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Resting-state functional connectivity (RSFC) has been widely adopted for individualized trait prediction. However, multiple confound-
ing factors may impact the predicted brain-behavior relationships. In this study, we investigated the impact of 4 confounding factors
including time series length, functional connectivity (FC) type, brain parcellation choice, and variance of the predicted target. The data
from Human Connectome Project including 1,206 healthy subjects were employed, with 3 cognitive traits including fluid intelligence,
working memory, and picture vocabulary ability as the prediction targets. We compared the prediction performance under different
settings of these 4 factors using partial least square regression. Results demonstrated appropriate time series length (300 time points)
and brain parcellation (independent component analysis, ICA100/200) can achieve better prediction performance without too much
time consumption. FC calculated by Pearson, Spearman, and Partial correlation achieves higher accuracy and lower time cost than
mutual information and coherence. Cognitive traits with larger variance among subjects can be better predicted due to the well
elaboration of individual variability. In addition, the beneficial effects of increasing scan duration to prediction partially arise from
the improved test-retest reliability of RSFC. Taken together, the study highlights the importance of determining these factors in RSFC-
based prediction, which can facilitate standardization of RSFC-based prediction pipelines going forward.
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Introduction studies is that prediction accuracy is usually not high,

which may limit their further usage in clinical diagnosis.
Because of this, it is essential to investigate the

Recent years have seen increased interest in predicting
cognitive traits using multimodal neuroimaging data

(Rosenberg et al. 2016; Sui et al. 2020), especially as
some large open-source dataset become increasingly
available such as Human Connectome Project (HCP)
and UK Biobank. Resting-state functional magnetic
resonance imaging (rs-fMRI) is one the most popularly
used imaging techniques in brain-behavior prediction.
Resting-state functional connectivity (RSFC) is calcu-
lated using a variety of different methods. Due to the
capability in detecting spatially remote but functionally
coherent information, RSFC has been widely used in
understanding the neurobiology of cognition and brain
diseases of human brain (Jung et al. 2010; Cribben et al.
2012; Finn et al. 2015; Meskaldji et al. 2016; Jiang et al.
2020a). Numerous studies have revealed great potential
of RSFC in revealing individual difference in cognitive
and behavioral phenotypes (Power et al. 2011; Sui et al.
2020). However, an unsolved problem in these predictive

influence of different confounding factors in RSFC-
based brain-behavior prediction studies. Lots of work
has been done to examine the role of heterogeneous
parameter settings, including global signal regression
(Li et al. 2019), motion artifact correction (Nielsen et al.
2019), feature selection (Wei et al. 2020), sample size
(Zaixu and Gaolang 2018), and prediction algorithms.
Nevertheless, there are still additional confounding
factors that may affect the prediction performance such
as length of time series, brain parcellation approach,
calculation of functional connectivity (FC), and variance
of the prediction target (Van Dijk et al. 2010; Anderson
et al. 2011; Jiang et al. 2020b). The first 3 factors
determine the generation of RSFC used for the prediction,
and the last one concerns the distribution of the
predicted target. Though a few studies have performed
some initial analysis of these factors (Au et al. 2015;
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Elliott et al. 2019; Jiang et al. 2020b), their effects on the
RSFC-based cognition prediction are still not clear.

Motivated by this, the current study aims to inves-
tigate the different impact of the 4 above-mentioned
confounding factors: (i) time series length, (ii) functional
connectivity calculation method, (iii) coarse to fine brain
parcellation with different number of independent com-
ponents (ICs; Meng et al. 2021), and (iv) the variance of
the predicted target metrics. For this, we analyzed the
large HCP (n=1,206) dataset. Three representative cog-
nitive traits like fluid intelligence (FI), working memory
(WM), and picture vocabulary test (PVT) were used as
the predicted targets, since they play important roles in
higher-order cognition and can be linked with human
intrinsic functional network connectivity (Sui et al. 2018,
2020; Uddin 2021). Prediction models were built by a
widely used linear regression model, partial least squares
regression (PLSR; Foodeh et al. 2020), since PLSR can cap-
ture the brain-behavior relationship without additional
feature selection and can directly transform the input
features into regression models while controlling other
confounding factors. PLSR has been successfully used for
prediction of multiple cognitive traits such as episodic
memory and sustained attention (Meskaldji et al. 2016;
Yoo et al. 2018; Chen et al. 2019; Fong et al. 2019; Jiang
et al. 2020b).

