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Abstract

BrainForge is a cloud-enabled, web-based analysis platform for neuroimaging
research. This website allows users to archive data from a study and effortlessly pro-
cess data on a high-performance computing cluster. After analyses are completed,

results can be quickly shared with colleagues. BrainForge solves multiple problems

for researchers who want to analyze neuroimaging data, including issues related
Correspondence

Eric Verner, Tri-institutional Center for
Translational Research in Neuroimaging and
Data Science (TReNDS), Georgia State
University, Georgia Institute of Technology,
Emory University, Atlanta, GA, USA.

Email: everner@gsu.edu

to software, reproducibility, computational resources, and data sharing. BrainForge
can currently process structural, functional, diffusion, and arterial spin labeling MRI
modalities, including preprocessing and group level analyses. Additional pipelines are
currently being added, and the pipelines can accept the BIDS format. Analyses are
conducted completely inside of Singularity containers and utilize popular software
packages including Nipype, Statistical Parametric Mapping, the Group ICA of fMRI
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Toolbox, and FreeSurfer. BrainForge also features several interfaces for group analysis,

including a fully automated adaptive ICA approach.
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1 | INTRODUCTION

Over the past few decades, the neuroscience research community has witnessed a meteoric rise in the use of neuroimaging to understand neu-
rodevelopment and aging, study the structure and function of the brain, and answer questions about mental disorders and brain pathologies.’2 The
advent of quality fast magnetic resonance imaging (MRI) to probe function and connectivity has resulted in an immense amount of high-resolution
data collected across multiple modalities, including structural MRI (sMRI), functional MRI (fMRI), and diffusion MRI (dMRI). This imaging data is
frequently used in conjunction with data from electroencephalography (EEG), magnetoencephalography (MEG), genomics, neuropsychological and
behavioral testing, and others. This substantial increase in information has led researchers toward novel discoveries that contribute to our knowl-
edge of the brain. However, this advanced technology also requires immense computational resources, and neuroscientists must master complex
software to effectively process their data. BrainForge? offers a solution to these problems with a cloud-enabled, web-based analysis platform for
neuroimaging research. BrainForge is a new and powerful platform that is already being used by many researchers. As of this writing, BrainForge
has 47 users, who have run a total of 3865 analyses in 17 studies. These users are distributed over 16 research groups across 10 sites.

2 | CHALLENGES AND MOTIVATION

There are several key challenges that researchers encounter when performing neuroimaging research, including issues with computing, software,
reproducibility, and data sharing. These challenges motivated us to create BrainForge and are described below. In the next section, we cover how

BrainForge addresses these challenges.
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2.1 | Computational resource issues

First, a researcher must gain access to computational resources that enable the timely processing of neuroimaging data for a study. Without suffi-
cient computational resources such as parallel computing and GPUs, neuroimaging pipelines sometimes require up to a day or more to finish for a
single subject. Additionally, the amount of data collected across all modalities can sum to more than 1 GB of raw data for a single subject, and derived
data may be 100-fold greater. With hundreds or thousands of subjects needing to be processed, it is clear that a single workstation or even small

computing cluster may not be sufficient even for a single study, let alone a research group.

2.2 | Softwareissues

Modern neuroimaging packages are ever-advancing, with multiple software dependencies that vary between platforms. Installing and using neu-
roimaging software can be difficult, as a moderate degree of computer literacy is required for complete and proper installation. Furthermore, to
process subjects at scale, a researcher must be proficient in basic operating system programming and scripting to programmatically call the neu-
roimaging packages. In large neuroimaging analyses that utilize hundreds or thousands of subjects, the ability to analyze many sessions with minimal
manual intervention is necessary. Finally, computer resources are often strictly controlled by IT in a university setting, which can add delays or make

installation of some software impossible.

2.3 | Reproducibility issues

In addition to challenges related to software and computational resources, reproducibility in research has attracted significant attention in recent
years.*"¢ Itisimportant that researchers publish results that are transparent, correct, and replicable. A lack of disclosure about details of parameters,
software versions, and operating systems can prevent results from being replicated and validated. Thus, it is important to track and organize the

pipelines and analyses that have been run and be able to inspect them later.

24 | Datasharingissues

Because of the vast amounts of data involved, sharing data and results can be onerous. Typical file sharing systems, such as Google Drive, One Drive,
and Dropbox, do not handle many large files well, as there are often problems with compression and transfer at the terabyte scale. Additionally,

transferring large amounts of data both to and from one of these services requires considerable time.

