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Abstract— We present a data-driven framework for learning
fair universal representations (FUR) that guarantee statistical
fairness for any learning task that may not be known a priori.
Our framework leverages recent advances in adversarial learning
to allow a data holder to learn representations in which a set of
sensitive attributes are decoupled from the rest of the dataset.
We formulate this as a constrained minimax game between an
encoder and an adversary where the constraint ensures a measure
of usefulness (utility) of the representation. The resulting problem
is that of censoring, i.e., finding a representation that is least infor-
mative about the sensitive attributes given a utility constraint. For
appropriately chosen adversarial loss functions, our censoring
framework precisely clarifies the optimal adversarial strategy
against strong information-theoretic adversaries; it also achieves
the fairness measure of demographic parity for the resulting
constrained representations. We evaluate the performance of our
proposed framework on both synthetic and publicly available
datasets. For these datasets, we use two tradeoff measures:
censoring vs. representation fidelity and fairness vs. utility for
downstream tasks, to amply demonstrate that multiple sensitive
features can be effectively censored even as the resulting fair
representations ensure accuracy for multiple downstream tasks.

Index Terms— Fair universal representations, algorithmic fair-
ness, generative adversarial networks, minimax games.

I. INTRODUCTION

THE use of data-driven machine learning (ML) has
recently seen unprecedented success in a variety of

automated decision-making systems including facial recogni-
tion, natural language processing, mortgage lending, and even
parole prediction. The success of these approaches hinges on
the availability of large datasets that often include sensitive
personal information. It has been shown that models learned
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from such datasets can inherit societal bias and discrimination
patterns [1], [2] and learn sensitive features even when they
are not explicitly used during training [3]. Concerns about
the fairness, bias, and privacy of learning algorithms have
led to a growing body of research focused on both defining
meaningful fairness measures and designing algorithms with
such guarantees.

A key challenge in algorithmic fairness is the quantification
of disparate treatment and impact – legal notions developed to
ensure that societal decisions neither hinder nor discriminate
against specific groups. Addressing this has broadly lead to
two classes of measures: (i) group fairness measures which
require similar outcomes for all groups [4]; (ii) individual
fairness measures which require treating similar individuals
similarly [5]. Approaches combining both fairness require-
ments have also been considered [6], [7]. In the context of
supervised learning of intended tasks (our setting here), two
key group fairness measures have emerged [8]: (i) demo-
graphic parity (DemP) which requires predicted outcomes
to be independent of the sensitive features, and (ii) equal-
ized odds (EO) wherein such an independence holds only
when conditioned on the true outcome. The EO measure
was introduced to ensure accurate predictions within groups,
a limitation of DemP [9].

Three distinct approaches have been considered to enforce
fairness in learning: in-processing, pre-processing, and post-
processing. In-processing approaches are most commonly used
in the supervised setting where the learning objective is
known (e.g., [5], [10]); the resulting trained model guarantees
fairness for the specific objective. Pre-processing generally
produces fair representations of data tuned for a chosen
learning objective [11]–[13] while post-processing provides
fairness by properly altering decision outputs [8], [14], [15].

Recently, censoring has emerged as a compelling pre-
processing approach wherein protected features (e.g., race,
gender, and their correlates) are actively decorrelated from
the rest of the data to explicitly limit their effect on deci-
sions. Censoring is inspired by information-theoretic privacy
methods to limit leakage of sensitive features [3], [16]–[19]
and can be achieved in practice using generative adversarial
networks (GANs) [20]. Thus far, censoring for fairness has
largely focused on learning fair predictors [10]–[12].

A. Our Contributions

Taking a preprocessing approach, the main contribution of
this work is to use censoring to generate fair representations
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Fig. 1. Generative adversarial model for censoring/fairness.

that are universal. These are representations from which the
sensitive features have been actively decoupled and can be
universally used for a variety of a priori unknown learning
tasks. We show that such fair universal representations (FURs)
can assure DemP group fairness for all downstream predictions
(from the data processing inequality). We now detail our
contributions:

• We present a framework for learning FURs as a con-
strained minimax game between an encoder1 and an
adversary, where the encoder generates a noisy repre-
sentation of the original data, subject to a distortion
constraint, to thwart an adversary that actively tries to
infer the sensitive features (see Fig. 1). There has been
recent work on using adversarial methods to generate
transferable fair representations [11]; our universal FUR
approach, while similar in philosophy, goes a step further
by enforcing a hard distortion constraint that allows
better control of the learned representations, and there-
fore, better downstream utility guarantees. Algorithmi-
cally, we showcase how Lagrange penalty methods [21]
can be leveraged to enforce the hard constraint in a
GAN-setting.2

• Building on existing definitions of fair predictors, we for-
mally define demographic parity for FRs. We use cen-
soring (of the sensitive features) to ensure DemP FRs
and provide information-theoretic assurances on both.
Censoring methods, used often for assuring information-
theoretic privacy of sensitive features when releasing data
(e.g., [17], [19]), can also ensure DemP fairness (relative
to the sensitive feature). Building on this, we formally
define censored representations (Definition 2) for the
setting when adversaries are limited to practical ML
models and loss functions. This has a broader value in
auditing fairness/censoring guarantees.

• Our prior work [17] shows that the constrained FUR
minimax game captures a range of adversarial actions
through the choice of loss functions and identifies the
corresponding information-theoretic optimal adversarial
strategies. Focusing here on high-dimensional Gaussian
mixture models with independent components, we present
the optimal additive Gaussian noise distribution that
minimizes the adversary’s probability of detecting the
mixture class (sensitive feature), i.e., the game-theoretic
optimal under the strongest MAP (maximum a posteriori)
adversary. We then use normalized mutual information

1referred to interchangeably throughout the paper as fair encoder or gener-
ator or decorrelator

2Recently TensorFlow updated its package to allow enforcing hard con-
straints [22] using a similar approach.

estimates to show that the empirical FUR framework,
using neural networks and log-loss, performs very well
relative to this game-theoretic optimal.

• Our most important contribution is in illustrating
the utility of FURs for multiple publicly available
datasets including the UCI Adult [23], UTKFace [24],
GENKI [25], and HAR [26] datasets. Our visual results
demonstrate our success in creating high quality repre-
sentations that increasingly erase the sensitive attributes
with decreasing fidelity requirements. In contrast to
state-of-the-art [10]–[12], our theoretical framework and
experiments are the first to include non-binary sensitive
attributes, multiple downstream tasks, as well as hard
distortion constraints. Our results show that one can still
learn high accuracy DemP (and even EO) fair classifiers
from DemP FURs. In particular, via the UCI dataset,
that is often used in fair ML analyses, we showcase the
advantage of our approach relative to related approaches
(e.g., [12], [10], [11], [27]). Our results also straddle
a wide range of values for the chosen fairness mea-
sure (DemP) and include perfect fairness, in contrast to
the above works.

The remainder of our paper is organized as follows. We set
up the problem and review known measures for fair predictors
in Section II. In Section III, we formalize our FUR model,
introduce definitions for censored and fair representations,
and highlight the theoretical guarantees of this approach.
In Section IV, we present theoretical results for datasets
modeled as multi-dimensional Gaussian mixtures. Finally,
we showcase the performance of the FUR framework on
the UCI Adult, UTKFace, GENKI, and HAR datasets in
Section V. Proofs for the key results are in the appendix. All
proofs that build on prior results in [17] can be found in an
extended version [28]. Finally, details of the FUR architec-
ture for all datasets are in the accompanying supplementary
material.

II. PRELIMINARIES

Consider a dataset D with n entries where each entry is
a random tuple (S, X,Y ) ∈ S × X × Y where S, X , and Y
are sensitive, non-sensitive, and target (non-sensitive) features,
respectively, and Ŷ ∈ Y is a predictor of Y . Note that S and Y
can be a collection of features or labels (e.g., S can be gender,
race, sexual orientation, or a combination of these, while Y
could be age, facial expression, etc.); for ease of writing,
we use the term variable to denote both single and multiple
features/labels. Instances of X , S, and Y are denoted by x , s
and y, respectively. The entries (X, S,Y ) of D are independent
and identically distributed (i.i.d.) according to P(X, S,Y ).