Specifically, we compared the prediction performance
of each of the 3 cognitive traits by testing 12 different
time series lengths, 6 brain parcellations by independent
component analysis (ICA; Calhoun et al. 2001; Calhoun
and Adali 2012) with IC number ranging from 15 to
300, and 5 methods to calculate FCs. The variance of 3
cognitive scores was also controlled through sampling
subjects for each prediction target, and the prediction
accuracy was further compared under different variance
of cognitive traits. Such an investigation may help us bet-
ter understand the role of multiple confounding factors
played in RSFC-based cognition prediction, which may
enhance the interpretability and guide us to choose the
most appropriate parameters in the individualized brain-
behavior prediction in future studies.

Materials and methods

Participants

We used 1,206 healthy subjects (age 22-37, 550 males
and 656 females) released from the WU-HCP (1,200),
in which 2 scanning sessions of rs-fMRI data, REST1
and REST2, were collected with high spatial-temporal
resolution during 2 successive days. Both sessions of
data were scanned at right-to-left (runl) and left-to-
right (run2) phase encoding direction, and the functional
images comprised 1,200 volumes in each run. Both ses-
sions were available for a total of 1,003 subjects with
complete rs-fMRI runs (a total of 4,800 time points). In
the study, REST1-run1 scan data were used to investigate
the different impact of 4 confounding factors, whereas
REST1-runl and REST2-run1 data were used as the test-
retest reliability dataset. For more details of inclusion

and exclusion criteria on the HCP dataset, please see Van
Essen et al. (2013).

MRI acquisition

In the HCP S1200 dataset, high-resolution resting-
state fMRI images were acquired using a customized
Siemens Skyra 3-T scanner with a 32-channel head
coil. Rs-fMRI data were collected with a multiband
pulse sequence with the following scanning parameters:
time repetition (TR) =720 ms, time echo=33.1 ms, field
of view =208 x 180 mm?, flip angle=52°, and voxel
size =2.0-mm isotropic cube (Smith et al. 2013).

fMRI preprocessing

The extensively preprocessed PTN (Parcellation+ Timese
ries+ Netmats) data were employed in the study. Details
of preprocessing steps can refer to Smith et al. (2013).
In short, each run of rs-fMRI data went through a mini-
mal preprocessed pipeline and ICA + FIX to eliminate the
latent artifacts (Glasser et al. 2013). After brain region
parcellation by group ICA with different number of ICs,
the corresponding time courses/series of each ICs were
also obtained. Correlations of time courses between any
2 ICs were then calculated by different methods (e.g.
Pearson and Spearman) and transferred into Z-scores,
resulting in a symmetric function network connectivity
matrix for every subject. After removing diagonal ele-
ments, we extracted the upper triangle elements of the
FC matrix as the candidate features for prediction.

Prediction with PLSR

In this study, we adopted PLSR to predict the cognitive
traits. PLSR detects the relationship between 2 sets
of variables by firstly projecting them onto a low-
dimensional subspace to generate representative latent
components and then detecting the optimal linear
expression of the new variable with the prediction target
(Guo and Mu 2011; Krishnan et al. 2011). This is similar
to the combination of principal component analysis and
canonical component analysis and has been successfully
used for predicting various cognitive traits such as
episodic memory and sustained attention (Meskaldji
et al. 2016; Yoo et al. 2018; Chen et al. 2019; Fong et al.
2019; Jiang et al. 2020b).

