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Abstract
Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic 
disorders can be decomposed into useful imaging features such as time courses (TCs) of 
independent components (ICs) and functional network connectivity (FNC) calculated by TC 
cross-correlation. TCs reflect the temporal dynamics of brain activity and the FNC characterizes 
temporal coherence across intrinsic brain networks. Both features have been used as input 
to deep learning approaches with decent results. However, few studies have tried to leverage 
their complementary information to learn optimal representations at multiple facets. Motivated 
by this, we proposed a Hybrid Deep Learning Framework integrating brain Connectivity and 
Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) 
and deep neural network (DNN), aiming to improve classification accuracy and interpretability 
simultaneously. Specifically, C-RNNAM was proposed to extract temporal dynamic dependencies 
with an attention module (AM) to automatically learn discriminative knowledge from TC nodes, 
while DNN was applied to identify the most group-discriminative FNC patterns with layer-wise 
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relevance propagation (LRP). Then, both prediction outputs were concatenated to build a new 
feature matrix, generating the final decision by logistic regression. The effectiveness of HDLFCA 
was validated on both multi-site schizophrenia (SZ, n ~ 1100) and public autism datasets (ABIDE, 
n ~ 1522) by outperforming 12 alternative models at 2.8–8.9% accuracy, including 8 models 
using either static FNC or TCs and 4 models using dynamic FNC. Appreciable classification 
accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More 
importantly, the most group-discriminative brain regions can be easily attributed and visualized, 
providing meaningful biological interpretability and highlighting the great potential of the 
proposed HDLFCA model in the identification of valid neuroimaging biomarkers.
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1. Introduction
Functional magnetic resonance imaging (fMRI) has been a promising tool to provide novel 
insights into the brain function abnormalities of psychotic disorders (Andreou, 2020). Based 
on multivariate decomposition such as independent component analysis (ICA) (Du and Fan, 
2013), useful imaging features such as independent components (ICs), their corresponding 
time courses (TCs) and functional network connectivity (FNC) (Calhoun and Adali, 2006; 
Jafri et al., 2008; Smith et al., 2009) can be easily extracted and widely used in studies 
of mental disorders (Fig. 1 A). Specifically, TCs reflect the temporal fluctuations of each 
IC, i.e., the spatially distinct brain regions, while FNC characterizes the temporal coherence 
across the selected ICs by correlating their TCs, representing the intrinsic connectivity 
networks (Calhoun and Adali, 2012; Seeley et al., 2007; Supekar et al., 2009). Both features 
have been widely used in brain disorder comparison and classification.

On the other hand, with the ability to characterize discriminative patterns and learn optimal 
representations automatically from neuroimaging data, deep learning (DL) methods have 
received growing attention in fMRI-based diagnosis of mental disorders. One of the most 
commonly used DL input features is functional (network) connectivity calculated based 
on either a brain atlas or ICA (Du et al., 2018). For example, Kim et al. trained a deep 
neural network (DNN) based on FNC, with L1-norm to monitor weight sparsity, achieved 
substantial performance improvement (Kim et al., 2016). Zeng et al. presented a sparse 
autoencoder to learn imaging site-shared FCs, which was then used to guide SVM training 
on multi-site datasets for schizophrenia (SZ) diagnosis (Zeng et al., 2018). Similarly, in 
order to exploit the wealth of temporal dynamic information in BOLD signals, recurrent 
neural networks (RNN)-based approaches have also been proposed to work on fMRI time 
series. Particularly, Yan et al. proposed multi-scale RNN on the TCs (Yan et al., 2017) 
and Dakka et al. adopted a recurrent convolutional neural network (R-CNN) on 4-D fMRI 
recordings at the whole-brain voxel level (Dakka et al., 2017) to distinguish patients with SZ 
from healthy controls (HCs). Moreover, dynamic FNC (dFNC) has also been adopted with 
or without combining with static FNCs to discriminate brain disorders, which can further 
improve prediction accuracy (Cetin et al., 2016; Du et al., 2017; Rashid et al., 2016).
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However, despite the significant advances in fMRI-based classification, the complementary 
information between spatial-temporal coherence (FNC) and temporal dynamics of brain 
activity (TCs) have not been fully leveraged to take advantage of fMRI data. To our 
knowledge, there are no deep models yet combining both functional connectivity and 
activity as input features. To address this issue, we are motivated to propose a Hybrid 
Deep Learning framework integrating brain Connectivity and Activity (HDLFCA) together 
by combining DNN and C-RNN (convolutional recurrent neural network), aiming to 
enhance the classification performance for brain disorders by capitalizing on multi-domain 
neuroimaging information. The prediction outputs of the two neural networks were then 
concatenated to build a new feature matrix, generating the final decision by logistic 
regression (Fig. 1B).

