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Abstract

What is the least surface area of a symmetric body B whose Z™ translations tile R™? Since any
such body must have volume 1, the isoperimetric inequality implies that its surface area must be at least
Q(y/n). Remarkably, Kindler et al. showed that for general bodies B this is tight, i.e. that there is a tiling
body of R™ whose surface area is O(y/n).

In theoretical computer science, the tiling problem is intimately to the study of parallel repetition
theorems (which are an important component in PCPs), and more specifically in the question of whether
a “strong version” of the parallel repetition theorem holds. Raz showed, using the odd cycle game, that
strong parallel repetition fails in general, and subsequently these ideas were used in order to construct
non-trivial tilings of R".

In this paper, motivated by the study of a symmetric parallel repetition, we consider the symmetric
variant of the tiling problem in R™. We show that any symmetric body that tiles R™ must have surface
area at least Q(n/+/logn), and that this bound is tight, i.e. that there is a symmetric tiling body of R"
with surface area O(n/+/logn). We also give matching bounds for the value of the symmetric parallel
repetition of Raz’s odd cycle game.

Our result suggests that while strong parallel repetition fails in general, there may be important
special cases where it still applies.

1 Introduction

A body D C R" is said to be tiling the Euclidean space R", if its translations by Z™ cover the entire
space and have disjoint interiors. The foam problem asks for the least surface area a tiling body D can
have. The problem had been considered by mathematicians already in the 19th century [33], and it also
appears in chemistry, physics and engineering [30]. More recently, the problem had received significant
attention in the theoretical computer science community due to its strong relation with the parallel repetition
problem [15, 24, 2].

The simplest example for a body that tiles the Euclidean space is the solid cube, D = [0, 1]™, which
has surface area 2n. At first glance, one may expect the solid cube to be the best example there is, or more
modestly that any tiling body would need to have surface area Q2(n). The main results of [24, 2] show that
this initial intuition is completely false, and that there are far more efficient tiling bodies whose surface area
is O(y/n). This is surprising, since spheres — which are the minimizers of surface area among all bodies
with a given, fixed volume (in this case volume 1), have ©(y/n) surface area and seem to be very far from
forming a tiling of R™. As we will shortly discuss, the existence of such surprising tiling body is intimately
related to the existence of another surprising object — namely non-trivial strategies for 2-prover-1-round
games, repeated in parallel. The main goal of this paper is to understand the symmetric variant of the foam
problem, which is closely related to the symmetric variant of parallel repetition.
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1.1 2-Prover-1-Round Games and Parallel Repetition

Definition 1.1. A 2-Prover-1-Round Game G = (L U R,E,®,%,XR) consists of a bipartite graph
(LU R,E), alphabets ¥1,,% g, and a constraint ®(u,v) for every edge (u,v) € E. The goal is to find
assignments Ar, : L — X1, Ar : R — YR that satify the maximum fraction of the constraints. A constraint
O (u,v) is satisfied if (Ap(u), Ar(v)) € ®(u,v), where by abuse of notation, ®(u,v) C X1 x Xg denotes
the subset of label pairs that are deemed satisfactory.

The value of a game, denoted by val(G), is the maximum fraction of constraints that can be satisfied in
G by any pair of assignments Ay, Ag.

Equivalently, a 2-Prover-1-Round Game can be viewed as a “game” between two provers and a verifier.
The verifier picks a constraint (u, v) at random, asks the “question” u to the left prover, the “question” v to
the right prover, receives “answers” Ay, (u), Ar(v) respectively from the provers; the verifier accepts if and
only if (Ar(u), Ar(v)) € ®(u,v). It is easy to see that in this language, val(G) represents the maximum
probability a verifier will accept, where the maximum is taken over all of the strategies of the provers.

2-Prover-1-Round games play an important role in the study of PCPs and Hardness of approximation,
and in fact an equivalent statement of the seminal PCP Theorem [14, 5, 4] can be stated in that lan-
guage. It will be convenient for us to use the notation of gap problems: for 0 < s < ¢ < 1, denote by
Gap2ProverlRound(c, s) the promise problem in which the input is a 2-Prover-1-Round game G promised
to either satisfy val(G) > c or val(G) < s, and the goal is to distinguish between these two cases. The pa-
rameters c and s are referred to as the completeness and soundness parameters of the problem, respectively.

Theorem 1.2 (PCP Theorem, [14, 5, 4]). There exists k € N, s < 1 such that Gap2ProverlRound(1, s) is
NP-hard on instances with alphabet size at most k.

The PCP Theorem, as stated above, can be used to establish some hardness of approximation results.
However it turns out that to get strong hardness results, one must prove a variant of the theorem with small
soundness, i.e. with s close to 0. One way to do that is by amplifying hardness using parallel repetition.

The t-fold repetition of a game G, denoted by G®?, is the game in which the verifier picks ¢ inde-

pendently chosen challenges, (u1,v1), ..., (u,v;) and sends them to the provers in a single bunch, i.e.
@ = (uy,...,u) toone prover and ¥ = (v1, ..., v;) to the second one. The provers are supposed to give an
answer to each one of their questions, say Az (%) = (a1,...,a;) and Ar(¥) = (b1,...,b;), and the verifier

accepts with only if (a;,b;) € ®(u;,v;) forall i = 1,...,¢t. What is the value of the ¢-fold repeated game,
as a function of val(G) and t?

The idea of parallel repetition was first introduced in [16], wherein it was originally suggested that
val(G®') ~ val(G)!. Alas, in a later version of that paper it was shown to be false, leaving the question
wide open. Raz [27] was the first to prove that the value of the repeated game decreases exponentially with
t, and with many subsequent works improving the result [18, 26, 13, 10]. The most relevant version for
our purposes is the result of Rao [26], which makes the following statement. First, we say a game G is a
projection game, if all of the constraints ®(u, v) can be described by a projection map, i.e. there is a mapping
Tuw: 21 — g such that ®(u,v) = {(a,b) | b= ¢y (a)}.

Theorem 1.3. If G is a projection game, and val(G) = 1 — ¢, then val(G®') < (1 — £2)%®),

Rao’s result seems nearly optimal, in the sense that a-priori, the best bound one can hope for is that
val(G®t) < (1 — €)®®). Quantitatively speaking, one may think that for all intents and purposes, Rao’s
bound is just as good as the best one can hope for. However, as it turns out, there is at least one prominent
problem where this quadratic gap is what makes the difference, which we describe next.



The Unique Games Conjecture and the Max-Cut Conjecture. The Unique Games problem is a spe-
cific type of projection 2-Prover-1-Round Game, in which the projection maps ¢, , are also bijections.
The Unique Games Conjecture of Khot [19] (abbreviated UGC henceforth) asserts that a strong PCP the-
orem holds for Unique-Games, and more specifically that for any £, > 0, the problem GapUG(1 — ¢, §)
is NP-hard, when the alphabet sizes depend only on £,d. This conjecture is now of central importance
in complexity theory, and it is known to imply many, often tight inapproximability results (see [20, 34]
for more details). A prominent example is the result of [21], stating that assuming UGC, the Goemans-
Williamson algorithm [17] for Max-Cut is optimal. In particular, for small enough ¢ > 0, if UGC is true,
then GapMaxCut(1 — &,1 — 2,/ + o(1)) is NP-hard. Does the converse hold? Le., does the assumption
that GapMaxCut(1 —e,1 — 2,/ 4 o(1)) is NP-hard imply UGC? If so, that would be a promising avenue
of attack on the Unique-Games Conjecture.

Noting that Max-Cut is a Unique-Game and that Parallel repetition preserves uniqueness, one may hope
that a reduction from GapMaxCut(1 —¢,1 — 2/z + o(1)) to GapUniqueGames(1 — &', §) would simply
follow by appealing to a parallel repetition theorem, such as Rao’s result [26]. Alas, the quadratic loss there
exactly matches the quadratic gap we have in Max-Cut, thereby nullifying it completely. This possibility
was discussed in [31], who among other things proposed that perhaps a stronger version of Theorem 1.3
should hold for Unique-Games, in which the £ is replaced with . This conjecture was referred to as the
Strong Parallel Repetition Conjecture, and unfortunately it turns out to be false.

A Strong parallel repetition theorem? The problem of understanding parallel repetition over a very
simple game, called the odd cycle game and denoted below by C,, was shown to be closely related to the
foam problem [15]. In this game, we have a graph G which is an odd cycle of length n, and the provers try
to convince the verifier that GG is a bipartite graph (while it is clearly not). To test the provers, the verifier
picks a vertex u from the cycle uniformly at random, and then picks v as v = u with probability 1/2, and
otherwise v is one of the neighbours of w with equal probability. The verifier sends w as a question to one
prover, and v as a question to the other prover, and expects to receive a bit from each one by, bs. The verifier
checks that by = by in case u = v, or that by 7 by in case u # v.

Note that clearly, val(C),) = 1—0(1/n), and so the Strong Parallel Repetition Conjecture would predict
that the value of the ¢-fold repeated game is 1 — O(¢/n) so long as ¢t < n. Alas, this turns out to be false.
First, in [15], it was shown that non-trivial solutions to the foam problem imply non-trivial strategies for the
t-fold repeated game, and in particular the existence of a tiling body with surface area o(n) would refute the
Strong Parallel Repetition Conjecture. Subsequently, Raz [28] showed that the value of the ¢-fold repeated
odd-cycle game is in fact at least 1 — O(v/t/n) so long as t < n?, and that Theorem 1.3 is optimal (i.e., the
quadratic gap is necessary, even for Unique-Games, and more specifically for Max-Cut). Subsequent works
were able to use these insights to solve the foam problem for the integer lattice [24, 2] and lead to better
understanding of parallel repetition and its variants [6, 8]. From the point of view of UGC, these results
were very discouraging since they eliminate one of the main available venues (perhaps the main one) for the
proof of UGC.

Partly due to this issue, the best partial results towards UGC had to take an entirely different ap-
proach [22, 12, 11, 23, 7], and currently can only prove that GapUG(1/2, §) is NP-hard for every § > 0.

1.2 A symmetric variant of Parallel Repetition

One may try to revive the plan for showing the equivalence of UGC and the hardness of Max-Cut by con-
sidering variants of parallel repetition. Ideally, for that approach to work, one should come up with a variant



of parallel repetition, in which (a) the value decreases exponentially with the number of repetitions, and (b)
the operation preserves uniqueness. One operation that had been considered in the literature, for example,
is called fortification [25, 9]. Using this operation, the value of the game indeed decreases exponentially,
however this operation does not preserve uniqueness and therefore is not useful for showing the equivalence
of UGC and the Max-Cut Conjecture.

More relevant to us is the symmetric variant of parallel repetition that had been previously suggested as a
replacement for parallel repetition. In this variant, given a basic game G, the verifier chooses the challenges
(u1,v1), ..., (us, ve), and sends the questions to the provers as unordered tuples, i.e. U = {uy,...,u:} and
V = {v1,...,v}. The verifier expects to receive a label for each element in U and each element in V, and
checks that they satisfy each one of the constraints (u;, v;). We denote this game by G®¥™!, and note that it
clearly preserves uniqueness; also, we note that the arguments used to refute the strong Parallel Repetition
Conjecture do not immediately apply to it. While a naive application of this variant can still be shown to
fail in general,' there is still a hope that it can be used in a more clever way and establish the equivalence of
UGC and the Max-Cut Conjecture. Our work is partly motivated by seeking such possibilities.

We are thus led to investigate the effect on symmetric repetition on the odd cycle game, and more
specifically the symmetric variant of the foam problem which again is very much related.

1.3 Our results
In this paper, our main object of study mainly are tilings of R™ using a symmetric body.

Definition 1.4. A set D C R" is called symmetric if for any © € S,, and x € R", it holds that x € D if and
only if m(x) € D.

The main question we consider, is what is the least surface area a symmetric tiling body can have. Again,
one has the trivial example of the solid cube D = [0, 1]™, but inspired by the non-symmetric variant of the
problem, one may expect there to be better examples. We first show that while this is possible, the savings
are much milder, and can be at most a multiplicative factor of \/log n.

Theorem 1.5. Any symmetric tiling body D of volume 1 with piecewise smooth surface has surface area at

least ( \/lgﬂ .

Besides the quantitative result itself, we believe the argument used in the proof of Theorem 1.5 carries
with it a lot of intuition regarding the additional challenge that the symmetric variants of the foam problem
and the parallel repetition posses, and we hope that this intuition will help us to develop better understanding
of symmetric parallel repetition in general. We remark that our proof actually shows a lower bound on the
“noise sensitivity” parameter of the body, which is known to be smaller than the surface area of the body.

We complement Theorem 1.5 with a randomized construction showing that O(y/logn) savings are in-
deed possible.

Theorem 1.6. There exists a symmetric tiling body D of volume 1 with piecewise smooth surface that has

n
surface area O (\/@)

Our results also imply tight bounds for the value of the ¢-fold symmetric repetition of the odd cycle
game, which we discuss next.

!"This can be seen by considering a graph which is the disjoint union of many odd cycles (instead of a single odd cycle), say M,
so that one would get a canonical ordering on most subsets of ¢ vertices from this graph, so long as ¢t = o(v/ M).



1.4 Significance of our results for symmetric parallel repetition.

Using our techniques, one may give sharp estimates to the value of the ¢-fold symmetric repetition of the
odd cycle game, as follows.

Theorem 1.7. There is ¢ > 0, such that for an odd n, if t < cny/logn then vaI(Cf?symt) <1- c#@.

Theorem 1.8. For all n,t € N it holds that val(C?symt) >1-0 (n fogt).

We remark that a similar connection between the standard foam problem and the value of the ¢-fold
repeated game is well known. More precisely, in [15] the authors show that (1) tilings of the Euclidean space
with small surface area can be used to derive good strategies for C%*, and (2) the Euclidean isoperimetric
inequality (which gives a lower bound of ©(/n) on the surface area of a tiling body) can be used to prove
upper bounds on the value of C%*. We remark that while (1) above is derived in a black-box way, the
converse direction, i.e. (2), is done in a white-box way. That is, the authors in [15] do not actually use the
Euclidean isoperimetric inequality, but rather convert one of its proofs into an upper bound of the value of
the ¢-fold repeated odd cycle game.

In contrast to [15], our proof of Theorems 1.7, 1.8 follow more direct adaptations of the proofs of
Theorems 1.5, 1.6. This is partly because our arguments work from scratch and are therefore more flexible.
We outline these adaptations in Section 5.

We believe that Theorem 1.7 gives some new life to the possible equivalence between the Max-Cut
Conjecture and UGC. For example, this would follow if such rate of amplification would hold for all graphs
if we allow for a “mild” preprocessing phase first (i.e., preprocessing that doesn’t change the value of the
instance by much). For this reason, we believe it would be interesting to investigate other graph topologies
on which symmetric parallel repetition performs well, and hope that the techniques developed herein will
be useful.

