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Abstract—One of the most challenging machine learning prob-
lems is a particular case of classification in which classes are
hierarchically structured and data instances can be assigned
multiple labels residing in a path of the hierarchy. In this paper,
we propose hierarchy—-aware multiclass AdaBoost, allowing for
the first time weak classifiers in an ensemble learning setting
to be trained for hierarchical multiclass classification while
incorporating a hierarchy-aware loss function directly into the
training process. Experimental results on numerous real-world
datasets show that, despite its simplicity, the proposed algorithm
outperforms all baselines, arising as the state of the art in
hierarchical multiclass classification.

Index Terms—hierarchical classification, ensemble learning,
learning with constrains

I. INTRODUCTION

Ensemble learning is the process by which base classifiers
are trained and combined to improve classification accuracy
in challenging classification tasks [1]-[5]. In this work, we
focus on Adaboost [6], one of the most influential supervised
learning algorithms belonging to this branch of meta—learning
methods. As a simple and interpretable modeling tool, Ad-
aboost has been the method of choice when any—time solutions
are required for classification tasks involving large data sets
[7].

To date, numerous multi—class extensions of AdaBoost have
been proposed for typical classification problems, where a
data instance is associated with a single class from a set of
disjoint classes [8]-[10]. Recently, however, the Al community
has sifted its focus to more challenging learning probelms, in
which classes are not disjoint but organized into a hierarchical
structure [11]-[14]. Depending on the domain, the hierarchical
structure may assume the form of a tree or a directed acyclic
graph [15], and data instances are associated with several
classes laying on a path in the class hierarchy. This task is
known as hierarchical multiclass classification [14], and has
numerous real-world applications, including, but not limited
to, text classification [16]-[19], image annotation [13], and
bioinformatics [11], [20], [21].

Early approaches treated the hierarchical multiclass classifi-
cation problem as a sequence of several separate classification
tasks, ignoring the hierarchical structure [22]. Subsequent
methods can be divided into two main branches, namely (i)
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local, and (ii) global methods [14]. Local methods generate a
hierarchy of classifiers in a top—down manner, in which each
classifier is responsible for the prediction of either particular
nodes or levels. On the other hand, global approaches focus
on training a single classifier, capable of associating data
instances with classes in the hierarchy as a whole. Both
local and global methods have advantages and disadvantages.
Specifically, local methods are more likely to capture depen-
dencies among classes from the hierarchy, however, they suffer
from high computational complexity due to the number of
learners, and the inconsistency problem, i.e., an error early on
is propagated down the hierarchy. On the other hand, global
approaches are typically less computationally intensive than
local approaches, however, they result in a more complex
model, which is less likely to capture dependencies among
classes from the hierarchy.

Contributions. Drawing inspiration from the success of
AdaBoost and state—of—the—art hierarchical multiclass classifi-
cation methods, we propose hierarchical multiclass Adaboost
to train an ensemble of weak learners that learn to obtain
consistent paths based on a hierarchy—aware loss function. Our
main contributions can be summarized as follows:

e We present hierarchy—aware Hamming loss as a way of
introducing hierarchical constraints into AdaBoost. MH
[23].

o We propose a non—uniform weighting scheme that sets
the weights of individual data instances asymmetrically
to penalize upper—level misclassifications more heavily.

e We derive a new algorithm that directly extends Ad-
aBoost.MH to the hierarchical multiclass case.

o We experimentally evaluate the effectiveness and ex-
planatory power of our approach using real-world
datasets. To ensure the reproducibility of our work, we
make our source code available at https://github.com/
IDIASLab/Hierarchical-Multiclass- AdaBoost.

II. PRIOR AND RELATED WORK

AdaBoost. Boosting was first proposed by [24] as a way of
combining base classifiers to produce an accurate classification
model. AdaBoost for binary classification, was introduced by
[6], and was later popularized by [23]. Among the AdaBoost
variants, Adaboost.SAMME directly extends AdaBoost to the
multiclass case without reducing it to multiple two—class
problems [25]. However, by assigning a single label out of



