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Abstract

Modelling species interactions in diverse communities traditionally requires a
prohibitively large number of species-interaction coefficients, especially when
considering environmental dependence of parameters. We implemented Bayesian
variable selection via sparsity-inducing priors on non-linear species abundance
models to determine which species interactions should be retained and which can
be represented as an average heterospecific interaction term, reducing the number
of model parameters. We evaluated model performance using simulated communi-
ties, computing out-of-sample predictive accuracy and parameter recovery across
different input sample sizes. We applied our method to a diverse empirical com-
munity, allowing us to disentangle the direct role of environmental gradients on
species’ intrinsic growth rates from indirect effects via competitive interactions.
We also identified a few neighbouring species from the diverse community that had
non-generic interactions with our focal species. This sparse modelling approach
facilitates exploration of species interactions in diverse communities while main-

taining a manageable number of parameters.
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INTRODUCTION given experimental constraints: in a study of grass and

Understanding what maintains the diversity of life—
where and how species abundances change through
time—has long fascinated and challenged ecologists. It
is widely accepted that community composition in any
given time and place is driven by the interplay of spe-
cies interactions, responses to environmental conditions,
and feedbacks between local and regional dynamics
(Chesson, 2000; HilleRisLambers et al., 2012; Vellend,
2020). However, incorporating natural levels of diversity
into community models is difficult, given that many of
our classic community models build directly from popu-
lation models, meaning that myriad pairwise-interactions
must be estimated in diverse systems (Bulleri et al., 2016;
Germain et al., 2018; Letten et al., 2018). This quickly
leads to experimental feasibility, model overfitting, and
parameter non-identifiability concerns, especially when
also accounting for environmental covariates and their
impacts on species’ demography and biotic interactions.
Arguably, the magnitude of this methodological limita-
tion has even shaped our historical theoretical frame-
works and empirical tests. For example, classic species
trait trade-offs, such as the competition—colonisation
trade-off, and classic metacommunity paradigms often
apply for species pairs (Leibold et al., 2004; Levins &
Culver, 1971; Tilman, 1982). Yet species interactions in
diverse systems and the effects of environmental vari-
ability on species’ demography may yield complex dy-
namics that dramatically alter population growth and
coexistence dynamics (Allesina & Levine, 2011; Li et al.,
2021; May & Leonard, 1975; Mayfield & Stouffer, 2017).
The further development and empirical testing of these
theories thus requires a statistical approach that is appli-
cable in diverse communities and capable of identifying
and incorporating key species interactions and environ-
mental covariates.

To date, empirical studies of population dynamics
and species coexistence frequently take one of two ap-
proaches for dealing with parameterisation limitations
arising in diverse communities and varied environments.
In the first approach, experimental studies focus on a
few focal species. For example, Wainwright et al. (2019)
examined coexistence based on pairwise interaction
coefficients between four annual forbs in two locations
and across two water availability treatments—a lofty
number of species interaction coefficients to estimate—
but still a relatively small subset of the community's full
diversity (10-14 species in 0.09 m* Dwyer et al., 2015).
Finer-scale environmental variation can further limit
the number of species that can be feasibly incorporated

forb coexistence under variable rainfall regimes, Hallett
et al. (2019) considered four rainfall conditions, requir-
ing estimates of eight distinct species interaction coef-
ficients even with only two species. Isolating pairwise
species interactions across environmental conditions is
a high barrier in species-rich communities, whether in
the laboratory or field (Hallett et al., 2019; Letten et al.,
2018).

In the second approach, often used with observa-
tional data, species are grouped into broad categories.
At the most extreme, a single interaction coefficient
is calculated between the focal species and all het-
erospecific individuals—regardless of their identity
(Clark, Ann Turnbull, et al., 2020; Uriarte et al., 2004).
Heterospecifics may also be grouped more finely, for
example according to their taxonomic relationship
(Uriarte et al., 2004) or origin status and life form (e.g.
native versus exotic and grasses vs. forbs) (Martyn et al.,
2020). Alternatively, functional groups can be created ac-
cording to species’ traits (e.g. specific leaf area, canopy
height, seed number) (Kithner & Kleyer, 2008; Uriarte
et al., 2004). However, this methodological approach
often necessitates a priori knowledge of the system and
makes an underlying assumption that species grouped
together will interact similarly with each other and with
the focal species. These assumptions are often not met
(Mayfield & Levine, 2010), suggesting a need for a more
parsimonious and robust methodology that allows the
data to inform species groupings.