Another point that needs to mention is the lack of interpretability of DL methods, which 
often limited their use in clinical contexts due to the ‘black-box’ nature of deep layers 
(Kohoutová et al., 2020). To this end, the attention mechanism, inspired by human 
perception, was developed to improve the interpretability of DL models, and has been 
employed in various medical imaging data mining cases. For instance, Lian et al. developed 
an attention-guided DL framework for dementia diagnosis (Lian et al., 2020), including 
a full CNN to localize the discriminative regions and a hybrid network to fuse multi-
level spatial information. Similarly, Jin et al. proposed an attention-based 3D CNN for 
Alzheimer’s disease diagnosis (Jin et al., 2020). However, most existing attention-guided 
DL studies focused on structural images such as structural MRI (sMRI) and Computed 
Tomography (CT) (Chen et al., 2020; Dong et al., 2019; Lei et al., 2020), less attention 
has been paid to fMRI data due to its higher dimensionality. In this work, we propose two 
schemes to improve the interpretability: 1) to develop an attention-guided C-RNN for TCs, 
i.e., C-RNNAM, which enables learning of temporal dynamics and identification of the most 
discriminative TC nodes (ICs) integrated into a unified framework (Fig. 1C). 2) In parallel, 
layer-wise relevance propagation (LRP) was applied to DNN layers, searching for the most 
discriminative FNC patterns. Taken together, the most contributing fMRI features for group 
discrimination were identified and visualized, improving the whole model interpretability.

To validate the effectiveness of our proposed method, HDLFCA, rigorous comparisons 
have been made with 12 popular methods. Specifically, we compared with 8 alternative 
models based on static FNC or TCs and 4 DL methods using dynamic FNC, which 
also characterized functional connectivity and dynamics of BOLD signals simultaneously. 
These tests were performed using In-House multi-site dataset (558 SZ and 541 HCs) 
and public ABIDE datasets (743 ASD and 779 HCs). Experimental results showed our 
method outperformed 12 alternative models by 2.8–8.9%, achieving SZ-HC classification 
accuracy at 85.1% and 81.0% for the multi-site pooling and leave-one-site-out respectively, 
and 72.4% for ABIDE dataset with multi-site pooling. More importantly, the most 
group discriminative brain regions can be easily traced back with convincing biological 
interpretability, suggesting the great promise of HDLFCA to identify potential imaging 
biomarkers.
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2. Materials and methods
2.1. Participants

For In-House dataset, participants (558 schizophrenia patients and 542 HCs) were recruited 
from 7 hospitals, including Peking University Sixth Hospital (PKU6), Beijing Huilongguan 
Hospital (HLG), Xinxiang Hospital Simens (XX#1), Xinxiang Hospital GE (XX#2), Xijing 
Hospital (XJ), Renmin Hospital of Wuhan University (RWU) and Zhumadian Psychiatric 
Hospital (ZMD). Demographic and clinical information of subjects were listed in Table 1 
and Table S1. All patients with SZ are diagnosed by experienced psychiatrists using the 
Structured Clinical Interview for DSM-IV-TR Disorders. All HCs are interviewed using 
the SCID-Non-Patient Version and excluded if their first-degree relatives had any psychotic 
disorders. Besides, none of the participants had neurological disorders, substance abuse or 
dependence, pregnancy, and prior electroconvulsive therapy or head injury resulting in loss 
of consciousness. The severity of positive and negative symptoms was assessed according 
to PANSS scores. Two sample t-test and Chi-square test were performed to measure the 
difference of age and gender between HCs and patients respectively. This study has been 
approved by the ethical committees and all subjects provided written informed consent, 
including permission to share data between centers.

For public ABIDE dataset (743 patients with ASD and 779 HCs), the detailed demographic 
information of datasets was listed in Table S14.

2.2. Image acquisition
For all sites in In-House datasets, scanning parameters are as follows: repetition time (TR) 
= 2000 ms; echo time (TE) = 30 ms; flip angle (FA) = 90°; field of view (FOV) = 220 
× 220mm; matrix = 64 × 64; slice thickness = 4 mm; gap = 0.6 mm; slices = 33. The 
resting-state fMRI data were collected on a 3T Tim Trio scanner (Siemens) in PKU6, HLG 
and XJ sites, Verio scanner (Siemens) in XX#1 site, 3T Signa HDx GE scanner (General 
Electric) in the other sites. Subjects were instructed to lie still, keep their eyes closed, stay 
awake, and minimize head movement with foam padding and earplugs. Details of all sites 
were listed in Table S2.

2.3. Data preprocessing
All resting-state fMRI data were preprocessed with the same procedures as we did in Liu 
et al. (2019) using the SPM software package (http://www.fil.ion.ucl.ac.uk/spm/). The first 
ten volumes of each scan time series were discarded for magnetization equilibrium. The 
following processing pipeline was then performed: 1) slice timing correction to the middle 
slice; 2) motion correction to the first image; 3) normalization into the standard Montreal 
Neurological Institute (MNI) space, and resliced to 3×3×3 mm; 4) denoising and spatially 
smoothing using an 8 mm full width half max (FWHM) Gaussian kernel.

