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Abstract

Modelling species interactions in diverse communities traditionally requires a 

prohibitively large number of species-interaction coefficients, especially when 

considering environmental dependence of parameters. We implemented Bayesian 

variable selection via sparsity-inducing priors on non-linear species abundance 

models to determine which species interactions should be retained and which can 

be represented as an average heterospecific interaction term, reducing the number 

of model parameters. We evaluated model performance using simulated communi-

ties, computing out-of-sample predictive accuracy and parameter recovery across 

different input sample sizes. We applied our method to a diverse empirical com-

munity, allowing us to disentangle the direct role of environmental gradients on 

species’ intrinsic growth rates from indirect effects via competitive interactions. 

We also identified a few neighbouring species from the diverse community that had 

non-generic interactions with our focal species. This sparse modelling approach 

facilitates exploration of species interactions in diverse communities while main-

taining a manageable number of parameters.
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INTRODUCTION

Understanding what maintains the diversity of life—
where and how species abundances change through 
time—has long fascinated and challenged ecologists. It 
is widely accepted that community composition in any 
given time and place is driven by the interplay of spe-
cies interactions, responses to environmental conditions, 
and feedbacks between local and regional dynamics 
(Chesson, 2000; HilleRisLambers et al., 2012; Vellend, 
2020). However, incorporating natural levels of diversity 
into community models is difficult, given that many of 
our classic community models build directly from popu-
lation models, meaning that myriad pairwise-interactions 
must be estimated in diverse systems (Bulleri et al., 2016; 
Germain et al., 2018; Letten et al., 2018). This quickly 
leads to experimental feasibility, model overfitting, and 
parameter non-identifiability concerns, especially when 
also accounting for environmental covariates and their 
impacts on species’ demography and biotic interactions. 
Arguably, the magnitude of this methodological limita-
tion has even shaped our historical theoretical frame-
works and empirical tests. For example, classic species 
trait trade-offs, such as the competition–colonisation 
trade-off, and classic metacommunity paradigms often 
apply for species pairs (Leibold et al., 2004; Levins & 
Culver, 1971; Tilman, 1982). Yet species interactions in 
diverse systems and the effects of environmental vari-
ability on species’ demography may yield complex dy-
namics that dramatically alter population growth and 
coexistence dynamics (Allesina & Levine, 2011; Li et al., 
2021; May & Leonard, 1975; Mayfield & Stouffer, 2017). 
The further development and empirical testing of these 
theories thus requires a statistical approach that is appli-
cable in diverse communities and capable of identifying 
and incorporating key species interactions and environ-
mental covariates.

To date, empirical studies of population dynamics 
and species coexistence frequently take one of two ap-
proaches for dealing with parameterisation limitations 
arising in diverse communities and varied environments. 
In the first approach, experimental studies focus on a 
few focal species. For example, Wainwright et al. (2019) 
examined coexistence based on pairwise interaction 
coefficients between four annual forbs in two locations 
and across two water availability treatments—a lofty 
number of species interaction coefficients to estimate—
but still a relatively small subset of the community's full 
diversity (10–14 species in 0.09 m2; Dwyer et al., 2015). 
Finer-scale environmental variation can further limit 
the number of species that can be feasibly incorporated 

given experimental constraints: in a study of grass and 
forb coexistence under variable rainfall regimes, Hallett 
et al. (2019) considered four rainfall conditions, requir-
ing estimates of eight distinct species interaction coef-
ficients even with only two species. Isolating pairwise 
species interactions across environmental conditions is 
a high barrier in species-rich communities, whether in 
the laboratory or field (Hallett et al., 2019; Letten et al., 
2018).

In the second approach, often used with observa-
tional data, species are grouped into broad categories. 
At the most extreme, a single interaction coefficient 
is calculated between the focal species and all het-
erospecific individuals—regardless of their identity 
(Clark, Ann Turnbull, et al., 2020; Uriarte et al., 2004). 
Heterospecifics may also be grouped more finely, for 
example according to their taxonomic relationship 
(Uriarte et al., 2004) or origin status and life form (e.g. 
native versus exotic and grasses vs. forbs) (Martyn et al., 
2020). Alternatively, functional groups can be created ac-
cording to species’ traits (e.g. specific leaf area, canopy 
height, seed number) (Kühner & Kleyer, 2008; Uriarte 
et al., 2004). However, this methodological approach 
often necessitates a priori knowledge of the system and 
makes an underlying assumption that species grouped 
together will interact similarly with each other and with 
the focal species. These assumptions are often not met 
(Mayfield & Levine, 2010), suggesting a need for a more 
parsimonious and robust methodology that allows the 
data to inform species groupings.

