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ABSTRACT 

 

The decomposition of multi-subject fMRI data using rank-

(L,L,1,1) block term decomposition (BTD) can preserve 

higher-way data structure and is more robust to noise effects 

by decomposing shared spatial maps (SMs) into a product 

of two rank-L loading matrices. However, since the number 

of whole-brain voxels is very large and rank L is larger than 

1, the rank-(L,L,1,1) BTD requires high computation and 

memory. Therefore, we propose an accelerated rank-

(L,L,1,1) BTD algorithm based upon the method of 

alternating least squares (ALS). We speed up updates of 

loading matrices by reducing fMRI data into subspaces, and 

add an orthonormality constraint on shared SMs to improve 

the performance. Moreover, we evaluate the rank-L effect 

on the proposed method for actual task-related fMRI data. 

The proposed method shows better performance when L=35. 

Meanwhile, experimental comparison results verify that the 

proposed method largely reduced (17.36 times) computation 

time compared to ALS while also providing satisfying 

separation performance. 

 

Index Terms— rank-(L,L,1,1) BTD; ALS; acceleration; 

fMRI; tensor decomposition. 

 

1. INTRODUCTION 
 

Functional magnetic resonance imaging (fMRI) is a 

noninvasive technique for studying brain activity and by 

measuring blood-oxygenation-level dependent (BOLD) 

signal to get fMRI data [1]. The multi-subject fMRI data 

inherently possess multi-way nature including 3-

dimensional space, time, and subject modes. The majority 

of studies, such as group independence component analysis 

(ICA) [2], canonical polyadic decomposition (CPD) [3], and 

independence vector analysis (IVA) [4], unfold the 3D 

spatial brain images into a vector and select the in-brain 

voxels. More specifically, group ICA temporally 

concatenates fMRI data of each subject to compose a matrix 

with space and time modes, and CPD and IVA treat multi-

subject fMRI data as a three-way tensor with space, time 

and subject modes. 

However, such approach does not leverage the 3D 

spatial structure of fMRI. Block term decomposition (BTD) 

has been efficiently applied to four-way multi-subject fMRI 

data [5, 6]. Instead of vectorization of spatial mode, BTD 

unfolds the 3D spatial brain image into a matrix by 

concatenating different frontal slices [6]. More specifically, 

the rank-(Lr,Lr,1,1) model, one of the simplified and typical 

BTD model, decomposes the 4-way multi-subject fMRI data 

into N rank-Lr tensors (N is the number of components). 

Moreover, each tensor is the out-product of a shared spatial 

map (SM) matrix which is the product of two rank-Lr 

loading matrices, a time course (TC) vector and a subject 

intensity vector. The uniqueness of rank-(Lr,Lr,1,1) BTD 

has been verified in [5-7]. Moreover, rank-(Lr,Lr,1,1) BTD 

is more robust than CPD especially in cases of processing 

strong noise [5, 6]. However, these following two problems 

have been aroused when applying rank-(Lr,Lr,1,1) BTD to 

multi-subject fMRI data. 

On one hand, since brain images for rank-(Lr,Lr,1,1) 

BTD include both in- and out-brain voxels, the number of 

voxels of brain images are much larger than the product of 

the number of time points and subjects (e.g., 120,060 vs. 

2,640 in this paper). Moreover, the rank of each shared SM 

component Lr is generally larger than 1. Therefore, rank-

(Lr,Lr,1,1) BTD is more computationally demanding than 

CPD. The classical alternating least squares (ALS) has been 

widely used for CPD and BTD. Some accelerated methods 

based on ALS have been proposed to speed up CPD, such 

as ALS with compression [8, 9], with line search methods 

[10, 11], using mode reduction and Khatri-Rao product 

projection procedure [12], through tensor reshaping [13], by 

partitioning loading matrices into blocks [14], via a matrix 
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polynomial predictive model [15], and so on. Recently, a 

rank-(L,L,1) BTD based on an alternating hierarchical 

iteratively reweighted least squares exhibiting fast 

convergence was proposed [16].  

