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Abstract—One of the most challenging machine learning prob-
lems is a particular case of classification in which classes are
hierarchically structured and data instances can be assigned
multiple labels residing in a path of the hierarchy. In this paper,
we propose hierarchy–aware multiclass AdaBoost, allowing for
the first time weak classifiers in an ensemble learning setting
to be trained for hierarchical multiclass classification while
incorporating a hierarchy–aware loss function directly into the
training process. Experimental results on numerous real–world
datasets show that, despite its simplicity, the proposed algorithm
outperforms all baselines, arising as the state of the art in
hierarchical multiclass classification.

Index Terms—hierarchical classification, ensemble learning,
learning with constrains

I. INTRODUCTION

Ensemble learning is the process by which base classifiers

are trained and combined to improve classification accuracy

in challenging classification tasks [1]–[5]. In this work, we

focus on Adaboost [6], one of the most influential supervised

learning algorithms belonging to this branch of meta–learning

methods. As a simple and interpretable modeling tool, Ad-

aboost has been the method of choice when any–time solutions

are required for classification tasks involving large data sets

[7].

To date, numerous multi–class extensions of AdaBoost have

been proposed for typical classification problems, where a

data instance is associated with a single class from a set of

disjoint classes [8]–[10]. Recently, however, the AI community

has sifted its focus to more challenging learning probelms, in

which classes are not disjoint but organized into a hierarchical

structure [11]–[14]. Depending on the domain, the hierarchical

structure may assume the form of a tree or a directed acyclic

graph [15], and data instances are associated with several

classes laying on a path in the class hierarchy. This task is

known as hierarchical multiclass classification [14], and has

numerous real–world applications, including, but not limited

to, text classification [16]–[19], image annotation [13], and

bioinformatics [11], [20], [21].

Early approaches treated the hierarchical multiclass classifi-

cation problem as a sequence of several separate classification

tasks, ignoring the hierarchical structure [22]. Subsequent

methods can be divided into two main branches, namely (i)
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local, and (ii) global methods [14]. Local methods generate a

hierarchy of classifiers in a top–down manner, in which each

classifier is responsible for the prediction of either particular

nodes or levels. On the other hand, global approaches focus

on training a single classifier, capable of associating data

instances with classes in the hierarchy as a whole. Both

local and global methods have advantages and disadvantages.

Specifically, local methods are more likely to capture depen-

dencies among classes from the hierarchy, however, they suffer

from high computational complexity due to the number of

learners, and the inconsistency problem, i.e., an error early on

is propagated down the hierarchy. On the other hand, global

approaches are typically less computationally intensive than

local approaches, however, they result in a more complex

model, which is less likely to capture dependencies among

classes from the hierarchy.

Contributions. Drawing inspiration from the success of

AdaBoost and state–of–the–art hierarchical multiclass classifi-

cation methods, we propose hierarchical multiclass Adaboost

to train an ensemble of weak learners that learn to obtain

consistent paths based on a hierarchy–aware loss function. Our

main contributions can be summarized as follows:

• We present hierarchy–aware Hamming loss as a way of

introducing hierarchical constraints into AdaBoost.MH

[23].

• We propose a non–uniform weighting scheme that sets

the weights of individual data instances asymmetrically

to penalize upper–level misclassifications more heavily.

• We derive a new algorithm that directly extends Ad-

aBoost.MH to the hierarchical multiclass case.

• We experimentally evaluate the effectiveness and ex-

planatory power of our approach using real–world

datasets. To ensure the reproducibility of our work, we

make our source code available at https://github.com/

IDIASLab/Hierarchical-Multiclass-AdaBoost.

II. PRIOR AND RELATED WORK

AdaBoost. Boosting was first proposed by [24] as a way of

combining base classifiers to produce an accurate classification

model. AdaBoost for binary classification, was introduced by

[6], and was later popularized by [23]. Among the AdaBoost

variants, Adaboost.SAMME directly extends AdaBoost to the

multiclass case without reducing it to multiple two–class

problems [25]. However, by assigning a single label out of



a set of classes to each data instance, Adaboost.SAMME is

not readily applicable to hierarchical multiclass classification,

where each data instance may be assigned multiple labels

according to the hierarchy. We therefore focus on multiclass

AdaBoost.MH [23], as it is explicitly designed to minimize

the Hamming loss. This is instrumental in our formulation to

introduce the hierarchical constraints into the learning process.