Various alternative statistical approaches have been 
proposed to assess species interactions in diverse com-
munities using observational data. For example, joint 
species distribution modelling has become a common ap-
proach to infer species interactions from co-occurrence 
patterns (Legendre & Gauthier, 2014; Ovaskainen et al., 
2017b, 2019). However, patterning in co-occurrence also 
results from environmental sorting and dispersal (Schamp 
et al., 2015), meaning with this approach species interac-
tion strengths cannot be accurately inferred from obser-
vational patterns (Barner et al., 2018). Furthermore, these 
co-occurrence patterns are scale dependent and regional 
analyses are not suited to assessing local-scale species in-
teractions (König et al., 2021). Recognising a need to di-
rectly estimate species interaction coefficients, recent work 
has expanded multivariate autoregressive models for use in 
more diverse communities (Picoche & Barraquand, 2020), 
including examining which linear combinations of species 
abundances best predict future growth rates (Ovaskainen 
et al., 2017a). This approach is effective for binning species 
based on their competitive effects, but does not account 
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for environmental variation. Clark, Scher, et al. (2020) de-
veloped a state-space hierarchical Bayesian model to as-
sess the effect of environmental gradients on non-linear 
species abundance patterns, incorporating environmental 
responses in species’ density-independent growth rates 
but not in species interactions (Clark, Scher, et al., 2020). 
Independently, these multiple methodological develop-
ments each address one of the largest hurdles for modelling 
species abundances in diverse communities: (1) identifying 
important species interactions and (2) accounting for the 
mediating effect of the environment (here referred to as 
species-–environment interactions). Addressing these two 
aspects simultaneously would solidify a path forward for 
characterising species interactions in diverse communities 
and across environmental gradients.

Here, we present an approach for modelling dynamics in 
diverse communities and across environmental gradients. 
The approach balances realism and complexity without ex-
tensive experimental manipulation or a priori assumptions 
regarding species groupings. Our method is based on two 
innovations to standard population and community ecol-
ogy models. First, we define heterospecific species inter-
action coefficients as linear combinations of the average 
interaction strength and species-specific deviations from 
this average. In parallel, we allow environmental covariates 
to modify species intrinsic growth rates and the strength of 
biotic interactions—both the average and species deviation 
terms. We implement this approach using a Beverton–Holt 
model of community dynamics (Beverton & Holt, 1957) 
within a single growing season, although the method can 
easily be adapted to other models of population abundance 
(e.g. Mayfield & Stouffer, 2017; Ricker, 1954) or incorporate 
additional dynamics such as seed banks or dispersal (Levine 
& HilleRisLambers, 2009; Thompson et al., 2020). Second, 
we extend Bayesian statistical methods for variable selec-
tion via sparsity-inducing priors in linear models (such as 
Lasso and Ridge regression; Hastie et al., 2015; Piironen and 
Vehtari 2017) to our non-linear abundance model, thereby 
reducing the number of terms included in the final model 
fit, yielding a ‘sparse model’. By coupling these two model-
ling approaches, we can identify heterospecific species that 
deviate in their interaction strength, and how environmen-
tal gradients alter species’ density-independent growth rates 
and biotic interactions. We explore model effectiveness using 
simulated data and apply the model to empirical data from a 
highly diverse (45 species) annual plant community.

M ETHODS

Deconstructing species interaction coefficients 
and fecundity

Models of community dynamics incorporate pairwise 
species-specific interaction coefficients, commonly 
denoted as �i,j, the effect of species j on species i, re-
sulting in many parameters required to model diverse 

communities or environmental relationships. To reduce 
the number of parameters required in such models, we 
start with a partitioning approach. We first define these 
interaction terms as follows:

where �e,i,j is the effect of species j on species i in en-
vironment e with i ≠ j. In Equation (1), a0,i is the effect 
of an average heterospecific individual on individuals of 
species i, â0,i,j is the deviation from this average effect as-
sociated with species j, a

e,i is the average slope of species 
i 's interaction coefficients with environmental covariate 
Xe and âe,i,j is the deviation from this slope associated 
with species j. At first, Equation (1) may seem counter-
productive as it increases the number of parameters com-
pared to traditional interaction coefficients. However, in 
the next section, we describe how coupling this approach 
with sparsity inducing priors in a Bayesian context can 
dramatically reduce the number of required parameters 
by identifying only the necessary species-specific terms 
(â0,i,j and âe,i,j) for accurately modelling population dy-
namics of species i.

While intraspecific competition (�e,i,i) could in prin-
ciple be modelled according to Equation (1), we define it 
separately as follows:

where a0,i,i and ae,i,i are the intercept and slope for the effect 
of intraspecific individuals. As both theoretical expecta-
tions (Chesson, 2000) and empirical results (Adler et al., 
2018) point to the importance of intraspecific competition, 
we use Equation (2) to explicitly exclude the intraspecific 
terms from the sparsity inducing process defined in the 
next section. These terms, therefore, are always included 
in the final model.