On the flip side, Theorem 1.8 asserts that even symmetric parallel repetition on the odd cycle game
admits non-trivial strategies. Thus, we cannot hope to use it in order to establish the equivalence of weaker
forms of the Max-Cut Conjecture and UGC. Here, by weaker forms of the Max-Cut Conjecture, we mean
the conjecture that GapMaxCut[1 — ¢,1 — d(e)] is NP-hard for small enough ¢, and 6(¢) is a nearly linear
function of ¢, e.g. 6(¢) = 100¢ or §(¢) = e/log(1/e). Given that the best known NP-hardness results for
Max-Cut in this regime are only known for § = (1 + §2(1))e, this means that there is still a significant road
ahead to establish even the weakest version of the Max-Cut Conjecture that may be useful for UGC.

1.5 Techniques

In this section, we explain some of the intuition and idea that go into the proof of Theorems 1.5 and 1.6,
focusing mostly on the former.

Let D be a symmetric tiling body. To prove that the surface area of D is at least A, it is enough to
prove that D is sensitive to noise rate 1/A. lLe., that if we take a point  €r D, and walk along a random
direction u of (expected) length 1/A, then with constant probability we escape A at some point on the line
gr,u(t) =x+1-u.

We begin by describing an argument showing a worse bound than the one proved in Theorem 1.5, which
is nevertheless helpful in conveying some of the intuition. To prove that a random line ¢, ,,(t) crosses D with
noticeable probability, we argue that for appropriate length of u, with constant probability the line £, ,, will
contain a point in which there are two coordinates differing by a non-zero integer, say y with the coordinates
being i, 7. Note that this is enough, since then if we assumed that y € D, then the point 3’ in which the



value of coordinates i, j is switched also lies in D (by symmetry), and then the difference of y and ¢’ is a
non-zero lattice vector, so they must be in different cells of the tiling. Therefore we conclude that y &€ D.

With this plan in mind, let z = (x1,...,2,) €r D, and consider the coordinates of x modulo 1,
iie. B = {x; (mod 1),...,x, (mod 1)}, as points in the torus T. First, it can be shown without much
difficulty that they are jointly distributed as uniform random points on T, hence standard probabilistic tools
tell us that any interval of length 1001logn/n on the circle contains at least two points from B. Now,
regardless of how the body D looks like, there would be two coordinates, say ¢ and j, that almost differ by a
non-zero integer, yet appear very close when projected on the circle, i.e. in distance at most 100 log n/n. In
this case, with constant probability the coordinates 7, j get even closer along a random line ¢, ,,(t) = x+t-u,
and provided the length of u is long enough to cover the distance between x;, x; on the circle (i.e. each
coordinate of magnitude ©(logn/n)), the line ¢, ,,(t) would contain a point as desired.

The above argument can indeed be formalized to yield a lower bound of 2 (@) on the surface area of
D, but it carries more intuition than just the bound itself. In a sense, this argument says that if we project =
onto the torus, we should be wary of coordinates whose projections are too close, and make sure that it would
only occur if the coordinates themselves are close (as opposed to almost differing by a non-zero integer).
Analyzing the event that two coordinates meet on the circle while being different is easily seen however to
not yield a better bound than (n/logn), hence to prove Theorem 1.5 we must look at a different event.
That being said, the argument does tell us that we should look at pairwise distances between coordinates
of « when projected on the circle, and in particular on pairs that “relatively close” and the way they move
along a line in a random direction.

It turns out that it is enough to come up with some parameter that behaves differently on the endpoints
of the line, assuming the line does not escape D). This is because that if the escape probability from D is
small, then the distributions of x and = + u are close in statistical distance, and in particular any parameter
should behave roughly the same on x and on x + u. Indeed, our proof utilizes an energy function (inspired
by the previous argument) that considers the pairwise distances between coordinates of x; the contribution
from a pair of coordinates that are in distance d in the circle is proportional to %%, where Z ~ \/12@‘
We show that with high probability, the energy increases along a random line ¢, ,,(¢) provided it does not
escape D, while on the other hand, if the escape probability is small, then x and = + w are close in statistical
distance and hence Pr, [Energy(z + u) > Energy(z)] &~ . This implies that the escape probability must
be constant.

We remark that the above high-level intuition also plays a role in the proof of Theorem 1.5. I.e., when
constructing a symmetric tiling body D, all we really need to care about are the pairwise distances between
coordinates, and that we must make sure that somewhat far coordinates will project to far points on the torus.
Indeed, given a point x € R", in order to decide which integer lattice point y € Z™ we round z to, we only
look at this pairwise distances of = on the torus. We try to find a point z on the torus that is far from all the
coordinates of z, and do the rounding according to it. One naive attempt would be to take z that is furthest
from all coordinates of z, however this point turns out to be very noise sensitive and therefore yield a body
with large surface area. Instead, we consider a probability distribution that only puts significant weight on
z’s that are somewhat far from all z;’s, yet is not too concentrated around the maximizers. Coming up and
analyzing a construction along these lines turns out to require considerable technical effort, and we defer a
more elaborate discussion to Section 4

Organization of the paper. In Section 2, we set up basic notations and preliminaries. Section 3 is devoted
to the proof of Theorem 3, and Section 4 is devoted for the proof of Theorem 4. In Section 5 we prove
Theorems 1.7, 1.8, and in Section 6 we state some open problems.



2 Preliminaries

Notations. We write X <Y or X = O(Y) to say that there exists an absolute constant C' > 0 such that
X < C-Y, and similarly write X 2 Y or X = Q(Y) to say that there exists an absolute constant ¢ > 0
suchthat X > c¢-Y. Wewrite X <Y or X =0(Y)tosaythatY < X <Y.

We denote random variables by boldface letters such as x and A. We denote by N (i1, o2) the distribu-
tion of a standard Gaussian random variable with mean z and variance o2, and by N'(ji, ¥) the distribution
of a multi-dimensional Gaussian random variable with means (i and covariance matrix X.

2.1 Needles

Definition 2.1. Let 6 > 0, and let a € R™. A random 6-needle is a line {gy = {a+t-u |t € [0, 1]} where
the direction vector u is a chosen as a standard Gaussian N (0, d1,,).

Given a tiling body D, a random J-needle from D is a random d-needle /5 , where a € D is chosen
uniformly. Random needles are a useful tool to measure the surface area of a D, as shown in the following
two lemmas. First, given a tiling body D and a needle ¢, ,,, we may think of the needle as “wrapping around”
around D, i.e. its points are taken modulo D. We denote this “wrapped around” line by ga,u- We will use
the following formula from [32]; the case n = 2 is formula (8.10) therein, and the extension to general n is
discussed in page 274.

Lemma 2.2. There is a constant C,, = O(1), such that the following holds. Let S be a piecewise smooth
surface in a tiling body D of volume 1, and let § > 0. Then

E [[ZLUDS} = C,, -V - area(9).
acD,u~N(0,61,)

Lemma 2.3. Let D be a tiling body of volume 1, and let 6 > 0. Then

p ga ul oD < ® ) oD).
ac DN (0.51,) [ta, 7# 0] (V/8)area(dD)

Proof. Set S = 9D, and note that whenever ¢, 5, N1 0D # (), we have that
previous lemma we get that

gaﬁu N S" > 1. Hence by the

lauNOD } < O(V9) - area(dD). O

v fwnoDA0< B
acD,u~N(0,51,) [fau 70 a€D,u~N (0,51
We will use the above lemma to prove lower bounds on the surface area of a tiling body, by finding
d such that the probability on the left hand side of Lemma 2.3 is at least Q(1); this would imply that
area(9D) > Q(1//9).

2.2 Basic useful properties of tiling bodies

Lemma 2.4. Let D C R" be a symmetric body, such that for all z € 7" \ {0} we have D N (D + z) = (),
and let x € D. Then for every 1 <1i,j < n, if v; — x; € Z, then x; = x;.

Proof. Assume towards contradiction x; — x; is a non-zero integer k, and let S; ; € \S,, be the permutation
that maps ¢ to j, j to < and has any r # 1, j as a fixed point. Since D is symmetric, we have that S; ;(z) € D.
Also, we have

x —8;i(x) = (z; — x5)(e; — e5) = k(ei — e;),



where e; is the ith element in the standard basis. In other words, we get that z = S; j(x) + z for non-zero

z € Z", and therefore x € D + z. This contradict the fact that D and D + z are disjoint. O
Lemma 2.5. Let D be a volume 1 tiling body, and choose a = (a1, ...,a,) € D uniformly at random.
Then the random variable (a1(mod 1),. .., a,(mod 1)) is uniform over [0,1)™.

Proof. Sample x € [0,1)", and take a = x (mod D). Note that the distribution of a is uniform over D.
Indeed, for that we note that the map x — z (mod D) is bijection from [0,1)" to D: otherwise, there
were x # ' in [0, 1)" that are equal mod D, and therefore differ by non-zero lattice point (which is clearly
impossible). Now as the distribution of a (mod 1) is just x, the claim follows. O

3 The lower bound: proof of Theorem 1.5

In this section, we prove the lower bound on the surface area of a symmetric tiling body D. Throughout,
we will have two parameters: o, which is magnitude of each coordinates in the needle we consider (which

Vl1ogn
n

will be of order ), and an auxiliary parameter Z (which will be of order 5>--). Let D be a symmetric

logn
tiling body containing 0. We denote by a a random point in D, and by u a Gaussian vector N'(0, 021,).
We will prove that Pra y [law € D] = ©(1), which by Lemma 2.3 implies that area(0D) > Q(1/0). As

o = ©(y/log n/n), this would establish Theorem 1.5.

Notations. For z,y € R, define

d(z,y) = o, |(z+2) —yl €0,1].
To gain some intuition for the definition of d(z, y), suppose z and y are two entries of a pointa € D. Clearly,
if d(x,y) is small, then x, y nearly differ by an integer z # 0, and this says that the point a is somewhat
close to the boundary of D (in the sense that Lemma 2.4 could kick in if we move along a direction that
decreases this distance).
Our argument will indeed inspect d(a;, a;) for all distinct 7, j € [n] and the way they change along a
random direction. A key measure that we will keep track of is the energy of a point a € D, defined by

U(a) := Z e~ % dlai,a;)
1<)
We show that for a €z D and u ~ N(0,02L,), if fa,u € D with probability close to 1, then the energy
of a increases along the line /,, with high probability, and in particular that ¥(a + u) > ¥(a). We
then argue that with high probability, this should be the case for the point a as well as for a — u, hence
U(a + u) > ¥(a — u) with high probability. This event however can happen with probability at most 0.5
by symmetry, hence completing the proof.

3.1 Analyzing the energy along a random line

By definition of d(x, y), we either have d(x, y) = (x+2z—y) ord(z,y) = —(z+2z—y) for some z € Z\ {0},
and this sign determines whether z, y need to move in different directions or the same direction for d(z, y)
to get smaller. To capture this, we denote

[ 41 ifd(x,y) =x+z—yforsomez € Z, z # 0,
vz, y) = { —1 otherwise.



Next, we discuss the energy of a configuration, which is the key concept used in the proof. Let Z be a
parameter to be chosen later (of the order n/logn). As stated earlier, our goal is to analyze the behaviour
of ¥(a) along a random o2-needle from a in direction u. Towards this end, note that we expect (at least if
ui, uj are small) that d(a; + u;, aj + uj) = d(as, a;) + y(as, aj)(uj — uj), hence expect ¥(a + u) to be

close to
U(a,u) = Z e—Z(d(ai,a5)+v(ai,a;)-(ui—u;))
i<j
Indeed, this is the content of the following claim.
Claim 3.1. Suppose |u;| < 1/20 for all i, and a + [0,1] - u C D, then
1W(a+u) — Ula,u)| <n?- e %/

Proof. We consider the contribution of each pair (7, j) to ¥(a + u) and ¥(a, u) separately. Without loss of
generality we may only consider pairs 4, j that y(a;,a;) = 1, and thus d(a;,a;) = a; — a; + z for some
z €2,z #0. Let

d=a; —a; +z + (u; — uj) = (a; + w;) — (a; + uj) + z.
First, we argue that d > 0. Otherwise, since a; — a; + z > 0 it follows by continuity that there is A € [0,1]
such that a; — a; + z + A(u; — u;) = 0, and hence the point a + Au has entries that differ by an integer
z # 0, and this contradicts Lemma 2.4 (as a + Au € D). We now consider two cases:

e Case 1: d € [0,0.5]. In this case, we have d(a; + u;, a; + u;) = d, and thus the contribution of the
pair (i, j) to both sums is the same (e~%"%).

e Case2: d > 0.5. Since |u; — u;| < 0.1, it follows that d(a;, a;) = d— (u; —u;) > 0.4, which implies
d(a; + u;, a; + u;) > 0.3. Therefore, the contribution to ¥(a, u) from i, j is at most e~%4Z and to
W(a + u) is at most e~ 3% and in particular (i, j) contributes (in absolute value) at most e~%/4 to
the difference between the sums.

Taking a sum over all pairs (4, j) concludes the proof. O

3.2 Analyzing the expectation and variance of ¥V (a, u)

Next, we consider ¥(a,u) as a random variable over the choice of u and compute its expectation and
o . . 2 2.2
variance. In both computations we will use the well-known fact that E[e~ %"V (0:¢7)] = ¢Z°¢"/2 for all ¢ > 0.

Claim 3.2. For every a € R™ we have Eyn(0,021,) [Y(a, u)] = ¥(a) - e(Z0)?,

Proof. By linearity of expectation we have that

E Y(a,u)| = e~ Zdlaia;) . F |:€_Z"Y(aivaj)'(ui_uj) ]
uNN(O,O'QIn)[ ( )} ; u~N(0,021,,)

Note that the above expectation does not depend on ¢, j: for every 4,7 the distribution of u; — u; is
N(0,0%) — N(0,02) ~ N(0,20?), so it is symmetric around 0 and thus the sign 7(a;,a;) does not af-
fect the expectation. Hence we have

E  [¥(a,w)] = U(a) E[ZNO2) = w(a) - 77, =
u~N(0,021)



Next, we turn our attention into upper bounding the variance of ¥(a, u), and for that we first define
the notion of good points a € D and prove two preliminary claims. We say a point a is good if any
interval of length (10logn)/n on the torus contains at least log n and at most 100 log n coordinates from a
(mod 1). Note by Lemma 2.5, if a is chosen randomly from D then a (mod 1) is uniform over [0, 1)™ and
by Chernoff bound is easily shown to be good with probability > 0.999.