Hierarchical MultiClass Classification. Existing hierarchical

multiclass classification methods can be categorized by (i) the

type of hierarchical structure considered (i.e., tree or directed

acyclic graph), (ii) the process by which the hierarchy is ex-

plored (i.e., local or global), (iii) how deep in the hierarchical

structure classification is to be performed (i.e., always at a leaf

node as opposed to any level) [14], (iv) how many paths can a

data instance be associated with (i.e., exactly one as opposed to

multiple paths, which is the case of multi–label classification

[12], [14]), (v) the weak learner used to train local classifiers

(e.g., Naive Bayes or SVM), and (vi) the loss function. Next,

we summarize the most representative approaches from each

category.

Top–down methods (e.g., [11]) start by constructing a tree

of classifiers during training. In the binary case, a classifier is

trained for each node; in the multiclass case, a multi–valued

classifier is trained per parent node. During testing, a classifier

labels an instance and passes the feature representation of

the instance to the respective classifier one level lower in the

hierarchy. The process is repeated until either a threshold (e.g.,

top k) or a leaf is reached. The key limitation of such methods

is error–propagation, i.e., a misclassification at some node,

results in an incorect prediction along the whole path from than

node down to the corresponding leaf. Global approaches such

as [26] are less likely to learn from the class dependencies,

and often result in overfitted models. Hybrid schemes (e.g.,

[27]) train local classifiers in a top–down approach but then

enforce consistency constraints (e.g., for a class to be set, it’s

parent node in the hierarchy must also be set) to obtain the

set of labels during classification.

[18] introduced hierarchical loss, namely H–loss, as a

performance measure for hierarchical classification problems,

which was subsequently used to approximate the Bayes opti-

mal classifier with respect to this metric [28]. Although H–loss

emphasized on the importance of avoiding misclassifications

at the upper hierarchical levels, it could lead to misleading

predictions as not all misclassifications in the hierarchy are

penalized. Specifically, H–loss only counts the first missclas-

sification along a prediction path from the root to leaf nodes.

To address this limitation, [29] introduced the hierarchical

multilabel classification loss function (HMC–loss) and derived

the optimal prediction rule by minimizing the condisional risk

with respect to this loss. By tuning its parameters, HMC–loss

can be reduced to Hamming loss, the most frequently used loss

function in multilabel classification [30], or the path length

before the first missclassification [31].

Our proposed approach can be considered to be a global

method, where a base learner for all classes is trained at each

iteration, and multiple learners are being trained over time to

“learn” different aspects of a tree–structured hierarchy, and

avoid overfitting. Classification is performed at the leaf nodes,

while emphasizing the importance of predicting a consistent

path with minimum loss.

III. PRELIMINARIES

A. Problem Definition

For a description of the hierarchical multiclass classification

problem, let T denote the tree–structured class hierarchy of

m classes in total, where nodes j ∈ T are indexed as

0, 1, 2, . . . ,m − 1 in a top to bottom manner (i.e., 0 is for

the root, 1 indicates its leftmost child, and so forth). We

use pa(j) to denote node j’s unique parent, anc(j) the set

of its ancestors, and sibl(j) its siblings. We further denote

the number of j’s ancestors as |anc(j)|, and that of its

siblings as |sibl(j)|. Additionally, let the training data be

D = {(x(i),y(i)), . . . , (x(n),y(n))}, where x(i) ∈ R
d are

feature vectors, 0 ≤ i ≤ n, and label vectors y(i) =
[y0(i), y1(i), y2(i), . . . , ym−1(i)] ∈ {−1, 1}m indicate the

memberships of x(i) to each of the categories in T . Then,

n × d matrix X is the feature matrix, and Y is the n × m
label matrix. Finally, we use ŷ(i) to represent the predicted

multiclass vector of the i−th data instance, and t as the index

of a weak classifier.