Interaction coefficients (Equations 1 and 2) can be 
incorporated in many different models of community 
dynamics. We use the Beverton–Holt model due to 
its legacy in studies of annual plant communities and 
coexistence theory (e.g. Godoy & Levine, 2014; Kraft 
et al., 2015). We emphasise, however, that our general 
statistical approach can be adapted to other popula-
tion models. In the Beverton–Holt model, the fecun-
dity Fe,i of focal species i  in environment e is modelled 
as follows:

Fecundity depends on a species’ intrinsic growth rate 
(i.e. density-independent seed production; �e,i) and the 
competitive effects of all S species in the community (�e,i,j 
terms as defined by Equations 1 and 2) scaled by each 

(1)ln
(

�e,i,j

)

=a0,i+ â0,i,j+
(

ae,i+ âe,i,j
)

Xe,

(2)ln
(

�e,i,i

)

= a0,i,i + ae,i,iXe,

(3)Fe,i =
�e,i

1 + �e,i,iNe,i +
∑S

j≠i
�e,i,jNe,j

.
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species’ abundance (Ne,j) (Levine & HilleRisLambers, 
2009; Pérez-Ramos et al., 2019; Shoemaker & Melbourne, 
2016). To incorporate environmental variation in intrin-
sic growth rates, we model �e,i as follows:

where b0,i is the intercept of the intrinsic growth rate and 
be,i its slope with environmental covariate Xe. We use 
Equation (3) to model observed fecundity within a single 
growing season.

Incorporating sparsity-inducing priors

By deconstructing interaction coefficients into a com-
bination of species-specific and generic terms, we can 
determine which, if any, species-specific terms are nec-
essary for the final model. Allowing only a subset of pa-
rameters to take non-zero values is referred to as ‘sparse 
modelling’ and various techniques exist to induce spar-
sity in linear models (Hastie et al., 2015; O’Hara and 
Sillanpää, 2009).

To extend a sparse modelling approach to our non-
linear model of fecundity (Equation 3), we employ 
sparsity-inducing priors which act to shrink all but a 
subset of parameters to 0, thus producing a sparsely pa-
rameterised model. Specifically, we model ̂a0,i,j and ̂ae,i,j,  
the species-specific intercepts and slopes of the interspe-
cific interaction coefficients (Equation 1), with regula-
rised horseshoe priors which more accurately estimate 
large parameter values compared to other sparsity-
inducing priors (Bhadra et al., 2019; Carvalho et al., 
2009; Piironen and Vehtari, 2017; Van Erp et al., 2019).  
Parameters ̂a0,i,j and ̂ae,i,j are given priors Normal 

(

0, � �̃0,j
)

 
and Normal 

(

0, � �̃
e,j

)

, respectively. (Note that since we fit 
the model for a single focal species, we drop the i  sub-
script from the priors for simplicity). In these priors, � 
defines the global tendency towards sparsity through 
its effect on the priors’ standard deviations. Essentially, 
smaller values of � will more tightly centre the priors 
for all â0,i,j and âe,i,j parameters on 0. Conversely, the �̃ 
terms allow specific parameters to escape this global 
trend towards sparsity. As an individual �̃ term becomes 
large, its associated prior becomes wider, and that 
species-specific term is more likely to be included in the 
final model. In the regularised horseshoe prior, these  
�̃ terms are defined as follows:

Defining �̃ j as the combination of a half-Cauchy and 
inverse-gamma distribution causes large coefficients to 
be shrunk towards 0 by a Student's t distribution with 
� degrees of freedom and a scale of s2(Piironen and 
Vehtari, 2017; Van Erp et al., 2019). Following the recom-
mendations of Piironen and Vehtari (2017), we set � to 4 
and s2 to 2. Rather than setting the global shrinkage pa-
rameter � to a fixed value, we give it a half-Cauchy prior 
(� ∼ half −Cauchy (0, 1)) and allow the data to inform 
the posterior distribution of � (Piironen and Vehtari, 
2017; Van Erp et al., 2019).

We employ a hybrid approach in which we first fit 
the full model with regularised horseshoe priors to in-
duce sparsity in the species-specific terms; we subse-
quently fit a final model using traditional, non-sparse 
methods. From the preliminary model fit, we calculate 
credible intervals (CIs) for each species-specific term 
and identify terms with sufficient evidence for inclu-
sion in the final model fit as those whose CIs do not 
overlap 0. Using this approach, we can directly adjust 
how conservative we wish to be in including model pa-
rameters, balancing model prediction, the proportion 
of variance explained, and simplicity depending on 
modelling goals (Tredennick et al., 2021) (i.e. using a 
50% CI leads to more parameter inclusion than if we 
use a 95% CI; illustrated in Figure S1d–f). Thus, our 
model incorporates both the possibility of fully ge-
neric species interactions and of fully species-specific 
interactions, identifying the appropriate compromise 
between these two extremes that can best explain the 
data.

For the final model fit, included species-specific 
terms (â0,i,j and âe,i,j) are given standard normal priors 
(i.e. Normal(0, 1)). In both preliminary and final model 
fits, terms defining �e,i (b0,i and be,i; Equation 4) are also 
given standard normal priors. The intercept and slope 
terms defining intraspecific competition (a0,i,i and ae,i,i ; 
Equation 2) and the generic intercept and slope defin-
ing interspecific competition (a0,i and a

e,i; Equation. 1) 
are given weakly informative priors in each model fit, 
matching the expected scale of these interaction co-
efficients: a0,i,i : Normal (− 6, 3), a0,i : Normal (− 6, 3), 
ae,i,i : Normal (0, 0.5) and a

e,i : Normal (0, 0.5). All models 
were fit using the stan language with the rstan package 
(version 2.18.2; Stan Development Team 2018 in R (ver-
sion 3.5.3; R Core Team, 2019). All data and code for the 
analyses and simulations presented here can be found at 
https://doi.org/10.5281/zenodo.5828361.

