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Abstract—We introduce a tunable GAN, called o-GAN, pa-
rameterized by o € (0, co], which interpolates between various
f-GANs and Integral Probability Metric based GANs (under
constrained discriminator set). We construct a-GAN using a
supervised loss function, namely, a-loss, which is a tunable loss
function capturing several canonical losses. We show that a-GAN
is intimately related to the Arimoto divergence, which was first
proposed by Osterriecher (1996), and later studied by Liese and
Vajda (2006). We posit that the holistic understanding that -
GAN introduces will have practical benefits of addressing both
the issues of vanishing gradients and mode collapse.

I. INTRODUCTION

In [1], Goodfellow et al. introduced generative adversarial
networks (GANs), a novel technique for training generative
models to produce samples from an unknown (true) dis-
tribution using a finite number of real samples. A GAN
involves two learning models (both represented by deep neural
networks in practice): a generator model G that takes a
random seed in a low-dimensional (relative to the data) latent
space to generate synthetic samples (by implicitly learning the
true distribution without explicit probability models), and a
discriminator model D which classifies inputs (from either the
true distribution or the generator) as real or fake. The generator
wants to fool the discriminator while the discriminator wants
to maximize the discrimination power between the true and
generated samples. The opposing goals of G and D lead to
a zero-sum min-max game in which a chosen value function
is minimized and maximized over the model parameters of G
and D, respectively.

For the value function considered in vanilla GAN' [1], when
G and D are given enough training time and capacity, the min-
max game is shown to have a Nash equilibrium leading to the
generator minimizing the Jensen-Shannon divergence (JSD)
between the true and the generated distributions. Subsequently,
Nowozin et al. [4] showed that the GAN framework can
minimize several f-divergences, including JSD, leading to
f-GANs. Arguing that vanishing gradients are due to the
sensitivity of f-divergences to mismatch in distribution sup-
ports, Arjovsky et al. [5] proposed Wasserstein GAN (WGAN)
using a “weaker” Euclidean distance between distributions.
This has led to a broader class of GANs based on integral
probability metric (IPM) distances [6]. Yet neither the vanilla
GAN nor the [PM GANSs perform consistently well in practice
due to a variety of issues that arise during training (e.g.,
mode collapse, vanishing gradients, oscillatory convergence,
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'We refer to the GAN introduced by Goodfellow et al. [1] as vanilla GAN,
as done in the literature [2], [3] to distinguish it from others introduced later.
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to name a few) [7]-[11], thus providing even less clarity on
how to choose the value function.

In this work, we first formalize a supervised loss function
perspective of GANs and propose a tunable a-GAN based on
a-loss, a class of tunable loss functions [12], [13] parameter-
ized by a € (0, 00| that captures the well-known exponential
loss (o = 1/2) [14], the log-loss (a = 1) [15], [16], and the
0-1 loss (o = o0) [17], [18]. Ultimately, we find that a-GAN
reveals a holistic structure in relating several canonical GANS,
thereby unifying convergence and performance analyses. Our
main contributions are as follows:

e We present a unique global Nash equilibrium to the
min-max optimization problem induced by the a-GAN,
provided G and D have sufficiently large capacity and
the models can be trained sufficiently long (Theorem 1).
When the discriminator is trained to optimality (where
its strategy under «-loss is a tilted distribution), the
generator seeks to minimize the Arimoto divergence
(which has wide applications in statistics and information
theory [19], [20]) between the true and the generated dis-
tributions, thereby providing an operational interpretation
to the divergence. We note that our approach differs from
Nowozin et al. f-GAN approach, please see Remark 1
for clarification.