a set of classes to each data instance, Adaboost.SAMME is
not readily applicable to hierarchical multiclass classification,
where each data instance may be assigned multiple labels
according to the hierarchy. We therefore focus on multiclass
AdaBoost.MH [23], as it is explicitly designed to minimize
the Hamming loss. This is instrumental in our formulation to
introduce the hierarchical constraints into the learning process.
Hierarchical MultiClass Classification. Existing hierarchical
multiclass classification methods can be categorized by (i) the
type of hierarchical structure considered (i.e., tree or directed
acyclic graph), (ii) the process by which the hierarchy is ex-
plored (i.e., local or global), (iii) how deep in the hierarchical
structure classification is to be performed (i.e., always at a leaf
node as opposed to any level) [14], (iv) how many paths can a
data instance be associated with (i.e., exactly one as opposed to
multiple paths, which is the case of multi—label classification
[12], [14]), (v) the weak learner used to train local classifiers
(e.g., Naive Bayes or SVM), and (vi) the loss function. Next,
we summarize the most representative approaches from each
category.

Top—-down methods (e.g., [11]) start by constructing a tree
of classifiers during training. In the binary case, a classifier is
trained for each node; in the multiclass case, a multi—valued
classifier is trained per parent node. During testing, a classifier
labels an instance and passes the feature representation of
the instance to the respective classifier one level lower in the
hierarchy. The process is repeated until either a threshold (e.g.,
top k) or a leaf is reached. The key limitation of such methods
is error—propagation, i.e., a misclassification at some node,
results in an incorect prediction along the whole path from than
node down to the corresponding leaf. Global approaches such
as [26] are less likely to learn from the class dependencies,
and often result in overfitted models. Hybrid schemes (e.g.,
[27]) train local classifiers in a top—down approach but then
enforce consistency constraints (e.g., for a class to be set, it’s
parent node in the hierarchy must also be set) to obtain the
set of labels during classification.

[18] introduced hierarchical loss, namely H-loss, as a
performance measure for hierarchical classification problems,
which was subsequently used to approximate the Bayes opti-
mal classifier with respect to this metric [28]. Although H-loss
emphasized on the importance of avoiding misclassifications
at the upper hierarchical levels, it could lead to misleading
predictions as not all misclassifications in the hierarchy are
penalized. Specifically, H-loss only counts the first missclas-
sification along a prediction path from the root to leaf nodes.
To address this limitation, [29] introduced the hierarchical
multilabel classification loss function (HMC-loss) and derived
the optimal prediction rule by minimizing the condisional risk
with respect to this loss. By tuning its parameters, HMC-loss
can be reduced to Hamming loss, the most frequently used loss
function in multilabel classification [30], or the path length
before the first missclassification [31].

Our proposed approach can be considered to be a global
method, where a base learner for all classes is trained at each
iteration, and multiple learners are being trained over time to

“learn” different aspects of a tree—structured hierarchy, and
avoid overfitting. Classification is performed at the leaf nodes,
while emphasizing the importance of predicting a consistent
path with minimum loss.

III. PRELIMINARIES
A. Problem Definition

For a description of the hierarchical multiclass classification
problem, let 7 denote the tree—structured class hierarchy of
m classes in total, where nodes j € 7 are indexed as
0,1,2,...,m — 1 in a top to bottom manner (i.e., 0 is for
the root, 1 indicates its leftmost child, and so forth). We
use pa(j) to denote node j’s unique parent, anc(j) the set
of its ancestors, and sibl(j) its siblings. We further denote
the number of j’s ancestors as |anc(j)|, and that of its
siblings as |sibl(j)|. Additionally, let the training data be
D = {(x(i),y(i)),...,(x(n),y(n))}, where x(i) € R are
feature vectors, 0 < ¢ < mn, and label vectors y(i) =
(o (1), y1 (), y2(2)y ... Ym—1(i)] € {—=1,1}™ indicate the
memberships of x(i) to each of the categories in 7. Then,
n X d matrix X is the feature matrix, and Y is the n x m
label matrix. Finally, we use (i) to represent the predicted
multiclass vector of the 7—th data instance, and ¢ as the index
of a weak classifier.

Given D and T, the goal of learning is to infer a multiclass
classification model €2 as a sum of T base classifiers, which
can be used to predict the hierarchical categories of unseen
data instances, with the additional constraint that the label of
any non-root node j can be 1 if and only if all of its ancestors
are labeled positive.

IV. HIERARCHICAL MULTICLASS ADABOOST

We propose H-Ada.MH, a new algorithm for hierarchical
multiclass classification that builds upon the Adaboost.MH
framework [23] by (i) introducing hierarchical constraints and
(ii) asymmetrically penalizing upper—level misclassifications
more heavily. We discuss the technical details of H——Ada . MH
in this section.