3 | COMPARISON

Given that there are several other major platforms built for neuroimaging data analysis, one might ask why build a new platform? When surveying
the landscape of neuroimaging platforms, we did not find any platform that fulfilled all of our requirements. We wanted a platform that (1) inte-
grated well with the Collaborative Informatics and Neuroimaging Suite (COINS)” or some other study management and data acquisition platform,
(2) performed a variety of group analyses, especially in the fMRI modality, and (3) was interoperable with our on-premise hardware using the Slurm
Workload Manager.2 Two other neuroimaging platforms, namely, Brainlife? and Flywheel,® were examined. Both platforms can be utilized with
on-premise or cloud resources and have general-purpose interfaces for numerous preprocessing pipelines in multiple MRI modalities. However, we
found that they did not feature many group analyses. Each platform has a generic interface that is dynamically constructed based on the specifi-
cations of an analysis container, which allows their platform to scale well with increasing numbers of pipelines. However, this interface provides a
constrained Ul, which is noticeable for complicated pipelines and analyses. Modern web design frameworks offer many Ul options to create intuitive
and interactive interfaces, which offer flexibility, reduced errors, and time savings for neuroimaging researchers.

Because we could not find an option that satisfied our requirements at the Center for Translational Research in Neuroimaging and Data Sci-
ence (TReNDS), we decided to build a new platform. Instead of a generic, dynamically generated interface that is specified by an analysis container,
BrainForge has a dedicated and customizable interface for each pipeline. This allows for more design freedom on the front end, enhancing the
user experience. Additionally, BrainForge features group analyses including SPM statistical models and GIFT analyses. As mentioned above, inter-
operability with COINS was a design requirement, so BrainForge procures metadata from COINS via a REST APl and then downloads data from
the COINS repository on the S3 service on Amazon Web Services (AWS). Finally, integration with our on-premise hardware was a requirement, so

BrainForge controls our high-performance computing (HPC) cluster via Slurm.
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4 | SOLUTIONS

To address these challenges, we have created a platform called BrainForge that connects researchers to large-scale computing resources behind a
user-friendly web interface, offering complete standard, and customized processing pipelines.

4.1 | Computing

BrainForge runs on the TReNDS HPC cluster at Georgia State University. As of this writing, this cluster includes 49 nodes with a total of 2448 cores,
32.5 TB of memory, and 60 GPUs. A detailed breakdown is shown in Table 1. The computing resources at TReNDS enable simultaneous processing of
thousands of subjects. BrainForge interfaces with Slurm to schedule jobs on the cluster. Furthermore, BrainForge will provide the option of running
jobs on AWS if there is not sufficient capacity on the cluster to run all jobs by their deadlines. BrainForge can be adapted to other on-premise and

cloud environments as well.

42 | Software

BrainForge executes predesigned and customizable neuroimaging pre- and post-processing pipelines, containerized using Singularity.1! Container-
ization encapsulates the operating system, software libraries, and scripts, obviating the need to replicate or build specific software environments
required for analysis. Singularity is similar to Docker!? but is designed to adhere to university HPC IT policies. BrainForge does not require pro-
gramming expertise, allowing users to focus on their research. A web graphical user interface (GUI) provides all of the parameters as inputs to the
pipelines, including those running industry-standard packages, such as Statistical Parametric Mapping (SPM),*3 the FMRIB Software Library (FSL),'*
Analysis of Functional Neurolmages (AFNI),*>1¢ and the Group ICA for fMRI Toolbox (GIFT).Y” BrainForge is also planning to provide a generic,
dynamically generated interface that can easily utilize new, user-created containers.

4.3 | Reproducibility

Because BrainForge analyses are encapsulated within Singularity containers, they produce the same results on every platform, including HPC
clusters. Of course, run time will depend on the underlying hardware and can be affected more strongly if the software uses MPI or hardware
optimizations. However, even a worklflow that runs more slowly on some platforms is still reproduceable. Furthermore, these containers can
be introspected and are located on DockerHub,!® with their code located on GitHub,? in the corresponding “trendscenter” organizations. The
repositories are currently private but can be made available to BrainForge users on request. Many of the workflows are programmed using the Neu-
roimaging in Python Pipelines and Interfaces (Nipype)? software libraries, adding another layer of reproducibility. Provenance, complete lists of

runtime parameters, input data, start and end times, computational resources, and user information are also retained.