To control the effects of motion artifacts, each subject has been evaluated with a maximum 
displacement that did not exceed ± 3 mm (translation) or ± 3° (rotation). The group 
difference in the mean framewise displacement (FD) between HC and SZ groups was not 
significant (HC: 0.137 ± 0.071, SZ: 0.142 ± 0.085, two-sample t-test: p = 0.98).
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2.4. Feature extraction
Imaging data were decomposed into spatial functional networks and back-reconstructed 
using Group-guided independent component analysis (GIG-ICA) (Calhoun et al., 2001; Du 
et al., 2016; Du and Fan, 2013; Du et al., 2020) in the GIFT software (http://trendscenter.org/
software/gift). We chose a high model order ICA (number of components = 100) to 
decompose the functional networks showing temporally coherent activity as our previous 
work (Luo et al., 2020; Zhi et al., 2018). For subject-level data, 150 principal components 
were retained by principal component analysis (PCA). For group-level data, acquired by 
concatenating subject data across time, 100 principal components were retained using 
PCA again. Afterward, the Infomax ICA algorithm was repeated 20 times using ICASSO 
followed by selection of the most representative result, to improve the reliability of the 
decomposition, resulting in 100 stable group ICs (Du et al., 2014; Yan et al., 2021). 50 ICs 
were further selected and characterized as intrinsic connectivity networks, which showed 
higher low-frequency spectral power and presented minimal overlap with white matter, 
ventricles, and edge regions (Allen et al., 2011). The 50 spatial maps are sorted into eight 
domains as listed in Fig. S1. Furthermore, subject-specific time courses and spatial maps 
were back-reconstructed using GIG-ICA (Du et al., 2016; Du and Fan, 2013). The following 
additional post-processing steps were performed on the selected component TCs: linear, 
quadratic and cubic detrending, regressing out six realignment parameters and their temporal 
derivatives, despiking, and low-pass filtering (<0.15 Hz).

As shown in Fig. 1, the subject-level TCs with a size of 50×170 (ICs × time points) are 
used as the input of the RNN-based model. Pearson’s correlation between TCs of each pair 
of ICs was calculated, yielding a symmetric connectivity matrix of 50×50. The FNC matrix 
was further reshaped into a vector with a dimension of (50 × 49)/2 = 1225 using the upper 
triangle elements, which were used as input features of DNN.

2.5. Methods

2.5.1. Hybrid deep learning framework integrating brain connectivity and 
activity (HDLFCA)—As shown in Fig. 1B, we proposed a Hybrid Deep Learning 
Framework integrating brain Connectivity and Activity (HDLFCA) to enhance the 
performance for brain disorder classification by taking advantage of both temporal 
coherence and dynamic neuroimaging information. In the first stage, different DL 
models were designed to characterize heterogeneous features and leverage complementary 
information between TCs and FNC. Specifically, we used the C-RNNAM to capture 
time-varying fluctuations in fMRI time series, with the attention module integrated to 
automatically extract the most discriminative TCs. Meanwhile, we used DNN to learn 
functional interaction between ICs, where LRP was performed to identify the most group-
discriminative FNC patterns. In the second stage, the outputs from the above two models 
were concatenated to create a new feature matrix to train a logic regression, whose output 
is the final decision. 10-fold cross-validation was conducted to evaluate the performance of 
models. The implementation details were depicted in section 2.6.
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2. 5. 2. C o n v ol uti o n al r e c urr e nt n e ur al n et w or k wit h att e nti o n m o d ul e ( C-

R N N A M )

1)  O v e r vi e w:   As s h o w n i n Fi g. 1 C, t h e C- R N NA M  n et w or k c o nsists of a n att e nti o n 

m o d ul e, t hr e e 1 D c o n v ol uti o n al l a y ers wit h dif f er e nt k er n el si z es, o n e c o n c at e n ati o n l a y er, 

o n e m a x p o oli n g l a y er, t w o g at e d r e c urr e nt u nit ( G R U) l a y ers, a n d a f ull y c o n n e ct e d 

l a y er. T h e pr o c ess e d T Cs w er e f e d t o t h e C- R N NA M  n et w or k t o g e n er at e t h e i nt er m e di at e 

pr e di cti o n P 1  ∈  R N × 1 , w h er e N is t h e n u m b er of tr ai ni n g s a m pl es.

Alt h o u g h R N N h as gr e at p o w er i n s e q u e n c e m o d eli n g, it is still c h all e n gi n g f or it t o d e al 

wit h hi g h di m e nsi o n s p ati ot e m p or al f M RI d at a wit h l ots of r e d u n d a nt i nf or m ati o n. T o s ol v e 

t his pr o bl e m, w e first us e d C o n v 1 D l a y ers as a n ‘ e n c o d er’ t o l e ar n c orr el ati o ns b et w e e n 

br ai n r e gi o ns, f oll o w e d b y m a x- p o oli n g l a y er. T h e C o n v 1 D l a y ers e xtr a ct l o c al i nf or m ati o n 

fr o m n ei g h b ori n g ti m e p oi nts i n t h e s p a c e di m e nsi o n a n d t h e p o oli n g l a y er d ow ns a m pl e 

d at a i n t h e ti m e di m e nsi o n ( R o y et al., 2 0 1 9 ; Ya n et al., 2 0 1 9 ). C o nsi d eri n g t h e br ai n 

d y n a mi cs at diff er e nt ti m es c al es c a n c a pt ur e disti n ct as p e cts of h u m a n b e h a vi or ( Li e g e ois 

et al., 2 0 1 9 ), w e e x p a n d e d si m pl e c o n v ol uti o n l a y ers b y a p pl yi n g m ulti pl e C o n v 1 D l a y ers 

wit h diff er e nt k er n el si z es s o t h at t h e n e xt st a g e w o ul d a g gr e g at e d y n a mi c br ai n a cti vit y 

fr o m m ulti pl e ti m e s c al es si m ult a n e o usl y. Si n c e t h e filt er l e n gt hs v ar y e x p o n e nti all y r at h er 

t h a n li n e arl y (S z e g e d y et al., 2 0 1 5 ), w e s et t h e si z e of t hr e e c o n v ol uti o n al filt ers as 3 2 × 2 × 5 0 

