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Abstract

BrainForge is a cloud-enabled, web-based analysis platform for neuroimaging

research. This website allows users to archive data from a study and effortlessly pro-

cess data on a high-performance computing cluster. After analyses are completed,

results can be quickly shared with colleagues. BrainForge solves multiple problems

for researchers who want to analyze neuroimaging data, including issues related

to software, reproducibility, computational resources, and data sharing. BrainForge

can currently process structural, functional, diffusion, and arterial spin labeling MRI

modalities, including preprocessing and group level analyses. Additional pipelines are

currently being added, and the pipelines can accept the BIDS format. Analyses are

conducted completely inside of Singularity containers and utilize popular software

packages including Nipype, Statistical Parametric Mapping, the Group ICA of fMRI

Toolbox, and FreeSurfer. BrainForge also features several interfaces for group analysis,

including a fully automated adaptive ICA approach.
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1 INTRODUCTION

Over the past few decades, the neuroscience research community has witnessed a meteoric rise in the use of neuroimaging to understand neu-

rodevelopment and aging, study the structure and function of the brain, and answer questions aboutmental disorders and brain pathologies.1,2 The

advent of quality fast magnetic resonance imaging (MRI) to probe function and connectivity has resulted in an immense amount of high-resolution

data collected across multiple modalities, including structural MRI (sMRI), functional MRI (fMRI), and diffusion MRI (dMRI). This imaging data is

frequently used in conjunctionwith data from electroencephalography (EEG), magnetoencephalography (MEG), genomics, neuropsychological and

behavioral testing, and others. This substantial increase in information has led researchers toward novel discoveries that contribute to our knowl-

edge of the brain. However, this advanced technology also requires immense computational resources, and neuroscientists must master complex

software to effectively process their data. BrainForge3 offers a solution to these problems with a cloud-enabled, web-based analysis platform for

neuroimaging research. BrainForge is a new and powerful platform that is already being used by many researchers. As of this writing, BrainForge

has 47 users, who have run a total of 3865 analyses in 17 studies. These users are distributed over 16 research groups across 10 sites.

2 CHALLENGES AND MOTIVATION

There are several key challenges that researchers encounter when performing neuroimaging research, including issues with computing, software,

reproducibility, and data sharing. These challenges motivated us to create BrainForge and are described below. In the next section, we cover how

BrainForge addresses these challenges.
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2.1 Computational resource issues

First, a researcher must gain access to computational resources that enable the timely processing of neuroimaging data for a study.Without suffi-

cient computational resources such as parallel computing and GPUs, neuroimaging pipelines sometimes require up to a day or more to finish for a

single subject. Additionally, the amount of data collected across allmodalities can sumtomore than1GBof rawdata for a single subject, andderived

data may be 100-fold greater. With hundreds or thousands of subjects needing to be processed, it is clear that a single workstation or even small

computing cluster may not be sufficient even for a single study, let alone a research group.

2.2 Software issues

Modern neuroimaging packages are ever-advancing, with multiple software dependencies that vary between platforms. Installing and using neu-

roimaging software can be difficult, as a moderate degree of computer literacy is required for complete and proper installation. Furthermore, to

process subjects at scale, a researcher must be proficient in basic operating system programming and scripting to programmatically call the neu-

roimagingpackages. In largeneuroimaginganalyses thatutilizehundredsor thousandsof subjects, theability toanalyzemanysessionswithminimal

manual intervention is necessary. Finally, computer resources are often strictly controlled by IT in a university setting,which can add delays ormake

installation of some software impossible.

2.3 Reproducibility issues

In addition to challenges related to software and computational resources, reproducibility in research has attracted significant attention in recent

years.4–6 It is important that researcherspublish results thatare transparent, correct, andreplicable.A lackofdisclosureaboutdetailsofparameters,

software versions, and operating systems can prevent results from being replicated and validated. Thus, it is important to track and organize the

pipelines and analyses that have been run and be able to inspect them later.

2.4 Data sharing issues

Because of the vast amounts of data involved, sharing data and results can be onerous. Typical file sharing systems, such asGoogleDrive,OneDrive,

and Dropbox, do not handle many large files well, as there are often problems with compression and transfer at the terabyte scale. Additionally,

transferring large amounts of data both to and from one of these services requires considerable time.