Given D and T , the goal of learning is to infer a multiclass

classification model Ω as a sum of T base classifiers, which

can be used to predict the hierarchical categories of unseen

data instances, with the additional constraint that the label of

any non–root node j can be 1 if and only if all of its ancestors

are labeled positive.

IV. HIERARCHICAL MULTICLASS ADABOOST

We propose H–Ada.MH, a new algorithm for hierarchical

multiclass classification that builds upon the Adaboost.MH

framework [23] by (i) introducing hierarchical constraints and

(ii) asymmetrically penalizing upper–level misclassifications

more heavily. We discuss the technical details of H--Ada.MH

in this section.

A. Hierarchy–aware Hamming Loss

Let Y denote the set of labels in the dataset, and Y(i) ⊆ Y
be the set of labels predicted for x(i). Then, the predicted

multilabel ŷ(i) = [ŷ1, . . . , ŷm−1] is defined as:

ŷj =

{

1, if j ∈ Y(i),

− 1, if j /∈ Y(i).
(1)

In the case of single–label prediction, the purpose is to find

a hypothesis H : X → Y , such that given a new data instance

(x,y), the probability of H(x) 6∈ Y is minimized. Note

that in this case, H(x) is a scalar measuring the probability

that one label is predicted incorrectly. With the definition of

the multilabel vector in Eq. (1), the multiclass classification

problem can be defined as finding a model H : X × 2m,

such that the probability of predicted labels differing from the

observed labels is minimized.











of classes in a level increase rapidly (e.g., there are 85 and 258
classes in levels 1 and 2, respectively, in the Diatoms dataset),

adversely impacting performance. Since H–Ada.MH considers

the dependencies among different levels of the hierarchical

structure, it is less affected by the number of classes in a level

(as opposed to the baselines).

To further illustrate the difference between H–Ada.MH

and the baselines, Figure 7 shows the prediction for a test

sample from the ImageCLFEF07A dataset. Apparently, no

single method can obtain the corerct solution, with the local

method being completely off. Compared to the Global baseline

(Fig. 7(b)), H–Ada.MH (Fig. 7(c)) (i) returns a consistent path,

and (ii) makes only one mistake at the leaf node (i.e., the most

specific level of the hierarchy).

In summary, the experimental results all indicate that H–

Ada.MH can classify data instances more effectively than

the baselines by learning multiple base classifiers that are

explicitly trained to model dependencies among classes, and

subsequently used to combine predictions at each level in

the class hierarchy in a way that conforms to the overall

hierarchical structure.

VI. CONCLUSION

We presented H–Ada.MH, a new algorithm for hierar-

chical multiclass classification. Specifically, we first intro-

duced hierarchical constraints into AdaBoost.MH based on a

hierarchy–aware Hamming loss function. Then, we devised

an asymmetric weighting scheme to penalize errors at the

upper levels of the hierarchy, and therefore avoid propagating

misclassification down a path. Our experiments on three real–

world datasets demonstrated the effectiveness and intuitiveness

of H–Ada.MH.

In the future, we wish to address a problem setting where

the class hierarchy is organized as a directed acyclic graph

instead of a tree. Subsequently, we would like to explore

the more challenging problem of multi–label classification,

where each data instance can be assigned to multiple paths

of the class hierarchy at the same time. Finally, we plan to

test the performance of H–Ada.MH on other domains, such as

document categorization and bioinformatics.

VII. ETHICS STATEMENT

The work presented in this paper is the result of our original

work, and is not currently under consideration for publication

elsewhere. The names and affiliations of those who actually

did the work and contributed to the paper in a meaningful way

will be included upon acceptance.

Beyond meeting our professional conduct obligations, it

is difficult for us to anticipate or predict how the proposed

general framework presented here will be used in the real–

world. Therefore, the potential harm, if any, caused by irre-

sponsible use of the proposed framework cannot be easily

quantified. In its core, H–Ada.MH produces probable, yet

uncertain outcomes (i.e., labels) after being trained on a

specific dataset. If a biased dataset is used to train an ensemble

with H–Ada.MH, then the outcomes of such classifier may be

used in a way that may not be ethically neutral. Recognizing

this limitation is important. The fact however that H–Ada.MH

produces paths which are open and accessible to humans for

interpretation, may be beneficial in identifying biases in the

training data itself.
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