( n u m b er of filt ers × ti m e s c al es × I Cs), 1 6 × 4 × 5 0 a n d 1 6 × 8 × 5 0, r es ulti n g i n t hr e e f e at ur e 

m a ps wit h a si z e of 1 7 0 × 3 2 (ti m e s c al es × I Cs × n u m b er of filt ers), 1 7 0 × 1 6 a n d 1 7 0 × 1 6 

r es p e ctiv el y. A c o n c at e n ati o n l a y er w as f oll o w e d t o i nt e gr at e f e at ur es wit h diff er e nt ti m e 

s c al es. F urt h er m or e, a m a x- p o oli n g l a y er w as p erf or m e d t o d o w ns a m pl e al o n g t h e ti m e a xis 

wit h 3 × 1 k er n el si z e, r es ulti n g i n 5 6 × 6 4 f e at ur es (ti m e p oi nts ×f e at ur e di m e nsi o n) as t h e 

i n p ut of G R U l a y ers.

C o nsi d eri n g t h e br ai n a cti vit y is c h ar a ct eri z e d b y l o n g-r a n g e t e m p or al d e p e n d e n c e s u c h t h at 

si g n al fl u ct u ati o ns at t h e pr es e nt ti m e i nfl u e n c e si g n al d y n a mi cs u p t o s e v er al mi n ut es i n t h e 

f ut ur e (D h a m al a et al., 2 0 2 0 ; G u cl u a n d v a n G er v e n, 2 0 1 7 ), w hil e c o n v e nti o n al R N Ns oft e n 

f ail t o l e ar n l o n g-t er m d e p e n d e n ci es d u e t o t h e gr a di e nt e x pl o di n g a n d v a nis hi n g pr o bl e ms 

d uri n g t h e b a c k- pr o p a g ati o n ( B e n gi o et al., 1 9 9 4 ). T h er ef or e, w e pr o p os e d t o utili z e G R U 

l a y ers t o l e ar n us ef ul r e pr es e nt ati o ns of br ai n a cti vit y p att er ns, w hi c h c a n miti g at e t h e 

gr a di e nts pr o bl e m b y c o ntr olli n g i nf or m ati o n fl o w wit h g ati n g m e c h a nis ms ( R o y et al., 

2 0 1 9 ). I n t his st u d y, t w o G R U l a y ers w er e st a c k e d i n t h e H D L F C A t o c a pt ur e b ot h s h ort- 

a n d l o n g-t er m d e p e n d e n ci es i n B O L D ti m e s eri es. It is w ort h n oti n g t h at e a c h G R U l a y er 

w as d e ns el y c o n n e ct e d t o t h e ot h er G R U l a y ers t o miti g at e t h e d e gr a d ati o n pr o bl e m, w hi c h 

pr o vi d e d s h ort- c ut p at hs d uri n g b a c k- pr o p a g ati o n ( H u a n g et al., 2 0 1 7 ). T h e si z e of hi d d e n 

st at es u nits was s et as 3 2. T o m a k e f ull us e of br ai n a cti vit y t hr o u g h o ut t h e s c a n, t h e G R U 

o ut p uts w er e f urt h er a v er a g e d, a n d t w o f ull y- c o n n e ct e d l a y ers w er e f oll o w e d t o gi v e t h e 

i nt er m e di at e pr e di cti o n, w hi c h w as t h e n c o n c at e n at e d f or t h e fi n al d e cisi o n.

2)  Att e nti o n M o d ul e:   T h e att e nti o n m o d ul e w as pr o p os e d t o i n cr e as e r e pr es e nt ati o n 

p o w er a n d i m pr o v e i nt er pr et a bilit y b y f o c usi n g o n i m p ort a nt br ai n r e gi o ns a n d s u p pr ess 

u n n e c ess ar y o n es. T h e s c h e m ati c of att e nti o n m o d ul e is ill ustr at e d i n Fi g. 1 C. Gi v e n t h e 

pr e vi o usl y pr o c ess e d T Cs X  ϵ  R 1 7 0 × 5 0  as i n p ut, w h er e 1 7 0 a n d 5 0 ar e t h e n u m b er of ti m e 
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points and ICs, the attention module generated an attention map M(X) ∈ R50×1×1. The 
attention process can be defined as follows:

X′ = B(M(X)) ⊗X

where ⊗ denotes element-wise multiplication and B(·) denotes broadcast operations : the 
attention values M(X) was copied along time dimension accordingly and then reshaped into 
the same size with X′ is the refined feature.

To construct the attention module, TCs inputs were reshaped into a matrix of size 50×1×170. 
The average-pooling calculates the mean value of all elements in the pooling region, and 
may reduce the contrast of the new feature map, while max-pooling only uses the maximum 
element and ignores the others, which may be useful for classification tasks (Yu et al., 
2014). Therefore, we adopted both of these along the time axis to learn temporal statistics 
and aggregate temporal information fully (Woo et al., 2018). After that, two temporal 
context descriptors: Fmaxand Favg, which denote max-pooled features and average-pooled 
features respectively, were generated and were concatenated to produce an efficient feature 
descriptor. We applied a convolution layer and sigmoid activation to produce an attention 
map. Note that the size of filter is 50×1, which has the same dimension as the number of ICs 
rather than a smaller size to extract global relations among ICs. And the number of filters 
is 50, each of them was responsible for learning the importance of one IC. Integrated in the 
unified framework, the attention map tells ‘which region’ is an informative part, namely, the 
greater the weight of the attention map, the higher the discrimination power of the brain 
region. To sum up, the attention module can be denoted as follows:

M(X) = σ(conv([AvgPool(X); MaxPool(X)]))
= σ conv Favg; Fmax

where σ is the sigmoid function.