4.4 | Datasharing

To solve the challenges of data sharing, BrainForge allows primary investigators (Pls) to share data and results with others. Pls can also share

data and invite others to contribute data and run analyses. This eliminates the need for large data transfers to collaborators for the purpose

TABLE 1 Computingresources currently available on the TReNDS cluster available to

BrainForge
Manufacturer Number Cores per node Memory per node GPUs
Intel 20 32 768 GB
Intel 3 96 15TB
AMD 20 64 512GB 1xNvidia 2080
Nvidia DGX-1 4 40 512GB 8xNvidia V100
Dell 2 40 192GB 4xNvidia V100
Total 49 2448 325TB 60

Note: The total number of cores, amount of memory, and number of GPUs on the entire cluster are shown
on the bottom row. Cluster resources are expanding every year.
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examining results. A sensible and effective permissions scheme is key for data sharing. Permissions are centered around sites and studies, and
include the super admin, site admin, study PI, and user roles. Pls have full control over their studies, and site admins have control over all stud-
ies within their sites. Data are organized using the Brain Imaging Data Structure (BIDS) standard,?! which eases sharing and reuse. In addition,
both raw data and results are stored on the TReNDS cluster and can be downloaded for viewing and organizing offline using several differ-
ent methods, including a web interface, a command-line interface (CLI), and Globus.?22® Storage is included in the cost of analyzing data on
BrainForge.

BrainForge can be operated standalone or optionally can interface with COINS, a neuroinformatics data management platform. COINS is a
full study management system, able to pull DICOM files directly from a scanner, manage subjects, and store assessments, among other features.
BrainForge procures data and associated metadata from COINS via a REST application programming interface (API), providing seamless integration
of data acquisition, curation, and analysis.

5 | FEATURES

BrainForge offers many features that help a neuroimaging researcher analyze their data, including preprocessing and analysis pipelines and
advanced analysis management features.

5.1 | Analyses

Preprocessing pipelines and group-level analyses available in BrainForge operate in awide range of modalities, including sMRI, fMRI,dMRI, and arte-
rial spin labeling (ASL) modalities. These pipelines, designed and regularly utilized by TReNDS lab members and collaborators, have been validated
through numerous publications.?*-2¢ Examples include:

e Analyses for sMRI include voxel-based morphometry (VBM)?” using SPM12 and FreeSurfer (v6 and v7).28

o dMRI workflows for generation of diffusion derivative images (FA, MD, RD, AD) using AFNI and diffusion kurtosis imaging (DKI) using
Python. All diffusion data are corrected prior to analysis for artifacts such as susceptibility distortion, head movement, outlier detection, and
slice-to-volume movement artifacts using FSL-6.0.1427-31 Many quality assurance (QA) measures provided by the FSL program eddy are plotted
for quick review within BrainForge (Figure 1). A comprehensive QA report using FSL's eddy_quad is generated for each subject and is avail-
able for download in PDF form. The DTI container utilizes GPUs via the Nvidia Container Toolkit, which is required to run the FSL eddy_quad

program.

e Task and resting-state fMRI data can be processed using two different workflows—the first using FSL-6.0 to correct echoplanar imaging (EPI)
distortion followed by AFNI for realignment and registration of EPI to a standard space utilizing a T1image. The second pipeline offers processing
using SPM12, with optional features enabling registration to single band reference (SBRef) images and distortion correction using FSL-6.0. Plots
of motion over time and frame displacement (FD) metrics are provided as QA measures.

o fMRIfirst-level analysis using SPM12, including event-related and block-design modeling of task fMRI data. A user-friendly GUI has been created

to run this analysis.

e fMRI second (group)-level analyses using SPM12 for results from any of the BrainForge pipelines or from other precompiled group data results,
featuring the complete set of SPM12 statistical models. Input to this analysis is controlled by a GUI that includes group selection based on subject

metadata, such as age and gender.

e A containerized version of GIFT, a MATLAB toolbox that implements multiple algorithms for independent component analysis (ICA) and blind
source separation of group and single-subject fMRI data. This includes 20 group ICA (GICA)?* algorithms, dynamic functional network connec-
tivity (dFNC),2632 and ICAstats.2> There is also a fully automated group ICA pipeline, which simplifies the application of ICA to large studies and

facilitates comparison across analyses.®® An example of GICA results is shown in Figure 2.

e White matter hyperintensity (WMH) lesion quantification using the BIANCA tool in FSL-6.0.34 A training dataset can be uploaded and incorpo-

rated into the pipeline.