Once challenge is the selection of rank is a NP-hard 

problem. For ICA, IVA, and CPD of multi-subject fMRI 

data, we can use model order selection such as minimum 

description length (MDL) [17], rank estimation tensor 

nuclear norm [18] and tensor rank network [19], to estimate 

the number of components. Besides the number of 

components, rank-(Lr,Lr,1,1) BTD also needs to estimate the 

Lr values. Chatzichristos et al. proposed the maximum Lr 

estimation method determined by the number of columns 

containing at least one effective voxel after performing Z-

test and Bonferroni correction. Han et al. treated rank-(L,L,1) 

BTD as CPD and estimated the rank L by group sparsity 

[20]. For simplicity, we also assume Lr same for all 

components, i.e., rank-(L,L,1,1) BTD. 

In consider of these above two problems, we here 

firstly propose a novel accelerated ALS method for rank-

(L,L,1,1) BTD applied to multi-subject fMRI data. The 

proposed method accelerates the updates of two loading 

matrices of shared SMs by reducing the fMRI data in the 

subspace of Khatri-Rao product of shared TCs and subject 

intensities, and accelerates the updates of shared TCs and 

subject intensities by reducing the fMRI data in the 

subspace of shared SMs. Besides, since the orthogonality 

between SMs has been verified that can improve the 

separation performance the CPD when applied to multi-

subject fMRI data [3, 21-22], we incorporate the spatial 

orthonormality constraint on the shared SMs. We secondly 

comprehensively test the separation performance effect on 

the rank Lr by varying from 5 to 45 based upon the actual 

task-related fMRI data experiments. We also compare the 

proposed method with ALS and nonlinear least squares 

(NLS) methods of rank-(Lr,Lr,1,1) BTD. The rest of paper is 

organized as follows. Section 2 descripts the proposed 

accelerated ALS method for rank-(Lr,Lr,1,1) BTD with 

spatial orthonormality constraint. Section 3 narrates the 

experimental methods. Section 4 concludes the results of 

actual task-related fMRI data. Section 5 has the conclusions. 

 

2. THE PROPOSED METHOD 

 

Notations: Scalar, vector, matrix and tensor are expressed as 

italic lowercase letters (e.g., x), bold lowercase letters (e.g., 

x ), bold uppercase letters (e.g., X ), and bold uppercase 

calligraphic letters (e.g., ), respectively. The transpose, 

conjugate and pseudo-inverse are denoted by “T”, “*” and 

“ † ” respectively. “  ” is a 2 norm function. “ ” and “” 

are expressed as outer product and Kronecker product. We 

here use two kinds of Khatri-Rao product. First, let 

1=[ , , ]NA A A  and 1=[ , , ]NB B B  denote two partitioned 

matrices, and the Khatri-Rao product of these two matrices 

is 1 1=[ , , ]N N A B A B A B  [23]. Second, when 

1=[ , , ]NA a a  and 1=[ , , ]NB b b  are partitioned into 

vectors, we calculate the Khatri-Rao product of these two 

matrices as 1 1=[ , ,c A B a b  ]N Na b  [23]. 
 

2.1. The model and cost function 
 

Assume the 3D spatial brain image with size 
x y zI I I   can 

be reshaped as 2D spatial brain image with size 
x yzI I  

(
yz y zI I I  ), J and M denote the number of scans and the 

number of subjects. As such, the four-way multi-subject 

whole-brain fMRI data x yzI I J M  
  can be treated a sum 

of N rank-(L,L,1,1) terms which satisfy:  

  
1 1

=
N N

n n n n n n nn n



 
 S c d A B c d ,  (1) 

where x yzI IT
n n n

 S A B  denotes shared SM component 

which is the product of rank-L matrix xI L
n

A  and rank-

L matrix yzI L
n

B  ( 1, ,n N ). Notice that the rank-

(L,L,1,1) model assumes all shared SM components have 

same ranks L for simplicity. 1[ , , ] J N
N

 C c c  and 

1[ , , ] M N
N

 D d d correspond to shared TCs and 

subject-specific intensities, respectively.  