3 COMPARISON

Given that there are several other major platforms built for neuroimaging data analysis, one might ask why build a new platform?When surveying

the landscape of neuroimaging platforms, we did not find any platform that fulfilled all of our requirements. We wanted a platform that (1) inte-

grated well with the Collaborative Informatics and Neuroimaging Suite (COINS)7 or some other study management and data acquisition platform,

(2) performed a variety of group analyses, especially in the fMRImodality, and (3) was interoperablewith our on-premise hardware using the Slurm

Workload Manager.8 Two other neuroimaging platforms, namely, Brainlife9 and Flywheel,10 were examined. Both platforms can be utilized with

on-premise or cloud resources and have general-purpose interfaces for numerous preprocessing pipelines inmultipleMRImodalities. However, we

found that they did not feature many group analyses. Each platform has a generic interface that is dynamically constructed based on the specifi-

cations of an analysis container, which allows their platform to scale well with increasing numbers of pipelines. However, this interface provides a

constrainedUI,which is noticeable for complicatedpipelines andanalyses.Modernwebdesign frameworksoffermanyUIoptions to create intuitive

and interactive interfaces, which offer flexibility, reduced errors, and time savings for neuroimaging researchers.

Because we could not find an option that satisfied our requirements at the Center for Translational Research in Neuroimaging and Data Sci-

ence (TReNDS), we decided to build a new platform. Instead of a generic, dynamically generated interface that is specified by an analysis container,

BrainForge has a dedicated and customizable interface for each pipeline. This allows for more design freedom on the front end, enhancing the

user experience. Additionally, BrainForge features group analyses including SPM statistical models and GIFT analyses. As mentioned above, inter-

operability with COINS was a design requirement, so BrainForge procures metadata from COINS via a REST API and then downloads data from

the COINS repository on the S3 service on AmazonWeb Services (AWS). Finally, integration with our on-premise hardware was a requirement, so

BrainForge controls our high-performance computing (HPC) cluster via Slurm.
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4 SOLUTIONS

To address these challenges, we have created a platform called BrainForge that connects researchers to large-scale computing resources behind a

user-friendly web interface, offering complete standard, and customized processing pipelines.

4.1 Computing

BrainForge runs on the TReNDSHPCcluster atGeorgia StateUniversity. As of thiswriting, this cluster includes 49 nodeswith a total of 2448 cores,

32.5TBofmemory, and60GPUs.Adetailedbreakdown is shown inTable1. The computing resources at TReNDSenable simultaneousprocessingof

thousands of subjects. BrainForge interfaceswith Slurm to schedule jobs on the cluster. Furthermore, BrainForgewill provide the option of running

jobs on AWS if there is not sufficient capacity on the cluster to run all jobs by their deadlines. BrainForge can be adapted to other on-premise and

cloud environments as well.

4.2 Software

BrainForge executes predesigned and customizable neuroimaging pre- and post-processing pipelines, containerized using Singularity.11 Container-

ization encapsulates the operating system, software libraries, and scripts, obviating the need to replicate or build specific software environments

required for analysis. Singularity is similar to Docker12 but is designed to adhere to university HPC IT policies. BrainForge does not require pro-

gramming expertise, allowing users to focus on their research. A web graphical user interface (GUI) provides all of the parameters as inputs to the

pipelines, including those running industry-standardpackages, suchasStatistical ParametricMapping (SPM),13 theFMRIBSoftwareLibrary (FSL),14

Analysis of Functional NeuroImages (AFNI),15,16 and the Group ICA for fMRI Toolbox (GIFT).17 BrainForge is also planning to provide a generic,

dynamically generated interface that can easily utilize new, user-created containers.

4.3 Reproducibility

Because BrainForge analyses are encapsulated within Singularity containers, they produce the same results on every platform, including HPC

clusters. Of course, run time will depend on the underlying hardware and can be affected more strongly if the software uses MPI or hardware

optimizations. However, even a worklflow that runs more slowly on some platforms is still reproduceable. Furthermore, these containers can

be introspected and are located on DockerHub,18 with their code located on GitHub,19 in the corresponding “trendscenter” organizations. The

repositories are currently private but canbemade available toBrainForge users on request.Manyof theworkflows are programmedusing theNeu-

roimaging in Python Pipelines and Interfaces (Nipype)20 software libraries, adding another layer of reproducibility. Provenance, complete lists of

runtime parameters, input data, start and end times, computational resources, and user information are also retained.