We first show that good points have high energy.

lo

8% if a is good then U(a) > ¢ log® n.

n

Claim 3.3. There exists co > 0, such that for Z = 0.1

Proof. Partition the torus [0,1) into m = n/(10logn) disjoint intervals of length 1/m = (10logn)/n
each. We say that I; is unanimous, if there is b; € R (called anchor) such that (1) b;(mod 1) is the middle
of I;, and (2) for the majority of points a; € I;, |a; — b;j| < 1/m.
We consider two cases:

Case 1: There is an interval I; that is not unanimous. Note that there are at least log n coordinates
j of a such that a; € I;. Let j* be such coordinate, and write a;+ = zj» + {a;+} where z;+ € Z and
{a;~} is the fractional part of aj~. Consider b = zj« + m; where m; is the middle of I;. Then since I; is
not unanimous, b is not an anchor of it and so there are at least % log n coordinates of a, say (ag)ie K;
that mod 1 are in [;, and |a, — b| > 1/m. Writing a;, = 2z, + {a}, we observe that z;, # z;«, since
otherwise |ar, —b| = |[{ag} —m;| < 1/(2m). Hence the difference a;, — a;~ is 10logn/n close to an
integer zj, — z;+ # 0, and so d(ay, a;j+) < 10logn/n, and the contribution of ¥(a) is at least e~ !. Summing

we get , . .
VU(a) > 3 Z Z e~ Zdak,aj%) > 5 Z e K| = 4—log2 n.

e
Jriajx €1 KEK; jx Jia; €14

Case 2: All intervals are unanimous. Let b; be an anchor of ;. Note that since the fractional part of two
adjacent anchors, i.e. of b;, b;+1, are 1/m apart, we have that either |b; — b;11| < 1/m or |b; — bjy1| >
1 — 1/m. We claim there exists ¢ for which the latter condition holds. To see this, assume that for all
i =1,...,m — 1 we have that the first condition holds. Then we have b; = z + iml% for some z € Z for
alli =1,...,m, and hence |b,, — b1| = 1 — 1/m (and the condition holds for i = m).

Thus, we fix ¢ such that |b; — b;41| > 1 — 1/m, and thus b; — b;11 = z + a for z # 0 and |a| < 1/m.
Let K; be the coordinates j of a such that |a; — b;| < 1/m for j € K; and similarly define K; 1. We have
that a, — aj = z + a+ (ar — bi+1) + (aj — b;), hence a, — a; = 2+ [ for |B] < 3/mforall r € Ky,
J1K;. Thus d(a,, a;) < 3/m, and we get

1
U(a) > |Ki| [Kir| e 73™ > —e P log’n m

e

LetC; =}, 4 e~Z4(@:,:%5) be the contribution of a; to ¥(a). Note that ¥(a) = 3. G
Claim 3.4. There exists c3 > 0, such that if a is good, then for all i we have C; < c3¥(a)/logn.

Proof. Note that d(a;, aj) > [{a;} — {a;}|. Since any interval of length 101og n/n on the torus contains at
most 100 log n points of a, we have that the number of j’s such that [{a;} — {a;}| is between 10logn/n - k
and 10logn/n - (k + 1) is at most 200 log n (for all k). Therefore,

oo o0
C; < 200logn - Ze_z'k'(mlog”)/” =200logn - Ze_k < 400log n.
k=0 k=0

1 ¥(a)
c2 logn?

Using Claim 3.3, we may bound logn < finishing the proof. O
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We are now ready to bound the variance of ¥(a, u).

Claim 3.5. There exists ¢c; > 0 such that the following holds. Let Z = n/10logn, let a € R™ be good and
let u ~ N(0,021,). Then

A A(Z-0)2 _ 2Z-0)? 2
vary[¥(a,u)] < g (e e ) - ¥(a)

Proof. Using Claim 3.2 to compute the expectation of ¥(a, u), we have by definition that

2

varg(¥(a,u)) = E Ze—z'd(aiﬂj) - (eZ(anag) (W) _ 8(2.0)2)

T\
=Y ) g [(ezw(ai,amui—uﬂ _ e<Z~a>2>2]
i<j "
+ Z e~ 2 (d(ai,aj)+d(a,ar)) . @ [(ez"v(ai,aj)‘(ui—uj) _ e(Z‘U)Q)(eZ"Y(ai7ak)'(ui_uk) _ 6(2'0)2) )
o) b
distinct

Here, we used that fact that if ¢, j, k, r are all distinct then eZ(aia;) (ai—g) - o Zy(ap,ar) (Wr—ur) gre jnde-
pendent with expectation e(? @)* hence the contribution of these terms is 0. Computing, we see that

Y
u

E |:(eZ-'y(ai,aj)-(uiu]') _ 6(2.0)2)2] —E {ez.N(o,&T?)] _ 2(Z0)? _ A(Z0)? _ 2Z0)?

and
E {(ezwai,an-(ufuﬁ) — 20 (Z(anan) (i) e(Z-a)Z)}
—E [ew(ai,aj)ﬂ(ai,ak))Z-N(o,aQ)} E [QZ-N(O,M} _ 220
<E [eQZ-N(O,0'2)] E [eZ'N(O,Qaz)} _ o220

— 63(Z-c')2 o 2(Z-U)2'

Thus, we get that

varu(\IJ(a, u)) < Z €—2Z~d(ai,aj)(e4(Z-a)2 _ €2(Z~<7)2) + Z e—Z-(d(ai,aj)-‘rd(ai,ak)) (63(2'0')2 _ 62(Z~U)2)

1<j (4, 4, k) distinct
< (64(2.5)2 _ Z Ze 2Z-d(as,a;) + Z e d(a;,a;)+d(ag,ar))
1 J# J,k#i
2
_ (64(2.0)2 _ 62(Z.g)2) Z Z €—2Z'd((li,aj)

— (64(Z-0')2 o eQ(Z-U)Q) . Z CE
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Therefore, using Claim 3.4 we conclude that

4(Z-0)2 2z.0)2 3% (a) _ 2c3 4(Z-0)2 2(Z-0)2 2
varg(¥(a,u)) < (e*Z9)7 — X >)1Ogn ) Co= - (eMZ0)7 A2y L (a)?,

Setting ¢ := 2c3 completes the proof. O

Putting the last two claims together, we have:

Claim 3.6. Let o = 10*, /¢y Long" and let a € R™ be good. Then

Pr[W(a,u) > U(a) + 2 7)"

5 U(a)] = 0.96.

Proof. We upper bound the probability of the complement event. Using Claim 3.2 (and e! > 1 + ¢ + 2/2
fort > 0), we get

o)4
IE[\II(a,u)] > V(a)- <1 + (Zo)* + (Z2)> :

Hence

(Zo)*
2

Pr |¥(a,u) < ¥(a)+

u

vw)| <rr|

U(a,u) — E[¥(a, u’)]‘ > V(a) - (20)2} .

u/

We want to upper bound the probability of the last event using Chebyshev’s inequality. Since a is good,
the conclusion of Claim 3.5 holds. Since Zo = o(1), for large enough n we get

a 4(Z-0)2 _ _2Z-0)? 2 €1
< . < .
vary[¥(a,u)] (e e ) ¥(a)® < g

< : U(a)? - 8(Zo)>.
Tog n (a)-8(Z0o)

Therefore, applying Chebyshev’s inequality we see the probability in question is at most

vary[¥(a,u)] < c1-¥(a)? 8(Zo)* 8c1 e
U(a)?2-(Zo)t = (logn)-¥(a)?- (Zo)t  (logn)-(Zo)?2  102¢;

= 0.04. O

3.3 Finishing the argument
For each u, denote €, = Pracp [lan € D], and denote ¢ = Eu~A(0,021,,) leu] = Prau [lau € D].
Claim 3.7. For each u, Dry|a;a — u] < €y + £y

Proof. Let K be a Borel set. Note that it is enough to show that (1) if K € D then 0 < Praep [ae K| —
Pracpla—u € K] < gy, and 2) if K C D, then —¢_,, < Pracpla € K| — Pracpla—u € K] < 0.
Indeed, given both (1) and (2), the triangle inequality implies for any Borel set K C R",

Prae K| - Pr j[a—u¢€ K]
acD aeD

< [a—ue€ K\D] <ey+e_y.

Prlac KND|— Prja—ue KND|+ Prlac K\D|]— Pr
aeD aeD aeD acD

12



To prove (1), note that Praep [a € K| = p(K) and

alZE[a—ueK]: [ae K+ul =p((K+u)nD).

Pr
acD
This is at most (K + u) = p(K) (hence the expression in (1) is non-negative) and at least > p(K + u) —
(K +u)\ D)= pu(K) — pu(K \ (D — u)). Therefore

0< Prlac K] - Prfa—ue K] <u(K\(D—u) <D\ (D-u)=Prla+ugD|<e.

To prove (2), note that Pracp [a € K] = 0 (hence the expression in (2) is non-positive) and

Prla—ue K| <

P — D]l <e_y. ]
aeD aerD[al u§§ ] E~u

Claim 3.8. ¢ > 0.1.

Proof. Let E) be the event that a + u[0, 1] C D, let Ey be the event that ¥(a) < 1, let E'3 be the event that
|u;| > 1/20 for some 7 and let E4 be the event that U(a,u) > ¥(a) + @\I’(a). Finally, let E5 be the
event that U(a + u) > ¥(a) and denote F(a,u) = E; N (—E2) N (-E3) N E4. Note that if the event E
holds for a, u, then Ej5 also holds, since by Claim 3.1:

(25)4\11(a) —n?-e 4t > V(a).

U(a+u) > U(a,u) —n? e %" > W(a) +

By Claim 3.3 the probability of E is at most the probability a is bad, hence it is at most 0.005. By
definition, the probability of F; is 1 — . By the union bound and Chernoff inequality, the probability of Es
is o(1). Thus, by Claim 3.6 we have

Pr[E(a,u)] > 0.96 —e — 0.005 — o(1) > 0.95 — ¢. (1)
a,u

Fix u. Using Claim 3.7 we get that

lzr [E(a—u,u)] > P;r [E(a,u)] — Dryl[a;a —u] > PrE(a,u)] — ey — e_y.

a

By the union bound, we now conclude that

Pr[B(a—u,u) N E(a,u)] > 1-Pr [m] —Pr [E(a, u)] > 9Pr [B(a,u)] — 1 — ey — £y

a a

Taking expectation over u, we get that

Pr[E(a—u,u)N E(a,u)] > 2Pr[E(a,u)] — 1 —2E [ey] > 0.9 — 4e.
a,u a,u u

Next, when both E(a — u, u) and E(a, u) hold, we have by the previous observation that E5 holds for both
pairs (a — u,u) and (a,u), and so ¥(a + u) > ¥(a) = ¥((a — u) + u) > ¥(a — u). Thus, we get
that Pra y [¥(a+u) > ¥U(a—u)] > 0.9 — 4e. On the other hand, the probability on the left hand side
is at most 0.5; this follows as Pry [U(a+u) > ¥(a —u)] = Pryy [¥(a—u) > ¥(a+ u)| (since the
distributions of u and —u are identical) and their sum is at most 1. Combining the two inequalities we get
that e > 0.1. OJ
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4 The upper bound: proof of Theorem 1.6

In this section we prove a matching upper bound on the surface area of a symmetric foam by giving a
(probabilistic) construction of a symmetric tiling body D of surface area O(n/+/log n). The main technical
result proved in this section, Lemma 4.2, establishes a weaker statement, and in Section B we show how to
deduce Theorem 1.6 from it.

4.1 Reduction to constructing a rounding scheme

Suppose S is function mapping (multi-)sets of n points from R/Z, to R/Z. We further assume that for all
(multi-)sets A, it holds that S(A) ¢ {0} U A.

Given such S, we may extend it to R” by S(z1,...,2,) := S({{z1},...,{zn}}), where {z;} is the
fractional part of #. We can construct a rounding scheme R: R™ — Z" using S as follows.

e Oninput z = (x1,...,2,), denote z = S(x) and view z as a number in [0, 1).
e Foreachi € [n]:

- if {ﬂi‘z} S [0, Z), set R(:L‘)Z = LCL',LJ,

— otherwise, {x;} € (z,1), and set R(x); = [z;].

First, R is well-defined since z ¢ {0,{x1},...,{zn}}. Next, note that for any ¢ € Z" it holds that
R(z +t) = R(x) + t, thus R induces that the body D = {z | R(z) = 0} is tiling with respect to the
lattice Z™. Last, we note that since for any 7 € S,, we have that S(7(x)) = S(x), we also have that
R(w(x)) = n(R(x)), and hence D is symmetric.

In our proof we will define a distribution over mappings S, and we will want to study the noise sensitivity
of the resulting body D using properties of the mappings .S. The following claim gives useful conditions to
study noise sensitivity in terms of mapping .S.

Claim 4.1. Let x and x 4+ A two points in R™. Suppose that
1. S(x)=S(x+A)=:z and
2. foralli, {x; + AA;} # 2, VA € [0, 1].
Then the points x,x + A fall in the same cell in the tiling induced by D.

Proof. Suppose towards contradiction that the conclusion of the statement does not hold, i.e. x and x + A
belong to different cells in the tiling induced by D. Thus, the rounding function R when applied on x and
on x + A should produce different lattice points, so there is an ¢ such that R(z); # R(x + A);. We fix
that ¢ and assume without loss of generality that A; > 0 and that z; € [0, 1). We now consider two cases,
depending on the range z; falls into:

1. If z; € [0, z), then by definition of R we get that R(x); = 0, and R(z + A); = O unless x; + A; > z,
which leads to a contradiction to the second condition (z is on the interval between x; and x; + A\;).

2. Ifx; € (z,1), then R(x); = 1, and R(z + A); = 1 unless z; + A; > 1 + z, which again leads to a
contradiction to the second condition (1 + z is on the interval between x; and x; + A;). ]

Our main technical statement is the following lemma.
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Lemma 4.2. There exists a distribution over mappings (Sy)7 (T is a vector of randomness) such that for

small enough € > 0, setting o = Eivbﬁl we have
Pr [Conditions of Claim 4.1 hold for x and x + A]| > 1 — O(e).

E
7 | x,A~N(0,021,)

Deducing from Theorem 1.6 from Lemma 4.2 mostly involves measure-theoretic arguments, and we
defer this deduction to Section B. We will actually need the following slightly more informative version of
Lemma 4.2 above, using the reduction from mappings to tilings presented in the beginning of this section,
and an inspection of the bodies Dj our proof gives.

Lemma 4.3. There exists a distribution over tiling bodies (Dj) such that

1. For small enough € > 0, we have

n
E Pr At least one of the conditions of Claim 4.1 fail for x and x + A]| < E.
7 | x,A~N(0,e21,) [ f f fail f ] ~ Vdogn

2. For each 7, Dy is a countable union of semi-algebraic sets (i.e., sets defined by finitely many polyno-
mial inequalities).

4.2 The construction of Si
4.2.1 Overview

Before jumping into the technical details, we start with some intuition. Recall that on input x (a set of n
points from R/7Z) we must output a number z € R/Z, and our goal is to minimize the probability so that
the conditions of Claim 4.1 fail on a short needle /,, A. Note that it would not be beneficial for us to choose
z that are close to ;. For example, if we chose z such that |z; — z;| < o, then there is constant probability
that the interval {z; + A\A;} Aeo,1) Would contain the point z, i.e. the second condition of Claim 4.1 would
fail.

Thus, a natural candidate for the choice of z would be the one that maximizes min;e,,) |z; — 2. It is
not hard to see that this minimum is typically of the order log n/n, so intuitively the second condition of
Claim 4.1 should hold with probability > 1 — . However, such choice for z would not be very stable: it is
typically the case that there are numerous 21, ..., z, that nearly achieve this maximum, thus the maximizer
among them could change when looking at z+ A (i.e., this event would happen with probability significantly
more than ¢), leading to a failure of the first condition of Claim 4.1.

We must therefore assign each one of the near-maximizer z1, ..., 2, some weight, so that the weight
of each one of them does not significantly change when moving to « + A. A general form of construction
of this type is to design a scoring function f: [0,00] — [0, 1], and given an input x to assign the weight
w(z) =[] f(|x; — z|) to each z, and sample z with probability proportional to w(z).