Since the orthogonality between SMs has been shown 

improved performance of CPD of multi-subject fMRI data 

[3, 21-22], we aim to minimize the error of rank-(L,L,1,1) 

BTD model under spatial orthonormality constraint: 

 
 

1, , ,
min

. .
n n n n

N

n n n nn

Hs t









A B c d

A B c d

S S I

，

，
  (2) 

where 1 1[vec( ), ,vec( )] xyzI N
N N

  
 S A B A B  are shared 

SMs, function vec( )  denotes vectorization of a matrix, 

xyz x yzI I I , and I  is the identity matrix.  
 

2.2. The accelerated ALS updating rules 
 
Since the size of whole-brain fMRI image are much larger 

than in-brain fMRI image (e.g., 120,060 vs. 59,610 in this 

paper), it requires more computation time and memory to 

calculate the loading matrices for ALS of rank-(L,L,1,1) 

BTD. Inspired by the accelerated ALS of CPD [9, 24], we 

here propose an accelerated ALS for rank-(L,L,1,1) BTD. 

Let 1=[ , , ] xI LN
N

A A A  and 1=[ , , ]N B B B  
yzI LN , we can unfold the fMRI data  into the following 

matrix representation of CPD model:  

= ( )
x yz

T
I JM cX S C D .  (3) 

When updating A , ALS requires large computation 

time to compute the Khatri-Rao product of B  (e.g., 

2,610×NL) and cC D  (e.g., 2,640×N), with dimension 

yzI JM NL  (e.g., 6,890,400×NL). As such, we project (3) 

into cC D  subspace to reduce the dimensionality of the 

fMRI tensor: 

 
( )= ( ) ( )

ˆ= = ,

x yz

xyz

x yz

T
I JM c c c

I N
I N




 

X C D S C D C D

SM X
 (4) 

where ={ }=( ) ( )T N N
n c c

M m C D C D . The reduced 

data ˆ
x yzI NX  can be transformed as a three-way tensor 

3934

Authorized licensed use limited to: Georgia State University. Downloaded on May 27,2022 at 13:55:26 UTC from IEEE Xplore.  Restrictions apply. 



ˆ x yzI I N 
 . As the number of components N (generally 

smaller than J) is obviously smaller than JM. The size of ˆ  

is significantly smaller than that of . The ˆ  satisfies the 

following rank-(L,L,1) BTD model: 

  
1

ˆ =
N T

n n nn A B m ,  (5) 

and has the following matrix representations: 

 ˆ =
x yzI I N


X A(B M) ,   (6) 

 ˆ =
yz xI I N


X B(M A) .   (7) 

Therefore, we can derive the following ALS updating rules 

of A  and B respectively based on (6) and (7): 

 †ˆ ( )
x yz

T

I I NA X B M ,  (8) 

 †ˆ
yz x

T

I I NB X (M A) .  (9) 

When updating C and D, as the number of whole-brain 

voxels of share SMs S  is large (e.g., 120,060), we further 

project (7) into the S  subspace to reduce the dimensionality 

of fMRI tensor: 

 
= ( )

( ) ,

x yz

T T T
I JM c

T N JM
c N JM




  

S X S S C D

S C D X
  (10) 

where ={ }= T N N
n

S s S S . We transform the reduced data 

N JMX  into a tensor 
N J M   which is evidently 

smaller than  due to N≪ xyzI . The ˆ  conforms the 

following CPD model: 

 
1

=
N

n n nn s c d ,  (11) 

and has the following matrix representations: 

 =J MN c


X C(D S) ,   (12) 

 =M JN c


X D(C S) .   (13) 

Along this line, we can derive the following ALS updating 

rules of C and D based on (12) and (13): 

 †T

J MN cC X (D S) ,  (14) 

 †
M JN c


D X (C S) .  (15) 

