
4.4%, 2.8% and 1.8% was achieved on HC-SZ datasets respectively, and an improvement of
3.9%, 2.0%, 3.3% and 3.0% was achieved for ABIDE datasets, suggesting the necessity and
validity of integrating functional dependency between brain regions and temporal dynamics
of brain activity. 7hird, the comparative performance of C-RNNAM and C-RNN in SZ
classification showed that C-RNNAM achieved an improvement of about 1% in terms of
ACC, SPE, SEN and F1 values, demonstrating that incorporation of discriminative IC
localization and disease classification into a unified framework boosts the final performance.
It should be noted that although the attention module identified the discriminative ICs as
well as improved performance, it did not cause an increase in model complexity. Forth, our
HDLFCA outperformed the connectivity-based graph convolutional network (cGCN) (Wang
et al., 2021) significantly on two datasets as well, which also used TCs and FCs to extract
similar connectome features.

Furthermore, to validate the generalizability of HDLFCA, we reproduce the experiments
based on TCs obtained from Automated Anatomical Labeling (AAL) template instead of
ICA, where the mean regional TCs were calculated by averaging the voxel-wise fMRI time
series in each of brain regions of interests (ROI). Pearson’s correlation between TCs of each
pair of ROIs was calculated, yielding a symmetric connectivity matrix of 116x116. The
results were reported in Table S5 and Fig. 2C. We can draw a similar conclusion as above.
Particularly, HDLFCA outperformed single feature-based deep learning models (i.e., DNN,
C-RNN and C-RNNAM) Jargely, demonstrating the superiority of utilizing complementary
information between FNC and TCs. The attention module also yielded better classification
performance (3.6% in ACC) compared with C-RNN. The HDLFCA based on ICA showed a
little better performance (85.3%) than fixed AAL (84.9%), this is likely due to the ability of
ICA to capture variability in the components among subjects.
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3.2. Leave-one-site-out classification

In the leave-one-site-out transfer classification, one imaging site was considered as the
testing dataset while the other sites were used for training, with 10% of the samples chosen
randomly for validation in the HDLFCA. The quantitative results on In-House dataset
were shown in Table 4, Table S3 and Fig. 2C. We can draw a similar conclusion as

that in Section 3.1. That is, compared with the conventional machine learning approaches
(i.e., Random Forest, AdaBoost and SVM), the proposed HDLFCA largely improved the
diagnostic performance, suggesting that automatically learning high-level fMRI features is
beneficial for SZ classification. Besides, HDLFCA resulted in ACC improvement at 5.7%,
4.7%, 3.9%, and 2.6% respectively compared to single-feature-based deep learning models
(i.e., BrainNetCNN, DNN, C-RNN and C-RNNAM). This demonstrated the superiority of
integrating FNC and TCs. In addition, from the Table 4, the embedded attention module
still yielded better classification performance, which is consistent with the results reported
in Section 3.1. It further indicated that it not only identified the discriminative ICs but

also improved the classification performance. The HDLFCA still outperformed cGCN,
suggesting our method are more powerful to capture functional connectivity and dynamic
brain activity underlying the fMRI data.

3.3. Most HC-SZ discriminative FNC

The contribution of each FNC was rendered using the LRP algorithm by propagating the
correlation layer by layer. The top 50, 70 and 100 contributing FNC features in the task

of SZ diagnosis were presented in the circle diagram (Fig. 3A), where the 50 ICs were
divided into eight functional networks (Fig. S1). The discriminative FNC showed diffuse
patterns widely across the entire brain, implying widely impaired brain regions in SZ
patients. Despite the complexity, we observed that default-mode networks with connections
to frontal, and attentional networks shared a high proportion in the top 50 contributing
connectivity, which are reported to be highly associated with SZ. In Fig. 3A, the comparison
of top 50 and top 70 contributing FNC revealed a substantial increase in connections

within visual networks. Connections between frontal and default mode networks, frontal and
attention networks, and connections within visual networks indicated the most contributing
influence when presenting the top 100 contributing FNC, suggesting that schizophrenia is
characterized by impairments in high-level cognitive and emotional processing circuits.