2.5.3. Deep neural network (DNN)—Given the FNC as input, the deep neural network 
was applied to learn high-level hierarchical feature representation and give the intermediate 
prediction P2 ∈ RN×1. DNN was composed of one input layer, two hidden layers, and one 
output layer. The size of hidden notes was set 32 and 16 respectively. L2 norm regularization 
and dropout strategies were used to avoid overfitting as reported in (Srivastava et al., 2014).

Based on the trained models, LRP was introduced to identify important FNC patterns for 
classification decisions, and it decomposed the prediction of DNN over a test sample down 
to relevance scores for the single input dimensions such as each FNC here. Supposing there 
arelayers in total, the relevance of output neuron can be obtained in a feed-forward fashion: 
R1

(M) = f(x). β – rule was performed to compute the propagation of relevance from layer l + 
1 to layer l
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Ri j
(l, l + 1) = (1 + β)

zij
+

zj
+ − β

zij−

zj−
Rj
(l + 1)

zij = xiwij, zj
+ = ∑

i
zij
+ + bj

+, zj− = ∑
i
zij− + bj−

where zij+ and zij− denotes positive and negative activations respectively. bj+ and bj− denote 

the positive and negative part of the bias item bj ⋅Rj
(l + 1) and Ri j

(l, l + 1) denotes the relevance 

of a neuron jat layer l + 1, and message between neurons i at the layer l and neurons iat 
layer l + 1 respectively. β controls how much inhibition is incorporated into the relevance 
redistribution. Then the relevance of a neuron i at layer l was defined by summing messages 
from neurons at layerl + 1:

Ri
(l) = ∑

j ∈ (l + 1)
Ri j
(l, l + 1)

Therefore, the relevance scoreRd(1) of each FNC was determined by this rule. For more 
details on LRP, please refer to (Bach et al., 2015).

2.6. Implementation details
The HDLFCA was implemented via nested cross-validation using the Keras package 
(https://keras.io/). In each one of the 10 fold experiment, the 3-fold cross-validation was 
performed further to avoid overfitting. Specifically, training data was divided into three folds 
further in the training stage, where two folds were used for training and validation, and 
the remaining one was used for prediction. After 3-fold cross-validation, predictions from 
three DNN models were concatenated to constitute intermediate prediction P1 and so does 
C-RNNAM to generate P2, which were used for the final decision. In the testing stage, the 
outputs of three DNN models and three C-RNN models were first averaged respectively, 
then two predictions were concatenated to build the final decision by logistic regression. The 
procedures of the training and testing phase were illustrated in Fig. S4. An implementation 
for HDLFCA is available at https://github.com/minzhaoCASIA/HDLFCA.

The C-RNN model was trained by the Adam optimizer with an initial learning rate of 0.001 
and decayed with the rate of 0.01. Dropout (0.5) and L1,2-norm regularization (L1 = 0.0001, 
L2 = 0.0001) were performed to control weight sparsity. The batch size was set at 64. The 
DNN model was trained with the cross-entropy loss by the Adam optimizer with an initial 
learning rate of 0.001. The performance of methods was evaluated by five metrics including 
accuracy (ACC), specificity (SPE), sensitivity (SEN), F1-score (F1) and area under the 
receiver operating characteristic curve (AUC). The performance of different algorithms was 
compared via a two-sample t-test.
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3. Results
3.1. Multi-site pooling classification

Ten-fold multi-site pooling experiments were conducted to evaluate classification 
performance, where fMRI data from all sites were pooled together and ten-fold cross-
validation was performed. All experiments were repeated 10 times to generate mean and 
standard deviations of metrics. We compare HDLFCA with eight competing methods on 
both In-House and ABIDE datasets. The quantitative results in the task of classification are 
reported in Table 2, Table 3 and Fig. 2.

As shown in Fig. 2, first, the HDLFCA reported a mean classification accuracy of 85.3% 
and 72.4% on In-House and ABIDE datasets, indicating a significant improvement over 
the other classical classifiers (p<0.01). For instance, HDLFCA achieved an improvement 
of 8.9%, 8.3% and 3.8% in ACC compared with Random Forest, AdaBoost and SVM, 
respectively on In-House datasets. This implied the significant effectiveness of learning 
high-level, “deep” features from fMRI data. Second, compared with BrainNetCNN, DNN, 
C-RNN and C-RNNAM that adopted features of either FNC or TC only, the proposed 
HDLFCA that exploits complementary information between them led to a better diagnostic 
performance on two datasets. For example, in terms of ACC, an improvement of 5.2%, 
4.4%, 2.8% and 1.8% was achieved on HC-SZ datasets respectively, and an improvement of 
3.9%, 2.0%, 3.3% and 3.0% was achieved for ABIDE datasets, suggesting the necessity and 
validity of integrating functional dependency between brain regions and temporal dynamics 
of brain activity. Third, the comparative performance of C-RNNAM and C-RNN in SZ 
classification showed that C-RNNAM achieved an improvement of about 1% in terms of 
ACC, SPE, SEN and F1 values, demonstrating that incorporation of discriminative IC 
localization and disease classification into a unified framework boosts the final performance. 
It should be noted that although the attention module identified the discriminative ICs as 
well as improved performance, it did not cause an increase in model complexity. Forth, our 
HDLFCA outperformed the connectivity-based graph convolutional network (cGCN) (Wang 
et al., 2021) significantly on two datasets as well, which also used TCs and FCs to extract 
similar connectome features.