Simulation tests of model performance

To test our ability to predict changes in population 
size and recover true parameter values, we first paired 
our Bayesian sparse modelling approach with simu-
lated Beverton–Holt data using Equations (3) and (4). 

(4)ln
(

�e,i
)

= b0,i + be,iXe,

(5)

�̃ j =
c� j

√

c2+��2
j

� j ∼half−Cauchy (0, 1)

c2∼ inverse−gamma

(

�

2
,
�s2

2

)

.

https://doi.org/10.5281/zenodo.5828361
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We generated communities of 15  species in different 
plots, where each plot was a unique run of the simula-
tion with a given environmental condition Xe. These 
environmental conditions were drawn from a Gaussian 
distribution with mean 0 and standard deviation of 1 
to represent any standardised environmental variable 
of interest. Species were assigned parameters defining 
intrinsic growth rates �e,i and intraspecific competi-
tion �e, i, i following Equations (4) and (2), respectively 
(Table S1). Similar to intraspecific competition, pair-
wise interspecific competitive interactions in the simu-
lations were defined as ln

(

�e,i,j

)

= a0,i,j + ae,i,jXe where 
a0,i,j terms were drawn from a uniform distribution 
and ae,i,j terms were drawn from a normal distribution 
(Table S1). Each plot simulation was run deterministi-
cally for 20 time steps with each time step Nt+1 = FtNt 
using Ft from Equation (3). This resulted in some sub-
set of the 15 species remaining in each plot. Then each 
population was perturbed by drawing from a normal 
distribution with mean and standard deviation equal 
to the previous population size (i.e. scaling with popu-
lation size), truncated at 0 to prevent negative popula-
tion sizes. This perturbed state and the following time 
step generated our simulated ‘full-community’ data. 
In addition to 500 full-community plots, we simulated 
500 ‘no-competition’ treatments with a single phy-
tometer individual of the focal species per plot, run-
ning the Beverton–Holt function for one time step. 
This simulated treatment matches methods commonly 
used in experimental studies to parse intrinsic growth 
rates from competition parameters (Hallett et al., 2019; 
Wainwright et al., 2019). Simulation details are in-
cluded in Supplement 1.

We used these simulations to measure our sparse 
modelling approach's ability to predict population 
growth in diverse communities and recover underly-
ing parameters. For 1000  simulations, we randomly 
selected one focal species to use in fitting our statisti-
cal model (described above) using varying numbers of 
full-community and no-competition plots (10, 50, or 
200). For each model fit, we calculated (1) the average 
deviation of each parameter as the difference between 
the posterior mean and the true value, (2) the number 
of species identified by the model as requiring species-
specific intercepts and/or slopes, and (3) the model's 
predictive accuracy as measured by the root-mean-
square error (RMSE) of model predictions compared to 
200 simulated full-community plots not used to fit the 
model. This allowed us to assess model performance, 
both in terms of parameter accuracy and predictive 
power, when used with varying amounts of input data.

Additionally, we explored the effect of drawing in-
terspecific competitive terms from distributions of 
varying widths to determine the performance of the 
model when fit to communities with different under-
lying competitive structures. We simulated data from 
a low, medium and high range of potential pair-wise 

interaction values (Table S1) and fit the model to 150 
independent simulations of 50 full-community and 50 
no-competition plots for each range. For each model 
fit, we recorded the same three quantities described 
above.

Empirical application

We additionally applied our model to species interac-
tions and their environmental dependencies in the an-
nual plant understory of the York gum (Eucalyptus 
loxophleba Benth)–jam (Acacia acuminata) woodlands 
of south-western Western Australia. This community 
is highly diverse and heterogeneous, with local compo-
sition of annual forbs and grasses influenced by gradi-
ents in soil nutrients and shade from York gum and jam 
trees (Dwyer et al., 2015; Lai et al., 2015). We focused on 
two York gum–-jam woodland remnants: West Perenjori 
Nature Reserve (29°47’S, 116°20’E) and Bendering 
Nature Reserve (32°23’S, 118°22’E). Both sites experience 
a Mediterranean climate with mild winters and long, dry 
summers (Suppiah et al., 2007) and have high overlap in 
annual species composition. Data used here were origi-
nally collected as part of a larger experiment described 
in Wainwright et al. (2019). We focus on two species 
used in the original study and common to both reserves: 
Waitzia acuminata, an abundant native annual forb, and 
Arctotheca calendula, a prevalent exotic annual forb.