Recent results on algorithmic fairness guarantee that, for a
specific target Y , the prediction of a machine learning model
is accurate with respect to (w.r.t.) Y but unbiased w.r.t. the
sensitive S. While more than two dozen measures for fair-
ness have been proposed, two oft-used fairness measures are
demographic parity and equalized odds (and variants thereof).
Demographic parity (DemP) ensures complete independence
between the prediction of the target Ŷ and the sensitive S;
this notion of fairness favors utility the least, especially when
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Y and S are correlated [8]. Equalized odds (EO) enforces
this independence conditioned on Y , thereby ensuring equal
rates for true and false positives (when Y is binary) for all
demographics. We now define DemP and EO formally (for
binary S and Y as originally introduced). These definitions
can be generalized to the non-binary setting and we do so in
the sequel for fair representations.

Definition 1 [8]: A predictor f (S, X) = Ŷ satisfies

• demographic parity (DemP) w.r.t. S, if Ŷ ⊥ S, i.e.,

Pr(Ŷ =1|S =1)=Pr(Ŷ =1|S =0) (1)

• equalized odds (EO) w.r.t. (S,Y ), if Ŷ ⊥ S|Y , for y ∈
{0, 1}:

Pr(Ŷ =1|S =1,Y = y)=Pr(Ŷ =1|S =0,Y = y). (2)

In the following section, we present our FUR framework
which includes definitions for both demographically fair and
censored representations.

III. FURS VIA GENERATIVE ADVERSARIAL MODELS

Formally, the FUR model consists of two components,
an encoder and an adversary, as shown in Fig. 1. The goal
of the encoder g : X × S → Xr is to actively eliminate
the dependence between S and X while that of the adversary
h : Xr → S is to infer S. In general, g(X, S) is a randomized
mapping that outputs a representation Xr = g(X, S). Note
that S may not always be available to the curator; however,
it will always affect the design of g via the adversarial training
process. For brevity, we henceforth write g(·) to include both
possibilities (just X or (X, S) as inputs). On the other hand,
the role of the adversary is captured via h(Xr ), which is the
adversarial decision rule in inferring the sensitive variable S as
Ŝ = h(Xr = g(·)) from the representation g(·). In general, the
hypothesis h can be a hard decision rule under which h(g(·))
is a direct estimate of S or a soft decision rule under which
h(g(·)) = Ph(·|g(·)) is a distribution over S.

To quantify the adversary’s performance, we use a loss
function �(h(g(X = x, S = s)), S = s) defined for every
pair (x, s). Thus, the adversary’s expected loss w.r.t. X and S
is L(h, g) � E[�(h(g(·)), S)], where the expectation is taken
over P(X, S) and the randomness in g and h. To ensure utility,
we introduce a constraint on the fidelity of Xr via a distortion
function d(xr , x), which measures the goodness of Xr = xr

w.r.t. X = x . Ensuring statistical utility, in turn, requires
constraining the average distortion E[d(g(·), X)], where the
expectation is taken over P(X, S) and the randomness in g.

A. FUR: Framework and Theoretical Results

To publish a fair representation Xr , the data curator wishes
to learn an encoder g that guarantees censoring (i.e., it is
difficult for the adversary to learn S from Xr ), and therefore,
fair Xr under DemP, as well as utility (g guarantees bounded
distortion of X). In contrast, for a fixed g, the adversary
would like to find a (potentially randomized) function h that
minimizes its expected loss, or equivalently maximizes the

negative expected loss. This leads to a constrained minimax
game between the encoder and the adversary given by

min
g(·) max

h(·) −E[�(h(g(·)), S)], s.t. E[d(g(·), X)] ≤ D. (3)

where D ≥ 0 determines the distortion constraint on Xr . The
optimization in (3) highlights that the input to g depends on
whether the curator has access to both (X, S) or just X . Having
access to both (X, S) in general will yield a better decorrelator
(e.g., see Section V-A for the UCI dataset). Finally, without
the constraint in (3), the optimal Xr = g(·) ⊥ S. One can
approximate this in practice via arbitrarily large distortions
as we show in Proposition 2; as a setup to these results,
we first define censoring and fairness for representations. Our
censoring definition clarifies the representation that best limits
an adversary from inferring S. We then define DemP for
FRs; we combine the two definitions to show how and when
adversarial learning can help ensure demographic parity.

Definition 2 (Censored Representations): A representation
Xr of X is censored w.r.t. the sensitive features S against
a learning adversary h(·), whose performance is evaluated
via a loss function �(h(Xr ), S), if for an optimal adversarial
strategy h∗ = arg min h E[�(h(Xr ), S)],

E[�(h∗(g(·)), S)] ≤ E[�(h∗(Xr ), S)], (4)

where g(·) is any (randomized) function of X (or (X, S)) and
the expectation is over h, g, X, and S.

The above definition suggests that the best censored repre-
sentation Xr is the least informative about S to an adversary
whose inferential action is captured by a loss function �(·, ·),
i.e., the average loss is the worst for Xr than for any other
arbitrary function g(·). While the comparison in (4) is w.r.t.
the best h∗(Xr ) for Xr , choosing the optimal h(·) for any g(·)
will only serve as a lower bound to the left side of (4).

We now define DemP for representations; we then prove that
a demographically fair representation Xr guarantees that any
downstream algorithm using Xr satisfies DemP w.r.t. S. In the
following, we assume that X , and therefore, Xr are discrete
random variables with arbitrarily large alphabets; however,
the definition below can be extended to continuous-valued X
and Xr by considering all Borel subsets and an appropriately
defined measure on the space.

Definition 3 (Demographically Fair Representations): For
(X, S) ∈ X ×S, a representation Xr = g(X, S) ∈ Xr satisfies
demographic parity w.r.t. S if for any xr ∈ Xr and s, s′ ∈ S

Pr(Xr = xr |S = s) = Pr(Xr = xr |S = s′) (5)

where g : X ×S → Xr is any (possibly randomized) function.
Theorem 1 (Fair Learning via Fair Representation):

If Xr = g(X, S) satisfies demographic parity w.r.t. S, then
any algorithm f : Xr → Y satisfies demographic parity
w.r.t. S.

The proof of Theorem 1 follows from a direct application
of the data-processing inequality for mutual information since
(X, S) − Xr − Y form a Markov chain; details can be found
in [28].

Remark 1: Note that equalized odds in Def. 1 explicitly
involves a downstream task, and therefore, the design of an EO
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TABLE I

THE ADVERSARIES CAPTURED BY THE FUR FRAMEWORK BY USING A VARIETY OF LOSS FUNCTIONS

fair Xr needs to include a predictor explicitly. In contrast to
the FUR setting considered here, such targeted representations
and the ensuing fair predictors provide guarantees only for
specific target Y . In this limited context, however, one can still
define an Xr as ensuring EO w.r.t. to (S,Y ) if Ŷ (Xr ) ⊥ S|Y .

One simple approach to obtain a fair/censored represen-
tation Xr is by choosing Xr = N where N ⊥ (X, S).
However, such an Xr has no utility (quantified, for example,
via downstream task accuracy). The design of Xr has to ensure
utility, and thus, there is a tradeoff between guaranteeing fair-
ness/censoring and assuring a desired level of utility. We now
quantify such tradeoffs using FUR framework.

Theorem 2: For sufficiently large distortion bound D, (3)
yields a universal representation Xr censored w.r.t. to S.

The proof follows by observing that for sufficiently large D,
Xr can be arbitrarily noisy, reducing (3) to an unconstrained
optimization. For this Xr with h∗ = arg min h E[�(h(Xr ), S)],

E[�(h∗(Xr ), S)] = − min
g(·) max

h(·) −E[�(h(g(·)), S)] (6)

≥ E[�(h∗(g(·)), S)], (7)

thus satisfying Definition 2.
The FUR framework in (3) places no restrictions on the

adversary. Indeed, different loss functions and decision rules
lead to different adversarial models (see Table I). This versatil-
ity to a large class of (inferring) adversarial models is captured
by the last entry in Table I by using the recently introduced
tunable α-loss [29], [30], defined for α ∈ (0, 1) ∪ (1,∞) as:

�α(h(g(·)), s) = α

α − 1

(
1 − Ph(s|g(·)) α−1

α

)
(8)

with continuous extensions at α = 1 and α = ∞ (the loss
simplifies to a constant for α = 0). Note that the loss in
(8) operates on a soft decision Ph(·|·), the output of the
adversary h. By tuning α ∈ [0,∞], α-loss captures a variety
of information-theoretic adversaries as listed in Table I (see
also [29], [30]):

(i) a hard-decision adversary for α = ∞ captured by
�∞(h(g(·)), s) = 1 − Pr[h(g(·)) = s],3 and

(ii) a soft-decision adversary for α = 1 via the oft-used log-
loss �1(h(g(·)), s) = − log Ph(s|g(·)) (this follows directly by
applying L’Hôpital’s rule).