Various alternative statistical approaches have been
proposed to assess species interactions in diverse com-
munities using observational data. For example, joint
species distribution modelling has become a common ap-
proach to infer species interactions from co-occurrence
patterns (Legendre & Gauthier, 2014; Ovaskainen et al.,
2017b, 2019). However, patterning in co-occurrence also
results from environmental sorting and dispersal (Schamp
et al., 2015), meaning with this approach species interac-
tion strengths cannot be accurately inferred from obser-
vational patterns (Barner et al., 2018). Furthermore, these
co-occurrence patterns are scale dependent and regional
analyses are not suited to assessing local-scale species in-
teractions (Konig et al., 2021). Recognising a need to di-
rectly estimate species interaction coefficients, recent work
has expanded multivariate autoregressive models for use in
more diverse communities (Picoche & Barraquand, 2020),
including examining which linear combinations of species
abundances best predict future growth rates (Ovaskainen
et al., 2017a). This approach is effective for binning species
based on their competitive effects, but does not account
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for environmental variation. Clark, Scher, et al. (2020) de-
veloped a state-space hierarchical Bayesian model to as-
sess the effect of environmental gradients on non-linear
species abundance patterns, incorporating environmental
responses in species’ density-independent growth rates
but not in species interactions (Clark, Scher, et al., 2020).
Independently, these multiple methodological develop-
ments each address one of the largest hurdles for modelling
species abundances in diverse communities: (1) identifying
important species interactions and (2) accounting for the
mediating effect of the environment (here referred to as
species-—environment interactions). Addressing these two
aspects simultaneously would solidify a path forward for
characterising species interactions in diverse communities
and across environmental gradients.

Here, we present an approach for modelling dynamics in
diverse communities and across environmental gradients.
The approach balances realism and complexity without ex-
tensive experimental manipulation or a priori assumptions
regarding species groupings. Our method is based on two
innovations to standard population and community ecol-
ogy models. First, we define heterospecific species inter-
action coefficients as linear combinations of the average
interaction strength and species-specific deviations from
this average. In parallel, we allow environmental covariates
to modify species intrinsic growth rates and the strength of
biotic interactions—both the average and species deviation
terms. We implement this approach using a Beverton—Holt
model of community dynamics (Beverton & Holt, 1957)
within a single growing season, although the method can
easily be adapted to other models of population abundance
(e.g. Mayfield & Stouffer, 2017; Ricker, 1954) or incorporate
additional dynamics such as seed banks or dispersal (Levine
& HilleRisLambers, 2009; Thompson et al., 2020). Second,
we extend Bayesian statistical methods for variable selec-
tion via sparsity-inducing priors in linear models (such as
Lasso and Ridge regression; Hastie et al., 2015; Piironen and
Vehtari 2017) to our non-linear abundance model, thereby
reducing the number of terms included in the final model
fit, yielding a ‘sparse model’. By coupling these two model-
ling approaches, we can identify heterospecific species that
deviate in their interaction strength, and how environmen-
tal gradients alter species’ density-independent growth rates
and biotic interactions. We explore model effectiveness using
simulated data and apply the model to empirical data from a
highly diverse (45 species) annual plant community.

METHODS

Deconstructing species interaction coefficients
and fecundity

Models of community dynamics incorporate pairwise
species-specific interaction coefficients, commonly
denoted as a;;, the effect of species j on species i, re-
sulting in many parameters required to model diverse

communities or environmental relationships. To reduce
the number of parameters required in such models, we
start with a partitioning approach. We first define these
interaction terms as follows:

In (“e,i,/‘) =dg,;+a;;+ (Ee,i +Ae,[,/') X, M

where a,;; is the effect of species j on species 7 in en-
vironment e with i # j. In Equation (1), ay; is the effect
of an average heterospecific individual on individuals of
species i, ?a\o,u is the deviation from this average effect as-
sociated with species j, a,; is the average slope of species
i's interaction coefficients with environmental covariate
X, and @, ; is the deviation from this slope associated
with species j. At first, Equation (1) may seem counter-
productive as it increases the number of parameters com-
pared to traditional interaction coefficients. However, in
the next section, we describe how coupling this approach
with sparsity inducing priors in a Bayesian context can
dramatically reduce the number of required parameters
by identifying only the necessary species-specific terms
(3y,;; and 4, ) for accurately modelling population dy-
namics of species i.

While intraspecific competition (a,;;) could in prin-
ciple be modelled according to Equation (1), we define it
separately as follows:

In (ae,i,i) =dy;;+d.;iXes ()

whereay; ;and a, ; ; are the intercept and slope for the effect
of intraspecific individuals. As both theoretical expecta-
tions (Chesson, 2000) and empirical results (Adler et al.,
2018) point to the importance of intraspecific competition,
we use Equation (2) to explicitly exclude the intraspecific
terms from the sparsity inducing process defined in the
next section. These terms, therefore, are always included
in the final model.