 
2.3. The orthonormality constraint on shared SMs 
 

We here add the orthonormality constraint on shared SMs to 

reduce the crosstalk between shared SM components [21, 

22]. More precisely, we perform economical singular value 

decomposition (SVD) on S, and calculate an orthonormal S 

by using the left singular matrix xyzI N
U  and right 

singular matrix 
N NV : 

 
[ , , ] svd( ),

,H






U Σ V S

S UV
 (16) 

In reality, the complexity of BTD with ALS amounts to 

 x yzI I MJNL . Since N is generally smaller than J, the 

complexity of the proposed method is obviously reduced to 

 2
x yzI I LN  (e.g., 75.429 times lower complexity when N 

= 35, J = 165 and M = 16 in our experiment). As a whole, 

we conclude the detailed procedure of the proposed method 

in Table I.  

Table I. The detailed implementation of the proposed algorithm. 

Input: multi-subject fMRI data x yzI I J M   , the number of components 

N, rank L, and the maximum number of iterations itermax, the termination 

threshold of error min . 

Randomly initialize A , B , C , and D , and let iter = 0 and 0 1  ;  

while iter min   or iter < itermax do 

     iter = iter + 1; 

     calculate cC D  and obtain ˆ
x yzI NX  using (4);  

     update A  based on (8); 

     update B  based on (9); 

     calculate 1 1[vec( ), , vec( )]N N
 S A B A B ; 

add spatial orthonormality constraint on S  based on (16); 

obtain N JMX  based on (10); 

update C  based on (14); 

update D  based on (15); 

calculate iter  using (2); 

end while 

Output: A , B , C , and D  

 

3. EXPERIMENTS AND RESULTS 
 

In order to evaluate the efficacy of the proposed accelerated 

rank-(L,L,1,1) BTD under spatial orthonormal constraint 

(shorted as accBTD-O), we carry out 16-subject finger-

tapping task-related fMRI data experiments (see [3, 24] for 

detail). As the size of 3D whole-brain images is 53×63×46, 

we reduce the size of 3D whole-brain images into 

46×58×45 to remove some out-brain voxels. We unfold 3D 

brain images into matrix 46×2610 by concatenating frontal 

slices. The number of scans J is 165 for all M = 16 subjects.  

Meanwhile, we compare the proposed accBTD-O and 

accBTD, BTD with ALS (BTD-ALS), BTD-ALS under 

spatial orthonormality constraint (BTD-ALS-O), BTD with 

NLS (BTD-NLS) [25]. We run each algorithm 10 times on 

MATLAB2018a under Win10 operating system with 

Inter(R) Xeon(R) Gold 6226R and 500G memory. We set 

itermax = 200 and 6
min 10   for each algorithm. We select 

the number of components R = 35 which suggested in [3]. 

As rank L is unknown, we change L from 5 to 45 with 

interval 5 to evaluate the L effect on the proposed method.  

We here examine the task-related shared SM and TC. 

The task-related SM and TC references in [3] are used and 

the absolute Pearson correlation coefficients ρ between 

estimates and references are calculated to evaluate the 

performance. The higher ρ is, the better performance is. We 

also calculate the computation time of each algorithm 

without other programs running for the sake of fairness. 
 

3.1. Results of different rank L values 
 

We first compare the proposed accBTD-O and accBTD at 

different rank L values from 5 to 45 with interval 5, as 

shown in Fig. 1. Due to the incorporation of spatial 

orthonormality constraint, accBTD-O achieves obviously 

higher average ρ values of shared task-related SMs (see Fig. 
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1A) and TCs (see Fig. 1B) than accBTD. Furthermore, 

accBTD-O shows relatively higher average ρ values of both 

shared task-related SMs and TCs when L = 30 and 35 than 

other L values in Fig. 1. Meanwhile, accBTD exhibits 

higher average ρ values of SMs and TCs when L = 35 and 

40 as shown in Fig. 1. On the whole, accBTD-O and 

accBTD at L = 35 show relatively better shared SM and TC 

estimates than other L values. Therefore, we choose L = 35 

for the following experiments, which is also close to the 

rank L = 40 estimated in [6]. 
 