We rezmark that this general recipe essentially captures our (natural) attempts so far. On the one hand,
we want f to penalize z if it is very close to x;, hence we want f(¢) at least mildly increasing. On the other
hand, if f is very sharply increasing (e.g exponential), then one runs into the same problems as we had when
we thought of picking z that maximizes min;¢(, |x; — z;|. We are thus led to consider “mildly increasing”
scoring functions f, and polynomials turn out to be good choice. Indeed, our scoring function f will be
“trivial” if |2; — z| is too small or too large (i.e. it’ll be 0 if |z; — z| < 1;%;; and 1if |x; — 2| > lgg:), and
otherwise behaves cubically.
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4.2.2 A basic scoring function

Our construction of (Sy)7 uses a non-negative scoring function f with the following properties.

Fact 4.4. There exists a function f: [0,00) — [0,1] that is twice differentiable with continuous second
derivative with the following properties:

1. ft)=0ift <1
2. f(t)y=1ift =2
3 f)=x(t—-1)3if1<t<2

&

I ()] St2and|f"(t)| < tforallt.

Exhibiting function f as in Fact 4.4 is not hard, and we omit the proof. The function f defined by
fit)=(—1)%if1 <t <2and f(t) = 0fort < 1, f(t) = 1 fort > 2 is almost enough, except that it is
not differentiable at £ = 1. One can fix by convolving a smooth bump function with compact support.

Next, we wish to define the mapping S We view the input x as a multi-set, and the randomness vector
7 as an infinite sequence of (i,h) where i is a uniformly random element from [m] and h is a uniform
real-number from [0, 1].

Set m = n'/3, partition the circle the circle R/Z into m intervals of length 1/m each, I, := [%, %} ,
and let z; = = 1/ 2 be the middle of I;. Tt will be convenient for us to define g;(t) = (li(g)’; |t — z;]), and
subsequently r]( z):= [ gy). There two cases:

yeljne

Case (A): r;(z) # 0 for some i € [m]. In this case, we define a probability distribution p;(x) over the

i’s proportionally to the r;(z)’s, i.e. we define p;(z) = erﬁ"_”()x). We now perform correlated sampling of

i € [m] according to p;(x) using the randomness vector 7. More precisely, we go over the randomness
vector ¥ = (i1, h1), (i2, he), ... and find the smallest j such that h; < p;;(z), in which case we choose
i = i;. We then define Si(x) = z;,.

Case (B): 7j(z) = 0foralli € [m]. If1/2 & x, we define Sz(x) = 1/2. Otherwise, we define S, (z) = z,
where z is the first element from {ﬁ, %, cen 4’}1—;1} that is at least ﬁ—away from all the entries of x.

4.3 Estimating g; on close points

Fact4.5. Let j € [m] and x; € [z; — ‘981 — 095 5, 4 1087 4 0957\ [, L8 .y 1087 A, € R, and

25n
T ) ) logn logn
denote a; = dist (:U,, [zj — 5oy 25 + 2o ])

195 (@i + Ag) = gi (@) S Bilg;(as).

(@i + D) = gj(2i)] S 0P (of + AP).

L Ifa; 2
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Proof. Using Taylor’s approximation with remainder, there is y; € [z;, z; + A;] such that g;(z; + A;) =
9j (@) + gj(yi) Ai, hence

50n 50n
05 (s 4+ A9 — 03] S 1 g (w)] S 1] 22 ( i — zj|>

logn logn
n 50n 2
< Al —lyi — 2| —1) .

For the second item, since y; € [z, z; + A;], we get that

), and

2 s = 5] = 1| < B2 (ot 1A

plugging that in yields
95 (@i + A0) = gj(i)| S 0 | A (oF + AF) S n’(af + A7),

where the last inequality holds as ab < a® + b3/2 for all a,b > 0 (Young’s inequality). For the first item,
S0n gy — 25| — 1) > 20 (n, — |A;]), and by the lower

logn logn

note that since y; € [z;, x; + A;] we get that (

bound on «; this is > 222

«;. Therefore we may continue as

logn
n 50n 2 A [ 50n 3
o301+ 89 = 52| S o I (P = 5= 1) £ 15 (20 = s - 1)
Also, we have that (1‘227; lyi — 25| — 1) < l‘zg;”l (i + [Ai]) S 1og Qi 5O
Ail (- n S Ay
|g5(zi + Ai) — gj (@) S a; og 1" N a: g (@i). O

4.4 Analysis of the construction

In this section we prove that Lemma 4.2 holds for the construction of Sz from the last section, and for that
we show that for small enough ¢, the expected probability of the complement event is O(e), i.e. that

E Pr [One of the conditions in Claim 4.1 fails for x and x + A]| < e. )
7 %, A~N(0,0215)

We will think of ¢ as very small (say € < 2_”2), and analyze the contribution of z’s from case (A) and case
(B) separately. Case (A) is the main case that occurs often, and case (B) should be thought of rare.

4.4.1 Analysis of case (B)

First, we show that the probability x (or equivalently x 4+ A) falls into Case (B) is at most n~“W), For this,
it will be helpful for us to sample x, a multi-set of n uniformly chosen numbers in [0, 1] in the following
equivalent way:

e Sample ty,...,t,, — where t; is the number of ¢’s such that x;’s that fall into interval I;.

e Sample t; points uniformly from I;, foreach: =1,...,m.
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Note that E[t;] = n/m, hence by Chernoff bound Pr[t; > 2 - n/m] = e~ (/™) = n=«(1)_ Thus, by the
union bound we have that

PriVit; <2-n/ml=1-n-n*0=1—p 0,

Next, we condition on t; = ¢;, and assume that indeed ¢; < 2 - n/m for all i. Let E; be the event that
r;(x) = 0. Note that conditioned on t; = ¢;, the E;’s are independent and that

t; t; 2-n/m
Pr[=E;| t1,... ,tm] = Pr sUn la—z| <1| = | _ logn/25n S (1 mlogn
; 1/m 25n

> e—410gn/25 _ n—4/25’ (3)

where we used the fact thate™0 <1 —§ /2 for small enough § > 0. Therefore,

Pr[Et AEs Ao AEp|th,. .. tm] < (1 —n 425)m = (1 — p=4/2)n' — e,

as long as the ¢;’s satisfy the condition t; < 2-n/m. Therefore, the overall probability of case (B) is n—w(®),

Next, we analyze the probability that the conditions of Claim 4.1 fail given we are in case (B). Note that
if the conditions of Claim 4.1 fail to hold, then either (I) exactly one of x, x + A falls under Case (B), or
(1) both x and x + A fall under Case (B), but 1/2 € x + AA for some X € [0, 1]. We’ll bound these cases
separately.

Case (I). Assuming x is under Case (B), we know that each of the m intervals of the form J; := [z; —
1‘5)%, zi + lg(g);:] contains at least one point from x. Let x; be that point (if there are multiple, pick one at
random). Then x; is uniformly distributed in .J;. Therefore, the probability of x; + A, is outside J;, where
A; ~ N(0,0%) and 02 < €2, is O(e). Given case (B) occurs with probability < n~“(!), we conclude that

its contribution to the conditions of Claim 4.1 failing is at most

O(me) -n~M = O(e).

Case (II). Fix A = A, and consider x; conditioned on being in case (B). If x; is in one of the intervals .J;,
then its distribution is uniform over .J;, in which case we get that the probability 1/2 falls inside the interval
[xj,x; + Aj] is at most m |A;|. If x; is not in one of the intervals J;, then it is distributed uniformly on
[0,1] \ U™, J;, and the probability 1/2 is in [x;,x; + Aj] is at most 2 |A;| < m|A;].

Therefore by the union bound,

Pr(3j € [n] 1/2 € [x;,x; + A;] [case(B), Al < m Y |A].
j=1

Taking expectation over A ~ N(0, 021,,) and using Cauchy-Schwarz we get that

Pr[3j€[n] 1/2 € [x;,x; + A;] | case(B)] < mE Al <mvn E Al2] = mno.
PR < I 12 € b+ ] [ae®)] < g |S il <o [ TIATH

Therefore, the contribution of this case is upper bounded as

P£ [case(B) A Jj € [n] 1/2 € [x5,x; + Aj]] < P£ [case(B)Jmno = n~*M) .o = O(e).

18



4.4.2 Analysis of case (A)
We now analyze the contribution of x’s that fall into case (A) to the left hand side of (2).

Case (A), Condition 2. If x falls under Case (A), then the distance from all x;’s to z = S(x) is at least

ll%goz. Therefore, Condition 2 holds as long as |A;| < ll%goz for all 7. Since for each 7 we have that

2 2
logn _ Pr A? > logn < o
100n A~N(0,021,,) 1002n?2

A > < </logn,

Pr
A~N(0,021,,) [ ~ logZn/n2 ~

we get by the union bound that

logn

p 3 |A; >
3 [Z’ 1= Toon

< ne?/logn < e
ANN(O,OQIn) :| ~ / g ~ ?

for a sufficiently small .

4.5 Case (A), Condition 1.

This is the main part of the proof. We show that in case (A), the probability that Sz(x) # Sq(x + A)
is at most O(g). Note that the procedure describing S in this case is the correlated sampling procedure
of Holenstein [18], where Sz(z) samples 7 according to the distribution p(z) = (pi(x),...,pm(z)) and
S#(x+ A) samples ¢ according to the distribution p(x + A). Therefore, the probability they sample different
i’s is at most the statistical distance between the distributions, ||p(z) — p(x + A)||;. Therefore, we must
show that

Exx+a[[lp(x) = p(x + A)|1 |case(A)] = O(e). )

Before we turn to this task, we upper bound the contribution from several rare cases.

4.5.1 Contribution from some rare cases
First, we show that the case some A; is too large contributes at most O(¢) to the LHS of (4).
Claim 4.6. Pra n(0,021,) [1A;| = %9 /n for some i] < e.

Proof. For each ¢, we have that

I

(1A > 09 n] < 2~ 2ot _ o~

S

Pr
A~N(0,0215)
for small enough ¢, and the claim follows from the union bound. 0

From now on, we assume that the A;’s are distributed from N (0, 02)“ A;|<£0-95 /,- In particular, we can
assume that if t; is the number of x’s that fall into interval /;, these numbers stay the same under x + A. 2
Next, we handle the case in which p(x) is supported only on a single j. Note that in this case, if p(x + A)
is also only supported on this single j, then the contribution of these cases to the LHS of (4) is 0. We show
that the contribution from the other case is O(e).

2Strictly speaking, <; + A; may be in a different interval than z:;, but in this case it doesn’t affects the distribution p(z). Indeed,
suppose x; is in I; but 2; + A; isin Ij11. Then |z; + A; — zj11| = |zj41 — 5/m| — |Ai| — |zi — j/m| > 1/m — 26°% /n >
1/m — %%, Therefore, 22 [x; + Ai — zj41| > 2, and so f(22% |2 + A — zj41]) = 1.

logn

19



Claim 4.7.

P£ [35* such that p(x) is only supported on j* and the support of p(x + A) is different] < e
X,

Proof. In case (B), we have shown that the probability that ;(x) = 0 for all j is n~%"), and the same
argument shows that the probability ;(x) = 0 for all but a single j* is still n™* (1), Denote this event by E.

Let us condition on the event F, on j* and the number tq, . .., t,, of x;’s that fall into I, ..., I,,,. Note
that for each j # j*, since r;j(x) = 0 there is 7 such that x; € J; def [z — 12%: , 25+ log”] and we condition
on that i; for each j (if there is more than one, we choose one arbitrarily). Note that the distribution of x;,
is thus uniform over J;.

Now note that if for each j # j* it holds that x;; + A;, € Jj, then 7;(x + A) = 0, so the only
contribution to the probability of the event in question comes when Xi; + Aij & J; (or from case (B), which
we have already accounted for earlier). Conditioned on A = A, the probability for that is at most

A
E Z L, 40, 27; Z £ { Xij TR ng} Z logjl/ 5|0n

Ceiy Jizae | 75+ A

therefore taking expectation over A and using Cauchy-Schwarz we get that

E lez +A 2T Nlognxﬁ ZE[ } L JmvVme? < n2o.

A (X7 )];ﬁg GG G logn
Therefore, we get that

P£ [p(x) is only supported on j*, but the support of p(x + A) is different] < Pr[E]n?c < n “Wn2e <e.
X,
O

Let E be the event that the support of p(x) consists of at least two distinct j’s. We condition on the event
E in the subsequent argument. The following claim shows that conditioned on F, the sum of the r;(x)’s is
at least somewhat bounded away from 0. It will only come into play later in the proof.

E| Se

Claim 4.8. Pry [Z ri(x) <eld
J

Proof. Since we conditioned on E, there are j; # j2’s such that 7, (x), 7j,(x) > 0. We condition on j; and
J2, and assume without loss of generality that j; = 1, jo = 2. We show that

lir [rl(x) < el Ary(x) <! }rl(x),rg(x) > 0] <e, (5)

and thus the result would follow.

Let t1 be the number of 7’s such that x; € I1, and t9 be the number of ¢’s such that x; € Is. Note that
t1,t2 < n. In addition, conditioned on t; = t1 and ty = to, the events r1(x) < e'¢ and ro(x) < !0
become 1ndependent Therefore, to prove (5), it suffices to show for all ¢; < n,t2 < n,

Pr[ri(x) < et |71(x) >0, t1 =t1, ta =1o] S 03, (6)
X

~

Note that one way to sample 71 (x)|r1(x) > 0, t; = t; is as follows.
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logn
50n °

e Sample points X1, . .., X¢, uniformly from /; conditioned on |x; — 21| >

o 71(x) = :1:1 91(xi).
Let Y; be the random variable Y; := g1 (x;)~ %32, where x; is sampled as above (we need 0.32 < 1/3).
Let E be the event that |x; — 21| > log” . If E holds, then we get that g; (x;) = 1, and otherwise g1 (x;) 2

~

50n
logn

|x;

—0.96

E[Y;] < Pr[E]-1+Pr [E]E [g1(x;) “2M1<1+E‘]&—zﬂ—1 E|.

We write the last expectation as an integral, noting that |x; — 21| is distributed uniformly on [logn logn}
hence

50n ' 25n |°
logn
n 25
E < !
~ logn logn

where we made the change of variables y = gg”;lt — 1. Thus, E[Y;] < 1, and so there is a constant B such

that E[Y;] < B. Therefore by independence E [Hi:l Y;] < B < B, and so writing r1(x) in terms of
the Y;’s and using Markov’s inequality we get that

—0.96 —0.96 1

1
dt = — 096 <1
50/, ¥ S

50n
logn

7 50n P
logn

|Xi—21‘—1

t1
Pr [Tl(X) < e 1.6 |r1 > 0 t, = t1, ty = t2] Pr [H Yi > 5—1.6><0.32
=1

< B"- 0512 < 05 O

4.5.2 Analyzing the typical case

To expand out ||p(x) — p(x + A)l|1, we will be using the following claim. The set-up one should have in
mind is that r; = rj(z) and d; = r;(xz + A) for some = and A that are typical enough.