Interaction coefficients (Equations 1 and 2) can be
incorporated in many different models of community
dynamics. We use the Beverton—Holt model due to
its legacy in studies of annual plant communities and
coexistence theory (e.g. Godoy & Levine, 2014; Kraft
et al., 2015). We emphasise, however, that our general
statistical approach can be adapted to other popula-
tion models. In the Beverton—-Holt model, the fecun-
dity F,; of focal species 7 in environment e is modelled
as follows:

Ae,i
F,;= . ©)

s
Uty iNei+ 2 @eijNey

Fecundity depends on a species’ intrinsic growth rate
(i.e. density-independent seed production; 4,;) and the
competitive effects of all S species in the community (a, ; ;
terms as defined by Equations 1 and 2) scaled by each
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species’ abundance (N, ;) (Levine & HilleRisLambers,
2009; Pérez-Ramos et al., 2019; Shoemaker & Melbourne,
2016). To incorporate environmental variation in intrin-
sic growth rates, we model 4, ; as follows:

In(4.;) =by;+b,; X, @)
where b ; is the intercept of the intrinsic growth rate and
b,; its slope with environmental covariate X, We use

Equation (3) to model observed fecundity within a single
growing season.

Incorporating sparsity-inducing priors

By deconstructing interaction coefficients into a com-
bination of species-specific and generic terms, we can
determine which, if any, species-specific terms are nec-
essary for the final model. Allowing only a subset of pa-
rameters to take non-zero values is referred to as ‘sparse
modelling’ and various techniques exist to induce spar-
sity in linear models (Hastie et al., 2015; O’Hara and
Sillanpéa, 2009).

To extend a sparse modelling approach to our non-
linear model of fecundity (Equation 3), we employ
sparsity-inducing priors which act to shrink all but a
subset of parameters to 0, thus producing a sparsely pa-
rameterised model. Specifically, we model 3y, ;and 4, ;,
the species-specificintercepts and slopes of the interspe-
cific interaction coefficients (Equation 1), with regula-
rised horseshoe priors which more accurately estimate
large parameter values compared to other sparsity-
inducing priors (Bhadra et al., 2019; Carvalho et al.,
2009; Piironen and Vehtari, 2017; Van Erp et al., 2019).
Parameters @, ; ,and @, ;are given priors Normal (0.7By,)
and Normal (0.74,,), respectively. (Note that since we fit
the model for a single focal species, we drop the i sub-
script from the priors for simplicity). In these priors, ¢
defines the global tendency towards sparsity through
its effect on the priors’ standard deviations. Essentially,
smaller values of r will more tightly centre the priors
for all @y, ; and @,,; parameters on 0. Conversely, the p
terms allow specific parameters to escape this global
trend towards sparsity. As an individual § term becomes
large, its associated prior becomes wider, and that
species-specific term is more likely to be included in the
final model. In the regularised horseshoe prior, these
B terms are defined as follows:

~ cp;
fi=—t—
\/c? +Tﬂf
p; ~half — Cauchy (0, 1) ®)
¢ ~inverse — gamma ( < V—Sz
g >3 )

Defining ﬂ~] as the combination of a half-Cauchy and
inverse-gamma distribution causes large coefficients to
be shrunk towards 0 by a Student's ¢ distribution with
v degrees of freedom and a scale of s*(Piironen and
Vehtari, 2017; Van Erp et al., 2019). Following the recom-
mendations of Piironen and Vehtari (2017), we set v to 4
and s? to 2. Rather than setting the global shrinkage pa-
rameter 7 to a fixed value, we give it a half-Cauchy prior
(z ~ half — Cauchy (0, 1)) and allow the data to inform
the posterior distribution of z (Piironen and Vehtari,
2017; Van Erp et al., 2019).

We employ a hybrid approach in which we first fit
the full model with regularised horseshoe priors to in-
duce sparsity in the species-specific terms; we subse-
quently fit a final model using traditional, non-sparse
methods. From the preliminary model fit, we calculate
credible intervals (ClIs) for each species-specific term
and identify terms with sufficient evidence for inclu-
sion in the final model fit as those whose Cls do not
overlap 0. Using this approach, we can directly adjust
how conservative we wish to be in including model pa-
rameters, balancing model prediction, the proportion
of variance explained, and simplicity depending on
modelling goals (Tredennick et al., 2021) (i.e. using a
50% CI leads to more parameter inclusion than if we
use a 95% CI; illustrated in Figure S1d—f). Thus, our
model incorporates both the possibility of fully ge-
neric species interactions and of fully species-specific
interactions, identifying the appropriate compromise
between these two extremes that can best explain the
data.