Furthermore, to validate the generalizability of HDLFCA, we reproduce the experiments 
based on TCs obtained from Automated Anatomical Labeling (AAL) template instead of 
ICA, where the mean regional TCs were calculated by averaging the voxel-wise fMRI time 
series in each of brain regions of interests (ROI). Pearson’s correlation between TCs of each 
pair of ROIs was calculated, yielding a symmetric connectivity matrix of 116×116. The 
results were reported in Table S5 and Fig. 2C. We can draw a similar conclusion as above. 
Particularly, HDLFCA outperformed single feature-based deep learning models (i.e., DNN, 
C-RNN and C-RNNAM) largely, demonstrating the superiority of utilizing complementary 
information between FNC and TCs. The attention module also yielded better classification 
performance (3.6% in ACC) compared with C-RNN. The HDLFCA based on ICA showed a 
little better performance (85.3%) than fixed AAL (84.9%), this is likely due to the ability of 
ICA to capture variability in the components among subjects.
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3.2. Leave-one-site-out classification
In the leave-one-site-out transfer classification, one imaging site was considered as the 
testing dataset while the other sites were used for training, with 10% of the samples chosen 
randomly for validation in the HDLFCA. The quantitative results on In-House dataset 
were shown in Table 4, Table S3 and Fig. 2C. We can draw a similar conclusion as 
that in Section 3.1. That is, compared with the conventional machine learning approaches 
(i.e., Random Forest, AdaBoost and SVM), the proposed HDLFCA largely improved the 
diagnostic performance, suggesting that automatically learning high-level fMRI features is 
beneficial for SZ classification. Besides, HDLFCA resulted in ACC improvement at 5.7%, 
4.7%, 3.9%, and 2.6% respectively compared to single-feature-based deep learning models 
(i.e., BrainNetCNN, DNN, C-RNN and C-RNNAM). This demonstrated the superiority of 
integrating FNC and TCs. In addition, from the Table 4, the embedded attention module 
still yielded better classification performance, which is consistent with the results reported 
in Section 3.1. It further indicated that it not only identified the discriminative ICs but 
also improved the classification performance. The HDLFCA still outperformed cGCN, 
suggesting our method are more powerful to capture functional connectivity and dynamic 
brain activity underlying the fMRI data.

3.3. Most HC-SZ discriminative FNC
The contribution of each FNC was rendered using the LRP algorithm by propagating the 
correlation layer by layer. The top 50, 70 and 100 contributing FNC features in the task 
of SZ diagnosis were presented in the circle diagram (Fig. 3A), where the 50 ICs were 
divided into eight functional networks (Fig. S1). The discriminative FNC showed diffuse 
patterns widely across the entire brain, implying widely impaired brain regions in SZ 
patients. Despite the complexity, we observed that default-mode networks with connections 
to frontal, and attentional networks shared a high proportion in the top 50 contributing 
connectivity, which are reported to be highly associated with SZ. In Fig. 3A, the comparison 
of top 50 and top 70 contributing FNC revealed a substantial increase in connections 
within visual networks. Connections between frontal and default mode networks, frontal and 
attention networks, and connections within visual networks indicated the most contributing 
influence when presenting the top 100 contributing FNC, suggesting that schizophrenia is 
characterized by impairments in high-level cognitive and emotional processing circuits.

3.4. Most discriminative independent components captured by attention module
The attention module can automatically identify discriminative brain regions by learning 
which regions to focus or suppress. An attention value map with a 50×1×1 size was 
obtained for each subject and the mean attention map was generated by averaging them, 
where a higher value indicates the greater discrimination power of the IC. To obtain more 
robust imaging markers, we repeated the 10-fold cross-validation experiments 10 times 
(10*10 trained models in total) and counted the frequency of the top 10 discriminative ICs. 
Fig. 3B displays the frequency distribution histogram, where only ICs with an occurring 
frequency greater than 10% are shown. Fig. 3B also displays the spatial maps of the 
top 10 discriminative ICs, in which the striatum, cerebellum and anterior cingulate were 
highlighted as the three most SZ-discriminating ICs by the attention module, suggesting 
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that the attention scheme can effectively extract useful information from whole-brain fMRI 
features. It should be noted that Fig. 3B presents the group-discriminative ICs by averaging 
the attention maps for each subject, but they are not totally the same across all subjects, 
for example, the same ICs may be emphasized differently, implicating the potential for 
individualized localization of brain regions.

3.5. Comparison with dynamic FNC features(dFNC)
Since dFNC also simultaneously characterized functional dependency and temporal 
dynamics of spontaneous BOLD signal, we also compared other deep learning methods 
using dFNC with our proposed HDLFCA, which also integrated dynamic FCs and TCs 
to improve classification performance. The dFNC was computed by the sliding window 
method in steps of 1 TR. We conducted multiple experiments under different settings, where 
the window length varies from the 30s to 70s at intervals of 10s (15–35 TR). A comparison 
of classification performance was reported in Table 5. More details are available in the 
supplementary materials (Table S4 and Figure S2).