« We show that a-GAN interpolates between various f-
GANs including vanilla GAN (o = 1), Hellinger
GAN [4] (« = 1/2), Total Variation GAN [4] (o =
00), and IPM-based GANs including WGANs (when
the discriminator set is appropriately constrained) by
smoothly tuning the hyperparameter o (see Theorem 2
and (9)). Thus, a-GAN allows a practitioner to determine
how much they want to resemble vanilla GAN, for
instance, since certain datasets/distributions may favor
certain GANs (or even interpolation between certain
GANS5). Analogous to results on a-loss in classification
[13], [21], where the model performance saturates quickly
for « — oo, we expect a similar saturation for o-
GAN (see Figure 1). Thus, we posit that smooth tuning
from JSD to IPM that results from increasing « from 1
to oo can address issues like mode collapse, vanishing
gradients, etc.

« Finally in Theorem 3, we reconstruct the Arimoto diver-
gence using the margin-based form of a-loss [21] and the
variational formulation of Nguyen et al. [17], which sheds
more light on the convexity of the generator function of
the divergence first proposed by Osterreicher [22], and
later studied by and Liese and Vajda [19].
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II. «-LOSS AND GANS

We first review a tunable class of loss functions, «-loss,
that includes well-studied exponential loss (o« = 1/2), log-
loss (¢ = 1), and 0-1 loss (o« = o0). Then, we present an
overview of some related GANSs in the literature.

Definition 1 (Sypherd et al. [21]). For a set of distributions
P(Y) over Y, a-loss £y : Y x P(Y) = Ry for a € (0,1) U
(1,00) is defined as

« 1

(1-Pw)=). (1)

ea(y)P)é Oé*].

—log P(y), loo(y, P) &

By continuous extension, £1(y, ]3) =

1 — P(y), and (y(y, P) £ .

Note that £; /5(y, P) = P(y)~! — 1, which is related to the
exponential loss, particularly in the margin-based form [21].
Also, a-loss is convex in the probability term P(y) Regarding
the history of (1), Arimoto first studied a-loss in finite-
parameter estimation problems [23], and later Liao et al. used
a-loss to model the inferential capacity of an adversary to
obtain private attributes [24]. Most recently, Sypherd er al.
studied a-loss in the machine learning setting [21], which is
an impetus for this work.

A. Background on GANs

Let P, be a probability distribution over X C R?, which
the generator wants to learn implicitly by producing samples
by playing a competitive game with a discriminator in an
adversarial manner. We parameterize the generator G' and the
discriminator D by vectors # € © C R™ and w € 2 C R™4,
respectively, and write Gy and D,, (0 and w are typically the
weights of neural network models for the generator and the
discriminator, respectively). The generator Gy takes as input
a d'(« d)-dimensional latent noise Z ~ Pz and maps it
to a data point in X’ via the mapping z — Gy(z). For an
input x € X, the discriminator outputs D (x) € [0,1], the
probability that z comes from P, (real) as opposed to Pg,
(synthetic). The generator and the discriminator play a two-
player min-max game with a value function V (6, w), resulting
in a saddle-point optimization problem given by

inf sup V(6,w). 2)
0€0 e

Goodfellow et al. [1] introduced a value function

VVG(97W)
= Ex~p.[log Dy(X)] + Ez~p,[log (1 — Dy,(Ge(2)))]
=Ex~p.[log Dy,(X)] +Ex~pg,[log (1 — Dy(X))] ()

and showed that when the discriminator class {D,},
parametrized by w, is rich enough, (2) simplifies to finding
the infpco 2Djs(Pr||Pa,) — log 4, where Dys(P,||Pg,) is the
Jensen-Shannon divergence [25] between P, and Pg,. This
simplification is achieved, for any Gy, by choosing the optimal
discriminator

pr(®)

Do) = ) T pen @)

“4)

where p, and pg, are the corresponding densities of the
distributions P, and Pg,, respectively, with respect to a base
measure dzx (e.g., Lebesgue measure).