For the final model fit, included species-specific
terms (ay,;; and 4, ;) are given standard normal priors
(i.e. Normal(0, 1)). In both preliminary and final model
fits, terms defining 4, ; (by,; and b, ;; Equation 4) are also
given standard normal priors. The intercept and slope
terms defining intraspecific competition (a;; and a,; ;;
Equation 2) and the generic intercept and slope defin-
ing interspecific competition (a,; and «q,;; Equation. 1)
are given weakly informative priors in each model fit,
matching the expected scale of these interaction co-
efficients:  a;;: Normal(-6,3),  a;: Normal (-6, 3),
a,;;: Normal (0,0.5) and g, ;: Normal (0, 0.5). All models
were fit using the stan language with the rstan package
(version 2.18.2; Stan Development Team 2018 in R (ver-
sion 3.5.3; R Core Team, 2019). All data and code for the
analyses and simulations presented here can be found at
https://doi.org/10.5281/zenodo.5828361.

Simulation tests of model performance

To test our ability to predict changes in population
size and recover true parameter values, we first paired
our Bayesian sparse modelling approach with simu-
lated Beverton—Holt data using Equations (3) and (4).
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We generated communities of 15 species in different
plots, where each plot was a unique run of the simula-
tion with a given environmental condition X,. These
environmental conditions were drawn from a Gaussian
distribution with mean 0 and standard deviation of 1
to represent any standardised environmental variable
of interest. Species were assigned parameters defining
intrinsic growth rates 4,,; and intraspecific competi-
tion ae, i, i following Equations (4) and (2), respectively
(Table S1). Similar to intraspecific competition, pair-
wise interspecific competitive interactions in the simu-
lations were defined as In (a,;;) =ao,; +a,;; X, where
ay;; terms were drawn from a uniform distribution
and a,;; terms were drawn from a normal distribution
(Table S1). Each plot simulation was run deterministi-
cally for 20 time steps with each time step N, = F,N,
using F, from Equation (3). This resulted in some sub-
set of the 15 species remaining in each plot. Then each
population was perturbed by drawing from a normal
distribution with mean and standard deviation equal
to the previous population size (i.e. scaling with popu-
lation size), truncated at 0 to prevent negative popula-
tion sizes. This perturbed state and the following time
step generated our simulated ‘full-community’ data.
In addition to 500 full-community plots, we simulated
500 ‘no-competition’ treatments with a single phy-
tometer individual of the focal species per plot, run-
ning the Beverton-Holt function for one time step.
This simulated treatment matches methods commonly
used in experimental studies to parse intrinsic growth
rates from competition parameters (Hallett et al., 2019;
Wainwright et al., 2019). Simulation details are in-
cluded in Supplement 1.

We used these simulations to measure our sparse
modelling approach's ability to predict population
growth in diverse communities and recover underly-
ing parameters. For 1000 simulations, we randomly
selected one focal species to use in fitting our statisti-
cal model (described above) using varying numbers of
full-community and no-competition plots (10, 50, or
200). For each model fit, we calculated (1) the average
deviation of each parameter as the difference between
the posterior mean and the true value, (2) the number
of species identified by the model as requiring species-
specific intercepts and/or slopes, and (3) the model's
predictive accuracy as measured by the root-mean-
square error (RMSE) of model predictions compared to
200 simulated full-community plots not used to fit the
model. This allowed us to assess model performance,
both in terms of parameter accuracy and predictive
power, when used with varying amounts of input data.

Additionally, we explored the effect of drawing in-
terspecific competitive terms from distributions of
varying widths to determine the performance of the
model when fit to communities with different under-
lying competitive structures. We simulated data from
a low, medium and high range of potential pair-wise

interaction values (Table S1) and fit the model to 150
independent simulations of 50 full-community and 50
no-competition plots for each range. For each model
fit, we recorded the same three quantities described
above.

Empirical application

We additionally applied our model to species interac-
tions and their environmental dependencies in the an-
nual plant understory of the York gum (FEucalyptus
loxophleba Benth)—jam (Acacia acuminata) woodlands
of south-western Western Australia. This community
is highly diverse and heterogeneous, with local compo-
sition of annual forbs and grasses influenced by gradi-
ents in soil nutrients and shade from York gum and jam
trees (Dwyer et al., 2015; Lai et al., 2015). We focused on
two York gum—-jam woodland remnants: West Perenjori
Nature Reserve (29°47°S, 116°20’E) and Bendering
Nature Reserve (32°23’S, 118°22’E). Both sites experience
a Mediterranean climate with mild winters and long, dry
summers (Suppiah et al., 2007) and have high overlap in
annual species composition. Data used here were origi-
nally collected as part of a larger experiment described
in Wainwright et al. (2019). We focus on two species
used in the original study and common to both reserves:
Waitzia acuminata, an abundant native annual forb, and
Arctotheca calendula, a prevalent exotic annual forb.