Claim 4.9. Let r; > 0, d; be real-numbers satisfying |d;| < r;/2 for all j. Denote T = Y r;, T' =
> (rj +dj), and let p; = r; /T and q; = (r; + d;) /T’ be two distributions. Then

di|  min(r;, T —r;
lp —qllx S,ZM : —( IT Z). (7)
;T

We defer the proof of Claim 4.9 to Section A. Morally speaking, it says that

190~ + AV S S0 [ [m r]%SHA)' ' min(rj(x),TT(S)—rj(x»” @)

]:1
where T'(z) = ) r;(z) (this is only morally because we are assuming that the supports of p;(z) and

J
pj(x + A) are the same, but formally speaking they may be different). In particular, to be able to handle
with that we first must understand the expectation of |r;(z) — 7;(x + A)| over A.
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Claim 4.10. Let j € [m], x1,...,z% € [zj — 1%: — 09 2 + 1(2)% + €999\ [z5 — 1§§:, zj + lggﬁ and

let v(z) = [[_, gj(;). Denote o; = dist (azi, [z — lg(g);l? zj + lgtg)nn]). and let Aj ~ N(0,0%)||a,;|<095.
Then

Ellr(z + A) = (@) S max | £, r(z) -0 ©

Proof. We consider two cases.

Case 1: o; < %9 for some i. In this case, we have

3
50n
9i(x) < <lognai> <09 < 620,

Similarly, we have dist(z; + A;, [z; — 987 2 4+ 1BR)) <, + |Ay] < 204, 50 g;(a; + A;) S €290, We
2.65

conclude that 7(x;), r(x; + A;) < €259, hence the contribution from these cases is at most &

Case 2: o; > %9 for all 5. In this case, we get that ; + A, is also not in the interval [z — lggs, zj+ lgg:]

hence g;(z;+A;) # 0,sor(z+A) > 0. Since r(x) are defined using products, it would be more convenient
for us to analyze log(r(x + A)/r(x)) as opposed to r(x + A)/r(z) — 1, and to justify we can do that we
first argue that 7(x + A) /r(z) = 1 + o(1).

To see that, note that as |A;| < %% < «;/2, we may use Fact 4.5 to conclude that

|A

i

l9(zi + Ai) = g(2i)| S l9(@i)| S €% lg(x:)].

In particular, we get that % 14 O(%9%), and hence r(x;r)A) 14 O(ke"9%). Writing T(f&)A) =

1 + 7, we get  is small in absolute value, and hence [log(r(z + A)/r(z))| = |n| > |Z&t&) 1‘ =

(CE)

r(z)
+ A) —
& [Ir(x ) "“(x)q <E [
A
where we define the random variables Y; = log %.
7 \Le

.lLe.,

Zlo gj (i + Ay)

X () 2% g

(10)

Observe that Y;’s are mutually independent, since each Y; only depends on the corresponding A;. We

wish to upper bound the average and variance of Y, and to do that it would be more convenient to analyze

7 — _ gi(@itAi)—g;(w)
21ED)

Using second order Taylor’s approximation, we have that there is y; € [x;, x; + A;] such that

and then relate the two.

gj (l'z + A ) = g](-rz) + g](%)A + gj (YZ)A?v

hence

1D

;gj (Yz)AQ]

1 1
e )‘Ig[gj(yi)A?] :

IE [gj(a;z)A +
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Using properties of f, we have

50n \? 50n. 50n \? | 50n
7o — " 1) < oo ).
|97 (y4)] <logn> f <1ogn lyi — \) < (bgn) og n lvi — 2]
Since y; € [z;,x; + A;], we get that <1Ogn lyi — zj| — 1) > fgg’}lai 095 5 l?)Eg):LzO[i’ and so we may

continue the previous inequality as

50n \ 2 1ign| i_ZJ‘_ll 1
/!
9" (yi)| S < ) Ig (¥l S = lgj(z)l,
| ’L‘ logn (lig’;ai) Z J 7 a? J 7

where the last inequality is by Fact 4.5. Plugging this into (11) we get that

1
2
a; a;

RZIE

E[A]] = 0%

In a similar fashion, we upper bound the second moment of Z;. Using Fact 4.5, we get that |Z;| < %i,
and so Ea [27] —IEA [AZ] = 202

We can now upper bound the average of Y; as follows. Recall that, |Z;| = o(1) so by Taylor’s approxi-
mation Y; = log(1 + Z;) = Z; — WZ for some &; € [1,1 + Z;] and hence

< |E[Z]| + |E[Z7]]| S %02. (12)

a;

‘E Y]

This approximation (along with the fact that |Z;| = o(1)) also implies
E[Y]] S EIZ]] $ 0" (13)

We can now continue equation (10) to upper bound the LHS there. Denoting ; := E[Y;], we have

k k k
IE[ Yi]<2|ﬂi|+% —Mz‘]<2|ﬂz’|+ IE Z(Yi—#i)Q
i1 i—1 i—1

where in the last inequality we used Cauchy-Schwarz and the fact that Y;’s are independent. Using (12) we
have that Zle il < o2 Zle é and to upper bound the second term we use (13):

k

D

=1

9

Together, we get that

k Eog Eoq Eog
. 2 = 2 < -
E o o o
o2 | R SRR s ok
=1 =1 T i=1 7 i=1 )
where the last inequality holds since 02 3% L S1(aso? Se?and oy > €09). O
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Next, using the previous claim we upper bound the expectation of each summand on the RHS of (8). The
following statement addresses a single term, and should be thought of as being applied after conditioning on
x, A being not-too untypical, and focusing only on x;’s for which there is a chance that g; (z;+A;) # g;j(x;).

Claim4.11. Let j € [m], k <n, S > 0and let x1, ..., x} be chosen uniformly at random from [z; — 1;;7 —
g9 2 + 1;’% + %997\ [z — kg%, zi + lg(g):]. Let A; ~ N(O,a2)||Ai‘<Eo,95. Then
E |:’T’j(X—|— A) — rj(x)‘ . min(rj(x)751)6] < £1.05 +k on PI"[?”j(X) > S]
A 7;(x) ri(x)+ S+t logn x
n ri(x)
k J .
+010gn\f1)[§ [r](x) + S}

Proof. Upper bounding max(a, b) < a + b for a,b > 0, by Claim 4.10, we have

k1 '
g [Iribet8) = ri()|  min(ri(x),9) | _ o 2i=137  min(ry(x), 5)
x,A (%) ri(x) +S+elb] ~x ri(x) + S +¢elb
< 105 4 om min(r;(x), 5)

rj(x) + S +elb

and it is enough to bound the second term. Note that while we expect that each «; to be of the order log n/n,
k
convexity works against us and it could still be the case that é
i=1 ¢
case, some a; must be close to 0, in which case g;(x;) is very small — cubically with a; — thereby balancing
the 1/ a? term. The following proposition formalizes this intuition, and the proof is deferred to Section A

could be large. The point is that in this

Proposition 4.12. There is an absolute constant A > 0 such that for any z > 0 and r < 1 such that
rj(x) =r- gj(x;), it holds that

2 min(r - g;j(x;), S) n

log? n - gj(x;) + S +¢elb logn

1 min(r- gj(x;),5)

Z—’_ai?'r-gj(xi)—i—s—l—slﬁ

E z+ A

Xi

Xi

1r~gj<xi>>s] :

Applying Proposition 4.12 iteratively k times (once for each 4, taking = [[ g¢;(z;) and the appropriate
i'#i
z), we get that

n?  min(r;(x),S) n

min(r;(x), S)
< cAT— L (x)2s |-
¥ log?n rj(x)+S+¢el6 * logn ~"1)>9

. k-A
ri(x)+ S +¢el6 x

%=

min(ry(2).5) _ _r;(@) 0

The proof is concluded by noting that - () 45+e16 N 7 (215"
J J

We are now ready to finish the proof of inequality (4).
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Proof of inequality (4)
Let E be the event that: (1) the support of p(x) has size at least 2, (2) > r;(x) > ¢! and also for x + A,

J
and (3) |A;] < %% forall i € [n]. As we argued in Claims 4.6, 4.7, 4.8 the contribution (x, A) ¢ E to the
LHS of inequality (4) is < &, hence it is enough to analyze the contribution of (x, A) € E.

Denote T'(z) = > r;(z).

JEM]

ri(x) ri(x+A4)

- Al 1g] = - 1
B, ) =+ A)l1s] = B | 37 |35 - 0
jE[mM
_ rj(x) _rix+A4) rj(x) _ri(x+A)
x]EA ]ez[q;n] T(X) T(X+A) 1E17"j(x)<82‘7 +XEA J;ﬂ} T(X) T(X+A) 1E1 (x)>e27

(I (I1)

First, we show that (I) < e. As T'(x) > €!6 (since F holds) and 7j(x) < €27, we get that rj(x)/T(x) <
e!!, and next we argue that 7j(x + A)/T'(x + A) < "%, Fix j and suppose x1, . . ., Xy, are the x;’s that
fall inside I;. The following easy fact will be helpful.

Fact 4.13. For all x, A we have rj(x + A) = >[I gj(zr) I] (gj(zr) — gj(zr + Ar)).

SC[k;] r€S S
kj kj
Proof. Write rj(z+A) = [] gj(zr+4,) = [] (gj(zr) + (9j(zr + A;) — gj(x,))) and expand out. [J
r=1 r=1

Combining Fact 4.13 and Fact 4.5, we get that

i(x+ A) ZngxTH\g]xT —gj(zr + Ay)| ZHg ) B! 3|S|Ha + A%

SClk;]res réS SClk;]resS réS
< 3 Motes i [ o
SClk;]resS r¢sS

+ 4" B3 max |A, 13
T

Consider the right hand side above. For the first term we use o < g;(z,) to get it is at most

Z B’|S|n3|5|rj(x) (B")ndne?T < 265 )9,
SC[k;]

For the second term we use |A,| < %% to bound it by £2:%5 /2 as well. We thus get ri(r+A) < €295 and
sor;(z 4+ A)/T(z + A) < 9. Combined, we get that

(I) <m(et + ') Se.
Next, we handle (II). Denote T'(x) = > 7;(7)1,,(s)>c27, and note that T"(z) > T'(z) — me?’ >
J

(1—melY)T(z) and similarly for 7’(x + A). Thus, we may replace T'(z), T'(z + A) with T (z), T (z + A)
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and incur (by the triangle inequality) a loss of at most me!'-! < . Thus, we want to upper bound

x]:,EA Z

JE€m]

ri(x) _ ri(x+A) _
T’(X) T’(X—i—A) 1E]‘7“j(x)>82‘7 g

(I11)

We intend to apply Claim 4.9 with r; = 7;(z) and d; = rj(x + A) — r;j(x) for each x separately, but for
that we first have to argue that |d;| < 7;/2. For each ¢ € [n] there is j such that 2; € I;, and we denote

o; = dist (a;i, [ — B2 2+ log"]). Note that

3
n
2T < (o) < o) S (o)

hence «o; 2, 10%50‘9, and for small enough ¢ we get that a; > %% > 2|A;|. Therefore, Combining
Fact 4.13 and Fact 4.5 we get

A;
jdj(@)] = [rj(x) — i+ A) < Y [Toiten) [T lgs(en) — g+ A1 <Y BIh(a H‘ :
SC[k;j] reS réS SClkj] rgs 4

S#[k;] S#(k;]

€004 we get that

|A] 0.95/.0.91 _ _0
o Serr et =

[rj(@) = rj(e+ A) < (@)™ > B < B Mry(x) < rj(w) /2 = rj/2.
SC[k;]
S#[k;]

Therefore, we may apply Claim 4.9 and get that

(IIN< E Z |TJ _ T](X‘f' A)l ‘ Hlin(Tj(X),T/(x))

11, .
X,4 ] 1 7‘]( ) 1/(::) b TJ(X)>€27
|7"J T](X+A)| min(rj(x) T( ))
< FE E .
Nx,A TJ( ) T/(X) 816 1E1 3 (x)>e2 T 1 (14)

7j=1

where the last inequality holds since 7”(x) > €'6. Next, we wish to discard x; that are very far from their

logn logn
50n * ~J +

closest center z;. For each j, note that [zj — } is exactly the set of y’s on which g;(y) = 0,

25n 50m  ~J

logn log n

each y € I; \ R;, we have that either g;(y) = 0ify € [zj 2+

and let R; C I be R; = |:Zj —logn _ 095 5.4 13% + 50‘95} \ [Zj logn o+ bg"} Note that for

, and otherwise g;(y) = 1.

Furthermore, in the latter case we also have that g;(y + A;) = 1 since |Az\ < V%,

We sample x in the following way. First, sample tq,...,t,, the number of x;’s in each interval
I, ..., I, then for each j sample k; to be the number of z;’s inside the interval [; that fall inside ;.
Finally, for each j € [m] sample k; points uniformly from R, t; — k; uniformly from ; \ R;, and let x be
the (multi-)set of all the sampled points. We condition on the t;’s and k;’s henceforth in (14). Furthermore,
we condition on the identity of the 7’s for which x; € I; for each j.
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Since ¢’s for which x; € I; € [z;— lggs —g095 24 1(2)% +¢995] do not affect both rj(x) and 7j (x + A),

we may ignore them and hence take expectation only over ¢’s such x; € R;. Call these y’s. Then from (14)
we get

 ri(y) =iy + A)[ min(r(y), T'(y))
U5 t% yA 2 r5(¥) T'(y) +¢el6
ri(y) —rily + A)]  min(r;(y), T75(y))
ri(¥) ri(y) + 1" ;(y) +&'°

N

E E
t.k

)

where 77 ;(z) = Z#: T (x)lrj,(x)%m. Note that conditioned on t = #,K = k, the values of y;’s such that
J'#i

yi € I; are independent of 7" j (y), and they are distributed uniformly over R;. Therefore, using Claim 4.11

we have

(I11) el05 4, T -Pr[r > T E,E}HE[J n ‘/kzrj(y)]
EE jz; logn y i) J(y” y | lognV 7 T'(y)
n
< mel05 4 p2 UZPr ri(y )>le(y)]+alogn§%[ mjax/c]]

7j=1

Note that if 7" ;(z) < 7;(z), then

T(z) <T.;(x) + rj(x) + er v)<e27 < 21j(z) +m - e27 < 3,

so we bound the sum on the right hand side by mPr, [T'(x) < 3]. For the expectation, we use Cauchy-
Schwarz and overall we get

(ITT) < me*® 4 n3oPr[T(x) < 3]+ o E [max k]} .
X

log i

The first term is clearly < e. For the second term, we use Claim 4.14 below, that asserts that Pry [T'(x) < 3] <
n~*(), hence by the definition of ¢ the second term is also < e. For the third term, note that each kjisa
sum of n independent Berounlli random variables with parameter p < log n/n, therefore by Chernoff bound

Pr(k; > 10logn| <e —39logn =9
The union bound now implies that Pr [max; k; > 10log n| < 8, and hence

E {maxkj] <n % -n+10logn < logn.
Tkl 7

Using the definition of o, we get that the third term is also < . Combining all, we get that (/1) < e, and
we are done. O
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Claim 4.14.