Let X, «n denote the feature matrix, where n is the
number of samples, and N is the number of features,
and let Y,y denote the label matrix, where M is the
number of labels; then PLSR decomposes X and Y into
the following form:

anN = Unxd(PNxd)T + Ean (1)

Yim = Vixd(Quixa) " + Frsum (2)

where U and V are matrices of the d extracted score
vectors (latent variables), and P and Q represent matrices
of weighting, i.e. the coefficient of the regression of X to U
(or Y to V). E, F, and F* are the residual errors. Partial least

220z Aey /1 uo Jasn sadIAIag [eoIuyoa ] / seleiqi Alsieaiun a1els eibioss) Aq | ¥65859/68 1 0BYA/100180/€601 0 L /I0P/3]|01LB-00UBAPER/I00180/W00 dNo dlWwapede//:sdijy Woll papEojuMO(]



squares decompose X and Y to obtain the maximized
covariance between U and V. Based on X, Y, U, and V, an
explicit N x M matrix B that satisfies the following linear
relationship can be obtained:

Yismt = Xnxt Brxm) + Fi (3)

For each cognitive trait, the prediction process was
implemented within a nested 10-fold cross validation.
The model performance was evaluated by the correla-
tional values (R) between the predicted and observed cog-
nitive scores. An inner 10-fold cross validation was used
to determine the optimal parameters (latent component
“d”) for PLSR, which ranged from 1 to 10, then param-
eters resulting in the highest prediction accuracy were
determined as the optimal parameter; this is for 1-fold.
Since the dataset was randomly divided into 10-folds,
the whole prediction accuracy was obtained after looping
all 10-folds. Note that the performances might depend
on different sample partitions, thus the above procedure
was repeated 100 times and the final prediction results
were reported as the average value of 100 repetitions
(1,000 loops).

Cognitive measure

The HCP dataset includes a battery of cognitive tests,
and 3 representative cognitive abilities were cho-
sen as the prediction targets in the study, including
WM capacity and FI and PVT. The details of each
cognitive score were described in HCP official doc-
ument  [https://www.humanconnectome.org/storage/
app/media/documentation/s1200/HCP_S1200_Release_
Reference_Manual.pdf]. The first 2 tests measured
by National Institutes of Health (NIH) Toolbox were
normalized to age-adjusted scores. After excluding the
subjects with missing fMRI image data or cognitive
measures, the number of healthy subjects who were
retained for predicting cognitive traits of FI, WM, and
picture vocabulary are 992, 996, and 988, respectively.

The analysis pipeline for the confounding factor
test

Figure 1 displayed the whole testing pipeline for the 4
confounding factors, namely, functional connectivity
type, variance of cognitive score, length of time series
(time points) and number of ICs used in group ICA for
brain parcellation. In particular, when predicting each of
the 3 cognitive measures (WM, FI, and PVT), we compared
the prediction accuracy by testing 5 methods to calculate
FCs, 12 different time series lengths and 6 number of
ICs for brain decomposition respectively. In addition, the
variance of 3 cognitive scores was also controlled through
sampling subjects. More details are provided below.

FC Type

FC is typically calculated by Pearson correlation on
resting-state fMRI signal between paired brain regions.
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However, multiple alternative methods have been
reported to result in FC types displaying dissimilar
sensitivity to motion artifact, test-retest reliability, and
fingerprinting accuracy (Mahadevan et al. 2021). To
verify whether different FC types may impact on the
predictive performance of cognition, 5 representative FC
types including Pearson, Spearman, partial correlation,
mutual information (time domain), and coherence were
used to calculate FC. Specifically, partial correlation is a
measure of the linear correlation between 2 time series
after regressing out the time series of all other nodes in
the network. Mutual information is a statistical measure
of the shared information between 2 time series, which
could be defined through its Shannon entropy (Shannon
1948). Coherence is a measure of the cross-correlation
between 2 signals in the frequency domain, and the
average coherence in the frequency range [0.009 and
0.08 Hz| was used to define connectivity (Mahadevan
et al. 2021). For these FC types, we used an open-
source MATLAB toolbox (Zhou et al. 2009) for functional
connectivity calculation. Besides the prediction accuracy,
the spatial similarity of the features from different FC
types were also compared (Tian and Zalesky 2021), which
was calculated by ICC (1,1) on the feature weights (8
coefficients) and finally reported with the average value
in 100 times model training.

Variance of predicted target

For every cognitive ability, a fixed number of sample
subsets were randomly chosen from the whole cohort to
generate new dataset with different variance of cognitive
score. In the study, the number of selected subsets was
constantly set at 600 (~50%), and in order to make the
variance of each repetition as different as possible, pre-
defined score range thresholds were respectively used to
ensure all selected subsets to be within this range.