We used data from 11 experimental blocks in 
Bendering Nature Reserve and 18 blocks in West 
Perenjori Nature Reserve. Each block was ≈ 15 × 15 m, 
a size selected to account for previously identified soil-
nutrient turn-over rates (Dwyer et al., 2015). Each block 
was split into 50 × 50  cm plots and each plot was fur-
ther subdivided into four 25 × 25 cm quadrats. One in-
dividual near the centre of each quadrat was assigned 
as the focal individual for that quadrat. Which focal 
species were in a given quadrat depended on the natural 
distribution of individuals. This experiment employed 
five thinning treatments at the plot level to manipulate 
local community compositions (individual focal indi-
viduals with no competitors, native dominated compet-
itors, exotic dominated competitors, monocultures with 
only conspecific competitors and unmanipulated plots) 
(Wainwright et al., 2019). This ensured a range of densi-
ties in the background communities to inform model es-
timates of competition coefficients and intrinsic growth 
rates. Across both reserves we used data from 129 focal 
individuals in 69 plots interacting with 45 neighbouring 
species for W. acuminata and 95 focal individuals in 54 
plots interacting with 40 species for A. calendula.

We applied our sparse modelling framework to quan-
tify the competitive environment's effect on fecundity in 
W. acuminata and A. calendula under different environ-
mental conditions. Fecundity Fe,i was measured as the 
number of flowers produced by each focal individual. 
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The competitive environment was characterised as the 
number of individuals of each interacting species in the 
quadrat after the experimental treatment had been ap-
plied (Ne,j). We considered two aspects of the physical 
environment Xe: percent overhead tree canopy cover, 
measured at the plot scale, and soil Colwell P (mg/kg), 
measured at the block scale. Both environmental covari-
ates were standardised for inclusion in the model. We ran 
separate models for each focal species and environmen-
tal covariate (four total model fits). To account for re-
gional differences between the Bendering and Perenjori 
reserves, we incorporated a fixed reserve effect into our 
sparse modelling approach by allowing b0,i, be,i, â0,i,j, and 
âe,i,j to differ between reserves. Using this approach, we 
quantified �e,i and �e,i,j for both species across both en-
vironmental gradients in the York gum-jam woodland 
communities.

RESU LTS

Simulations

Our model accurately predicted growth rates in simu-
lated communities even with relatively low sample sizes 
(Figures 1 and 2) and across different model formalisa-
tions (Box 1). For a single simulation, growth rate pre-
dictions improved in both accuracy and precision with 
increasing amounts of input data (Figure 1b,d and f). 
When comparing across multiple simulations, the av-
erage RMSE of model predictions when using 10 full-
community and 10 no-competition plots was only 0.43. 
While increasing sample size further increased model 
accuracy (average RMSE of 0.32 for 50 plots and 0.29 
for 200 plots), these results indicate the model can accu-
rately predict species’ realised growth rates using limited 
data (Figure 2c). Furthermore, species’ growth rates can 
be accurately predicted using observed competitive com-
munities paired with no-competition plots, rather than 
necessitating common manipulative experimental de-
signs where each possible species combination is paired 
across a gradient of densities (Hallett et al., 2019; Kraft 
et al., 2015).

Our model also accurately predicted individual pa-
rameter estimates for simulated communities, with rel-
atively low deviations between the estimated and true 
values (Figures 1 and 2). Even with just 10 plots of each 
type, parameters relating to intrinsic growth rate (�e,i), 
intraspecific competition (�e,i,i) and the relationship of 
generic and species-specific competition with the envi-
ronment (a

e,i and âe,i,j, respectively) are estimated rea-
sonably accurately on average (Figure 2). In contrast, the 
parameters relating to the intercepts of generic (a0,i) and 
species-specific (â0,i,j) competition are estimated with 
less accuracy when only using 10 plots. However, while 
all deviations in parameter estimates shrunk with in-
creasing numbers of input plots, the intercept of generic 

competition benefited the least from increasing amounts 
of data. This is likely because the model correctly identi-
fied a larger number of species-specific terms on average 
with more data (Figure 2b), decreasing the total number 
of species contributing to the estimation of the generic 
competition terms.

Parameter accuracy, number of species-specific terms 
estimated and predictive power of the model were simi-
lar regardless of the underlying distribution of pair-wise 
interaction values (Figure S2).

Empirical application

Our method identified environmental dependen-
cies in intrinsic growth rates (Figures 4a,b and 5a,b), 
relative strengths of intraspecific competition and av-
erage interspecific competition, along with competition–
environment interactions (Figures 4c,d and 5c,d), 
all of which differed between our two focal species. 
Additionally, our model highlighted three species with 
deviations from the average interspecific effects on na-
tive W. acuminata, but no such species when fit to data 
on exotic A. calendula.

W. acuminata and A. calendula's intrinsic growth 
rates differed in their relationship with the environmen-
tal gradients and reserves. The intrinsic growth rate 
of W. acuminata across both environmental gradients 
varied between the Bendering and Perenjori reserves 
(Figure 4a,b). In contrast, �e,i for A. calendula was quite 
similar between the two reserves as it varied with both 
phosphorous and canopy cover (Figure 5a,b). This could 
reflect local adaptation in regional populations of the 
native W. acuminata but not the newly introduced A. 
calendula. Importantly, the intrinsic growth rate of W. 
acuminata declined with high phosphorous (marginally 
in Bendering, but substantially in Perenjori) while A. 
calendula's intrinsic growth rate increased with phos-
phorous, potentially explaining the high prevalence of 
invasive species in areas with increased phosphorous 
(Dwyer et al., 2015).