We used data from 11 experimental blocks in
Bendering Nature Reserve and 18 blocks in West
Perenjori Nature Reserve. Each block was ~ 15 X 15 m,
a size selected to account for previously identified soil-
nutrient turn-over rates (Dwyer et al., 2015). Each block
was split into 50 X 50 cm plots and each plot was fur-
ther subdivided into four 25 X 25 cm quadrats. One in-
dividual near the centre of each quadrat was assigned
as the focal individual for that quadrat. Which focal
species were in a given quadrat depended on the natural
distribution of individuals. This experiment employed
five thinning treatments at the plot level to manipulate
local community compositions (individual focal indi-
viduals with no competitors, native dominated compet-
itors, exotic dominated competitors, monocultures with
only conspecific competitors and unmanipulated plots)
(Wainwright et al., 2019). This ensured a range of densi-
ties in the background communities to inform model es-
timates of competition coefficients and intrinsic growth
rates. Across both reserves we used data from 129 focal
individuals in 69 plots interacting with 45 neighbouring
species for W. acuminata and 95 focal individuals in 54
plots interacting with 40 species for 4. calendula.

We applied our sparse modelling framework to quan-
tify the competitive environment's effect on fecundity in
W. acuminata and A. calendula under different environ-
mental conditions. Fecundity F,; was measured as the
number of flowers produced by each focal individual.
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The competitive environment was characterised as the
number of individuals of each interacting species in the
quadrat after the experimental treatment had been ap-
plied (N, ;). We considered two aspects of the physical
environment X,: percent overhead tree canopy cover,
measured at the plot scale, and soil Colwell P (mg/kg),
measured at the block scale. Both environmental covari-
ates were standardised for inclusion in the model. We ran
separate models for each focal species and environmen-
tal covariate (four total model fits). To account for re-
gional differences between the Bendering and Perenjori
reserves, we incorporated a fixed reserve effect into our
sparse modelling approach by allowing by ;, b, ; 2 ; j»and
a,; ; to differ between reserves. Using this approach, we
quantified 4,; and «a,; ; for both species across both en-
vironmental gradients in the York gum-jam woodland
communities.

RESULTS
Simulations

Our model accurately predicted growth rates in simu-
lated communities even with relatively low sample sizes
(Figures 1 and 2) and across different model formalisa-
tions (Box 1). For a single simulation, growth rate pre-
dictions improved in both accuracy and precision with
increasing amounts of input data (Figure 1b,d and f).
When comparing across multiple simulations, the av-
erage RMSE of model predictions when using 10 full-
community and 10 no-competition plots was only 0.43.
While increasing sample size further increased model
accuracy (average RMSE of 0.32 for 50 plots and 0.29
for 200 plots), these results indicate the model can accu-
rately predict species’ realised growth rates using limited
data (Figure 2¢). Furthermore, species’ growth rates can
be accurately predicted using observed competitive com-
munities paired with no-competition plots, rather than
necessitating common manipulative experimental de-
signs where each possible species combination is paired
across a gradient of densities (Hallett et al., 2019; Kraft
et al., 2015).

Our model also accurately predicted individual pa-
rameter estimates for simulated communities, with rel-
atively low deviations between the estimated and true
values (Figures 1 and 2). Even with just 10 plots of each
type, parameters relating to intrinsic growth rate (4,,),
intraspecific competition (e, ,,) and the relationship of
generic and species-specific competition with the envi-
ronment (a,; and 4, respectively) are estimated rea-
sonably accurately on average (Figure 2). In contrast, the
parameters relating to the intercepts of generic (d¢;) and
species-specific (3, ;) competition are estimated with
less accuracy when only using 10 plots. However, while
all deviations in parameter estimates shrunk with in-
creasing numbers of input plots, the intercept of generic

competition benefited the least from increasing amounts
of data. This is likely because the model correctly identi-
fied a larger number of species-specific terms on average
with more data (Figure 2b), decreasing the total number
of species contributing to the estimation of the generic
competition terms.

Parameter accuracy, number of species-specific terms
estimated and predictive power of the model were simi-
lar regardless of the underlying distribution of pair-wise
interaction values (Figure S2).

Empirical application

Our method identified environmental dependen-
cies in intrinsic growth rates (Figures 4a,b and 5a,b),
relative strengths of intraspecific competition and av-
erage interspecific competition, along with competition—
environment interactions (Figures 4c,d and 5c,d),
all of which differed between our two focal species.
Additionally, our model highlighted three species with
deviations from the average interspecific effects on na-
tive W. acuminata, but no such species when fit to data
on exotic A4. calendula.