4.4 Data sharing

To solve the challenges of data sharing, BrainForge allows primary investigators (PIs) to share data and results with others. PIs can also share

data and invite others to contribute data and run analyses. This eliminates the need for large data transfers to collaborators for the purpose

TAB L E 1 Computing resources currently available on the TReNDS cluster available to
BrainForge

Manufacturer Number Cores per node Memory per node GPUs

Intel 20 32 768GB

Intel 3 96 1.5 TB

AMD 20 64 512GB 1xNvidia 2080

Nvidia DGX-1 4 40 512GB 8xNvidia V100

Dell 2 40 192GB 4xNvidia V100

Total 49 2448 32.5 TB 60

Note: The total number of cores, amount of memory, and number of GPUs on the entire cluster are shown

on the bottom row. Cluster resources are expanding every year.
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examining results. A sensible and effective permissions scheme is key for data sharing. Permissions are centered around sites and studies, and

include the super admin, site admin, study PI, and user roles. PIs have full control over their studies, and site admins have control over all stud-

ies within their sites. Data are organized using the Brain Imaging Data Structure (BIDS) standard,21 which eases sharing and reuse. In addition,

both raw data and results are stored on the TReNDS cluster and can be downloaded for viewing and organizing offline using several differ-

ent methods, including a web interface, a command-line interface (CLI), and Globus.22,23 Storage is included in the cost of analyzing data on

BrainForge.

BrainForge can be operated standalone or optionally can interface with COINS, a neuroinformatics data management platform. COINS is a

full study management system, able to pull DICOM files directly from a scanner, manage subjects, and store assessments, among other features.

BrainForgeprocures data andassociatedmetadata fromCOINSvia aRESTapplicationprogramming interface (API), providing seamless integration

of data acquisition, curation, and analysis.

5 FEATURES

BrainForge offers many features that help a neuroimaging researcher analyze their data, including preprocessing and analysis pipelines and

advanced analysis management features.

5.1 Analyses

Preprocessingpipelinesandgroup-level analysesavailable inBrainForgeoperate inawide rangeofmodalities, including sMRI, fMRI, dMRI, andarte-

rial spin labeling (ASL) modalities. These pipelines, designed and regularly utilized by TReNDS labmembers and collaborators, have been validated

through numerous publications.24–26 Examples include:

• Analyses for sMRI include voxel-basedmorphometry (VBM)27 using SPM12 and FreeSurfer (v6 and v7).28

• dMRI workflows for generation of diffusion derivative images (FA, MD, RD, AD) using AFNI and diffusion kurtosis imaging (DKI) using

Python. All diffusion data are corrected prior to analysis for artifacts such as susceptibility distortion, head movement, outlier detection, and

slice-to-volumemovement artifacts using FSL-6.0.14,29–31 Many quality assurance (QA) measures provided by the FSL program eddy are plotted

for quick review within BrainForge (Figure 1). A comprehensive QA report using FSL’s eddy_quad is generated for each subject and is avail-

able for download in PDF form. The DTI container utilizes GPUs via the Nvidia Container Toolkit, which is required to run the FSL eddy_quad

program.

• Task and resting-state fMRI data can be processed using two different workflows—the first using FSL-6.0 to correct echoplanar imaging (EPI)

distortion followedbyAFNI for realignmentand registrationofEPI toa standard spaceutilizingaT1 image. The secondpipelineoffersprocessing

using SPM12,with optional features enabling registration to single band reference (SBRef) images and distortion correction using FSL-6.0. Plots

of motion over time and frame displacement (FD) metrics are provided as QAmeasures.

• fMRI first-level analysis usingSPM12, includingevent-relatedandblock-designmodelingof task fMRIdata.Auser-friendlyGUIhasbeencreated

to run this analysis.

• fMRI second (group)-level analyses using SPM12 for results from any of the BrainForge pipelines or from other precompiled group data results,

featuring the complete set of SPM12statisticalmodels. Input to this analysis is controlledbyaGUI that includes group selectionbasedon subject

metadata, such as age and gender.

• A containerized version of GIFT, a MATLAB toolbox that implements multiple algorithms for independent component analysis (ICA) and blind

source separation of group and single-subject fMRI data. This includes 20 group ICA (GICA)24 algorithms, dynamic functional network connec-

tivity (dFNC),26,32 and ICAstats.25 There is also a fully automated group ICA pipeline, which simplifies the application of ICA to large studies and

facilitates comparison across analyses.33 An example of GICA results is shown in Figure 2.