Time series length

Although HCP records long rs-fMRI time series, most
other datasets only collect 5-6-min rs-fMRI time series.
There is large inconsistency in time series length among
different datasets, so FC was constructed with 12 differ-
ent time series lengths ranging from 100 to 1,200 with
100 time points as interspace (i.e. 100, 200, 300, ..., 1,200
from run1l). All other factors in the prediction model were
kept consistent in order to make sure the sole role of time
series length.

Number of ICs

Group ICA has been found to be more suitable and adap-
tive for defining intrinsic functional networks (ICN, brain
nodes) than anatomy atlases (Dadi et al. 2019), hence, 6
number of ICs (15/25/50/100/200/300 ICs) were adopted
to provide as a coarse to fine brain parcellation, resulting
in FCs with remarkably different dimensions. All other
settings were identical when examining brain parcella-
tion effects.
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Impact of 4 Confounding Factors
In RSFC-based Prediction
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Fig. 1. Pipeline to testing the impact of 4 confounding factors.

Test-retest reliability

Beyond the prediction performance, test-retest reliability
is also a crucial metric influencing the feasibility and
rational explanation of the brain-behavior prediction.
Therefore, we further tested intraclass correlation
coefficient (ICC; Noble et al. 2021) under different length
of time series, and then investigate the relationship
between ICC and the prediction accuracy, as well as
the contribution of FC with different reliability to the
prediction.

Picture Vocabulary  [p— -~

S J—

&

(T -

ICC is defined as the same manner as in Paek et al.
(2019) with different time series length:

O'bz

ICC= ———
o—bZ +0w2

(4)

where o}, is the between-subject variation and oy, is the
within-subject variation. The value of ICC ranges from
0 to 1, and the larger the ICC value, the higher the
reliability is.
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To reduce the computational burden, we selected IC
number=200 as the FC node number, i.e. calculated
ICC using 19,900 FCs, and classified all ICCs into 4
categories as reported in (Zhang et al. 2018; Elliott
et al. 2019): ICC <0.39, poor reliability; 0.4 <ICC <0.59,
moderate reliability; 0.6 <ICC <0.74, good reliability,
and 0.75<ICC <1, excellent reliability. Next, the FCs
with ICC <0.4 were discarded, and the remaining FC
with good reliability served as the input features to the
prediction framework. If the prediction accuracy did not
change much compared with using all FCs, it means
the FC features with good reliability play the key role in
capturing stable individual differences. In addition, only
FCs with the low reliability were also used as the input
feature for performance comparison. Note that in order
to exclude the influence of the feature number on the
prediction performance, the whole FCs were randomly
selected as the same number of FC with ICC> 0.4 for
prediction and repeated this procedure 50 times.

In addition, we further explored whether the test-
retest reliability of FC was influenced by head motion,
sample size, gender, and age. For head motion, we used
the relative RMS (root-mean-square) movement, pro-
vided by the HCP, as the primary measure of motion,
and the correlation between the test-retest reliability of
mean RMS and FC was evaluated for different time series
length. For sample size, gender and age, we grouped
the whole dataset into respective subgroups using the
following criteria: age (22-25, 26-30, and 31+), gender
(male and female) and sample size (n=100, 200, 400, and
600) by random sampling, and compared whether there
was significant difference in ICC between subgroups.

Computational cost

Computational cost is another noticeable concern espe-
cially for big data. In our prediction, estimation of the
latent parameter “d” in PLSR and the 100 times repeti-
tions of cross validation were the main source of com-
putational cost. The running time was recorded and
compared for every time series length, brain parcellation,
and functional connectivity type. To reduce the com-
putational cost and to facilitate comparison with other
studies, Pearson correlation is used in prediction models
when evaluating time series length and brain parcella-
tion. All procedures were carried out with 2 multi-core
CPUs (Intel(R) Xeon(R) E5-2630 v4 @2.20GHz, 10 cores, 20
threads) with 128 GB memory.