A. Hierarchy—aware Hamming Loss

Let ) denote the set of labels in the dataset, and Y (i) C )
be the set of labels predicted for x(7). Then, the predicted
multilabel §(¢) = [§1,. .., Jm—1] is defined as:

1 ifjev(), 1
YT o1, ifg ¢ Y. %

In the case of single—label prediction, the purpose is to find
a hypothesis H : X — ), such that given a new data instance
(x,y), the probability of H(x) ¢ ) is minimized. Note
that in this case, H(x) is a scalar measuring the probability
that one label is predicted incorrectly. With the definition of
the multilabel vector in Eq. (1), the multiclass classification
problem can be defined as finding a model H : X x 2™,
such that the probability of predicted labels differing from the
observed labels is minimized.
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a) Ground truth

b) Predicted labels

Fig. 1. Toy example illustrating the difference between Hamming loss (H L)
and the proposed Hierarchy-aware Hamming loss (H H L). Positive nodes are
highlighted in dark blue. Misclassified nodes are marked with red circles and
red squares for HL and H H L respectively.

Suppose the data follows distribution D. Hamming loss
can be used to measure the performance of a classifier as
lur(y,H) = LExy~p[H(x)Oy|, where © denotes
symmetric difference [23]. Intuitively, HL(H) can be inter-
preted as the average loss of m binary classifiers, with y and
H (x) representing the m binary observed and predicted labels
respectively, and a loss being recorded when H(x); # y;.

Our proposed Hierarchy—aware Hamming loss (H H L for
short) incorporates hierarchy constrains as follows:

= Iply; 8)), )

where the summation is over all indices 0 < i <mnandj €T,

Luuc(y,y)

L(y,9;) = 0 ify; =7; and Yane(j) = ya"C(') (3)
7 1 if Yj 7é Yy; or Yane(j 7£ Yanc(j)s

and any non-root node j can be labeled positive only if all of
its ancestors are labeled positive [29], i.e.,

Yj = 1= Yane(j) = 1. “4)

For illustration purposes, Figure 1 shows an example in
which node 5 is labeled correctly, as opposed to its parent
node 2. Such prediction is not allowed when HHL is used,
since the hierarchical constraint introduced in Eq. 4 is not met
for node 5.

B. Hierarchical Weight Initialization

In Adaboost.MH, initial observation weights for each data
1 with respect to class j are set to w(i,j) = %, thus equally
weighting each of the m classes. When classes are however
related by a tree—structured hierarchy 7, the the prediction for
each class is no longer independent. Instead, class predictions
for nodes laying at lower levels (i.e., more specific concepts)
in 7 depend on the predictions for their ancestors (i.e.,
more generic concepts), according to the hierarchy constraint
imposed by Eq. 4.

w =014
(a)
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c; =05
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w(i,4) =005 w(,5)=0.05

(b)

Fig. 2. Toy example illustrating weight initialization for (a) Adaboost.MH,
and (b) Hierarchical Adaboost.MH.

To incorporate structural information in Adaboost.MH, and
to penalize misclassifications at the upper hierarchy levels
more heavily than those at the lower levels, we propose to
set weights asymmetrically to

"Zk 0 Ck
where
1, j=0
Cj = Cpa(j . (6)
{Eﬁ#79>&

and cp,(5) is the hierarchical weight of j’s parent.

Figure 2 demonstrates the difference between Ad-
aboost.MH’s weighting scheme, and the proposed asymmetric
weighting approach. For all classes, n = 1. Classes are equally
weighted (i.e., w = 0.14) in the case of Adaboost.MH, as
shown in Fig. 2(a). Instead, as Fig. 2(b) illustrates, weights
decrease progressively by depth with the proposed asymetric
weighting scheme.

C. Hierarchy—aware Multiclass Adaboost

Next, we describe a new algorithm, which facilitates the
generalization of the traditional AdaBoost framework for
hierarchical multiclass classification. We refer to our proposed
algorithm as H-Ada.MH (c.f. Algorithm 1).