Generalizing this, Nowozin et al. [4] derived value function

Vi(0,w) = Ex~p, [Du(X)] + Ex~pg, [f*(Du(X))], (5)

where> D, : X — R and f*(t) £ sup, {ut — f(u)}
is the Fenchel conjugate of a convex lower semincontin-
uous function f, for any f-divergence D¢ (FP.||Pg,) :=

prGQ(x)f<pT(fl)>dJr [26]-[28] (not just the Jensen-
Shannon divergence) leveraging its variational characteriza-
tion [29]. In particular, sup,cq V¢(0,w) = D¢(Pr||Pq,)
when there exists w* € 2 such that T, (z) = f’ (pi:(?x
Rényi divergence measures are also studied in the conteext of
GANSs [30]-[32].

Highlighting the problems with the continuity of various
f-divergences (e.g., Jensen-Shannon, KL, reverse KL, total
variation) over the parameter space © [10], Arjovsky et al. [5]
proposed Wasserstein-GAN (WGAN) using the following

Earth Mover’s (also called Wasserstein-1) distance:

W(P,,Pg,) = inf

— Xol|2,
Tx, x, €I1(Py,Pg,)

(6)

where II(P,, Pg,) is the set of all joint distributions I'x, x,
with marginals P, and Pg,. WGAN employs the Kantorovich-
Rubinstein duality [33] using the value function

Vwean(0,w) =Exp,[Dy(X)] — Ex~pg, [D.(X)], )

where the functions D, : X — R are all 1-Lipschitz, to
simplify sup,,cq Vivgan(6,w) to W(P,, Pg,) when the class
Q is rich enough. Although, various GANs have been proposed
in the literature, each of them exhibits their own strengths
and weaknesses in terms of convergence, vanishing gradients,
mode collapse, computational complexity, etc. leaving the
problem of instability unsolved [34].

E(XlaX’Z)NFXle X1

III. TUNABLE a-GAN

Noting that a GAN involves a classifier (i.e., discriminator),
it is well known that the value function Vyg(0,w) in (3)
considered by Goodfellow ef al. [1] is related to cross entropy
loss. While perhaps it has not been explicitly articulated
heretofore in the literature, we first formalize this loss function
perspective of GANs and propose a tunable GAN based on
a-loss generalizing vanilla GAN and various other GANSs. In
[35], Arora et al. observed that the log function in (3) can
be replaced by any concave function ¢(x) (e.g., ¢(z) = =z
for WGANs). More generally, we show that one can write
V(0,w) in terms of a classification loss ¢(y,y) with inputs
y € {0,1} (the true label) and § € [0, 1] (soft prediction of
y). For a GAN, we have (X|y =1) ~ P, (X|y =0) ~ Pg,,
and § = D,,(x). With this, we observe that the value function

2This is a slight abuse of notation in that D,, is not a probability here.
However, we chose this for consistency in notation of discriminator across
various GANSs.
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W in (3) for the vanilla GAN can be expressed in terms of
A

cross-entropy loss ¢cg(y,§) = —ylogg — (1 — y)log (1 — §)
as
ch,(@, w)
= Exy=1[—Cce(y, Do(X))] + Ex|y=o[—LcE(y, Duw(X))]
=Ex~p,[~le(1, Du(X))] + Ex~pg, [—lce(0, Du(X))].

Now we write a-loss in (1) analogous to ¢cg to obtain
(0% a—1

(1= - - -9 ), ®

for o € (0,1) U (1, 00). Note that (8) recovers {cg as o — 1.
Now consider a tunable a-GAN with a value function

= Ex~p, [la(l, Du(X))] + Exnpy, [la(0, Du(X))]

lo(y,9) =

Ta-—1

a—1

(Exer, [Du(X)*T] + Exaps, [(1- Du(X)) = | =2).

We can verify that lim, 1 V,(0,w) = Wg(0,w) recovering
the value function of the vanilla GAN. Also, notice that

Tim Va0, @) = Exwp, [Du(@)] — Exep, [Duf@)] — 1
©))
is the value function (modulo a constant) used in Intergral
Probability Metric (IPM) based GANS3, e.g., WGAN, Mc-
Gan [36], Fisher GAN [37], and Sobolev GAN [38]. The
resulting min-max game in a-GAN is given by

inf Va(8,w). 10
inf sup (0,w) (10)
The following theorem provides the min-max solution, i.e.,
Nash equilibrium, to the two-player game in (10) for the non-
parametric setting, i.e., when the discriminator set {2 is large

enough.