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.9

1

rank L

ρ

rank L

ρ

accBTD-O

accBTD

accBTD-O

accBTD

A. Shared SMs B. Shared TCs

 
Fig. 1. Effects of different rank L values (from 5 to 45 with 
interval 5) on accBTD-O and accBTD in terms of means 
and standard deviations of ρ values of task-related SMs (A) 
and TCs (B) for multi-subject task-related fMRI data. 

 

3.2. Comparison results 
 

We further compare the separation performance of proposed 

accBTD-O and accBTD with BTD-ALS-O, BTD-ALS, and 

BTD-NLS at L = 35, as shown in Table II. First, accBTD 

and BTD-ALS show higher average ρ values of shared task-

related SMs and TCs than BTD-NLS (see Table II), 

indicating that ALS is more suitable for multi-subject fMRI 

data than NLS. Second, owing to the spatial orthonormality 

constraint, the proposed accBTD-O and BTD-ALS-O 

extract apparently higher average ρ values of shared task-

related SMs and TCs than accBTD and BTD-ALS, 

respectively. Third, due to accelerating the update of 

loading matrices, accBTD-O costs 17.36 times less 

computation time than BTD-ALS-O and slightly higher 

average ρ values for the shared TCs, although slightly lower 

average ρ values for the shared SMs.  

Some example shared task-related SMs and TCs 

estimated by the proposed accBTD-O and accBTD, BTD-

ALS-O, BTD-ALS, and BTD-NLS at L = 35 are shown in 

Fig. 2. We can conclude from Fig. 2A that accBTD-O and 

BTD-ALS-O show obviously larger activations in right 

primary motor areas (RPMA) and supplementary motor 

areas (SMA) than other three methods. Besides, accBTD-O 

and BTD-ALS-O additionally exhibits activated voxels in 

left primary motor areas (LPMA). In addition, the shared 

TC waveforms estimated by accBTD-O and BTD-ALS-O 

are more closed to TC reference than other three methods as 

displayed in Fig. 2B. These results further show the 

advantage of spatial orthonormality constraint. 

Table II. Comparison of accBTD-O, accBTD, BTD-ALS-O, 
BTD-ALS and BTD-NLS for analyzing the multi-subject task-
related fMRI data over 10 runs in terms of the mean and standard 
deviation of ρ values of the shared task-related SM and TC 
estimates and average computation time (s). 
 accBTD-O accBTD BTD-ALS-O BTD-ALS BTD-NLS 

SM 0.53±0.03 0.31±0.05 0.57±0.05 0.48±0.03 0.12±0.03 

TC  0.84±0.07 0.32±0.05 0.82±0.14 0.32±0.21 0.21±0.07 

Time 13097.42 13901.08 240408.89 239280.62 170301.12 

 

B. Shared TCs

20 40 60 80 100 120 140 160
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Fig. 2. Example shared task-related SMs (Z ≥ 0.5) and TCs 

estimated by accBTD-O, accBTD, BTD-ALS-O, BTD-ALS, 

and BTD-NLS. The ρ values with corresponding references 

are also shown. 
 

4. CONCLUSIONS 
 
This study proposes a novel accelerated rank-(L,L,1,1) BTD 
under spatial orthonormality constraint, to conquer the 
problems of high computation time of BTD applied to 
multi-subject fMRI data and to reduce the crosstalk between 
components. Experiment results show that the proposed 
method gets better separation performance when rank L = 
35, is obviously 17.36 times faster than BTD-ALS-O and 
achieves similar separation performance with BTD-ALS-O. 
Multi-subject fMRI data are originally complex-valued and 
possess high spatiotemporal variability, and given the 
performance improvement, we can also apply the proposed 
method to complex-valued fMRI data with some spatial and 
temporal constraints. 
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