3.4. Most discriminative independent components captured by attention module

The attention module can automatically identify discriminative brain regions by learning
which regions to focus or suppress. An attention value map with a 50x1x1 size was
obtained for each subject and the mean attention map was generated by averaging them,
where a higher value indicates the greater discrimination power of the IC. To obtain more
robust imaging markers, we repeated the 10-fold cross-validation experiments 10 times
(10*10 trained models in total) and counted the frequency of the top 10 discriminative ICs.
Fig. 3B displays the frequency distribution histogram, where only ICs with an occurring
frequency greater than 10% are shown. Fig. 3B also displays the spatial maps of the

top 10 discriminative ICs, in which the striatum, cerebellum and anterior cingulate were
highlighted as the three most SZ-discriminating ICs by the attention module, suggesting
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that the attention scheme can effectively extract useful information from whole-brain fMRI
features. It should be noted that Fig. 3B presents the group-discriminative ICs by averaging
the attention maps for each subject, but they are not totally the same across all subjects,

for example, the same ICs may be emphasized differently, implicating the potential for
individualized localization of brain regions.

3.5. Comparison with dynamic FNC features(dFNC)

Since dFNC also simultaneously characterized functional dependency and temporal
dynamics of spontaneous BOLD signal, we also compared other deep learning methods
using dFNC with our proposed HDLFCA, which also integrated dynamic FCs and TCs

to improve classification performance. The dFNC was computed by the sliding window
method in steps of 1 TR. We conducted multiple experiments under different settings, where
the window length varies from the 30s to 70s at intervals of 10s (15-35 TR). A comparison
of classification performance was reported in Table 5. More details are available in the
supplementary materials (Table S4 and Figure S2).

From Table 5 and Table S4, we can observe that the proposed HDLFCA outperformed

the best performing dFNC-based DL methods in all metrics significantly (p<0.01). For
instance, in terms of ACC, HDLFCA achieved an improvement of 4.6%, 4.9%, 4.5% and
5.5% compared with the best results achieved by LSTM, BiLSTM, GRU, and C-LSTM
respectively, suggesting the superiority of our method. The lower performance of C-LSTM
compared to LSTM may be attributed to the high dimension of the FNC vector (1225,
compared to 50 in previous TC-based methods), which largely increased the parameters of
the model. Furthermore, GRU based on dFNC outperformed the same neural network based
on TCs significantly, which only contains temporal dynamics of brain activity, suggesting
the effectiveness to integrate brain connectivity and activity of rs-fMRI data.

3.6. Comparison with different DL architectures

In this section, we compared the proposed C-RNNAM with eight alternative deep learning
models in multi-site pooling experiments on In-House datasets. The results were reported in
Table 6. Considering the great power in sequence modeling of RNN and the rich temporal
dynamics of brain activity in time series of BOLD-signal, we first directly applied simple
RNN and GRU in the same settings to classify brain disorders. The results showed the
GRU models achieved an improvement of 23.6% in ACC, possibly because simple RNN

is difficult to learn long-term dependencies due to the vanishing and exploding gradient
problem (Bengio et al., 1994) and the brain activity is characterized by long-range temporal
dependence such that signal fluctuations at the present time influence signal dynamics up
to several minutes in the future (Dhamala et al., 2020; Guclu and van Gerven, 2017). The
C-RNN further outperformed GRU and C-MLP, potentially because the convolutional and
GRU layers were responsible for capturing spatial and temporal information respectively.
The C-RNN with multi-scale convolution kernel size outperformed the S C-RNN with
single-scale convolution kernel, suggesting that extracting dynamics from a variety of
timescales is useful in fMRI data.
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Moreover, we designed 4 variants of attention mechanism integrated into C-RNN models.
The architectures were illustrated in Fig. S5. Specifically, C-RNNAM achieved a light
increase compared with AM 1, suggesting capturing global relations between brain
networks is more effective than local relations. AM_3 performed worse than others, showing
that the emphasizing important brain regions play an essential role in brain disorder
classification.