Theorem 1 (min-max solution). For a fixed generator Gy, the
discriminator D~ (x) optimizing the sup in (10) is given by
pr(z)®
Pr(2)* + pay (2)*
For this D« (x), (10) simplifies to minimizing a non-negative

symmetric fq-divergence Dy, (-||) as

Dy () = (11)

. « 1
inf Dy, (PlIPe,) + ——= (2 =2),  (12)
where
Falu) = ac_yl ((1+u‘1)é (1 4uw)— 2% +2), (13)
for u >0 and*
Dr(PIQ) = =25 ([ (o +ata))? o -2 ).
o X

(14)

3Note that IPMs do not restrict the function D, to be a probability.

4We note that the divergence D fo has been referred to as Arimoto
divergence in the literature [19], [20], [22]. We refer the reader to Section IV
for more details.

which is minimized iff Pg, = P;.

For intuition on the construction of (13), see Theorem 3.
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Fig. 1. Aplotof Dy, _ in (14) for several values of o where p ~ Ber(1/2) and
q ~ Ber(0). Note that HD, JSD, and TVD, are abbreviations for Hellinger,
Jensen-Shannon, and Total Variation divergences, respectively. As @ — 0,
the curvature of the divergence increases, placing increasingly more weight
on @ # 1/2. Conversely, for & — oo, Dy, quickly resembles Dy__, hence
a saturation effect of Dy, .

Remark 1. It can be inferred from (12) that when the discrimi-
nator is trained to optimality, the generator has to minimize the
fa-divergence hinting at an application of f-GAN instead. Im-
plementing f,-GAN directly via value function in (5) (for f,)
involves finding convex conjugate of f,, which is challenging
in terms of computational complexity making it inconvenient
for optimization in the training phase of GANSs. In contrast, our
approach of using supervised losses circumvents this tedious
effort and also provides an operational interpretation of f,-
divergence via losses. A related work where an f-divergence
(in particular, a-divergence [39]) shows up in the context of
GAN:Ss, even when the problem formulation is not via f-GAN,
is by Cai er al. [3]. However, our work differs from [3] in that
the value function we use is well motivated via supervised loss
functions of binary classification and also recovers the basic
GAN [1] (among others).

Remark 2. As o — 0, note that (11) implies a more cautious
discriminator, i.e., if pg,(z) > p.(x), then D, (z) decays
more slowly from 1/2, and if pg,(x) < pp(x), Dy« (2)
increases more slowly from 1/2. Conversely, as o — oo, (11)
simplifies to Dy« (z) = 1{p,(z) > pg,(2)} + :1{p.(z) =
PG, (x)}, where the discriminator implements the Maximum
Likelihood (ML) decision rule, i.e., a hard decision whenever
pr(x) # pg,(x). In other words, (11) for « — oo induces
a very confident discriminator. Regarding the generator’s per-
spective, (12) (and Figure 1) implies that the generator seeks
to minimize the discrepancy between P, and FPg, according
to the geometry induced by Dy, . Thus, the optimization
trajectory traversed by the generator during training is strongly
dependent on the practitioner’s choice of o € (0, c0]. Please
refer to Figure 2 for an illustration of this observation.
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Fig. 2. An idealized illustration on the probability simplex of the infimum
over 0 in (12) for a1, a2 € (0, 00] such that oy # ap. The choice of « in
the min-max game for the a-GAN in (10) defines the optimization trajectory
taken by the generator (versus an optimal discriminator as specified in (11))
by distorting the underlying geometry according to Dy, .