Pr ) rix) <3| <n W, (15)
j

Proof. The proof is very similar to the analysis of Case (B) above. In particular, similarly to inequality (3),

Prrj(x) < 1] 1 2mlogn) > (1 2mlogn Zn/m > —2logn/25 —2/25
j(X = PN = e a— = ,
o 25n 25n c n

as long as t; < 2 - n/m (which is the case except with probability n=“(). Since m > n?/?> . n?()_ the
probability of not having at least three r;(x)’s equal to 1 is n—wd), 0

S The value of the ¢-fold symmetric odd cycle game

5.1 The upper bound: Theorem 1.7

Suppose that n = 2m — 1 and A is a strategy for C2om' We will view A as a symmetric function over
ordered ¢ tuples, i.e. as A: C% — {0,1}" satisfying A(m(x)) = 7(A(z)) for all permutations 7 over [t].
We identify C,, = { £ |i =0,1,...,n — 1}, consider the lattice L = (C}, + Z) and define a rounding
map R: L — Z! on it as follows. For z € C,, we define R(z) = A(z) + nz (mod 2), and then we extend
Rto Lby R(z + z) = R(x) + z forz € C!, and » € ZL.
Let D = R~1(0"). The symmetry of A implies that D is symmetric, and we also note that D is a tiling
of the lattice L.

Definition 5.1. A random e-Bernouli direction, denoted by u ~ B(¢), is a random variable distributed
on {£1 0}, such that for each i € [t] independently, Pru; =0] = 1 — 2 and Pr[u; =1/n] =
Prlu, = -1/n] =«

We will mostly be concerned with ¢ = 1/4, in which case the distribution of x,x + u(mod 1) where
x €r C! and u is an independent i—Bernouli step, is exactly the distribution of challenges to the players.
Inspecting, we see that players succeed on these challenges if and only if R(x) = R(x+u), as the following
claim shows.

Claim 5.2. Letx € C! and u € {i%, O}t. Then the players succeed on challenges (x,x + u(mod 1)) if
and only if R(x) = R(x + u).

Proof. Note that x and x + v are either in the same cell of D or in adjacent cells, so to prove the statement
it is enough to show that the players succeed on the challenge if and only if R(z) = R(z + u) (mod 2).
Write # + u = d + z where d € C! is x + u (mod 1), and z € Z!. Note that

R(zx+u)=R(d)+2z=A(d)+dn+z (mod 2), R(z) = A(x) + nz (mod 2)
and subtracting the equations we get that
R(z +u) — R(z) = A(d) — A(z) + dn + z —nx  (mod 2).

Multiplying the equality x 4+« = d + z by n and taking modulo 2 we get that nu+nx = nd+nz = nd+z
(mod 2) where the last transition used the fact that n is odd. Thus, R(z + u) — R(z) = A(d) — A(z) + nu
(mod 2). Note that the players succeed on the challenge if and only if A(z) = A(d) + nu (mod 2), and
plugging that in we get that they succeed if and only if R(x 4+ u) — R(xz) = 0 (mod 2), as desired. O
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Claim 5.2 implies that the failure probability of the players is

Pr [x,x + u are in different cells of D].
xeCt ,u~B(1/4)

Setting y = x (mod D), it is easily seen that the distribution of y is uniform over D, so the probability of

the above event is equal to

def
= Pr D
g y€D,u~B(1/4) [y +u ¢ ]

The rest of the proof is devoted to lower bounding 7. Setting k = M === ”\/@ for large constant M to be
determined later, we show:

Lemma 5.3. n > Q(1/k).

Below, we will assume £ is an integer, otherwise we may multiply it by a constant factor close to 1 and
make it an integer. We then further assume £ is prime, otherwise we may find a prime in [k, 2k| and replace
k by it. Define § = Pryep y~p(1/4) [X + ku ¢ D] and observe the following easy relation between § and 7.

Claim 54. § < kn.

Proof. By the union bound

k—

._\

x+jueD,x+(j+1)u¢gD].
:OxeDu

.

Note that for each j, the distribution of y = x + ju (mod D) is uniform over D, the jth term in the above
sum is at most Pryep u [y +u & D] = 1. O
5.1.1 Disjoint Bernouli steps

We will also consider the situation after making two Bernouli steps whose support is disjoint, and for that
we make the following definition.

Definition 5.5. The distribution of two disjoint e-Bernouli direction, denoted by (u', u?) ~ DB(e), is
defined as follows. For each i independently, set each one of the following options with probability 5:
(u}, u) (1/n,0), (u},u?) = (=1/n,0), (u},u?) = (0,1/n), (u},u?) = (0,—1/n); otherwise, set
(u},u?) = (0,0).

We note that if (u', u?) ~ DB(e), then u' + u? is distributed as B(e). Therefore:
Claim 5.6. It holds that:

® Prycp u~B(i/a) [X +ku ¢ D] < 20;

® Prycpu~B(ija [x+u¢g D] <2

Proof. We prove the first item, and the second item is proved analogously. To sample u ~ B(1/4), we
sample (u!,u?) ~ DB(1/4) and take u = u' + u?, so by the union bound the probability in the first item
is at most

Pr [x +ku' ¢ D] + Pr [x+ku' € D,x+ ku' + ku* ¢ D].
x€D,(ul,u?)~DB(1/4) x€D,(ul,u?)~DB(1/4)
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The first probability is d, and we argue that the second probability is at most the first. Indeed, setting
y = x + ku!, this probability is at most the probability that y,y + ku? are in different cells of D. Note that
this occurs if and only if y (mod D) and y (mod D) + ku? are in different cells of D; note also that for
every fixing of u!, the distribution of y (mod D) is uniform over D. Thus

Pr [X+ku1€D,X+ku1+ku2¢D}< Pr [y—i—kqu{D]:&,[]
x€D,(ul,u?)~DB(1/4) ye€D,(ul,u2)~DB(1/4)

Definition 5.7. Let x € D and u be a direction. We say (x,u) is decent if

1
1, .2 _ 1
(u17u2)21|"33(1/4) [t+w €DVae+uéDVa+ku g DVae+ku €D |u' +u’=u] < 25

Claim 5.8. Pryc . p u~p(1/4) [(X,0) is decent] > 1 — 64(n + )

Proof. Denote

p(x,u) = (u17u2)1:rDB(1/4) [z+w €DVa+tugDVae+ku ¢DVae+kuy &D |ul + u? = u].
Note that
E [p(x,u)] = Pr [x+u'¢Dvx+u’¢DVvx+ku' ¢ DVx+ku ¢D],
xerD pS
u~§?1/4) (ul,u2)~RDB(1/4)

which is at most 2(0 4 1) by the union bound. Thus, by Markov’s inequality

[(x, u) is not decent] — [p(x, u) > 1} <645+ ). 0

Pr Pr
x€rD,u~B(1/4) xErD,u~B(1/4) 32

5.1.2 Analyzing the potential function

Our argument closely follows the argument in Section 3, and below we focus on the necessary adjustments.
Set Z = ﬁogr The definition of the potential function stays as is. We will have several constants floating
around in the proof which are not important for the most part, however we make the distinction between the
constants ¢y, . . . , ¢ that will be absolute (i.e. not depending on M), and the constants to(M ), t1 (M), ta(M)
that will depend on M.

The following is a variant of Claim 3.1, which is the main difference with the argument from Section 3.

Claim 5.9. If v,z + u,z — u,x + ku,x — ku € D and both (x,u), (x, —u) are decent, then
W (z + ku) — U(z, ku)| < 2 e %/,

Proof. We consider the contribution of each pair (i, j) to ¥(x + ku) and V(z, ku) separately. Without loss
of generality we may only consider pairs ¢, j that y(z;, z;) = 1, and thus d(x;, zj) = 2; — x; + z for some
2€Z,z#0.Letd =x; — xj + 2 + k(u; — uy).

Proposition 5.10. d > 0.
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Proof. Assume otherwise. Since z; — z; + z > 0 it follows by continuity that there is A € [0, 1) such that
x; — xj + 2 + Ak(u; — uj) = 0. Note that u; — u; can either be 0, j:%, i%. If u; — u; = 0, we get that
z; —x; +2 = 0, and as x € D this contradicts Lemma 2.4. Otherwise, multiplying by n, we get that
Mkn(u; — uj) is an integer. Note that kn(u; — u;) is either £k or +2k, and as k is prime we get that A = 1,
A= % or \ = ﬁ, and we analyze each case separately. If A = % then we get x; — x; +u; —u; +2 =0, s0
z +wu € D has two coordinates differing by a non-zero integer, contradicting Lemma 2.4. We next consider
the other two cases separately, and assume that u; — u; > 0 — otherwise we use —u instead of u in the
argument below.

If A = -, then necessarily u; — u; = 2 and and we get that z; — z; + z + 1 = 0. Sample (u!, u?) ~
DB(1/4) conditioned on u' +u? = u. Note that the event that u} = 1/n and ujl- = 0 occurs with probability
1/32. Since (z,u) is decent, we get that x +u' € D with probability strictly greater than % Thus, the
probability that x + u! € D and (u}, ujl) = (1/n,0) is positive, and in this case we get

1
(Z"i‘ul)i—(x‘i‘ul)j:fﬂi—fﬂj‘f’g:—27&0,

contradicting Lemma 2.4.

The case that A = % is similar. We must have that u; — u; = % and thus we get z; — x; + % +2z=0.
Sample (u!,u?) ~ DB(1/4) conditioned on u! + u? = u. Note that the event that u} = 1/n and ujl- =0,
occurs with probability 1/32. Since (z,u) is decent, we get that = + ku' € D with probability strictly
greater than 3. Thus, the probability that 2 + ku' € D and (uf, u}) = (1/n,0) is positive, and in this case
we get

(z + kul); — (z + ku'); :xi—:vj—l—%: —z #0,
contradicting Lemma 2.4. O
We therefore get that d > 0, and the rest of the proof is identical to the proof of Claim 3.1. 0
Claim 5.11. There is an absolute constants ¢; > 0 and to(M) > 0, such that if t > to then for every x € D
U(z) R 2 < B [W(z, ku)] < U(a) e KA
u~B(1/4)
Proof. By linearity of expectation we have

E (O, ku)] =) e Zdrm).

[e—Z-v(xi,J:j)k(ui—uj)} .
u~B(1/4) vy

u~B(1/4)

Note that the above expectation does not depend on ¢, j: for every 4, 7 the distribution of u; — u; is w,

where Pr[w = 2/n] = Pr[w = —2/n] = iz, Pr[w=1/n] =Pr[w=—-1/n] = {,Priw=0]= 3. In

particular, this distribution is symmetric around 0 and thus the sign (z;, ;) does not affect the expectation.
Hence we have
|:ekZ~w 4 6—kZ-w:|

E[V(z,u)] = ¥(z) E["™] = V() E 2

u w w

Note that |kZ - w| < M™%t L1 <9 for Jarge enough ¢, so we have that

t 10logt n
kZ-w —kZ-w
e e -1
ecr(kZw)? +2 < et (kZw)?,
Finally, the expectation of e<(kZ W) is at least e“'¥*Z2%/7* and at most e¢"¥*Z*/7*  and the claim follows. [
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The proofs of the following several claims are essentially identical to their analogs in Section 3, and are
therefore omitted. We say a point x is good if any interval of length % on the circle contains at least
log t and at most 100 log t coordinates from = (mod 1). By Chernoff bound, a random x € D is good with
probability > 0.999 given ¢ is large enough.

Claim 5.12. There exists an absolute constant co > 0, such that if x is good then V(x) > ¢ log? t.

Proof. The proof is identical to the proof of Claim 3.3. O

Claim 5.13. There exists an absolute constant c3 > 0, such that if x is good, then for all © we have

v
C; < 631;2?.

Proof. The proof is identical to the proof of Claim 3.4. 0

Claim 5.14. There exists an absolute constant c5,cg > 0 and t1(M) > 0, such that if t > t1 then for all
good x € D we have

1 k272 2,2
varUNB(1/4) [\IJ(ZL‘,U)] < ](f;t . <666 % — % kng > . \IJ(Z‘)2

Proof. The proof is a straightforward adaptation of the proof of Claim 3.5. O
Consequently, we have to adjust Claim 3.6 as follows.

Claim 5.15. There is an absolute constant M > 0 and to > 0 such that if k = M Liogt andt > ti1, then
for all good x € D we have

A Ktz4
P U(x,u) > ¥ — v > 0.99.
uNB(rl/4) [ (z,u) (@) + 2 nt (x)]
Proof. Let cy1, ..., cg be the constants from the previous claims, and choose M = 200¢5 - Then take

cice
to(M), t1(M) from Claims 5.11 5.14 and choose to(M) = max(to(M),t1(M)). We upper bound the
probability of the complement event. Using Claim 5.11 (and ! > 1 + ¢ + t2/2), we get

kZZZ 2]€4Z4
E [‘If(:c,U)]>\If(x)-<1+q 7.4 )

u~B(1/4) 2 nt
Hence
2 krz4 1272
Pr U(z,u) < ¥(z)+ = \px]g Pr U(z,u)— E Uz, )| > U(x)e
u~B(1/4) ( ) (z) 2 nt () u~B(1/4) ( )U,NB(1/4)[ ( )] (z)cr 2

We want to upper bound the probability of the last event using Chebyshev’s inequality. Since x is good, the
conclusion of Claim 5.14 holds, and so

cs -1E222 o 222 9 cs 2cglk2Z2 2
vary~(1/4)[¥(z, u)] < Togt <6 6 w2 —e® ) U(z)° < TR U (2)”,

for sufficiently large ¢. Therefore, applying Chebyshev’s inequality we see the probability in question is at
most

e 2c5'K2Z? 2 9
varyg(1/4) ¥ (z, u)] o Jogt T w2 - U(z) _ 2¢5 n 25 1 < 0.0l —
U(z)2 - c? ki? b U(x)?-c? k;‘g“ clcg k2Z%logt  cleg M2 T T
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5.1.3 Finishing the argument
For each u, denote 6, = Prxep [x + ku & D], and note that 6 = Ey, [0y
Claim 5.16. For each u, Dpy[x;x — ku| < 8y, + 04

Proof. The proof is a direct conversion of the proof of Claim 3.7 to the discrete setting, replacing the notion
of “Borel sets” with finite sets. 0

We can now prove Lemma 5.3.

Proof of Lemma 5.3. Take M and t9 from Claim 5.15. We may assume that ¢ > ¢», otherwise the lemma
just follows from the fact that > €(1/n), which holds as the value of the ¢-fold symmetric repeated game
is at most the value of the original game, which is 1 — ©(1/n).

Take x €r D, u ~ B(1/4). Let E; be the event that (x,u), (x, —u) are decent, F be the event
that U(x) < cplog?t, F3 the event that x + ku,x — ku,x + u,x — u € D, and let E4 be the event

that ¥(x,u) > ¥(x) + %k:?\l/(x) Finally, let E5 be the event that ¥(x + u) > ¥(x) and denote
E(x,u) = E1 N FE> N E3 N E4. Note that if the event E holds for z,u, then Es5 also holds, since by
Claim 5.9:

ﬁ ktz4
2 nd

Uz +u) > V(z,u)—t2-e 4 > () + V() —t2- e %" > ().