(iii) Values of α > 1 allow interpolating between the
NP-hard to implement MAP rule (α = ∞) and log-loss
(α = 1) and allow some robustness to noisy data [30]. On the

3For α = ∞, α-loss reduces to probability of error, for which the optimal
rule that minimizes the expected loss is the maximal a posteriori (MAP)
estimation, a hard decision. The same rule results when minimizing the 0-1
loss which is given by I(h(g(·)) �= s) where I is the indicator function.

other hand, choosing α < 1 leads to more convex losses
than log-loss (α = 1/2 yields a soft exponential loss used in
boosting algorithms) that are more sensitive to outliers [30].

For any encoder g(·), the following proposition (see also
the last row of Table I) summarizes the optimal P∗

h (s|g(·))
under α-loss.

Proposition 1: For a fixed g, under α-loss, the optimal
adversary decision rule that minimizes the expected loss is a

‘α-tilted’ conditional distribution P∗
h (s|g(·)) = P(s|g(·))α∑

s∈S P(s|g(·))α .
For α = 1 and α = ∞, we obtain the optimal strategies
for log-loss and 0-1 loss, respectively, as the true conditional
distribution and the maximal a posteriori (MAP) estimator.

Then, (3) reduces to ming(·)−H A
α (S|g(·)), where H A

α (·|·)4 is
the Arimoto conditional entropy.

Proposition 1 states that if the adversary uses �∞, (3) sim-
plifies to ming(·) P(g(·))maxs∈S P(s|g(·))−1, i.e., we choose
the most likely s for every g(·) (the MAP rule) [31].

On the other hand, if the adversary uses log-loss, (3) simpli-
fies to ming(·) I (g(·); S) for any prior on S, where I (g(·); S)
is the mutual information (MI) between g(·) and S. More
generally, using α-loss in (8), the optimal P∗

h in Proposition 1
simplifies the objective in (3) to ming(·) I A

α (g(·); S), where
I A
α (g(·); S) is the Arimoto MI5 of order α. These MIs can be

effective proxies for guaranteeing DemP FURs, since they are
minimized only when S ⊥ g(·), thus leading to the following
theorem.

Theorem 3: Under α-loss, for all α, (3) enforces fairness
subject to a distortion constraint. As the distortion increases,
the ensuing fairness guarantee approaches ideal DemP.

Proposition 1 was proved in [17]; Theorem 3 involves
similar arguments to Theorem 2. All proofs can be found
in [28]. Many notions of fairness (cf. Definition 1) require
computing conditional probabilities for every sample x to
ensure independence, and thus, are not easy to optimize in
a data-driven fashion. The FUR framework via loss functions
captures mutual information-like surrogates for such indepen-
dence conditions; to this end, Theorem 3 justifies using α-loss
(and thus, log-loss too) as a proxy for enforcing fairness. We
remark that mutual information (MI) is a common surrogate
fairness measure for demographic/statistical parity [6], [13],
[32]. In [32], the authors use MI for both fairness and the
distortion measure leading to an (non-convex) information
bottleneck problem; we recover this formulation by choosing

4 H A
α (U |V ) � 1/(1 − α) log(

∑
u,v PαU,V (u, v))

5 I A
α (g(·); S) = Hα(S)− H A

α (S|g(·)) where Hα(S) � H A
α (S) is the Rényi

entropy of order α and is also the unconditioned α-Arimoto entropy.
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d(x, xr ) = − log p(xr |x). Thus the FUR framework is more
general and allows choosing application-dependent meaningful
fidelity measures (for example, different measures of repre-
sentation similarity are used in natural language processing
and healthcare data). Finally, we remark that the optimal
adversarial strategy in Proposition 1 requires estimating a
posterior; as described in Section III-B, in practice, one can
use deep learning models for h and g to do so.

A predominant approach in the literature in the context
of fair representations is to explicitly include the intended
classification/prediction task, i.e., design representations that
guarantee DemP for the specific task [10]–[12]. In fact, the
FUR formulation in (3) can be extended to include this case
by adding an additional term in the objective function to ensure
high accuracy in learning Y . The resulting minimax game is
given by

min
g̃(·), f (·)

max
h(·) −E[�(h(g̃(·)), S)] + λE[�′( f (g̃(·)),Y )], (9a)

s.t. E[d(g̃(·), X)] ≤ D, (9b)

where f (·) is a classifier for a target Y , λ > 0, and g̃(·)6 and
h(·) are the encoder and the adversarial classifier, respectively,
as in (3). Note that the loss functions �(·) and �′(·) can
be different. The setup in (9) involves an additional term
ensuring fair classification and is, thus, a more constrained
optimization than the FUR framework; in fact, we recover
the FUR setup with λ = 0. However, even while generating
intermediate representations g(·), (9) is primarily intended to
design fair classifiers, and therefore, requires knowing the
intended tasks on Y . In contrast, our FUR framework allows
generating DemP-guaranteeing fair Xr that in turn guarantee
DemP fairness to all downstream tasks on any subset of Y .

One can also design fair classifiers directly without inter-
mediate representations by setting g̃(·) � Ŷ ; such classifiers g̃
can be designed with either DemP or EO guarantees. We first
consider the more general problem of designing EO-fair
predictors/classifiers g̃(·) for the target Y and show that our
FUR framework subsumes this problem (and therefore, that of
generating DemP predictors/classifiers). Let h be the adversary
decision rule to infer S as Ŝ = h(g̃(·)|Y ) for every choice of
Y via the soft predictor g̃(·) = PŶ |·. Then, analogous to (3),
the design of a fair predictor/classifier can be formulated as

min
g̃(·)

max
h(·) −E

[
�
(
h(g̃(·)|Y ), S

)]
, s.t. E[�(g̃(·),Y

)] ≤ ε, (10)

where the expectation now includes Y too.
Theorem 4: Under α-loss, the formulation in (10) enforces

EO fairness subject to a performance constraint ε. As ε
increases, the ensuing fairness guarantee approaches the ideal
EO guarantees achievable by g̃ w.r.t. S and Y .

The proof of Theorem 4 is similar to that for Theorem 2
and can be found in [28]. Note that the formulation in (10)
also holds for generating a fair predictor/classifier satisfying
DemP in Definition 1. In contrast to EO where the adversary
needs both g̃(·) and Y as inputs, for DemP, only g̃(·) is input
to the adversary.

6In general, g̃(·) can be a function of both X and S; the dependence on S
is implicit when S is not directly available.

The adversarial models and the resulting game-theoeretic
solutions in Table I highlight the formal guarantees of the
FUR framework. Recently, Sypherd et al. have demonstrated
the robustness of training deep learning models with α-loss
to both noise and class imbalances [30], thus promising to
be applicable for learning FURs with GANs. The rest of the
sequel focuses on data-driven GANs with α = 1, i.e., log-
loss, to highlight the value of FURs in guaranteeing fairness
for multiple downstream tasks relative to the state-of-the-art
fair classifiers. Future work will include enhancing such results
to include tuning over α.

B. Data-Driven FUR

Thus far, we have focused on a setting where the curator has
access to the statistics P(X, S) thereby solving the constrained
minimax optimization problem in (3) (game-theoretic version
of the FUR formulation) to obtain a g that performs best
against a chosen adversary. In practice, P(X, S) is impos-
sible to compute. To this end, we propose a data-driven
version of the FUR formulation that allows the data holder
to learn a generative decorrelator from an n-sample dataset
D = {(x(i), s(i))}n

i=1 via a generative model g(X; θp) that
is parameterized by θp. This generative model takes X (or
(X, S)) as input and outputs Xr . In the training phase, the
data holder learns the optimal parameters θp by competing
against a computational adversary: a classifier modeled by
a neural network h(g(X; θp); θa) that is parameterized by
θa . In the evaluation phase, the performance of the learned
decorrelation scheme can be tested under a strong adversary
that is computationally unbounded and has access to dataset
statistics. We follow this procedure in the next section.