A detailed proof of Theorem 1 is in Appendix. Next we
show that a-GAN recovers various well known f-GANs.

Theorem 2 (f-GANs). «a-GAN recovers vanilla GAN,

Hellinger GAN (H-GAN) [4], and Total Variation GAN (TV-

GAN) [4] as o — 1, a = % and o — o0, respectively.
A detailed proof is in Appendix.

IV. RECONSTRUCTING ARIMOTO DIVERGENCE

It is interesting to note that the divergence Dy _(-||-) (in (14))
that naturally emerges from the analysis of a-GAN was first
proposed by Osterriecher [22] in the context of statistics and
was later referred to as the Arimoto divergence by Liese and
Vajda [19]. It was shown to have several desirable properties
with applications in statistics and information theory [40],
[41]. For example:

o A geometric interpretation of the divergence Dy in the
context of hypothesis testing [22].

e Dy, (PHQ)“‘“’{@’%} defines a distance metric (satisfying
the triangle inequality) on the set of probability distribu-
tions [20].

When the Arimoto divergence Dy, was proposed, the
convexity of the generating function f, was proved via the
traditional second derivative test [22, Lemma 1]. We present an
alternative approach to arriving at the Arimoto divergence by
utilizing the margin-based® form of a-loss (see [21]) where the
convexity of f, (and also the symmetric property of Dy, (-||))
arises in a rather natural manner, thereby reconstructing the
Arimoto divergence through a distinct conceptual perspective.

We do this by noticing that the Arimoto divergence falls
into the category of a broad class of f-divergences that can be
obtained from margin-based loss functions. Such a connection
between margin-based losses in classification and the corre-
sponding f-divergences was introduced by Nguyen ef al. [17,

SIn the binary classification context, the margin is represented by ¢ :=
yf(z), where x € X is the feature vector, y € {—1,+1} is the label, and
f + X — R is the prediction function produced by a learning algorithm.

Theorem 1]. They observed that, for a given margin-based
loss function ¢, there is a corresponding f-divergence with the
convex function f defined as f(u) := — inf; (ug(t) + Z(—t))
The convexity of f follows simply because the infimum of
affine functions is concave, and this argument does not require
/ to be convex®. Additionally, the f-divergence obtained is
always symmetric because f satisfies f(u) = wf(L) since
inf, ul(t) + £(—t) = inf, 0(t) + ul(—t).

The margin-based a-loss [12] for a € (0,1) U (1,00), /y :
R — R, is defined as

Ity 2 2 (1—0@%?y

where o : R — R, is the sigmoid function given by o (t) =
1+ e_t)_l. With these preliminaries in hand, we have the
following result.

5)

Theorem 3. For the function f, in (13), it holds that

falw) = = inf (wla(t) + La(-0)) = == (2% = 2)
for u > 0.

(16)
A detailed proof is in Appendix.

V. CONCLUSION

We have shown that a classical information-theoretic mea-
sure (Arimoto divergence) characterizes the ideal performance
of a modern machine learning algorithm (a-GAN) which
interpolates between several canonical GANSs. For future work,
we will investigate a-GAN in practice, with particular interest
in its generalization guarantees and its efficacy to reduce mode
collapse.

APPENDIX
PROOF OF THEOREM 1

For a fixed generator, Gy, we first solve the optimization
problem

Slé?z/ (5 (@) Dul) T + e, (1)1~ Du(@)) 5 ).
o (17)

Consider the function
« a—1 a—1
= (e (1 — T) :
9 = —— (ay +b(1-y)
for a,b € Ry and y € [0,1]. To show that the optimal
discriminator is given by the expression in (11), it suffices to
show that g(y) achieves its maximum in [0, 1] at y* =

(18)

a—1 afw-
Notice that for « > 1, y = is a concave function oﬁ Y
meaning the function g is concave. For 0 < o < 1, y =
is a convex function of y, but since ﬁ is negative, the
overall function g is again concave. Consider the derivative
g'(y*) = 0, which gives us

aO{

a® + b

*

y = 19)