4. Discussion

In this study, we proposed a novel unified DL framework by integrating temporal coherence
and dynamics effectively to classify brain disorders. The classification accuracy of 85.1%
and 81.0% were achieved in multi-site pooling and leave-one-site-out respectively in the
task of HC-SZ discrimination. Moreover, when using publicly accessible ABIDE dataset,
ACC of 72.4% was achieved in the multi-site pooling classification of HC vs. ASD, which
significantly outperformed multiple single feature-based methods. The competitive result

is comparable to, if not better than, the recent studies on large multi-site fMRI datasets
(Kim et al., 2016; Yan et al., 2019; Zeng et al., 2018). Additionally, LRP and an attention
module were introduced to identify the most discriminative FNC patterns and brain regions
for SZ. To the best of our knowledge, this is the first attempt to integrate identification of
discriminative brain regions and diagnosis of brain disorders into a unified framework based
on fMRI data using an attention mechanism-based network.

Recently, numerous studies have applied deep learning methods for SZ classification and
achieved high performance. Compared with previous studies (Dakka et al., 2017; Rozycki
et al., 2018; Skatun et al., 2017), this work achieved an improvement (>5.0%) in accuracy
on multi-site pooling and leave-one-site-out classification. The promising results may derive
from the following aspects: First, we combined different powerful deep learning models

to leverage complementary information between TCs and FNC, where the TCs neglects

the functional dependency between brain regions and FNC discards sequential temporal
dynamics. The experimental results demonstrated the superiority of combing multiple
features. Second, the attention module helps to refine and optimize feature representation
by focusing on more important brain regions instead of the full feature. The experimental
results also showed the attention module improved classification performance. Third, since
the convolutional neural network (CNN) is ‘deep in space’ and RNN is ‘deep in time’, both
of them were applied to make full use of the spatial and temporal information underlying
the spontaneous BOLD signal. Furthermore, to validate the superiority of our method, the
HDLFCA was compared with other deep learning methods based on dFNC, which also
takes dynamic fluctuation and temporal coherence into consideration. Our method achieved
an improvement (>4.0%) of average accuracy. Importantly, the goal of our method is not
only to focus on high performance, but also to provide results that are interpretable and
provide insight into the brain. The attention module provides an effective way to explore
underlying biomarkers in DL methods. It allows for the integration of discriminative ICs
localization and SZ diagnosis into a unified framework, since the isolated informative
region identification may lead to suboptimal performance. What’s more, the discriminative
ICs are not totally the same across all subjects, showing the importance of individualized
localization of brain regions associated with schizophrenia.
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The results revealed that the attention module highlighted brain regions at the locations

of the striatum, cerebellum and anterior cingulate. The striatum, including putamen and
caudate, has been proved to play a vital role in the pathophysiology of schizophrenia (Yan
et al., 2019). Compelling evidence has shown that the striatum was involved in cognition
domains, including motor, decision-making, and stimulus-response learning (Yager et al.,
2015). Recently, numerous findings converged on evidence for both an increase in striatal
dopamine and striatal dopamine receptors. The dopaminergic hyperfunction in the striatum
may contribute to cognitive deficits in SZ (McCutcheon et al., 2019). Moreover, the
increase of D2 receptors was found to be predictive for treatment response and the popular
antipsychotics usually blocks the dopamine D2 receptors in the striatum (Li et al., 2020;
Sarpal et al., 2016). Another highlighted component was the cerebellum. Many studies
showed significant evidence for cerebellar abnormalities in SZ, such as impairment white
matter integrity and blood flow decrease in the cerebellum during cognition tasks(Andreasen
and Pierson, 2008; Kim et al., 2014; Luo et al., 2018; Yan et al., 2021). In addition,

the other important component identified by attention module was located in the anterior
cingulate cortex (ACC). Previous studies have demonstrated that a failure of functional
ACC is associated with disturbed cognitive control and working memory deficits in SZ
greatly (Fletcher et al., 1999; Fletcher et al., 1996) and SZ patients exhibit significantly
reduced ACC activation (Schultz et al., 2012). Overall, the most group discriminative brain
regions can be easily traced back with convincing biological interpretability, implying that
the attention module emphasized important ICs effectively and our method showed great
promise to identify potential imaging biomarkers.