While, in theory, the functions h and g can be arbitrary,
in practice, they are best approximated by a well-chosen rich
hypothesis class. Fig. 1 illustrates a FUR model in which h
and g are both modeled as deep neural networks (DNNs). For
a fixed h and g, binary S and � = �1 (log-loss for α = 1), the
adversary’s empirical loss using cross entropy is given by

Ln(θp, θa) = − 1

n

n∑
i=1

s(i) log h(g(x(i); θp); θa)

+(1 − s(i)) log(1 − h(g(x(i); θp); θa)). (11)

The optimal model parameters (θp, θa) are then solutions of

min
θp

max
θa

−Ln(θp, θa), s.t.
1

n

n∑
i=1

d(g(x(i); θp), x(i)) ≤ D. (12)

The minimax optimization in (12) is a two-player non-
cooperative game between the generative decorrelator and the
adversary with strategies θp and θa , respectively. In practice,
for chosen hypothesis classes for g and h (e.g., DNN archi-
tectures), we can learn the equilibrium of the game using an
iterative algorithm as follows. (i) For a fixed θp, maximize
the negative of the adversary’s loss to compute the parameters
of h. (ii) Then, minimize the decorrelator’s loss (negative
adversary loss) to compute θp for a fixed h.

It is crucial to note that the hard distortion constraint
in (12) makes our minimax problem different from what has
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been extensively studied in the literature. To incorporate the
distortion constraint, we use the penalty method [21] to replace
the constrained optimization problem by adding a penalty to
the objective function. This is done via a penalty parameter
ρt that captures a measure of violation of the constraint at
the t th iteration. The constrained optimization problem of g is
then approximated by a series of unconstrained optimization
problems with an objective

−Ln(θp, θa)+ ρt (max{0, 1

n

n∑
i=1

d(g(x(i); θp), x(i))− D})2,

(13)

where the penalty coefficient ρt decreases with the number
of iterations t . We note that both the augmented Lagrangian
and the penalty methods have similar performance in practice;
we chose the penalty method but our results can also be
obtained with the augmented Lagrangian method [33]. We
provide detailed steps of the algorithm and the parameters
for the penalty method in Appendix A; we also clarify our
methodology for choosing both ρt and the learning rate ηt

there. Finally, we note that one can easily generalize (11) to the
multi-class setting (non-binary S) using the softmax function;
one can also generalize (11) using α-loss.

In the following sections, we detail our results for synthetic
multi-dimensional Gaussian mixture data and four publicly
available datasets: UCI Adult, UTKFace, GENKI, and HAR.
All code is available via GitHub at [28].

IV. FUR FOR GAUSSIAN MIXTURE MODELS

In this section, we focus on a setting where S ∈ {0, 1}
and X is an m-dimensional Gaussian mixture random vector
whose mean is dependent on S. Let P(S = 1) = q . Let
X |S = 0 ∼ N (−μ,	) and X |S = 1 ∼ N (μ,	), where μ =
(μ1, . . . , μm). We assume that X |S = 0 and X |S = 1 have
the same covariance 	.

A. Game-Theoretical Approach

We consider a MAP adversary that has access to P(X, S)
and g. The goal is to censor X in a way that minimizes
the adversary’s probability of correctly inferring S from Xr .
In order to have a tractable model for the encoder, we mainly
focus on affine representations Xr = g(X) = X + Z + β,
where for tractability reasons, we choose Z as a zero-mean
multi-dimensional Gaussian random vector independent of X .
This linear representation enables controlling both the mean
and covariance of Xr . To quantify utility of the privatized
data, we use the �2 distance between X and Xr as a distortion
measure to obtain a constraint EX,Xr ‖X − Xr‖2 ≤ D.

We assume that β = (β1, . . . , βm) is a constant parameter
vector and Z ∼ N (0,	p). Building on the analysis in [34],
for the standard Gaussian Q(·) function, we can derive the
adversary’s detection probability P(G)d as

P(G)d = q Q

(
−γ

2
+ 1

γ
ln

(
1−q

q

))

+(1 − q)Q

(
−γ

2
− 1

γ
ln

(
1−q

q

))
, (14)

where γ =
√
(2μ)T (	 +	p)−12μ. From the constraint,

we have EX,Xr ‖X − Xr‖2 = ‖β‖2 + tr(	p) ≤ D. The
mixture Gaussian classification problem, especially for the
same covariance for both classes S = 0 and S = 1,
is a tractable problem that has been studied in a variety of
settings including communication systems [34] and machine
learning [35], to name a few. The result in (14) builds directly
on [34], and so, for reasons of brevity, we leave it out. The
following theorem summarizes the optimal noising strategy
when X |S and Z are multi-dimensional i.i.d. Gaussians.

Theorem 5: Consider the representation given by g(X) =
X + Z + β, where X |S and Z are Gaussian random vectors
with diagonal covariance matrices 	 and 	p, respectively,
and X |S ⊥ Z. Let {σ 2

1 , . . . , σ
2
m} and {σ 2

p1
, . . . , σ 2

pm
} be the

diagonal entries of 	 and 	p, respectively. The parameters
of the minimax optimal censoring mechanism g∗ are

βi
∗ = 0, σ ∗

pi

2 =
(

|μi |√
λ∗

0

− σ 2
i

)+
, ∀i = {1, 2, . . . ,m},

where λ∗
0 , the dual variable enforcing the distortion constraint

in (3), is chosen such that
∑m

i=1 σ
∗
pi

2 = D. For this optimal

mechanism, the accuracy of the MAP adversary is given by

(14) with γ = 2
√∑m

i=1 μ
2
i /(σ

2
i + σ ∗

pi
2).

The proof of Theorem 5 is in Appendix B. We observe that
when σ 2

i > |μi |/
√
λ∗

0, no noise is added to the data on this
dimension due to the high variance. In contrast, when σ 2

i <|μi |/
√
λ∗

0, the variance of the noise added to this dimension is
proportional to |μi |; this is intuitive since a large |μi | indicates
the two conditionally Gaussian distributions are further away
on this dimension, and thus, require more noise to reduce the
MAP adversary’s inference accuracy.

We note that we could have considered a more general non-
affine model for the encoder. Since synthetic datasets provide
a verifiable way to formally evaluate the FUR framework,
we chose a simpler affine generative model that is tractable and
yields closed-form information-theoretic results, i.e., we can
derive the best adversarial decoder. This in turn is helpful in
comparing the data-driven approach with the game-theoretic
optimal solution on these canonical data models as a much-
needed sanity check. Finally, the analysis here can be gener-
alized to correlated Gaussian distributions for each sensitive
group and one expects a similar behavior as the features can
be whitened when the covariance is the same for both classes.

B. Data-Driven Approach

To learn the data-driven representation Xr = g(X) =
X + Z +β using our FUR framework, we assume that g only
has access to the dataset D with n data samples (not P(X, S)).
Computing the optimal g∗ is then a learning problem. In the
training phase, we learn the parameters θp of g by competing
against a computational adversary h(g(θp); θa) modeled by
a multi-layer neural network. When convergence is reached,
we evaluate the performance of the learned mechanism by
comparing with the one obtained from the game-theoretic
approach. To quantify the performance of the learned Xr ,
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we compute the accuracy of inferring S under a strong MAP
adversary that has access to both the joint distribution of (X, S)
and the censoring mechanism.

Since the sensitive variable S is binary, we measure the
training loss of the adversary network using the empir-
ical log-loss function in (11). We model the encoder
using a two-layer neural network with parameters θp =
{β1, . . . , βm, σp1 , . . . , σpm }, where βk and σpk represent the
mean and standard deviation for each dimension k ∈
{1, . . . ,m}, respectively. The random noise Z is drawn from
a m-dimensional independent zero-mean standard Gaussian
distribution such that {σpk Zk}m

k=1 jointly have a covariance
	p = diag(σ 2

p1
, . . . , σ 2

pm
). Thus, X̂k = Xk + βk + σpk Zk .

The adversary is modeled by a three-layer neural network
classifier with leaky ReLU activations. Finally, as detailed
in Algorithm 1, we use the penalty method to ensure the
distortion constraint.

C. Illustration of Results

We generate two synthetic datasets to illustrate our results;
each dataset has 20K training samples and 2K test samples.
Each dataset is generated by sampling from an independent
multi-dimensional Gaussian mixture model. The two datasets
correspond to two distinct values for the prior P(S = 1)
as 0.75 and 0.5. Both encoder and adversary are trained via
Tensorflow [36] using the Adam optimizer [37] with a learning
rate of 0.005 and a minibatch size of 1000.