Relative competitive effects between conspecifics ver-
sus heterospecifics also differed between the two focal 
species. For W. acuminata, the relationship between in-
traspecific competition and average interspecific compe-
tition varied with the environmental gradients. At low 
levels of phosphorous and high levels of canopy cover, 
intraspecific competition in W. acuminata was greater 
than average interspecific competition (Figure 4c,d). 
However, at high levels of phosphorous and low levels 
of canopy cover, intra- and interspecific competition 
converged to similar values. In contrast, intraspecific 
competition for A. calendula was similar to or lower than 
generic interspecific competition across both environ-
mental gradients (Figure 5c,d). This likely contributes 
to the invasive status of A. calendula in this ecosystem, 
whereas W. acuminata populations self-regulate under 
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certain environmental conditions—a necessary compo-
nent of stable coexistence.

Our model highlighted multiple species with non-
generic competitive effects on W. acuminata. Across the 
gradient in phosphorous, Hyalosperma glutinosum had a 
higher than average effect on W. acuminata in Perenjori 
while Schoenus nanus had a lower than average effect in 
Bendering (Figure 4c). Across the gradient in canopy cover, 
Hypochaeris glabra had a much higher than average effect 
on W. acuminata in Bendering (Figure 4d). In contrast, all 
heterospecific interactive effects on A. calendula remained 
grouped in the generic competition term. The lack of 
species-specific effects on A. calendula (Figure 5c,d) could 
be due to its exotic status (Lai et al., 2015). With no shared 
evolutionary history in the community, A. calendula could 
be experiencing a form of competitive release, wherein the 
identity of competitor species matters less than simply the 
presence of additional individuals.

DISCUSSION

Given the inherent complexity of ecological communi-
ties, ecologists are often forced to rely on simplifying 
assumptions to keep analyses tractable, for example lim-
iting the number of species considered or ignoring en-
vironmental variation. The sparse modelling approach 
presented here provides an alternative method to ana-
lyse communities without requiring extensive additional 
data or sacrificing complexity. This approach enabled us 
to accurately predict population growth rates with lim-
ited data and identify how species’ demographic rates 
and competitive interactions vary across environmen-
tal gradients. Our results identify environment by spe-
cies interactions that deviate from the species-averaged 
community effects without making a priori assumptions 
about species interaction strengths or species group-
ings (Figure 4c,d). Output from the sparse modelling 

F I G U R E  1   Fitted model parameter estimates and predicted growth rates. We fit the model to simulated data with 10 (a and b), 50 (c and 
d) and 200 (e and f) full-community and no-competition plots. The left column (a, c and e) shows the deviation of parameter values from 
the true value used in the simulations (points are posterior means and lines are 95% credible intervals). The right column (b, d and f) shows 
model accuracy of the focal species’ growth rate for 200 simulated full-community plots not included in the model fitting. Growth rates were 
calculated as ln

(

Nt+1

Nt

)

. The dashed line is the 1–1 line indicating a perfect match. Points show mean estimates and lines are 95% CIs
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approach generates concrete, testable hypotheses about 
species interactions and environmental conditions. For 
example, does the number of non-generic parameters 
systematically differ for native and exotic species or with 
global change drivers? We see broad potential for this 
method's implementation in community ecology, from 
theory development to management applications.

The sparse modelling approach's flexibility allows 
easy adjustments for the best match between underlying 
model structure and the given study system and research 
questions. As shown in Box 1 and Figure 3, these models 
can successfully be applied to different forms of species–
environment interactions and complexity can be modi-
fied based on motivating questions and data availability. 
For example, the functional form of the relationship be-
tween intrinsic growth rate and the environment likely 
depends on spatial scale. For localised studies, a simple 
monotonic relationship (Figure 3a) might be appropri-
ate to capture species’ expected responses across a small 
range of environmental variation. However, studies over 
larger spatial scales might require a functional form with 

optimal intrinsic growth at an intermediate environmen-
tal value (Figure 3b), mimicking expected patterns of 
adaptation across species’ ranges (Angert et al., 2020). 
Additionally, while we used a Beverton–Holt frame-
work, sparse approaches could be used with different 
functional forms of competition (Garcıá-Callejas, 2020) 
or with models incorporating facilitative interactions 
(Stachowicz, 2001). Future work could expand beyond 
our consideration of plant fecundity, to instead model 
changes in biomass or plant cover depending on exper-
imental design. Given the importance of temporal sto-
chasticity to community dynamics (Shoemaker et al., 
2020) and the need to predict community responses 
to changing anthropogenic pressures (Ma et al., 2017), 
sparse modelling with time series could provide invalu-
able insight into the importance of species-specific in-
teractions through time and across space. We see future 
methodological expansions to additional biological 
models and response variables as exciting avenues to in-
crease the generality of sparse approaches in community 
ecology.