Although the proposed HDLCD achieved high performance in discriminative ICs
localization and psychotic disorder classification, several limitations should be considered in
the future. First, C-RNNAM and DNN were trained independently and then their predictions
were fed into meta-learner to utilize complementary information between TCs and FNC,
which makes the later fusion stage couldn’t help refine feature representations in the

first stage. A promising direction is to integrate the two stages into a purely end-to-end
framework to provide complementary guidance for each other. Second, static FNC as the
most commonly used functional connectivity feature, was combined with brain activity
(TCs) as input features in this work. Nevertheless, it is interesting to investigate whether
combining dynamic connectivity and brain activity can further advance classification
performance in the future.

5. Conclusions

In this work, we proposed HDLFCA, a unified framework that takes fully advantage

of temporal coherence (FNCs) and time-varying fluctuations (TCs) jointly to classify
psychiatric disorders based on rs-fMRI data. The method was validated on both In-House SZ
dataset (n = 1100) and the public ABIDE datasets (n = 1552), with 2.8-8.9% increase
compared to 12 popular classifiers, suggesting the superiority of combining multiple
features. To the best of our knowledge, this is the first attempt to introduce an attention
module into a C-RNN based framework to improve the classification performance and
automatically identify discriminative brain regions. Such a method shows the potential
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for deep learning to provide utility for both predicting and understanding the healthy and
disordered brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A. Feature Selection| C. The framework of the C-RNN with attention module(C-RNNAM)
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Fig. 1.

T}%e framework of the proposed HDLFCA in psychotic disorder classification. (A) Data
preprocessing and Feature extraction. TCs was obtained by decomposing fMRI data

using GIG-ICA, and FNCs was estimated from the TCs. (B) Overview of our proposed
HDLFCA. C-RNNAM and DNN were used to characterize temporal dynamics in TCs

and learn functional dependency between brain regions respectively. Then their predictions
were concatenated to build a new feature matrix, generating the final decision by

logistic regression. For model interpretability, attention module and layer-wise relevance
propagation (LRP) were applied to identify the most discriminative ICs and FNC patterns
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respectively. (C) Details of the C-RNNAM- [t consists of an attention module, multiple

1D convolutional (Conv1D) layers, one concatenation and max pooling layer, two gated
recurrent unit (GRU) layers and a fully connected layer. The purple frame shows the scheme
of the attention module, which is trainable along with other modules. The greater the weight
of the attention map, the more important the component was. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 2.

T}%e classification results of (A) multi-site pooling classification in in-house SZ datasets,
(B) multi-site pooling classification in public ABIDE datasets, (C) multi-site pooling
classification based on TCs or FNCs extracted by AAL atlas in in-house SZ datasets,

and (D) leave-one-site-out classification in HC-SZ datasets. */** denote that the proposed
HDLFCA method achieves significantly better performance than the listed ones, with P
value=0.05/0.01.
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Fig. 3.

T}%e most HC-SZ discriminative features localization. (A) Illustration of the top 50, 70 and
100 contributing functional network connectivities identified by LRP. Connections between
frontal network and default mode networks, frontal network and attention networks, and
connections within visual networks indicate the most contributing influence, suggesting
that schizophrenia is characterized by impairment in high-level cognitive and emotional
processing circuits. (B) The frequency distribution histogram of top 10 ICs identified by
attention module in 100 experiments. The striatum, cerebellum, anterior cingulate stand out
as the top three most discriminating brain regions. Putamen-4 represents the ICs showing
subcortical regions such as caudate and putamen (striatum). The spatial maps of all 50 ICs
were displayed in Figure S1.
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Demographic information of datasets.

Mean+SD Sz HC P-value
Number 558 542 NA
Age 27.6+7.1 28.0+7.2  0.06
Gender(M/F) 292/266 276/266  1.96
PANSS positive ~ 23.9+4.2 NA NA
PANSS negative  20.1£5.9  NA NA
PANSS general ~ 39.7+7.2 NA NA
PANSS total 83.6£12.3 NA NA

Notes: P-value: the significance value of two sample t-test. NA: not applicable.
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