Fig. 2 illustrates the performance of the learned
FUR scheme against a strong theoretical MAP adversary
for a 32-dimensional Gaussian mixture model for both
P(S = 1) = 0.75 and 0.5. We observe that the inference
accuracy of the MAP adversary decreases as the distortion
increases and asymptotically approaches (as expected) the
prior P(S = 1). The encoder obtained via the data-driven
approach performs very well when pitted against the MAP
adversary (maximum accuracy difference around 0.7% com-
pared to the theoretical optimal). As another measure of
censoring, we estimate the MI of Xr and S using k-nearest
neighbor method as detailed below. Normalizing it with its
theoretical maximum I (X; S) (i.e., with Xr = X for D = 0),
in Fig. 2b, we show that MI Î (Xr ; S)/I (X; S) decreases,
as expected, when the distortion increases. In other words,
for Gaussian mixture data with binary S, the data-driven
FUR formulation can learn decorrelation schemes that perform
as well as those computed under the game-theoretical FUR
formulation where the generative decorrelator has access to
the data statistics.

We estimate MI using the k-nearest neighbor method [38];
in particular, for n d-dimensional FUR outputs Xr , we first
estimate the entropy Ĥ(Xr ) as

Ĥ(Xr ) = ψ(N) − ψ(k)+ log(cd )+ d

n

n∑
i=1

log ri (15)

where ri is the distance of the i -th sample x̂i to its k-th
nearest neighbor, ψ is the digamma function (logarithmic
derivative of the gamma function �(·)), and cd = πd/2

�(1+d/2) .

We then calculate MI as Î (Xr ; S) = Ĥ(Xr ) − P(S = 1)

Fig. 2. Performance of the FUR framework for GMMs.

Ĥ(Xr |S = 1)− P(S = 0)Ĥ (Xr |S = 0), where P(S = 1) and
P(S = 0) are empirically estimated.

V. FUR FOR PUBLICLY AVAILABLE DATASETS

We apply our FUR framework to four real-world datasets,
namely, UCI Adult [23], UTKFace [24], GENKI [25], and
HAR [26], briefly described below. For all four datasets,
we restrict the architecture of h, g, and the downstream predic-
tive models to neural networks. Note that for tabular datasets
(e.g., UCI, HAR), boosting methods including decision trees or
support vector models achieve at least comparable predictive
performance [23], [39] but are out of scope of this work.

(i) The UCI Adult dataset [23] consists of 10 categorical
and 4 continuous features and is used to predict a binary
salary label (1: salary > 50k or 0: salary ≤ 50k). We choose
gender or the tuple (gender, relationship) as the sensitive S, the
remaining features except salary as non-sensitive X (Table SIV
in the supplement lists all features), and salary as the target Y .

(ii) The UTKFace dataset [24] consists of more than 20k
200 × 200 color images of faces labeled by age, ethnicity,
and gender. Individuals in the dataset have ages from 0 to
116 years and are divided into 5 ethnicities: White, Black,
Asian, South Asian Indian, and others including Hispanic,
Latino and Middle Eastern. We take gender as S, the image
as X , and age and ethnicity as two target labels Y . Further,
we also restrict the data to contain images for ages between
10 and 65.

(iii) The GENKI dataset [25] consists of 1, 740 training and
200 test samples. Each data sample is a 16×16 greyscale face
image with varying facial expressions. We choose gender as
S and the image as X .

(iv) The HAR dataset [26] consists of 561 features of
motion sensor data collected by a smartphone from 30 subjects
performing six activities (walking, walking upstairs, walking
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downstairs, sitting, standing, laying). Each feature is normal-
ized between −1 and 1. We choose subject identity as S and
the features of motion sensor data as X .

We use the accuracy of predicting S as the measure of
censoring. We evaluate the fairness guarantees of Xr by
computing the DemP obtained on tasks using Y . To this end,
we compute the following maximal difference as a proxy for
DemP in Definition 1 (includes non-binary Y and S):

�DemP(y) = max
s,s ′∈S

|P(Ŷ = y|S = s)− P(Ŷ = y|S = s′)|
(16)

with smaller values of �DemP(y) suggesting better DemP
fairness guarantees. For binary Y , �DemP(y) in (16) sim-
plifies to a single value that we denote as �DemP. In our
experiments, we use the empirical frequencies to estimate
P(Ŷ = y|S = s) for a chosen (y, s). We illustrate both
censoring and fairness results for the abovementioned datasets
in the following subsections. Experimental and model details
are in the supplement.

A. Illustration of Results for UCI Adult Dataset

For the UCI Adult dataset with both categorical and con-
tinuous features as shown in Table SIV in the supplement,
we consider two cases:

(i) Case I: binary S by choosing ‘gender’ as sensitive feature
(ii) Case II: non-binary S by considering both ‘gender’

and ‘relationship’ as sensitive. For UCI, ‘relationship’ has
6 distinct values, and therefore, S has 12 possibilities.

For both cases, ‘salary’ is the binary target Y ∈ {0, 1},
with Y = 1 denoting salary > 50K . Since the two values
for �DemP(y) in (16) are the same for binary Y , we write
�DemP when illustrating results.

1) Case I: Binary Sensitive Feature: Fig. 3 illustrates the
censoring and fairness performance of the generated Xr for
the UCI dataset. For censoring, the performance is evaluated
via the tradeoff between the classification accuracies of salary
(utility of Xr ) and gender (censoring of S). Note that salary
accuracy is evaluated as a downstream task via a separately
learned classifier that uses Xr while gender accuracy is a
measure of performance of the neural network adversary h in
the FUR model. We evaluate fairness via the tradeoff between
salary accuracy and �DemP. We consider two possible inputs
to the encoder g(·) in (3), i.e., only X or both (X, S).

As illustrated in Fig. 3a, the baseline7 salary and gender
accuracies for the UCI dataset are about 84.5% and 85%,
respectively. Further, for the FUR Xr and downstream Ŷ :

(i) the smallest gender accuracy achievable is about 66%,
20% below its baseline, while the lowest salary accuracy is
about 82%, 2.5% below its baseline. Since the likelihood of a
male in the original test data is 66%, with increasing distortion,
the FUR gender accuracy is as good as a random guess,
i.e., the generated Xr hides gender effectively while main-
taining high salary accuracy.

7The baseline performances are the salary and gender accuracies as well as
�DemP obtained from the original uncensored test dataset.

Fig. 3. Results for UCI Adult: Case I. In Fig. 3a, the green and red lines
denote the baseline performances for the target Y (salary) and sensitive S
(gender), respectively; in Fig. 3b, the value of �DemP for the original test data
is 0.2. In both plots, each point corresponds to a specific value of achieved
test distortion; for Figs. 3a and 3b, the achieved test distortion for the blue
points ranges over (0.69, 4.1) and (0.69, 4.4), respectively, with decreasing
distortion from left to right for each plot. The achieved test distortion for the
yellow-green points ranges over (0.87, 4.2) and (0.87, 4.9), respectively.

(ii) For the same gender accuracy, using both (X, S) seems
useful only in the high utility setting (salary accuracy ≥ 83%).
From Fig. 3b, we make the following two observations:

(i) salary classification accuracy and �DemP have an approx-
imately affine relationship, and when �DemP ≈ 0, the salary
accuracy is ≥ 79%, i.e., the FUR framework is effective in
approaching perfect DemP with a small reduction in utility;

(ii) the FURs Xr generated from either X or (S, X) lead to
similar fairness guarantees. For �DemP = 0.06, state-of-the-art
approaches in [12] and [11] achieve 2% and 2.5% higher salary
accuracy than ours, respectively; however, our approach is
distinct in achieving �DemP ≈ 0 with salary accuracy ≥ 79%.

From Fig. 3a, we see that gender accuracy saturates at
67% while achieving a salary accuracy of at least 81% for
a specific value of distortion bound D, and therefore, test
distortion; in turn, this choice of D corresponds in Fig. 3b
to �DemP ≈ 0.06. Further reducing �DemP requires further
increasing D, thus lowering the salary accuracy to 79% for
�DemP ≈ 0. This is because classification accuracy captures
an average measure of correctness and is dominated by the
performance over the majority class. On the other hand,
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�DemP captures the difference in performance of the intended
classifier on each of the two classes. Thus, enforcing fairness
via �DemP reduces salary accuracy thereby highlighting the
tradeoff between guaranteeing fairness and utility.