H-Ada.MH proceeds to train T = {tg,t1,...,tr} weak
learners as follows. Starting with a training sample, weighted
by wo(i, ), the first base learner (e.g., random forest) to is
trained to produce a base hypothesis h, for each class j € T
top to bottom, according to the tree structure. The predicted
label for j is verified against its ancestor, i.e., pa(j) in 7, and
is set to —1 if Eq. 4 is not satisfied. In general, h; can be
obtained as:

iMm%ﬁz{%fmdh L) paly o



Algorithm 1 H-Ada .MH
Input: Dataset D, Tree—structured hierarchy 7, Number of
base learners 1" to be trained
1: Initialize observation weights wq (%, j) for each g;(¢) using
Eq. (5);
2: repeat

3:  Train base learner ¢ using weight w; (i, j);

4:  Obtain weak hypothesis hy(x (), 7);

5. if pa(j) = NULL or hy(x(i),pa(j)) = 1 then
o h(@(), ) = hi(x(i), 9);

7. else

8 hi(x(3),75) = —1;

9: end if

10  Compute base coefficient for learner ¢ using Eq. (8);
11:  Update data weight w41 (%, j) with Eq. (10);

12: until 7" base learners have been trained.

13: return final hypothesis using Eq. (12)

TABLE I
SUMMARY OF DATASETS. THE TOTAL NUMBER OF CLASSES, AND LEAF
NODES, DEPTH OF TREE HIERARCHY, NUMBER OF FEATURES, AND
AVERAGE NUMBER OF DATA INSTANCES PER LEAF NODE ARE
REPRESENTED BY |C/, |!|, d, |A|, AND z. RESPECTIVELY.

Dataset Train Test IC1/1l d ]A]
TmageCLEFO7D | 10000 1006 22/9 3 80
ImageCLEFO7A | 10000 1006 26/11 3 80

Diatoms 2065 1054 343/258 2 371

After obtaining a base hypothesis for all training data
instances, the base coefficient for learner ¢ is computed as:

1+7“f,
1*7’]

1
o = 5171( ) ®)

where

T = Z7Ut(737j)yj(i)ht(><(i),j), 9)

and the weight w1 (7, j) of that training data is boosted:

wy (7, j)exp(—auy; (i) hy (x(i), j) ,

7 (10)

wiy1(,7) =
where

7, = Z w(4, 7) exp (—ouy; (1) he(x(2), 7)) -

g

(11)

The process is repeated until 7" base learners have been trained.
The final hypothesis is obtained as follows:

T
H(zx,j) = sign(z ahy(x;7)).
t=1

V. EXPERIMENTS

12)

A. Datasets
We conduct experiments on three real-world, freely avail-
able datasets, whose class hierarchy is structured as trees.

+ ImageCLEF07D and ImageCLEF07A [13]: X-ray im-
ages extracted from the 2007 ImageCLEF competition.
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Fig. 3. Number of classes per data instance in the Diatoms dataset.

« Diatoms [16]: image dataset used to evaluate algorithms
for automatic identification of diatoms based on shape
and ornamentation.

Table I summarizes these datasets. The total number of
classes is substantially larger in the Diatoms dataset as op-
posed to the other two datasets. Additionally, the average
number of data instances per class in the Diatoms dataset (c.f.
Fig. 3) is quite small (7.53 £ 7.245), making the integration
of dependencies between classes critical for accurate classifi-
cation.

B. Experimental Setup

Experiments are conducted on a commodity I0S laptop
with a 3.1GHZ Intel core i7. CPU and 16GB 1867 MHZ
DDR3 memory. For fair comparison, all baseline parameters
are tuned to achieve the best performance. For the same
reason, all datasets are pre—split into training and testing
according to their original specifications. For both H-Ada . MH
and Ada.MH, we use a one-layer decision tree as the base
learner, and set the number of base learners, 7', to 600 for the
ImageCLEFO7D and ImageCLEFO7A datasets, and to 200 for
the Diatoms dataset.

C. Baselines

To demonstrate the effectiveness of H-Ada.MH, we com-

pare it with the following methods:

o Adaboost. MH [23]: AdaBoost extension for multiclass
classification based on Hamming loss. Adaboost. MH ig-
nores the hierarchical relationships among classes, treat-
ing a hierarchical multiclass classification problem as a
flat multilabel classification task.

« Local-level [11]: A top—down method, according to
which a classifier in each level predicts among classes
belonging to that level. We use Random forests as the
base classifier for each level.