W. acuminata and A. calendula's intrinsic growth
rates differed in their relationship with the environmen-
tal gradients and reserves. The intrinsic growth rate
of W. acuminata across both environmental gradients
varied between the Bendering and Perenjori reserves
(Figure 4a,b). In contrast, 4, for A. calendula was quite
similar between the two reserves as it varied with both
phosphorous and canopy cover (Figure 5a,b). This could
reflect local adaptation in regional populations of the
native W. acuminata but not the newly introduced A.
calendula. Tmportantly, the intrinsic growth rate of W.
acuminata declined with high phosphorous (marginally
in Bendering, but substantially in Perenjori) while A.
calendula's intrinsic growth rate increased with phos-
phorous, potentially explaining the high prevalence of
invasive species in areas with increased phosphorous
(Dwyer et al., 2015).

Relative competitive effects between conspecifics ver-
sus heterospecifics also differed between the two focal
species. For W. acuminata, the relationship between in-
traspecific competition and average interspecific compe-
tition varied with the environmental gradients. At low
levels of phosphorous and high levels of canopy cover,
intraspecific competition in W. acuminata was greater
than average interspecific competition (Figure 4c,d).
However, at high levels of phosphorous and low levels
of canopy cover, intra- and interspecific competition
converged to similar values. In contrast, intraspecific
competition for 4. calendula was similar to or lower than
generic interspecific competition across both environ-
mental gradients (Figure 5c,d). This likely contributes
to the invasive status of A. calendula in this ecosystem,
whereas W. acuminata populations self-regulate under
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certain environmental conditions—a necessary compo-
nent of stable coexistence.

Our model highlighted multiple species with non-
generic competitive effects on W. acuminata. Across the
gradient in phosphorous, Hyalosperma glutinosum had a
higher than average effect on W. acuminata in Perenjori
while Schoenus nanus had a lower than average effect in
Bendering (Figure 4c). Across the gradient in canopy cover,
Hypochaeris glabra had a much higher than average effect
on W. acuminata in Bendering (Figure 4d). In contrast, all
heterospecific interactive effects on 4. calendula remained
grouped in the generic competition term. The lack of
species-specific effects on A4. calendula (Figure 5c¢,d) could
be due to its exotic status (Lai et al., 2015). With no shared
evolutionary history in the community, 4. calendula could
be experiencing a form of competitive release, wherein the
identity of competitor species matters less than simply the
presence of additional individuals.

DISCUSSION

Given the inherent complexity of ecological communi-
ties, ecologists are often forced to rely on simplifying
assumptions to keep analyses tractable, for example lim-
iting the number of species considered or ignoring en-
vironmental variation. The sparse modelling approach
presented here provides an alternative method to ana-
lyse communities without requiring extensive additional
data or sacrificing complexity. This approach enabled us
to accurately predict population growth rates with lim-
ited data and identify how species’ demographic rates
and competitive interactions vary across environmen-
tal gradients. Our results identify environment by spe-
cies interactions that deviate from the species-averaged
community effects without making a priori assumptions
about species interaction strengths or species group-
ings (Figure 4c,d). Output from the sparse modelling
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FIGURE 2

Model performance across 1000 independent simulations. For each simulation, we fit the model to sets of 10, 50 and 200 full-

community and no-competition plots. (a) For each model fit, we quantified the parameter deviation as the difference between the posterior
mean and the true value, such that positive values indicate an overestimate by the model. (b) We also recorded the number of species identified
by each model fit as having a species-specific intercept, species-specific slope and the total number of species with either species-specific

term identified by the model. For context, the maximum number of species that could be selected is 14 (out of 15 total species, leaving a single
species to be defined by the generic parameters). (c) Finally, we calculated the root-mean-square error (RMSE) of the model predictions for 200
simulated full-community plots excluded from the model fitting. In all panels, standard Tukey box plots are used to show the distribution of

results from all 1000 simulations

approach generates concrete, testable hypotheses about
species interactions and environmental conditions. For
example, does the number of non-generic parameters
systematically differ for native and exotic species or with
global change drivers? We see broad potential for this
method's implementation in community ecology, from
theory development to management applications.