We can also evaluate the fairness performance of the gen-
erated Xr by using the EO measure in Definition 1. Thus,
for Y ∈ {0, 1} where Y = 1 when salary > 50K , S ∈ {0, 1}
(female:1 and male:0), and Ŷ ∈ {0, 1}, we write �EO(y),∀y ∈
{0, 1} as:

�EO(y)�
∣∣∣P(Ŷ =y|S=0,Y =y)− P(Ŷ =y|S=1,Y =y)

∣∣∣ .
(17)

Note that for binary Y , as is the case here, (17) is the
same as the definition of EO in (2). From Fig. 4, which
plots salary accuracy vs. DemP or EO measures of fairness,
we observe that while the salary accuracy is above 82.4%, the
values of �EO(1) and �EO(0) decrease to 0.0007 and 0.0254,
respectively. To understand the significance of these results,
we compare against the state-of-the-art in [11], wherein fair
salary classifiers for both DemP and EO measures, referred to
as LAFTR-DP8 and LAFTR-EO, respectively, are learned for
the UCI dataset. For the LAFTR-DP, the authors also compute
the resulting EO of the DemP classifier. As a preamble to the
following comparisons, we note that fair predictors, trained on
specific tasks, will do at least as well as the same predictors
learned on fair representations.

We make the following observations: (i) when �EO(1) +
�EO(0)= 0.04,9 our salary accuracy is 1.3% smaller than that
achieved by LAFTR-DP (cf. Fig. 2(b) in [11]), but our mini-
mal achieved value of �EO(1)+�EO(0) is only 72% of that
achieved by LAFTR-DP and is the same as the value achieved
by LAFTR-EO, which uses EO as the fairness metric to train a
salary classifier; (ii) the decrease of �EO(1)+�EO(0) is even
larger than �DemP. That is, even though the representation
is generated to satisfy DemP, it can also provide competitive
downstream EO fairness guarantees. This, in turn, justifies the
rationality of generating fair representations under DemP.

2) Case II: Non-Binary Sensitive Feature: Figs. 5 and 6
illustrate the censoring and fairness performances of the gen-
erated Xr in hiding ‘gender’ and ‘relationship’, respectively,
while preserving ‘salary’ information. Fig. 5 illustrates the
tradeoff between salary and sensitive feature S accuracies
when S is either gender, or relationship, or both. From Fig. 5,
we observe that while the salary accuracy is above 79%,
the classification accuracies of gender and/or relationship are
about 66% (Fig. 5a), 45% (Fig. 5b) and 41% (Fig. 5c),
respectively. Note that the probabilities of male, husband, and
the combination (male, husband) are 66%, 40% and 40%,
respectively, in the original test data. Therefore, while the
salary accuracy is preserved at 79%, the inferences of gender,
relationship, and combination (gender, relationship) approach
random guessing with these priors. Thus, our FUR framework
can effectively hide one or more sensitive features. However,
suppressing multiple correlated sensitive features comes at
a cost of a reduction in salary accuracy. Thus, comparing

8Learned Adversarially Fair and Transferable Representations (LAFTR)
9[11] introduced an EO measure as �EO ��EO(1)+�EO(0)

Fig. 4. Evaluation of equalized odds fairness metric under Case I for the
UCI Adult dataset. The EO measures �EO(1) and �EO(0) are defined in (17).
The red curve plotting �EO =�EO(1)+�EO(0) matches �EO in Figure 2(b)
of [11]. Each point corresponds to a specific value of achieved test distortion
ranging over (0.59, 2.01), with distortion decreasing from the left to the right
for each plot.

Figs. 3a and 5a, we see a maximal reduction of 3% in salary
accuracy for a given gender accuracy.10

For Case II, Figs. 6a and 6b illustrate the tradeoffs between
the salary accuracy and �DemP for S chosen as gender or
relationship or both. We observe that while salary accuracy is
above 94% of the baseline performance, the value of �DemP is
dropped to 25% for gender and to about 34% for both relation-
ship and their combination. In short, Xr works well in decorre-
lating gender and relationship both separately and jointly with-
out affecting downstream classifier performance. From Fig. 6b,
we observe that the value of �DemP for the combination is
almost the same as that for relationship. In addition, comparing
the results in Figs. 3b and 6a, for any given �DemP for gender,
the salary accuracy in Case II is about 1% lower than that in
Case I; this can be viewed as the cost of eliminating a poten-
tially sensitive feature (relationship) that is also correlated with
the target feature (see also, footnote 10). Finally, comparing
the results in Figs. 3b and 6b, for any given salary accuracy,
�DemP for gender in Case II is about 0.25 higher than that in
Case I; this can be viewed as the effect of using non-binary
sensitive features on �DemP, now defined as the maximum
over all values taken by the non-binary sensitive feature.

B. Illustration of Results for UTKFace Dataset

In the UTKFace dataset, the face images are the non-
sensitive X . We choose ‘gender’ as the sensitive S; focusing
on multiple downstream tasks, we consider both ethnicity
classification and age regression, for which we choose ‘eth-
nicity’ or ‘age’ as the target variable Y , respectively. For
the two downstream applications, the corresponding supports
of Y are Y = {White, Black, Asian, South Asian Indian} and
Y = {i ∈ Z : 10 ≤ i ≤ 65} = [10, 65], respectively. We use the
maximum of the DemP measure (defined in (16)) over the
support Y , i.e., �DemP = maxy∈Y �DemP(y), as the achieved
fairness level.

10In Figs., 3a and 5a, the baseline performances are different because for
Case II, the feature variable X does not contain ‘relationship’.
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Fig. 5. Tradeoff between classification accuracy of non-sensitive feature (salary) and sensitive features (gender and/or relationship) under Case II for the UCI
Adult dataset. Note that we use the classification accuracy obtained from the original testing dataset as the baseline performance, which is denoted by the
green and red lines for the target variable (salary) and the sensitive variable (gender or/and relationship), respectively. In every plot, each point corresponds
to a specific value of achieved test distortion (over all features except gender and relationship) ranging over (0.58, 2.1), with distortion decreasing from the
left to the right for each plot.

Fig. 6. Case II for UCI Adult: Tradeoffs between salary accuracy and
the �DemP of gender and/or relationship. For the original test data, �DemP
for gender, relationship and the pair (gender, relationship) is 0.2, 0.438 and
0.443, respectively. In every plot, each point corresponds to a specific value
of achieved test distortion (over all features except gender and relationship)
ranging over (0.58, 2.1), with distortion decreasing from the left to the right
for each plot. .

Fig. 7 illustrates the output Xr for 16 typical11 faces
in the UTKFace dataset for increasing per-pixel distortion.
From Fig. 7, we observe that: (i) for a small per-pixel
distortion (e.g., 0.003), gender-distinguishing features such
as lip color are smoothed out; and (ii) at higher per-pixel
distortion (e.g., 0.006), the FUR framework can generate a
face with an opposite gender (see the highlighted examples

11The 16 typical faces covers the 8 possible combination of 2 gender (male
and female) and 4 ethnicities (White, Black, Asian and South Asian Indian)
and includes young, adult and old faces.

in Fig. 7) thereby completely obfuscating this sensitive
feature; (iii) when the average per-pixel distortion is too
large (e.g., 0.01), the representations generated are often too
blurred.

Figs. 8a and 9 show the tradeoffs between gender classifica-
tion accuracy and appropriate measures for ethnicity classifica-
tion and age regression, respectively. In Fig. 8a, while gender
classification accuracy is about 62% and decreases about 35%
from the baseline performance, the classification accuracy of
ethnicity is above 74% and only decreases 14% from its
baseline performance. Note that in the original testing data,
the highest marginal probabilities for gender and ethnicity
are 54.6% (likelihood of male) and 43.2% (likelihood of
White), respectively. Therefore, gender accuracy is better than
a random guess by only 7.4% while ethnicity accuracy is better
than a random guess by 30.8%, i.e., the generated Xr hides
gender information well while maintaining ethnicity. For age
regression, we use the mean absolute error (MAE), i.e., the
average absolute difference between the predicted age and
the true age, as the utility measure. In Fig. 9a, we observe
that while the classification accuracy for gender is about
62%, which is a 35% decrease from the baseline performance
of 94%, the increase in the MAE is 1.5 which is about a
20% increase from the baseline performance of 7.2 years.
Fig. 9b shows the cumulative distribution function (CDF) of
the difference between the true and predicted age for various
distortions, from which we can see that the drop of the
cumulative probability is at most 1%. Thus, the generated FUR
guarantees reliable performance for both age and ethnicity
prediction; thus, constraining the distortion of the generated
Xr can be effective in guaranteeing utility for multiple tasks.