From Table 5 and Table S4, we can observe that the proposed HDLFCA outperformed 
the best performing dFNC-based DL methods in all metrics significantly (p<0.01). For 
instance, in terms of ACC, HDLFCA achieved an improvement of 4.6%, 4.9%, 4.5% and 
5.5% compared with the best results achieved by LSTM, BiLSTM, GRU, and C-LSTM 
respectively, suggesting the superiority of our method. The lower performance of C-LSTM 
compared to LSTM may be attributed to the high dimension of the FNC vector (1225, 
compared to 50 in previous TC-based methods), which largely increased the parameters of 
the model. Furthermore, GRU based on dFNC outperformed the same neural network based 
on TCs significantly, which only contains temporal dynamics of brain activity, suggesting 
the effectiveness to integrate brain connectivity and activity of rs-fMRI data.

3.6. Comparison with different DL architectures
In this section, we compared the proposed C-RNNAM with eight alternative deep learning 
models in multi-site pooling experiments on In-House datasets. The results were reported in 
Table 6. Considering the great power in sequence modeling of RNN and the rich temporal 
dynamics of brain activity in time series of BOLD-signal, we first directly applied simple 
RNN and GRU in the same settings to classify brain disorders. The results showed the 
GRU models achieved an improvement of 23.6% in ACC, possibly because simple RNN 
is difficult to learn long-term dependencies due to the vanishing and exploding gradient 
problem (Bengio et al., 1994) and the brain activity is characterized by long-range temporal 
dependence such that signal fluctuations at the present time influence signal dynamics up 
to several minutes in the future (Dhamala et al., 2020; Guclu and van Gerven, 2017). The 
C-RNN further outperformed GRU and C-MLP, potentially because the convolutional and 
GRU layers were responsible for capturing spatial and temporal information respectively. 
The C-RNN with multi-scale convolution kernel size outperformed the S_C-RNN with 
single-scale convolution kernel, suggesting that extracting dynamics from a variety of 
timescales is useful in fMRI data.
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Moreover, we designed 4 variants of attention mechanism integrated into C-RNN models. 
The architectures were illustrated in Fig. S5. Specifically, C-RNNAM achieved a light 
increase compared with AM_1, suggesting capturing global relations between brain 
networks is more effective than local relations. AM_3 performed worse than others, showing 
that the emphasizing important brain regions play an essential role in brain disorder 
classification.

4. Discussion
In this study, we proposed a novel unified DL framework by integrating temporal coherence 
and dynamics effectively to classify brain disorders. The classification accuracy of 85.1% 
and 81.0% were achieved in multi-site pooling and leave-one-site-out respectively in the 
task of HC-SZ discrimination. Moreover, when using publicly accessible ABIDE dataset, 
ACC of 72.4% was achieved in the multi-site pooling classification of HC vs. ASD, which 
significantly outperformed multiple single feature-based methods. The competitive result 
is comparable to, if not better than, the recent studies on large multi-site fMRI datasets 
(Kim et al., 2016; Yan et al., 2019; Zeng et al., 2018). Additionally, LRP and an attention 
module were introduced to identify the most discriminative FNC patterns and brain regions 
for SZ. To the best of our knowledge, this is the first attempt to integrate identification of 
discriminative brain regions and diagnosis of brain disorders into a unified framework based 
on fMRI data using an attention mechanism-based network.

Recently, numerous studies have applied deep learning methods for SZ classification and 
achieved high performance. Compared with previous studies (Dakka et al., 2017; Rozycki 
et al., 2018; Skåtun et al., 2017), this work achieved an improvement (>5.0%) in accuracy 
on multi-site pooling and leave-one-site-out classification. The promising results may derive 
from the following aspects: First, we combined different powerful deep learning models 
to leverage complementary information between TCs and FNC, where the TCs neglects 
the functional dependency between brain regions and FNC discards sequential temporal 
dynamics. The experimental results demonstrated the superiority of combing multiple 
features. Second, the attention module helps to refine and optimize feature representation 
by focusing on more important brain regions instead of the full feature. The experimental 
results also showed the attention module improved classification performance. Third, since 
the convolutional neural network (CNN) is ‘deep in space’ and RNN is ‘deep in time’, both 
of them were applied to make full use of the spatial and temporal information underlying 
the spontaneous BOLD signal. Furthermore, to validate the superiority of our method, the 
HDLFCA was compared with other deep learning methods based on dFNC, which also 
takes dynamic fluctuation and temporal coherence into consideration. Our method achieved 
an improvement (>4.0%) of average accuracy. Importantly, the goal of our method is not 
only to focus on high performance, but also to provide results that are interpretable and 
provide insight into the brain. The attention module provides an effective way to explore 
underlying biomarkers in DL methods. It allows for the integration of discriminative ICs 
localization and SZ diagnosis into a unified framework, since the isolated informative 
region identification may lead to suboptimal performance. What’s more, the discriminative 
ICs are not totally the same across all subjects, showing the importance of individualized 
localization of brain regions associated with schizophrenia.
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The results revealed that the attention module highlighted brain regions at the locations 
of the striatum, cerebellum and anterior cingulate. The striatum, including putamen and 
caudate, has been proved to play a vital role in the pathophysiology of schizophrenia (Yan 
et al., 2019). Compelling evidence has shown that the striatum was involved in cognition 
domains, including motor, decision-making, and stimulus-response learning (Yager et al., 
2015). Recently, numerous findings converged on evidence for both an increase in striatal 
dopamine and striatal dopamine receptors. The dopaminergic hyperfunction in the striatum 
may contribute to cognitive deficits in SZ (McCutcheon et al., 2019). Moreover, the 
increase of D2 receptors was found to be predictive for treatment response and the popular 
antipsychotics usually blocks the dopamine D2 receptors in the striatum (Li et al., 2020; 
Sarpal et al., 2016). Another highlighted component was the cerebellum. Many studies 
showed significant evidence for cerebellar abnormalities in SZ, such as impairment white 
matter integrity and blood flow decrease in the cerebellum during cognition tasks(Andreasen 
and Pierson, 2008; Kim et al., 2014; Luo et al., 2018; Yan et al., 2021). In addition, 
the other important component identified by attention module was located in the anterior 
cingulate cortex (ACC). Previous studies have demonstrated that a failure of functional 
ACC is associated with disturbed cognitive control and working memory deficits in SZ 
greatly (Fletcher et al., 1999; Fletcher et al., 1996) and SZ patients exhibit significantly 
reduced ACC activation (Schultz et al., 2012). Overall, the most group discriminative brain 
regions can be easily traced back with convincing biological interpretability, implying that 
the attention module emphasized important ICs effectively and our method showed great 
promise to identify potential imaging biomarkers.