F I G U R E  2   Model performance across 1000 independent simulations. For each simulation, we fit the model to sets of 10, 50 and 200 full-
community and no-competition plots. (a) For each model fit, we quantified the parameter deviation as the difference between the posterior 
mean and the true value, such that positive values indicate an overestimate by the model. (b) We also recorded the number of species identified 
by each model fit as having a species-specific intercept, species-specific slope and the total number of species with either species-specific 
term identified by the model. For context, the maximum number of species that could be selected is 14 (out of 15 total species, leaving a single 
species to be defined by the generic parameters). (c) Finally, we calculated the root-mean-square error (RMSE) of the model predictions for 200 
simulated full-community plots excluded from the model fitting. In all panels, standard Tukey box plots are used to show the distribution of 
results from all 1000 simulations
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Sparse modelling can be a powerful tool to accel-
erate the development of community ecology theory 
and practice. It can provide important insights into 
the covariation of environmental conditions, species’ 
demographic rates and competitive effects—critical 
aspects of modern coexistence theory (Chesson, 2000). 
This includes quantifying the relative strengths of in-
tra- versus inter-specific competition, a key metric for 
stable coexistence (Adler et al., 2018; Chesson, 2000). 
Furthermore, the approach elucidates effects of envi-
ronmental conditions on species’ density-independent 
growth rates versus competitive interactions, po-
tentially allowing for quantification of variation-
dependent coexistence mechanisms, such as the storage 
effect, in diverse communities (Chesson, 2000; Spaak 

et al., 2021). Additionally, sparse model fits across en-
vironmental gradients can be used to quantify the rel-
ative importance of environmental (abiotic) filtering, 
biotic interactions, and their joint effect on species oc-
currence (Cadotte & Tucker, 2017). Applying such an 
approach is especially exciting for linking community 
theory to global change predictions, depending on the 
underlying environmental gradient.

In addition to expanding theory, we see exciting po-
tential for sparse modelling to address applied ques-
tions and inform management strategies. This includes 
quantifying how environmental manipulations could, 
in conjunction with community manipulations, control 
invasive species or promote native species. For example, 
our results from the York gum-jam woodlands of Western 

BOX 1  Adapting the sparse modelling method to different ecological questions

This sparse modelling method is generalisable to a variety of underlying ecological models. The method's flex-
ibility allows researchers to use sparse approaches with different underlying ecological models depending on 
their study system and questions of interest.

For example, the relationship between species’ growth rates and the environment can be modelled in mul-
tiple ways. A monotonic relationship would be appropriate for a study concentrated within a small spatial 
scale, while a humped-shape relationship would match expectations for a study over a broad environmental 
gradient. To demonstrate how our method can be modified for different underlying ecological models, we 
simulated environmental responses in growth rate two ways: with a monotonic relationship between species 
and the environmental conditions �e,i and with a curved environmental optimum with a defined niche breadth 
for each species �∗

e,i
. In the first model formulation:

for which we estimate the mean intrinsic growth rate (b0,i ) and the slope (be,i) across an environmental gradient. 
In the second:

for which we estimate the maximum intrinsic growth rate (bmax,i), the environmental optimum (zi) and the envi-
ronmental niche breadth (�i) (following the parameterisation in Thompson et al. (2020)). We tested these models 
using samples of 200 full community plots and 200 no-competition plots.

Both the monotonic and curved environmental optimum conditions are correctly captured by the sparse 
modelling approach (Figure 3a,b), with all growth rate parameters in both models falling within the 95% 
credible intervals. In the monotonic �e,i model, both the intercept b0,i and the slope be,i deviated from the true 
values by less than 5%. In the optimum �∗

e,i
 model, the maximum bmax,i and the niche breadth �i deviated from 

the true values by less than 1%, and the location of the environmental optimum zi deviated by 47%, which is 
an absolute difference of 0.11.

As a further example, the species interaction components of the model can be adjusted depending on the main 
research questions of interest. For questions focused on species interaction strengths, one may wish to model in-
teraction coefficients independent of environmental conditions. We demonstrate this approach with a simple sim-
ulation with competitive interactions independent of environmental conditions �i,j, modelled accordingly (Figure 
3c,d).

We present these options as launching-off points for researchers to adapt the sparse modelling approach to their 
study systems and questions. Even more extensive modifications are possible, such as replacing the Beverton–Holt 
community framework with a different underlying ecological model.