In Figs. 8b and 10, we illustrate the tradeoff between the
utility measure and �DemP of the generated Xr in ethnicity
classification and age regression, respectively. In Fig. 8b,
we observe that while achieving about 86% of the baseline
classification accuracy, the �DemP is reduced to 0.03, which is
20% of the �DemP = 0.14 in the original testing data. Table II
shows the decrease of �DemP for each of the four ethnicities
as the distortion increases. In Fig. 10a, while preserving
86% of the utility baseline performance, the �DemP, i.e., the
maximal value of demographic parity measure over the 56 age
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Fig. 7. The encoded face images for different values of per-pixel distortions for the UTKFace dataset. Set of vertical faces highlighted in boxes makes
explicit how the sensitive feature (gender) is changed with increasing distortion. The ground truth gender values for the images are shown in the top-most
row.

TABLE II

DEMOGRAPHIC PARITY FAIRNESS (INDICATED BY �DEMP (·)) OF ETHNICITY CLASSIFICATION ON THE UTKFACE DATASET

values, decreases to 0.015, which is less than 33% of the
�DemP = 0.046 in the original testing data. Fig. 10b shows
the demographic measure �DemP(y), y ∈ [10, 65], for various
distortions; we observe that when the pixel distortion is 0.01,
even while �DemP = 0.015, �DemP(y)= 0 for 17 distinct ages.
That is, the predictions of these 17 ages are completely inde-
pendent of gender and DemP is achieved for those predictions.

C. Illustration of Results for GENKI Dataset

For the GENKI dataset, we consider the following two
approaches to decorrelating the data (X, S): the feedfor-
ward neural network decorrelator (FNND) and the transposed
convolution neural network decorrelator (TCNND). Specific
architectural details for both can be found in the supplement.
Fig. 11a illustrates the gender classification accuracy of the
adversary for different values of distortion. It can be seen that
the adversary’s accuracy of classifying S (gender) decreases as
the distortion increases. Given the same distortion value, the
FNND achieves lower gender classification accuracy compared
to the TCNND. An intuitive explanation for this is that the

FNND uses both the noise vector and the original image to
generate the processed image, while the TCNND generates the
noise mask independently of the original image and then adds
this mask to the original image in the final step.

1) Censoring vs. Differential Privacy Guarantees: For this
dataset, in addition to highlighting the role of GAN-like
architectures to learn fair representations, we also explore
the effect of censoring on assuring privacy of the sensitive
(here, gender) feature. Differential privacy (DP) has emerged
as the gold standard for data privacy [40]. Thus, one way
to censor and privatize data is to add noise with differential
privacy guarantees [40]. Since the dataset is continuous valued,
we consider two types of additive DP noise mechanisms at the
pixel level: Gaussian and Laplacian. We vary the variances of
the Laplace and Gaussian noise to then obtain a specific local
DP guarantee12 building on [41]. We compute the resulting

12DP, by definition, guarantees that the output of a differentially private (ran-
domizing) mechanism cannot aid in distinguishing between two neighboring
(defined appropriately) datasets. Local DP is stronger than DP in that it
provides such a guarantee for any pair of inputs.
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Fig. 8. Ethnicity classification accuracy vs. gender classification and �DemP
for the UTKFace dataset. In Fig. 8b, the x-axis is the maximal value of DemP
in (16) over the four ethnicities and ‘dist’ indicates the per pixel distortion.

DP guarantees provided by independent Laplace and Gaussian
noise-adding mechanisms for different distortion values. The
details are provided in the supplement (see Section SII-B).
In Fig. 11a, we compare the gender classification accuracy
of the learned FUR schemes with those obtained by adding
Laplace or Gaussian noise. We see that for the same distortion,
the learned FUR schemes achieve much lower gender classi-
fication accuracy. In Table III, we observe that even when a
large amount of noise is added to each pixel, the privacy risk
(ε) is still significantly high. Furthermore, such noise levels
deteriorate the expression classification accuracy (cf. Fig. 11a).
It is worth noting that the distortion constraint for the FUR
framework is an average over the entire image.

2) Evaluating Adversarial Performance via Mutual Infor-
mation Estimation: Our FUR framework offers a scalable
way to find a (local) equilibrium in the constrained min-
max optimization for certain adversarial attacks (e.g. inference
attacks on S using a neural network). Yet the privatized
data, through our approach, should be immune to any general
attacks and should ultimately achieve the goal of decreasing
the correlation between the Xr and S. To this end, we use the
estimated MI, using the k-nearest neighbor method as detailed
in Section IV-C, to verify that our framework protects S.

Fig. 9. Utility of age regression on the UTKFace dataset. Note that ‘dist’
indicates the per pixel distortion.

One noteworthy difficulty is that X , and therefore, Xr are
usually high dimensional objects (each image in the GENKI
dataset has 256 dimensions), so it is almost impossible to
calculate the empirical entropy based on raw data due to
the sample complexity. Thus, we train a neural network that
classifies S from the learned data representation to reduce the
dimension of the data. We choose the layer before the softmax
outputs of the adversary (denoted by X̂g) to be the feature
embedding that has a much lower dimension than the original
Xr which still captures the information about S. We use this
X̂g as a surrogate for Xr in (15) to first estimate Ĥ (X̂g) and

then compute Î (X̂g; S) as the approximate MI between Xr and
S. We similarly extract an X̂ f by training a neural network
that now classifies Y ; we then compute Ĥ (X̂ f ) from which
we obtain Î (X̂ f ; Y ) as the approximate MI between Xr and
Y . The details of the common neural network architecture we
use to extract X̂ f and X̂g can be found in the supplement (see
Section SII-C).

3) Utility-Fairness Tradeoffs: To evaluate the value of
the representation generated by the FUR framework for the
GENKI dataset, we consider the task of classifying the facial
expression (non-sensitive feature Y ) as smiling or non-smiling
(i.e., the task that the GENKI dataset was intended for). To this

Authorized licensed use limited to: ASU Library. Downloaded on June 10,2022 at 04:26:01 UTC from IEEE Xplore.  Restrictions apply. 



1982 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE III

DIFFERENTIAL PRIVACY RISK FOR DIFFERENT DISTORTION VALUES

TABLE IV

ERROR RATES FOR EXPRESSION CLASSIFICATION USING REPRESENTATION LEARNED BY FNND FOR THE GENKI DATASET

TABLE V

ERROR RATES FOR EXPRESSION CLASSIFICATION USING REPRESENTATION LEARNED BY TCNND FOR THE GENKI DATASET

Fig. 10. Achieved demographic parity for the age regression task on the
UTKFace dataset. Note that in Fig. 10a, the x-axis is the maximal value of
DemP in (16) over the chosen age range (10-65) and ‘dist’ indicates the per
pixel distortion.

end, we train another CNN (see Fig. S4 in the supplement for
architecture details) to perform facial expression classification
on datasets processed by different decorrelation schemes.

Fig. 11. The tradeoff between classification accuracy and mutual information
estimation for the GENKI dataset.

The trained model is then tested on the original test data.
In Fig. 11a, we observe that the expression classification
accuracy decreases gradually as the distortion increases. How-
ever, even for a large distortion value (5 per image), the
expression classification accuracy only decreases by 10%.
To make meaningful comparisons using MI, we normalize
Î (X̂ f ; Y ) by Î (X f ; Y ) where X f is the low-dimensional
representation of X (=Xr for D = 0); we similarly normalize
Î (X̂g; S) by Î (Xg; S) where Xg is defined similarly. As shown
in Fig. 11b, the estimated normalized MI Î (X̂ f ; Y )/ Î (X f ; Y )
decreases at a much slower rate than Î (X̂g; S)/ Î (Xg; S) as the
distortion increases thus verifying that Xr preserves relatively
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Fig. 12. Perturbed images with different per pixel distortion using FNND.

Fig. 13. The tradeoff between classification accuracy and mutual information
estimation for the HAR dataset.

more information about Y than it does about S at every
distortion level.

Tables IV and V present different error rates for the facial
expression classifiers trained using data representations created
by different decorrelator architectures. For the GENKI dataset,
a smiling expression is considered as the positive label for the
expression classification task. We observe that as distortion
increases, the difference across the two sensitive groups (male
vs. female) for each error rate decreases. This implies the
classifier’s decision is less biased with respect to S when
trained using Xr . When D = 5, the differences are quite
small. In particular, the FNND architecture performs better
in enforcing fairness but suffers from a slightly higher error
rate relative to TCNND. The images processed by FNND are

shown in Fig. 12. As highlighted in the figure, the dominant
features that the decorrelator changes are those that capture
gender, namely eyes, nose, mouth, beard, and hair.