In the last inequali i o kizt 2.2/t =
quality, we used the fact that if E holds, then 7 *4-W(x) > Q(1), and t* - e
n2e~t/40108t — (1) for large enough t.
By Claim 5.8, Pr [E] > 1 — 128(6 + 7). By Claim 5.12 the probability of E5 is at most the probability
x is bad, hence it is at most 0.005, by Claim 5.6 Pr [E3] > 1—4(0+n), and by Claim 5.15, Pr [E4] > 0.99.
We thus get

Pr[E(x,u)] > 0.99 — 4(6 4+ 1) — 0.005 — 128(8 + 1) = 0.95 — 132(8 + 1). (16)

Fix u. Using Claim 5.16 we get that
Pr[E(x — u,u)] = Pr[E(x,u)] — Dry[x;x —u] = Pr[E(x,u)] — §y — 0_y.
X X

By the union bound, we now conclude that

f)’(r [E(x —u,u)NE(x,u)] >1— P)’(r [m} —Pr [E(X,u)} > 2Pr [E(x,u)] — 1 — 0y — 0y

X

Taking expectation over a random step u, we get that

Pr [E(x —u,u) N E(x,u)] > 2br [E(x,u)] — 1 —2E[dy] = 0.9 — 270(5 + n),
) 3 u

where we used (16). Next, when both E(x—u, u) and E(x, u) hold, we have by the previous observation that
Es holds for both pairs (z —u, u) and (x,u), and so V(z+u) > ¥(z) = ¥((z—u)+u) > ¥(z—u). Thus,
we get that Pry  [¥(x + u) > ¥(x — u)] > 0.9—270(d+n). On the other hand, the probability on the left
hand side is at most 0.5; this follows as Pry y [¥(x 4+ u) > ¥(x —u)] = Prxy [¥(x —u) > ¥U(x +u)],
and their sum is at most 1. Combining the two inequalities we get that n 4§ > (1), which using Claim 5.4
implies that n = Q(1/k) as desired. O
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5.2 The lower bound: proof of Theorem 1.8

In this section we use the symmetric body constructed in Theorem 1.6 in order to prove Theorem 1.8.

5.2.1 Tools
We need the following isoperimetric inequality.

Fact 5.17. For all € > 0 there is § > 0 such that the following holds. Let A C [0, 1]" be a measurable set
such that ¢ < vol(A) < 1 — e. Then area(A Ninterior([0, 1]™)) > 4.

Proof. This is the combination of [29, Theorem 6, Theorem 7] as we explain below. Theorem 7 therein
asserts that if A C [0,1]™ has Lebesgue measure « and surface area S, then there is a measurable set
in Gaussian space B C R™ with Gaussian measure « and (Gaussian) surface area at most S. Now [29,
Theorem 7] asserts among sets with Gaussian measure «, the minimizers of surface area are halfspaces
of the form Bg = {z € R" |21 < } where (3 is chosen so that the Gaussian measure of Bg is o, so
S > surface — area(Bg), which is bounded away from 0 if « is bounded away from 0 and 1. O

Secondly, we need a slight strengthening of Theorem 1.6. Recall that in Sections 4 and B we have
constructed a semi-algebraic, bounded tiling body D C R whose surface area is A = O(t/+/logt), and for
small enough € we have

Pr [x+ A ¢ D] < Ae.
x€D,A~N(0,621;)
We note that the argument in Section 4 holds in fact for more general class of A (we only used the
fact it is independent of x, has mean O and is sub-Gaussian). Thus, we consider the distribution A, €
{0,+¢/n}" of Bernouli steps, namely for each i independently choosing (A.); as Pr[(A.); = 0] = 1,
3

Pr[(A.); = —£] = 1, Pr[(A.); = £] = 1. Thus, running the argument therein we get:

n n

Lemma 5.18. The distribution over tiling bodies (Dj) from Lemma 4.3 satisfies, for small enough € > 0

E { Pr [At least one of the conditions of Claim 4.1 fail for x and x + AE]] <A

x,A¢

S|o

Slightly adapting the argument from Section B, we may ensure that the chosen body D also has small
noise sensitivity for Bernouli random steps A. for small enough ,? but we will only need this to happen for
a specific suitably chosen € which can be ensured as follows. Take ¢ small enough for which Lemma 5.18
holds, and note that by Markov’s inequality we get from Lemma 5.18 that

Pr [ Pr [At least one of the conditions of Claim 4.1 fail forx and x + A;] > C - A - (1 <
n

T | x,A

RS,

for an absolute constant C'. Thus, from Claim B.2 and the union bound we get that there is 7™ € Ny>x, G
such that the above event holds, and the rest of the proof in Section B shows that D = Dz has surface area
O(A). We summarize this discussion with the following lemma.

3The proof is essentially the same, adapting the definition of G, therein to be

Pr x€Dj [x, % + A lie in different cells of the tiling of S7] < 4 - A27Fk
Gk = r ANN(0747k'In)
Prxep,. [X,X + A,_ lie in different cells of the tiling of Sz < 4 - A27F
YN
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Lemma 5.19. For all t, for small enough ¢, there is a symmetric, bounded tiling body D with surface area
A = O(t/+/logt) such that

Pr [At least one of the conditions of Claim 4.1 fail for x and x + A;] S A - <

xX,Ac n

5.2.2 Decisive boxes

In this section, we use Lemma 5.19 to devise a symmetric strategy for the players in the ¢-fold repeated
game. Take small enough ¢ so such Lemma 5.19 holds and assume that & = 1/e is an integer. Let D

be the symmetric tiling body from Lemma 5.19. It will be convenient for us to think of challenges to

. t
the players as C, = { % ‘ i=0,1,...,n— 1}. Partition [0,1)" into the boxes Bz = [ [%,% + 1) for

=1
ac{0,1,...,n— l}t; it will be convenient for us identify a challenge of a player x’ with the box it belongs
to, i.e. with Bz for @ = nx’. Consider the way D further partitions the boxes Bj.

Definition 5.20. We say a box By is decisive if there exists z € Z" such that ;1(Bz N (D + z)) > 2u(Bg).
Otherwise, we say Bg is indecisive.

We show that almost all boxes are decisive:
Lemma 5.21. The number of indecisive boxes is O(An'~1).

Proof. Define® = 3 > area(d(D+ z)Ninterior(Bg)). By considering the surface area of D,
2€7' Gef{0,1,...,n—1}

we will show that ® < A, and we will lower bound @ as a function of the number of the indecisive boxes,

from which we will get the result. Let B be such that D C [—B, B?, and take m large enough.

The upper bound. For @ € {0,1,...,mn — 1}t, we define the box Bj as above, and define ®,,, =

> > area(d(D + z) Ninterior(Bz)). On the one hand, we clearly have that ®,,, = m!®, and
z€Zt G{0,1,...,mn—1}"
we next upper bound ®,,. Since D C [—B, B]*, we have that

o, = Z Z area(d(D + z) N interior(Bgz))
2€{—B,—B+1,...,.B+m}' @c{0,1,....,mn—1}*

< Z area(d(D + z))

2&{—B,—B+1,...,.B+m}
= (m+ 2B + 1)*area(dD)
< (m+2B+1)A.

Combining the upper and lower bound we get & < (1 + Lm“)t A, and sending m to infinity gets that
o < A

The lower bound. Interchanging the order of summation, we write

b = Z Z area(d(D + z) Ninterior(Bz)),

ac{0,1,...n—1}* 2€Z?
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and we show that if the box Bg is indecisive, then the innermost sum is at least Q(1/n!~!). Indeed, if
Bg is indecisive, then u(Bz N (D + 2)) < 2u(Bg) for all @ Thus, we may find P C Z" such that for
H = BzNU,cp(D+ 2) we have that £1(Bz) < n(H) < 2u(Bg). We now scale and translate H,, i.e. take
H' = nH — @, so that the above translates to H' C [0, 1]" such that § < p(H’) < 2, and hence by Fact 5.17
area(0H' N interior([0,1]™)) > 2(1). Removing the scaling, we get that area(OH N interior(Bz)) >
Q(n'~"). Therefore, we get that

P> > Q') =9(n'" - #{indecisive boxes})

ae{0,1,...,n—1}*
Bg indecisive

Combining the upper and lower bound on ®, we get that the number of indecisive boxes is at most O(An!~1).
O

Next, we show that if By is a typical decisive box, and A; € {0,+1/n} is chosen randomly as above,
then Bz, a, is very likely to be somewhat decisive, and furthermore with the same cell of D.

Lemma 5.22. It holds that

2

21—O<A>. a7
n

Proof. Choose a random &, take a random x € By, and lety = x (mod D). Note that as the distribution
of x is uniform over [0, 1] and the distribution of y is uniform over D. Let E (&, x, A1) be the event that
y and y + A1 are in different cells of D. Then by the union bound and the choice of D

2 1
Pr 32 € 2", u(Ba N (D + 2)) 2 51(Ba), w(Basna, N (D +2)) > M(Ba+nA1)]

ac{0,1,...n—1}*

Pr [Ey] = PrA ly,y + kA, in different cells of D]

57X7A1 a7x7 1>
k—1

<Y Pr [y +jA.y+ (j+ 1)A. in different cells of D]
. y:AE

Let E»(&) be the event that By is decisive, and if E5(&) holds let z € Z" be such that ;(Bz N (D +z)) >
2/u(Bg). Then by Lemma 5.21 Pr [E5(&)] > 1 — O(A/n). Denote

pﬁ‘,Al = Pl“ [El(g,X,Al) |§: Ei,Al = Al]

X,a,A1

The expectation of pz A, is the probability of £ (&, x, A1), so

a,Aq a a, n
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1 PrlE 1 A Przx.a, [E1(8,x, Ay)]
Pr (Ex(d) Apaza, < —| =1- [ q}_P 5 >1-0 | = |- 252
2A 2(8) A pa.a, 10} | E2(d) *Arl [pa’Al - 10] ( ) 1/10
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which is at least 1 — O (%) To finish the proof, we show that for every @, A; such that F5(a) holds and
Pan, < %0’ we have the the event on the left hand side of (17) holds.

Indeed, fix such @, A;. Then there is a unique z € Z" such that ;1(BzN(D+2)) = Prxep. [x € (D + 2)]
is at least %u(B(—i). Note that if y, y + A; are in the same cell of D, then x, x + Aj are in the same cell of
D, so

#(Bitna, N (D +2)) _ p(Bayna, N (D + 2))
,U(Bd'-‘rnAJ M(BE)

= Pr [x+ A €(D+ 2)]
xeBg

\%

Pr xe (D+z2),x+A; € (D +z)]

xeBz

Pjg [x € (D + z)andy,y + A; in the same cell of D]
Xebg

WV

\%

Pjg [y,y + A in the same cell of D] [x & (D + 2)]
€

— Pr
X 3 XEBg

=1—-pan, — x1§1§~ (x & (D + 2)]

—_
(an}
w
N

5.2.3 Proof of Theorem 1.8

In this section, we prove Theorem 1.8. For that, we show that the success probability of the following
players’ strategy is at least 1 — O(A/n).

1. On challenge 2’ € C!, consider the box that 2’ belongs to, i.e. Bz for @ = nz’.

2. Check if there is 2z € Z' such that u(Bz N (D + 2)) > 1 1(Bjz), and note that it is unique if such point
exists. If there is no such z, abort. We refer to z as the chosen lattice point of the player.

3. Output z + nz’ (mod 2).

First, we argue that this strategy is symmetric. Indeed, the effect of permuting the entries of 2’ by = € S, is
that a, z above also get permuted by 7, and therefore the output also gets permuted by 7. Next, we analyze
the success probability of this strategy.

Note the following equivalent way of picking challenges (x/,y’): sample & € {0,1,...,n — 1}, set
x' = &/n, sample A; Bernouli as above and set y’ = x’ + A; (mod 1). Denote the box of X’ by Bg(x),
and consider the event E defined in Lemma 5.22. We show that whenever the event E holds, the players are
successful with the above strategy, and as the probability of E is at least 1 — O(A/n), the proof would be
concluded.

Fix @, A1 such that E holds, and let z € Z! be the (unique) point such that u(Bz N (D + 2)) > % u(Bgz),
1(Batna, N (D + 2)) > 34(Bgina, ). The first condition implies that the 2/-player does not abort and
their chosen lattice point is z, and we next show that the 3’-player does not abort as well. Note that the box
of ' is By, ford(y') = @+ nA; (mod 1), and write @ + nA; = d(y’) + w for w € Z*. Thus,

1
1(Bzn N (D + 2z — w)) = w(Bayy+w N (D + 2)) = i(Bayna, N (D + 2)) > §M(Ba+m1),

which is equal to % 1(Bg(yy), so the y'-player also does not abort and their chosen lattice point is z — w. We
now analyze the answers of the players on each coordinate.
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e If i is a coordinate such that y, # =}, then we may write y, = =} + Ay + b forb € {—1,0,1} and
Ay # 0. Then we get that d(y'); = @; +n(A1); +nb, so w; = —nb. Thus, the answer of the 2’-player
is z; + na; (mod 2), whereas the answer of the y/-player is

(z —w); + ny, = z; + nb+ nx, + nA; +nb = z; +nz; + nA; +2nb = 2z, +nx; +1 (mod 2),

where we used 2nb = 0(mod 2), and nA; = 1(mod 2) (as Ay = +21). Thus, the players are
consistent on the ith coordinate.

e If i is a coordinate such that y; = z/, then in the above notations we have w; = 0, A; = 0 and we get
that the answers of the players are the same on the ¢th coordinate, so they are consistent on <. O

6 Open Problems

In this section, we propose several challenges for further investigation of symmetric parallel repetition.

Recall from the introduction that on general games a strong parallel repetition theorem still fails, even
for symmetric repetition. A simple example is the union of many disjoint, odd cycle games. It would be
interesting to understand for what instances of Max-Cut one has that a strong parallel holds with symmetric
repetition, motivating the following problem.

Problem 1. For the Max-Cut problem, extend the family of graphs for which symmetric parallel repetition
outperforms standard parallel repetition.

Optimistically, one may hope that if symmetric parallel repetition would work for general enough class
of graphs, then one would be able to reduce any graph to a graph in that class by mild preprocessing that
doesn’t affect the value of the game by much, and only then perform symmetric repetition. If possible, that
would establish the equivalence of the Max-Cut Conjecture and UGC.

Secondly, there are well-known connections between parallel repetition and notions of mixing times and
eigenvalues of the underlying graph; for example, a strong parallel repetition theorem is known to hold for
expander graphs [31, 3], and more generally for graphs with low threshold rank [35], i.e. graphs with only
constantly many eigenvalues close to 1. We expect there could be stronger relations between symmetric
parallel repetition and higher order eigenvalues of G®»* the k-fold symmetric tensor product of G.

Problem 2. What is the relation between the performance of the k-fold symmetric parallel repetition of a
given instance of Max-Cut G, and the first k + 1 eigenvalues of G?

Finally, we believe that solving the foam problem for special classes of bodies may be an interesting
geometric question (albeit unrelated to the study of parallel repetition); a very natural class to study is the
class of convex bodies.
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A Deferred proofs

A.1 Proof of Claim 4.9

We split the proof into two cases.