• White matter hyperintensity (WMH) lesion quantification using the BIANCA tool in FSL-6.0.34 A training dataset can be uploaded and incorpo-

rated into the pipeline.

• ASL perfusion analysis using the BASIL tool in FSL-6.0.35 Output includes normalization to standard space.

• Magnetic resonance spectroscopy (MRS) is a noninvasive technique used to assess neurometabolites in vivo. Owing to their abundant concen-

trations in the CNS, the most commonly measured spectral peaks in the brain are N-acetyl aspartate, creatine, choline, glutamate, glutamine,

and myoinositol. BrainForge uses the LCModel36 and Gannet37 software packages and offers the option to process MEGA-PRESS (edited

spectroscopy) data to assess GABA and glutathione.
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F I GURE 1 QAmeasures produced by DTI pipeline related tomovement as provided by FSL eddy program

F I GURE 2 Sample components in group ICA results, including timecourses, spectra, montage, and ortho slices
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• Regression analyses for FreeSurfer results, written in Python.

• Ordinary least squares regression, written in Python.

• Polyssifier,38,39 a software tool to quickly benchmarkmultiple classification approaches on a single generic data set.

BrainForge is utilized by researchers from many institutions with different scanner vendors and software versions. To ensure accurate multi-

study analyses, scanner signal quality is critical. BrainForge provides a QA pipeline that runs on phantom data and includes signal intensity, image

signal-to-noise ratio (SNR), peak-to-peak signal percentage, and ghost levels, using methods similar to the TIM Trio EPI stability QA routine by

Siemens.40 Thesemeasures are derived froma commonprotocol across sites using an fMRI phantomand canbe viewed interactively as longitudinal

plots (Figure 3).

F I GURE 3 Longitudinal plots of scanner fMRI quality metrics derived from phantom scans
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BrainForge pipelines are streamlined for compatibility with NeuroMark,33 an ICA-based framework designed to elucidate functional connec-

tivity features and link brain changes amongdifferent datasets, studies, and disorders. NeuroMark leverages the benefits of a data-driven approach

and provides comparability across multiple sites and analyses, making BrainForge among the first cloud-based data management platforms for

integrative neuroimaging acquisition, analysis, and clinical phenotypes.

5.2 Analysis management

BrainForge provides multiple features to aid in large-scale processing of neuroimaging data, including parameter set reuse, analysis plans, prepro-

cessing summaries, and group selection. For each pipeline or analysis, BrainForge provides aGUI exposing a variety of parameters to customize the

process to suit thedataand taskathand.Theseparameter sets canbesaved, versioned, reused, andsharedwithothers, contributing to reproducibil-

ity. An analysis plan associates the data collected via a protocol within a study with an analysis using a specific container and parameter set. This

analysis plan can either be executed manually, queued in batch mode, or made automatic for ongoing analysis as acquisitions are added to a study.

Theautomaticplans immediatelyexecute theanalysisonall acquisitionswithin the studywithamatchingprotocol, aswell. The statusofpreprocess-

ing across all sessions in a study is displayed on a preprocessing summary page, providing an overview of the status of analysis for each subject. An

example of the preprocessing summary page is shown in Figure 4. Each row is a session, and each column is a combination of an analysis, parameter

set, and acquisition protocol. Cells in the table are color-coded according to the analysis status (set up =white, complete= green, error = red, and

F I GURE 4 Preprocessing summary page for Dev-Cog study. Rows represent each session, and columns represent each combination of
analysis, parameter set, and protocol
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no data= gray) and contain a link leading to the analysis result. Near the top, there is also a row showing the number of analyses successfully com-

pleted against the total number of sessions present in the study. Results can further be grouped according to demographic data or imaging protocol.

Additional features visually flag outliers, annotate data, remove or archive errors, and set rules for how data can be shared or used.

6 IMPLEMENTATION

6.1 Architecture

The BrainForge architecture (Figure 5) is divided into a back end written in Python Django and a front end written in React.js using the Ant Design

framework. The back end uses theDjango Rest Framework to expose anAPI that is accessed by the front end. Djangowas chosen because it is easy

to work with, feature rich, and scalable. Many high-profile, high-traffic websites have used Django, including Instagram, Pinterest, and Bitbucket.41

Additionally, nginx is used as a reverse proxy server, and Redis is used forweb socket communication and as a queue. Jobs are executed via a service

account on an HPC architecture using the SlurmWorkloadManager, a cluster management and job scheduling system for Linux, or in the cloud on

AWS. Slurm is controlled viaPySlurm,42 a low-level Pythonwrapper around theSlurmC-API.APostgresdatabase is used to storemetadata, analysis

provenance, and user information. A relational database structure is primarily employed, utilizing JSON fields to store parameters and analysis

information, as this typeof information varies toowidely tobepractically encoded indatabase columns. Tables arenormalizedwith someexceptions

to improve performance, and database backups are saved daily.