The sparse modelling approach's flexibility allows
easy adjustments for the best match between underlying
model structure and the given study system and research
questions. As shown in Box 1 and Figure 3, these models
can successfully be applied to different forms of species—
environment interactions and complexity can be modi-
fied based on motivating questions and data availability.
For example, the functional form of the relationship be-
tween intrinsic growth rate and the environment likely
depends on spatial scale. For localised studies, a simple
monotonic relationship (Figure 3a) might be appropri-
ate to capture species’ expected responses across a small
range of environmental variation. However, studies over
larger spatial scales might require a functional form with

optimal intrinsic growth at an intermediate environmen-
tal value (Figure 3b), mimicking expected patterns of
adaptation across species’ ranges (Angert et al., 2020).
Additionally, while we used a Beverton—Holt frame-
work, sparse approaches could be used with different
functional forms of competition (Garcia-Callejas, 2020)
or with models incorporating facilitative interactions
(Stachowicz, 2001). Future work could expand beyond
our consideration of plant fecundity, to instead model
changes in biomass or plant cover depending on exper-
imental design. Given the importance of temporal sto-
chasticity to community dynamics (Shoemaker et al.,
2020) and the need to predict community responses
to changing anthropogenic pressures (Ma et al., 2017),
sparse modelling with time series could provide invalu-
able insight into the importance of species-specific in-
teractions through time and across space. We see future
methodological expansions to additional biological
models and response variables as exciting avenues to in-
crease the generality of sparse approaches in community
ecology.
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BOX 1 Adapting the sparse modelling method to different ecological questions

This sparse modelling method is generalisable to a variety of underlying ecological models. The method's flex-
ibility allows researchers to use sparse approaches with different underlying ecological models depending on
their study system and questions of interest.

For example, the relationship between species’ growth rates and the environment can be modelled in mul-
tiple ways. A monotonic relationship would be appropriate for a study concentrated within a small spatial
scale, while a humped-shape relationship would match expectations for a study over a broad environmental
gradient. To demonstrate how our method can be modified for different underlying ecological models, we
simulated environmental responses in growth rate two ways: with a monotonic relationship between species
and the environmental conditions 4, ; and with a curved environmental optimum with a defined niche breadth
for each species A* In the first model formulation:

Aé’,l’ — ebO,i+be,iXe’ (6)

for which we estimate the mean intrinsic growth rate (b ;) and the slope (b, ;) across an environmental gradient.
In the second:

Si—Xe \?
=) (7

X.=b

= Ymax,i

for which we estimate the maximum intrinsic growth rate (b,,,,, ;), the environmental optimum (z;) and the envi-
ronmental niche breadth (¢,) (following the parameterisation in Thompson et al. (2020)). We tested these models
using samples of 200 full community plots and 200 no-competition plots.

Both the monotonic and curved environmental optimum conditions are correctly captured by the sparse
modelling approach (Figure 3a,b), with all growth rate parameters in both models falling within the 95%
credible intervals. In the monotonic 4,; model, both the intercept b, ; and the slope b, ; deviated from the true
values by less than 5%. In the optlmum A, ;model, the maximum b,,,,, ; and the niche breadth o, deviated from
the true values by less than 1%, and the locatlon of the environmental optimum z; deviated by 47%, which is
an absolute difference of 0.11.

As a further example, the species interaction components of the model can be adjusted depending on the main
research questions of interest. For questions focused on species interaction strengths, one may wish to model in-
teraction coefficients independent of environmental conditions. We demonstrate this approach with a simple sim-
ulation with competitive interactions independent of environmental conditions «; , modelled accordingly (Figure
3c.d).

We present these options as launching-off points for researchers to adapt the sparse modelling approach to their
study systems and questions. Even more extensive modifications are possible, such as replacing the Beverton—Holt
community framework with a different underlying ecological model.

lJ’

Sparse modelling can be a powerful tool to accel-
erate the development of community ecology theory
and practice. It can provide important insights into
the covariation of environmental conditions, species’
demographic rates and competitive effects—critical
aspects of modern coexistence theory (Chesson, 2000).
This includes quantifying the relative strengths of in-
tra- versus inter-specific competition, a key metric for
stable coexistence (Adler et al., 2018; Chesson, 2000).
Furthermore, the approach elucidates effects of envi-
ronmental conditions on species’ density-independent
growth rates versus competitive interactions, po-
tentially allowing for quantification of variation-
dependent coexistence mechanisms, such as the storage
effect, in diverse communities (Chesson, 2000; Spaak

et al., 2021). Additionally, sparse model fits across en-
vironmental gradients can be used to quantify the rel-
ative importance of environmental (abiotic) filtering,
biotic interactions, and their joint effect on species oc-
currence (Cadotte & Tucker, 2017). Applying such an
approach is especially exciting for linking community
theory to global change predictions, depending on the
underlying environmental gradient.