e ASL perfusion analysis using the BASIL tool in FSL-6.0.3> Output includes normalization to standard space.

o Magnetic resonance spectroscopy (MRS) is a noninvasive technique used to assess neurometabolites in vivo. Owing to their abundant concen-
trations in the CNS, the most commonly measured spectral peaks in the brain are N-acetyl aspartate, creatine, choline, glutamate, glutamine,

and myoinositol. BrainForge uses the LCModel®¢ and Gannet®” software packages and offers the option to process MEGA-PRESS (edited
spectroscopy) data to assess GABA and glutathione.
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e Regression analyses for FreeSurfer results, written in Python.
e Ordinary least squares regression, written in Python.

e Polyssifier,;383? a software tool to quickly benchmark multiple classification approaches on a single generic data set.

BrainForge is utilized by researchers from many institutions with different scanner vendors and software versions. To ensure accurate multi-
study analyses, scanner signal quality is critical. BrainForge provides a QA pipeline that runs on phantom data and includes signal intensity, image
signal-to-noise ratio (SNR), peak-to-peak signal percentage, and ghost levels, using methods similar to the TIM Trio EPI stability QA routine by

Siemens.*® These measures are derived from a common protocol across sites using an fMRI phantom and can be viewed interactively as longitudinal

plots (Figure 3).
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BrainForge pipelines are streamlined for compatibility with NeuroMark,3 an ICA-based framework designed to elucidate functional connec-
tivity features and link brain changes among different datasets, studies, and disorders. NeuroMark leverages the benefits of a data-driven approach
and provides comparability across multiple sites and analyses, making BrainForge among the first cloud-based data management platforms for
integrative neuroimaging acquisition, analysis, and clinical phenotypes.

5.2 | Analysis management

BrainForge provides multiple features to aid in large-scale processing of neuroimaging data, including parameter set reuse, analysis plans, prepro-
cessing summaries, and group selection. For each pipeline or analysis, BrainForge provides a GUI exposing a variety of parameters to customize the
process to suit the data and task at hand. These parameter sets can be saved, versioned, reused, and shared with others, contributing to reproducibil-
ity. An analysis plan associates the data collected via a protocol within a study with an analysis using a specific container and parameter set. This
analysis plan can either be executed manually, queued in batch mode, or made automatic for ongoing analysis as acquisitions are added to a study.
The automatic plansimmediately execute the analysis on all acquisitions within the study with a matching protocol, as well. The status of preprocess-
ing across all sessions in a study is displayed on a preprocessing summary page, providing an overview of the status of analysis for each subject. An
example of the preprocessing summary page is shown in Figure 4. Each row is a session, and each column is a combination of an analysis, parameter
set, and acquisition protocol. Cells in the table are color-coded according to the analysis status (set up = white, complete = green, error = red, and

Principal Investigator: Julia Stephen
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DEFAULT ch) AB
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A00063526 Session2 Complete Complete Set up
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A00063499 Session2 Set up
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A00063929 Session3 Complete Set up Set up Set up Set up

1 2 3 4 5 26 > 10 / page

FIGURE 4 Preprocessing summary page for Dev-Cog study. Rows represent each session, and columns represent each combination of
analysis, parameter set, and protocol
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no data = gray) and contain a link leading to the analysis result. Near the top, there is also a row showing the number of analyses successfully com-
pleted against the total number of sessions present in the study. Results can further be grouped according to demographic data or imaging protocol.
Additional features visually flag outliers, annotate data, remove or archive errors, and set rules for how data can be shared or used.

6 | IMPLEMENTATION
6.1 | Architecture

The BrainForge architecture (Figure 5) is divided into a back end written in Python Django and a front end written in React.js using the Ant Design
framework. The back end uses the Django Rest Framework to expose an API that is accessed by the front end. Django was chosen because it is easy
to work with, feature rich, and scalable. Many high-profile, high-traffic websites have used Django, including Instagram, Pinterest, and Bitbucket.*!
Additionally, nginx is used as a reverse proxy server, and Redis is used for web socket communication and as a queue. Jobs are executed via a service
account on an HPC architecture using the Slurm Workload Manager, a cluster management and job scheduling system for Linux, or in the cloud on
AWS. Slurmis controlled via PySlurm,*? alow-level Python wrapper around the Slurm C-API. A Postgres database is used to store metadata, analysis
provenance, and user information. A relational database structure is primarily employed, utilizing JSON fields to store parameters and analysis
information, as this type of information varies too widely to be practically encoded in database columns. Tables are normalized with some exceptions
to improve performance, and database backups are saved daily.