Although the proposed HDLCD achieved high performance in discriminative ICs 
localization and psychotic disorder classification, several limitations should be considered in 
the future. First, C-RNNAM and DNN were trained independently and then their predictions 
were fed into meta-learner to utilize complementary information between TCs and FNC, 
which makes the later fusion stage couldn’t help refine feature representations in the 
first stage. A promising direction is to integrate the two stages into a purely end-to-end 
framework to provide complementary guidance for each other. Second, static FNC as the 
most commonly used functional connectivity feature, was combined with brain activity 
(TCs) as input features in this work. Nevertheless, it is interesting to investigate whether 
combining dynamic connectivity and brain activity can further advance classification 
performance in the future.

5. Conclusions
In this work, we proposed HDLFCA, a unified framework that takes fully advantage 
of temporal coherence (FNCs) and time-varying fluctuations (TCs) jointly to classify 
psychiatric disorders based on rs-fMRI data. The method was validated on both In-House SZ 
dataset (n = 1100) and the public ABIDE datasets (n = 1552), with 2.8–8.9% increase 
compared to 12 popular classifiers, suggesting the superiority of combining multiple 
features. To the best of our knowledge, this is the first attempt to introduce an attention 
module into a C-RNN based framework to improve the classification performance and 
automatically identify discriminative brain regions. Such a method shows the potential 
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for deep learning to provide utility for both predicting and understanding the healthy and 
disordered brain.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The framework of the proposed HDLFCA in psychotic disorder classification. (A) Data 
preprocessing and Feature extraction. TCs was obtained by decomposing fMRI data 
using GIG-ICA, and FNCs was estimated from the TCs. (B) Overview of our proposed 
HDLFCA. C-RNNAM and DNN were used to characterize temporal dynamics in TCs 
and learn functional dependency between brain regions respectively. Then their predictions 
were concatenated to build a new feature matrix, generating the final decision by 
logistic regression. For model interpretability, attention module and layer-wise relevance 
propagation (LRP) were applied to identify the most discriminative ICs and FNC patterns 
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respectively. (C) Details of the C-RNNAM. It consists of an attention module, multiple 
1D convolutional (Conv1D) layers, one concatenation and max pooling layer, two gated 
recurrent unit (GRU) layers and a fully connected layer. The purple frame shows the scheme 
of the attention module, which is trainable along with other modules. The greater the weight 
of the attention map, the more important the component was. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this 
article.)
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Fig. 2. 
The classification results of (A) multi-site pooling classification in in-house SZ datasets, 
(B) multi-site pooling classification in public ABIDE datasets, (C) multi-site pooling 
classification based on TCs or FNCs extracted by AAL atlas in in-house SZ datasets, 
and (D) leave-one-site-out classification in HC-SZ datasets. */** denote that the proposed 
HDLFCA method achieves significantly better performance than the listed ones, with P 
value=0.05/0.01.
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Fig. 3. 
The most HC-SZ discriminative features localization. (A) Illustration of the top 50, 70 and 
100 contributing functional network connectivities identified by LRP. Connections between 
frontal network and default mode networks, frontal network and attention networks, and 
connections within visual networks indicate the most contributing influence, suggesting 
that schizophrenia is characterized by impairment in high-level cognitive and emotional 
processing circuits. (B) The frequency distribution histogram of top 10 ICs identified by 
attention module in 100 experiments. The striatum, cerebellum, anterior cingulate stand out 
as the top three most discriminating brain regions. Putamen-4 represents the ICs showing 
subcortical regions such as caudate and putamen (striatum). The spatial maps of all 50 ICs 
were displayed in Figure S1.
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Table 1

Demographic information of datasets.

Mean±SD SZ HC P-value

Number 558 542 NA

Age 27.6±7.1 28.0±7.2 0.06

Gender(M/F) 292/266 276/266 1.96

PANSS positive 23.9±4.2 NA NA

PANSS negative 20.1±5.9 NA NA

PANSS general 39.7±7.2 NA NA

PANSS total 83.6±12.3 NA NA

Notes: P-value: the significance value of two sample t-test. NA: not applicable.
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