In addition to expanding theory, we see exciting po-
tential for sparse modelling to address applied ques-
tions and inform management strategies. This includes
quantifying how environmental manipulations could,
in conjunction with community manipulations, control
invasive species or promote native species. For example,
our results from the York gum-jam woodlands of Western
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FIGURE 4 Model estimates for W. acuminata. Means (solid lines) and 95% CIs (dashed lines) are shown for 4, ; across a gradient of
phosphorous (a) and canopy cover (b). Colours indicate the Bendering and Perenjori reserves. The mean (black line) and 95% CI for generic
interspecific competition are shown across a phosphorous (c) and canopy cover (d) gradient. In both ¢ and d, the mean intraspecific competition
coefficient is shown in green and different species identified by the model as non-generic in each reserve are shown with other colours as
indicated in the legends. All non-generic results are shown with 95% Cls in Figure S3

Australia suggest the native W. acuminata experiences the Perenjori reserve (Figure 4). Taken together, these
declining fitness with increasing levels of phosphorous results suggest that reserve managers could promote
and in response to the exotic Hyalosperma glutinosum in growth of W. acuminata populations in Perenjori by
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impacted 4. calendula differently from a generic competition coefficient

mitigating phosphorous run-off while simultaneously re-
moving Hyalosperma glutinosum. In contrast, our results
for the invasive A. calendula suggest that neighbour spe-
cies identity is unimportant (Figure 5c,d) and manage-
ment strategies focusing solely on environmental factors
would be most impactful.

Extending the implementation presented here, the
underlying model structure can be further adjusted to
align with focal management questions. For example, if
a management goal only requires knowledge of species
interactions within a community, the model could be
simplified to remove environmental covariates (Box 1,
Figure 3c,d). Alternatively, the global shrinkage param-
eter 7 could be fixed to induce more or less sparsity in
the final model results. Such a change could allow users
to manually explore the trade-off between parameter in-
clusion and precision, finding the balance that best suits
their particular goals. For example, fixing 7 to a higher
value yields more estimates of species-specific parame-
ters, which could help to inform future research priori-
ties, but those estimates tend to be less precise, limiting
their utility in predicting community dynamics (Figure
Sla—c). Small adjustments such as these empower ecolo-
gists and managers to match the tool to their questions
and aims.

Currently, the sparse modelling framework is most
beneficial when applied to high-diversity communities
with limited data. As demonstrated in Figure Sl1, the
number of non-generic terms is limited by = and a tra-
ditional, non-sparse model in which every interaction
term is estimated may be preferable in situations with
abundant data, lower-diversity communities, or when
answering questions requiring individual estimates of

all potential species interactions. In contrast, the sparse
approach is particularly helpful with limited data and in
cases where traditional models struggle to converge or
provide overly broad parameter estimates. In fact, the
sparse approach could serve as a temporary solution in
some cases, providing accurate predictions while data
availability is limited, then transitioning to a non-sparse
approach once sufficient data has been collected to es-
timate every species-specific parameter. Applying this
sparse modelling approach does not require novel ex-
perimental designs nor data collection. It does, however,
allow for a ‘breadth over depth’ approach, with sampling
spread across an environmental gradient, and minimal
replication per location (Figures 1 and 2), matching the
suggestions of Cottingham et al. (2005). We advocate for
including a ‘thinning’ treatment across the environmen-
tal gradient (e.g. Wainwright et al., 2019) (or, equivalently
a single ‘phytometer’ treatment as is commonly done in
empirical tests of modern coexistence theory Godoy &
Levine, 2014; Hallett et al., 2019); otherwise the focal spe-
cies’ density-independent growth rate and intraspecific
competitive coefficient can strongly covary. However,
this statistical identifiablity issue arises from the bio-
logical models of fecundity, and is not a property of the
sparse-modelling approach (Guillaume et al., 2019).
Sparse modelling approaches have proved immensely
valuable in fields as diverse as genomics (Gianola &
Fernando, 2020) to economics (Fan et al., 2011). By dra-
matically reducing the parameter load required to model
diverse communities across environmental gradients, we
show these sparse modelling approaches may serve as
a valuable tool for linking community theory with em-
pirical tests in species rich ecosystems. We demonstrate
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the flexibility of this approach across different ecologi-
cal models and underlying biological assumptions, and
are excited to see it expanded and applied to a variety
of ecological questions and applications. Although the
implementation of the sparse method requires an initial
conceptual investment, the output results are easily in-
terpretable—a particularly important quality for link-
ing models to practice. The sparse modelling approach
eliminates the need for a priori assumptions regarding
species’ groupings or the exclusion of all but a handful
of focal species, providing a critical method and step for-
ward in expanding ecological theory and linking models
to observational and experimental datasets of diverse
communities.
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