Case 1: r; < T'/2 for all i. In this case, min(r;, 7" — r;) = r; for all ¢, and the sum on the RHS of (7) is
just (3, |d;|)/T. We have

lp—qll = Z

%

ri + d; T
T’ T

Ti"i‘di_ﬁ
T T

T'i—i-dz‘_m-l-di
T’ T

¥

2

3

Case 2: one of the r;’s is greater than 7'/2. Without loss of generality, 7y > 7'/2. Denote by S :=
YoisaTi=T —r1;8 =% ,0,(ri +d;j) =T —ry — dy. In this case, the RHS of (7) is given by

|di] - S |d]
T +; = (18)

We will estimate [p1 — 1] and >, ; [p; — ¢i| separately. First, note that 7" > T' — 3. |d;| > T'/2.

For |p1 — q1|, we have

S-S
T

di-S
T-Tl

1 r1 4+ dp

T T’

r- (S —8)+dy-S
T T

| |da] - S
= <> + .
lp1 — a1 T T

i>1

E

’—1-2

In the third transition, we used the fact that 77 > T'/2 > r1 /2.
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For ) .., [pi — ¢l by a similar calculation to the first case we have

ritdi T ritdi 1 ritdi  ritd;
2lm—al=2 |- g|< |t trtl T 7
i>1 i>1 i>1 i>1
il |1 1 dil |1 1|
STt itk = g | g[S
i>1 i>1 i>1
and it is enough to bound % — %| S’ by constant times the expression in (18). We have
i_ls,: S (ST=8)+ 85 -dy (S’+d1)-(S’—S)+S-d1
T T T = T'T T'T
S (8= 9) dy - (S"—9) S-dy
< 2 ’
’ '"r + "r + T2

where in the last transition we used 77 > T'/2 > 0. We bound each term separately. For the first term, as
T > T/2,|8'"| < 2T (since |d;| < r;) we get

S (8" —8) S -8 ||
< < .
T ‘\4‘ T ‘\4ZT

122

For the second term, we have |d1| <7 < T,7’' > T/2 and so

dy - (S"—9) |S" — 5] |d|
<2 <2 —.
T'T T Z T
1>2
For the third term, we have, as T > rq, S;él < ‘%'%

A.2  Proof of Proposition 4.12

3
We will use the fact for points x; in our domain, g;(z;) < (%Oz,) . We consider two cases, based on the
values of S and r.

Case 1: Pry,[r - gj(x;) > S] < 1/2. We claim that for a sufficiently large constant A > 0,

. 1 min(r-gj(x),S) min(r - gj(x;), 5)
o? r-gi(x;)+S+¢elb r-gj(xi) + S 4et6]”

(D (D

E

Xi

<E [\/2+An2/10g2n~

To do that, we compare both sides to Ex, [\/E : %] . For (I), we have
5 (X4

E [( Z+1/a3_\/;> , Tmin(r~gj(xi),5) } ’SE 1/a? min(r - g;(x;), S)

xi -gj(x;) + S + b6 m - gj(x;) + S 4 l6
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Since a; <

~

log n/n always, we may further upper bound this by

3
n )
< E 1/(122 ) r (lognaz>

<E 1/a? - min(r - g;(xi), 5)
~ 16 |’
i \/z+An2/log2n S+e

~xi |2+ Af(logn/n)?2 T-gj(x;) + S +elb

where we used min(r - ¢;(x;),S) < rg;j(x;) and the asymptotic we have for g;. Simplifying and using
Ex; [ai] < logn/n, we get that the last expression is equal to

n? 1 r

2 ’ 16
log n\/z+An2/log2n S+e

For (I1), we have

in(r - g;(x;: 2 /1002 i
E [(\/Z+An2/log2n— \/g) __min(r g](xz)751>6:| > An*/log"n  min(r g](XZ)751)6
Xi regi(x;) +5 4t Xi \/z+An2/log2n r-g;j(x;) +S+ el

Restricting to the event E that rg;(x;) < S (that has probability at least 1/2 by assumption), we have that
the last expression is at least

S E, An?/log®n - gi(xi) S An?/log%n r

~ 3 1.6 ~y : 1.6
\/z+An2/log2n S+e \/z+An2/log2n S+e

where the last inequality holds since E,, [g;(x;) | E] 2 1 (this is true for any event £ with constant proba-
bility in our range of interest of x;’s). Combining the bounds for (I), (1), we see that we may pick large
enough A so that

E K z+1/a12_\/§).rmin(r-gj(xi),S) } <E [<\/z+An2/log2n—\/E>~rmin(r'gj(xi)’s) ]’

i gi(xi) + S +etb] T x; -gj(x;) + S + b6

and hence (I) < (I1). Let A; be a large enough value of A so that this holds.

Case 2: Pry, [r- g;(x;) > S] > 1/2. Using va + b < v/a + v/b, we have

1 IIli]l(T‘ . gj(xi), S)
zZ4+ —-
a2 ’I”-gj(Xi)—l-S—l-El'ﬁ

7

min(r - g;(x;), S) 1 min(r - g;(x;), )
< . . .
= [\/E r-gj(x;) +S +¢lb +>IE o; 1-gi(x)+ S +ebb

(I11) (Iv)

Xi

Clearly, (I1I) < Ex, [ 24 A2 min(rg;(x).5) }, and we upper bound (IV'). Recall that g;(x;) =

]og2n T-gj(xi)+5'+51'6
3
N Ay
(1220)" 50

IV)SE

Xq

1 min(r(na;/logn)3, 9)
a; B-r(na;/logn)3+ 8 +¢el6]’
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for some absolute constant B > (0. Writing the last expression as an integral, we note that o; is distributed

uniformly on the interval [0, 282 + £99], s0 we get

logn

(V) < n / 2n 1 min(r(nt/logn)% S) Qb
~ \logn/ J, t B-r(nt/logn)3+ S +¢l6

n 7 25n

We break the range of integration into Ry = [0, (S/r)l/i”lo%}, and Ry = [(S/r)l/?’loﬂ loﬂ]. On R,
our expression is equal to

/ og n / ogn
n 2/(5)1 Plozn r(nt/logn)? a< (" 4/(?)1 Ploan r—tht n
logn /) /g B-r(nt/logn)34+ S+el6" ~ \logn/ J S logn’

On Ry our expression is at most

N

n /1;5%: 1 S dt,§§ logn 2/15517 ldt.
logn ) J(s)!/31en t B -r(nt/logn)? r\ n (8)"/31ean 14

1/3 logny
n

~~

Computing the integral, we see it is at most ((%) —3, hence the overall expression is < n/logn,

and since E []lr,gj (zi)> S} > 1/2 we conclude that there is A2 > 0 such that

n
(IV) < As IOgTLE [lr-gj(xi)>5:| :
The proposition is thus proven for A = max(A;, Az) O

B From Noise Sensitivity to Surface Area

Let Dz be a family of tilings of R™ that are constructed from Lemma 4.3. lLe., the family D satisfies that
the there is A = O(n/+/logn) such that for sufficiently small , we have that

E Plr) [x,x + A fall in different cells of the tiling induced by D7]| < Ae.
P xeDy
' A~N(0,e2-1y)

Let ko be the first integer such that this condition holds for any 0 < ¢ < 27%. Thus, defining for each
k > kg the set

G = {F ‘ Pr [x,x+ Alicin different cells of the tiling of S7] < 2- Az—k},
xeDg
A~N(0,47F.1,)

we have by Markov’s inequality that Prz [ € G| > %

Claim B.1. The sets G}, are monotone decreasing, i.e. for each k, Gy11 C Gj.
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Proof. Fix 7€ Gry1. Let A ~ N(0,47%1.1,), and note that A’ = 2- A ~ N(0,47% . I,,). Thus,

Pr [x,x + A’ in different cells] < Pr [x,x + A in different cells]
xEDy xEDyx
A'~N(0,47F.1,) A~N(0,A47F=1.1,)
+ PL% [x + A, x + 2A in different cells]. (19)
xeDp

A~N(0,47F=1.1,)

First, we argue that the second probability on the right hand side is equal to the first one. To see that, denote
y = x + A and observe that the points y, y + A lie in different cells of the tiling induced by D if and only
if the points y (mod D7), y (mod Dz) + A lie in different cells. Additionally, note for any fixed A, the
distribution of y (mod Dj) when we take x €r Dy, is uniform over Dj.

Therefore, the bound we get from (19) is (using the fact that ¥ € G4.1)

2. Plrj [x,x 4 A in different cells] < 2-2- A2~*+D) = 9. g2~k
xeDg
A~N(0,4=F=1.1,)

and so 7 € Gy. d
Claim B.2. It holds that Prz [F € ﬂk>k0 Gk] > %, and in particular ﬂk>k0 G, is not empty.

Proof. Define the sequence of functions g,,(7) = Leen, <o, Gio @nd also g = lzen @, . Clearly, on
oSksm TR =ko

each 7, the sequence g,,(7) is monotonically decreasing to g(7), and in other words we have monotone
pointwise convergence of the non-negative functions g,, to g. Thus, by the monotone convergence theorem

Pr|7e (G| =Elo) = & | fim 0.7 = Jim & [0n(7)]
7 k0 7 7 | k—o0 k—o0 7

By the previous claim, g,, = 1¢,,, hence Ef [gm (7)] > % and in particular the limit above is at least % O

Pick ™ € ;> ko Ghs € = 27%0 and denote D = D; for the rest of the proof. Clearly D induces a tiling
of the space R", and next we will show that the surface area of D is O(A) = O(n/+/logn), as desired.
Towards this end, we will use Lemma 2.2 that tells us that the surface area of D is a constant multiple of
1
— E [\(x,x+A)ﬂ8D|],

e xErD
A~N(0,e21,)

and we first observe that (x,x + A) N D is almost surely countable. *

Claim B.3. Let ¢ > 0 and sample x € D, A ~ N(0,£21,). Then with probability 1, (x,x + A)NID is
finite or countable.

Proof. Recall that by Lemma 4.3, D is a countable union of semi-algebraic sets, say By, Bo, . ... Note that
for each semi-algebraic set B;, the probability that (x,x + A) N dB; is infinite is 0, hence by the union
bound, with probability 1 all of these sets are finite, in which case (x, x+A)NJD is finite or countable. [J

“The diligent reader may note that here, we are only considering intersections of the surface with the open interval (z, z + A)
as opposed to the closed interval. This does not make any difference, since the contribution of the endpoints is proportional to the
measure of D. Hence, if the measure of 0D is 0 they endpoints contribute O to that expectation, and if the measure of 0D is
positive, then the expectation is infinite either way.
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For a parameter h, a point z € R™ and a direction A, we say a pointy € (z,x + A) is h-isolated if

1. It holds that y € OD.

2. The neighbourhood of radius h around y does not contain x, z + A or any point from 9D (besides y).
Define the quantity g,,(x, A) to be the number of 27"*||A||2-isolated points in the interval [z, z + A].

Claim B4. g,,(z, A) is an increasing sequence in m, and for any x, A for which Claim B.3 holds, we have

lim gn(z,A) = |(x,z+ A)NoD|.
m—0o0
Proof. The monotonicity of g,,(x,A) in m is clear, and also that g,,(xz,A) < |(z,z + A) N OD|. We set
¢ = gm(z, A) and split the rest of the proof according to whether / is finite or not.

Case 1: /is finite. In this case we argue that g,,(z, A) = |(z,z + A) N D] for large enough m. To see
that, lety1, ...,y € (z,x+A) be all of the intersection points of (x,z+ A) and 9D, and take large enough
m so that 27™|| Al| is smaller than all of the distances ||y; — y; yi — |2, ||yi — (x + A)||2 for all 7 and

7

25 25

Case 1: /is infinite. Consider the set S = [z, z+ AN 0D, and note that it is a closed. By Claim B.3, S is
countable, and we argue that S must have an isolated point. Otherwise, S is a closed set and has no isolated
point, i.e. it s a perfect set, but then it must be uncountable (e.g. see [1]). We thus conclude that .S has an
isolated point wy; we may remove it from S, have that the resulting set is again closed and countable, so we
may again find an isolated point. Repeating this argument, for any v € N we may find a collection of isolated
points wy, . .., w, € S that are all different from = and = + A. As in case 1, we conclude that g, (z, A) > v
for large enough m, and since it holds for any v we conclude that lim,;, s oo gm (z, A) = occ. ]

By Lemma 2.2, we have that the surface area of D is at most a constant multiple of

1 1 1

- , A)YNoD|| = - li ,A) = lim — A
€ XGIED H(X X+ ) H S xGIED ml—rgo gm(x ) ml—rgo IS xEIED Lgm(x )]
A~N(0,e215) A~N(0,e21,) A~N(0,21,,)

In the first transition we used Claims B.4 and B.3, and in the second one we used monotone convergence.
Thus, if we assume that the surface area of D is larger than ¢ - A for a sufficiently large absolute constant

¢, then we get that lim,, %E zerD  [9m(z,A)] = 10A. In the rest of the proof we will reach a
A~N(0,621,)
contradiction and thereby show that for sufficiently large absolute constant ¢, the surface area of D is at

most cA, as required.
By properties of limits, we conclude there exists m such that

K [9m (x, A)] = 5A¢, (20)
xerD
A~N(0,e21,,)

and we fix this m henceforth.

Take 0 < & < 27™, and consider the following experiment. Take x €r D uniformly at random,
A ~ N(0,e%I,) and take a uniformly random point y €r [x,x + A]. We consider the event E in which
the points y and y + d A lie in different cells in the tiling induced by D.
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Claim B.5. For any x, A we have that Pry [E |z, A] > dgm(x, A).

Proof. Let{ = gy, (xz,A), and let 21, . .., z¢ be the 27| A||2-isolated points on the interval (z, x + A). For
each j,let I; = (zj —0A, zj), and note that as § < 27" and the isolation of the points, we conclude that the
intervals I; are disjoint and contained in (z,z + A). Also, note that if we pick y € I;, then y and y + 6A
lie in different cells of the tiling induced by D) this holds since the interval between them contains exactly
one point from 9D (namely, the point z;). Therefore,

Claim B.6. Prx a y [E] < 2A0e.

Proof. Consider x, A,y the random variables in the definition of the event E. Let z = y (mod D), and
note that the points y and y + d A fall in different cells if and only if the points z and z + d A fall in different
cells. Therefore, the probability of E is exactly the probability that z, z 4+ § A fall in different cells. Further,
note that conditioned on A, the distribution of z is uniform over D, so

Pr [z,z + 0A lie in different cells of D] = Pr [z, z + A’ lie in different cells of D] )
A~N(0,e21y) A’'~N(0,62e21,)
which is at most 2Ade by the choice of D and the fact that de < e < 2~ ko, O

Combining the above claims we reach a contradiction:

240e > Pr [E]= E [Pr[E | x, A]] > E [0gm(x,A)] > -5Ae,
X7A7y X,A y X,A

and contradiction. The first transition is by Claim B.5, the second transition is by conditional probability
formula, the third transition is by Claim B.6 and the final one is by equation (20). O
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