D. Illustration of Results for HAR Dataset

For the HAR dataset, we recall that the X features are
motion sensor data from 30 subjects performing six different
activities; the goal is to classify activity (intended task Y )
without revealing subject identity (sensitive S). In Fig. 13a,
for different values of distortion, we illustrate the accuracy in
classifying activity against that of identification. We see that
classification accuracy of identity decreases as the distortion
increases. In fact, when distortion is small (D = 2), the
identity accuracy is down to 27%. If we increase the distortion
to 8, the identity accuracy further decreases to 3.8%. However,
we note that for an even large distortion value (D = 8),
the activity classification accuracy only decreases by at most
18%. Finally, in Fig. 13b, we demonstrate that the estimated
normalized mutual information Î (X̂ f ; Y )/ Î (X f ; Y ) decreases
at a much slower rate than Î (X̂g; S)/ Î (Xg; S) as the distortion
increases, thereby assuring that the adversarial model chosen
assures censoring of identity without compromising accuracy
of the intended task from Xr . Details on the architecture for the
FUR model, the classifier, and for obtaining the representations
used to estimate MI can be found in the supplement.

VI. CONCLUSION

We have introduced an adversarial learning framework with
verifiable guarantees for learning generative models that can
create censored and fair universal representations for datasets
with known sensitive features. The novelty of our approach
is in producing representations that are fair with respect to
the sensitive features for any a priori unknown downstream
learning task. We have shown that our FUR framework
allows the data holder to learn the fair encoding scheme
(a randomized mapping that decorrelates the sensitive and non-
sensitive features) directly from the dataset without requir-
ing access to dataset statistics. One of our key results is
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that for appropriately chosen loss functions, the minimax
game generating FURs can provide guarantees against strong
information-theoretic adversaries, such as MAP (0-1 loss)
and MI (log-loss) adversaries. We have also shown that our
framework also allows approaching (ideal) demographic parity
fairness using a tunable class of α-loss functions (which
includes both log-loss and 0-1 loss) that capture a range of
adversarial actions. For the setting with a known classification
task, we have also shown that our FUR framework can be
modified to approximate either DemP or EO fairness measures.

Finally, we have also validated the performance of the
FUR framework on both synthetic and publicly available
real datasets, including Gaussian mixture models, images,
and datasets involving a mix of categorical and continuous
features. Our results have allowed us to visually highlight three
key results: (a) the tradeoff between representation fidelity and
censoring guarantees (via accuracy in adversarially learning
sensitive features); (b) the tradeoff between the adversarial
accuracy in learning the sensitive features and the accuracy of
multiple downstream tasks learned from the censored represen-
tation for a variety of datasets; and (c) the tradeoff between
accuracy for a downstream learning task and the DemP or
EO guarantees achieved by a predictor that is learned using
a DemP fair representation. Result (c) further suggests that,
for some datasets, DemP FURs do not adversely affect the
downstream EO guarantees despite lack of access to the task
labels Y , where the latter has been highlighted as a limitation
of DemP fair predictors [8]. However, more work is needed to
understand the conditions under which DemP FURs suffice to
achieve meaningful EO guarantees. Such an exploration can
also clarify if the definition of �DemP as the worst case over
all task output values y ∈ Y and sensitive values s ∈ S is
too strong, especially for settings where Y and/or S are large,
as our age prediction results suggest for the UTKFace dataset.

Going beyond this work, there are several questions that can
be addressed. An immediate one is to explore the robustness
of using α-loss (for α �= 1) in ensuring censoring and fairness
for highly imbalanced datasets. Yet another is to explore the
usefulness of FURs for unsupervised tasks building on recent
work in [42]. More broadly, it will be interesting to investigate
the robustness and convergence guarantees of the generative
encoder learned in a data-driven fashion.

APPENDIX

A. Alternate Minimax Algorithm

Algorithm 1 details the steps used to learn the FUR model in
a data-driven manner. To incorporate the distortion constraint,
we use the penalty method [21] to replace the constrained
optimization problem by a series of unconstrained problems.
The unconstrained optimization problem is formed by adding
a penalty to the objective function as a product of a parameter
ρt and an appropriate measure of violation of the constraint.
We start with a large value of ρt to enforce distortion from the
outset and decrease ρt in exponential steps with respect to the
number of training epochs. Such a decrease allows enforcing
a smaller penalty when the model is closer to convergence.
Finally, we also vary the learning rate ηt over training epochs

as follows: we pick a small value of ηt at the beginning
and compare the relative values of the adversarial loss and
the average distortion. We adjust the initial ηt so that the
adversarial loss and the distortion penalty values are on a
similar scale in the first few epochs during training. When
the algorithm terminates, we check the average distortion and
manually fine tune the initial ηt and the update rule to make
sure the distortion is within bounds after termination.

Algorithm 1 Alternating Minimax FUR Algorithm
Input: dataset D, distortion parameter D, # of decorrelator
iterations T , # of adversary iterations J for each round of
decorrelator update, minibatch size M
Output: Optimal generative decorrelator parameter θp

procedure ALERNATE MINIMAX(D, D, T, J,M)
Initialize decorrelator parameter θ1

p, adversary parameter
θ1

a , and step size η1
for t = 1, . . . , T do

Random minibatch of M datapoints {x(1), . . . , x(M)}
drawn from full dataset

Generate {x̂(1), . . . , x̂(M)} via x̂(i) = g(x(i); θ t
p)

Apply update rule for step size ηt

Set ω1
a = θ t

a
for j = 1, . . . , J do

Update the adversary parameter θ t+1
a by stochastic

gradient ascent for epoch j

ω
j+1
a = ω

j
a + ηt∇ω j

a

1

M

M∑
i=1

−�(h(x̂(i);ω j
a), s(i)), ηt > 0

Set θ t+1
a = ωJ+1

a
Compute the descent direction ∇θ t

p
Lm(θ

t
p, θ

t+1
a ),

where Lm(θ
t
p, θ

t+1
a ) is defined in (11) for n = m

Perform line search along ∇θ t
p
Lm(θ

t
p, θ

t+1
a ) and, for

�(θ t
p, θ

t+1
a ) set as the objective in (13) for n = m, update

θ t+1
p = θ t

p − ηt∇θ t
p
�(θ t

p, θ
t+1
a )

return θT +1
p

B. Proof of Theorem 5

Since EX,X̂ [d(X̂ , X)] = EX,X̂‖X − X̂‖2 = E‖Z + β‖2 =
‖β‖2 + tr(	p), the distortion constraint implies that ‖β‖2 +
tr(	p) ≤ D. Let us consider X̂ = X + Z + β, where β ∈ R

m

and 	p is a diagonal covariance whose diagonal entries are
given by {σ 2

p1
, . . . , σ 2

pm
}. Given the MAP adversary’s optimal

inference accuracy in (14), the objective of the decorrelator is

min
β,	p

P(G)
d , s.t. ‖β‖2 + tr(	p) ≤ D. (18)

Define 1
γ ln 1−q

q = η. After some algebra, the gradient of

P(G)
d w.r.t. γ is given by

∂P(G)
d

∂γ
= 1

2
√

2π

(
qe− (η−

γ
2 )

2

2 + (1 − q)e− (η+
γ
2 )

2

2

)
,
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which is always positive. Thus, P(G)
d is monotonically increas-

ing in γ . As a result, (18) is equivalent to

min
β,σ 2

p1
,...,σ 2

pm

m∑
i=1

μ2
i

σ 2
i + σ 2

pi

,

s.t. ‖β‖2 + tr(	p) ≤ D

σ 2
pi

≥ 0 ∀i ∈ {1, 2, . . .m}. (19)

The optimization in (19) is analogous to the well-studied
rate-distortion problem for independent Gaussian sources
and the optimal solution given by reverse water-filling
[43, Chap. 10.3.3]. Using similar techniques, we obtain
σ ∗

pi
2 = max{|μi |/

√
λ∗

0 − σ 2
i , 0} = (|μi |/

√
λ∗

0 − σ 2
i

)+
with∑m

i=1 σ
∗
pi

2 = D leading to the results in the theorem.
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