BrainForge Architecture

COINS Brainforge
Client Client
PostgreSQL ﬁ
COINS co NS‘\ Front
database AP_| end
\
&= PostgresaL
FDOV\ nload @
S3 Beck BrainForge \J
bugket end database Singularity
Image
Analysis
No HPC g EE Library
vailable? sl
AWS
Processing
il File
I System
HPC
Cluster
In the Cloud On Premise

FIGURE 5 BrainForge architecture diagram showing on-premise components and COINS integration
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BrainForge runs on a CentOS 7 virtual machine (VM) in the TReNDS cluster. The VM has 4 virtual CPU cores and 16 GB of memory. The code
for the BrainForge back end and the Singularity containers reside on a 200-GB volume on a network file system. Postgres, nginx, and Redis are
deployed using Docker Compose. The back end resides on the host system so that it can run as a non-root user when interacting with Slurm, which
is a security requirement at TReNDS. The code for the JavaScript front end is bundled using GitHub Actions and served from an AWS S3 bucket. The
promotional website is at brainforge.trendscenter.org, and the platform can be accessed at https:/brainforge.rs.gsu.edu. BrainForge is currently

proprietary software.

6.2 | Security

BrainForge uses best practices in its security. This includes protection against cross site scripting (XSS), cross site request forgery (CSRF), SQL
injection, and clickjacking. Additionally, all interactions with the website are encrypted via HTTPS. User passwords are also hashed with the
password-based key derivation function 2 (PBKDF2) algorithm*3 with an SHA256 hash, as recommended by the National Institute of Standards and

Technology (NIST).%* Furthermore, BrainForge uses JSON web tokens (JWTs) for authenticated sessions.

7 | FUTURE WORK

There are many future endeavors in line for BrainForge. We plan to allow users to compare their scans against the NeuroMark database using
relevant imaging biomarkers derived by our algorithms. This feature can be used to help select subjects for clinical trials or to test future clinical
decision support tools. Additional neuroimaging pipelines for genetics, EEG, and MEG will be incorporated. Furthermore, we will add approaches
for additional advanced analysis including data fusion (joint ICA and multivariate canonical correlation analysis with joint ICA*®), and deep learning.
We will also create a public collection of containers, such as MRIQC#*¢ and fMRIPrep,*’ that are compatible with BrainForge, with built-in interfaces
to accept them on the platform. The platform will also allow users to use and share their own pipelines on BrainForge. We also plan to allow the
option of running analyses using the CLI. This will be important for users who want to programmatically run analyses and integrate them with other
scripts or who simply feel more comfortable using a CLI rather than a GUI. To further serve users who are strong programmers, we will implement
the ability to spawn Jupyter notebooks*® on our servers with access to study data. In the near term, we will create a feature to dynamically generate
a text file describing analysis methods based on workflow parameters. This will be useful for researchers who want to publish analyses performed
on BrainForge in scientific journals.

Recently, the neuroimaging research community has been moving toward adoption of the FAIR Data Principles, namely, findability, acces-
sibility, interoperability, and reusability*’ We plan to move BrainForge in this direction as well. To improve findability and accessibility to study
results, we plan to create public pages with digital object identifiers (DOls) for analyses and datasets and annotation with metadata accord-
ing to Schema.org.>® Additionally, we are working to link BrainForge with the Collaborative Informatics and Neuroimaging Suite Toolkit for
Anonymous Computation (COINSTAC),>! a platform for federated analysis of neuroimaging data to promote reusability for data that cannot be
shared.

8 | CONCLUSION

BrainForge is a cloud-enabled web-based platform designed for neuroimaging research that addresses several urgent needs in the scientific com-
munity. Standard and customizable processing pipelines, implemented with industry-standard neuroimaging software, provide trusted outcomes.
These pipelines are containerized, ensuring reproducibility and transparency, and are executed on an HPC grid, providing timely results. Flexi-
ble data management allows independent researchers to upload data, share their data selectively with other Pls, or to merge multistudy data for
postprocessing analyses. Data analyses can be small in scale or batched to process thousands of subjects. BrainForge is built with modern web
development tools, resulting in an intuitive and user-friendly neuroinformatics suite that enables prospective management, sharing, and analysis of
studies, assessments, and neuroimaging data.
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