« Global [26]: A global approach that builds a single classi-
fier to discriminate between all categories simultaneously.

Note that recent Deep Neural Network architectures cannot
be used as a baseline for two main reasons. First, publicly
available datasets comprise a rather limited amount of training
samples and number of features. Similarly, the classes are
very sparse, making the optimization of such architectures



challenging. Second, deep neural networks are not currently
interpretable, making the explainability of their predictions
difficult. Similarly, we exclude from our comparison methods
for hierarchical multilabel classification [12], [32]-[35], in
which data instances may be associated with several distinct
paths of the class hierarchy at the same time.

D. Evaluation Metrics

« Precision/Recall oriented metrics: Given a class j € T,
let T'P;, FPj, and F'N; be the number of true positives,
false positives, and false negatives, respectively. The

precision and recall for 7 can then be computed as [33]:
YjeT TR (13)

_ 2jeT TP;
LjeT TPj+ljeT FP;’

R= .
ZjeT TP+ eT FN;

By combining P and R, we can then compute Macro-F1,
i.e., the arithmetic mean of per—class Fl—scores, where
Fl = 2. %. On the other hand, Micro-F1 [34]
measures classification performance by counting the true
positive, false negatives and false positives globally, thus
accounting for class imbalance [36].

« Hierarchical Classification Metrics

— Hierarchical Top-k accuracy [29]: Top-k ac-
curacy is used to quantify the -effectiveness
of a classifier in the first k predicted la-
bels, where k is the depth of the tree—structure
hierarchy. This metric can be computed as
% (# of true positives in the top—k labels of §).

— Hierarchical F-measure [37]: Let P(i) be the set
consisting of the labels from each layer predicted
for data 7 and their ancestors’ classes, and let 7'()
be the set consisting of the true labels from each
layer for data ¢ and all their ancestors’ classes.
The hierarchical precision (hP) and recall (hR) are
defined as:

_ 2 1 PNTy| _ 2 1 PiNTy|
The hierarchical F score (H-F) is then computed
similar to F1 but using the hP and hR scores,
respectively.

— HMC-loss [38]: The Hierarchical Multiclass Clas-
sification loss can be computed as I(y,y) =
a Dy =1Agy=—1Ci f“ﬁ Z.j:yjzfmg;jﬂ € wher.e Cj
is a fixed cost that is assigned to the misclassified
node j defined by Eq (5). Following the methodology
used in [38] for parameter selection, we compute
A= Z—‘, where n_ is the number of negative training
labels and ny is the number of positive training
labels. Parameters « and 3, such that & = A\ and
«a + 8 =2 are set in the same way as in [38].

(14)

E. Results

We begin by comparing H-Ada.MH with Adaboost.MH.
Our goal is to show that the performance of AdaBoost.MH
improves with the proposed hierarchy—aware loss function and
asymmetric weighting scheme. Figure 4 shows the results.

TABLE 11

PERFORMANCE COMPARISON.
Dataset Metric H-Ada.MH Local Global
Micro-F1 0.7143 0.569 0.6633
ImageCLEF07A | Macro-F1 0.5096 0.1504 0.470
H-F 0.7445 0.573 0.691
HMC 0.075 0.137 0.079
Micro-F1 0.7216 0.646 0.644
ImageCLEFO7D | Macro-F1 0.3992 0.1546  0.4552
H-F 0.7607 0.662 0.670
HMC 0.129 0.2047 0.1948
Micro-F1 0.487 0.174 0.205
Diatoms Macro-F1 0.5587 0.0138 0.2391
H-F 0.4542 0.1176 0.1812
HMC 0.012 0.0174 0.0187
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Fig. 4. Comparison of H-Adab.MH with Adaboost.MH. in (a) Image-
CLEF07D, (b) ImageCLEF07A, and (c) Diatoms. The test error (y—axis)
in the test dataset is shown as a function of the number of base learners
(x—axis).

As expected H-Ada.MH achieves the smallest loss in all
cases. The competitive advantage of H-Ada.MH becomes
more prominent in the Diatoms dataset, where the number
of classes dramatically increases. Misclassifications near the
bottom of the hierarchy are avoided by H-Ada.MH since,
unlike Ada.MH, it accounts for the structural relationships
among classes while making predictions.