Results
Prediction accuracies under different parameters

Prediction performance while controlling for different
confounding factors is shown in Fig. 2. Figure 2a com-
pared the prediction accuracy measured by Pearson cor-
relation using FCs generated from 6 different number of
ICs and with 12 length of time series. It is clear that finer
brain parcellation (more ICs) yield better prediction per-
formance in general, which may influence the prediction

Pujie Fengetal. | 5

more than the time length. For example, in WM predic-
tion, the performance from 300 components with 100
time points (r=0.260+0.010) is still significantly higher
(P < 1.0 x 107%) than that from 15 components with 1,200
time points (r=0.223 +0.006). But higher IC number also
comes with additional computational cost (Fig. 4a). And
increase of time points also improved prediction accu-
racy (e.g. when IC=300, WM: r from 0.282+0.010 to
0.373+0.008; PVT: r from 0.356 +0.007 to 0.426 £ 0.006;
FI: r from 0.260 £ 0.009 to 0.307 +0.008; P < 0.05 FDR cor-
rected) and tended to be stable after certain time points.
However, longer fMRI time lengths may not necessarily
ensure better prediction accuracy, e.g. for FI, the inflec-
tion point is time =300, which may be influenced by the
intrinsic dynamics of fMRI signal (Calhoun et al. 2014).

Figure 2b illustrated the prediction performances
under different variances of cognitive score (VCS) when
IC=200 Time point=1,200. As shown, for the same
predicted target, subjects with the mid or higher VCS
can better reflect the individual variability, thus leading
to better estimation accuracy accordingly. In addition,
we also tried to change VCS of the prediction target by
min-max normalization and Z-score transformation, but
the results did not show any improvement in prediction,
indicating that simply enlarging the variance brings no
effect to the prediction. Although among the 5 different
FC types, Pearson, Spearman, and partial correlation
performed similarly or slightly better than mutual
information and coherence, as shown in Fig. 2c, where
IC=200 time point=1,200. Thus, we choose Pearson
correlation when calculating the computational cost.
The result of feature spatial similarity (Fig. 2d) illustrated
that the feature weights of Spearman correlation and
Pearson correlation were very similar (ICC=0.901),
whereas the similarity of partial correlation and Pearson
correlation was relatively poor (ICC=0.190). In addition,
Mutual information and coherence have almost no
similarity with other 3 FC types.

Influence of test-retest reliability on prediction
accuracy
Figure 3 illustrate the test-retest reliability on prediction
accuracy with different time points via ICC. According to
Fig. 3a, when the fMRI scan time increase, the percentage
of FC with poor reliability decrease and a large portion
of them turn into good reliability. Further calculation
in Fig. 3b revealed that with the increase of time series
length, the mean ICC of the FC significantly improved.
Specifically, we observed very high correlation (r=0.989)
between the prediction accuracy and the mean ICC
under different scan duration (time points) in Fig. 3¢, and
the mean value of ICC> 0.4 corresponds to the robust
prediction accuracy at Pearson correlation r>0.35.
Moreover, we further studied the contribution of FC with
different reliability to the prediction by using work mem-
ory as an example. As shown in Fig. 3d, after removing
the FC with ICC <0.4, the prediction accuracy would
slightly increase compared with using all FCs (in most
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Fig. 2. Prediction performance comparison under 4 confounding factors a) with 12 different length of time series and 6 IC numbers, b) under different
VCS, c) with 5 methods to calculate FC types, and d) Feature spatial similarity between different FC types.

cases, r>0.33) because the non-reliable information
was thrown off; Instead, deleting FC with ICC > 0.4 will
however worsen the prediction accuracy significantly
(P <0.01, FDR corrected), the performance maintained at
low level r < 0.27. In contrast, the prediction performance
of random feature selection was between the results
with high-reliability FC and those with low-reliability FC.
In Fig. 3e, sample size, age and gender didn’t obviously
affect the test-retest reliability. However, there was a
strong correlation between the test-retest reliability of
mean RMS and FC (r=0.851).