(6)�e,i = eb0,i+be,iXe ,

(7)�∗
e,i

= bmax,ie
−

(

zi−Xe

2�i

)2

,
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Australia suggest the native W. acuminata experiences 
declining fitness with increasing levels of phosphorous 
and in response to the exotic Hyalosperma glutinosum in 

the Perenjori reserve (Figure 4). Taken together, these 
results suggest that reserve managers could promote 
growth of W. acuminata populations in Perenjori by 

F I G U R E  3   Estimates for �e,i for simulated data with (a) a monotonic response to the environment and (b) an environmental optimum, with 
the true values as a solid red line, model means as a dashed black line and individual model posterior draws as thin grey lines. Both models 
were run with 200 full community plots and 200 no-competition plots. All growth rate parameters fell within the 95% credible intervals for 
parameters in both models. (c) Model fit of a simulation with only �i,j species pair intercepts (no �e,i,j species pair by environment slopes) with 
inset (d) showing the intraspecific �i, i intercept
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F I G U R E  4   Model estimates for W. acuminata. Means (solid lines) and 95% CIs (dashed lines) are shown for �e,i across a gradient of 
phosphorous (a) and canopy cover (b). Colours indicate the Bendering and Perenjori reserves. The mean (black line) and 95% CI for generic 
interspecific competition are shown across a phosphorous (c) and canopy cover (d) gradient. In both c and d, the mean intraspecific competition 
coefficient is shown in green and different species identified by the model as non-generic in each reserve are shown with other colours as 
indicated in the legends. All non-generic results are shown with 95% CIs in Figure S3
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mitigating phosphorous run-off while simultaneously re-
moving Hyalosperma glutinosum. In contrast, our results 
for the invasive A. calendula suggest that neighbour spe-
cies identity is unimportant (Figure 5c,d) and manage-
ment strategies focusing solely on environmental factors 
would be most impactful.

Extending the implementation presented here, the 
underlying model structure can be further adjusted to 
align with focal management questions. For example, if 
a management goal only requires knowledge of species 
interactions within a community, the model could be 
simplified to remove environmental covariates (Box 1, 
Figure 3c,d). Alternatively, the global shrinkage param-
eter � could be fixed to induce more or less sparsity in 
the final model results. Such a change could allow users 
to manually explore the trade-off between parameter in-
clusion and precision, finding the balance that best suits 
their particular goals. For example, fixing � to a higher 
value yields more estimates of species-specific parame-
ters, which could help to inform future research priori-
ties, but those estimates tend to be less precise, limiting 
their utility in predicting community dynamics (Figure 
S1a–c). Small adjustments such as these empower ecolo-
gists and managers to match the tool to their questions 
and aims.

Currently, the sparse modelling framework is most 
beneficial when applied to high-diversity communities 
with limited data. As demonstrated in Figure S1, the 
number of non-generic terms is limited by � and a tra-
ditional, non-sparse model in which every interaction 
term is estimated may be preferable in situations with 
abundant data, lower-diversity communities, or when 
answering questions requiring individual estimates of 

all potential species interactions. In contrast, the sparse 
approach is particularly helpful with limited data and in 
cases where traditional models struggle to converge or 
provide overly broad parameter estimates. In fact, the 
sparse approach could serve as a temporary solution in 
some cases, providing accurate predictions while data 
availability is limited, then transitioning to a non-sparse 
approach once sufficient data has been collected to es-
timate every species-specific parameter. Applying this 
sparse modelling approach does not require novel ex-
perimental designs nor data collection. It does, however, 
allow for a ‘breadth over depth’ approach, with sampling 
spread across an environmental gradient, and minimal 
replication per location (Figures 1 and 2), matching the 
suggestions of Cottingham et al. (2005). We advocate for 
including a ‘thinning’ treatment across the environmen-
tal gradient (e.g. Wainwright et al., 2019) (or, equivalently 
a single ‘phytometer’ treatment as is commonly done in 
empirical tests of modern coexistence theory Godoy & 
Levine, 2014; Hallett et al., 2019); otherwise the focal spe-
cies’ density-independent growth rate and intraspecific 
competitive coefficient can strongly covary. However, 
this statistical identifiablity issue arises from the bio-
logical models of fecundity, and is not a property of the 
sparse-modelling approach (Guillaume et al., 2019).

Sparse modelling approaches have proved immensely 
valuable in fields as diverse as genomics (Gianola & 
Fernando, 2020) to economics (Fan et al., 2011). By dra-
matically reducing the parameter load required to model 
diverse communities across environmental gradients, we 
show these sparse modelling approaches may serve as 
a valuable tool for linking community theory with em-
pirical tests in species rich ecosystems. We demonstrate 

F I G U R E  5   Model estimates for A. calendula. Means (solid lines) and 95% CIs (dashed lines) are shown for �e,i across a gradient of 
phosphorous (a) and canopy cover (b). Colours indicate the Bendering and Perenjori reserves. The mean (black line) and 95% CI for generic 
interspecific competition are shown across a phosphorous (c) and canopy cover (d) gradient. In both c and d, the mean intraspecific competition 
coefficient is shown in green with dashed lines indicating the CI. The model did not identify any interspecific competitors in either reserve that 
impacted A. calendula differently from a generic competition coefficient
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the flexibility of this approach across different ecologi-
cal models and underlying biological assumptions, and 
are excited to see it expanded and applied to a variety 
of ecological questions and applications. Although the 
implementation of the sparse method requires an initial 
conceptual investment, the output results are easily in-
terpretable—a particularly important quality for link-
ing models to practice. The sparse modelling approach 
eliminates the need for a priori assumptions regarding 
species’ groupings or the exclusion of all but a handful 
of focal species, providing a critical method and step for-
ward in expanding ecological theory and linking models 
to observational and experimental datasets of diverse 
communities.
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