6in fact a-loss in its margin-based form is only quasi-convex for o > 1
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This gives (11). With this, the optimization problem in (10)
can be written as infgcg C(Gp), where

C(Gy) = —

[/X (pr(a”)Dw*(%)Ole1 + pa, ()(1 — Dw*(x))a%l) dr — 2}

X

(20)
_ pr(@)° )
S a-l [/X ( o (Pr($)a + PG, () "
pr()° ) i — 2 21
0 (5 v ) ' o
e (/ (o ()" + P, (2)) dx”) (22)
a—1\Jx
« 1
= Dy, (PlIPe,) + — (2% -2), 23)
where for the convex function f, in (13),
pr() )
D¢ (Pr||Pa,) = 0 o d 24
) = [ et (25w e
- ai 1 (/ (pr(2)* +pce<w>‘*>3‘dx‘2i> - ®

This gives us (12). Since Dy, (P||Pg,) Z
and only if P, = Pg,, we have C(Gy) >
equality if and only if P, = Pg,.

with equality if
225 (2% - 2) with

PROOF OF THEOREM 2

First, using L”Hopital’s rule we can verify that, for a,b > 0,

lim a1<(aa+ba)g 25 1( a+b))

a—1 o —
b
—alog< )—&—blog(a%). (26)
2

27)

Using this, we have

Dy, (P,l[Pe,) £ lim Dy, (P, Pg,)

([ w0 +pamras-2t) o

~H(pr(@) + Py (2)) ) do

(29

= [ pr(x)log pr—(x)daH—

P (pr(l’)ﬂmg(r))
2
PG, (.’ﬁ)
/X DG, (x) log —(pr(x)erce(x)) dx 30)
2

= 2DJS<P’(‘HPG9>7 (31)

where Djs(-||-) is the Jensen-Shannon divergence. Now, as
a — 1, (12) equals infypee 2D5s(P,||Pg,) — log 4 recovering
vanilla GAN.

Substituting a = % in (14), we get

Dy, (BlIPa,) = = [ (Vorla) + Vo, @) da+4
(32)
:/ (\/pr(x)*\/pae(x))gdz (33)
X
=:2Dwe (P Pa, ), (34)

where Dyz2 (P, ||Pg,) is the squared Hellinger distance. For
o = i, (12) gives 2infgce Dy2(P;||Pg,) — 2 recovering
Hellinger GAN (up to a constant). )

Noticing that, for a,b > 0, lim, e (a* +0%)> =
max{a, b} and defining A := {z € X : p.(z) > pg,(x)},
we have

Dy, (P,||Pg,) =

= lim —— (/X (pr(x)%pc@(x)a)id:c—ﬁ) (36)

:/ max{p.(x),pg, (z)} dz —1 37
/ max{p.(x) — pg, (z),0} dx (38)

—/ pr(x) — DG, (x)) dz (39)
A

:/ pr(x)_pG9($> pr( ) dr  (40)
A

o+ [ Pl -pte

2 2
1
=5 [ 1p:@) = b (@)] do @
X
=: Drv(Pr||Pg,), (42)

where Dty (P,||Pg,) is the total variation distance be-
tween P, and Pg,. Thus, as o« — oo, (12) equals
infgee Drv(Pr||Pg,) — 1 recovering TV-GAN (modulo a
constant).

PROOF OF THEOREM 3
We know from [12, Corollary 1] that for n € [0, 1],
D5 ~ o N gt
inf nla(t) + (1= mla(—t) = === (1= "+ (1 =m)*)7).

This implies that

Uo(t) + Lo (—t)

inf
t 1—mn

__«a 0 (N
_a_1<1+1_ <<1—n> +1> ) 43)

Now substituting u for ﬁ and taking negation in (43), we
get

— inf ula(t) + La(—1) = % ((ua S - (14 u)) :
foru >0 (44)

giving us (16).
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