As for the computational cost, Fig. 4a indicated that
difference of time series length did not affect the time
consumption remarkably; instead, more ICs for fine
brain parcellation would significantly increase the time
cost, because more ICs result in nearly square growth
of FC numbers, very fragmented brain regions, and
consequently, the dozens and hundreds of time cost.
Considering the performance in Figs.2a and 4a, IC
num=100/200 could be the optimal choice between
accuracy and time cost. Furthermore, among 5 FC types,

mutual information and coherence were more time-
consuming than the other 3 correlation types that act
similarly (Fig. 4b). Different VCS did not affect the time
consumption.

Discussion

In this study, we aimed to discover the optimal settings
and influence of 4 confounding factors in FC-based cog-
nition prediction, including length of time series, method
to calculate functional connectivity, brain parcellation
choice by ICA, and variance of the predicted target. We
compared the prediction performance of FI, WM, and
picture vocabulary ability by applying PLSR on RSFC from
1206 subjects of HCP data. Results demonstrated that
an appropriate time series length at ~300 time points
and a relatively finer brain parcellation (ICA100) could
achieve better prediction performance without too much
time consumption. FC calculated by Pearson, Spearman,
and partial correlation can achieve higher estimation
accuracy and lower time cost than mutual information
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and coherence. In addition, cognitive traits with larger
variance among subjects can be better predicted due to
the well elaboration of individual variability. This work
on optimal parameter exploration can be very helpful for
the neuroimaging-based individual trait prediction.

For the test-retest reliability, both the percentage
of ICC ratings and the mean ICC of the whole brain
were gradually improved when the time series length
increased (Fig. 3a and b), suggesting that longer time
series could yield better reliability and more reliable
FC features. This in turn may better capture individual
differences (Van Dijk et al. 2010; Anderson et al. 2011,
Jiang et al. 2020b; Fig. 3c) and improve prediction of
cognition traits (Finn et al. 2015). In light of this, rs-fMRI
data with time points <200 may generate FCs with poor
test—retest reliability, which is thus not recommended
in prediction and may be mitigated by the spatially
constrained ICA (Du et al. 2020). More importantly,
our results suggest removing FC with low reliability
(ICC <0.4) may benefit on the prediction performance
while reducing the feature dimension (computation
load) simultaneously, by contrast, deleting FC with high
reliability (ICC > 0.4) can degrade the prediction accuracy
significantly (Fig. 3d). In parallel, removing FC randomly
showed reduced prediction performance than using orig-
inal whole FCs, and there is a strong positive correlation
between ICC and prediction accuracy. Taken together,
these results suggest that FCs with high ICC are the
main contributors to the prediction of cognitive ability.
Coincidently, Finn et al. also demonstrated an improved
identification accuracy with longer time courses when
using FC as brain fingerprint (Finn et al. 2015). Moreover,
Van De Ville et al. reported longer fMRI sessions improved
the identification for human brain fingerprint (Van
De Ville et al. 2021), and demonstrated the optimal
fingerprints at a time scale of 200 s (~280 time points).
In addition, the most important regions contributing to
individual fingerprint were mainly located at “higher-
order” cognitive systems. Our study reported consistent
conclusions and further proved that FCs with higher
reliability were the main contributors to individual
cognitive prediction. Overall, this finding suggests that
the beneficial effects of increasing scan duration to
prediction partially stem from the improved test-retest
reliability of individual functional connectome features.

It is not unexpected that finer brain parcellation
yield better prediction performance than the coarser
one, given the fact that fine-parcellations provide much
more information at higher spatial resolution. Note
that the prediction performances increased slowly
with the refinement of brain parcellation, especially
when number IC > 100, whereas the computational cost
increased substantially as well (IC num =200 or 300). One
potential reason may be that the 300-ICA parcellation
may result in more noise components and overlapped
fragmented brain regions, which may be not helpful
but even harmful to predictive performance (Dadi et al.
2019). Furthermore, predictive models based on ICA-300

parcellation have an increased likelihood of overfitting,
as the feature dimension was much larger (44,850 vs
19,900 vs. 4,950). Taken together, ICA100 or ICA200
parcellation are better choice for individual cognitive
prediction, which are in a similar range for the number of
brain regions included in most brain atlases. In contrast,
coarse brain parcellation with IC number <50 are not
recommended in cognition prediction; as the prediction
accuracy was relatively low for even the longer time
series.