Next, we compare H-Ada .MH with the hierarchical multi-
class classification baselines. The results are show in Table II.
With the exception of one metric for the ImageCLEFO7D
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Fig. 7. Ground truth (a) and corresponding predictions ((b) Global, (c) Local, and (d) H—Ada .MH for a sample drawn from the ImageCLFEO7A dataset.

dataset, the proposed approach outperforms the baselines.

As the goal is to predict all classes in the entire hierarchy,
labeling classes correctly at each level is critical. Thus, to
better show the superiority of H-Ada.MH, our discussion
focuses next on Top—k, H-F and HMC loss, all of which have
been used to measure hierarchical classification performance.

The advantage of H-Ada.MH seems to be smaller with
respect to HMC in the ImageCLEF0O7A dataset, as errors in the
upper levels contribute more to the HMC loss. Although this
result may be misleading initially, H—Ada . MH indeed achieves
better performance as it (i) can better discriminate regardless

of depth (c.f. Fig 6), and (ii) leads to more consistent labels,
i.e., predicted classes form a path from the root to a leaf node
that satisfies the tree—structure constraint (Fig. 5).

The Top—k accuracy results are showed in Figure 5, whereas
Figure 6 shows classification accuracy for each level in the
hierarchy. In all cases, H-Ada.MH outperforms the other
methods on all levels of the hierarchy. Moreover, although
the performance of all methods tends to decrease when the
hierarchy deepens, H—Ada . MH not only retains superior per-
formance, but also broadens its superiority with the baselines
as depth increases. Specifically, as depth increases, the number



of classes in a level increase rapidly (e.g., there are 85 and 258
classes in levels 1 and 2, respectively, in the Diatoms dataset),
adversely impacting performance. Since H-Ada . MH considers
the dependencies among different levels of the hierarchical
structure, it is less affected by the number of classes in a level
(as opposed to the baselines).

To further illustrate the difference between H-Ada.MH
and the baselines, Figure 7 shows the prediction for a test
sample from the ImageCLFEFO07A dataset. Apparently, no
single method can obtain the corerct solution, with the local
method being completely off. Compared to the Global baseline
(Fig. 7(b)), H—Ada . MH (Fig. 7(c)) (i) returns a consistent path,
and (ii) makes only one mistake at the leaf node (i.e., the most
specific level of the hierarchy).

In summary, the experimental results all indicate that H—
Ada.MH can classify data instances more effectively than
the baselines by learning multiple base classifiers that are
explicitly trained to model dependencies among classes, and
subsequently used to combine predictions at each level in
the class hierarchy in a way that conforms to the overall
hierarchical structure.

VI. CONCLUSION

We presented H-Ada.MH, a new algorithm for hierar-
chical multiclass classification. Specifically, we first intro-
duced hierarchical constraints into AdaBoost.MH based on a
hierarchy—aware Hamming loss function. Then, we devised
an asymmetric weighting scheme to penalize errors at the
upper levels of the hierarchy, and therefore avoid propagating
misclassification down a path. Our experiments on three real—
world datasets demonstrated the effectiveness and intuitiveness
of H-Ada .MH.

In the future, we wish to address a problem setting where
the class hierarchy is organized as a directed acyclic graph
instead of a tree. Subsequently, we would like to explore
the more challenging problem of multi-label classification,
where each data instance can be assigned to multiple paths
of the class hierarchy at the same time. Finally, we plan to
test the performance of H—Ada . MH on other domains, such as
document categorization and bioinformatics.

VII. ETHICS STATEMENT

The work presented in this paper is the result of our original
work, and is not currently under consideration for publication
elsewhere. The names and affiliations of those who actually
did the work and contributed to the paper in a meaningful way
will be included upon acceptance.

Beyond meeting our professional conduct obligations, it
is difficult for us to anticipate or predict how the proposed
general framework presented here will be used in the real-
world. Therefore, the potential harm, if any, caused by irre-
sponsible use of the proposed framework cannot be easily
quantified. In its core, H-Ada.MH produces probable, yet
uncertain outcomes (i.e., labels) after being trained on a
specific dataset. If a biased dataset is used to train an ensemble
with H—-Ada . MH, then the outcomes of such classifier may be

used in a way that may not be ethically neutral. Recognizing
this limitation is important. The fact however that H-Ada .MH
produces paths which are open and accessible to humans for
interpretation, may be beneficial in identifying biases in the
training data itself.
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