F I GURE 5 BrainForge architecture diagram showing on-premise components and COINS integration
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BrainForge runs on a CentOS 7 virtual machine (VM) in the TReNDS cluster. The VM has 4 virtual CPU cores and 16GB of memory. The code

for the BrainForge back end and the Singularity containers reside on a 200-GB volume on a network file system. Postgres, nginx, and Redis are

deployed using Docker Compose. The back end resides on the host system so that it can run as a non-root user when interacting with Slurm, which

is a security requirement at TReNDS. The code for the JavaScript front end is bundled usingGitHubActions and served fromanAWSS3bucket. The

promotional website is at brainforge.trendscenter.org, and the platform can be accessed at https://brainforge.rs.gsu.edu. BrainForge is currently

proprietary software.

6.2 Security

BrainForge uses best practices in its security. This includes protection against cross site scripting (XSS), cross site request forgery (CSRF), SQL

injection, and clickjacking. Additionally, all interactions with the website are encrypted via HTTPS. User passwords are also hashed with the

password-basedkeyderivation function2 (PBKDF2) algorithm43 with anSHA256hash, as recommendedby theNational Institute of Standards and

Technology (NIST).44 Furthermore, BrainForge uses JSONweb tokens (JWTs) for authenticated sessions.

7 FUTURE WORK

There are many future endeavors in line for BrainForge. We plan to allow users to compare their scans against the NeuroMark database using

relevant imaging biomarkers derived by our algorithms. This feature can be used to help select subjects for clinical trials or to test future clinical

decision support tools. Additional neuroimaging pipelines for genetics, EEG, and MEG will be incorporated. Furthermore, we will add approaches

for additional advanced analysis including data fusion (joint ICAandmultivariate canonical correlation analysiswith joint ICA45), and deep learning.

Wewill also create a public collection of containers, such asMRIQC46 and fMRIPrep,47 that are compatiblewithBrainForge, with built-in interfaces

to accept them on the platform. The platform will also allow users to use and share their own pipelines on BrainForge. We also plan to allow the

option of running analyses using theCLI. Thiswill be important for userswhowant to programmatically run analyses and integrate themwith other

scripts or who simply feel more comfortable using a CLI rather than a GUI. To further serve users who are strong programmers, we will implement

the ability to spawn Jupyter notebooks48 on our serverswith access to study data. In the near term,wewill create a feature to dynamically generate

a text file describing analysis methods based on workflow parameters. This will be useful for researchers who want to publish analyses performed

on BrainForge in scientific journals.

Recently, the neuroimaging research community has been moving toward adoption of the FAIR Data Principles, namely, findability, acces-

sibility, interoperability, and reusability.49 We plan to move BrainForge in this direction as well. To improve findability and accessibility to study

results, we plan to create public pages with digital object identifiers (DOIs) for analyses and datasets and annotation with metadata accord-

ing to Schema.org.50 Additionally, we are working to link BrainForge with the Collaborative Informatics and Neuroimaging Suite Toolkit for

Anonymous Computation (COINSTAC),51 a platform for federated analysis of neuroimaging data to promote reusability for data that cannot be

shared.

8 CONCLUSION

BrainForge is a cloud-enabled web-based platform designed for neuroimaging research that addresses several urgent needs in the scientific com-

munity. Standard and customizable processing pipelines, implemented with industry-standard neuroimaging software, provide trusted outcomes.

These pipelines are containerized, ensuring reproducibility and transparency, and are executed on an HPC grid, providing timely results. Flexi-

ble data management allows independent researchers to upload data, share their data selectively with other PIs, or to merge multistudy data for

postprocessing analyses. Data analyses can be small in scale or batched to process thousands of subjects. BrainForge is built with modern web

development tools, resulting in an intuitive and user-friendly neuroinformatics suite that enables prospectivemanagement, sharing, and analysis of

studies, assessments, and neuroimaging data.
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