With regard to the FC type, generally speaking, dif-
ferent FC types show different tolerance to the physio-
logical noise like head motion (Mahadevan et al. 2021),
which may affect the delineating of individual differ-
ence in FC. We recommend the commonly used methods
to calculate FC, such as Pearson correlation, Spearman
correlation, and Partial correlation, they are simple yet
effective compared with complex models such as mutual
information or coherence. The potential reasons may lie
in: (i) The definition of mutual information itself is sensi-
tive to unstable physiological noise during the scanning,
thereafter weakening its performance in prediction. (ii)
Coherence is a type of FC constructed in the frequency
domain, although it is not sensitive to the head motion,
it displays not high test-retest reliability, subject identity
and system identifiability (Mahadevan et al. 2021), there-
after limiting its performance in prediction. Although
all of FCs generated by Pearson, Spearman, and Partial
correlation displayed good prediction performances, the
adopted feature sets in Partial correlation were largely
different from the other 2, implying a potential way to
integrate these features together to improve the predic-
tion performance.

Finally, variance of predicted target also affects the
prediction performance, and larger variance in cognitive
abilities is able to elaborate individual variability more
dedicatedly than binary scores or nearly constant values
slightly, thus may yield relatively better predictive accu-
racy as shown in Fig. 2c. Although PLSR model does not
need additional feature selection step, it first compresses
the original high-dimensional data like PCA based on
the data variance, thereafter leading to more effective
feature reduction representation. Specifically, the ceiling
effect has been reported in previous WM study (Peterburs
etal. 2019), when we deleted some extremely high scored
participants in the WM prediction, the accuracy slightly
improved (Fig. 2b). Therefore, for cognitive scores with
possible ceiling effect, to remove the outliers can be
helpful and essential for prediction.

Implications for future studies

The study found all 4 factors have significant impacts on
the predictive performance, which may have beneficial
implications for future prediction studies. In terms of
time series length, we recommend the scanning time
with 200-800 time points. On one hand, the prediction
performance will be greatly reduced when the time
length was <200. On the other hand, the prediction
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performance does not improve significantly for time
series longer than 800 (Jiang et al., 2020b). Longer scan
time could place high burden on participants to finish
the scanning, especially those with psychiatric disorder
and children. In addition, considering the prediction
performance, computational consumption and model
interpretability, ICA 200 components is suggested as an
optimal brain parcellation dimensionality. For FC type,
we recommend FC calculated by simple full or partial
correlation because of their prediction performance and
computational cost. It may be not necessary to use
complex models like mutual information or Coherence
for prediction, at least in current settings. At last,
variance of predicted cognitive scores should also be
focused. Every cognitive measure displays unique data
distribution, and ensuring relatively large variance may
be very beneficial to the prediction.

Limitation and future directions

Several limitations should be mentioned in this study. (i)
We only evaluated the PLSR model for prediction, and
there are many other commonly-used machine learning
models in the field, which could be evaluated in future
studies. (ii) Considering the huge computational burden,
only 3 representative cognitive measures were exam-
ined. (ii) The study was performed on HCP dataset with
TR=0.72 s, however, different TRs may affect the time
series length conclusion. (iv) Although the HCP dataset is
large, its sample size is still much lower than the feature
dimension, which can be alleviated using other open-
source datasets like UK biobank and Adolescent Brain
Cognitive Development (ABCD).

Conclusion

In summary, this study explored the effects of 4 factors
in RSFC-based prediction for cognitive scores, and found
that RSFC generated with longer time series length and
larger cognitive scores variance could yield better pre-
diction performances. Moreover, we propose appropriate
selection of FC type and brain parcellation may also
be beneficial to the prediction accuracy. Furthermore,
this study emphasizes the influence of these potential
factors on revealing the relationship between behav-
lor and brain connectivity, which may help construct
standardized RSFC-based prediction pipeline in future.
Taken together, the study highlights the importance to
select the optimal confounding factors in RSFC-based
prediction when revealing brain-behavior relationship,
which may guide the parameter selection and facilitate
the standardization of RSFC-based prediction pipeline in
future.
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